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ABSTRACT OF THE DISSERTATION  

 

The Effect of Diffusive Transport on Mineral Carbonation in Geologic Carbon Sequestration 

by 

Wei Xiong 

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 

Washington University in St. Louis, 2017 

Professor Daniel Giammar, Chair 

 

Geologic carbon sequestration (GCS) is an effective method to mitigate environmental 

problems due to excessive anthropogenic CO2 emissions. It involves injecting supercritical CO2 

into deep geologic formations in which CO2 will ultimately be converted to solid carbonate 

minerals. Basalt is a promising host rock that is rich in the divalent cations Ca, Mg and Fe that 

are important for mineral trapping of CO2. Fractures and pores in basalt reservoirs provide 

substantial surface area for geochemical reactions during carbon sequestration. The transport in 

fractures and pores is controlled by diffusion. The coupling of diffusive transport and 

geochemical reactions leads to carbonate mineral formation in these fractures. This research 

studied the effect of diffusive transport on mineral carbonation in basalt and olivine powder 

packed bed systems and in systems with fractured basalts at conditions relevant to GCS. 

Carbonate minerals can form rapidly in basalt within weeks of reaction. For olivine, carbonate 

minerals precipitated within one day. Carbonate mineral formation is unevenly distributed along 

diffusion-limited zones as a result of opposing chemical gradients driven by concentration 

differences between inner part of the zones and the outside bulk solution. Certain regions in the 
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fracture have maximum amount of carbonate mineral. Carbonate mineral spatial distribution is 

influenced by a series of factors including mineral composition, mineral grain size, basalt type, 

temperature and reaction time. Different carbonation products occur in different experiments. 

Hydromagnesite formed at early reaction times in forsteritic olivine powder packed bed 

experiments, and magnesite became the only carbonate mineral type after 8 days of reaction. 

Mg- and Ca-bearing siderite was observed in fractured flood basalt and serpentinized basalt 

within 6 weeks of reaction. Calcium carbonate minerals that were predominantly aragonite were 

found in fractured and porous Grand Ronde basalt. The formation of carbonate minerals did not 

block the transport pathway and end the overall reaction. Though in different extent, carbonation 

happened in the entire fracture within the longest experimental time in this research. 
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Chapter 1. Introduction 

1.1. Background 

1.1.1 Overview of geological carbon sequestration 

Global warming is a serious environmental issue due to excessive emissions of 

greenhouse gases to the atmosphere. CO2 is the greenhouse gas that makes the largest 

contribution as a result of human activity.
1
 To reduce CO2 emissions and mitigate environmental 

problems, carbon capture and storage was brought out as one of the feasible and efficient 

technological options.
2
 The basic idea of carbon capture and storage is to capture CO2 arising 

from the combustion of fossil fuels, transport the captured and separated CO2 to a storage site 

where it will be stored away from atmosphere for a very long time.
3
 Geologic carbon 

sequestration (GCS) involves injecting CO2 into deep geological formations for carbon storage. 

The injected CO2 must be compressed to a dense fluid state known as supercritical.
3
 The critical 

temperature and pressure of CO2 are 31˚C and 74 bar.  

Geologic carbon sequestration can be undertaken in a variety of reservoirs such as 

depleted oil and gas reservoirs and deep saline water-saturated reservoir rocks. Most of the 

completed and ongoing geologic carbon sequestration projects inject CO2 into sandstones 

because of their large storage capacity for site selection.
4, 5

 StatoilHydro has been injecting 1 

million metric tons of CO2 per year into a sandstone reservoir that lies 1000 m below the sea 

surface in the North Sea since 1996.
6
 Commercial injections into saline sedimentary formations 

at 1 Mt/year or more have been conducted at Utsira and Snøhvhit, Norway.
7
 Since 2014, the 



 

2 

 

world’s first commercial scale post-combustion coal fired carbon capture and storage project was 

started at the SaskPower Boundary Dam Power Station in Estevan, Saskatchewan, Canada.
8
  

1.1.2 CO2 storage mechanisms 

The effectiveness of geological storage depends on multiple trapping mechanisms.
9
 

When supercritical CO2 is injected into deep geologic formations, it displaces underground 

saline water and migrates buoyantly upwards since it is less dense than water.
3
 In this process, 

which is structural or stratigraphic trapping, the upward migration of CO2 is restrained by low 

permeability caprocks.
3
 When CO2 moves through porous rocks and displaces brine, some CO2 

can be trapped in the pore spaces by capillary forces, which is residual trapping.
10, 11

 The two 

trapping mechanisms are physical trapping. Geochemical trapping occurs when CO2 dissolves in 

brine (solubility trapping) and reacts with dissolved cations to form solid carbonate minerals 

(mineral trapping). Geochemical trapping eliminates the buoyant drive for CO2 to move upwards 

because CO2 no longer exists as a separate phase.
3
  

Dissolution and precipitation are two important steps during geochemical trapping. 

Dissolved CO2 acidifies water through the following reaction (Eq. 1.1)
12

: 

 CO2(aq) + H2O ⇌ H2CO3 ⇌ HCO3
–
 + H

+
 ⇌ CO3

2–
 + H

+ 
 Eq. 1.1 

The dissolution of CO2 decreases the pH of the solution and accelerates the dissolution of 

minerals in the host rocks. Further water-mineral reactions provide divalent cations in solution. 

For example, dissolution of calcium-bearing plagioclase such as anorthite can contribute Ca
2+

 

(Eq. 1.2)
12

 and olivine can provide Fe
2+

 and Mg
2+

 (Eq. 1.3): 

 CaAl2Si2O8 + 2H
+
 + H2O = Ca

2+
 + Al2Si2O5(OH)4  Eq. 1.2 

 (Fe,Mg)2SiO4 + 4H
+
 = 2(Fe,Mg)

2+
 + SiO2 + H2O Eq. 1.3 
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The dissociated bicarbonate and carbonate ions could react with divalent cations in 

solution, precipitating as carbonate minerals (Eq. 1.4, Eq. 1.5)
12

: 

 (Ca,Mg,Fe)
2+

 + HCO3
–
 = (Ca,Mg,Fe)CO3 + H

+
  Eq. 1.4 

 (Ca,Mg,Fe)
2+

 + CO3
2–

 = (Ca,Mg,Fe)CO3  Eq. 1.5 

Mineral trapping is considered the most permanent form of geologic carbon storage.
13

 

Mineral carbonation reactions are thermodynamically favored but proceed slowly.
14

 Most 

minerals in sandstone reservoirs are not reactive for carbonation reactions so it may take 

hundreds to thousands of years for CO2 mineral trapping to happen.
3
 Formations containing 

richer Ca, Mg and Fe can potentially result in mineral trapping over much shorter time scales.  

 

1.1.3 Basalt as a host rock for CO2 storage 

Basalt is a common rock type on Earth, forming the top igneous layer in oceanic crust 

and covering ~10% of continental surface area, such as the Siberian Traps and the Columbia 

River Basalt Group.
12, 15, 16

 Basalt is composed of basic minerals with the highest potential for 

CO2 mineralization, such as olivine, pyroxene, serpentine, plagioclase and basaltic glass.
14

 

Unlike sandstone reservoirs which have porosity and permeability for physical trapping but 

limited capacities for mineral trapping, basalt has become a target host rock for geologic carbon 

sequestration due to its great capacity for mineral carbonation.
14, 17

  

Basalt is rich in Ca, Mg and Fe which present in carbon mineralization source minerals, 

such as olivine, pyroxene and plagioclase feldspar 
14

. Olivine is the most reactive among 

common basalt-forming minerals and can be easily weathered to serpentine. The minerals react 

with dissolved CO2 and may form different types of carbonate minerals. Such reactions may 

generally be formulated as 
18

 : 



 

4 

 

  Eq. 4.1 

  Eq. 4.2 

  Eq. 4.3 

When CO2 is injected into basalt reservoirs, it dissolves in underground brine and 

decreases the pH of the solution, accelerating mineral dissolution. The solution needs to become 

supersaturated with respect to carbonate minerals in order for those minerals to precipitate. The 

saturation index is defined as the logarithm of ion activity products over mineral solubility 

products, showing in Eq. 1.6 and Eq. 1.7, taking magnesite (MgCO3) as an example. The 

saturation index needs to be at least larger than 0 for the solution to become supersaturated and 

for precipitates to form.  

MgCO3 ⇌ Mg
2+ + CO3

2–
, Ksp, magnesite = {Mg

2+
}eq{CO3

2–
}eq Eq. 1.6 

SI = log  
IAP

Ksp
= log 

{Mg2+}{CO3
2−}

Ksp,magnesite
  Eq. 1.7 

Fractures and pores in basalt provide substantial surface area for carbonation reactions. In 

fractures and pores, the transport of fluids is controlled by mass diffusion, allowing cations to 

accumulate and reach supersaturation status in localized zones. CO2 mineral trapping in fractured 

basalt is controlled by the coupling of transport processes and geochemical reactions (Figure 1.3). 

The concentration difference between the inside of the fracture and the outside bulk solution 

leads to chemical gradients along the fracture, which can result in spatial distribution of 

carbonate mineral formation in fractured basalt. Certain locations may be most favorable for 

 2Mg2SiO4 
+ 

Mg2Si2O6 
+ 4H2O = 

2Mg3Si2O5(OH)4 

Mg-olivine Mg-pyroxene serpentine 

 Mg2SiO4 
+ 2CO2 = 

2MgCO3 
+ SiO2 

Mg-olivine magnesite 

 Mg2SiO4 
+ 

CaMgSi2O6 
+ 2CO2 + 2H2O = 

Mg-olivine CaMg-pyroxene 

Mg3Si2O5(OH)4 
+ 

MgCO3 
+ 

CaCO3 

serpentine magnesite calcite 
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precipitation and block the fracture for further reactions in deeper unreacted zones. Carbonate 

minerals may form on the surface of the fracture without blocking transport pathways. Stress 

induced by rapid precipitation may lead to fracturing and subsequent increase in reactive surface 

area.
12

  

 

Figure 1.1 Carbon mineral sequestration in fractured basalt 

 

1.1.4 Research on carbon sequestration in basalt 

Pilot injections of CO2 into basalt formations have been undertaken. The CarbFix project 

in Iceland injected 175 tons of pure CO2 in Phase I and 73 tons of CO2-H2S mixture in Phase II 

at 400~800 m depth basaltic lavas
19

. The injection site is near the Hellisheidi geothermal power 

plant at east of Reykjavik
19

. CO2 was released as bubbles at 350-m depth into dwon-flowing 

water within the injection well so that CO2 could dissolve in water before entering the basalt 
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reservoir
20

. Only 5 % of the injected mass is CO2.
20

 The formation water temperature and pH in 

the injection interval range from 20˚C to 33˚C and from 8.4 to 9.4, and it is oxygen-depleted. 
21

 It 

was reported that 95 % of the injected CO2 into basalt was mineralized to calcite within 2 

years.
19

 In the BigSky project in Wallula, Washington State, United States, CO2 is injected as a 

separate buoyant phase into a porous basaltic layer at more than 800 m depth. Up to 1000 metric 

tons of CO2 will be injected into the reservoir formation of which the pre-injection temperature 

and pressure are 36˚C and 77 bar. CO2 was stored in tanks and was preheated to 44˚C before 

injection. Carbon mineralization to ankerite nodules was observed 2 years after injection.
22

 The 

two ongoing pilot-scale basalt injection projects both confirmed rapid carbon mineralization in 

basalt reservoirs.
23

  

In the laboratory, basalt has been studied in different systems in a variety of conditions 

relevant to geologic carbon sequestration. Previous study discussed the dissolution rate and 

mechanisms of homogeneous basaltic glass powders from Iceland as a function of pH (1~11) and 

temperature (6~300˚C).
24

 Experiments with the same basaltic glass in CO2-rich water at 40˚C for 

up to 260 days suggested the dissolution was incongruent with the overall water composition and 

secondary mineralogy depended on reaction progress and pH, which is determined by the 

dissociation of CO2 and the dissolved ions from basaltic.
25

 Different carbonation products were 

reported in different studies. Fe-bearing magnesite formed on the surface of mid-ocean ridge 

basalt (MORB) powder during the reaction with CO2-rich water at 150˚C and 280 bar CO2 for 2-

45 days. Other types of Ca-Mg-Fe carbonate solid solutions were also observed in experimental 

study with basalt.
26

   

 



 

7 

 

1.1.5 Knowledge gaps regarding GCS in basalt 

Most of the laboratory studies on carbon sequestration in basalt investigated basalt 

powder or grains in well-mixed systems. In basalt reservoirs, the majority of exposed reactive 

surfaces are located in pores and along fractures, in which the transport is controlled by mass 

diffusion. The concentration difference between the diffusion-limited zones and advective or 

turbulent bulk solution drives geochemical gradients that determine mineral dissolution and 

carbonate formation. The formation of secondary precipitates may affect the transport pathways, 

thus influencing further reaction. Our limited understanding of the mechanisms and extent of 

carbonate mineral formation in fractured basalt poses challenges to accurately estimating the 

storage capacity of basalt reservoirs and assessing their long-term security.   

 

1.2. Research Objectives 

The overall objective of this research is to understand the coupling of diffusive transport 

and dissolution-precipitation reactions in porous and fractured minerals and rocks at conditions 

relevant to geologic carbon sequestration. Two specific objectives are listed below. 

Objective 1: Determine the timing and location of carbonate precipitation in packed beds 

of materials with reactive minerals that can promote mineral trapping of CO2 at conditions 

relevant to GCS.  

Objective 2: Explore the fracture and pore space evolution due to carbonation reactions in 

fractured basalt rocks at conditions relevant to GCS.  
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1.3. Overview of Dissertation 

This study includes two related main tasks that address the specific research objectives 

(Figure 1.4). Task 1 is to investigate carbonate mineral formation in a powder porous packed bed 

in CO2-rich water at high temperature (100˚C) and high pressure (100 bar CO2). Task 2 is to 

explore carbonate mineral formation in low-porosity rock cores with fractures and pores in CO2-

rich water at GCS-related conditions. Both experimental systems examine similar types of 

minerals and rocks, including forsterite (Mg end-member of olivine), natural olivine and 

different basalt samples. Both systems mimic the dead-end zones in which transport is controlled 

by diffusion.  

 

Figure 1.2 Overview of two research tasks to investigate CO2 mineral trapping.  

 

A set of experiments were designed and conducted to address the two tasks. Chapter 2 

and Chapter 3 present experimental studies using porous packed bed system in Task 1. Chapter 2 

discusses the timing, location and type of carbonate minerals formed in synthetic forsterite 

powder packed beds in water equilibrated with 100 bar CO2 at 100˚C, reacting from 1 day to 60 

days. Chapter 3 investigates the particle size and chemical composition effects on mineral 
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carbonation in olivine and basalt powder packed beds. The work in Chapter 2 and Chapter 3 has 

been published in two peer-reviewed papers.  

Chapter 4 and Chapter 5 include static batch experiments using different types of 

fractured basalt described in Task 2. Chapter 4 discusses carbon mineral sequestration in 

artificial dead-end fractures in flood basalt and serpentinized basalt cores in water equilibrated 

with 100 bar CO2 in 100˚C or 150˚C for up to 40 weeks. Chapter 5 explores the carbonate 

minerals formed in fractures and pores in the porous Grand Ronde basalt cores in CO2-rich water 

at 100˚C for up to 40 weeks. The work in Chapter 4 is in preparation for a co-authored 

publication. The reactive transport modeling and CT segmentation in Chapter 4 were done by 

Brian Ellis’ Group, including Anne Menefee and Jubilee Adeoye, at the University of Michigan. 

