Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-01-08

2001-01-01

Fast Incremental CRC Updates for IP over ATM Networks

Florian Braun and Marcel Waldvogel

In response to the increasing network speeds, many operations in IP routers and similar devices
are being made more efficient. With the advances in other areas of packet processing, the
verification and regeneration of cyclic redundancy check (CRC) codes of the data link layer is
likely to become a bottleneck in the near future. In this paper, we present a mechanism to defer
CRC verification without compromising reliability. This opens the possibility of incremental
updates of the CRC. We introduce a new high-speed technique and present efficient
implementation, speeding up CRC processing by a factor of 15. Although the... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Braun, Florian and Waldvogel, Marcel, "Fast Incremental CRC Updates for IP over ATM Networks" Report
Number: WUCS-01-08 (2001). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/251

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/251?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/251

Fast Incremental CRC Updates for IP over ATM Networks

Florian Braun and Marcel Waldvogel

Complete Abstract:

In response to the increasing network speeds, many operations in IP routers and similar devices are being
made more efficient. With the advances in other areas of packet processing, the verification and
regeneration of cyclic redundancy check (CRC) codes of the data link layer is likely to become a
bottleneck in the near future. In this paper, we present a mechanism to defer CRC verification without
compromising reliability. This opens the possibility of incremental updates of the CRC. We introduce a
new high-speed technique and present efficient implementation, speeding up CRC processing by a factor
of 15. Although the paper and analysis focuses on IP over ATM, the scheme applies to a much wider set
of network protocols.

https://openscholarship.wustl.edu/cse_research/251?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/251?utm_source=openscholarship.wustl.edu%2Fcse_research%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages

Fast Incremental CRC Updates for IP over
ATM Networks

Florian Braun and Marcel Waldvogel

WUCS-01-08

April 2001

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

Fast Incremental CRC Updates
for IP over ATM Networks

Florian Braun

Marcel Waldvogel

Technical Report WU-CS-01-08
Computer Science Department
Washington University in St. Louis
<{florian,mwa} @arl.wustl.edu>

April 30, 2001

Abstract

In response to the increasing network speeds, many op-
erations in IP routers and similar devices are being made
more efficient. With the advances in other areas of packet
processing, the verification and regeneration of cyclic re-
dundancy check (CRC) codes of the data link layer is
likely to become a bottleneck in the near future. In this
paper, we present a mechanism to defer CRC verification
without compromising reliability. This opens the possi-
bility of incremental updates of the CRC. We introduce
a new high-speed technique and present efficient imple-
mentations, speeding up CRC processing by a factor of
15. Although the paper and analysis focuses on IP over
ATM, the scheme applies to a much wider set of network
protocols. !

1 Introduction

The Internet is growing rapidly in terms of number of
users and amount of bandwidth used, requiring size,
speed, and network equipment to concur. Besides the
transrnission and switching speeds, the per-packet op-
erations necessary for Internet Protocol (IP) packet for-
warding are the current Hmiting factors. As transmis-
sion speeds are continually increasing, thanks to advances

LA shorter version of this paper appeared in [BWO1].

in optical technology, switching speeds and, to a greater
extent, IP packet processing overheads have become the
main bottlenecks.

Often, IP packets are encapsulated in Data Link layer
frames protected by a cyclic redundancy check (CRC)
code, as used when IP runs over Ethernet or ATM’s
AALS. Since IP packets need to be modified at every
router, the classical approach has been to check and then
recreate these CRCs at every hop. At speeds achievable
soon, this calculation also tends to become a bottleneck.
This paper addresses improving the speed of this for
warding operation by eliminating most of the duplicate
CRC calcnlations. We use AALS as our example, but the
method can be generalized to upcoming multi-gigabit/s
Ethernets. It applies to both the current version of the In-
ternet Protocol, IPv4, as well as to the upcoming IPv6,

2 1P Processing

In the Internet, each packet passing through a router is
subject to at least the following operations at the network
layer[Bak95]:

1. verifying the remaining packet lifetime (Time-to-
Live in IPv4, Hop Count in IPv6, “TTL?),

2. updating (decrementing) the TTL/Hop Count,

3. updating the IP header checksum (IPv4 only),

4. selecting an appropriate next router or ultimate des-
tination (“forwarding decision™),
5. forwarding the packet to this next hop.

