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ABSTRACT OF THE THESIS 

Aerodynamics and Shock Buffet of a Transonic Airfoil in Ground Effect 

by 

Boshun Gao 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2017 

Research Advisor: Professor Ramesh K. Agarwal 
 

 

The Wing in Ground Effect (WIG) aircraft operates with larger lift to drag ratio compared to a 

conventional aircraft at low subsonic Mach numbers. To increase the traffic volume of the WIG 

aircraft, one possible way is to increase the flight speed, which can result in transonic flow. 

Currently the studies on transonic flight in ground effect are very few. The goal of this research is 

to study the aerodynamics and flow physics of a typical transonic RAE2822 airfoil at angles of 

attack (AOA) from 0 to 12 deg. and Mach numbers from 0.5 to 0.8 in ground effect by varying the 

ground clearance above the ground. The compressible Reynolds-Averaged Navier-Stokes 

equations with Spalart-Allmaras (SA) turbulence model are solved using the commercial CFD 

solver ANSYS FLUENT. For flight near the flat ground surface, some interesting shock 

formations and flow phenomenon are obtained due to transonic flow. For the unsteady shock buffet 

phenomenon on the upper surface, the buffet boundary in the Angle of Attack (AOA) – Mach 

number (Ma) plane shrinks with the decreasing ground clearance. Compared to the unbounded 

flow field, there exists a steady shock on the lower surface of the airfoil in ground effect for low 
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AOAs because the channel between the lower surface of the supercritical airfoil and the ground is 

a typical converging-diverging shape, resulting in decrease in lift and increase in drag. For extreme 

conditions of very small ground clearance, small AOA and high Mach numbers, a new coupling 

between the shock buffets on the lower and the upper surface of the airfoil is observed. The 

unsteady aerodynamics of transonic flow in the presence of a wavy ground is also analyzed. For 

flight on the wavy ground, there is phase lead in the unsteady aerodynamic performance of the 

airfoil at various ground clearance compared to that in case of flat ground. 
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Chapter 1: Introduction 
This part introduces the background of the ground effect, transonic flight, and the shock buffet 

phenomenon. The simulation software used in this research is also briefly described. 

1.1 Ground Effect 
Typical commercial aircraft fly at around 35000 feet above the ground at Mach number around 

0.8. However, a Wig aircraft also needs to operate safely near a flat ground or wavy surface like 

river or ocean. The ground effect is favorable for a WIG craft since the ground effect can increase 

the effective angle of attack thereby increasing the aerodynamic efficiency (L/D) of the WIG [1-

5] resulting in less fuel consumption and higher operating efficiency. A wing-in ground (WIG) 

aircraft cruises near height which is generally a ground less than the length of the aircraft’s 

wingspan to generating extra lift by having a high-pressure distribution on the lower surface of the 

airfoil. WIG aircraft usually fly at low subsonic Mach number < 0.3. For subsonic flow past an 

airfoil in ground effect, numerous experiments and simulations have been conducted over the years. 

Aerodynamic ground effect of NACA6409 was experimentally investigated by Jung et al. [6] to 

investigate the influence of aspect ratio of the wing, end plates, angles of attack (AOA), and ground 

clearance. Zhang et al. [7] experimentally studied the aerodynamic behavior of a cambered, two-

element, high-lift wing in ground effect. Qu et al. [8] numerically studied the effect of wide range 

of AOA on aerodynamic forces on an airfoil in ground effect. Yang et al. [9] conducted a numerical 

investigation of the effect of viscosity and compressibility on the aerodynamics of a 2D 

NACA0012 wing in ground effect. Doig et al. [10] numerically studied the transonic RAE2822 

airfoil and the effect of lower surface shock on the aerodynamic forces. In his paper, several 

simulations involving shock buffet were found but not analyzed in great detail.  
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1.1.1 2D Ground Effect 

For an airfoil of long span, the 2D chord-dominated ground effect has been extensively 

investigated. The physics behind the increase in lift in ground effect is that the airflow blocking 

effect from the convergent passage between the lower surface and the ground causes the pressure 

on the lower surface to increase; the upper surface pressure also increases because of the 

streamlines’ upward deflection. When the airflow blocking effect is greater than the streamlines’ 

deflection, an increase in lift is observed.   

1.2 Transonic Flight 
When the velocity of the airflow exceeds the local speed of sound, a shock wave appears. The 

freestream Mach number at which a shockwave first appears on an airfoil is called the critical 

Mach number. The critical Mach number not only depends on the aircraft speed, but also on the 

local environment like temperature since the local speed of sound equals ඥܴܶߛ . Modern 

commercial jet engine powered aircraft are designed to operate at transonic speeds to achieve 

higher operating efficiency. Typically, the airflow over the upper surface of the airfoil gains larger 

speed compared to freestream velocity, therefore a shock wave appears on the upper surface of the 

airfoil for freestream Mach number greater than the critical Mach number. 

1.2.1 Sound Barrier 

For subsonic flight, the linearized compressibility correction of Prandtl-Glauert gives ܥ௣ ൌ
஼೛,బ

ටଵିெ	ಮ
మ

, 

while for supersonic flight, the linearized supersonic theory gives ܥ௣ ൌ
஼೛,బ

ටெ	ಮ
మ ିଵ

. However, these 

relationships are obtained from linearized perturbation velocity potential equation which does not 

hold for transonic flight. From the experiments, ܥ஽  becomes very large for freestream Mach 
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number close to critical Mach number, M > Mc. This is the concept of sound barrier. The value of 

freestream Mach number at which the drag has sudden increase is defined as the drag-divergence 

Mach number. The existence of sound barrier requires more powerful jet engines and better 

designed wings for transonic flight. 

1.2.2 Supercritical Airfoils 

The design of supercritical airfoils from 1945 to 1965 was focused on achieving higher critical 

Mach number. Researchers found that thinner the airfoil, higher is the critical Mach number; thus 

the aircraft could operate at a higher speed without the appearance of a shock. The limitation of 

the thin airfoil design is that the structural integrity and functionality of the airfoil can be greatly 

impaired. The alternative approach is to delay the drag-divergence Mach number by designing  a 

relatively flat top airfoil with high camber and large radius at the leading edge; the supersonic 

region above the airfoil will have lower local values of Mach number thereby reducing the shock 

strength and creating less drag. 

 

a) Conventional airfoil 

 

b) Supercritical airfoil 

Figure 1.1 Pressure coefficient distribution for different airfoils at transonic speed 
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1.3 Shock Buffet 
When transonic flow conditions, especially at moderate to high Mach number, the relatively weak 

shock interacts with a boundary layer inducing a small region of separation. This my result in a 

self-sustained shock buffet causing the flow field to oscillate. This can be highly problematic if 

the shock buffet frequency is in the same range as the vibration frequency of the structure creating 

resonance, causing the structure to undergo limit cycle oscillations leading its possible failure. 

Many experiments and numerical simulations have been conducted to understand the physical 

mechanism behind the buffet phenomenon in fifty years. [11-21] 

1.3.1 Shock Buffet on a Biconvex Airfoil 
For symmetric biconvex airfoil at zero angle of attack, due to symmetry, the shock oscillates on 

the upper and lower surface of the airfoil in anti-phase. There are three possible types of shock 

movements: type A wherein two shocks have nearly sinusoidal motion and the shocks never 

disappear; type B of two shocks having different dynamic effects with one shock becoming very 

weak and degenerating into a weak pressure wave seen in photographic studies; and type C of two 

shocks having only the upstream periodic motion and alternating between the upper and lower 

surface [11]. 

1.3.2 Shock Buffet on a Supercritical Airfoil 
The buffet of supercritical airfoils has been relatively less studied. The experiments by Lee et al. 

[20-22] provide extensive set of data. The shock buffet phenomenon on a supercritical airfoil has 

been explained by B.H.K. Lee [22] by combining the downstream propagation of disturbances and 

the upstream propagation of waves in the separated flow regions. Q. Xiao et al. [23] performed a 

numerical study on a BGK No.1 supercritical airfoil; their results confirm that the pressure waves 

behind the shock through the separated region interact with the upstream-moving waves outside 
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the separated region. The oscillation period also agrees well with the buffet model proposed by 

B.H.K Lee [22]. 

1.4 Commercial CFD Flow Solver ANSYS 
The simulation software used in this study is ANSYS, which is a widely used commercial 

simulation software in industry. For flow simulations, ANSYS Fluent includes RANS and LES 

turbulence models and a wide variety of discretization schemes in space and time. The version 

17.1 of ANSYS Fluent is employed in this study. 

1.4.1 Mesh Generation 

The software used to generate the computational domain and the mesh is ANSYS ICEM CFD. It 

contains geometry acquisition, mesh generation, and mesh diagnostic and repair tools. The general 

meshing work flow is shown in Figure 1.2. 

 

Figure 1.2 ICEM CFD Workflow 
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1.4.2 Simulation Software and Numerical Methods 

The software used for running all the numerical simulations in this thesis is ANSYS Fluent. It is 

written in C language and supports the dynamic memory allocation, efficient data structures, and 

flexible solver control. The workflow in Fluent is as follows: read mesh into ANSYS Fluent, set 

the boundary conditions, define the fluid properties, execute the solution, and perform the post-

processing. All simulations run in parallel mode, which means that the ANSYS Fluent splits the 

mesh and data into multiple partitions, then assigns each mesh partition to a different computing 

node. The scalability is excellent with the current computer configuration. 

ANSYS Fluent solver is based on the finite volume method where the domain is discretized into a 

finite set of control volumes. The governing equations of conservation of mass, momentum and 

energy are solved on the set of control volumes. Using the finite volume method, the conservation 

laws are naturally satisfied, thus the discontinuities in the solution such as shocks etc. are better 

resolved than in the finite difference based solver. The pressure-based solver is chosen to address 

the problem of pressure-velocity coupling. The coupled algorithm solves the momentum and 

continuity equations together in a fully implicit manner by adding a pressure gradient term in the 

momentum equations. 

To solve the large implicit matrix, the coupled AMG solver is used to accelerate the iteration 

process. The incomplete lower upper (ILU) AMG smoother is chosen over Gauss-Seidel method 

for its high efficiency. 
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Chapter 2: Numerical Method and 
Validation 

2.1 Physical Model 
A typical supercritical RAE2822 airfoil is employed in this study. The chord length is 1.0m, and 

the maximum thickness to chord ratio is 12.1%. Angles of attack from 0 to 12 degrees are 

considered to study both the steady and unsteady transonic flow in ground effect. The ground 

clearance with h/c = ∞, 1.0, 0.8, 0.6, 0.4, 0.2, and 0.1 are considered. 

2.1.1 Mesh Topology and Mesh-Generation 

 

Figure 2.1 Mesh topology for CFD simulation 

Due to the ease of converting airfoil mesh in unbounded flow to that in ground effect, an H-mesh 

topology is used in all simulations. The blocks at the trailing edge are collapsed to obtain a sharp 

trailing edge. The orthogonality of the mesh is crucial in CFD simulations since poor mesh quality 

usually causes errors in the simulations. The O-grid around the airfoil is generated to create layers 
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of orthogonal meshes surrounding the airfoil. The topology of the mesh remains unchanged in all 

simulations. 

The airfoil is split into two parts, the upper surface and the lower surface, to facilitate the analysis 

of lift and drag on different surfaces. 

2.2 Numerical Method 
A rectangular computational domain is employed as shown in Fig. 2.2. A structured mesh with 

refinement in the wake region and between the airfoil and the ground is also shown in Fig. 2.2. 

The inlet and the top boundaries are located 60c away from the airfoil, the outlet boundary is 80c 

away, and the bottom boundary is 60c away from the airfoil in the unbounded flow case. For the 

inlet, outlet, top and bottom boundaries, pressure far-field boundary condition is employed, which 

specifies the two Riemann invariants for a flow normal to the boundary. For the ground, a no-slip 

moving wall boundary condition with the translational velocity equal to the freestream velocity is 

employed. 

The equations for the unsteady compressible turbulent flow can be written as: 

Mass conservation: 
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Momentum conservation: 
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Total energy conservation: 
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The turbulence model used in this thesis is the Spalart-Allmaras turbulence model, ߤ௧ in equation 

(4) is calculated based on the SA turbulence model. 