The work in Chapter 5 will be submitted to a peer-reviewed journal as a co-authored paper after 

further analysis is done by Todd Schaef and Jake Horner from Pacific Northwest National 

Laboratory. Chapter 6 includes conclusions obtained from the overall research makes 

recommendations for future work.  

The two appendices in the end include experimental studies that are relevant to this 

research topic but may not be published as an independent paper. Appendix 1 contains 

experimental results to investigate carbonation in low-porosity olivine sintered aggregates. This 

has become part of a published paper in which I am a co-author. Appendix 2 describes the same 

fractured flood basalt core as in Chapter 4 reacted in water-saturated CO2 (i.e., a phase that is 

predominantly CO2 with trace amounts of H2O) at 100˚C and 100 bar. The reaction progress in 

the wet-CO2 system is very slow and very limited observable carbonate precipitate was found. 

The results may not be enough for a full publication, but they may be useful for future study in 

similar reacting system.   
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Chapter 2. Carbonate Mineral Formation 

in Forsterite Powder Packed Beds 
This chapter was published in Xiong, W.; Giammar, D., Forsterite Carbonation in Zones 

with Transport Limited by Diffusion. Environmental Science & Technology Letters 2014, 1, (8), 

333-338.
27

 

Abstract 

Diffusive limitations to transport can significantly influence carbonation processes in 

geologic carbon sequestration. A tube packed with forsterite and exposed at one end to a CO2-

rich solution at 100˚C and 100 bar CO2 was used to explore the timing and spatial localization of 

carbonate precipitation along a one-dimensional diffusion-limited zone. The identity and 

quantity of carbonate mineral formation as a function of depth were determined using Raman 

spectroscopy and total carbon analysis. Carbonate mineral precipitation was observed as early as 

1 day. Hydromagnesite formed before magnesite. Carbonate precipitation was spatially localized 

with the highest amount formed at 0.5 cm into the packed bed. Magnesite precipitation did not 

block the flux of carbon deeper into the tube, although the overall carbonation rate did decline 

after 30 days.  

 

2.1 Introduction 

Geologic carbon sequestration (GCS) can mitigate environmental problems caused by 

anthropogenic CO2 emissions by injecting captured CO2 into deep geologic formations. Storage 

mechanisms include stratigraphic and structural trapping, solubility trapping, hydrodynamic 

trapping, and mineral trapping
3
. During mineral trapping, dissolved CO2 reacts with cations 
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released from silicate minerals to form carbonate minerals. Most current GCS reservoirs are 

sandstone and carbonate saline aquifers
3, 28, 29

 that have favorable porosity and permeability for 

CO2 injection but limited capacities for mineral trapping. Mafic (i.e. rich in Fe and Mg) basalt 

and peridotite formations have drawn attention as alternative storage sites because of their 

greater potential for mineral carbonation
12, 17, 30, 31

. Pilot-scale CO2 injections into basalts have 

been conducted in Washington state and Iceland
32

. 

Forsterite (Mg2SiO4) reaction in CO2-water systems involves magnesium release 

followed by precipitation of magnesium carbonate solids.
33-38

 Because CO2-water interactions 

with forsterite in basalt, peridotite, and other rocks will occur along fractures of various 

dimensions and lengths, diffusive transport can limit the overall extent of reactions, and reaction 

rates in diffusion-limited zones can be very different from those at volume-averaged 

conditions.
39-41

 In experiments with peridotite cubes, carbonate mineral formation was only 

observed along fractures, and the overall porosity decreased by 50% when 10% of the olivine 

had been converted to carbonates.
42

 CO2-mineralization may be more viable in open systems 

with fluid flow carrying away the products of silicate mineral dissolution, while fracture 

clogging could limit peridotite carbonation in a closed system.
43

   

The objective of this study was to investigate the impact of geochemical gradients caused 

by diffusive limitations to transport on the timing and spatial distribution of carbonate 

precipitation. A one-dimensional diffusion-limited packed bed was studied at a temperature and 

pressure relevant to GCS.  
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2.2 Materials and Methods 

2.2.1 Materials 

Forsterite powder (99% Mg2SiO4, Alfa Aesar) was sonicated in ethanol for 10 min to 

remove fine particles and any organic contamination. Settling and decanting in ultrapure water 

(resistivity>18.2 MΩ·cm) ten times isolated particles in the 5-40 µm fraction , but some particles 

finer than 5 μm remained associated with the larger particle surfaces (Figure S2.1). The specific 

surface area (SSA) determined by BET-N2 adsorption was 3.7 m
2
/g, which is 10 times larger 

than the value corresponding to 5 µm forsterite spheres and is consistent with the presence of the 

finer particles.  

 

2.2.2 Tubular reactor 

The pretreated forsterite was wet packed to 3 cm in a borosilicate glass tube (1 cm 

diameter and 5 cm length). The porosity was 0.48 ± 0.03. The tube was fixed vertically to the 

head of a high temperature high pressure reactor (Parr Instrument Company) so that it would be 

immersed in CO2-rich solution when the reactor was sealed. A 300 mL PTFE liner with 200 mL 

ultrapure water was put into a stainless steel pressure vessel that was then attached to the reactor 

head and heated to 100˚C. A syringe pump (500D, Teledyne Isco) provided a constant CO2 

pressure (100 bar) on the headspace (Figure S2.2a). For most geologic systems, at the depth (1 

km) corresponding to 100  

bar the temperature from the geothermal gradient would be around 50˚C;
44

 however, 

experiments were performed at 100˚C because this allowed for faster laboratory investigation 
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and because the carbonation reaction is exothermic,
18

 which would lead to in situ temperatures 

higher than those from the natural geothermal gradient.  

The 200 mL solution was stirred at 60 rpm to mix the solution without disturbing the 

forsterite in the tube. After reacting for a certain period (1, 3, 5, 8, 15, 30 and 60 days), a sample 

of the bulk solution was collected and filtered through a 0.22 µm filter and acidified. The tube 

was taken out of the reactor. The water above the solid was removed and the solid sample was 

air-dried (21˚C, 15% relative humidity) in the tube until its weight became stable.  

 

2.2.3 Analytical methods 

Aqueous samples were analyzed by inductively coupled plasma mass spectroscopy (ICP-

MS Agilent 7500ce) for dissolved Mg and Si concentrations. The intact solid sample in the glass 

tube was directly scanned with Raman spectroscopy using a HoloLab Series 5000 Laser Raman 

Microprobe (Kaiser Optical) with a 532 nm laser and a 20 power objective that probes a 5µm-

diameter area. After Raman analysis, the sample was removed from the tube in 0.2-cm layers and 

analyzed for total carbon in a TOC analyzer at 900˚C with O2 flow. The original and pretreated 

forsterite had total carbon (TC) contents of 1.67 ± 0.47 mg/g and 0.44 ± 0.02 mg/g, respectively, 

with no inorganic carbon (determined by IC module). Particle surface morphology was 

characterized by scanning electron microscopy (FEI Nova 230) of gold-coated samples (Figure 

S2.3).  
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2.3 Results and Discussion 

2.3.1 Identification of carbonates 

Carbonate minerals were identified by Raman spectroscopic analysis of the solids along 

the length of the packed bed. Figure 2.1 shows both short range and long range (270-1300 ∆cm
-1

) 

spectra for the solids after 3 days of reaction (Figure S2.4 has full spectra for other reaction 

times). Peaks at 824, 855, and 964 ∆cm
-1

 that correspond to the stretching modes of the three 

types of Si-O bonds in forsterite
45

 appeared in each sample. Magnesite and hydromagnesite are 

identified by the strong peaks at 1094 and 1119 cm
-1

, respectively, that are associated with the 

CO3
2-

 symmetric stretching mode.
46

 This diagnostic region for carbonate minerals is shown in 

Figure 2.2 for all reaction times and depths with peak heights normalized to the highest forsterite 

peak (855 cm
-1

) for semi-quantitative assessment of the carbonate content.  

 
Figure 2.1 Raman spectra of solids from a tube packed with forsterite after 3 days of exposure of 

the tube to water at 100˚C in equilibrium with 100 bar CO2. The major peaks at 824, 855, and 

964∆cm
-1

 correspond to the stretching modes of the Si-O(2), Si-O(3) and Si-O(1) bonds in 

forsterite
45, 47

. The peaks at 1119 cm
-1

 and 1094 cm
-1

 correspond to the CO3
2-

 symmetric 

stretching mode (ν1) in hydromagnesite and magnesite, respectively.
46, 48
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Figure 2.2 Combined Raman spectra for the range of carbonate peaks. The peaks are normalized 

to the highest forsterite peak at 855 cm
-1

 for semi-quantitative assessment of the carbonate 

content. 

 

Carbonates were never observed in the top layer of the packed beds, which was due to the 

low pH environment provided by the bulk solution and the diffusion of Mg
2+

 out of the tube. 

After 1 day of reaction, hydromagnesite and some magnesite appeared at 0.5 cm. After 5 days 

magnesite became the dominant carbonate solid, and from 8 days on magnesite was the only 

carbonate present.  Hydromagnesite was probably an intermediate solid because its formation is 

kinetically more favorable than that of magnesite. Hydromagnesite is not as thermodynamically 

1052 1102 1152 1052 1102 1152 1052 1102 1152 1052 1102 1152 1052 1102 1152 1052 1102 1152 1052 1102 1152

1 3 5 8 15 30 60

Reaction Time (days)

0.1

0.3

0.5

1.0

1.5

2.0

2.5

D
e

p
th

 (
c
m

)



 

16 

 

stable as magnesite, especially as the ratio of carbonate to hydroxide increases, and it 

transformed to magnesite over time. Previous work also observed hydromagnesite initially
49

, and 

nesquehonite (MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)2·5H2O) have appeared as 

intermediate species in the formation of magnesite (MgCO3) under different conditions.
50, 51

  

The Raman spectra show that magnesite precipitated at 0.3 cm and reached the highest 

amount at 0.5 cm. This spatial localization of precipitation is probably caused by opposing 

gradients in the concentrations of Mg
2+

 and CO3
2-

 that generated the requisite extent of 

supersaturation at a specific location.  The pH difference between the bulk solution and the 

packed bed creates a pH gradient in the tube. As forsterite dissolves, the consumption of H
+
 

increases the pH. The gradient in pH and the diffusion of Mg
2+

 out of the tube generate a 

gradient in the Mg
2+

 concentration with higher concentrations at greater depth.  The diffusion of 

aqueous inorganic carbon into the tube leads to a gradient in its concentration with the highest 

concentration at the top of the tube. The concentration gradient of CO3
2-

 is then set by the 

gradients of pH and dissolved inorganic carbon. 

For forsterite-rich rocks the formation of carbonates may block the pore space and reduce 

surface area for reaction. On the other hand, the volume increase can exert stresses that may be 

relieved by cracking and additional expansion, creating new surface area for reaction.
18, 52, 53

 A 

gap in the packed bed was observed at about 0.5 cm for the 5-day solid sample in both duplicate 

experiments (Figure S2.5), but these were not observed in the structure of the loosely packed bed 

for other reaction times. The formation of a gap is consistent with the volume increase associated 

with conversion of forsterite to magnesite.  
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2.3.2 Quantification of carbonates 

Less than 3.3 mg/g of inorganic carbon (IC) was found in the top (0-0.2 cm) layer, 

followed by a sharp increase to a maximum in the 0.4-0.6 cm layer (Figure 2.3), which is 

consistent with the Raman spectroscopy results. Although Raman spectroscopy detected almost 

no carbonates at the bottom of the tube, total inorganic carbon was still appreciable, indicating 

successful penetration of carbonate into the deeper zones. 

 
Figure 2.3 Profiles of inorganic carbon in the forsterite bed after exposure of the tube to CO2-

rich aqueous solution for reaction times up to 60 days. Each point represents the carbon content 

of a 0.2 cm-thick layer.  

 

The overall extent of carbonation increased almost linearly until 30 days and 

subsequently declined (Figure 2.4), which may be due to increased resistance to diffusive solute 

transport. The overall carbonation extent was determined by adding the carbon masses in each 

layer.  After 30 and 60 days of reaction, the solid sample could maintain its cylindrical shape 

(from 0.5 cm to the bottom) even without the glass tube, indicating that the powder was 

cemented through the precipitation of magnesite.  
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Figure 2.4 Total carbon in the tube after exposure of a bed packed with forsterite powder to a 

CO2-rich solution at 100˚C in contact with 100 bar CO2. The total carbon is determined from the 

depth profiles presented in Figure 2.3. 

 

Because of the high solid-to-water ratio in the packed bed, the solution in the pores could 

attain the necessary supersaturated concentrations for magnesium carbonate precipitation. In the 

100˚C 100 bar CO2 open system, the pH of the bulk the solution outside of the tube is 3.2 

(calculated by GWB, applying Duan’s model for CO2 solubility
54

), which could facilitate the 

dissolution of forsterite but would be too low for carbonates to precipitate.  In an experiment in 

which the same amount of forsterite as in the tubular reactor experiments was reacted with 

complete mixing of the 200-mL suspension for 30 days (Figure S2.2b), the dissolved Mg 

concentrations in the bulk solution were higher (Figure S2.6), but no carbonate minerals 

precipitated (as determined by inorganic carbon measurement). Previous flow-through 

experiments also observed that magnesite formed only in diffusion-limited domains and not in 

advective flow paths.
49
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The opposing gradients in CO3
2-

 and Mg
2+

 caused by diffusive transport limitations 

resulted in specific locations that reached the supersaturation needed to precipitate carbonates.
49

 

The location at 0.5 cm below the packed bed surface was so favorable for carbonate minerals to 

precipitate that the highest IC amount was observed. The formation of carbonates did not 

completely block the pores, and the supply of inorganic carbon to the deeper zones by diffusion 

was sufficient to result in continuous precipitation of magnesite with time; however, the 

consumption of inorganic carbon in the zone of maximum precipitation did result in lower 

amounts of carbonate mineral precipitation in deeper regions.  

 

2.3.3 Environmental implications 

Carbonation in diffusion-limited zones will have rates and products much different from 

those predicted using volume-averaged properties. In a well-mixed system, the pH is too low and 

the required supersaturation could not be achieved for carbonate precipitation. Although the 

experimental systems studied here were deliberately simple, the results are relevant to fractured 

rocks in which diffusion-limited dead-end fractures are open to bulk advective flow. Dead-end 

fractures could represent a substantial amount of a rock’s reactive surface area. The one-

dimensional packed bed experiments revealed that carbonate precipitation is spatially localized 

in diffusion-limited zones as a result of opposing geochemical gradients. The carbonation 

process did not shut itself down within the time of this study, but it did slow down after 30 days. 