Each of these operations had the potential to become a
bottleneck. Most of these are no longer a threat:

Verifying the remaining TTL and decrementing it are
simple, straightforward operations. Updating the IPv4
header checksumn is necessary, since it covers the TTL
field, which has just been changed. Originaily, IP routers
verified the header checksum and recreated a new header
checksum. As wire speeds increased, the two checksum
operations on 20 .. .64 bytes became too expensive: an
incremental update mechanism became necessary. At the
fact that only the third Internet RFC [Rij%4] finally got
the procedure right in all possible cases, it can be seen
that this operation is non-trivial.

For a long time, the speed at which forwarding de-
cisions could be made used to be a major limitation of
router speeds. Recently, two papers [DBECP97, WVTP97]
initiated a flurry of activity, which resulted in a signif-
icant improvement of the speed of IP forwarding deci-
sions. Switching fabrics used for forwarding the packet
to the output port have also been able to increase perfor-
mance at adequate rates. The emergence of purely optical
swilching technologies promises a further quantum leap
in this area. Several methods try to avoid per-packet rout-
ing lockups in parts of the network, such as label switch-
ing techniques [Met98, RVCO01]. Many routers are still re-
quired to perform full packet processing, including CRC
updates, at very high speeds.

In ATM networks, IP packets are encapsulated in
AALS frames, since the basic transmission unit only has
a payload size of 48 octets. Atthe end of a frame, a cyclic
redundancy check (CRC) code is used to guarantee the in-
tegrity of the data which is spread over several ATM cells.
If you change the header of an IP packet, you invalidate
the CRC and have to update this as well. This document
deals with updating the CRC of AALS frames in a highly
efficient way. Its primary intention is to use this method
in router hardware such as the Field-programmable Port
eXtender (FPX) [LTT00}, which is used to turn Washing-
ton University Gigabit Switch (WUGS) [CFFT96] into an
Internet and Active Networks router.

3 CRC Operation

A detailed discussion of cyclic codes and reliability in er-
ror cases is given in [PW72]. An easier to understand
introduction can be found in [Tan96, Wil96]. For sake of
completeness, a short overview will be given here. To put
it simple, a CRC is a glorified version of the old “nines
check,” where a check digit is added, representing the
value of the number modulo 9.

In CRCs, a message is considered to be a polynomial
M () in an unknown variable z, with the sth bit of the
message having a factor of 2. The least significant bit
of the message is numbered 0, and has thus an associated
factor of z¥ == 1. All other polynomials used are formed
similarly from their binary counterparts. G(z) is the pre-
defined generator polynomial (divisor) of degree . The
polynomial division takes place in GF(2), the Galois field
of size two, indicating that all operations are moduto 2.

The check value C{z) is calculated as
C(z) = 2" M(z) mod G(z).2

Subtracting this remainder from the dividend (2" M (z))
yields a polynomial T'(z) = ="M{z) — C(=z), which
is evenly divisible by G(z). T'(z) is then transmitted to
the receiver, which will divide the (potentially corrupted)
T'(z) by G'(z). A non-zero remainder indicates corrup-
tion of the message.

Implementation is not as hard as it sounds: The polyno-
mial division in GF(2Z) can be implemented using simple
operations, with addition and subtraction replaced both by
exclusive-or, and multiplication or division by powers of
two using left or right shifts, respectively.

Let us consider a short example. Given the divider
polynomial z* + 1, which is obviously of degree 3, and
given a 4-hit data stream 1101. First we construct the div-
idend by adding 3 zeros to the data stream, resulting in
1101000. The division in the following example is done
almost as we know it from school, with subtraction re-
placed by XOR.

Multiplying by =™ is for simplification of the verification process
only.

1101000/1001=1100
1001
1000
1001
100

The remainder we get is 100. The resulting data stream,
consisting of the concatenation of the original message
and the CRC, will thus be 1101100.

