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Abstract

The ongoing exponential increase of line speed in the Internet and combined
with the uncountable requests for increased functionality of netwark devices presents
a major challenge. These demands call for the use of reprogrammable hardware
to provide the required flexible high-speed functionality. The Field Programmable
Port Extender (FPX) provides such an environment for development of networking
components in reprogrammable hardware. We present the high-speced IP routing
module “OBIWAN” (Optimal Binary search IP lookup for Wide Area Networks)
built on top of an IP processing framework,

1 Introduction

In recent years, field programmable logic has become sufficiently capable to implement
complex networking applications directly in hardware. The Field Programmable Port
Extender has been implemented as a flexible platform for the processing of network
data in hardware at multiple layers of the protocel stack. An important application for
the network layer is routing and forwarding of Internet protocol (IP) packets to other
network nodes.

2 Background

In the Applied Research Lab at Washington University in St. Louis, a rich set of hard-
ware components and software for research in the field of ATM and active networking
has been developed. The modules described in this document are primarily targeted
to this kit, though the design is written in portable VHDIL, and could be used in any
FPGA-based system.

*This research was supported in past by NSF ANI-0096052 and Xilinx Corp.
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Figure 1: WUGS configuration using the Field Programmable Port Extender

2.1  Switch Fabric

The central component of this research environment is the Washington University Gi-
gabit Switch (WUGS, [11). It is a fully featured 8-port ATM switch, which is capable
of handling up to 20 Gbps of network traffic. Each port is connected through a line
card to the switch. The WUGS provides space to insert extension cards between the
line cards and the switch itself.

2.2  Field Programmable Port Extender

The Field Programmable Port Extender (FPX, [2, 3]) provides reprogrammable logic
for user applications. A configuration of the switch and the FPX is illustrated in Fig-
ure 1.

The FPX contains two FPGAs: the Network Interface Device (NID) and the Re-
programmable Application Device (RAD}. The NID interconnects the WUGS, the line
card and the RAD via a small switch. It also provides the logic to dynamically repro-
gram the RAD. The RAD can be programmed to hold user-defined modules, Hardware
based processing of networking data is made possible that way. The RAD is also con-
nected to two SRAM and two SDRAM components. The memory modules can be used
to cache cell data or hold large tables. Figure 2 illustrates the major components on an
FPX board.

2.3 FPX Modules

User applications are implemented on the RAD as modules. Modules are hardware
components with a well-defined interface which communicate with the RAD and other
infrastructure components. The basic data interface is a 32-bit wide, Utopia-like in-
terface. The data bus carries ATM header information, as well as the payload of the
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cells. The other signals in the module interface are used for congestion control and to
connect to memory controllers to access the off-chip memory. The complete module
interface is documented in [4].

Usually, two application modules are present on the RAD. Typically, one handles
data from the line card to the switch (ingress) and the other handles data from the switch
to the line card (egress). Modules can be replaced by reprogramming the FPGA, in the
systemn at any time. In the case of the FPX, this functionality occurs via partial repro-
gramming of the RAD FPGA. A reconfiguration component performs a handshaking
protocol with the modules to prevent loss of data.

2.4 Network Wrappers

Network protocols are organized in layers. Components have been developed for the
FPX that allow applications to handle data on different levels of abstraction. A similar
implementation exists for IP over Ethernet and the corresponding network layers [5].
On the cell level, a Start of Cell (SOC) signal is given to an application module. For
AALS frame based applications, Start-of-Frame (SOF) and End-of-Frame (EQF) sig-
nals indicate the beginning or the end of an AALS frame, respectively. An additional



data-enable signal indicates whether valid payload data is being sent. On the IP levels,
a signal indicates the start of user payload data.

For each layer one component exists, which wraps up the application itself. There-
fore we will refer to the surrounding components as wrappers. All wrappers are dis-
cussed in detail in [6].

2.4.1 Cell based processing

At the lowest level of abstraction, data is sent in fixed length cells. Applications or
wrappers working on that protocol level typically process the ATM header and filter
cells by their virtual channel. FPX Modules communicate with software via control
cells, ATM cells with a well-defined structure used to perform remote configuration.

The wrapper on the lowest level is the cell processor. It performs every necessary
step on the cell level that is common to all FPX modules. First of all, incoming ATM
cells are checked against their Header Error Control (HEC) field, which is part of the
5 octet header. An 8 bit CRC is used to prevent errored cells from being misrouted. If
the check fails, the cell is dropped.

Accepted cells are queried about their virtual channel information in the next step.
The cell processor distinguishes between three different flows:

1. The cell is on the data VC for this module. In this case, the cell will be forwarded
to the inner interface of the wrapper and thus to the application.