 
߬̂௝௜ ൌ ሺߤ ൅ ௧ሻߤ ௜ܵ௝,						݁ݎ݄݁ݓ	 ௜ܵ௝ ൌ

1
2
ቆ
௜ݑ߲
߲ ௝ܺ

൅
௝ݑ߲
߲ ௜ܺ

ቇ 
(4)  

The double precision solver in ANSYS FLUENT 17.1 is used to perform the CFD simulations. 

Compressible Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras turbulence 

model are solved. Second-order numerical scheme is used for both the convection and diffusion 

terms. The pressure-coupled transient solver is used for pressure-velocity coupling. In all 

simulations, a few displayed an unsteady behavior; without knowing in advance whether the flow 

is steady or unsteady in a particular simulation, transient solver is employed in the simulations. In 

case of steady flow, convergence is considered achieved when ܥ௅ and ܥ஽ changed within 0.01% 

over 1000 iterations. In case of unsteady flow, the time step used is equal or less than T/200, where 

T denotes the time period of the unsteady converged solution. The transient solution is considered 

converged when the aerodynamic coefficients became periodic after several cycles and do not 

change from one cycle to next. 

 
Figure 2.2 (a) Computational domain and mesh layout in unbounded flow. 
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Figure 2.2 (b) Computational domain and mesh layout in ground effect. 

Figure 2.2 Computational domain and mesh layout. 

2.3 Validation of Numerical Method 

2.3.1 Steady State Validation 

The mesh independence of the computed solution is ascertained by comparing the present 

numerical results with those of NASA’s benchmark numerical solutions for RAE2822 airfoil in 

unbounded flow at Mach number 0.729. Coarse, medium and fine meshes are tested in the mesh 

independence study. The coarse mesh has 315 nodes on the airfoil and a total of 97,775 cells. The 

medium mesh has 695 nodes on the airfoil with a total of 269,520 cells. The fine mesh has 855 

nodes on the airfoil with a total of 527,468 cells.  

The dimensionless wall distance (y+) from the surface is estimated using the flat plate analysis. 

All meshes are graded so that y+ is less than 0.1 for the first mesh point away from the wall. This 

gives sufficient mesh resolution in near-wall regions to use the law of the wall in viscous sublayer. 

The results are summarized in Table 2.1 indicating that the medium mesh gives acceptable 

accuracy for both lift and drag predictions; therefore, the medium mesh is used in all the 

simulations presented in this thesis. 
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Table 2.1 Mesh independence study for RAE2822 airfoil in unbounded flow; M = 0.729, α = 2.31 deg. 

Mesh Cell numbers y+ CL CD 
Experiment   0.743318 0.012700 
NASA-CFD   0.730962 0.012117 
Coarse mesh 97775 <0.1 0.719598 0.012679 
Medium mesh 269520 <0.1 0.721315 0.012699 
Fine mesh 527468 <0.1 0.721788 0.012638 

 

Figure 2.3 Computed ܥ௣ comparison with experimental result using coarse, medium and fine mesh.  

From Figure 2.3, all CFD results predict the shock location slightly earlier than the experiment. 

The CFD results agree well with the experimental data; the coarse mesh predicts the shock location 

slightly forward, but the medium and fine meshes are able to capture the shock location quite well. 

The pressure contours and sonic line in Figure 2.4 show the pressure of a shock behind the middle 

of the upper surface of the airfoil. The sonic line where the local Mach number equals unity is 

marked in red in Figure 2.4. There is no shock on the lower surface. 
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Figure 2.4 Pressure contours and sonic line of an RAE2822 airfoil at M = 0.729 and α = 2.31 deg. 

Table 2.2 Comparison of aerodynamic forces on adapted mesh 
Mesh Cell numbers CL CD 
Standard mesh 269520 0.721315 0.012699 
Standard mesh with first adaptation 279790 0.721765 0.012615 
Standard mesh with second adaptation 293772 0.721925 0.012626 

Physically a shock is a discontinuity in pressure, density and temperature in the flow field. It 

requires sufficient mesh density near the shock to reduce the discretization error. It would be very 

costly to increase the mesh density in the entire flow field. It is also not always possible to make a 

wild guess as to where in the flow domain that higher mesh resolution is needed without knowing 

the position of the shock. Adaptation of the mesh with pressure gradient as a sensor is one of the 

best feasible ways to refine the mesh. 
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Figure 2.5 Comparison of the computed ܥ௣ on standard mesh and adapted mesh with the experimental data.  

The first adaptation of mesh predicts the shock location ahead of the experimental location, while 

the second mesh adaptation also does not show noticeable change in the shock location as shown 

in Figure 2.5. However, the smearing in pressure contours is much reduced, with only a few 

thousand additional cells as shown in Figure 2.6. This implies that the gradient based mesh 

adaptation method is very useful in computing flows with high gradients such as shocks or 

stagnation points. However, due to insignificant differences in aerodynamic forces between 

medium mesh and refined mesh results, and the fact that the shock is unsteady at certain Mach 

numbers, angles of attack, and ground clearances, the adaptation is not used in the thesis study. 
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a) medium mesh 

 
b) first adaption 

 
c) second adaption 

Figure 2.6 Resolution of Pressure contours near the shock with increasingly-refined mesh. 

2.3.2 Unsteady Shock Buffet Validation 

The basic numerical method used to solve the unsteady compressible turbulent flow is the same as 

described earlier. It is applied to the BGK No.1 supercritical airfoil [19-23]. For this validation test 

case, the flow field computed for a BGK No.1 supercritical airfoil at Mach number 0.71 at an angle 

of attack α = 6.97 deg. The flow is unsteady with shock-induced oscillations. The simulation is 

initialized from a uniform initial condition. The time step used is 0.00025s; the 

nondimensionalized time step (ܷݐஶ/ܿ) is 0.0604. The solution is monitored by the lift and drag 

coefficient of the airfoil. The simulation is considered converged when the solutions become 

periodic. 

Different initial conditions for the simulations are used to observe the influence of initial 

conditions. Three different initial conditions employing the uniform, hybrid and full-multi-grid 

method are compared. In the flow field of hybrid initialization, Laplace equations for velocity and 

pressure are solved in the entire flow field, and the other flow variables are patched using the 

domain averaged value. In the full-multi-grid initialization, the flow domain is computed at 

different grid levels, and the FMG initialization solves the Euler equations for inviscid flow using 
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first order-discretization. The results from these different initialization methods are compared in 

the time for simulations to reach a converged solution. As shown in Figure 2.7, the uniform 

initialization and the hybrid initialization show very close agreement for the solution to reach 

periodicity, while the full multi-grid initialization method is able to converge faster than the other 

two methods. Once the periodic state is reached, the solutions are found to be identical, providing 

evidence that the final periodic unsteady is insensitive to the initial condition. 

 

Figure 2.7 Convergence history of different flow field initialization methods. 

The lift coefficient history is presented in Figure 2.8. Fourier analysis of the lift coefficient shown 

in Figure 2.9 reveals a reduced frequency of 0.222, which is about 11.2% lower than that in the 

experiment of Lee el al. [20] (݇ ൌ ஶܷ/݂ܿߨ ൌ 0.25). The average lift coefficient is 1.061, which 

is 4.5% larger than the experimental value. The pressure on the airfoil is time-averaged; the 

pressure distribution on the upper surface of the airfoil is presented in Figure 2.10. The pressure 

coefficient on the front portion of the upper surface of the airfoil is larger than that in the 

experiment, while the pressure coefficient of the middle to trailing edge portion of the airfoil agrees 

well with the experimental data. 
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Figure 2.8 ܥ௅ history for M = 0.71 and α = 6.97 deg. 

 
Figure 2.9 Fourier analysis of reduced frequency. 

 

Figure 2.10 Time-averaged pressure distribution on the upper surface of the airfoil. 

This validation shows that the mesh quality as well as the numerical method are sufficient to 

predict the shock buffet phenomenon; the pressure coefficient and the aerodynamic coefficients 

are within agreeable range compared to the experimental data. The error in the prediction of 

reduced frequency is much less compared to the numerical simulations of Xiao et al. [23]. 
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Chapter 3: Results and Discussion 

3.1 Lift and Drag for Various M, α and h/c 
For lift and drag coefficient, the universal definitions and notations are used. The lift and drag 

coefficients are defined as follows. The total lift coefficient is defined as: 
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(5)  

For the upper and lower surface, the lift coefficients are defined as follows: 
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(7)  

The total drag coefficient is defined as follows: 
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(8)  

For the upper and lower surface, the drag coefficients are defined as follows: 
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The total lift and drag coefficient at various angles of attack and Mach numbers for different 

ground clearances are shown in Figures 3.1 – 3.6.  

 

Figure 3.1 Variation of ܥ௅with ground clearance for various α and M. 
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Figure 3.2 Variation of ܥ௅,௨௣ with ground clearance for various α and M. 

 

Figure 3.3 Variation of ܥ௅,௟௢௪ with ground clearance for various α and M. 
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Figure 3.4 Variation of ܥ஽ with ground clearance for various α and M. 

 

Figure 3.5 Variation of ܥ஽,௨௣ with ground clearance for various α and M. 
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Figure 3.6 Variation of ܥ஽,௟௢௪ with ground clearance for various α and M. 

The lift coefficient curves in Figure 3.1 shows that the most dramatic change in aerodynamic 

coefficients occurs at ߙ ൌ 0 deg with decrease in ground clearance. At M = 0.6, with decrease in 

ground clearance, the lift coefficient at ߙ ൌ 0 deg changes sign between h/c = 0.2 to 0.4. Instead 

of producing lift, the airfoil generates downforce in this particular situation. The lift coefficient at 

ߙ ൌ 2 deg is smoother with decrease in ground clearance until h/c < 0.2. Increasing the angle of 

attack can delay the dramatic change in lift coefficient at high Mach number. 

The drag coefficient curves in Figure 3.3 show that at ߙ ൏ 4 deg, the drag is very small compared 

to that at high angles of attack and higher Mach numbers due to unseparated flow and the absence 

of shock. Increase in the angle of attack causes the flow to separate at the upper surface of the 

airfoil and causes the drag coefficient to increase dramatically. Increase in the Mach number results 

in the appearance of a shock, and the wave drag generated by the shock contributes to increase in 

the drag. 



22 
 

Considering the variation in total lift with ground clearance, the ground effect of a transonic airfoil 

can be divided into two regions. When the ground clearance decreases from unbounded flow to a 

value between 0.2 < h/c < 1, the upper surface shock appears; further decreasing the ground 

clearance causes the lower surface shock to form causing huge loss in lift and increase in drag.  

At higher angles of attack from ߙ ൌ 6 deg to ߙ ൌ 12 deg, there could also be unsteady behavior 

in the flow field. At lower Mach number, this is due to the periodic separation of the flow on the 

upper surface of the airfoil. At higher Mach number when there is upper surface shock, the periodic 

separation is coupled with the movement of the position of the shock. Both the periodic separation 

and the shock buffet phenomenon are undesirable since they strongly affect the maneuverability 

and structural integrity of the airplane. 

3.1.1 High Ground Clearance 

For RAE2822 airfoil in ground effect, at a given freestream Mach number, as the ground clearance 

decreases, a shock first appears on the upper surface. If the ground clearance decreases further, a 

shock forms between the lower surface of the airfoil and the ground. In this thesis, the high ground 

clearance is defined as the height when there is no shock between the lower surface of the airfoil 

and the ground. Thus, for a different freestream Mach number, there is a different value for high 

ground clearance. Here we analyze a typical case of M = 0.7 and ߙ ൌ 4 deg. Figure 3.7 shows the 

pressure coefficient distribution on the airfoil at different values of ground clearance. From Figure 

3.7, it can be seen that as the ground clearance decreases, the shock moves towards the leading 

edge causing the pressure to increase on the upper surface, therefore ܥ௅,௨௣ gradually decreases. 

Figure 3.8(a) presents variations in lift coefficients with the ground clearance from h/c = ∞ to 0.1. 

For the lift coefficient in unbounded flow, ܥ௅,௨௣ is much larger than ܥ௅,௟௢௪ which is also the case 

in subsonic ground effect [8]; this is due to the presence of a low pressure zone prior to the 
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appearance of upper surface shock thereby decreasing the lift generated by the upper surface. Doig 

[10] pointed out that the stagnation point moves downward as the ground clearance decreases and 

as the stagnation point moves downward, a high pressure zone forms near the middle section of 

the lower surface causing ܥ௅,௟௢௪ to gradually increase to compensate for the lift loss. Interestingly, 

the end result is that the total lift coefficient changes very little.  