The texture of fractures in deep geological formations can be very different from the 

packed bed of forsterite particles. The packed bed can expand as carbonate minerals precipitate, 

but precipitation in fractured rocks could result in either complete filling of pores or the creation 

of new fractures from the pressure exerted by the volume expansion.  Complete pore filling 
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would block diffusive transport paths in the fractures and shutdown the carbonation process. To 

better understand coupled reactive and transport effects in geologic carbon sequestration, 

experiments that study the spatial distribution of carbonates in intact rocks are needed.  
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Supporting Information 

 

 
Figure S2.1 Scanning electron micrograph of pretreated forsterite powder showing the 

remaining attachment of fine particles to the surfaces of the larger particles.  
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Figure S2.2 a) High pressure and temperature reactor with 200 mL of CO2-rich solution into 

which a tube packed with forsterite powder is immersed. CO2 is pumped into the reactor by a 

syringe pump. A constant CO2 headspace pressure of 100 bar is then maintained by the pump. 

The reactor is heated to 100˚C using an external heating mantle. b) Well-mixed system setup. 

For the well-mixed system, instead of packing forsterite in the tube, the same amount of solid 

(3.97 g) was dispersed within the bulk solution at the same conditions.  Aqueous samples were 

collected from the bulk solution after 1, 3, 5, 8, 15, and 30 days. 

 

 

 

 

a b 
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Figure S2.3 Scanning electron micrographs of solid samples from the tubular reactor after a) 8 

days at 0-0.2 cm depth, b) 60 days at 0-0.2 cm depth c) 8 days at 0.4-0.6 cm depth, and d) 60 

days at 0.4-0.6 cm depth. Most particles from 60 days of reaction were present as small and 

irregular particles like those surrounding the large particle in panel d. The shape and texture of 

the small particles were different with reaction time. For 8 days, the particle surface was 

relatively smooth, while there were sharp edges on the particle after 60 days of reaction. 

 

  

a b 

c d 
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Figure S2.4 Raman spectra of samples for reaction times from 1 day to 60 days. 
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Figure S2.5 Packed bed of forsterite after 5 days of reaction for (a) the wet packed bed 

immediately after removal from the reactor and (b) the packed bed after manually applying 

pressure to close the gap that had developed at 0.5 cm and air-drying.  

 

  

b a 
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Figure S2.6 Dissolved Mg and Si concentrations in the bulk solution in packed bed system and 

in well-mixed system. The dissolution of forsterite in both systems was incongruent. The 

concentrations in the bulk solution from the packed bed system became stable after 30 days of 

reaction. 
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Chapter 3. Carbon Sequestration in 

Olivine and Basalt Powder Packed Beds 
This chapter was published in Xiong, W.; Wells, R. K.; Giammar, D. E., Carbon 

Sequestration in Olivine and Basalt Powder Packed Beds. Environ Sci Technol 2017, 51, (4), 

2105-2112.
55

 

Abstract 

Fractures and pores in basalt could provide substantial pore volume and surface area of 

reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many 

fractures solute transport will be limited to diffusion, and opposing chemical gradients that form 

as a result of concentration differences can lead to spatial distribution of silicate mineral 

dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or 

basalt with different grain sizes and compositions were used to explore the identity and spatial 

distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones 

that are connected to a larger reservoir of water in equilibrium with 100 bar CO2 at 100˚C. 

Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in 

experiments with flood basalt. The spatial distribution of carbonates varied between powder 

packed beds with different powder sizes. Packed beds of basalt powder with large specific 

surface areas sequestered more carbon per unit basalt mass than powder with low surface area. 

The spatial location and extent of carbonate mineral formation can influence the overall ability of 

fractured basalt to sequester carbon. 
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3.1 Introduction 

Geological carbon sequestration (GCS) involves injecting CO2 into deep geological 

formations for long term storage. Ultimately CO2 can be converted  into carbonate minerals, in a 

process known as mineral trapping that provides stable long-term sequestration.
3
  Most 

subsurface carbon storage projects have injected CO2 into sandstone basins, which can have 

good permeability and porosity for injection but minimal mineral trapping capacity resulting 

from the lack of reactive calcium-, magnesium-, and iron-silicate minerals required to neutralize 

the acidity of the injected CO2 and release the divalent cations needed for carbonate mineral 

precipitation.
3, 20, 29

 Basalt is a common mafic rock that contains minerals rich in these divalent 

cations, making it a good candidate for CO2 mineral sequestration.
15, 56

 

Research has shown great potential for geological carbon sequestration in basalts.
15, 57

 

Recent pilot-scale CO2 injections have taken place in southwest Iceland by the CarbFix project 

and in the northwest United States near Wallula, Washington by the Big Sky Carbon 

Sequestration Partnership.
20

 Olivine, (MgxFe1-x)2SiO4, has the fastest dissolution kinetics and 

highest carbonate-forming potential among minerals found in basalt.
58

 Many laboratory studies 

have been conducted regarding the dissolution and carbonation of olivine and olivine-rich rocks 

in conditions relevant to geologic carbon sequestration. Most experiments were done with well-

mixed systems in which the olivine or basalt powders have maximum accessibility to dissolved 

CO2 in the solution, which provides a good means of quantifying reaction rates and identifying 

reaction products.
23, 34, 35, 38

 Batch experiments with high solid-to-water ratio showed rapid 

mineralization of basalt powders.
59

  Interfacial reactions such as dissolution and precipitation are 

still the rate-limiting factors since diffusion is not strongly inhibited in boundary films that attach 

to the surface of mineral and rock grains.
60-62

 However, reactions in basalt reservoirs may 
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primarily occur in poorly mixed fractures and pores. Diffusion-limited zones can achieve extents 

of supersaturation with respect to potential carbonate precipitates much higher than in the bulk 

solution. Our previous studies of the coupling of dissolution-precipitation reactions and diffusive 

transport in beds packed with forsterite (Mg2SiO4) powder found that carbonate mineral 

precipitation was spatially localized within the beds as a result of geochemical gradients in pH, 

dissolved inorganic carbon, and dissolved magnesium.
27, 63

  

The present study builds on these earlier packed bed experiments by examining reactions 

with basalts and not just single mineral systems and by systematically exploring the effects of 

particle size and composition on carbonate mineral formation.  The objectives of the study were 

to determine the influence of mafic rock and mineral composition and particle size on the 

location and extent of carbonate mineral formation upon reaction with CO2-rich aqueous 

solutions in zones with transport limited to diffusion.  A set of laboratory experiments with 

basalts and olivine in different composition and grain sizes were conducted in bench-scale 

systems equilibrated with 100 bar CO2 at 100˚C.  After different reaction times the identities, 

amounts, and locations of carbonate minerals were determined using Raman spectroscopy, 

electron microscopy, and total carbon analysis. 

 

3.2 Materials and Methods 

3.2.1 Materials 

Forsteritic olivine fine powder (Fo99, 99% Mg2SiO4) was purchased from Alfa Aesar. San 

Carlos olivine grains (Fo90, Mg1.8Fe0.2SiO4), Columbia River flood basalt (Pullman, Washington), 

and serpentinized basalt (Valmont Butte, Colorado) rocks were purchased from Ward’s Science. 
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Basaltic glass from the Stapafell Mountains was provided by Sigurdur Gislason’s research group 

in Iceland. The compositions of the flood basalt and the serpentinized basalt are listed in Table 

3.1, and additional rock and mineral characterization information are available.
64

 The basaltic 

glass is homogeneous compared to the other two basalts and has a chemical formula consistent 

with SiTi0.02Al0.36Fe(III)0.02Fe(II)0.17Mg0.28Ca0.26Na0.08K0.008O3.45 (normalized to one Si).
26, 65

 The 

forsterite powder was sieved to yield particles smaller than 53 µm. Olivine was ground and 

sieved to fractions of <53 µm and 53-106 µm. The olivine powder was sonicated in acetone and 

rinsed in water to remove organic contaminants and fine particles on the surface. Part of the <53 

µm olivine powder was further pulverized in a ball mill (FRITSCH pulverisette) to increase its 

specific surface area and match that of the <53 µm forsterite (Table 3.2). Basalt rocks were 

ground and sieved to generate the 53-106 µm size fraction and then cleaned in the same 

procedure as olivine powders. Although the basalt rocks went through the same grinding and 

sieving processes, the flood basalt has a much larger BET surface area than the serpentinized 

basalt and the basaltic glass. The reactive surface area was very small for the basaltic glass 

powder due to the nature of glass, which tends to form smooth, conchoidal fracture surfaces 

(Figure S3.1a, S3.1d, S3.1g).   

Table 3.1 Composition of flood basalt (FB) and serpentinized basalt (SB) with percentages (by 

mass) of constituent minerals
64

 

Composition FB  SB  

Ca-pyroxene 22% Ca0.63Fe0.48Mg0.83Ti0.03Al0.09Si1.92O6 21% Ca0.83Fe0.25Mg0.85Ti0.03Al0.07Si1.96O6 

Olivine 9% Mg1.21Fe0.78Ca0.01SiO4 1% Mg1.38Fe0.59Mn0.02Si1.01O4 

Serpentine 1%  14% Na0.01Mg0.6Al0.27K0.01Ca0.11Mn0.05Fe1.82Si3O9Hx 

K-rich matrix
*
 33% Ca0.04Na0.33K0.64Fe0.01Al1.06Si2.93O8 32% Ca0.03Na0.32K0.66Fe0.05Al1.05Si2.94O8 

Orthopyroxene 1%  1%  

Plagioclase  31% Ca0.59Na0.40Fe0.03Al1.57Si2.40O8 28% Ca0.55Na0.43Fe0.02Al1.57Si2.43O8 
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*
 The K-rich matrix is composed of submicron fine grains within a glass matrix and not a single 

phase mineral although the WDS data can be normalized to fit a feldspar composition. 

 

Table 3.2 Size and surface areas of materials used in packed bed experiments 

No. Mineral and rock  Sieving 

size 

(µm) 

BET 

surface 

area (m
2
/g) 

1 Forsterite (Fo99) <53 3.7 

2 Olivine (Fo90) <53 3.7 

3 Olivine (Fo90) 53-106 0.2 

4 Flood basalt 53-106 6.4 

5 Serpentinized basalt 53-106 0.9 

6 Basaltic glass 53-106 0.2 

 

3.2.2 Packed bed experiments 

Experiments were conducted with glass tubes that were packed with powders as in 

previous research.
27

 The powders were wet-packed to depths of 3 cm in the borosilicate tubes (1 

cm diameter and 5 cm length). After packing, the tube with the wet packed bed was weighed and 

powder mass was calculated. The olivine powder in the tube was around 4 g with 1.1 g of DI 

water. The basalt powder is around 3.6 g with 1.3 g of DI water. Packed bed porosities were 

0.48-0.50 based on the powder mass and density and the measured bed volume. The tubes were 

fixed vertically inside a high-pressure and –temperature reactor with a PTFE liner (Parr 

Instrument). The reactor was loaded with 200 mL ultrapure water, which was sufficient to fully 

immerse the tube when the reactor was sealed and to leave approximately 50 mL of headspace. 

A syringe pump (500D, Teledyne Isco) provided a constant CO2 pressure (100 bar) to the 
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headspace.  The reactor was heated to 100˚C. The pump stopped adding CO2 to the reactor 

within 1 hour, indicating that equilibrium between CO2 and water had been reached. The olivine 

and the basalt powder packed beds reacted for 15 and 28 days, respectively. The reactors were 

not stirred so as to minimize any loss of powder from the tube. After reaction, the reactors were 

cooled and depressurized before samples were removed from the vessel. A liquid sample was 

collected from the bulk solution and filtered through a 0.22 µm filter and acidified for analysis. 

The tube with the intact reacted powder packed bed was removed and dried in a desiccator until 

its weight became stable.  

 

3.2.3 Analytical methods 

The specific surface areas of unreacted materials were measured by a BET−N2 adsorption 

analyzer (Quantachrome Instruments, NOVA 2000e). Aqueous samples were analyzed by 

inductively coupled plasma mass spectrometry (Perkin Elmer, Elan DRC II). For olivine packed 

beds, the intact solid sample in the glass tube was air-dried for at least a week and directly 

scanned through the glass via Raman spectroscopy (HoloLab Series 5000 Laser Raman 

Microprobe, Kaiser Optical) with a 532 nm laser and a 20 power objective that probes a 5 µm 

area. Raman spectroscopy can identify carbonate minerals based on the appearance and location 

of peaks associated with CO3
2-

 vibrations. Reacted powders from basalt packed beds were 

examined by Raman spectroscopy instead of the intact packed bed due to the fluorescence 

background in large amount of reacted basalt powders. The reacted olivine powders were taken 

out and examined by scanning electron microscopy (FEI Nova 230) with energy-dispersive X-

ray spectroscopy (EDX) after gold-coating. The reacted basalt powders were imaged with a 

scanning electron microscope (SEM) (JEOL 7001LVF FE-SEM) after carbon-coating, and 



 

34 

 

elemental analysis was collected using energy dispersive spectroscopy (EDX) analysis. X-ray 

diffraction (Bruker d8 Advance) and electron probe microanalysis (JEOL JXA-8200) with 

wavelength-dispersive spectrometry (WDS) were used to identify secondary precipitates in the 

flood basalt packed bed. The powder samples were scooped layer by layer from the tube in 0.2-

cm layers for the olivine packed beds and 0.3-cm layers for the basalt packed beds due to 

technical difficulty to determine the layer border in the loose basalt powder packed beds. Each 

layer of powder was analyzed for total carbon in a carbon analyzer operated at 900˚C with an O2 

flow. Total inorganic carbon (i.e., the carbon from carbonate minerals) was calculated via 

subtracting the total carbon amount of the sample by the total carbon background of the 

unreacted powder. The total inorganic carbon amounts were 0.84 mg/g, 1.00 mg/g and 0.44 mg/g 

in unreacted 53-106 µm Fo90, <53 µm Fo90 and <53 µm Fo99, respectively. The amounts were 

0.00 mg/g, 0.01 mg/g and 0.03 mg/g in unreacted flood basalt, serpentinized basalt, and basaltic 

glass. 

 

3.2.4 Reaction path modeling 

We performed reaction path modeling in Geochemists’ Workbench 8.0 (GWB) to 

examine how the minerals present in the same amount as in the flood basalt would react in 200 

mL and 1.3 mL water (see the model in SI). The minerals in the flood basalt were assigned to 

different end-members that are documented in the GWB default database to give the same 

amount of cations. Temperature was set at 100˚C. Dissolved aqueous CO2 was calculated
54

 and 

fixed in the model as an open system. The minerals are assumed to dissolve congruently at the 

same rate. The model represented an ideal mixed system for two bounding conditions of the 

actual system.  The first was with the solid to water ratio of 3.6 g per 200 mL as in the bulk 
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solution (i.e., if the basalt was suspended in the full 200 mL volume and was not isolated in the 

packed bed).  The second was with 3.6 g per 1.3 mL as in the wet packed bed (i.e., if there was 

no exchange between the water in the packed bed and the bulk solution).  

 

3.3 Results and Discussion 

3.3.1 Olivine packed beds 

Raman spectroscopy of materials in the three olivine packed beds had a peak at 1094 cm
-

1
, which corresponds to the CO3

2-
 symmetric stretching mode (ν1) in magnesite

46, 58
 (Figure 3.1). 