This technique is very robust against most known er-
ror sources. Let E(x) be the error during transmission,
i.e., each factor in E(z) indicates a flipped bit in the data
stream. The remainder will be [T'(z) + E(z}] mod G(z)
and the error will only be undetected if E{x) is divisible
by G{z). If you choose a suitable polynomial, all bit er-
rors with an odd number of flipped bits, two bit errors,
burst errors with less than or equal to s bits and most with
greater than s bits are detected, where s is the number
of factors in G{z). In many applications (including the
AALS frames), the CRC-32 is used which uses the divider
polynomial

232 4 g2 23 2 a6 12
4ol Tttt L

G{z) =

The basic CRC algorithm still has a weakness: lead-
ing zeros of a message are always ignored. The CRC
becomes non-zero the first time, when a *1°-bit is pro-
cessed in the message. Thus additional or lost zeros at the
beginning of a message cannot be detecied by the basic
algorithm. Therefore the common CRC algorithms start
with an initial, non-zero remainder value Cy. Additional
or missing zeros do now affect the result. The CRC-32
uses OxFEFFFFFF as an initial remainder. How does this
afiect our basic formula? Starting with a non-zero value is
equivalent to prepending a carefully crafted header to the
message, where this header gives an (intermediate) result
equal to the initial value. Let 2(z) be the header, which
has the remainder Cy, i.e., z7h(z) mod G(z) = Co. To
prepend this header to the message, it has to be shifted by
the message length, ie., H{M(z)} = z™h(z), whereas
m indicates the message length, or the degree of M(z),
respectively. The new improved CRC formula is now

Cimp(=) = =" [H(M (2}) + M(z)] mod G(z).

/* implicit first 1 {x"32) */
#define POLYNOMIAL 0x04C11DB7L

/* lockup table */
unsigned long crc_tab[256];

/* generate lookup table */
void gen_cre_tab{void)
{

unsigned long i, j, cre_accum;

for {i = 0; 1 < 256; i++) {
crc_accum = i << 24;
for (j =0; J < B: j++} (
if {crc_acoum & 0xBH000CGCOL)
crc accum = (¢re_accum << 1)
“ POLYNOMIAL;
else
Cr¢_acoum = Crc_accum << 1;
}
crc_tab{i] =

H

crec_accum;

}

Listing 1: Computing the update table

4 Faster CRC Algorithms

The algerithm we used above is not very fast. In each
iteration only one bit of the data stream is handled. There
are several approaches for a faster caleulation of the CRC,

4.1 Table Lookup

As you can see above the divisor is subtracted from the
data stream, if the first bit of the stream is *1’. Since we
use exclusive-or for the arithmetic, there are no carries
and we can easily determine the next result at this point.
This result is a function of the two topmost bits right now,
but it can be extended to have an arbitrary number of in-
put bits. A very suitable number is 8 [Per83], which gives
us a table with 256 32-bit entries (for the commonly used
CRC-32). The table has a reasonable size and 8-bit values
can be handled very comfortable with modern computers.
This approach is widely used in software CRC implemen-
tations. Listing 1 [Hea] computes the update table in C.

To calculate the CRC the first byte of the (remaining)
message and of the current remainder are xor’ed and used
as the index to the table. The table entry is exclusive-ored

/* compute CRC on data block */
unsigned long
update_cre{unsigned long crc_accum,
const char *data, int size)
{
unsigned long i, 3i;

for (j = 0; j < size; j++} {
i = {{crc_accum>»24) ~ *data++) & OxFF;
crc_accum = {crc_accum<<8} " crc_tabl[il;

}

return crc_accum;

}

Listing 2: Updating a CRC with a message

with the current remainder shifted by 8 bits. This gives the
new remainder or the CRC at the end, respectively. The
message is also shifted by one byte. Listing 2 implements
an update to the CRC with a message.

4.2 Hardwired Update Function

The algorithm above is well suited for software imple-
mentations. If the implementation is to be done in hard-
ware, another approach can be used. Recall that the pre-
computed table is nothing more than a function of 8 in-
put values returning a 32-bit value. As stated above, any
number of input values can be used. Instead of writing the
results 1o a lockup table, the function can also be repre-
sented in a hardware structure of XOR gates [G)93]. The
number of gates along the critical path determines the re-
sulting operating speed. On the Xilinx VirtexE series, this
accepts 32-bit words at a rate of up to 100 MHz, when
several optimization tricks are used.