The drag coefficient in this case also shows a similar behavior. However, the change in drag is 

much more dramatic than in the lift. The overall ܥ஽ decreases by 32% for h/c = 1.0 and by 40% 

for the lowest ground clearance of h/c = 0.1. Figure 3.8(b) shows that ܥ஽,௨௣ decreases and ܥ஽,௟௢௪ 

increases as the ground clearance decreases. The drag reduction on the upper surface is due to the 

reduced shock strength resulting in reduced the and strength of the shock induced separation. The 

high pressure zone near the leading edge of the lower surface combined with the airfoil curvature 

causes ܥ஽,௟௢௪ to increase.  

 

Figure 3.7 Pressure coefficient distribution on the RAE2822 airfoil for various ground clearances at M = 0.7 and α = 
4 deg. 
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a) ܥ௅ with various ground clearance b) ܥ஽ with various ground clearance 

Figure 3.8 ܥ௅ and ܥ஽variation of the RAE2822 airfoil with ground clearance at M = 0.7 and α = 4 deg. 

The pressure contours and sonic line in Figure 3.9 show that the shock moves toward the leading 

edge as the ground clearance decreases from 1.0 to 0.1 and the sonic region also reduces in size. 

As the ground clearance decreases from h/c = 1.0 to 0.1, the pressure gradient in flow field before 

the airfoil increases.  

a) Pressure contours and sonic line at h/c = 1.0 b) Pressure contours and sonic line at h/c = 0.8 

c) Pressure contours and sonic line at h/c = 0.6 d) Pressure contours and sonic line at h/c = 0.4 
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e) Pressure contours and sonic line at h/c = 0.2 f) Pressure contours and sonic line at h/c = 0.1 

Figure 3.9 Pressure contours and sonic line for various ground clearances at M = 0.7 and α = 4 deg. 

Figure 3.10 shows the streamlines at the trailing edge of the airfoil for different ground clearances. 

The flow remains attached to the surface of the airfoil due to the relatively low angle of attack. No 

separation is observed with the variation in ground clearance. 

a) Streamlines at trailing edge at h/c = 1.0 b) Streamlines at trailing edge at h/c = 0.8 

c) Streamlines at trailing edge at h/c = 0.6 d) Streamlines at trailing edge at h/c = 0.4 
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e) Streamlines at trailing edge at h/c = 0.2 f) Streamlines at trailing edge at h/c = 0.1 

Figure 3.10 Streamlines at the trailing edge for various ground clearances at M = 0.7 and α = 4 deg. 

Effect of Mach number 

At higher ground clearance, the increase in Mach number causes only the upper surface shock to 

appear. Typical cases with ߙ ൌ 4 deg and h/c = 0.8 for Mach numbers range 0.5 to 0.8 are analyzed 

in detail. Figure 3.11 shows the pressure coefficient of the airfoil for each case. At M = 0.5, there 

is no shock present.  At M = 0.6, a very weak shock is present at the leading edge of the upper 

surface. Increasing the Mach number further, the shock moves further back and becomes stronger. 

The increase in ܥ௅ from M = 0.5 to 0.75 is mainly driven by the upper surface shock location. 

Figure 3.11 shows that the low pressure zone prior to the shock contributes to large amount lift 

especially from M = 0.6 to 0.7. At M = 0.6, the shock is very close to the leading edge causing the 

pressure to increase on the entire upper surface. At M = 0.7, the shock moves further back 

contributing to more lift. For M = 0.75 to M = 0.8, the shock does not move its position but the lift 

has a sharp drop. The pressure coefficient plot shows that the lower surface has a decrease in 

pressure and the upper surface has an increase in pressure ahead of the shock, both contributing to 

less in lift. 
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Figure 3.11 Pressure coefficient distribution on the RAE2822 airfoil at α = 4 deg and h/c = 0.8 for various Mach 

numbers. 

a) ܥ௅ with various Mach number b) ܥ஽ with various Mach number 

Figure 3.12 ܥ௅ and ܥ஽  variation with Mach number of the RAE2822 airfoil at α = 4 deg and h/c = 0.8. 

Figure 3.13 shows the pressure contours and sonic line plot at different Mach numbers. The red 

line is the sonic line where the Mach number equals unity. The region inside the red line is locally 

supersonic flow. As the Mach number increases from 0.5 to 0.65, a very weak shock appears at 

the leading edge of the airfoil. With further increase in the Mach number, the shock becomes 

stronger and the sonic region increases in size. 
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a) Pressure contours and sonic line at M = 0.5 b) Pressure contours and sonic line at M = 0.6 

c) Pressure contours and sonic line at M = 0.65 d) Pressure contours and sonic line at M = 0.7 

e) Pressure contours and sonic line at M = 0.75 f) Pressure contours and sonic line at M = 0.8 

Figure 3.13 Pressure contours and sonic line for various Mach numbers at α = 4 deg and h/c = 0.8. 

Further analysis of the flow field reveals that the position of the stagnation point on the airfoil 

changes dramatically from M = 0.5 to 0.75 as shown in Figure 3.14. The upward movement of the 

stagnation point corresponds to the upward movement of the stagnation streamline which separates 

the flow on the upper surface and the lower surface of the airfoil. This means that at the M = 0.8, 

there is more mass flow through the channel formed by the airfoil and the ground. Since there is 

no shock in the channel, the pressure decreases with increase in the flow velocity. 
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a) Variation in stagnation point location with 
respect leading edge with Mach number 

 
b) Stagnation point on the airfoil 

Figure 3.14 Stagnation point location on the RAE2822 airfoil at various Mach number with α = 4 deg and h/c = 0.8. 

3.1.2 Low Ground Clearance 

When the ground clearance further decreases from high ground clearance, it is likely that a lower 

surface shock would form between the airfoil and the ground. This would create a large low 

pressure zone behind the shock, which can lead to loss of lift. If the shock is strong enough to 

cause boundary layer separation, the drag would also increase due to the separation bubble. Figure 

3.16 shows the pressure coefficient distributions on the airfoil at M = 0.8 and ߙ ൌ 4 deg. When 

ground clearance reduces from h/c = ∞ to h/c = 0.1, the Venturi effect of the channel between the 

lower surface of the airfoil and the ground first creates a low pressure zone in the middle section 

of the airfoil which decreases the ܥ஽,௟௢௪  before ܯ௖௥,௟௢௪	 is reached which indicates the first 

appearance of shock on the lower surface. As the ground clearance further decreases, the mass 

flow between the airfoil and the ground becomes limited due to the lower ground clearance. The 

extra mass flow that cannot go through the channel is deflected to the upper surface, thereby 

increasing the suction peak at the leading edge of the airfoil. As a direct consequence of more mass 
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flow on the upper surface, the upper surface shock increases in strength causing a low pressure 

zone prior to the shock to further decrease the pressure, resulting in small enhancement in lift of 

the upper surface of the airfoil. The separation bubble increases in size and causes more drag as 

h/c decreases to 0.4. The lower surface has large region of low pressure prior to the shock in 

comparison to the high ground clearance case thereby significantly decreasing the lift. In case of 

lowest ground clearance, the lower surface has flow separation induced by the shock. 

a) ܥ௅ with various ground clearance b) ܥ஽ with various ground clearance 

Figure 3.15 ܥ௅ and ܥ஽ variation of the RAE2822 airfoil with ground clearance at M = 0.8 and α = 4 deg. 

 

Figure 3.16 Pressure coefficient distribution on the RAE2822 airfoil for various ground clearances at M = 0.8 and    

α = 4 deg. 
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Figure 3.17 shows the streamlines around the airfoil for different ground clearances. The 

separation bubble at the trailing edge of the upper surface of the airfoil increases in size with 

decrease in ground clearance. For the lowest ground clearance of h/c = 0.1, the lower surface has 

mild flow separation. 

a) Streamlines at h/c = 0.6 b) Streamlines at h/c = 0.4 

c) Streamlines at h/c = 0.2 d) Streamlines at h/c = 0.1 

Figure 3.17 Streamlines of the RAE2822 airfoil for different ground clearances at M = 0.8 and α = 4 deg. 

Effect of Mach number 

At low ground clearance, increasing the Mach number would cause more mass flow to through the 

channel formed by the airfoil and the ground. The flow through the channel would increase in 

velocity as the Mach number increases eventually becoming supersonic. Once the flow becomes 

supersonic, it gets choked. The converging-diverging nozzle theory suggests that the mass flow 

would be at its maximum. Further increase in the Mach number would not add any more mass 

flow through the channel and the flow field would adjusts itself upstream resulting in change in 
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the position of the stagnation point. A typical case of ߙ ൌ 2 deg and h/c = 0.1 with variations in 

Mach number is analyzed in detail. 

a) Pressure contours and sonic line at M = 0.5 b) Pressure contours and sonic line at M = 0.6 

c) Pressure contours and sonic line at M = 0.65 d) Pressure contours and sonic line at M = 0.7 

e) Pressure contours and sonic line at M = 0.75 f) Pressure contours and sonic line at M = 0.8 

Figure 3.18 Pressure contours and sonic line for various Mach numbers at α = 2 deg and h/c = 0.1. 

From M = 0.5 to 0.6, the flow through the channel is subsonic and the Venturi effect becomes 

stronger when the Mach number increases from 0.5 to 0.6 as shown in Figure 3.19. The lower 

surface pressure is much lower at M = 0.6 than at M = 0.5. Increasing the Mach number to 0.65, 

the lower surface shock emerges at x/c = 0.52 and the flow becomes choked. Further increasing 

the Mach number, the position of the beginning of the lower sonic region remains unchanged while 
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the shock moves further back, corresponding to the converging-diverging nozzle theory. The upper 

surface shock begins to appear due to both the increase in freestream velocity and the upward 

movement of the stagnation point. The aerodynamic forces shown in Figure 3.20 indicate that the 

lower surface always contributes negative lift in this situation. This is due to the Venturi effect 

when the flow is subsonic and the occurrence of low pressure region prior to the shock when the 

flow is transonic. The upper surface pressure decreases in the pressure plateau region from M = 

0.5 to 0.65 due to increase in mass flow over the upper surface. From M = 0.7 to 0.8, the shock 

moves to the trailing edge, enlarges the low pressure region prior to the shock, resulting in a steady 

lift increase on the upper surface. 

 

Figure 3.19 Pressure coefficient distribution on the RAE2822 airfoil at α = 2 deg and h/c = 0.1 for various Mach 

numbers. 
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a) ܥ௅ with various Mach number b) ܥ஽ with various Mach number 

Figure 3.20 ܥ௅ and ܥ஽  variation of the RAE2822 airfoil with various Mach numbers at α = 2 deg and h/c = 0.1. 

3.2 Shock Buffet 
In several calculations, unsteady flow behavior was observed. There are two types of unsteady 

flow cases found in the simulations. The first type has only upper surface shock oscillation 

associated with shock/boundary-layer interaction. The second type has shock oscillation on both 

the surfaces; the lower surface shock is associated with the shock/boundary-layer interaction while 

the upper shock movement is coupled with the pressure divergence at the trailing edge. 

3.2.1 Shock Oscillation on the Upper Surface Only 

The majority of self-sustained shock movement observed in the simulation is of this type. When 

the flow moves over the airfoil at medium to high angle of attack, the flow on the upper surface of 

the airfoil is accelerated to become supersonic creating a shock that separates the boundary layer. 

A typical case of M = 0.7 and ߙ ൌ 6 deg in unbounded flow is analyzed in detail. 
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Figure 3.21 ܥ௅ and ܥ஽ time history of the RAE2822 airfoil at M = 0.7 and α = 6 deg in unbounded flow field. 

The self-sustained shock movement has a reduced frequency of ݇ ൌ గ௙௖

௎ಮ
ൌ 0.197. The lift and drag 

coefficient history in one period is shown in figure 3.21. The t* = 0 corresponds to the instant at 

which lift coefficient is at its minimum and t* = 1 represents a full period of the shock buffet 

movement. The lift varies 15.6% in one period and the drag varies 28.7% in one period. The Mach-

number contours are shown in Figure 3.22. From t* = 0 to 0.5, the upper surface shock moves 

towards the trailing edge with a small decrease in strength and moves forward to the leading edge 

from t* = 0.5 to 1.0. The streamlines shown in Figure 3.23 also have periodic behavior from t* = 

0.2 to 0.5; as the shock already begin to move toward the trailing edge, the flow past behind the 

shock has a bulge. At t* = 0.5, as the shock stops moving toward the trailing edge and begins to 

move toward the leading edge, the flow starts to separate. The separation region enlarges from t* 
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= 0.5 to 0.9, and reduces its size when the shock stops its forward movement. The cycle of 

boundary layer separation and shock movement then repeats itself.  

