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Abstract

The ongoing increases of line speed in the Internet backbone combined with
the need for increased functionality of network devices presents a major challenge.
These demands call for the use of reprogrammable hardware to provide the re-
quired flexible, high-speed functionality, at all network layers. The Field Pro-
grammable Port Extender (FPX) provides such an environment for development
of networking components in reprogrammable hardware. We present a framework
to streamline and simplify networking applications that process ATM cells, AALS
frames, Internet Protocol (IP) packets and UDP datagrams directly in hardware.

1 Introduction

In recent years, field programmable logic has become sufficiently capable to imple-
ment complex networking applications directly in hardware. The Field Programmable
Port Extender has been implemented as a flexible platform for the processing of net-
work data in hardware at multiple layers of the protocol stack. Layers are important
for networks because they allow applications to be implemented at a level where the
insignificant details are hidden. At the lowest layer, networks need to modify the raw
data that passes between interfaces. At higher levels, the applications process variable

length frames or packages as in the Internet Protocol. At the user-level, applications

may transmit or receive messages in User Datagram Protocol messages. An important
application for the network layer is routing and forwarding packets to other network
nodes.

*This research was supported in part by NSF ANI-0096052 and Xilinx Corp.



2 Background

In the Applied Research Lab at Washington University in St. Louis, a rich set of hard-
ware components and software for research in the field of ATM and active networking
has been developed. The modules described in this document are primarily targeted
to this kit, though the design is written in portable VHDI. and could be used in any
FPGA-based system.

2.1 Switch Fabric

The central component of this research environment is the Washington University Gi-
gabit Switch (WUGS, [11). It is a fully featured 8-port ATM switch, which is capable
of handling up to 20 Gbps of network traffic. Each port is connected through a line
card to the switch. The WUGS provides space to insert extension cards between the
line cards and the switch itself.

2.2 Field Programmable Port Extender

The Field Programmable Port Extender (FPX, {2, 3]) provides reprogrammable logic
for user applications. It uses the same interface as the switch to the line-card, so it can
be inserted between these two cards, as illustrated in figure 1.

The FPX contains two FPGAs: the Network Interface Device (NID) and the Re-
programmable Application Device (RAD). The NID interconnects the WUGS, the line
card and the RAD via a small switch. It also provides the logic to dynamically repro-
gram the RAD. The RAD can be programmed to hold user-defined modules. Hardware
based processing of networking data is made possible that way. The RAD is also con-
nected to two SRAM and two SDRAM components. The memory modules can be used
to cache cell data or hold Iarge tables. Figure 2 illustrates the major components on an
FPX board.

2.3 FPX Modules

User applications are implemented on the RAD as modules. Modules are hardware
components with a well-defined interface which communicate with the RAD and other
infrastructure components. The basic data interface is a 32-bit wide, Utopia-like in-
terface. The data bus carries ATM header information, as well as the payload of the
cells. The other signals in the module interface are used for congestion control and to
connect to memory controllers to access the off-chip memory. The complete module
interface is documented in [4].

Usually, two application modules are present on the RAD. Typically, one handles
data from the line card to the switch (ingress) and the other handles data from the switch
to the line card (egress). As with the Transmutable Telecom System [5], modules
can be replaced by reprogramming the FPGA in the system at any time. In the case
of the FPX, this functionality occurs via partial reprogramming of the RAD FPGA.
A reconfiguration component performs a handshaking protocol with the modules to
prevent loss of data.
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3 Network Wrapper Concept

Network protocols are organized in layers. On the ATM data link layer, data is sent
in fixed size cells. To provide variable length data exchange, a family of ATM Adap-
tion Layers exists. Section 3.2.1 gives an introduction to the ATM Adaption Layer 5
(AALS), which is widely used to transport IP data over ATM networks. The Net-
work layer uses IP packeis to support routing through multiple, physically separated
networks.

Components have been developed for the FPX that allow applications to handle
data on different levels of abstraction. A similar implementation exists for IP over Eth-
ernet and the corresponding network layers [6]. On the cell Ievel, a Start of Cell (SOC)
signal is given to an application module. For AALS frame based applications, Start-
of-Frame (SOF) and End-of-Frame (EOF) signals indicate the beginning or the end of
an AALS frame, respectively. An additional data-enable signal indicates whether valid
payload data is being sent.