The peaks at 824, 855, and 964 cm−1 correspond to the stretching modes of the three types of Si−

O bonds in olivine
45

. Magnesite was the only carbonate mineral formed in all three olivine 

packed beds. Carbonate minerals were rare in the layer that was closest to the CO2-saturated bulk 

solution  (0~0.2 cm); the bulk solution had an initial pH down to 3.2 (calculated based on charge 

balance and predicted CO2 solubility
54

) that facilitated olivine dissolution but kept the solution 

far from saturation with respect to carbonate minerals. Peak heights in Raman spectroscopy give 

a semi-quantitative assessment of the amount of material (e.g., magnesite) present. The trend of 

the peak height shows that in the <53 µm Fo90 and Fo99 beds, carbonate minerals were most 

abundant in the 0.4-0.6 cm layer and gradually decreased in abundance down into the bed. In the 

53-106 µm Fo90 bed, the carbonate peaks were much shorter than in the <53 µm Fo90 and Fo99 

beds, indicating less carbonate mineral formation in the packed beds with larger grain size and 

smaller surface area, regardless of composition. The dissolved inorganic carbon diffuses into the 

packed bed, while the cations released from the olivine are diffusing out. Magnesite forms when 

the critical saturation ratio in the pore water is reached, which requires the accumulation of 
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released cations and dissolved inorganic carbon as well as a sufficiently high pH. The opposing 

chemical gradients in concentrations of cations and dissolved inorganic carbon may result in the 

spatial localization of carbonate mineral formation; such localization was experimentally 

observed in our earlier work and was also supported by reactive transport simulations that 

predicted a zone of greatest solution saturation with respect to magnesite.
63

  A thin orange layer 

(1~2 mm thick) also occurred on the top of the two Fo90 packed beds (Figure S3.2). This is due 

to the oxidation of Fe
2+

 released from Fo90 dissolution by residual O2 in the solution. This orange 

layer did not occur in the packed bed with the Fo99 powder because that material had almost no 

iron. 

 

Figure 3.1 Raman spectroscopy on olivine powder packed beds reacted for 15 days in water in 

equilibrium with 100 bar CO2 and at 100˚C. The peaks at 1094 cm
-1

 represent magnesite. The 

patterns are normalized to the similar height of olivine peaks in the range of 800-1000 cm
-1

. 

 

The total carbon analysis quantitatively confirmed the spatial distribution of magnesite in 

the <53 µm Fo90 and Fo99 beds that had been observed using Raman spectroscopy (Figure 3.2a). 
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Very limited inorganic carbon was observed in the top layer that was closest to the bulk solution. 

The inorganic carbon amount increased to the highest amount (50 mg/g and 40 mg/g for <53 µm 

Fo90 and <53 µm Fo99, respectively) in the 0.4-0.6 cm layer and gradually decreased along the 

bed to the bottom. For the 53-106 µm Fo90 bed, the trend of carbonate distribution was relatively 

smooth. The top 0~0.2 cm layer had little carbonate as well. The highest amount of inorganic 

carbon (10 mg/g) appeared in the 0.2-0.4 cm layer. The total carbon amount gradually decreased 

from 10 mg/g to 7 mg/g along the tube below the second layer (0.2-0.4 cm). More magnesite 

formed in the <53 µm Fo90 packed bed than in the <53 μm Fo99 packed bed even though they 

have the same initial specific surface area. Iron-containing olivine dissolves faster than pure 

forsterite.
66

 A greater abundance of magnesite in the Fo90 packed bed is probably due to a greater 

release of Mg and Fe into solution. The lower abundance of magnesite within the Fo99 packed 

bed is probably the result of slower dissolution compared to that of iron-bearing olivine. The 

total inorganic carbon sequestered in the entire 53-106 µm Fo90 bed (8 mg/g) was much less than 

in the <53 µm Fo90 bed (30 mg/g) and <53 µm Fo99 bed (22 mg/g). Larger surface areas from the 

smaller particles facilitated greater olivine dissolution and made more Mg and Fe available for 

carbonate precipitation. The inorganic carbon amounts in the packed beds were normalized to the 

initial surface areas of the powders to yield values of 42 mg/m
2
, 8 mg/m

2
, and 6 mg/m

2
 for the 

53-106 µm Fo90, <53 µm Fo90 and <53 µm Fo99 packed beds, respectively. The comparison of 

the amounts from the <53 µm Fo90 and <53 µm Fo99 confirm the greater reactivity of the Fo90, 

and the comparison of the two size fractions for the Fo90 indicates that surface area is not the 

only factor controlling the amount of carbonate mineral formation; the larger particle size 

sequestered less total carbon, but it actually sequestered more carbon per unit surface area. A 
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portion of surface area in the <53 µm powder packed bed may not have been accessible for 

reaction. 

 

Figure 3.2 Total inorganic carbon accumulated in the powder packed beds of a) olivine and b) 

basalt.  

 

Euhedral magnesite crystals are observed within the packed powder beds. The magnesite 

in the Fo99 packed bed was pure MgCO3, while the magnesite in the Fo90 packed beds contained 

trace amounts of Fe. Scattered amorphous silica was found on the surfaces of both magnesite and 

olivine. Magnesite was found on the surface of the 53-106 µm Fo90 particles (Figure 3.3a), 

indicating heterogeneous growth of the carbonate on the silicate mineral. The magnesite size was 

approximately 20 µm, which was larger than the magnesite that formed in the <53 µm Fo90 

packed beds with sizes around 5 µm (Figure 3.3b). Considering the total carbon analysis and the 

sizes of the magnesite particles, the number of magnesite particles in the <53 µm packed bed 

should be much greater than in the 53-106 µm packed bed. 
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Figure 3.3 SEM SE/BSE images of a) magnesite precipitated on the olivine surface in the 0.8-

1.0 cm layer of the 53-106 µm Fo90 packed bed, with amorphous silica on the surface, b) 

magnesite on the tape from the 0.8-1.0 cm layer of the <53 µm Fo90 packed bed, c) lizardite 

formation on the reacted flood basalt from 0-0.3 cm layer, d) rhombohedral siderite in between 

flood basalt powder from the 0-0.3 cm layer, e) pentagon shape siderite on flood basalt from the 

0-0.3 cm layer, with amorphous silica on the surface, f) siderite with the composition by WDS 

analysis 

 

3.3.2 Basalt packed beds 

Multiple secondary precipitates were formed in the basalt powder packed beds during the 

reaction. Euhedral carbonate minerals, ranging in size from 10 µm to 50 µm, were observed on 
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the surface of the flood basalt powder (Figure 3.3d-f). WDS analysis showed that the precipitate 

had a composition of Fe0.81Mg0.14Ca0.01CO3, which is Mg- and Ca-containing siderite (Figure 

3.3f, Table S3.1). Raman spectroscopy (Figure 3.4) determined that the carbonate mineral was 

siderite by comparison with carbonate mineral standards from the RRUFF online database 

(standard details in SI). The evolution of Raman peaks is a function of Fe content in FeCO3-

MgCO3 solid solutions, thus Raman spectroscopy can determine the Fe amount.
67

 Comparing the 

peaks at 285, 719 and 1085 cm
-1

 with the spectra provided in a previous study
67

 suggests that the 

Fe content in the siderite could be 80~100 %, which is consistent with the WDS analysis. SEM-

EDX showed that the precipitate was a Fe-rich carbonate mineral with small amounts of Ca and 

Mg (Figure 3.3e, S3.3). XRD also confirmed that siderite and montesommaite (a K-rich zeolite) 

formed in the flood basalt after reaction (Figure S3.4). The observed siderite morphology 

including pentagon, rhombohedra, pyramid and column (Figure S3.1b-c) was also reported in a 

previous study about reactions of fayalite (Fe2SiO4) with CO2-rich water.
68

 Lizardite, 

Mg3Si2O5(OH)4, (Figure 3.3c), a serpentine from alteration of Mg silicates, was identified on the 

surface of the reacted flood basalt powder by its distinct six-pointed star shape.
69

 Individual 

lizardite crystals were very small, with the size ranging from 100 nm to 200 nm, but they formed 

massively and covered part of the surface of some individual flood basalt grains. It was common 

to find trace amounts of amorphous silica precipitated on both the basalt surface and carbonate 

mineral surface.  The surfaces of the serpentinized basalt and basaltic glass were a little rougher 

post-reaction than the starting unreacted surfaces (Figure S3.1d-i). No observable secondary 

precipitates were found on the reacted serpentinized basalt and basaltic glass samples tested in 

the SEM. 



 

41 

 

 

Figure 3.4 Raman spectra of the pentagonal carbonate mineral in Figure 3.3e and carbonate 

standards of siderite, calcite and magnesite (standards details in SI). Spectrum intensity is 

normalized to the maximum point. The pentagonal precipitate was identified as siderite.  

 

The total amount of inorganic carbon sequestered in basalt packed beds was 1-2 orders of 

magnitude lower than that in olivine packed beds (Figure 3.2b). The low inorganic carbon 

amount in the packed beds of serpentinized basalt and basaltic glass indicated very limited 

formation of carbonate minerals, which is consistent with the lack of any observed secondary 

minerals in SEM imaging. The average inorganic carbon amount in the entire packed beds was 

1.6 mg/g, 0.5 mg/g and 0.05 mg/g for flood basalt, serpentinized basalt, and basaltic glass, 

respectively. The calculated inorganic carbon amount per BET surface area (6.4 m
2
/g, 0.9 m

2
/g, 

0.2 m
2
/g) in the entire packed beds was 0.3 mg /m

2
, 0.6 mg/m

2
 and 0.3 mg/m

2
 for flood basalt, 

serpentinized basalt, and basaltic glass, respectively. With the same size range, more reactive 

surface area resulted in more carbon sequestered by basalt powder. Unlike in the olivine powder 

packed beds where the location of maximum carbonate mineral formation occurred at layers 

lower than the top layer, the highest carbon amount occurred in the top 0-0.3 cm layer within the 
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basalt packed beds. This could be due to a thicker layer (0.3 cm instead of 0.2 cm) in basalt 

packed beds that lowered the analysis resolution. 

The concentrations of elements that were transported out of the packed beds and into the 

bulk solution provide information about dissolution and precipitation that occurred inside the 

beds (Figure 3.5). Mass balance calculations can provide a rough estimate of the major minerals 

in the packed beds of basalt that dissolved. Assuming that the minerals in basalt dissolve 

congruently, we prepared mass balance equations (see supporting information) for Mg, Ca, Al 

(and Mn) that relate the dissolved concentrations to the amounts of specific minerals that would 

have dissolved. We did not apply this approach to the mass balance of Fe, because portions of 

the Fe released from silicate minerals precipitated in the beds as siderite and iron oxides, 

indicated by the limited amount of dissolved Fe present in the bulk solution (Figure 3.5). The 

plagioclase and the K-rich matrix will provide negligible amounts of divalent cations so we 

neglected these two components in the calculation. The dissolved Ca was primarily from 

pyroxene in both basalts. The pyroxene is Ca-rich and would fall within the diopside field.
64

 

Since olivine dissolution is about two orders of magnitude faster than serpentine at 90˚C in 

acidic solution
70

 and there was 9% olivine in the flood basalt, the 1% of serpentine was not 

considered in the mass balance calculations for the flood basalt. For the serpentinized basalt, the 

serpentine is more abundant (14%) and cannot be neglected. For experiments with flood basalt, 

pyroxene, and olivine were calculated to be the two minerals that released the vast majority of 

Mg and Fe from the primary silicate minerals. While in experiments with serpentinized basalt, 

pyroxene, and serpentine are the major minerals that released the most Mg and Fe. For both 

basalts, much of the iron did not reach the bulk solution and would have been retained in 

secondary phases. 
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Figure 3.5 Dissolved element concentrations in the 200 mL bulk solution of the batch reactors 

from experiments with basalt packed beds after 4 weeks at 100˚C and 100 bar CO2 

 

3.3.3 Siderite formation 

Carbonate mineral formation within the basalt packed powder bed was enabled by a 

locally high pH and supersaturated environment. Previous numerical and experimental studies of 

basaltic glass also demonstrated that secondary mineral formation depends on reaction progress 

and pH.
71, 72

 In the present reaction path modeling, the pH increases from 3.2 to 5.0 (in 200 mL 

water) or to 5.7 (in 1.3 mL water) at the end of the reaction process (Figure S3.5a). This range is 

consistent with a previous modelling study that suggested that at 100 bar CO2, the pH initially 

drops to ~ 3.5, and the basalt-CO2-H2O interactions can only bring the pH back to ~5.8.
70

 For the 

model with basalt reaction in 200 mL of water, siderite forms first when the pH is approximately 

4.2 and magnesite and calcite are predicted to form later when the pH is higher than 4.9 (Figure 

S3.5a). For modeling the reaction in 1.3 mL water, the three carbonate minerals appear almost 

simultaneously at the beginning of the reaction (Figure S3.6a), with siderite forming slightly 

earlier than magnesite and calcite as the pH reaches 4.7 (Figure S3.6b). Comparing the sodium 

concentration in the aqueous solution of the model (Figure S3.5b) with the measured 
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concentration of 0.3 mM at the end of the experiment (Figure 3.5), the reaction progress after the 

experimental duration is estimated to be about 0.02, indicating that the experimental reaction was 

still in the very early stage of the overall reaction progress.  This reaction progress is only a 

rough estimate because it is based on the assumption of all minerals in the flood basalt dissolving 

at the same rates, when in fact the olivine and pyroxenes that will release Fe, Mg, and Ca are 

likely to be dissolving faster than the feldspar that would be releasing Na.   

Siderite is expected to be the first carbonate mineral to form in this study. The solubility 

products (Ksp) of calcite, magnesite and siderite, the common carbonate products during GCS 

reactions, are 10
-9.22

, 10
-9.41

, 10
-11.45

 at 100˚C (calculated from SUPCRT 92). With the same 

amount of dissolved CO2 in the system, the concentration of Fe
2+

 required to reach 

supersaturation for siderite is two orders of magnitude lower than the concentrations of Mg
2+

 or 

Ca
2+

 to reach supersaturation for magnesite or calcite. However, siderite has much slower 

precipitation kinetics than calcite. 
73, 74

 Our study showed rapid siderite precipitation within 4 

weeks. Another experimental study on basaltic glass also demonstrated that Fe-rich carbonates 

were initially saturated or supersaturated but with increasing reaction time, the Fe-rich carbonate 

became undersaturated whereas calcite, dolomite and magnesite became saturated at pH > 6.5,
25

 

which is not the case in this study. In the present study, based on measured dissolved ions in the 

bulk solution (Figure 3.5), the saturation indices of siderite, magnesite and calcite in 100˚C 100 

bar CO2 were calculated (Figure S3.7). All of the carbonate minerals were undersaturated in the 

bulk solution during reaction, with siderite closest to achieving saturation. The undersaturation in 

the bulk solution and the observation of siderite in the packed bed indicate that siderite formed 

first among carbonate minerals and can only form in diffusive-transport controlled powder 

packed beds instead of the bulk solution. The packed bed experiments also indicate that in basalt 
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reservoirs carbonate minerals are likely to form only in fractures and pores where transport is 

diffusion-controlled so that the ions can accumulate and reach the saturation extents necessary 

for precipitation. 