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 

g) t* = 0.6 h) t* = 0.7 
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i) t* = 0.8 j) t* = 0.9 

Figure 3.22 Mach number contours at M = 0.7 and α = 6 deg in unbounded flow field in one period. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 
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g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 3.23 Streamlines on the upper surface at M = 0.7 and α = 6 deg in unbounded flow field in one period. 

From the pressure coefficient shown below in Figure 3.24, the shock moves from x/c = 0.36 to x/c 

= 0.45 in the first half of the period and backward during the last half of the period. The pressure 

on the lower surface of the airfoil and on the upper surface ahead of the shock is not affected much 

due to the shock buffet. The variation in the flow field downstream of the shock does not propagate 

upstream. The lift coefficient changes behind the shock and is influenced by the position and 

strength of the shock. 
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a) CP from t* = 0.1 to 0.5 b) CP from t* = 0.6 to 1.0 

Figure 3.24 Pressure coefficient distributions at M = 0.7 and α = 6 deg in unbounded flow field during one period. 

Effect of ground clearance 

While the exact mechanism of the shock buffet is not fully understood, the theory proposed by 

B.H.K. Lee suggests that the pressure divergence at the trailing edge sends pressure waves 

upstream which interact with the shock. The ground effect changes the pressure distribution around 

the airfoil. The pressure on the lower surface is changed by the ground effect while the shock 

buffet on the upper surface is not much affected. The unsteady cases of ߙ ൌ 8 deg and M = 0.7 for 

various ground clearances are analyzed in detail. 

Figure 3.26 shows the time-averaged lift and drag coefficient for these cases. The overall lift 

coefficient is slightly increased with decrease in ground clearance. The lower surface is the main 

contributeor to the increase in lift. The drag coefficient shows a similar trend. The upper surface 

drag coefficient varies from 0.55 for unbounded flow to 0.45 at h/c = 0.2. The time-averaged 

pressure coefficients are shown in Figure 3.25. They reveal that the pressure differences on the 

lower surface are much more obvious compare to these on the upper surface of the airfoil for 

various ground clearances. 
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Figure 3.25 Time-averaged ܥ௉ distribution for various ground clearances at M = 0.7 and α = 8 deg. 

a) ܥ௅ with various ground clearances b) ܥ஽ with various ground clearances 

Figure 3.26 ܥ௅ and ܥ஽ variation of the RAE2822 airfoil at M = 0.7 and α = 8 deg. 

Figures 3.27 and 3.28 show the lift and drag coefficient history in one period for ߙ ൌ 8 deg and 

M = 0.7 for various ground clearances; note that he time period starts when the lift coefficient is 

at its minimum. The flow time is normalized for the ease of comparisons. The lift coefficient in 

unbounded flow oscillates 36.8%; it increases from t* = 0 to 0.5 and decreases from t* = 0.5 to 1. 

The ground effect of increases the oscillation in lift coefficients to about 40% for h/c = 1.0 to 0.4 
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while the lift increase from t* = 0 to 0.4, maintains the maximum value from t* = 0.4 to 0.6, and 

then decreases to the minimum value. 

 

Figure 3.27 ܥ௅ history of the RAE2822 airfoil for various ground clearances at M = 0.7 and α = 8 deg. 

 

Figure 3.28 ܥ஽ history of the RAE2822 airfoil for various ground clearances at M = 0.7 and α = 8 deg. 
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a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 

g) t* = 0.6 h) t* = 0.7 
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i) t* = 0.8 j) t* = 0.9 

Figure 3.29 Pressure contours and sonic line at M = 0.7 and α = 8 deg in unbounded flow in one period. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 
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g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 3.30 Pressure contours and sonic line at M = 0.7, α = 8 deg and h/c = 0.6 in one period. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 
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e) t* = 0.4 f) t* = 0.5 

g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 3.31 Pressure contours and sonic line at M = 0.7, α = 8 deg and h/c = 0.2 in one period. 

Figures 3.29 to 3.31 show the pressure contours and sonic line of the shock buffet in unbounded 

flow and in different ground clearance. For the unbounded flow and h/c = 0.6, the upper surface 

shock is at its minimum at t* = 0.1 and moves backward at t* = 0.1 to 0.6. While the h/c = 0.2 case 

shows the minimum shock at t* = 0.9 and the backward movement of the shock from t* = 0.9 to 

t* = 0.4. All these cases show similar upper surface shock movement while the difference in lift is 

mainly caused by the lower surface pressure distribution. 
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3.2.2 Coupled Shock Oscillation on Both Surfaces 

At low angle of attack, low ground clearance and relatively high Mach number, a coupled 

oscillation of lower surface and upper surface shock movement was observed. This type of self-

sustained shock oscillation was not observed in the previous research. The lower surface shock 

oscillation was combined with boundary layer separation. The oscillation of pressure divergence 

at the trailing edge of the airfoil causes the upper surface shock to have a combined movement. A 

typical case of M = 0.8, ߙ ൌ 1 deg and h/c = 0.2 is analyzed in detail. 

 

Figure 3.32 ܥ௅ and ܥ஽ history of the RAE2822 airfoil at M = 0.8, α = 1 deg and h/c = 0.2. 

Similar to the case of upper surface shock oscillation, from t* = 0 to 0.5, lift increases. Drag has a 

140 degree phase lead with respect to the lift as shown in Figure 3.32. In the pressure coefficient 

plot in figure 3.33, from t* = 0 to 0.5, the lower surface shock moves from x/c = 0.65 to 0.58 while 

increasing its strength. The upper surface shock moves from x/c = 0.651 to 0.689. From t* = 0.5 

to 1.0, the lower surface shock moves from x/c = 0.58 to 0.644, while the upper surface shock 
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moves from x/c = 0.689 to 0.648. The upper and lower surface shock are opposite in phase in their 

combined movement. The increase in the strength of the lower surface shock when moving 

forward can be explained by the fact that it is being more oblique near the trailing edge compared 

to a more normal shock near the middle section of the airfoil. 

 
a) t* = 0.0 to 0.4 

 
b) t* = 0.5 to 0.9 

Figure 3.33 Pressure coefficient distribution on the upper surface at M = 0.8, α = 1 deg and h/c = 0.2 in one period. 

 
a) t* = 0.0 to 0.4 

 
a) t* = 0.5 to 0.9 

Figure 3.34 Pressure coefficient distribution on the lower surface at M = 0.8, α = 1 deg and h/c = 0.2 in one period. 
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From Figure 3.35 and 3.36, it can be seen that the lower surface shock is associated with boundary 

layer separation with a phase shift. From t* = 0 to 0.5, with the lower surface shock moving 

forward, the separation region changes from having the largest separation bubble to gradually 

shrinking in size. From t* = 0.6 to 1, the lower surface shock moves backward, and the separation 

region increases size with a lag in phase. The mechanism of the lower surface shock buffet is 

similar to the mechanism discussed before. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 
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g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 3.35 Streamlines and sonic line at M = 0.8, α = 1 deg and h/c = 0.2 in one period. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 
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e) t* = 0.4 f) t* = 0.5 

g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 3.36 Enlarged streamlines near the trailing edge at M = 0.8, α = 1 deg and h/c = 0.2 in one period. 

 

a) t* = 0.0 to 0.4 

 

b) t* = 0.6 to 1.0 
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c) Sample line of the pressure divergence at the trailing edge 

Figure 3.37 Pressure divergence at the trailing edge at M = 0.8, α = 1 deg and h/c = 0.2 in one period. 

The pressure at the trailing edge is shown in Figure 3.37. The movement of the lower surface shock 

creates a large pressure oscillation at the exit of the channel formed by the ground and the airfoil. 

From t* = 0 to 0.5, with the lower surface shock moving forward, the pressure at the exit of the 

channel increases, corresponding to the converging-diverging nozzle theory. To satisfy the 

Unsteady-Kutta condition, the pressure above the trailing edge changes accordingly. The pressure 

waves transmitted upstream cause the upper surface shock to move resulting in a mild boundary 

layer separation. 
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Chapter 4: Wavy Ground 
In most flight conditions, a WIG aircraft usually flies above water in order to avoid obstacles. The 

water surface in general is wavy with waves of different amplitudes. When the WIG aircraft is 

very close to the ground, any variation in its lift coefficient can affect its performance and 

maneuverability. In the transonic regime, the decrease in ground clearance causes a shock to occur 

on the lower surface. The variation in the ground clearance due to the wavy surface can cause the 

flow beneath the aircraft to have a periodic behavior. 

4.1 Mesh Topology and Mesh Generation 
For the wavy ground, shown in Figure 4.1, the entire domain is separated into two domains; while 

the upper domain contains the airfoil and remains stationary in the simulation, while the lower 

domain contains the wavy ground and moves with the same velocity as the incoming freestream. 

Two domains are separated by a straight line which allows the sliding mesh technique to be 

employed. The topology of the mesh is similar to the mesh in case of flat ground described before. 

As shown in Figure 4.2, an H-type block mesh is used in the upper domain and an orthogonal mesh 

is used in the lower domain.  

 

Figure 4.1 Computational domain for simulations with wavy ground. 
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Figure 4.2 Mesh layout above the wavy ground. 

4.2 Numerical Method 
The upper domain in Figure 4.2 resembles the mesh for the flat ground case. A rectangular 

computational domain is employed as shown in Figure 4.2. A structured mesh with refinement in 

the wake region, and between the airfoil and the ground is also shown in Figure 4.2. The inlet and 

the top boundaries of the upper domain are located 60c away from the airfoil, the outlet boundary 

is 45c away, and the dividing line boundary is determined by the ground clearance. For the inlet, 

outlet and top boundaries, pressure far-field boundary condition is employed which specifies the 

two Riemann invariants for a flow normal to the boundary. For the dividing line, an interface 

boundary condition is employed which allows the solver to treat it as an interior boundary. 

For the lower domain, the wavy ground is located 25c ahead of the airfoil, the wavy ground itself 

has a length of 110c. The wavy ground can be expressed by the formula given below. 

ݕ ൌ ݄ ൅ ܽ cos ቆ
ߨ2
ߣ
ሺݔ െ  ଴ሻቇݔ

The wavy ground used in this simulation has an oscillation amplitude of ܽ ൌ 0.125݉ and a period 

ߣ ൌ 5݉. Two ground clearances of h/c = 0.5 and 1.0 are considered. Unlike the case of airfoil in 

flat ground effect where the ground has a translational velocity equal to the incoming freestream. 
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In case of wavy ground effect, the entire lower domain moves at the same speed as the freestream 

while the ground is stationary with respect to the lower domain. 

 

Figure 4.3 Schematic of the wavy ground during one period. 

The double precision solver in ANSYS FLUENT 17.1 is used to perform the CFD simulations. 

Compressible Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras turbulence 

model are solved. Second-order numerical scheme is used for both the convection and diffusion 

terms. The pressure-coupled transient solver is used for pressure-velocity coupling. Transient 

solver is employed in the simulations. The time step used is T/200, where T denotes the time period 

of the wavy ground which varies with the free stream Mach number. The transient solution is 

considered converged when the aerodynamic coefficients become periodic after several cycles and 

do not change from one cycle to next. 
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Chapter 5: Results and Discussion 

5.1 Lift and Drag for Various M, α and h/c 
The simulations begin with a uniform velocity field to initialize the flow field. The flat ground of 

25c ahead of the airfoil is used to achieve a more steady initial condition before the wavy ground. 

A typical convergence history of the simulation is shown in Figure 5.1, the lift coefficient shows 

a periodic behavior after a few seconds of flow time. 

 

Figure 5.1 ܥ௅ history for the case at M = 0.7, α = 2 deg and h/c = 1.0.  

Figures 5.2 - 5.7 show the time-averaged results for all the wavy ground cases. From M = 0.5 to 

0.7, the lift coefficient increases with the Mach number except at M = 0.8 and at ߙ ൌ 4 deg, the 

lift has a sharp drop which will be discussed later. As the ground clearance decreases from h/c = 

1.0 to 0.5, the lift increases slightly at ߙ ൌ 2 and 4 deg. The drag coefficient of the airfoil increases 

dramatically when Mach number increases to 0.8, the wave drag associated with shock is the main 

reason for the drag crisis. 
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Figure 5.2 Variation in ܥ௅ with ground clearance at various α and M. 