Translation steps are necessary between layers. A classical approach would be to
create components for each protocol transiation, for instance from cell leve] to AALS
frame level. There would need to be a component for the reverse step as well, in
our example from the frame Ievel back to the cell level, i.e., segmentation. In a new
approach, we combine these two translation units into one component, which has four
interfaces as a consequence: two to support the lower level protocol and two to provide
a higher level interface, respectively. Also the two components are connected to each
other. This is useful to exchange additional information or to bypass the application.
Iatter is done in the cell processor (section 3.1).

When an application module is embedded into the new translation unit, it gets a
shape like the letter U (figure 3). Regarding the data stream, the application only
connects to the translating component, which wraps up the application itself. Therefore
we will refer to the surrounding components as wrappers.

To support higher levels of abstraction, the wrappers can be nested. Since each
of them has a well defined interface for an outer and an inner protocol level, they fit
together within each other, as shown in figure 3. As a result, we get a very modular
design method to support applications for different protocols and levels of abstraction.

Network

Application

Figure 3: Wrapper concept
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Figure 4: Conirol cell format

Associating each wrapper with a specific protocol, we get a layer model comparable to
the well known OSI/ISO networking reference model. This modularity gives applica-
tion developers more freedom in their designs. They can choose the level of abstraction
they need for their specific application, while not needing to deal with the handling of
complicated protocol issues, like frame boundaries or checksums.

3.1 Cell based processing

At the lowest level of abstraction, data is sent in fixed length cells. Applications or
wrappers working on that protocol level typically process the ATM header and filter
cells by their virtual channel.

3.1.1 Control cells

FPX Modules communicate with software via control cells. These are ATM cells with
a well-defined structure and are used to perform remote configuration.

Control cells contain an opcode field, multiple parameter fields, a sequence number,
and a 16-bit CRC, to ensure data integrity (figure 4). They are sent on specific virtual
channels, defaulting to VCI 34 for the NID and VCI 35 for the RAD.

Control cells to the NID are used to setup the routes between the line card, the
switch and user applications on the RAD. They are also used to upload new application
modules to the RAD.

Control cells to the RAD contain an additional field, the module ID, to address the
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Figure 5: Standard Control Cell Opcodes

application module. Some standard opcodes are understood by all FPX modules, like
writing to VPI/VCI registers, so that applications can operate on any virtual channel.
Therefore opcodes in the range 0x00 to 0xO0F are allocated for common use. Opcodes
from 0x10 to OxFF can be used for user applications. So far the following opcodes
have been defined for common usage:

1. Opcode 0x00 is used as a “Probe Request”. Applications should response with
the “Probe Response” {0x01) and an identification string. This mechanism is
used by the control software to query the configuration on the FPX.The control
cell structure can be seen in figure 5(a).

2. Opcodes 0x02 and 0x04 are used to setup and query VPI/VCI registers. Appli-
cations can be configured to operate on any virtual channel by writing to one of
these registers. Registers in the range from 0x00 to 0xOF are again allocated for
comumon usage, while register numbers from 0x10 to OxEFF can be used by user
applications. Register 0x00 defines the virtual channel on which control cells are
sent, while 0x10 should be used as the application’s default channel. The control
cell structure can be seen in figure 5(b).

The control cell processor (CCP) is a standard FPX module with the hardcoded
module ID zero. It is connected to all four off-chip memories and understands how to



Figure 6: Cell processor

process specific control cells which are read from and written to them. It is useful for
applications, which need to setup lookup tables in memory. With the CCP, no special
code has to be written to modify these tables.

3.1.2 FPX Cell Processor

The wrapper on the lowest level is the cell processor (figure 6). Tt performs every nec-
essary step on the cell level that is commeon to all FPX modules. First of all, incoming
ATM cells are checked against their Header Error Control (HEC) field, which is part of
the 5 octet header. An 8 bit CRC is used to prevent errored cells from being misrouted.
If the check fails, the cell is dropped.