4.3 Better Polynomials

The main factor affecting the speed of hardware imple-
mentations is the number of inputs to the gates and the
length of the critical path. The CRC polynomials are not
well suited under these criteria. [Gla97] describes an ap-
proach where the division is done by a simpler polyno-
mial than the CRC polynomial, which we will refer to as
Gsimp(:c). “Simpler” means that it contains fewer terms.
Obviously the result will be different, so some additional
constraints must be met, If Gsimp (z) is & P{xz)-fold mul-

tiple of the original polynomial G{z}, then a final division

by G(x) will correct the result, as T'(z) mod G{z) =
(T'(z) mod (P(z) x G(z))) mod G{z). [Gla97] pro-
poses the polynomial Gy (z) = e R S
254 4254 4 246 £ 523 « 1, The powers of this term are at
least 8 bits apart from each other, so each cycle, 8 bits can
be updated, even though the update logic only needs 2-
input XOR gates. The final division is more complicated
and cannot be computed in the same time as the update
cycle. But it only needs to be computed once per total
message, amortizing its cost.

5 Incremental CRC Update

The methods described in section 4 all work well at data
rates up to a few gigabits per second. Higher data rates
seem hard to achieve in the near future. We therefore pro-
pose to apply a mechanism analog to the incremental IP
header checksum update algorithm described in [Rij94)
or for LAN-bridges as described in [Irv89]. Not only is
an incremental update faster than calculating the check-
sum from scratch, it is no longer necessary to check the
sum at each and every routing node. The low error proba-
bilities of modern high-speed communication lines com-
bined with the policy of only modifying and not rewriting
an unchecked CRC makes sure that errors introduced any-
where in the path will be detected by the receiver.

5.1 Mathematics

As incremental updates of the IP header checksum are
widely accepted, this raises the question of applying in-
cremental updates to the CRC. Recall the basic CRC for-
mula, C(z) = z"M{z) mod G(z). Assume that we
make a change to the message, and the difference is I(z).
The new message M™*(x) will be M*(z) = M (z)+ I{z)
(recall that + is exclusive-or in GF(2)). The new check-
sum will be

(=)

It

=" [M (z) + I(z)}] mod G(z)
B ic"IVI(:c) mod G(z) +z"I{z} mod G(ml
O(a)

c 1‘('.'1:)

Obviously it is possible to just calculate a CRC of the
changes and “add” this to the CRC supplied by the mes-
sage frame.

Recall that the real CRC-32 uses a non-zero inifial
value for the CRC, which we model as H(M (z)):

Cirop (@) &"[H(M () + M(z) + I(z)] mod G(z)
ichH(]VI(:E)) + M{z)] mod G(a:l
Cimp(®
+ 2" I{z) mod G{z)
Crla)

As you can see the incremental CRC is not affected by
either an additional header or an initial update value, so
we can ignore the initial value for the incremental update.

So far there is only the advantage that we don’t have
to check the old CRC, but still the incremental update is
as expensive to compute as any other CRC. Fortunately,
an IP router changes only a few bytes of the packet. For
decrementing the TTL field, it is only necessary to change
two fields: the TTL field itself (8 bits) and the header
checksum (16 bit). The message update I(x} thus con-
tains mostly zeros. Only at the fixed positions of these
changed fields, the update is nonzero.

While the offset of the header fields from the beginning
of the message is well-known and constant, the effect on
the CRC depends on the number of message bits follow-
ing the modified fields. Since ATM cells come in one-
size-fits-all (48 bytes), and the position of the fields in the
first cell are known, the offset from the end is also known
(modulo 48).