The carbonate products can vary according to different basalt and reaction conditions. A 

study of mid-ocean ridge basalt (MORB) powder carbonation at 150˚C and 280 bar CO2 

provided evidence that iron-bearing magnesite formed following olivine dissolution.
23

 The 

MORB contains 12 wt % of olivine (Fo85), which contains less iron than the olivine (Fo61) in the 

flood basalt in this study. As discussed previously, olivine dissolution is faster for more iron-rich 

materials and siderite is easier to form than magnesite, so it is not surprising that the MORB 

carbonation product was magnesite and in the present study the product was siderite. In the 

Iceland CarbFix CO2 injection project into basalt, which has a temperature and pH of 20-30˚C 

and 8.4-9.4, the carbonate precipitate is calcite.
19

 Monitoring fluids from the CarbFix site 

indicate saturation or supersaturation with respect to calcite following CO2 injection.
19

 The 

alkalinity of the formation waters and the dissolution of preexisting carbonate minerals may also 

contribute to the neutralization of the injected CO2-rich water to bring up the pH.
19

 In the carbon 

sequestration project led by the BigSky Partnership, ankerite Ca(Fe,Mg,Mn)(CO3)2 nodules were 

found to form in vesicles of the Grand Ronde basalt.
22

 Experimental study on basalt glass 

showed that at < 100˚C, the main carbonation products are Ca-Mg-Fe carbonates and at >150˚C, 

calcite became the dominant carbonate products instead.
26

 

 

3.3.4 Environmental implications 

For carbon sequestration in basalt, carbonate mineral formation would occur in diffusion-

limited zones such as fractures and pores rather than in well-mixed zones like those of the bulk 
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solution in our experiments. The powder packed beds can be related to dead-end fractures and 

vesicles in natural basalt, but with larger surface area. Carbonate mineral formation can be 

spatially distributed along and within a zone with transport limited to diffusion. High solid-water 

ratio in diffusion limited zones leads to accumulation of dissolved cations and gradients in their 

concentrations between the diffusion-limited region and the well-mixed outer solution.  

Opposing gradients of dissolved cations and dissolved inorganic carbon enable the solution to 

reach the critical saturation ratio for precipitation at certain locations. Rock and mineral 

composition can be an important factor regarding the carbonation capacity. Iron-containing 

olivine sequestered more carbon than the magnesium-endmember forsterite. The accessible 

reactive surface area also plays a crucial role in dissolution and carbonation reactions. Rougher 

fracture surface with large accessible reactive surface areas may end up with larger amounts of 

carbon mineral trapping.  

Basalt carbonation is sufficiently rapid that siderite formed after only 4 weeks of reaction 

in this study, indicating that rapid mineral trapping is possible in basalt reservoirs. This is very 

fast when compared with the time-scales for mineral trapping in sandstones, which may take 

hundreds to thousands of years
3
. Documenting basalt formations with numerous fractures and 

pores that provide a large reactive surface area will be an important aspect when selecting 

reservoirs for GCS. The permeability-porosity relationship is different in the powder packed 

beds and the fractured basalt due to the fundamental difference in pore structure and connection
75

, 

which may influence the distribution of reaction products in basalt rock. Future studies with 

fractured basalt cores are necessary to investigate the effect of carbonation reactions on transport 

in microfractures and pores inside bulk rocks. 
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Supporting Information 

 

 

Figure S3.1 SEM-SE images of a) unreacted flood basalt, b) siderite growth in pyramid 

geometry in flood basalt packed bed, d) siderite in column geometry in flood basalt packed bed, 

d) unreacted serpentinized basalt, e) and f) surface of the reacted serpentinized basalt powder at 

two magnifications, g) unreacted basaltic glass, and h) and i) surface of the reacted basaltic glass 

powder at two magnifications. 
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Figure S3.2 Photos of the olivine packed beds after reaction. a) 0-53 µm forsterite packed bed. b) 

0-53 µm olivine packed bed. c) 53-106 µm olivine packed bed. 

 

 

 

Table S3.1 WDS data point composition of the precipitate shown in Figure 3.3f 

Na 

wt% 

Mg 

wt% 

Al 

wt% 

Si 

wt% 

K 

wt% 

Ca 

wt% 

Mn 

wt% 

Fe 

wt% 

Ti 

wt% 

O 

wt% 

C 

wt% 
Total Composition 

0.05 3.00 0.02 0.07 0.00 0.52 0.68 40.56 0.03 43.21 10.92 99.04 
Fe0.81Mg0.14Ca

0.01CO3 
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Raman spectroscopy standards information 

The following standards are from RRUFF online database.  

Name: Siderite 

RRUFF ID: R050349 

Ideal Chemistry: FeCO3 

Locality: Litchfield County, Connecticut, USA 

Source: California Institute of Technology  

Owner: RRUFF 

Description: Grayish brown rhombohedral cleavage fragment 

Status: The identification of this mineral has been confirmed by X-ray diffraction and 

chemical analysis 

Chemistry 

RRUFF ID: R050349.2 

Sample Description: Microprobe Fragment 

Measured Chemistry: (Fe0.83Mg0.09Mn0.05Ca0.01)Σ=0.98CO3 

Raman Spectrum: R050349 Unoriented 532nm 

Name: Calcite 

RRUFF ID: R040070 

Ideal Chemistry: CaCO3 

Locality: Pryor Mountain, Big Horn County, Montana, USA 

Source: University of Arizona Mineral Museum 6965 [view label]  

Owner: RRUFF 

Description: Orange scalenohedral crystals 
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Status: The identification of this mineral has been confirmed by X-ray diffraction and 

chemical analysis 

Chemistry 

RRUFF ID: R040070.2 

Sample Description: Microprobe Fragment 

Measured Chemistry: (Ca0.99Mg0.01)CO3 

Raman Spectrum: R040070 Unoriented 532nm 

Name: Magnesite 

RRUFF ID: R040114 

Ideal Chemistry: MgCO3 

Locality: Snarum, Norway 

Source: University of Arizona Mineral Museum 7562 [view label]  

Owner: RRUFF 

Description: Tan colored cleavage fragment 

Status: The identification of this mineral has been confirmed by X-ray diffraction and 

chemical analysis 

Chemistry 

RRUFF ID: R040114.2 

Sample Description: Microprobe Fragment 

Measured Chemistry: (Mg0.98Fe0.01)C1.00O3 

Raman Spectrum: R040114 Unoriented 532nm 
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Figure S3.3 SEM image with EDS analysis for the siderite in flood basalt  

 

 

 

 

Figure S3.4 XRD spectra of unreacted and reacted flood basalt, with standards of siderite 

(FeCO3, PDF 00-029-0696) and montesommaite (K2.15Na0.1Al2.25Si5.75O16(H2O)2.5, PDF 04-017-

1392) that match the new peaks after reaction. Comparison between XRD spectra before and 

after reaction shows new peaks after reaction. The new peaks at 2θ = 31.9 and 24.7 match with 

siderite standard, indicating the formation of siderite after reaction.  

 

  

10 20 30 40 50 60 70

reacted flood
basalt
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basalt
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Mass Balance Calculations  

Flood basalt 

To list mass balance equations to relate the concentrations of elements in the bulk 

solution to the amounts of silicate minerals that dissolved, we make the following assumptions: 

1. Ca and Mg are trace amounts in siderite that forms, and the siderite is pure FeCO3 

2. All Al is from plagioclase.  

3 The silicate minerals dissolve congruently. 

The K-rich matrix can be normalized to the composition 

Ca0.04Na0.33K0.64Fe0.01Al1.06Si2.93O8, but it is not a single mineral phase. Its dissolution would 

contribute dissolved Al, but Al concentrations are very low, indicating very limited dissolution 

of the matrix. Consequently, we neglect the dissolution of the K-rich matrix in the mass balance 

calculations. 

We also neglect serpentine and orthopyroxene because these two minerals only make up 

1% of the flood basalt and they are not very reactive minerals compared to olivine. 

We designate the amount of minerals (in mmol) that dissolved with letters and indicate their 

exact compositions and total abundances (by mass percentage) below. 

plagioclase = a, pyroxene = b, olivine =c 

a plagioclase 31% Ca0.59Na0.4Fe0.03Al1.57Si2.4O8 

b pyroxene 22% Ca0.63Fe0.48Mg0.83Ti0.03Al0.09Si1.92O6 

c olivine 9% Mg1.21Fe0.78Ca0.01SiO4 

 

K-rich matrix 33% neglect  

 

orthopyroxene 1% neglect  

 

serpentine 1% neglect  
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To solve for the three unknown variables (a, b, and c), we need three unique equations. 

Here we use Ca, Mg, and Al mass balance equations (1-1, 1-2, and 1-3). The Ca and Mg are 

major cations dissolved in the bulk solution. We do not include a mass balance equation for Fe, 

because part of the Fe had converted to carbonate minerals and iron oxides in the bed and is not 

released to the bulk solution.  

Al balance 1.57𝑎 𝑚𝑚𝑜𝑙 = 0.008 𝑚𝑚𝑜𝑙/𝐿 × 0.2 𝐿 (1-1) 

Ca balance 0.59𝑎 + 0.63𝑏 + 0.01𝑐 𝑚𝑚𝑜𝑙 = 0.27 𝑚𝑚𝑜𝑙/𝐿 × 0.2 𝐿 (1-2) 

Mg balance 0.83𝑏 + 1.21𝑐 𝑚𝑚𝑜𝑙 = 0.63 𝑚𝑚𝑜𝑙 𝐿⁄  × 0.2 𝐿 (1-3) 

By solving Eqs. (1-1), (1-2) and (1-3), we calculate the amounts of minerals that had dissolved. 

  mmol 

a plagioclase 0.001 

b pyroxene 0.084 

c olivine 0.046 

Amounts of cations from individual minerals: 

mmol Plag Pyx olivine Sum 

Ca  0.0006 0.0529 0.0005 0.0540 

Mg  -- 0.0697 0.0557 0.1254 

Fe 0.0000 0.0403 0.0359 0.0762 

The percentages of the total released amounts of each element that are estimated to have 

come from specific minerals are given below. 

% Plag Pyx olivine 

Ca  1.09 98.05 0.85 

Mg  0.00 55.61 44.39 
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Fe 0.04 52.89 47.07 

 

Serpentinized basalt 

For serpentinized basalt, the mass balance equations are similar to those performed for 

the flood basalt. We make the same three assumptions used above for the flood basalt.  As with 

the flood basalt we also assume that the K-rich matrix and plagioclase dissolution are negligible.  

However, for the serpentinized basalt, we do include serpentine with an estimated formula of 

Na0.01Mg0.6Al0.27K0.01Ca0.11Mn0.05Fe1.82Si3O9Hx. We do not have a definitive chemical formula 

for the serpentine because of a lack of OH information from the WDS analysis, and this estimate 

introduces some uncertainty into the calculations. 

The K-rich matrix can also release Mn, which is not considered in the Mn balance. This 

may result in the overestimation of olivine and serpentine.  

We designate the amounts (in mmol) of minerals that dissolved with letters. 

plagioclase = a, pyroxene = b, serpentine = c, olivine =d 

a plagioclase 28% Ca0.55Na0.43Fe0.02Al1.57Si2.43O8 

b pyroxene 21% Ca0.83Fe0.25Mg0.85Ti0.03Al0.07Si1.96O6 

c serpentine 14% use assumed formula  

d olivine 1% Mg1.38Fe0.59Mn0.02Si1.01O4 

 K-rich matrix 32% neglect  

 orthopyroxene 1% neglect  

With the addition of an initial dissolving mineral phase, we need an additional equation 

to solve for the four unknowns.  We add Mn mass balance here.  
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Mass balance equations 

Al balance 1.57𝑎 𝑚𝑚𝑜𝑙 = 0.005 𝑚𝑚𝑜𝑙 𝐿 × 0.2 𝐿⁄  (2-1) 

Ca balance 0.55𝑎 + 0.83𝑏 + 0.11𝑐 𝑚𝑚𝑜𝑙 = 0.31  𝑚𝑚𝑜𝑙 𝐿 × 0.2 𝐿⁄  (2-2) 

Mg balance 0.85𝑎 + 0.6𝑐 + 1.38𝑑 𝑚𝑚𝑜𝑙 = 0.64 𝑚𝑚𝑜𝑙 𝐿 × 0.2 𝐿⁄   (2-3) 

Mn balance 0.04𝑐 + 0.02𝑑 𝑚𝑚𝑜𝑙 = 0.02 𝑚𝑚𝑜𝑙 𝐿 × 0.2 𝐿⁄  (2-4) 

By solving Eqs. (2-1), (2-2), (2-3) and (2-4), we can get the amounts of the minerals that had 

dissolved. 

  mmol 

a Plagioclase 0.001 

b pyroxene 0.062 

c serpentine 0.093 

d olivine 0.014 

Released cations from individual minerals: 

mmol Plag Pyx Srpt olivine Sum 

Ca  0.00033 0.0515 0.0102 -- 0.0620 

Mg  -- 0.0527 0.0558 0.0193 0.1278 

Fe 1.2E-05 0.0155 0.1693 0.0083 0.1930 

The percentages of the total released amounts of each element that are estimated to have come 

from specific minerals are given below. 

% Plag Pyx Srpt olivine 

Ca  0.53 82.97 16.49 -- 

Mg  0.00 41.23 43.66 15.12 

Fe 0.01 8.03 87.68 4.28 
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Reaction path modeling done in Geochemists’ Workbench 8.0 

The minerals in the flood basalt were assigned to different end-members that are 

documented in the GWB default database to give the same amount of cations. React temperature 

was set at 100˚C. At 100˚C, 100 bar CO2, the calculated CO2(aq) is 0.81 mol/kg based on Duan 

and Sun’s model (Reference 21). The CO2(aq) was fixed as an open system. 

The flood basalt amount in the packed bed was 3.65 g. Different mineral amounts were 

calculated according to their composition in the basalt.  

The water volume was 200 mL (as in the bulk solution) or 1.26 mL (as inside the packed 

bed). These two water volumes represent bounding conditions for interpretation of the actual 

system. 

Input in React 

Fixed CO2(aq) 

Flood basalt composition 

 

Input formula mol g g 

pyroxene 22% 0.803 g Diopside CaMgSi2O6 0.00053 0.16 

 Ca0.63Fe0.48Mg0.83Ti0.03Al0.09Si1.92O6 

 

Hedenbergite CaFe(SiO3)2 0.00177 0.44 

 simplify Ca0.65Fe0.5Mg0.85Si2O6 0.0035 mol Enstatite MgSiO3 0.00124 0.12 0.15 

olivine 9% 0.329 g Forsterite Mg2SiO4 0.00112 0.16 

 Mg1.21Fe0.78Ca0.01Si1.00O4 

 

Fayalite Fe2SiO4 0.00073 0.15 

 simplify Mg1.21Fe0.79SiO4 0.0018 mol 

     serpentine 1% 0.037 g Greenlite Fe3Si2O5(OH)4 

 

0.03 

 Fe : Mg=2.45 

 

Chrysotile Mg3Si2O5(OH)4 

 

0.01 

 K-matrix 33% 1.205 g K-Feldspar KAlSi3O8 0.00287 0.80 

 Ca0.04Na0.33K0.64Fe0.01Al1.06Si2.93O8 

 

Albite NaAlSi3O8 0.00154 0.41 0.84 

simplify Na0.35K0.65AlSi3O8 0.0044 mol 

     orthopyroxene   1% 0.037 g Enstatite MgSiO3 

 

0.03 

 Mg : Fe=1.31:0.59 

 

Ferrosilite FeSiO3 

 

0.01 

 plagioclase feldspar     31% 1.132 g Anorthite CaAl2Si2O8 0.00247 0.69 

 Ca0.59Na0.40Fe0.03Al1.57Si2.40O8 

 

Albite NaAlSi3O8 0.00167 0.44 

 simplify Ca0.59Na0.4Al1.58Si2.4O8 0.0042 mol 

     Suppress: Dolomite-ord, Dolomite, Dolomite-dis, Quartz, Tridymite, Chalcedony, Cristobalite 
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1) 200 mL water 

This is the boundary condition in which the total amount of flood basalt in the packed bed 

would react with all 200 mL of water in the reactor as a well-mixed system.   