Accepted cells are queried about their virtual channel information in the next step.
The cell processor distinguishes between three different flows:

1. The cell is on the data VC for this module. In this case, the cell will be forwarded
to the inner interface of the wrapper and thus to the appiication.

2. The cell is on the control cell VC and is tagged with the correct module ID. Con-
trol cells are processed by the cell processor itself. We will cover this mechanism
later in this section.

3. None of the above, i.e. this cell is not destined for this module. These cells are
bypassed and take a shorteut to the output of the cell processor.

The cell processor provides three FIFOs to buffer cells from either of the three
paths. A multiplexer combines them and forwards the cells to their last stop. Just
before they leave the cell processor, a new HEC is computed.

The control cell handling inside the cell processor is designed to be very flexible,
thus making it easy for application developers to extend its functionality to fit the needs
of their modules. Since user applications will typically support more control cell op-
codes than the standard codes, extendibility was an important goal in the design of the
cell processor.

A control cell processing framework takes care of CRC checking and setting, buffer-
ing of common data structures and providing common information. A master state ma-
chine waits for control cells destined for this module and will then store opcode, user



Figure 7: Control Cell Handling

data, CM field and sequence number, while at the same time the CRC is being checked.
Every opcode has its own state machine. So adding a new command does not interfere
with existing ones. Every state machine polls the signal state, if a control cell with a
valid CRC (¢reok =' 1') has been read (state = CRC) and gets active on its opcode.
For any incoming control cell (request), a response cell should be sent, if the command
has been processed successfully. Because there is a state machine for every opcode,
which generates its own response cell, a multiplexer takes care of forwarding the cor-
rect one to the output port. Every process for a control cell opcodes sends its response
cells out on data XX and indicates the start on soc XX, where XX is the opcode. The
process ccselection checks all soc XX signals and forwards new control cells. They get
a valid CRC before they are forwarded to the cell multiplexer. The currently selected
opcode is presented in opcode_sel. Processes should check this signal to make sure
their cell has been transmitied. A diagram for the cell processing framework can be
seen in figure 7.

The process sm00 is responsible for detecting Probe Requests (0x00), while the
process data00_out generates the Probe Response cell. The default string is “Generic
Cell Processor 1.0”. To change the Response string this part needs to be updated.

The processes sm02 and sm04 are responsible for setting (0x02) and reading (0x04)
VPI/VCI registers. The response cell is generated by dara04.out in both cases. For
opcode (x02 the values are written to the registers just before they are read again by
sm04 for the response. Since the register values for the acknowledgment are always
read from the actual register, this is a good check to see if the write operation was
successful. To support additional registers these processes need to be changed.

3.2 FKrame based processing

To handle data with arbitrary length over ATM networks, data is organized in frames,
which are sent as multiple cells. Several adaption layers have been specified, which
differ in the property of being connection-oriented or connectionless, in the ability to
multiplex several protocols over one virtual channel and to reorder cells during trans-
mission.
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3.2.1 ATM Adaption Layer 5

In this section we will briefly describe the ATM Adaption Layer 5 (AALS, [7, 8]),
which is widely used for IP networks and is also one of the simpler protocols.

In AATS datagrams or frames of arbitrary length are put into protocol data units
(PDU). In the simplest case (Flow Type 0), the frame starts at the beginning of the PDU,
bui it is also possible to prepend an additional header to distingunish between several
protocols. 'We will only discuss the simple case in this document. A PDU’s length
is always a multiple of 48 octets, because a PDU is sent as a multiple of ATM cells.
One bit in the ATM header, the user bit of the PTI field, is used to indicate whether a
cell is the last one of a PDU. The last 8 octets of the PDU are used by a trailer, which
contains information about the actual length of the frame and a 32 bit CRC to ensure
data integrity. Any gap between the frame and the trailer is filled with padding. Since
PDUs are multiples of 48 octets, the trailer always ends at a cell boundary and can
therefore be located. The segmentation of frames with AALS is illustrated in figure 8.

3.2.2 FPX Frame Processor

The frame processor is a wrapper module for the FPX to handle AALS frame data. Its
interface is designed to give application modules a more abstract view of the data. The
frame processor replaces the Start-of-Cell signal with three signals (figure 14, namely
Start-of-Frame (SOF), End-of-Frame (EOF) and Pata-Enable (DataEn).