5.2 Implementation

Remember that updating the IP header will result in mod-
ifications to 3 bytes. We can treat these bytes as three
independent updates and combine the resulting CRC up-
dated at the end. So we create three lookup tables for
each of the updated bytes. The result will be the CRC as
if it were at the end of the first ATM cell. So far, we can
irnmediately update all IP packets which are smaller than
or equal to 40 bytes (recall that 8 bytes in the last cell
are used for AALS control bytes and CRC). The result-
ing CRC update is again a 4 byte update of the message.
So we precompute another 4 lookup tables for these bytes
which give us the CRC update for the next ATM cell, im-
itating the effect of appending 48 bytes of zeroes to the
message. Note that an IP router makes no changes to any

/* generate an incremental
lookup table */
veid
gen_inc_tab {unsigned long* tab,
int offs)
{
unsigned i, j, update;

for (i=0; i<256; i++) §
update = i << 24;
for (j=0; j<offs; j++) {
update = (update << B)
~ crc_tab [(update»>24)&0XFF);
}
tab(i] = update;
}
}

/* update tables */
unsigned long crc_ttl_tab([256], ...:

void gen tabs{}
{
gen_cre_tab();

/* ttl update table */
gen_inc_tab (crc_tti_tab, 36);
/* ... other tables */

Listing 3: Computing incremental update tables

cell other than the first and that the update message of the
second and all further cells is therefore a constant zero.?
With this approach we can update the CRC of an AALS
frame with 3 or 4 lookups and one XOR operation with 3
or 4 inputs for each ATM cell.

Listing 3 generates a table to update the CRC if the TTL
field of an IPv4 header is changed. Note that the field is
36 bytes ahead of the end of the cell. Tables for other
fields can be computed in a similar way.

To get the update value for the first cell, one lookup for
each changed field is required, in our example three. For
the succeeding cells, four lookups are necessary to update
the CRC field.

Listing 4 demonstrates the use of the update tables.
Note that only one function call is necessary per cell, Also
note that the parameters to first_cell() contain the
difference between the old and the new value, i.e., old

3Generalization of cur approach to changes in other cells is straight-
forward.

unsigned long
first_cell {int ttldiff,
int checksumdiff)
{
return cro_ttl_tab(ttldiff)
" crc_hecshi_tab[checksumdiff»>>8]
® cre_hcslo, tab[checksumdi FE&0xFF] ;
}

unsigned long

update_cell (unsigned long update)

{

return update

" cre_ince_tah0[update &0xFF]
" ere_inc tabl[(updates> 8)&LOxFF]
" ere_inc_tab? [(update>»16) &0xFF]
" ere_inc_tab3 [(update>>24) &0XFF];

Listing 4. Updating a CRC cell-by-cell

XOR new.

The resulting 7 tables at 256 32-bit words each raquire
only 7 KB, easy to store in first-level cache of a CPU or
static RAM.

5.3 Updating in Hardware

If the CRC update is to be done in hardware, the lookups
can be done in parallel, because the tables are afl inde-
pendent of each other. Listing 5 shows the relevant part
of an update entity. A schematic with a register to buffer
the value can be seen in Fig. 1. The synthesized code
runs with 110 MHz on a Xilinx VirtexE, while utilizing
only 123 CLB slices of logic, occupying about 2% of
a Virtex 1000E. The resulting 7 tables use an additional
T x 256 x 32bits = 56kbits of on-chip memory, about
15% of the Virtex 1000E’s block memory. Although the
operating frequency is comparable to that achieved by a
full CRC (see section 4.2), it processes an entire ATM cell
in one clock cycle, not just 4 bytes, resulting in a speedup
of 13. An ATM cell can be handled in less than 10 ns,
which corresponds to a line speed of 43 Gbps. Unfortu-
nately, other routing jobs as IP lookup can’t operate at this
speed (on the same hardware), but the CRC update is now
no longer the botileneck in the system.

Is it possible to avoid using table lookup ROM? As
the lookup is nothing more than a function with 8 in-
put bits and 32 output bits, it must be possible to get

entity inc_update is

port ¢
~- ttl field
ttl_in : in std_logic_vector {7downteol);
-- checksum
hes_in : in std_logic_vector {15downted};
-- first cell
first_cell : in std_logic;
-- old upgate
update_in : in std_logic_vector {3ldowntol);

-- new update
update_out : out std_logic wvector (3ldowntol)