 

Figure 5.3 Variation in ܥ஽ with ground clearance at various α and M. 
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Figure 5.4 Variation in ܥ௅,௨௣ with ground clearance at various α and M.

 

Figure 5.5 Variation in ܥ஽,௨௣ with ground clearance at various α and M. 
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Figure 5.6 Variation in ܥ௅,ௗ௢௪௡ with ground clearance at various α and M. 

 

Figure 5.7 Variation in ܥ஽,ௗ௢௪௡ with ground clearance at various α and M. 
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5.1.1 High Ground Clearance 

The definition of high ground clearance is the same as in the flat ground case described before, 

when there is only an upper surface shock or no shock at all. Two typical cases of ߙ ൌ 0 deg, M 

= 0.7 and h/c = 0.5 and 1.0 are analyzed. These cases do not have shock on either surface. The 

period start from the position shown in Figure 4.3. The leading edge of the airfoil is vertically 

aligned with the middle section of one period of the wavy ground, and the ground clearance begins 

to increase at the beginning of the period. 

The lift and drag coefficient history in one period for two ground clearances is shown in Figure 

5.8. The ground is shown in dotted line. The lift and drag coefficient clearly have phase difference 

with the variation in ground clearance. The lift coefficient for h/c = 1.0 case has a 35 degree phase 

lead and the h/c = 0.5 case has a 61 degree phase lead.  

 
a) ܥ௅ history 

 
b) ܥ஽ history 

Figure 5.8 ܥ௅ and ܥ஽ variation for the RAE2822 airfoil at M = 0.7 and α = 0 deg in the presence of wavy ground. 

The wave amplitude is a constant which suggests that the lower the ground clearance, the relative 

oscillation amplitude is larger. The lift and drag coefficient in one period show that the h/c = 0.5 

case has more oscillations. The lift variation at h/c = 1.0 is only 1.04% while at h/c = 0.5 it is 7.2%. 
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a) t* = 0.0 to 0.4 b) t* = 0.5 to 0.9 

Figure 5.9 Pressure coefficient distribution on the RAE2822 airfoil at M = 0.7, α = 0 deg and h/c = 0.5. 

 

a) t* = 0.0 to 0.4 

 

b) t* = 0.5 to 0.9 

Figure 5.10 Pressure coefficient distribution on the RAE2822 airfoil at M = 0.7, α = 0 deg and h/c = 1.0. 

The pressure coefficient plot in Figure 5.9 shows that the difference in lift is mainly caused by the 

lower surface in h/c = 0.5 case; while from t* = 0 to 0.4, the lower surface pressure increases, 

causing the lower surface lift coefficient to increase slightly. The pressure coefficient for the h/c = 

1.0 case in Figure 5.10 shows almost no change in one period, which is consistent with the very 

small variation in lift in Figure 5.8. The flow fields for the two cases show corresponding behavior 
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where the pressure contours for h/c = 1.0 case change less dramatically compared to that for h/c = 

0.5 case. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 

g) t* = 0.6 h) t* = 0.7 
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i) t* = 0.8 j) t* = 0.9 

Figure 5.11 Pressure contours of the RAE2822 airfoil at M = 0.7, α = 0 deg and h/c = 0.5 above the wavy ground. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 
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g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 5.12 Pressure contours of the RAE2822 airfoil at M = 0.7, α = 0 deg and h/c = 1.0 above the wavy ground. 

5.1.2 Low Ground Clearance 

When the Mach number become sufficiently high or the ground clearance become low enough, a 

lower surface shock appears. When the lower surface shock appears, it significantly increases the 

wave drag while the lower surface shock changes its strength in one period. Two cases of ߙ ൌ 2 

deg, M = 0.8 and h/c = 0.5 and 1.0 are compared and analyzed. Another special case of ߙ ൌ 0 deg, 

M = 0.8 and h/c = 0.5 is also discussed since the lower surface shock reaches the wavy ground in 

this case. 
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a) ܥ௅ history b) ܥ஽ history 

Figure 5.13 ܥ௅ and ܥ஽  variation of the RAE2822 airfoil at M = 0.8 and α = 2 deg. 

Similar to the high ground clearance case, h/c = 0.5 case shows more oscillations in lift compared 

to the h/c = 1.0 case as shown in Figure 5.13. The phase lead of the lift and drag compared to the 

wavy ground case also show the same trend. The pressure coefficient plot shown in Figure 5.14 

shows that both cases have shock on the lower surface shock. The lift difference is caused mostly 

by the lower surface; in h/c = 0.5 case, the position of the lower surface shock does not change 

while the strength of the shock oscillates in one period causing the pressure behind the shock to 

vary. 

 
a) t* = 0.0 to 0.4 

 
b) t* = 0.5 to 0.9 

Figure 5.14 Pressure coefficient distribution on the RAE2822 airfoil at M = 0.8, α = 2 deg and h/c = 0.5. 
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a) t* = 0.0 to 0.4 

 

b) t* = 0.5 to 0.9 

Figure 5.15 Pressure coefficient distribution on the RAE2822 airfoil at M = 0.8, α = 2 deg and h/c = 1.0. 

a) t* = 0.0 (1.0) b) t* = 0.1 

c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 
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g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 5.16 Pressure contours of the RAE2822 airfoil at M = 0.8, α = 2 deg and h/c = 0.5 above wavy ground. 

 
a) t* = 0.0 (1.0) 

 
b) t* = 0.1 

 
c) t* = 0.2 

 
d) t* = 0.3 

 
e) t* = 0.4 

 
f) t* = 0.5 
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g) t* = 0.6 

 
h) t* = 0.7 

 
i) t* = 0.8 

 
j) t* = 0.9 

Figure 5.17 Pressure contours of the RAE2822 airfoil at M = 0.8, α = 2 deg and h/c = 1.0 above wavy ground. 

Figures 5.16 and 5.17 show the pressure contours and the sonic line of the two cases analyzed. It 

is clear that despite the Mach number being the same, the reduced ground clearance accelerates 

the flow passing under the airfoil and thus creating a larger region of locally supersonic flow. 

Another case of α = 0 deg, M = 0.8 and h/c = 0.5 is also analyzed due to its unique lower surface 

shock behavior. The lift and drag coefficient history is shown in Figure 5.18. The lift has a phase 

lead of 160 degree to the wavy ground which is much larger than in the previous cases. The 

pressure coefficient plot shows that the positions of both the upper and lower surface shocks 

remain stationary while the pressure behind the lower surface shock changes periodically. From 

t* = 0 to 0.4, the pressure behind the lower surface shock increases and then decreases from t* = 

0.5 to 0.9. The sonic line shown in Figure 5.20 in red shows that the lower surface shock reaching 

the ground is periodically changing the height as the wavy ground oscillates. 
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a) ܥ௅ history b) ܥ஽ history 

Figure 5.18 ܥ௅ and ܥ஽ variation of the RAE2822 airfoil at M = 0.8, α = 0 deg and h/c = 0.5. 

 
a) t* = 0.0 to 0.4 

 
b) t* = 0.5 to 0.9 

Figure 5.19 Pressure coefficient distribution on the RAE2822 airfoil at M = 0.8, α = 0 deg and h/c = 0.5. 

a) t* = 0.0 (1.0) b) t* = 0.1 
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c) t* = 0.2 d) t* = 0.3 

e) t* = 0.4 f) t* = 0.5 

g) t* = 0.6 h) t* = 0.7 

i) t* = 0.8 j) t* = 0.9 

Figure 5.20 Pressure contours and sonic line of the RAE2822 airfoil at M = 0.8, α = 0 deg and h/c = 0.5. 
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Chapter 6: Conclusion 
The flow field of an RAE2822 transonic airfoil in ground effect is simulated at six different angles 

of attack and four different Mach numbers with ground clearance varying from h/c = ∞  to 0.1. 

The effect of ground clearance on the shock formation on the airfoil can be classified into two 

regions based on the appearance of shock on the lower surface of the airfoil: (a) region I of high 

ground clearance and (b) region II of low ground clearance.  

1) In case of high ground clearance, the downward movement of stagnation point moves the shock 

forward and reduces the strength of the shock. Pressure on the lower surface of the airfoil increases 

and the pressure on the upper surface decreases. The total lift on the airfoil shows a small increase. 

Drag on the lower surface of the airfoil increases and the wave drag caused by the shock on the 

upper surface decreases causing the total drag to decrease. At high angle of attack ranging from ߙ 

= 6 deg to 12 deg, shock buffet phenomenon is observed with the lift and drag coefficient 

oscillating nearly 60% in one cycle. The shock buffet is combined with the boundary layer 

separation due to the shock/boundary layer interaction. The pressure waves behind the trailing 

edge generate pressure waves which travel upstream and interact with the shock. 

2) In case of low ground clearance, the shock on the lower surface of the airfoil appears due to the 

converging-diverging nozzle like shape between the airfoil and the ground. Streamlines are 

deflected upward and the suction peak ahead of the shock increases causing the upper surface 

shock to increase strength. The lift decreases and the drag increases resulting in significant loss in 

aerodynamic efficiency. At high angle of attack, the shock buffet is present, the mechanism is 

similar to that for the shock buffet in the high ground clearance case. However, at low angle of 

attack and high Mach number, another type of shock buffet phenomenon is observed with the 

lower surface shock interacting with the boundary layer separation causing the pressure on the 
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lower surface at the trailing edge to oscillate. The pressure on the upper surface varies in 

accordance with the unsteady-Kutta condition. This coupled shock buffet has been for the first 

time observed in this thesis and analyzed. 

By increasing the angle of attack and thus altering the channel shape, the airfoil can remain in the 

region of high ground clearance which would avoid the appearance of lower surface shock thereby 

increasing the aerodynamic efficiency. 

Several unsteady phenomenon were also observed in the numerical simulations. The unsteadiness 

occurs due to shock-boundary layer interaction. 

When the airfoil is above the wavy ground, the aerodynamic behavior shows periodic movements 

at the same frequency but with a phase difference due to the wavy ground. The oscillation 

amplitude of the aerodynamic forces is smaller compared to the shock buffet phenomenon. 
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Appendix A 
 

Journal file of Mesh Generation of RAE2822 
Airfoil in ICEM 
AOA = angle of attack; 

FILE_PATH = path of project file; 

MESH_FILENAME = name of generated mesh file; 

ic_geo_cre_geom_input {FILE_PATHDown.txt} 0.000001 input PNTS {} Airfoil_down crv 

SURFS {} 

ic_boco_solver 

ic_boco_clear_icons 

ic_csystem_display all 0 

ic_csystem_set_current global 

ic_boco_nastran_csystem reset 

ic_geo_cre_geom_input {FILE_PATHUp.txt} 0.000001 input PNTS {} Airfoil_up crv SURFS 

{} 

ic_boco_solver 

ic_boco_clear_icons 

ic_csystem_display all 0 

ic_csystem_set_current global 

ic_boco_nastran_csystem reset 

ic_set_global geo_cad 0 toptol_userset 

ic_set_global geo_cad 0.0005 toler 
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ic_geo_new_family FF 

ic_boco_set_part_color FF 

ic_point {} FF pnt.00 -60,60,0 

ic_point {} FF pnt.01 -60,-60,0 

ic_point {} FF pnt.02 80,-60,0 

ic_point {} FF pnt.03 80,60,0 

ic_set_global geo_cad 0.09 toler 

ic_delete_geometry curve names crv.00 0 

ic_curve point FF crv.00 {pnt.00 pnt.03} 

ic_delete_geometry curve names crv.01 0 

ic_curve point FF crv.01 {pnt.00 pnt.01} 

ic_delete_geometry curve names crv.02 0 

ic_curve point FF crv.02 {pnt.03 pnt.02} 

ic_geo_new_family GROUND 

ic_boco_set_part_color GROUND 

ic_delete_geometry curve names crv.03 0 

ic_curve point GROUND crv.03 {pnt.01 pnt.02} 

ic_set_global geo_cad 0.09 toler 

ic_geo_new_family GEOM 

ic_boco_set_part_color GEOM 

ic_point crv_par GEOM pnt.04 {crv1 0} 

ic_point crv_par GEOM pnt.05 {crv1 1} 

ic_geo_new_family FLUID 
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ic_boco_set_part_color FLUID 

ic_hex_unload_blocking 

ic_hex_initialize_mesh 2d new_numbering new_blocking FLUID 

ic_hex_switch_blocking root 

ic_hex_unblank_blocks 

ic_hex_multi_grid_level 0 

ic_hex_projection_limit 0 

ic_hex_default_bunching_law default 2.0 

ic_hex_floating_grid off 

ic_hex_transfinite_degree 1 

ic_hex_unstruct_face_type one_tri 

ic_hex_set_unstruct_face_method uniform_quad 

ic_hex_set_n_tetra_smoothing_steps 20 

ic_hex_set_mesh_params AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID -

version 110 

ic_hex_error_messages off_minor 

ic_hex_switch_blocking root 

ic_hex_move_node 13 pnt.00 

ic_hex_move_node 21 pnt.03 

ic_hex_move_node 19 pnt.02 

ic_hex_move_node 11 pnt.01 

ic_hex_find_comp_curve crv.01 

ic_hex_set_edge_projection 11 13 0 1 crv.01 
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ic_hex_find_comp_curve crv.00 

ic_hex_set_edge_projection 13 21 0 1 crv.00 

ic_hex_find_comp_curve crv.02 

ic_hex_set_edge_projection 19 21 0 1 crv.02 

ic_hex_find_comp_curve crv.03 

ic_hex_set_edge_projection 11 19 0 1 crv.03 

ic_hex_split_grid 11 19 0.427911 m AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM 