As the name indicates, SOF indicates the transmission of a new frame. Note that
the Header-Error-Contro}l (HEC) is not available with this wrapper. It is assumed that
only valid ATM cells are passed to this wrapper and that valid HECs are generated



from outgoing cells.

The Data-Enable signal indicates valid payload data. It can be seen as an enable
signal for the data processing application. It is completely independent from the cell
structure. Applications can therefore resize frames or append data very easily. Also
generating new frames is now more convenient. Note that the Data-Enable signal is not
asserted when padding is sent, since it is not considered a part of the frame. The End-
of-Frame signal is asserted with the last valid payload word being sent. Applications
thus have enough time to start appending data to a frame, if necessary.

After the EOF signal, two more words are sent, while DataEnable is still hi. These
8 octets represent the AALS trailer, but the interpretation is different. The first word
contains the Jength and the option field. While the option field is simply copied to the
new frame, the length field is not taken literally. The actual length of the frame can be
determined from the three signals SOF, EOF and DataEn. Since the FPX uses 32 bits
data width internally, it is only accurate to 4 octets, though. Thus the lower two bits of
the length field are used to determine the valid octets within one 32 bit word. These two
bits must be set by the application if the frame length changes by a number of octets
not divisible by 4. The high-order bits of this field are changed by the frame processor
according to the actual length of the frame. The second word is used to handle data
integrity, i.e., the CRC-32. The frame processor handles the CRC-32 of AALS frames
for the application. This happens right after cells enter the wrapper and just before they
leave it again. The application sees an all-zero word if the frame is correct, otherwise
the CRC field is replaced with a non-zero value. It is essential that applications copy
and forward the two additional words.

The frame processor maintains a simple state machine to keep track of frame
boundaries and to generate the Start-of-Frame and End-of-Frame. Recall that only
one bit is used to mark the last cell of a frame. At first sight it seems to be simple
to generate Data-Enable — assert the signal during the last 12 words of each cell, i.e.,
48 payload octets. But in that case padding will also be recognized as valid data. In-
stead the frame processor buffers the last cell of a frame and waits for the length field
before it forwards that cell. In fact, only the last two words of every cell but the last one
have to be deferred for the special case, that the last word is padding only. So DataEn
and EOF can be determined appropriately.

On the output side of the processor, data is accumulated in a buffer, until either the
size of one cell has been reached or the total size of the frame has been determined.
The cells are then sent out. Since the ATM header is only given once together with the
SOF signal, it is copied and prepended to all generated cells, while the user bit of the
PTI field is set appropriately to indicate the last cell.

3.23 CRCissues

AALS frames are secured with a CRC-32 sent with the last cell. The CRC protects the
payload data from transmission errors and also detects dropped cells.

Recall that there is no sequence number for cells in AALS. Usually the data in-
tegrity is checked before anything is passed to applications. In case the check gives
a negative result, the frame is being dropped. This approach requires buffering of the
whole frame, before the CRC can be checked. That results in a long delay before data
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can be forwarded to the application. On the other hand outbound cells can be forwarded
immediately, since the (new) CRC is simply appended to the frame.

The FrameProcessor replaces the CRC field with an indication, as to whether the
packet is erroneous. On outbound data the frame processor computes a new CRC for
the (possibly) new payload. Under normal circumstances, outgoing frames will have a
correct CRC. On erroneous frames the indication will flip some bits of the computed
CRC and thus invalidate the frame. The receiving node can still detect errors and
ignore the frame. With our approach we can speed up frame processing and save buffer
resources in normal cases, while transmission errors can still be detected.

3.3 IP Packet Processing

The Internet Protocol is a very popular communication means across several networks.
It uses packets on the lowest levels. Sub-protocols, like GDP or TCP are used to send
datagrams or establish reliable connections.