2. The cell is on the control cell VC and is tagged with the correct moedule ID.
Control cells are processed by the cell processor itself.

3. None of the above, i.e. this cell is not destined for this module. These cells are
bypassed and take a shortcut to the output of the cell processor.

2.4.2 TFrame based processing

To handle data with arbitrary length over ATM networks, data is organized in frames,
which are sent as muitiple cells. The most commonly used adaption layer is the ATM
Adaption Layer 5 (AALS, [7, 8]).

The frame processor is a wrapper module for the FPX to handle AALS frame
data. Its interface is designed to give application modules a more abstract view of the
data. The frame processor replaces the Start-of-Cell signal with three signals, namely
Start-of-Frame (SOF), End-of-Frame (EOF) and Data-Enable (DataEn) and handles
the frame’s CRC-32.

2.4.3 1P Packet Processing

The IP processor was developed to support IP based applications. It inherits the sig-
nalling interface from the frame processor and adds a Start-of-Payload (SOP) signal,
to indicate the payload after the IP header. This wrapper serves two primary functions:

I. Checking the IP header integrity, i.e., the correctness of the header checksum.
Forwarding of corrupted packets is suppressed by not propagating appropriate
signals to the application.



2. Decrementing the Time To Live (TTL) field. As of RFC 1812 [9] all IP pro-
cessing entities are required to decrement this field. Onee this field reaches zero,
the packet should not be forwarded any more. This is to prevent packets from
looping around in networks due to mis-configured routers.

2.4.4 The FPX UDP Processor

The UDP processor is a wrapper to support user datagrams over IP. This wrapper takes
care of the UDP checksum and the length field in the header for outgoing datagrams.
Incoming datagrams are also checked for the checksum. The UDP processor uses
almost the same signals as the IP processor, only replacing the SOP signal with the
Start-of-Datagram (SOD) signal. Applications can simply process datagrams or even
generate new ones without being concerned about correct header values.

3 IP router OBIWAN

We will now present a fully functional Internet Protocol router, which we call OBITWAN
(Optimal Binary search IP lookup for Wide Area Networks). The router uses one
external SRAM module and an internal bitmap. Routing entries can be configured
with control cells as described in section 3.3. The router extracts the destination IP
address of incoming IP packets, which are encapsulated in AALS frames, buffers the
data while the IP lookup is performed and forwards the packets with the VCI being
replaced according (o the next hop information. The WUGS switches the packets to
one of the eight ports according to the new VCI. OBIWAN can operate at full line
speed, ie., 2.4 Gbps. It is designed to even work at the worst case, which is one
IP packet in every ATM cell, or one lookup every 16 clock cycles. This provides a
number of up to 6.25 million IP packets per second.

3.1 Lookup Algorithm

The lookup algorithm that we used for our implementation is a binary search over
prefix lengths using hash tables. This algorithm is documented in detail in [10, 11].
The basic algorithm uses a hash table for each prefix length. A hash key and a value
can be determined from the prefix and will be stored in the table. When a lookup is
requested, the basic algorithm performs a binary search for the best matching prefix. It
starts with the prefix length 16, and depending on a match it continues the search with
a longer, i.e., 24 bits or a shorter, i.c., 8 bits length, until the longest matching prefix
length has been determined. The number of iterations, i.e., the depth of the binary
search tree of the basic scheme is five.

Though the algorithm given above performs very well already, in terms of memory
accesses, it 5till requires 3 simultaneous lookups to guarantee line speed operation. It
takes 4 clock cycles to read data from SRAM memory, mainly because of buffers on
the chip boundary. Thus reducing the number of memory accesses is our main goal in
improving the algorithm above. This can be done by reducing the depth of the binary
search tree.
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First, the algorithm combines two adjacent prefix length by expanding the shorter
prefix to two more specific routing entries. This has been described in [11], which also
shows that this expansion does not increase the forwarding database. This step does
reduce the maximum depth of our search tree by one.

Many routing entries have a prefix length shorter or equal to 16 and our analysis
of network traffic has shown, that around 50% of all routed IP packets will take one
of these routes. These results led us to implement a bitmap for the first 16 prefix bits,
which indicate, whether a longer prefix exists in the hash tables. This does not only
reduce the binary search tree by another level, but also improves the lookup speed for
every second IP packet significantly. In fact, we assume that there is a matching 16 bit
prefix for every address. Thus if the binary search fails finding a longer prefix, we
retrieve the next hop information of the corresponding 16 bit prefix, while a special bit
indicates, whether it is valid. For invalid next hops, we use the default route for this
address.