FLUID VORFN 

ic_hex_split_grid 33 34 0.498876 m AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM 

FLUID VORFN 

ic_hex_split_grid 38 34 0.00466771 m AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM 

FLUID VORFN 

ic_hex_split_grid 43 44 0.0139933 m AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM 

FLUID VORFN 

ic_hex_split_grid 49 44 0.00896465 m AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM 

FLUID VORFN 

ic_hex_mark_blocks unmark 

ic_hex_mark_blocks superblock 14 

ic_hex_mark_blocks superblock 22 

ic_hex_mark_blocks superblock 27 

ic_hex_mark_blocks numbers 39 44 edge_neighbors 

ic_hex_ogrid distance 0.2 fix_dist not_marked m AIRFOIL_DOWN AIRFOIL_UP FF 

GROUND GEOM FLUID -version 50 



78 
 

ic_hex_mark_blocks unmark 

ic_hex_mark_blocks unmark 

ic_hex_mark_blocks unmark 

ic_hex_mark_blocks superblock 22 

ic_hex_mark_blocks superblock 27 

ic_hex_collapse_blocks 1 version 410 

ic_hex_mark_blocks unmark 

ic_hex_mark_blocks unmark 

ic_hex_split_grid 58 59 pnt.04 m AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM 

FLUID VORFN 

ic_hex_move_node 49 pnt.05 

ic_hex_move_node 70 pnt.04 

ic_hex_find_comp_curve crv1 

ic_hex_set_edge_projection 43 49 0 1 crv1 

ic_hex_project_to_surface 43 49 

ic_hex_set_edge_projection 70 43 0 1 crv1 

ic_hex_project_to_surface 70 43 

ic_hex_find_comp_curve crv0 

ic_hex_set_edge_projection 38 70 0 1 crv0 

ic_hex_project_to_surface 38 70 

ic_hex_set_edge_projection 38 49 0 1 crv0 

ic_hex_project_to_surface 38 49 

ic_hex_set_node_location x 0.04 -csys global node_numbers {{  43  } {  38  }} 
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ic_hex_project_to_surface FLUID GEOM FF AIRFOIL_DOWN AIRFOIL_UP GROUND 

ic_hex_set_node_location x -0.04 -csys global node_numbers {{  71  }} 

ic_hex_set_node_location x -0.01 y 0.06 -csys global node_numbers {{  59  }} 

ic_hex_set_node_location x -0.01 y -0.06 -csys global node_numbers {{  58  }} 

ic_hex_set_node_location x 1 y 0.05 -csys global node_numbers {{  61  }} 

ic_hex_set_node_location x 1 y -0.05 -csys global node_numbers {{  60  }} 

ic_hex_get_node_location {  61  } _tempx _tempy _tempz 

ic_hex_get_node_location {  61  } _tempx _tempy _tempz 

ic_hex_set_node_location y {$_tempy} -csys global node_numbers {{  63  } {  65  }} 

ic_hex_get_node_location {  60  } _tempx _tempy _tempz 

ic_hex_set_node_location y {$_tempy} -csys global node_numbers {{  62  } {  64  }} 

ic_hex_get_node_location {  49  } _tempx _tempy _tempz 

ic_hex_set_node_location x {$_tempx} -csys global node_numbers {{  61  } {  60  } {  47  } 

{  50  }} 

ic_hex_get_node_location {  59  } _tempx _tempy _tempz 

ic_hex_set_node_location y {$_tempy} -csys global node_numbers {{  42  }} 

ic_hex_get_node_location {  58  } _tempx _tempy _tempz 

ic_hex_set_node_location y {$_tempy} -csys global node_numbers {{  37  }} 

ic_hex_get_node_location {  49  } _tempx _tempy _tempz 

ic_hex_set_node_location y {$_tempy} -csys global node_numbers {{  55  } {  44  }} 

ic_hex_set_mesh 59 43 n 2 h1rel 0.0341752987775 h2rel 1.70876493888e-005 r1 1.05 r2 1.05 

lmax 0 default copy_to_parallel unlocked 
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ic_hex_set_mesh 71 59 n 40 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 71 59 n 40 h1rel 0.0 h2rel 0.0 r1 1.2 r2 1.2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 58 71 n 40 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 58 71 n 40 h1rel 0.0 h2rel 0.0 r1 1.2 r2 1.2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 43 49 n 310 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 43 49 n 310 h1rel 0.00155508580445 h2rel 0.00103672386963 r1 1.1 r2 1.05 

lmax 0 default copy_to_parallel unlocked 

ic_hex_set_mesh 61 63 n 9 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 61 63 n 9 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 61 63 n 95 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 61 63 n 95 h1rel 0.00135822876104 h2rel 0.0 r1 1.05 r2 1.1 lmax 0 default 

copy_to_parallel unlocked 

ic_hex_set_mesh 55 44 n 2 h1rel linked 49 55 h2rel 0.0 r1 1.08 r2 1.1 lmax 0 default 

copy_to_parallel locked 
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ic_hex_set_mesh 59 34 n 100 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 59 34 n 100 h1rel 3.002997993e-005 h2rel 0.0 r1 1.1 r2 1.1 lmax 0 default 

copy_to_parallel unlocked 

ic_hex_set_mesh 33 58 n 2 h1rel 0.0 h2rel 3.002997993e-005 r1 1.1 r2 1.1 lmax 0 default 

copy_to_parallel unlocked 

ic_hex_set_mesh 69 71 n 120 h1rel 0.0 h2rel 0.0 r1 2 r2 2 lmax 0 default copy_to_parallel 

unlocked 

ic_hex_set_mesh 69 71 n 120 h1rel 0.0 h2rel linked 71 70 r1 1.08 r2 1.08 lmax 0 default 

copy_to_parallel locked 

ic_hex_list_family_projection 

ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 3 nproc 10 

ic_hex_set_mesh 33 58 n 120 h1rel 0.0 h2rel 3.002997993e-005 r1 1.1 r2 1.1 lmax 0 default 

copy_to_parallel unlocked 

ic_hex_set_mesh 33 58 n 120 h1rel 0.0 h2rel 3.002997993e-005 r1 1.1 r2 1.1 lmax 0 default 

copy_to_parallel unlocked 

ic_hex_list_family_projection 

ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 3 nproc 10 

ic_hex_set_mesh 59 43 n 120 h1rel 0.0341752987775 h2rel 1.70876493888e-005 r1 1.05 r2 1.05 

lmax 0 default copy_to_parallel unlocked 

ic_hex_list_family_projection 
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ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 3 nproc 10 

ic_hex_mark_blocks unmark 

ic_hex_mark_blocks superblock 14 

ic_hex_mark_blocks superblock 42 

ic_hex_change_element_id VORFN 

ic_delete_empty_parts 

ic_hex_undo_major_start auto_edge_split 

ic_hex_auto_split_edge 70 43 

ic_hex_auto_split_edge 43 49 

ic_hex_auto_split_edge 38 49 

ic_hex_auto_split_edge 38 70 

ic_hex_undo_major_end auto_edge_split 

ic_hex_link_shape 71 59 70 43 1.0 

ic_hex_link_shape 58 71 38 70 1.0 

ic_hex_link_shape 58 60 38 49 1.0 

ic_hex_link_shape 59 61 43 49 1.0 

ic_hex_list_family_projection 

ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 3 nproc 10 

ic_hex_set_mesh 55 44 n 120 h1rel linked 49 55 h2rel 0.0 r1 1.08 r2 1.1 lmax 0 default 

copy_to_parallel locked 
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ic_hex_set_mesh 55 44 n 120 h1rel linked 49 55 h2rel 0.0 r1 1.08 r2 1.1 lmax 0 default 

copy_to_parallel locked 

ic_hex_list_family_projection 

ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 3 nproc 10 

ic_hex_set_mesh 55 44 n 120 h1rel linked 49 55 h2rel 0.0 r1 1.08 r2 1.1 lmax 0 default 

copy_to_parallel locked 

ic_hex_set_mesh 55 44 n 120 h1rel 0.000153327787978 h2rel 0.0 r1 1.08 r2 1.1 lmax 0 default 

copy_to_parallel locked 

ic_hex_list_family_projection 

ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 3 nproc 10 

ic_set_global geo_cad 0.09 toler 

ic_move_geometry curve names {crv1 crv0} rotate -AOA rotate_axis {0 0 1} cent {0 0 0} 

ic_move_geometry point names {pnt.05 pnt.04} rotate -AOA rotate_axis {0 0 1} cent {0 0 0} 

ic_geo_reset_data_structures 

ic_geo_configure_one_attribute surface shade wire 

ic_geo_new_family __TEMP_BLOCK_SUBSET__ 

ic_hex_create_subset display __TEMP_BLOCK_SUBSET__ 

ic_hex_subset_add_items __TEMP_BLOCK_SUBSET__ block 6 30 31 32 33 34 41 

ic_hex_undo_major_start transform_blocking 

ic_hex_transform_blocking root rotate 0 0 0 0 0 1 -AOA m __TEMP_BLOCK_SUBSET__ 

ic_hex_undo_major_end transform_blocking 
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ic_geo_delete_family __TEMP_BLOCK_SUBSET__ 

ic_hex_delete_subset __TEMP_BLOCK_SUBSET__ 

ic_hex_link_shape 38 70 

ic_hex_link_shape 38 49 

ic_hex_link_shape 58 38 

ic_hex_link_shape 58 71 

ic_hex_link_shape 58 60 

ic_hex_link_shape 60 49 

ic_hex_link_shape 70 43 

ic_hex_link_shape 71 70 

ic_hex_link_shape 71 59 

ic_hex_link_shape 43 49 

ic_hex_link_shape 59 43 

ic_hex_link_shape 59 61 

ic_hex_link_shape 61 49 

ic_hex_undo_major_start auto_edge_split 

ic_hex_auto_split_edge 43 49 

ic_hex_auto_split_edge 70 43 

ic_hex_auto_split_edge 38 70 

ic_hex_auto_split_edge 38 49 

ic_hex_undo_major_end auto_edge_split 

ic_hex_list_family_projection 
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ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 2 nproc 10 

ic_hex_remove_edge_points 38 70 

ic_hex_remove_edge_points 38 49 

ic_hex_remove_edge_points 58 38 

ic_hex_remove_edge_points 58 71 

ic_hex_remove_edge_points 58 60 

ic_hex_remove_edge_points 60 49 

ic_hex_remove_edge_points 70 43 

ic_hex_remove_edge_points 71 70 

ic_hex_remove_edge_points 71 59 

ic_hex_remove_edge_points 43 49 

ic_hex_remove_edge_points 59 61 

ic_hex_remove_edge_points 59 43 

ic_hex_remove_edge_points 61 49 

ic_hex_undo_major_start auto_edge_split 

ic_hex_auto_split_edge 43 49 

ic_hex_auto_split_edge 70 43 

ic_hex_auto_split_edge 38 70 

ic_hex_auto_split_edge 38 49 

ic_hex_undo_major_end auto_edge_split 

ic_hex_link_shape 71 59 70 43 1.0 

ic_hex_link_shape 58 71 38 70 1.0 
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ic_hex_link_shape 58 60 38 49 1.0 