3.3.1 The FPX IP Processor

The IP processor was developed to support IP based applications. It inherits the sig-
nalling interface from the frame processor and adds a Start-of-Payload (SOP) signal, to
indicate the payload after the IP header, which can be of variable length. This wrapper
serves three primary functions:

L. Checking the IP header integrity, i.e., the correctness of the header checksum.
Corrupt packets are dropped.

2. Decrementing the Time To Live (TTL) field. As of RFC 1812 [9] all IP pro-
cessing entities are required to decrement this field. Once this field reaches zero,
the packet should not be forwarded any more. This is to prevent packets from
locping around in networks due to mis-configured routers.

3. Recompute the length and the header checksum on outgoing IP packets.

An IP header usually has the length of 20 bytes, or 5 words.! The whole header has
to have passed before any decision about its integrity can be made. The IP Proces-
sor computes and then compares the header checksum. On a failure, the JP-packet is
dropped by not propagating any signal to the application. If the Time-To-Live field of
an incoming packet is already zero, the packet is also dropped and an ICMP packet is
sent instead, Otherwise the TTL field is decremented by one. On outgoing IP packets
the length field in the header and the header checksum are set accordingly. Therefore a
whole packet has to be buffered, before it can be sent out.

To save and share resources with other wrappers, the IP wrapper understands an
updating protocol. The IP processor can apply arbitrary changes to the packet payload
for other wrappers. Updating commands are optional and are inserted between the last
payload word (EOF signal asserted hi) and the AALS trailer. An unused bit (15) in the
AALS length field is used to indicate update words or the start of the trailer. The length

IThis applies to the vast majority of IP packets that do not contain any [P optioas.

11
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field is also used to hold an error code, so that packets can be dropped before they are
sent out. Update words contain a 16 bit update field and a 15 bit update offset address.
The 16 bit word at the offset address in the buffer is replaced by the update field. The
format of these field is illustrated in figure 9.

3.3.2 The FPX UDP Processor

The UDP processor is a wrapper to support user datagrams over IP. This wrapper takes
care of the UDP checksum and the length field in the header for outgoing datagrams.
Incoming datagrams are also checked for the checksum, but the result is only available
at the end, when the whole packet has passed through the wrapper. The UDP processor
uses almost the same signals as the IP processor, only replacing the SOP signal with the
Start-of-Datagram (SOD) signal. Applications can simply process datagrams or even
generate new ones without being concerned about correct header values.

To determine the correct checksum for outgoing datagrams, the whole packet should
be buffered. Since the IP processor already buffers a full IP packet, this seems to be a
waste of resources. Therefore the UDP processor informs the IP processor about nec-
essary updares in the packet and leaves the buffering to that wrapper. This way only
resources for one buffer have to be allocated. Recall that the lower level wrappers can
process data on the fly and therefore only need small buffers.

4 Implementation Results

Our framework is designed for the FPX. The system clock on the FPX is 100 MHz
and the FPGA used is a Xilinx Virtex E 1000-7. The following table gives the size (in
lockup tables) and the maximum speed of our components on the FPX hardware.

Wrapper/Module | LUTs | Speed (MHz)
Cell Processor 760 118
Frame Processor 312 116
IP Processor 680 109
UDP Processor 368 114
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5 Conclusions

‘We have presented a framework for IP packet processing applications in hardware. Al-
though our current implementation was directed for use in the Field Programmable Port
Extender, the framework is very general and can easily be adapted to other platforms.
We introduce the concept of U-shaped wrappers, where each handles a particular pro-
tocol level. Unlike the traditional pre-/postprocessor separation, the U shape allows to
put a component logically together, increasing the flexibility and reducing the number
of cross-dependencies. The common interface between layers also lowers the learning
curve.

The framework is useful for application developers, who are designing in the area
of IP networking and ATM. Applications themseives don’t have to take about network
protocol issues. The complete IP processing framework only utilizes 8% of the RAD
FPGA, leaving enough space for complex networking applications.

A Interface Description

The interface of the wrappers is derived from the FPX module interface [4]. The
common part consists of the signals CLK, Reset {, Enable ] and Ready!. The data-
path interface is split into an inner and an outer interface. The outer interface uses
an analog naming convention as for FPX modules, i.e. incoming signals are named
xxx MOD_N (e.g. SOC_MOD_N), while outgoing signals use xxx_ GUT_MOD (e.g.
SOC_.OUT_MOD). The inner interface connects the wrapper to the application or a
higher level wrapper. The naming convention here is xxx_QUT_APPL (e.g. SOC.-
OUT_APPL) for signals to the application, and xxx APPL_IN (e.g. SOC_APPL_IN) for
signals coming back into the wrapper. None of the wrappers connects to neither the
SRAM nor the SDRAM controller. These interfaces can be used by the application.