To reduce the overall memory consumption of the hash tables and to reduce the
probability of collisions, we only use two relatively large hash tables. One for all
prefix lengths from 17 to 24, and another one for the range 25 to 32. To distinguish the
prefix length of the entries in the tables, the prefixes are right aligned to either 24 or
32 bit, while a leading 1 bit guarantees uniqueness (Figure 3).

The key and value functions use a simple bit extraction algorithm, which is very
efficient in bardware. For 17 to 24-bit prefix lengths, the key size is 16 bit, which
leaves 9 bits for every value (Figure 4). The function for long prefixes uses 15 and
18 bits (Figure 5). Our final configuration (Figure 6) thus has two hash tables with four
buckets per key each. The table for the shorter prefixes contains 64k entries with four
buckets per word (val24), the other 32k entries with two buckets per word (val32). Tests
have shown, that this configuration is useful with real routing tables and does not give
many collisions. Despite the fixed number of buckets per hash table entry, collisions
can still be resolved by expanding a prefix to more entries, thus moving them to other
locations in the table.,

For each match in a hash table, the lookup algorithm should determine a next hop
information. Since this information is only necessary at the very end of the lookup, we
separated it from the hash tables and put them in a shadow-table to avoid unnecessary
memory bandwidth usage. The shadow tables have almost the same layout as the hash
tables, with the difference, that only 8 bit next hop information is available for every
entry (nh24 and nh32). Additionally, every entry in the bitmap needs a corresponding
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Figure 6: Memory layout for routing table

next hop information as well {nhbm). Since the hash table for up to 24 bit prefixes
only uses 2 entries per word, we use the remaining space for corresponding bitmap
entries. Every bitmap entry has a valid bit (v), since the algorithm assumes a 16-bit
match before it starts the binary search.

3.2 Implementation

‘When IP packets first come into the router, the IP destination address is extracted and
forwarded to the actual IP lookup engine. At the same time, the whole packet is stored
in a FIFO. The packet can only be forwarded when the next hop information, which is a
new VI, is available from the lookup engine. While the packet is written to the RIFO,
the payload words are counted. The number is then put in a separate queue. On the
output side of the router, the IP packets are forwarded, with the VCI being replaced, as
soon as the next hop information is available from the IP lookup. There is also a queue
for next hop information, in case the output port is congested and IP packets cannot be
forwarded fast enough. There are still two cases, which have to be distinguished:

s At least one packet length is available in the counter queune. Then the complete
packet can be sent out on a new VCI, since the length is known.

¢ The counter queue is empty. Then there is only one packet buffered, which is
still incomplete. Therefore all data in the FIFQ can be sent out, but switch to the
state above, as soon as the actual length is available,
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The actual IP lookup engine (Figure 8) takes a destination IP address on its input
and delivers a next hop information (VCI) on its output after some time. The IP lookup
engine works strictly in order. The IP address is first checked against the internal
bitmap, which is located in on-chip memory. As mentioned earlier, the bitmap contains
the information, if the longest prefix for this address has at most 16 bits. Therefore
the bitmap is 2*¢ = 64kb in size. If there is no longer prefix than 16 bits, the next
step, the binary search over hash table lookups, is skipped and a next hop address is
forwarded. A next hop address encodes the location of the next hop information in
SRAM. Otherwise the IP address is forwarded to one of two engines, which perform
the binary search.

The binary search units (Figure 9) start with a prefix length of 24 bits, compute a
key/value pair for the hash table and set the address for memory access. Because of
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buffers at the chip boundaries and inside the lookup engine, it takes 6 clock cycles, un-
til the data from memory can be evaluated. During that time, some pre-computations
are done: the next possible longer and shorter prefix lengths are determined, the cor-
responding key/value pairs and memory addresses are computed and stored. When the
data words are finally available, the values of all buckets are compared to the value
corresponding to the current IP address. On a match, the address for the longer prefix
is selected for the next iteration, otherwise the address for the shorter prefix is chosen.
A match also updates the next hop address for the best matching prefix, which initially
points to the 16 bit prefix of the IP address. After a total of 3 iterations, the next hop
address is forwarded to retrieve the next hop information for the current IP address.

We also considered an alternative scheduling scheme. In addition to a hash table
entry, the next two possible entries are also retrieved to eliminate some wait cycles.
This scheme has not been implemented due to its higher complexity, while it does not
obsolete one of the lookup engines.

Before we can read the next hop information from memory, we have to reorder the
next hop addresses, coming from three different locations. Since some next hop ad-
dresses bypass the binary search, they may arrive out of order. A next hop multiplexer
keeps track of orders to the binary search engines, their results and bypassed next hop
addresses, buffers them, if necessary, reorders and then forwards them, Getting the next
hop information is done by reading a word from the shadow tables. Both the memory
address and the position within one word are encoded in a next hop address. If a next
hop is read from a bitmap entry, the valid flag is also checked. If this check fails, the
next hop is set to the default route, which can be set by sending a control cell to the
module.