ic_hex_link_shape 59 61 43 49 1.0 

ic_hex_list_family_projection 

ic_hex_create_mesh AIRFOIL_DOWN AIRFOIL_UP FF GROUND GEOM FLUID proj 2 

dim_to_mesh 2 nproc 10 

ic_hex_write_file {FILE_PATHhex.uns} AIRFOIL_DOWN AIRFOIL_UP FF GROUND 

GEOM FLUID proj 2 dim_to_mesh 2 no_boco 

ic_uns_load C:/Users/Boshun/Desktop/Boshun/RAE2882/GROUND~1/Mesh/hex.uns 3 0 {} 1 

ic_uns_update_family_type visible {FLUID GEOM FF AIRFOIL_DOWN ORFN AIRFOIL_UP 

GROUND} {!NODE !LINE_2 QUAD_4} update 0 

ic_uns_diag_reset_degen_min_max 

ic_boco_solver 

ic_uns_update_family_type visible {FLUID GEOM FF AIRFOIL_DOWN ORFN AIRFOIL_UP 

GROUND} {!NODE !LINE_2 QUAD_4} update 0 

ic_boco_clear_icons 

ic_csystem_display all 0 

ic_csystem_set_current global 

ic_boco_nastran_csystem reset 

ic_boco_solver {ANSYS Fluent} 

ic_solver_mesh_info {ANSYS Fluent} 

ic_delete_empty_parts 

ic_delete_empty_parts 

ic_save_tetin project1.tin 0 0 {} {} 0 0 1 
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ic_uns_check_duplicate_numbers 

ic_save_unstruct project1.uns 1 {} {} {} 

ic_uns_set_modified 1 

ic_hex_save_blocking project1.blk 

ic_boco_solver 

ic_boco_solver {ANSYS Fluent} 

ic_solution_set_solver {ANSYS Fluent} 1 

ic_boco_save project1.fbc 

ic_boco_save_atr project1.atr 

ic_cart_is_loaded 

ic_save_project_file {FILE_PATHproject1.prj} {array\ set\ file_name\ \{ {    catia_dir 

{C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} {    parts_dir 

{C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} {    domain_loaded 0} 

{    cart_file_loaded 0} {    cart_file {}} {    domain_saved project1.uns} {    archive {}} 

{    med_replay {}} {    topology_dir {C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground 

Effect/Mesh}} {    ugparts_dir {C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground 

Effect/Mesh}} {    icons {{$env(ICEM_ACN)/lib/ai_env/icons} 

{$env(ICEM_ACN)/lib/va/EZCAD/icons} {$env(ICEM_ACN)/lib/icons} 

{$env(ICEM_ACN)/lib/va/CABIN/icons}}} {    tetin project1.tin} {    family_boco 

project1.fbc} {    prism_params {}} {    iges_dir 

{C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} {    solver_params_loaded 

1} {    attributes_loaded 1} {    project_lock {}} {    attributes project1.atr} {    domain 

project1.uns} {    domains_dir .} {    settings_loaded 0} {    settings project1.prj} {    blocking 
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project1.blk} {    hexa_replay {}} {    transfer_dir 

{C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} {    mesh_dir 

{C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} {    family_topo {}} 

{    gemsparts_dir {C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} 

{    family_boco_loaded 1} {    tetin_loaded 1} {    project_dir 

{C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Mesh}} {    topo_mulcad_out {}} 

{    solver_params {}} \} array\ set\ options\ \{ {    expert 1} {    remote_path {}} 

{    tree_disp_quad 2} {    tree_disp_pyra 0} {    evaluate_diagnostic 0} {    histo_show_default 

1} {    select_toggle_corners 0} {    remove_all 0} {    keep_existing_file_names 0} 

{    record_journal 0} {    edit_wait 0} {    face_mode all} {    select_mode all} 

{    med_save_emergency_tetin 1} {    user_name Boshun} {    diag_which all} 

{    uns_warn_if_display 500000} {    bubble_delay 1000} {    external_num 1} {    tree_disp_tri 

2} {    apply_all 0} {    default_solver {ANSYS Fluent}} {    temporary_directory {}} 

{    flood_select_angle 0} {    home_after_load 1} {    project_active 0} 

{    histo_color_by_quality_default 1} {    undo_logging 1} {    tree_disp_hexa 0} 

{    histo_solid_default 1} {    host_name CFD128-1} {    xhidden_full 1} 

{    replay_internal_editor 1} {    editor notepad} {    mouse_color orange} {    clear_undo 1} 

{    remote_acn {}} {    remote_sh csh} {    tree_disp_penta 0} {    n_processors 10} 

{    remote_host {}} {    save_to_new 0} {    quality_info Quality} {    tree_disp_node 0} 

{    med_save_emergency_mesh 1} {    redtext_color red} {    tree_disp_line 0} 

{    select_edge_mode 0} {    use_dlremote 0} {    max_mesh_map_size 1024} {    show_tris 1} 

{    remote_user {}} {    icon_size Normal} {    enable_idle 0} {    auto_save_views 1} 

{    max_cad_map_size 512} {    display_origin 0} {    uns_warn_user_if_display 1000000} 
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{    detail_info 0} {    win_java_help 0} {    show_factor 1} {    boundary_mode all} 

{    clean_up_tmp_files 1} {    auto_fix_uncovered_faces 1} {    med_save_emergency_blocking 

1} {    max_binary_tetin 0} {    tree_disp_tetra 0} \} array\ set\ disp_options\ 

\{ {    uns_dualmesh 0} {    uns_warn_if_display 500000} {    uns_normals_colored 0} 

{    uns_icons 0} {    uns_locked_elements 0} {    uns_shrink_npos 0} {    uns_node_type None} 

{    uns_icons_normals_vol 0} {    uns_bcfield 0} {    backup Wire} {    uns_nodes 0} 

{    uns_only_edges 0} {    uns_surf_bounds 0} {    uns_wide_lines 0} {    uns_vol_bounds 0} 

{    uns_displ_orient Triad} {    uns_orientation 0} {    uns_directions 0} {    uns_thickness 0} 

{    uns_shell_diagnostic 0} {    uns_normals 0} {    uns_couplings 0} {    uns_periodicity 0} 

{    uns_single_surfaces 0} {    uns_midside_nodes 1} {    uns_shrink 100} 

{    uns_multiple_surfaces 0} {    uns_no_inner 0} {    uns_enums 0} {    uns_disp Wire} 

{    uns_bcfield_name {}} {    uns_color_by_quality 0} {    uns_changes 0} 

{    uns_cut_delay_count 1000} \} {set icon_size1 24} {set icon_size2 35} {set 

thickness_defined 0} {set solver_type 1} {set solver_setup 1} array\ set\ prism_values\ 

\{ {    n_triangle_smoothing_steps 5} {    min_smoothing_steps 6} 

{    first_layer_smoothing_steps 1} {    new_volume {}} {    height {}} {    prism_height_limit 

{}} {    interpolate_heights 0} {    n_tetra_smoothing_steps 10} {    do_checks {}} 

{    delete_standalone 1} {    ortho_weight 0.50} {    max_aspect_ratio {}} {    ratio_max {}} 

{    incremental_write 0} {    total_height {}} {    use_prism_v10 0} {    intermediate_write 1} 

{    delete_base_triangles {}} {    ratio_multiplier {}} {    verbosity_level 1} 

{    refine_prism_boundary 1} {    max_size_ratio {}} {    triangle_quality {}} 

{    max_prism_angle 180} {    tetra_smooth_limit 0.30000001} {    max_jump_factor 5} 

{    use_existing_quad_layers 0} {    layers 3} {    fillet 0.1} {    into_orphan 0} 
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{    init_dir_from_prev {}} {    blayer_2d 0} {    do_not_allow_sticking {}} {    top_family {}} 

{    law exponential} {    min_smoothing_val 0.1} {    auto_reduction 0} {    stop_columns 1} 

{    stair_step 1} {    smoothing_steps 12} {    side_family {}} {    min_prism_quality 

0.0099999998} {    ratio 1.2} \} {set aie_current_flavor {}} array\ set\ vid_options\ 

\{ {    wb_import_mat_points 0} {    wb_NS_to_subset 0} {    wb_import_surface_bodies 1} 

{    wb_import_cad_att_pre {SDFEA;DDM}} {    wb_import_mix_res_line 0} 

{    wb_import_tritol 0.001} {    auxiliary 0} {    wb_import_cad_att_trans 1} 

{    wb_import_mix_res -1} {    wb_import_mix_res_surface 0} {    show_name 0} 

{    wb_import_solid_bodies 1} {    wb_import_delete_solids 0} {    wb_import_mix_res_solid 

0} {    wb_import_save_pmdb {}} {    inherit 0} {    default_part GEOM} {    new_srf_topo 1} 

{    wb_import_associativity_model_name {}} {    DelPerFlag 0} {    show_item_name 0} 

{    wb_import_line_bodies 0} {    wb_import_save_partfile 0} {    wb_import_analysis_type 3} 

{    composite_tolerance 1.0} {    wb_NS_to_entity_parts 0} {    wb_import_en_sym_proc 1} 

{    wb_run_mesher tetra} {    wb_import_sel_proc 1} {    wb_import_work_points 0} 

{    wb_import_reference_key 0} {    wb_import_mix_res_point 0} {    wb_import_pluginname 

{}} {    wb_NS_only 0} {    wb_import_geom 1} {    wb_import_create_solids 0} 

{    wb_import_refresh_pmdb 0} {    wb_import_sel_pre {}} {    wb_import_scale_geo Default} 

{    wb_import_load_pmdb {}} {    replace 0} {    wb_import_cad_associativity 0} 

{    same_pnt_tol 1e-4} {    tdv_axes 1} {    wb_import_mesh 0} {    vid_mode 0} 

{    DelBlkPerFlag 0} \} array\ set\ map_tetin_sizes\ \{ {    densities 1} {    msurfaces 1} 

{    ppoint 1} {    thincuts 1} {    tetin {}} {    psurfaces 1} {    mcurves 1} {    mpoint 1} {    doit 

0} {    pcurves 1} {    global 1} {    subsets 1} {    family 1} \} array\ set\ import_model_options\ 

\{ {    from_source 0} {    always_ref_key 0} {    always_convert 0} {    named_sel_only 0} 
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{    always_create_mpoint 1} {    always_import 0} {    convert_to Unitless} \} {set 

savedTreeVisibility {geomNode 1 geom_subsetNode 0 geomPointNode 2 geomCurveNode 2 

meshNode 1 mesh_subsetNode 2 meshPointNode 0 meshLineNode 0 meshShellNode 2 

meshQuadNode 2 blockingNode 1 block_subsetNode 2 block_vertNode 0 block_edgeNode 2 

block_faceNode 0 block_blockNode 0 block_meshNode 0 topoNode 2 topo-root 2 partNode 2 

part-AIRFOIL_DOWN 2 part-AIRFOIL_UP 2 part-FF 2 part-FLUID 2 part-GEOM 2 part-

GROUND 2 part-VORFN 0}} {set last_view {rot {0 0 0 1} scale {132.964023666 

132.964023666 132.964023666} center {10.0 0.0 0.0} pos {1224.34544603 -1.9194203072 

0}}} array\ set\ cut_info\ \{ {    active 0} \} array\ set\ hex_option\ \{ {    default_bunching_ratio 

2.0} {    floating_grid 0} {    project_to_topo 0} {    n_tetra_smoothing_steps 20} 

{    sketching_mode 0} {    trfDeg 1} {    wr_hexa7 0} {    smooth_ogrid 0} {    find_worst 1-3} 

{    hexa_verbose_mode 0} {    old_eparams 0} {    uns_face_mesh_method uniform_quad} 

{    multigrid_level 0} {    uns_face_mesh one_tri} {    check_blck 0} {    proj_limit 0} 

{    check_inv 0} {    project_bspline 0} {    hexa_update_mode 1} {    default_bunching_law 

BiGeometric} {    worse_criterion Quality} \} array\ set\ saved_views\ \{ {    views {}} \}} 

{ICEM CFD} 

ic_exec {C:/Program Files/ANSYS Inc/v171/icemcfd/win64_amd/icemcfd/output-

interfaces/fluent6} -dom {FILE_PATH/project1.uns} -b project1.fbc -dim2d 

{FILE_PATHMESH-FILENAME} 
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Appendix B 
 