The interfaces for all wrappers are shown in Figures 10-13. The signals are de-
scribed below, while a timing diagram can be seen in figure 14.

CLK
This is the clock of the FPX (i.e. 100 MHz). All signals are synchronous to this clock.

Reset 1

This is the reset of the FPX. It is a synchronous, active low reset which is asserted low
for one clock cycle.

Enable_l

This signal is used to enable the wrapper. See the RAD module interface docmmenta-
tion [4] for further details.
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Figure 10: Cell Processor Interface
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Figure 11: Frame Processor Interface
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Figure 12: IP Processor Interface
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Figure 13: UDP Processor Interface
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Figure 14: Timing diagram for different signalling protocols

Ready.1

This signal performs the handshake in response to the Enable.l signal. After Enable.l
is deasserted hi and after all buffers are flushed this signal is asserted low. See the RAD
module interface documentation [4] for further details.

D_MODIN, -OUT_APPL, -APPL._IN, -OUT_MOD

This is a 32 bit databus which feeds the module with data. The data format is depending
on the wrapper.

s The Cell Processor and the outer interface of the Frame Processor use a cell based
data format. The first word of a cell is available when the SOC_xxx signal is
asserted hi. A cell is exactly 14 words long (2 words header, 12 words payload).
On each clock cycle one word is transmitted.

» The inner interface of the Frame Processor and all higher level wrappers are cell
independent, i.e. valid data is only transmitted on this bus when the DataBEn_xxx
signal is asserted hi. The first word of the ATM header is available when the
SOF xxx signal is asserted hi (the DataEn._xxx signal is low then). After the
EOF _xxx signal additional data is sent, which is described in the wrapper sec-
tions.

SOCMOD.IN, -OUT_APPL, -APPL_IN, -OUT_MOD

The Start of Cell signal is asserted hi if a new cell is transmitted through the D.xxx
bus. The first word of the cell is available on the data bus on the same clock cycle as
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SOC_xxx is asserted. Otherwise this signal is set to lo. The ATM header is followed
by the ATM HEC and 12 payload words.

SOF_MOD._IN, -OUT_APPL, -APPL_IN, -OUT _MOD

The Start of Frame signal is asserted hi when a new frame is transmitted on the D _xxx
bus. The ATM header of the first cell is available on the bus when this signal is asserted
hi. Fellowing this peak the DataFn_xxx signal indicates valid frame payload.

EOF_MOD.N, -OUT_APPL, -APPL_IN, -OUT_MOD

The End of Frame signal is asserted hi when the last payload word of a frame is sent.
Following this signal usually two more words are sent on the bus: the option-flength-
field and the CRC-field. For correct contents the CRC field is zero. The UDP Processor
sends more update words to the IP Processor as described in section 3.3.

DataEEn MOD_IN, -OUT_APPL, -APPL_IN, -OUT.MOD

The Data Enable signal indicates if data on D_xxx is valid payload of a frame or an IP
packet. While payload is sent this signal is hi, otherwise it is lo. This signal is also hi
for the frame trailer.

SOP.MOD.IN, -OUT_APPL, -APPL_IN, -OUT_MOD

The Start of Payload signal is asserted hi when the first IP payload is transmitted on
D.xxx. If the frame does not contain a valid IP packet this signal is not asserted at all.

SOD_MOD_IN, -OUT.APPL, -APPL_IN, -OUT_MOD

The Start of Datagram signal is asserted hi when the first UDP header word is transmit-
ted on D_xxx. If the frame is not an IP packet or the IP packet is not a UDP datagram
this signal is not asserted.

TCA_MOD.N, -OUT_APPL, -APPL_IN, -OUT_MOD

This signal performs the handshake back to the input for cell transfer. When this signal
is asserted high, the input is free to send cells. Holding this signal low prevents the
input from sending cells.
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