 

 

 

Figure S3.5 a) Carbonate mineral formation and pH evolution as a function of reaction progress 

in 200 mL water; b) Dissolved ion concentrations in the aqueous phase as a function of reaction 

progress in 200 mL water; c) Secondary silicate mineral formation and pH evolution as a 

function of reaction progress in 200 mL water; d) Gibbsite formation as a function of pH in 200 

mL water. 
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2) 1.26 mL water 

This is the boundary condition in which the flood basalt in the packed bed only reacts 

with the 1.26 mL of water present in the pore space of the packed bed.   

 

 

 

Figure S3.6 a) Carbonate mineral formation and pH evolution as a function of reaction progress 

in 1.26 g water; b) Carbonate mineral formation as a function of pH in 1.26 g water; c) 

Secondary silicate mineral formation and pH evolution as a function of reaction progress in 1.26 
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g water; d) Dissolved ion concentrations in the aqueous phase as a function of reaction progress 

in 1.26 g water; e) Dissolved Na
+ 

concentration in the aqueous phase as a function of reaction 

progress in 1.26 g water. 

 

 

 

Figure S3.7 Calculated saturation indices of magnesite, siderite and calcite in the bulk solution 

based on measured dissolved ions.  
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Chapter 4. Carbon Sequestration in 

Fractured Basalt Cores 

Abstract 

Basalt is a potential host rock for geologic carbon sequestration due to its high mineral 

trapping capacity. Fractures in basalt can provide substantial surface area for reactions, and 

limited mass transfer in fractures can allow accumulation of carbonate-forming cations. In this 

study, flood basalt and serpentinized basalt with artificially created fractures were reacted in 

water equilibrated with 100 bar CO2 at 100˚C or 150˚C for up to 40 weeks. Carbonation in the 

basalt fracture was experimentally observed as early as 6 weeks. Mg- and Ca-bearing siderite 

minerals were observed in both basalts reacted at 100˚C, and Mg-Fe-Ca carbonate minerals 

formed in the fractured flood basalt cores reacted at 150˚C. Carbonate minerals in the flood 

basalt had a maximum amount in a particular location, but this carbonate-rich zone did not 

completely block the fracture. X-ray µCT segmentation shows that 5.4% and 15% of the flood 

basalt fracture was filled with carbonate precipitates after 40 weeks of reaction at 100˚C and 

150˚C, respectively. Limited siderite clusters were found in localized areas in the serpentinized 

basalt. A reactive transport model was developed in CrunchTope to examine how geochemical 

gradients drive silicate mineral dissolution and carbonate precipitation in the fracture. The model 

predicts the formation of siderite-dominant carbonate minerals as early as 1 day. The predicted 

location of maximum siderite abundance is consistent with experimental observations, and the 

predicted total carbonate volume predicted is comparable to that estimated by CT segmentation.   
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4.1 Introduction 

Geological carbon sequestration can reduce CO2 emissions to the atmosphere by injecting 

captured CO2 into deep geologic formations 
3, 76

. Most injections are in porous sedimentary rocks, 

which have large storage capacity but limited mineral trapping capacity 
77

. Basalt is a potential 

host rock for CO2 sequestration due to its great mineral trapping capacity of CO2 
12

. Basalt is an 

igneous rock rich in Ca-, Mg- and Fe-bearing minerals that can react with dissolved CO2 to form 

carbonate minerals, thereby trapping the injected CO2 in stable solid phases. A recent report on 

the CarbFix site in Iceland revealed that 95 % of the injected CO2 into basalt was converted into 

carbonate minerals within 2 years 
19

. At the Big Sky basalt pilot project in Washington State, 

extensive  carbon mineralization of injected CO2 was also observed after two years 
22

. These 

timescales for mineral trapping are orders of magnitude shorter than those anticipated for 

sandstone reservoirs 
78

. 

 Basalt is rich in divalent cations for carbonation reactions. Major divalent cations such as 

Ca, Mg and Fe present in carbon mineralization source minerals, such as olivine [(Fe,Mg)2SiO4], 

pyroxene [(NaCa)(Mg,Fe,Al)(Al,Si)2O6] and plagioclase feldspar [NaAlSi3O8-CaAl2Si2O8] 
14

. 

Olivine has the fastest dissolution rate and largest mineral trapping capacity among common 

basalt-forming minerals 
14, 35

.. The injected CO2 dissolves in water, decreases the pH and 

accelerates the dissolution of the silicate minerals. The dissolution of the minerals releases 

divalent cations and also increases the pH, which increases the amount of carbonate ion present.  

Ultimately carbonate minerals that include calcite, magnesite, siderite and ankerite can 

precipitate 
14, 18

. Olivine can be weathered to serpentine, which is hydrous magnesium iron 

silicate mineral 
14

. 
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The majority of exposed reactive surfaces in basalt reservoirs are located in pores and 

fractures. Solute transport in such fractures can be limited to diffusion, and overall transport 

processes may be influenced by the coupling of transport processes and geochemical reactions. 

The formation of carbonate minerals has the potential to (a) inhibit further mineral trapping by 

blocking fracture throats, (b) self-accelerate mineral trapping by creating new fractures through 

the volume expansion associated with replacement of silicate minerals with carbonate minerals 
18

, 

or (c) have no effect on trapping if carbonate minerals form uniformly in the fracture. Our 

limited understanding of the interaction between diffusive transport and dissolution/precipitation 

reactions in fractured basalt poses challenges to accurately estimating the storage capacity of 

fractured basalt. The objectives of this study are to determine when, where and what types of 

carbonate minerals form in fractures of basalt and to explore the influence of carbonation on 

transport and reactions in the fracture.  

 

4.2 Results and Discussion 

4.2.1 Siderite and Fe-Mg-Ca Carbonate formation  

Mg- and Ca-bearing siderite (Figure 4.1, Figure S4.1) was observed in the fractures of the 

flood basalt (FB) and serpentinized basalt (SB) after reacting in water equilibrated with 100 bar 

CO2 at 100˚C as early as 6 weeks. Raman spectra of the precipitates have diagnostic peaks for 

siderite (Figure S4.2). For the flood basalt, siderite formed on the surface of the basalt fracture. 

Typical precipitate sizes increased from 20 µm at 6 weeks to ~100 µm at 40 weeks. For 

serpentinized basalt, siderite formed in large mm-scale clusters with individual crystals growing 

in different orientations (Figure S4.1a). The clusters tended to occur on red areas that could be 
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large serpentine or pyroxene grains covered by iron oxides (Figure S4.3). A small amount of 

amorphous silica formed on the siderite surfaces. For flood basalt reacted at 150˚C, a Fe-Mg-Ca 

carbonate formed with similar amounts of Fe and Mg and less Ca (Figure 4.1b). The richer Mg-

content of the this carbonate shifted the Raman peaks to higher frequency than those of the Fe-

rich siderite formed at 100˚C (Figure S4.2) 
67

, and the precipitates were 100~200 µm after 40 

weeks. Previous long-term static experiments with different flood basalts also showed significant 

differences in precipitate compositions and morphologies 
57

.  

 

Figure 4.1 Carbonate minerals formed in the milled fracture surfaces of flood basalt after 

reactions for 40 weeks with a) a siderite precipitate formed at 100˚C in water equilbrated with 

100 bar CO2 and b) Fe-Mg-Ca carbonate formed at 150˚C in water equilibrated with 100 bar CO2. 

 

Siderite has been predicted to form in basalt in previous studies but has only rarely been 

observed in field and laboratory research. In the CarbFix project calcite formed at the site 

conditions of 20-30˚C and alkaline pH of 8.4-9.4 
19

. Other carbonate minerals such as ankerite, 

siderite and mixed Ca-Mg-Fe carbonates were not observed although they were supersaturated in 

the monitoring fluids 
79

. In the Big Sky CO2 injection into the Columbia River Basalt (CRB), 
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ankerite nodules [Ca(Fe,Mg,Mn)(CO3)2] precipitated in the basalt pores at the site conditions of  

77 bar and 36-44˚C 
22

. In laboratory study in which similar CRB as in the Big Sky project 

reacted in  CO2-rich water for 180 days, calcite was identified at 120~255 bar, 55~116˚C while 

kutnohorite [Ca(Mn,Ca)(CO3)2] formed at 310 bar and 137˚C. 
80

 An experimental study with 

Icelandic basaltic glass found that the main carbonation products are Ca-Mg-Fe carbonates for 

reactions below 100˚C and that calcite became dominant for reactions above 150˚C. 
26

 Another 

study with mid-ocean ridge basalt (MORB) provided evidence that Fe-bearing magnesite formed 

at 150˚C and 280 bar CO2 
23

. In our previous study with powder packed beds of the same flood 

basalt, Mg- and Ca-bearing siderite was observed at 100˚C, 100 bar CO2 within 4 weeks 
55

. 

In this study the observed precipitation of siderite in the flood basalt fracture was 

consistent with modeling results and measured bulk fluid compositions. The precipitates 

observed were carbonate solid solutions with dominant Fe and Mg and Ca substitutions (Figure 

4.1). The reactive transport modeling predicts carbonate mineral formation as early as 1 day and 

indicates that siderite is the thermodynamically most favorable carbonate mineral in the basalt 

after 40 weeks of reaction (Table 4.1). The model can only predict pure carbonate mineral end-

members, which is a limitation when its output is compared to experimental results with 

carbonate minerals that contain cation substitutions. Calcite is predicted to precipitate quickly 

and to then re-dissolve (Table S4.1). Although magnesite is supersaturated sometimes (Figure 

S4.4), little magnesite is predicted to form. Siderite and calcite quickly reach saturation status 

and precipitate (Figure S4.4).  In the experiment, the bulk solution chemistry provides 

information on basalt dissolution from the top surface of the cores.  After 40 weeks of reaction 

the most abundant divalent cation in the bulk solution was Mg
2+

 followed by Ca
2+

 and Fe
2+

 

(Figure S4.5). The model-predicted order of Mg
2+

, Ca
2+

 and Fe
2+ 

concentrations in the fracture 
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from highest to lowest (Figure S4.6) is consistent with the experimentally measured 

concentrations in the bulk solution. The solubility product (Ksp) of siderite is two orders of 

magnitude smaller than magnesite and calcite (Table S4.2). At the experimental conditions, 

siderite has the highest calculated saturation indices in the bulk solution (Figure S4.7), followed 

by magnesite and calcite. The calculated pH is 3.2 initially and rises to 4~5 after reaction both in 

the bulk solution and the model system (Figure S4.7d, Figure S4.8).  

Table 4.1 Estimated carbonate mineral volume in the 100 µm fracture of the cores reacted for 

40weeks 

Quantification methods 40-week samples FB 100C SB 100C FB 150C 

Modeling prediction of 

precipitate volume in the 

fracture domain (mm
3
) 

Calcite 0 0 0.70 

Magnesite 1.89×10
-4

 3.86×10
-5

 1.25 

Siderite 1.04 0.51 1.42 

Total carbonate 1.04 0.51 3.37 

CT segmentation of precipitates 

in the fracture (mm
3
) 

Precipitates 1.73 0.39 7.09 

Fraction
a
 5.43 % 0.88 % 14.75 % 

a
 Percentage of the initial fracture volume that becomes filled with carbonates.   

 

4.2.2 Uneven distribution of precipitates 

Carbonate minerals were unevenly distributed along the flood basalt fracture as observed 

using CT imaging (Figure 4.2). More siderite precipitated on the milled surface (Figure 4.2b) 

than the polished smooth surface (Figure 4.2d). The precipitate volume in every 5 mm layer from 

the fracture inlet to the bottom was estimated by CT segmentation (Figure 4.3a, Figure S4.9). For 

flood basalt reacted at 100˚C, limited siderite formed near the fracture inlet. More siderite 

formed towards the middle and the amount decreased toward the bottom of the fracture. The 

location of the maximum siderite abundance occurred at 10-25 mm from the fracture inlet. Some 

carbonate precipitates were large enough to span the 100-µm fracture. Individual precipitates 
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were generally larger at 150˚C than at 100˚C (Figure 4.2e). CT segmentation showed that most 

carbonate precipitates formed at distances 10 mm or more from the fracture inlet (Figure S4.9c). 

As observed with optical microscopy, carbonate minerals formed on the entire fracture surface 

(Figure S4.10c), forming a sugar-like coating after 30~40 weeks of reaction. A lot of smaller 

precipitates (~20 µm) which could not be captured by CT due to resolution limitation were 

observed in the top 3 mm of the fracture (Figure S4.11). The formation of small precipitates may 

have been affected by the cooling and degassing process during sample collection. Larger 

precipitates are probably more representative of the carbonate minerals that formed during the 

cumulative reaction time.  In serpentinized basalt reacted at 100˚C, siderite minerals formed in 

mm-scale clusters at locations deeper in the fracture zone (Figure 4.2h, Figure S4.10b). The 

porphyritic serpentinized basalt contains mm-scale mineral grains. Zones near large pyroxene 

and serpentine grains might have created localized supersaturated environments for precipitation. 

Siderite was less abundant (Figure S4.9a) in serpentinized basalt than in the flood basalt reacted 

at 100˚C. 
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Figure 4.2 X-ray CT images of a) The flood basalt before reaction, b) cross section near the 

milled fracture surface, c) cross section of the middle of the fracture and d) cross section near the 

smooth surface of flood basalt reacted in 100˚C for 40 weeks. e) The flood basalt milled surface 

view and f) the fracture side view of flood basalt reacted in 150˚C for 40 weeks. g) The 

serpentinized basalt before reaction and h) after reaction in 100˚C for 40 weeks. 
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The spatial distribution of carbonate minerals was also analyzed by point counting. The 

point count percentage indicates precipitate presence regardless of size at specific depths within 

the fracture (Figure 4.3a, Figure S4.9). For flood basalt reacted at 100˚C (Figure 4.3a), as total 

siderite in the fracture increased with longer reaction time, the location of the maximum presence 

moved towards the fracture inlet, indicating that siderite built up from the inner part of the 

fracture. The point count trend of carbonate mineral percentage is generally consistent with CT 

segmentation, except that it indicates appreciable presence of precipitates at deeper parts of the 

fracture, especially for the flood basalt reacted in 150˚C (Figure 4.9c). Many of the carbonate 

minerals in the deepest part of the fracture were too small to be resolved by CT, while point 

counting still confirmed the existence of many small precipitates.  

  
Figure 4.3 a) CT segmentation of precipitate volume fraction in each 5-mm long layer along the 

fracture in the 40-week flood basalt sample and precipitate point count percentage on the fracture 

surface. The point count percentage represents the occurrence of carbonates at 110 different 

locations across the fracture surface at a given distance from the fracture inlet. b) Predicted 

siderite volume fraction in each grid cell of the fracture domain of flood basalt reacted at 100˚C 

in reactive transport modeling.  
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Although certain locations were filled with more carbonate precipitates than others, the 

transport pathways into the deeper fracture zone were not blocked in our experiments for as long 

as 40 weeks of reaction. Carbonate mineral formation was also present in deeper fracture below 

the location where most carbonate minerals occur. For flood basalt reacted at 100˚C for 40 weeks, 

the largest siderite abundance appeared 15-20 mm from the fracture inlet (Figure 4.3a). CT 

segmentation estimated that 10.5% of the available fracture space in this 5-mm long region was 

occupied by carbonate minerals. Even in the maximum precipitation zone, there was still enough 

space for solutes to diffuse through the fluid in the fracture. Our previous study with olivine 

packed beds and olivine aggregates also demonstrated that extensive magnesite formation in 

certain locations would not entirely block mass transfer to and reaction in deeper unreacted zones 

27, 81
.  