MATLAB Code and State file for batch CFD 
Results Post-processing 
Matlab Code: 

clc; 

clear; 

%Read cse original  

% str_ori=fileread(CSEFILE.cse'); 

M=0.45:0.05:0.8; 

angle=0:1:12; 

ratio_name=[0.1,0.2,0.4,0.6,0.8,1,1000]; 

 

for a=1:length(angle) 

    for r=1:length(ratio_name) 

        for m=1:length(M) 

            %Define varible names and path 

            if ratio_name(r) ~= 1000 

                filename_all=['angle',num2str(angle(a)),'ratio',num2str(ratio_name(r)),'-

M=',num2str(M(m))]; 

                data_location=['C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Fluent 

Cases/alpha=',num2str(angle(a)),'/h to c=',num2str(ratio_name(r)),'/M=',num2str(M(m)),'/']; 

            else 
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                %Free flow 

                filename_all=['angle',num2str(angle(a)),'ratioinf-M=',num2str(M(m))]; 

                data_location=['C:/Users/Boshun/Desktop/Boshun/RAE2882/Ground Effect/Fluent 

Cases/alpha=',num2str(angle(a)),'/free flow/M=',num2str(M(m)),'/']; 

            end 

             

            %Judge if the folder exists 

            command=['cd ',data_location]; 

            [status,cmdout] = system(command); 

            if status == 0 

                cd (data_location) 

                [status,dir] = system('dir /ON'); 

                %Should match the No. of DATA file(s) 

                N=length(strfind(dir,'.dat')); 

                 

                if N >10 

                    %Unsteady 

                     

                    %Define other varibles 

                    k=strfind(dir,'.dat'); 

                    caselocation=strfind(dir,'.cas'); 

                    digits=8; %x.6 (may require change) 

                    %Beginning of the time 
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                    data_start=str2double(dir((k(1)-digits):(k(1)-1))); 

                    %Ending of the time 

                    data_ending=str2double(dir((k(end)-digits):(k(end)-1))); 

                    %Time step between cases 

                    data_step=(data_ending-data_start)/(length(k)-1); 

                     

                    %File_prefix 

                    temp=dir(caselocation-25:caselocation); 

                    space=strfind(temp,' ')+1; 

                    filename_prefix=[temp(space:end-1),'-']; 

                    %Write  

                    for i=1:N 

                        filename_change = num2str(data_start+(i-1)*data_step,'%1.6f'); 

                        cse_filename = [filename_prefix,filename_change,'.cse']; 

                        fileID = fopen(cse_filename,'w'); 

                        str = strrep(str_ori,'case_file',[data_location,filename_prefix,filename_change]); 

                        str = strrep(str,'output_file',[data_location,filename_prefix,filename_change]); 

                        fprintf(fileID,str); 

                        fclose(fileID);     

                    end 

                    %Change dir and being CFD-POST 

                    for i=1:N 

                        filename_change = num2str(data_start+(i-1)*data_step,'%1.6f'); 
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                        cd 'C:\Program Files\ANSYS Inc\v171\CFD-Post\bin'   

                        cse_filename = [filename_prefix,filename_change,'.cse'];     

                        command=['cfdpost -batch "',data_location,cse_filename,'"']; 

                        [status,cmdout] = system(command,'-echo'); 

                        fprintf('Ratio = %2.1f, angle=%2.0f M = %1.2f is unsteady. Total of %1.0f 

cases, %1.0f cases to go.\n',ratio_name(r),angle(a),M(m),N,N-i+1); 

                    end 

                    %Clear temp data 

                    cd (data_location) 

                    for i=1:N 

                        filename_change = num2str(data_start+(i-1)*data_step,'%1.6f'); 

                        cse_filename = [filename_prefix,filename_change,'.cse']; 

                        delete (cse_filename) 

                    end 

                elseif N <= 10 && N >= 1 

                    %Judge how well the convergence is achieved by reading 

                    %either cl or cm 

                    cd (data_location) 

                    [status,dir] = system('dir /ON'); 

                    clornot=length(strfind(dir,'cl-1-history')); 

                    %No cl-1-history, then cm-1-history 

                    if clornot == 0 

                        filename = [data_location,'cm-1-history.txt']; 
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                        delimiter = ' '; 

                        startRow = 3; 

                        formatSpec = '%f%f%[^\n\r]'; 

                        fileID = fopen(filename,'r'); 

                        dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 

'MultipleDelimsAsOne', true, 'EmptyValue' ,NaN,'HeaderLines' ,startRow-1, 'ReturnOnError', 

false); 

                        fclose(fileID); 

                        convergence_varible = dataArray{:, 2}; 

                        clearvars filename delimiter startRow formatSpec fileID dataArray ans; 

                    else 

                        %cl-1-history exists, then use cl data 

                        filename = [data_location,'cl-1-history.txt']; 

                        delimiter = ' '; 

                        startRow = 3; 

                        formatSpec = '%f%f%[^\n\r]'; 

                        fileID = fopen(filename,'r'); 

                        dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 

'MultipleDelimsAsOne', true, 'EmptyValue' ,NaN,'HeaderLines' ,startRow-1, 'ReturnOnError', 

false); 

                        fclose(fileID); 

                        convergence_varible = dataArray{:, 2}; 

                        clearvars filename delimiter startRow formatSpec fileID dataArray ans; 
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                    end 

                    %Judged by the last 200 iterations or timesteps 

                    convergence_varible=convergence_varible(end-200:end); 

                    %Percentage of the convergence 

                    convergence=(max(convergence_varible)-

min(convergence_varible))/mean(convergence_varible)*100; 

                    clearvars convergence_varible 

                     

                    if abs(convergence) < 1 

                        %Steady 

                        cse_filename = [filename_all,'.cse']; 

                        fileID = fopen(cse_filename,'w'); 

                        str = strrep(str_ori,'case_file',[data_location,filename_all]); 

                        str = strrep(str,'output_file',[data_location,filename_all]); 

                        fprintf(fileID,str); 

                        fclose(fileID); 

                        cd 'C:\Program Files\ANSYS Inc\v171\CFD-Post\bin' 

                        command=['cfdpost -batch "',data_location,cse_filename,'"']; 

                        [status,cmdout] = system(command,'-echo'); 

                        fprintf('Ratio = %2.1f, angle=%2.0f M = %1.2f is done. Convergence is %1.5f 

percent.\n',ratio_name(r),angle(a),M(m),convergence); 

                        %Clear temp data 

                        delete ([data_location,cse_filename]) 
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                    else 

                        %Unsteady and need more data 

                        fprintf('Ratio = %2.1f, angle=%2.0f M = %1.2f is unsteady and need more data. 

Oscillation is %1.5f percent.\n',ratio_name(r),angle(a),M(m),convergence); 

                    end 

                elseif N == 0 

                    %Folder exists, no data file 

                    fprintf('Ratio = %2.1f, angle=%2.0f M = %1.2f does NOT 

exist.\n',ratio_name(r),angle(a),M(m)); 

                end 

                clearvars k space temp caselocation cse_filename data_location dir filename_all i N str 

                clearvars status cmdout command fileID 

            else 

                %Folder does NOT exist 

                fprintf('Ratio = %2.1f, angle=%2.0f M = %1.2f does NOT 

exist.\n',ratio_name(r),angle(a),M(m)); 

            end 

        end 

    end 

end 

clearvars a angle clornot convergence m M r ratio_name str_ori 

cd ('C:\Users\Boshun\Desktop\Boshun\RAE2882\Ground Effect\Post-processing') 
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State file: 

COMMAND FILE: 

  CFX Post Version = 17.1 

END 

 

DATA READER: 

 

  Clear All Objects = false 

  Append Results = false 

  Edit Case Names = false 

  Multi Configuration File Load Option = Separate Cases 

  Open in New View = true 

  Keep Camera Position = true 

  Load Particle Tracks = true 

  Construct Variables From Fourier Coefficients = True 

  Open to Compare = false 

  Files to Compare = 

END 

> load filename=case_file.dat, force_reload=true 

 

 

VIEW:View 1 

  Camera Mode = User Specified 

  CAMERA: 

    Option = Pivot Point and Quaternion 
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    Pivot Point = 10, 29.5295, 0 

    Scale = 0.0169909 

    Pan = 0, 0 

    Rotation Quaternion = 0.279848, -0.364705, -0.115917, 0.880476 

  END 

 

END 

 

> update 

CONTOUR:Contour 1 

  Apply Instancing Transform = On 

  Clip Contour = On 

  Colour Map = Default Colour Map 

  Colour Scale = Linear 

  Colour Variable = Mach Number 

  Colour Variable Boundary Values = Conservative 

  Constant Contour Colour = On 

  Contour Range = User Specified 

  Culling Mode = No Culling 

  Domain List = /DOMAIN GROUP:All Domains 

  Draw Contours = On 

  Font = Sans Serif 

  Fringe Fill = On 

  Instancing Transform = /DEFAULT INSTANCE TRANSFORM:Default Transform 

  Lighting = On 
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  Line Colour = 1, 0, 0 

  Line Colour Mode = User Specified 

  Line Width = 4 

  Location List = symmetry 1 

  Max = 1 

  Min = 1 

  Number of Contours = 2 

  Show Numbers = Off 

  Specular Lighting = On 

  Surface Drawing = Smooth Shading 

  Text Colour = 0, 0, 0 

  Text Colour Mode = Default 

  Text Height = 0.024 

  Transparency = 0.0 

  Use Face Values = Off 

  Value List = 0,1 

  OBJECT VIEW TRANSFORM: 

    Apply Reflection = Off 

    Apply Rotation = Off 

    Apply Scale = Off 

    Apply Translation = Off 

    Principal Axis = Z 

    Reflection Plane Option = XY Plane 

    Rotation Angle = 0.0 [degree] 

    Rotation Axis From = 0 [m], 0 [m], 0 [m] 
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    Rotation Axis To = 0 [m], 0 [m], 0 [m] 

    Rotation Axis Type = Principal Axis 

    Scale Vector = 1 , 1 , 1 

    Translation Vector = 0 [m], 0 [m], 0 [m] 

    X = 0.0 [m] 

    Y = 0.0 [m] 

    Z = 0.0 [m] 

  END 

END 

 

# Sending visibility action from ViewUtilities 

>show /CONTOUR:Contour 1, view=/VIEW:View 1 

 

# Sending visibility action from ViewUtilities 

>hide /DEFAULT LEGEND:Default Legend View 1, view=/VIEW:View 1 

 

 

WIREFRAME:Wireframe 

  Apply Instancing Transform = On 

  Colour = 0, 0, 0 

  Domain List = /DOMAIN GROUP:All Domains 

  Edge Angle = 30 [degree] 

  Instancing Transform = /DEFAULT INSTANCE TRANSFORM:Default Transform 

  Line Colour Mode = Default 

  Line Width = 4 
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  Show Surface Mesh = Off 

  OBJECT VIEW TRANSFORM: 

    Apply Reflection = Off 

    Apply Rotation = Off 

    Apply Scale = Off 

    Apply Translation = Off 

    Principal Axis = Z 

    Reflection Plane Option = XY Plane 

    Rotation Angle = 0.0 [degree] 

    Rotation Axis From = 0 [m], 0 [m], 0 [m] 

    Rotation Axis To = 0 [m], 0 [m], 0 [m] 

    Rotation Axis Type = Principal Axis 

    Scale Vector = 1 , 1 , 1 

    Translation Vector = 0 [m], 0 [m], 0 [m] 

    X = 0.0 [m] 

    Y = 0.0 [m] 

    Z = 0.0 [m] 

  END 

END 

 

>setcamera viewport=1, camera=+Z 

 

VIEW:View 1 

  Camera Mode = User Specified 

  CAMERA: 
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    Option = Pivot Point and Quaternion 

    Pivot Point = 0.2, 0.2, 0 

    Scale = 0.7 

    Pan = -0.4, 0 

    Rotation Quaternion = 0, 0, 0, 1 

  END 

 

END 

 

> update 

HARDCOPY: 

  Antialiasing = On 

  Hardcopy Filename = output_file.png 

  Hardcopy Format = png 

  Hardcopy Tolerance = 0.0001 

  Image Height = 1080 

  Image Scale = 100 

  Image Width = 1920 

  JPEG Image Quality = 90 

  Screen Capture = Off 

  Use Screen Size = Off 

  White Background = On 

END 

>print 
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