1

end inc_update;

architecture tab of inc_update is

-- gignals go here

signal ttl_update : std_logic_wvector (3ldowntel);

begin -- tab

-~ table lookups
ttl_update
<=ttl_tab(conv_integer{ttl_in}};
heslo_update
<=hcslo, tab{conv_integer (hes_in(7downtol)})} ;
heshi_update
<=hcshi_tablconv_integer{hecs_in{l5downto8})};
incQ_update
<=incl_tab(conv_integer (update_in(7downtol)));
inci_update
<=incl tab(conv_integer (update_in(15downto8)));
inc2_update
<=incZ_tab{conv_integer{update_in(23downtolé)});
inc3 _update
<=inc3_tab(conv_integer{update_in(3ldownto24)));

-- first cell update
first_update
<= ttl_update xor hec-

slo_update xor heshi_update;

-~ succeeding cells
succ_update
<= inef_update xor incl_update
xor inc2_update xor inc3_update;

~ select
with first_cell select
update_out <=
first_update when ‘17,
succ_update when ‘07,
{others=>'~") when others;

end tab;

Listing 5: Incremental Update in Hardware

Entily inc_vpdata

R
ojaua

el i

hoo

upd

Figure I: Schematic view of an incremental update entity

the same result from a logic function as from a table. A
program transforming the lookup tables into logic func-
tions, i.e., generating VHDL code, is straightforward. The
schematic above (Fig. 1) still applies, since we only re-
place the ROM lockup by these logic functions. A hard-
wired CRC update like this uses 173 CLB slices and per-
forms at 120 MHz. It uses 40% more CLB space, but
eliminates the need for lookup memory. In addition, it
is slightly faster, resulting in a theoretical line speed of
47 Gbps.

Now instead of computing the table for whole words,
we can also do this for a single bit. Each change of a bit
will result in a unique change of the CRC. Again the val-
ues from all bit positions have (o be exclusive-or-ed. This
is shown in Table 1. Each column represents the effect of
one single bit position on the CRC. The ones in each row
indicate the bit positions, which have to be wired together
to compute a single update bit of the CRC. In the second
column you can see the number of XOR gates necessary
for this structure. The speed stays almost the same, but
the circuit is reduced to 118 CLB slices now. The rea-
son for this improvement is that the Xilinx configurable
logic blocks use lookup tables instead of wiring gates.
Therefore, XOR functions are as cheap as other gates. For
this application, XOR is more suitable than AND and OR
gates. Only the number of logic levels limits the speed of
this circuit.

Updated Bits Gates | CRC

1] 31
..1..1.1.1.1..21.1,.11,.111...1. 14 31
.31.11111111.1.113.3.1.1..1..3%. 20
11111.3.21.111...1311..11.2.1.131. 20
1111.1.,1.111,..111..11.1.1.111.1 20
11..113111.21....11.1.11..3.11... 17
1.111.1...3%,.1.331...... 1.1..11 15
.111.1...11..1.112...... 1.1..11 14
11..12.11..12...13..13,11.1.1113 18
1.13131..12...1,11.1.1111.111%3.. 26
L11331..23,.,.1.31.2.1112.123211. .. 19
11.111..31.11...... 1..1....1..1, 13
1..111..111...13.1%.3...18...111 17
L..111..2..3.2.13%..373 .1, 18,41, 16
..111..1..1.2.32..131.3.11.3:. .13 17
L131..1..3.1.11,.811.1.21. 13- .3, 17
11%..1,,1.2.12.,.111.21.13.21..%.. i7
110.3131...... i1.1.1..11.1...1.1.1. 14
11.11...... 1.1.1..11.21...31.1.1.. 13
1.11...... i.1.1..13%.1...1.1.1... 12
11...... l1.i.1..11.1...1.1.1...1 12
il...... 1.1.1..11.1...3.1.1...11 13
oo, 1.1.1..31.1...4.2.1...111 13
.-1..131311111.1.211...11..21.11.. 18
Ji1.1.1.3,321.,.20... .00 111.1, 14
11.1.1.1.112...13........ i11.1.. 14
1.1.1.1.111...2%........ 111.1... 13
.112....1..1.1.1.3,.,31.1..31..11 15
11%....1..1.2.2.1,.31.1..13..111 16
11....1..3.1,1,1..11.1..11..31). 15
i....1..2.2.1.1..11.1..12..3382. . 14
see.1..1.1.1.1..11.2, .22, 132, .. 13
ve.1l..2.1.2.1..12.2.,11, .11, . .2 14 0