The IP router OBIWAN is designed for the FPX. The system clock on the FPX is
100 MHz and the FPGA used is a Xilinx Virtex E 1000-7. OBIWAN synthesizes with
a speed of 111 MHz while utilizing 1196 lookup tables. The entire router, including
the networking wrapper framework and infrastructure components, fits within 18% of

10



the FPX chip.

3.3 Configuration

The OBIWAN router uses FPX control cells to configure virtual channels, default
routes and routing tables. Control cells are structured ATM cells with an opcode to
specify the command, a module ID to address the module on an FPX, and several pa-
rameter fields. OBIWAN uses the module ID 1. Control cells are secured with a 16-bit
CRC. Three different commands are used to configure OBIWAN.

1. The virtual channel on which IP packets are processed and the default route next
hop information are configured with the VPI/VCI command, which is described
in [6]. The default VCI for IP wraffic is 0x35(50) and can be changed by setting
the application VCI register 0x10(16). IP packets going out on the default route
are sent on the VCI that is configured in register 0x20(32).

2. Routing information for OBIWAN is stored in off-chip SRAM as described in
section 3.1. To update this memory the Control Cell Processor (CCP) is used
by OBIWAN. The CCP is a standard FPX module with the module ID O that
processes memory update control cells.

3. Before the routing information in SRAM is checked, our implementation com-
pares the IP address with an internal bitmap. This bitmap can be configured with
the control cell opcodes 0x12 (write) and 0x14 (read). This control cell format is
only understood by OBIWAN. The layout can be seen in Figure 10. Several bits
can be set or read at the same time. Every word of the control cell can address
16 bits out of 65536 if the valid bit is set to one. The write operation can simply
overwrite the existing settings, but it can also be combined with an AND or an
OR operation to make updates of single bits easier.

3.4 Improvements

Our goal was to have the IP router run at full line speed. Though we have achieved this
goal with OBIWAN, there is still room for further improvement in terms of throughput
and delay. These are mostly theoretical considerations, as they would only apply to
systems faster than several gigabits per second.

First of all, the SRAM bandwidth is not fully utilized. Ounly 50% of the access
cycles are assigned to the 2 lookup engines. The remaining cycles are free to retrieve
next hop information, which takes only one clock cycle. Since for 24 bit hash table
lookups, only one memory access is necessary, the next hop information could also be
retrieved during a lookup engines’ second cycle, A more advanced SRAM scheduler
wouid be necessary, but up to four Iookup engines are realistic and would double the
worst case throughput to up to 12.5 million IP packets per second. This bandwidth
cannot be provided by the current FPX implementation.

As we mentioned earlier, 50% of the packages match the bitmap lookup, so the
lookup engines are idle every second package, on average. Introducing a FIFO for IP

11
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Figure 10: Control cell format for bitmap updates
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destination addresses, one could make advantage of its distribution. Two packets per
8 clock cycles seems to be 2 good average throughput. But now the retrieving of the
next hop information can be a bottleneck. Recall that only one extra memory access
per lookup (3 iterations) can be guaranteed, i.e., % =~ 1.3.

So far we only considered the worst case where every IP packet fits in only one
ATM cell. This is not a realistic assumption, though. An IP header and a UDP header
use 7 words of the 12 available already. Since the packet is encapsulated in AALS
frames as well, which use another 2 trailer words, only 3 words or 12 octets are left
for payload data. A TCP header is already 5 words in size, which gives no extra space
to payload. Given that most of the IP packets consume more than 2 ATM cells, the
potential bandwidth will at least double, since the number of lookups is independent of
the packet length. On the other hand, this shows that our IP lookup engine will be idle
most of the time.

Heading for the ultimate optimization, one could implement the IP router entirely
on the cell-level, thus loosing the advantages of the framework, as easy development
and code maintainability. A reasonable way to maintain data integrity is using incre-
mental updates for the IP header checksum [12] and for the AALS CRC [13].

4 Conclusions

We presented a fully functional TP router, which runs at 2.4 Gbps (OC-48) and is based
on our framework. The entire router consisting of all components (control eeil pro-
cessor, memory interface, frame processor, and OBIWAN router) has been synthesized
for a Xilinx Virtex and fit within 18% of an XCV1000E FPGA. This indicates that the
layering employed does not adversely affect size or performance. Besides the basic
router, there is still plenty of space for future, application-defined functions, such as
hardware-accelerated active networking or security processing.
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