The spatial distribution of carbonate precipitation is a result of opposing chemical 

gradients along the diffusion-limited dead-end fracture as demonstrated in the reactive transport 

modeling. Confidence in the model was gained by the similar predicted total carbonate volume 

(Table 4.1) with that determined by CT segmentation and similar predicted siderite spatial 

distribution to that observed in the experiment (Figure 4.3a). Dissolved CO2 diffuses into the 

fracture and the concentration of dissolved inorganic carbon is the highest at the fracture inlet 

and decreases with distance into the fracture (Figure S4.12). At the fracture inlet, pH is low 

(Figure S4.8) and the cation concentrations are small as in the bulk solution 
63

. Cations released 

from the minerals on the fracture walls diffuse out of the fracture to the bulk solution driven by 

concentration differences. The distribution of divalent cations along the length of the fracture 

(Figure S4.6) is determined by the interactions of dissolution/precipitation reactions and 
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diffusive transport towards the bulk solution. The predicted siderite formation along the fracture 

(Figure 4.3b) follows similar spatial distribution trends as observed in the experiment. Only a 

limited amount of siderite formed near the fracture inlet. The predicted amount of siderite 

increases sharply below the dissolution-only region and siderite reaches the maximum amount at 

about 10-20 mm from the fracture inlet in flood basalt reacted at 100˚C. The predicted maximum 

carbonate extent occurred at the very top region (<10 mm) of the fracture in the flood basalt at 

150˚C (Figure S4.9d). For serpentinized basalt reacted in 100˚C, although siderite formed on 

several localized areas, in general most siderite was in the deeper fracture zone (Figure S4.12a). 

The predicted maximum siderite location (25 mm) in a 40-week serpentinized basalt core (Figure 

S4.9b) was consistent with that experimental observation. Other potential secondary precipitates 

were also predicted by the model (Figure S4.13-S4.15).  

The model indicated the source minerals for divalent cations for carbonation reactions. 

The main composition difference between the flood basalt and the serpentinized basalt is the 

olivine/serpentine content. The reactive transport modeling shows rapid dissolution of olivine 

and pyroxene that leads to depletion of these minerals within 40 weeks of reaction in the flood 

basalt modeling system reacted in 100˚C and 150˚C (Figure S4.16, S4.17). For serpentinized 

basalt, pyroxene and serpentine are the main sources for divalent cations and dissolve away 

quickly (Figure S4.18). The plagioclase and the K-rich matrix compositions are similarly 

abundant in flood basalt and serpentinized basalt. An appreciable amount of plagioclase 

dissolves during reaction, providing supplementary Ca to the main Ca source of pyroxene. The 

presence of 9% olivine in the flood basalt allows release of more dissolved Fe
2+

 than from the 

serpentinized basalt (Figure S4.6), making it possible for more siderite to precipitate in the flood 

basalt.  
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A divergence of the current model predictions from experimental observations is that 

carbonates are predicted to precipitate and then later dissolve at specific locations nearest the 

fracture inlet (Figure 4.3b). From experimental observations carbonate minerals in the fracture 

continued to increase at all locations until 20~30 weeks of reaction and became almost stable 

until 40 weeks (Figure 4.3a). The size of precipitates increased over time in the flood basalt. No 

obvious re-dissolution happened to the carbonate precipitates within the reaction time. The re-

dissolution of carbonate minerals predicted by the model is probably because the model uses a 

confined-size system with a finite amount of initial silicate minerals. The system can run out of 

primary minerals to buffer the low pH in a CO2-rich open system. The model depicts a porous 

medium that has relevant dimensions to represent the experimental fractured basalt zone. The 

fractured basalt in the experiment was in a closed system and the bulk environment could 

become equilibrated later in the experiment. Moreover, during the experiment, the basalt rock 

surrounding the fracture continued to dissolve and supply cations from near surface zones. 

Because the walls of the fracture are thick and new mineral surfaces can be exposed as 

dissolution occurs, it is not likely that any silicate minerals will be completely dissolved away. 

Overall, the current reactive transport model depicts the chemical gradients along the fracture 

and estimates the carbonate mineral amount very well despite the limitation of allowing 

complete depletion of minerals at specific depths in the fracture. In real basalt reservoirs with 

large spatial scales of reactions in zones moving away from injection sites, it is possible that the 

carbonate minerals precipitated at early stages following CO2 injection will actually re-dissolve 

later.  
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4.2.3 Conclusions 

CO2 mineralization happened rapidly within 6 weeks in fractured basalt in this 

experiment and the reactive transport modeling predicts carbonate formation in as early as 1 day. 

The carbonation products were mainly siderite in this study. Carbonate minerals were unevenly 

distributed along microfractures. The zones of maximum carbonate formation did not block 

prevent further mineral trapping reactions in deeper region within the fracture for the conditions 

of this study.  

 

4.3 Materials and Methods 

4.3.1 Fractured basalt cores 

Columbia River flood basalt (FB) from Pullman, Washington and serpentinized basalt 

(SB) from Valmont Butte, Colorado were purchased from Ward’s Science. The compositions of 

the flood basalt and the serpentinized basalt are listed in Table 4.2 
81

. Multiple cylindrical cores 

with 2.54 cm diameter and 4.3 cm length were made from the two basalts. Each core was cut into 

half cylinders. A straight 11 mm wide groove was milled on one surface using a milling machine 

(Roland Model MDX-40a) with a 0.5 mm diamond bur (Figure S4.19). The milled half-cylinder 

was polished with sandpaper until the groove was 100 µm. The groove depth was determined by 

comparing the z-value of the spots on the groove and the spots on the closest polished surface in 

an optical microscope (ZEISS, Observer Z1). The surface of the other half cylinder was also 

polished. The two half cylinders were attached together to form one cylinder with the 100 µm 

groove in the middle as a dead-end microfracture. The bottom and the side surfaces of the core 
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were coated with epoxy (MasterBond EP42HT-2), only exposing the top surface with the 

fracture opening. 

Table 4.2 Basalt compositions 
64

 

Composition Flood basalt (FB) Serpentinized basalt (SB) 

pyroxene 
22% 21% 

Ca0.63Fe0.48Mg0.83Ti0.03Al0.09Si1.92O6 Ca0.83Fe0.25Mg0.85Ti0.03Al0.07Si1.96O6 

Olivine 
9% 1% 

Mg1.21Fe0.78Ca0.01SiO4 Mg1.38Fe0.59Mn0.02Si1.01O4 

Serpentine 
1% 14% 

 Mg0.6Al0.27Ca0.11Mn0.05Fe1.82Si3O9Hx 

Matrix and glass 
33% 32% 

Ca0.04Na0.33K0.64Fe0.01Al1.06Si2.93O8 Ca0.03Na0.32K0.66Fe0.05Al1.05Si2.94O8 

Plagioclase 
31% 28% 

Ca0.59Na0.40Fe0.03Al1.57Si2.40O8 Ca0.55Na0.43Fe0.02Al1.57Si2.43O8 

Other minerals 
a
 4% 4% 

a 
Other minerals include 1% orthopyroxene, 3% ilmenite in FB; 1% orthopyroxene, 3% of apatite, 

chromite and glass in SB 

 

4.3.2 Batch experiments 

Three batch experiments were conducted. In each batch, five cores were placed on a 

multilevel PTFE holder, which was in a PTFE liner inside of a 600 mL stainless steel high 

pressure vessel (Parr Instrument) (Figure S4.20). Ultrapure water (320 mL in total, 64 mL per 

core) was added to fully immerse the cores at the beginning of the experiment. Reactions with 

FB cores and Batch with SB cores were heated to 100˚C and a third reactor with FB cores was 

heated to 150˚C by heating tapes (Omega, CSi32 Series). A headspace of 100 bar CO2 was 

maintained by a syringe pump (500D, Teledyne Isco). Core samples were collected together with 

64 mL of the bulk aqueous solution in the reactors after reacting for 6, 12, 20, 30 and 40 weeks. 
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Aqueous samples were filtered using 0.2 µm PES syringe filters (Environmental Express). 

Before starting each experiment, 10 bar CO2 was pumped into the reactor headspace and was 

immediately degassed to 1 bar for three times to minimize residual O2. The process of cooling 

and depressurizing for sample collection and restarting the reactor was ~5 hours.  

 

4.3.3 Analytical methods 

The 40-week cores were scanned by X-ray computed tomography (CT) before (Scanco 

uCT 40, voxel resolution 15 µm) and after reaction (Zeiss Xradia Versa 520, 23.8-24.8 µm, and 

Nikon Metrology XTH225, 20.5 µm). CT segmentation on precipitates was done using Ilastic 

code 
82

 (detailed description in SI). After CT scanning of intact cores was performed, the two 

half cylinders were separated. Optical microscopy (LEICA, DFC295) was used to detect 

precipitates along the milled surface. Raman spectra of observable precipitates were collected 

with a laser Raman microprobe using a 532 nm laser (HoloLab Series 5000, Kaiser Optical). The 

precipitate morphology and elemental composition were examined by scanning electron 

microscopy and energy dispersive X-ray spectroscopy (FEI Nova 230). The precipitate 

distribution on the groove was assessed by both CT segmentation on the precipitate volume in 

each 5 mm layer and a point counting station (LEICA, DM2700p) with a 10X objective. The 

point counting was carried out by moving a 100 µm square field of view step-by-step 

horizontally across the 11-mm wide fracture (110 steps) at certain fracture depths and counting 

the number of squares that contained a precipitate regardless of precipitate size or abundance. 

The carbonate point count percentage at each depth is the percentage of the number of squares 

with carbonate in them divided by the total squares counted. Aqueous samples were analyzed by 
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inductively coupled plasma mass spectrometry (Perkin Elmer, Elan DRC II) and ion 

chromatography (Theromo Scientific, DIONEX ICS-1600). 

 

4.3.4 1D reactive transport modeling 

The models were developed in CrunchTope 
83

. Details of the model are in the supporting 

information. The fractured basalt core is modeled as an equivalent porous medium with 

dimensions and water:rock ratios calculated from the geometry (Figure S4.21) of the reactive 

zone of the fracture in the core based on observations from pre- and post-reaction CT scans. A 

constant flux (Dirichlet) boundary, consisting of pure water equilibrated with CO2 at 100 bar and 

the experimental temperature (100˚C or 150˚C), was imposed at the inlet. CO2 fugacity was 

calculated directly in the code 
54

. Diffusion was the only transport mechanism considered in the 

system with fixed diffusion coefficients 
84

. The input of primary minerals was based on mineral 

composition of the basalts 
64

. Calcite, magnesite, siderite, amorphous silica, and gibbsite were 

included as secondary precipitates. The precipitation was defined by volume fraction which was 

updated at each time step according to user-defined specific surface areas (Table S4.3) from 

literature 
85-88

. Mineral dissolution and precipitation are assumed to proceed reversibly according 

to the transition state theory. In the absence of adequate precipitation kinetic data, literature-

reported dissolution rate equations 
89-94

 are applied to account for precipitation rates given the 

assumption of reversible reactions (Table S4.4). 
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Supporting Information 

  

Figure S4.1 Carbonate minerals formed in the milled fracture surfaces with a) siderite cluster on 

in serpentinized basalt reacted at 100˚C in water equilbrated with 100 bar CO2 for 40 weeks, b) a 

siderite precpitate in flood basalt reacted reacted at 100˚C in water equilbrated with 100 bar CO2 

for 20 weeks. 
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Figure S4.2 Comparison of Raman spectra of precipitates on flood basalt reacted at 100˚C and 

150˚C and serpentinized basalt reacted at 100˚C with siderite, calcite and magnesite standards. 

Raman peaks in the range of a) 200-400 cm
-1

; b) 600-900 cm
-1

; c) 1020-1160 cm
-1

. 
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Figure S4.3 Optical microscopic images of a) precipitates at 1 cm from the fracture inlet on the 

milled surface of flood basalt reacted at 100˚C 100 bar for 6 weeks, b) precipitates at 1 cm from 

fracture inlet on the milled surface of flood basalt reacted at 150˚C 100 bar for 12 weeks, c) 

precipitates at 1 cm from fracture inlet on the milled surface of serpentinized basalt reacted at 

100˚C 100 bar for 6 weeks, d) precipitates at 1 cm from fracture inlet on the milled surface of 

serpentinized basalt reacted at 100˚C 100 bar for 12 weeks. 
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Table S4.1 Predicted carbonate volume in the entire fracture during reaction 

Reaction time 6 weeds 12 weeks 20 weeks 30 weeks 40 weeks 

FB 100C (mm
3
)      

total calcite 0.27 0.38 0.25 0.00 0.00 

total magnesite 1.99×10
-4

 2.64×10
-4

 2.63×10
-4

 2.29×10
-4

 1.89×10
-4

 

total siderite 1.01 1.24 1.26 1.21 1.04 

Total carbonate 1.28 1.62 1.51 1.21 1.04 

SB 100C (mm
3
)      

total calcite 0.576 0.627 0.256 0 0 

total magnesite 0.000 0.000 0.000 7.00×10
-5

 3.86×10
-5

 

total siderite 0.288 0.432 0.510 0.529 0.509 

Total carbonate 0.864 1.059 0.766 0.529 0.509 

FB 150C (mm
3
)      

total calcite 1.71 1.51 1.28 0.99 0.70 

total magnesite 1.53 1.49 1.42 1.34 1.25 

total siderite 1.61 1.56 1.51 1.46 1.42 

Total carbonate 4.86 4.56 4.21 3.79 3.37 
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Figure S4.4 Saturation indices of magnesite, calcite and siderite predicted by the model. 

Magnesite is supersaturated in some cases but is not kinetically allowed to precipitate. Depth is 

the distance from the fracture inlet.  