Table 1: XOR wiring table for updating CRC field

6 Conclusions

This paper describes a new method of caleulating CRCs
after medifying ATM AALS frames using incremental up-
dates. The paper also discusses hardware implermentation
technigues, resulting in a speedup of almost 15, compared
to efficient implementations of other current approaches.
As a result, network messages can be updated at very high
speeds, especially if only a few fields of the data have to
be changed. This holds true for decrementing the TTL-
field in IP headers and updating the IPv4 header check-
sum. CRC calculations are thus no longer at risk to be-
come the next bottleneck for IP routers.

References

{Bak95]

[BWO01]

[CFFT96]

[DBCPY7]

[GJ93]

[Gla97]

[Hea]

[Irv8&9]

(LTTO00]

Fred Baker, editor. Requirements for IP ver-
sion 4 routers. Internet RFC 1812, June 1995,

Florian Braun and Marcel Waldvogel. Fast
incremental CRC updates for IP over ATM
networks. In Proceeding of 2001 IEEE Work-
shop on High Performance Switching and
Routing, May 2001.

Tom Chaney, J. Andrew Fingerhut, Margaret
Flucke, and Jonathan S. Turner. Design of
a gigabit ATM switch. Technical Report
WU-CS-96-07, Washington University in St.
Louis, 1996,

Mikael Degermark, Andrej Brodnik, Svante
Carlsson, and Stephen Pink. Small forward-
ing tables for fast routing lookups. In Pro-
ceedings of ACM SIGCOMM '97, pages 3—
14, September 1997.

René J. Glaise and X. Jacquart. Fast CRC
calculation. In Proceedings of the IEEE In-
ternational Conference on Compulter Design
(ICCD), pages 6G02-605, Boston, MA, USA,
1993,

René J. Glaise. A two-step computation of
cyclic redundancy code CRC-32 for ATM
networks. IBM Journal of Research and De-
velopment, 41, November 1997,

Charles Michael Heard. Charles Michael
Heard’s CRC-32 code. http://cell-
relay.indiana.edu/cell-relay/publications/
software/CRC/32bitCRC.c.

David R. Irvin. Preserving the integrity
of cyclic-redundancy checks when protected
text is intentionally altered. IBM Journal of
Research and Development, 33(6):618-626,
November 1989,

John W. Lockwood, Jonathan S. Turner, and
David E. Taylor. Field programmable port
extender (FPX) for distributed routing and
queuing. In Proceedings of FPGA 2000,

[Met98]

[Per83]

[PW72]

[Rij94]

[RVCO1]

fTan96)

[Wil96]

[WVTPY97]

pages 137144, Monterey, CA, USA, Febru-
ary 2000.

Christopher Metz. Ingredients for better rout-
ing? Read the label. IEEE Infernet Compui-
ing, 2(5):10-15, September-October 1998.

Aram Perez. Byte-wise CRC calculations.
IEEE Micro, 3(3):40-50, June 1983,

W. Wesley Peterson and E. J. Weldon, Jr
Error- correcting codes. MIT Press, 2nd edi-
tion, 1972,

Anil Rijsinghani, editor. Computation of the
Internet checksum via incremental update.
Internet RFC 1624, May 1994,

Eric C. Rosen, Arun Viswanathan, and Ross
Callon. Multiprotocol label switching archi-
tecture. Internet RFC 3031, January 2001.

Andrew S. Tanenbaum. Computer Networks.
Prentice Hall, 3rd edition, 1996.

Ross N. Williams. A painless guide to
CRC error detection algorithms. ftp:/
ftp.rocksoft.com/papers/cre v3.txt, 1996.

Marcel Waldvogel, George Varghese, Jon
Tumer, and Bernhard Plattner. Scalable high
speed IP routing table lookups. In Proceed-
ings of ACM SIGCOMM '97, pages 25-36,
September 1997.

	Fast Incremental CRC Updates for IP over ATM Networks
	Recommended Citation
	Fast Incremental CRC Updates for IP over ATM Networks

	tmp.1439916845.pdf.MWfpT