 



 

83 

 

 

 

 
Figure S4.5 Dissolved cations, SiO2(aq), Cl

-
 and SO4

2-
 in the bulk solution of a) flood basalt 

reacted at 100˚C; b) serpentinized basalt reacted in 100˚C; c) flood basalt reacted at 150˚C. 
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Figure S4.6 Predicted dissolved divalent cation concentrations in the fracture domain predicted 

by the model. The concentrations are zero at 0 mm, which is the fracture inlet directly contacting 

the infinite diluted bulk solution in the model. Depth is the distance from the fracture inlet.  
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Table S4.2 Solubility products at 100 bar (calculated from SUPCRT 92) 

Log Ksp 100˚C 150˚C 

siderite -11.489 -12.374 

magnesite -9.408 -10.461 

calcite -9.216 -10.006 

amorphous silica -2.162 -1.959 
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Figure S4.7 Saturation indices of the water in the bulk solution outside of the cores with the 

milled fractures for a) flood basalt reacted at 100˚C and 100 bar CO2; b) serpentinized  basalt 

reacted in 100˚C 100 bar CO2; c) flood basalt reacted at 150˚C and 100 bar CO2. d) Calculated 

pH of the bulk solution in three batches. 
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Figure S4.8 Calculated pH profiles in the fractures of the cores. Depth is the distance from the 

fracture inlet.  
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Figure S4.9 a) CT segmentation of precipitate volume in the 40-week samples and precipitate 

point count percentage on the groove and b) predicted siderite volume fraction inside the fracture 

domain of serpentinized basalt reacted at 100˚C. c) CT segmentation of precipitate volume in the 

40-week samples and precipitate point count percentage on the groove and d) predicted siderite 

volume fraction inside the fracture domain of flood basalt reacted at 150˚C. The point in the 

Point count represents the percentage of precipitation occurrence on a horizontal line. The point 

in the Percentage volume represents the CT segmented precipitate volume in a 5 mm layer. 
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Figure S4.10 Optical micrographs of basalt fracture surfaces before and after reaction. 
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Figure S4.11 Optical micrographs of the groove surface of the fracture in the flood basalt 

reacted at 150˚C for 30 weeks. 
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Figure S4.12 Dissolved inorganic carbon along the fracture. Depth is the distance from the 

fracture inlet.  
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Figure S4.13 Predicted volume fractions of precipitates for flood basalt reacted at 100˚C in 

water equilibrated with 100 bar CO2. Depth is the distance from the fracture inlet.  
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Figure S4.14 Predicted volume fractions of precipitates for serpentinized basalt reacted at 100˚C 

in water equilibrated with 100 bar CO2. Depth is the distance from the fracture inlet.  
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Figure S4.15  Predicted volume fractions of precipitates for flood basalt reacted at 150˚C in 

water equilibrated with 100 bar CO2. Depth is the distance from the fracture inlet.  
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Figure S4.16 Predicted amounts of primary minerals in flood basalt during reaction at 100˚C.  

Amounts of the minerals decrease with time as they dissolve. Depth is the distance from the 

fracture inlet.  
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Figure S4.17 Predicted amounts of primary minerals in flood basalt during reaction at 150˚C.  

Amounts of the minerals decrease with time as they dissolve. Depth is the distance from the 

fracture inlet.  
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Figure S4.18  Predicted amounts of primary minerals in serpentinized basalt during reaction at 

100˚C.  Amounts of the minerals decrease with time as they dissolve. Depth is the distance from 

the fracture inlet.  
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Figure S4.19 Milling pattern 

 

 

 

Figure S4.20 Schematic diagram of experiment set up 
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Precipitate segmentation 

Precipitates observed in the 40-week cores from each set of batch experiments were 

segmented from post-reaction CT scans to estimate precipitate volumes in the milled fractures. 

The reconstructed cores were exported as stacks of image slices perpendicular to the fractures. 

As the cores were not perfectly vertical during the scans, fractures were first aligned in ImageJ 
95

 

using the StackReg plugin 
96

. The fractures were then isolated and the image stack resliced, 

resulting in a series of images parallel to the fracture from the milled surface to the smooth 

surface. Because each core had only 3-6 fracture images depending on the voxel resolution of the 

scan and the contrast often differed significantly between the fracture surfaces and interior, each 

image was segmented separately for optimal resolution. Images were pre-processed in ImageJ to 

remove regions of epoxy that were not considered as available fracture volume for precipitation. 

Thresholding was performed in Ilastik, an interactive software that uses specified feature sizes 

and descriptors (e.g. intensity or texture) to classify pixels and then segments classes by 

minimizing the cut between foreground and background seeds. Manual seeding trains the 

software to identify user-defined pixel classes, which are then segmented by optimizing the 

minimal cut between foreground and background seeds based on weighted combinations of 

intensity and edge filters 
82

.  Here, pixels were classified as precipitate or fracture, and resulting 

binary images were exported for quantification. Precipitate volumes and fractions relative to the 

total fracture volume were then calculated in Matlab for each core based on the voxel resolutions 

of the scans. To compare spatial distributions of the segmentations with the point counting 

results along the fracture surfaces, precipitate volumes were also calculated over 5-mm intervals 

from the fracture inlet to the sealed end. It should be noted that this approach failed to capture 

the precipitates at the base of the FB-150C core due to inconsistent contrast, but overall it 



 

100 

 

provides a reasonable estimate of precipitate volumes within the data quality and resolution of 

the CT images.    

 

1D reactive transport modeling 

To understand how geochemical gradients drive precipitation patterns observed inside the 

fractures, 1D reactive transport models were developed in CrunchTope.
83

 The geochemical 

gradients are generated by the pH-dependent dissolution of minerals in the basalt and the 

diffusion of inorganic carbon into the fracture together with the diffusion of solutes out of the 

fracture.  Because the code is designed for porous media, the system consisting of an open 

fracture surrounded by reactive mineral was modeled as an equivalent porous medium with 

dimensions and water:rock ratios calculated from the geometry in Figure S19.  Based on 

observations from pre- and post-reaction CT scans of these core samples, it was assumed that the 

reactive fluid could penetrate, or interact with, the surrounding rock to a depth of 20 μm on all 

sides of the fracture over the 40-week experiments. This corresponded to an initial porosity of 

30% (i.e. mineral fraction of 70%) and water:rock ratio of 2.5. Although transport is only 

considered in one dimension along the length of the fracture, which was discretized into 152 grid 

cells (0.25 mm in length), each cell was also assigned a width (11.04 mm) and height (0.14 mm) 

to capture the total volume of rock and fluid in the model domain illustrated in Figure S19.  
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Figure S4.21 Conceptual schematic of modeled domain, where the open fracture surrounded by 

reactive basalt surfaces is converted to an equivalent volume of porous medium discretized into 

152 0.25-mm grid cells along the x-dimension parallel to the fracture surface. 

To match experimental conditions in the batch reactors, a constant flux (Dirichlet) 

boundary, consisting of pure water equilibrated with CO2 at 100 bar and the experimental 

temperature (100˚C or 150˚C), was imposed at the inlet. CO2 fugacity was calculated directly in 

the code.
54

 While cations are allowed to diffuse back through the inlet as concentration gradients 

develop, the models do not allow for feedback between the fracture and bulk solution. Results 

for models where the inlet composition was set to that of the actual bulk solution measured at 

experimental sampling points differed negligibly from those where the inlet boundary was 

maintained as pure water, indicating the influence of the bulk solution was insignificant relative 

to cation accumulation within the fracture. A no-flux boundary was set at the bottom of the 

fracture to mimic the sealed end of the core. Diffusion was the only transport mechanism 

considered with fixed diffusion coefficients of 7.5*10
-9 

m
2
/s (100˚C) or 12.33*10

-9 
m

2
/s (150˚C) 

applied for all species.
84
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The primary mineralogy of the serpentinized and flood basalt samples was set based on 

previous calibrations, whereby effluent data from flow-through experiments using the same cores 

and experimental conditions were matched to model outputs by adjusting mineral volume 

fractions within a few percent of wavelength-dispersive spectroscopy (WDS)-derived 

compositions. Because the effluent chemistry data used as a benchmark in the previous 

calibration are sensitive to heterogeneities along fracture pathways and inter-sample variation, 

some mineral abundances were adjusted from the previously calibrated values to be more 

consistent with the WDS analysis. For the flood basalt, 36% of the pyroxene, which was all 

designated as diopside in prior models, was set to hedenbergite to account for the appreciable Fe 

content of the pyroxene (Ca0.63Fe0.48Mg0.83Ti0.03Al0.09Si1.92O6). Additionally, a higher percentage 

of forsterite was included to match the Mg:Fe composition of the olivine 

(Mg1.21Fe0.78Ca0.01SiO4), and the 1% of serpentine present in the samples was neglected. For the 

serpentinized basalt, olivine (1%) was neglected while serpentine was modeled with an 11:4 ratio 

of greenalite:antigorite to match the Fe:Mg ratio in the serpentine of the actual samples 

(Mg0.6Al0.27Ca0.11Mn0.05Fe1.82Si3O9Hx). Primary mineral specific surface area (SSA) values for 

each core sample were applied directly from the previous calibration, where primary mineral 

SSAs were fine-tuned to simulate experimental effluent data. The FB values, which had been 

calibrated to a flow-through experiment at 100˚C, were also used in the 150˚C model given the 

lack of an experimental benchmark for conducting a separate calibration.  

Based on experimental observations, calcite, magnesite, siderite, amorphous silica, and 

gibbsite were included as potential precipitates. All secondary minerals are assigned an initial 

volume fraction of 0 and threshold mineral volume fraction of 10
-6

. The bulk surface area of 

secondary minerals is calculated from this threshold volume fraction until it is exceeded, at 
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which point precipitation begins and the volume fraction is updated at each time step according 

to user-defined SSAs. Here, literature-reported BET specific surface areas were selected for all 

secondary minerals. Porosity is updated each time step in the code based on changes in primary 

and secondary mineral volume fractions. Initial primary and secondary mineral volume fractions 

and SSAs selected for each basalt core are summarized in Table S4.3.   

Table S4.3 Mineral abundances and specific surface areas for reactive transport modeling. 

Mineral 

Flood basalt Serpentinized basalt 

Initial volume 

fraction (%) 

Specific surface 

area (m
2
/g) 

Initial volume 

fraction 

Specific surface 

area (m
2
/g) 

Primary minerals 

Diopside 16 0.0034 14 0.0017 

Hedenbergite 6 0.0034 8 0.0017 

Albite 18 0.0225 13 0.0225 

Anorthite 12 0.0225 19 0.0225 

Antigorite 4 0.18 0 0.18 

Greenalite 11 0.18 0 0.18 

Forsterite 0 -- 8 0.009 

Fayalite 0 -- 5 0.0018 

K-feldspar 33 0.019 33 0.019 

Secondary Minerals 

Calcite -- 0.037
85

 -- 0.037
85

 

Magnesite -- 0.0662
85

 -- 0.0662
85

 

Siderite -- 0.105
86

 -- 0.105
86

 

SiO2(am) -- 0.0225
87

 -- 0.0225
87

 

Gibbsite -- 19
88

 -- 19
88

 

Mineral dissolution and precipitation are assumed to proceed reversibly according to the 

transition state theory. In the absence of adequate precipitation kinetic data, literature-reported 

dissolution rates are applied to both processes. To maintain flexibility, reaction rates are 

calculated directly in the code for a given temperature using the Arrhenius relationship: 

𝑘 = 𝑘25 exp [
−𝐸𝑎

𝑅
(

1

𝑇
−

1

298.15
)] 

The reaction rate at 25˚C (k25) and activation energy (Ea) for each mineral were taken 

from literature where available (Table S4). Parallel rate laws are used to account for reaction pH 
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dependence, where constants for the exponential dependence of a rate on H
+
 (acid mechanism) or 

OH
-
 (basic mechanism) were also taken from literature. Due to a lack of data for Fe-rich 

serpentine, greenalite was assigned the same kinetic parameters as antigorite. Other than fayalite, 

where k25 was set to that of forsterite in our previous study to match effluent Fe data, reported 

reaction rates were applied directly.   

Table S4.4 Mineral kinetic inputs for reactive transport modeling.  

Mineral 

Acid mechanism  Neutral mechanism Basic mechanism 

log k25 

(mol/m
2
/s) 

Ea 

(kcal/mol) 
n

H+
 

log k25 

(mol/m
2
/s) 

Ea 

(kcal/mol) 

log k25 

(mol/m
2
/s) 

Ea 

(kcal/mol) 
n

OH-
 

Diopside -6.36
89

 22.97
89

 0.71
89

 -11.11
89

 9.70
89

 -- -- -- 

Hedenbergite -6.36 22.97 0.71 -11.11 9.70 -- -- -- 

Albite -8.86
89

 16.2
89

 0.50
89

 -12
89

 15.9
89

 -- -- -- 

Anorthite -8.86
89

 16.2
89

 0.50
89

 -12
89

 15.9
89

 -- -- -- 

Antigorite -10.01
90

 16.73
90

 0.45
90

 -12.08
91

 13.53
91

 -- -- -- 

Greenalite -10.01 16.73 0.45 -12.08 13.53 -- -- -- 

Forsterite -6.85
89

 16.06
89

 0.47
89

 -10.64
89

 18.88
89

 -- -- -- 

Fayalite -6.85 22.56
89

 0.47
89

 -12.8
89

 22.56
89

 -- -- -- 

K-feldspar -9.45
92

 12.36
89

 0.50
89

 -12.41
89

 9.08
89

 -21.2
89

 22.49
89

 -0.823
89

 

Calcite -0.3
89

 3.44
89

 1.0
89

 -5.81
89

 5.62
89

 -- -- -- 

Magnesite -6.38
89

 3.44
89

 1.0
89

 -9.34
89

 5.62
89

 -- -- -- 

Siderite -3.74
93

 13.38
93

 0.90
93

 -8.90
92

 15.0
92

 -- -- -- 

SiO2(am) -- -- -- -9.7
94

 18.88
94

 -- -- -- 

Gibbsite -7.65
89

 11.35
89

 0.992
89

 -11.5
89

 14.63
89

 -16.65
89

 19.14
89

 -0.784
89
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Chapter 5. Carbon Sequestration in 

Grand Ronde Basalt 

Abstract 

Basalt is a promising host rock for geologic carbon sequestration due to its high mineral 

capacity. Pilot CO2 injection into basalt reservoirs have been conducted in Wallula, Washington. 

In this study, we investigated carbonate mineral formation in fractured porous Grand Ronde 

basalt, which is similar to the formation into which the pilot-scale project injected CO2. The 

experiment was done with artificial dead-end fractured basalt cores reacting in water equilibrated 

with 100 bar CO2 at 100˚C for up to 40 weeks. Predominant aragonite and a few calcite 

precipitates with trace amounts of Mg, Fe and Mn were observed after 20 and 40 weeks of 

reaction. X-ray computed tomography showed that the calcium carbonate formed mainly along 

the deeper part of the microfracture from the fracture inlet connecting the bulk solution and in 

pores close to the fracture. Appreciable amounts of precipitates were also found in distant pores 

from the fracture in the inner core body. The carbonate minerals in the microfracture occupied 

5.4 % and 12.6 % of the fracture space after 20 and 40 weeks of reaction, respectively. The 

formation of calcium carbonate did not block transport pathways and cease the reaction within 

the experimental time. The carbonation rate was 1.29 ± 0.08 kg CO2/m
3
 basalt·year based on 

experimental results. At this rate it would take 36.5 years to fill the initial available pores in 

Grand Ronde basalt with carbonate minerals, and at that time the basalt would have sequestered 

47 kg CO2 per cubic meter or 22.5 kg CO2 per ton Grand Ronde basalt.  
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5.1 Introduction 

Geologic carbon sequestration is an effective way to mitigate environmental problems 

brought by excessive anthropogenic CO2 emissions to the atmosphere
3, 35

. It involves injecting 

supercritical CO2 into deep geologic formations such as sandstone, saline aquifers and basalt.  

Fe- and Mg-rich (mafic) basalt has large mineral trapping capacity to convert CO2 into solid 

carbonate minerals
12, 97

. CO2 mineral trapping in basalt reservoirs can occur very rapidly in a few 

years as compared to hundreds or thousands of years in sandstone
79

. In the pilot-scale CO2 

injection into basalt in Iceland, 95 % CO2 mineralized to calcite within 2 years
19

. In another pilot 

injection into basalt formation in Washington State, mineralization of injected CO2 to ankerite 

nodules was observed in 2-year post-injection monitoring
22

. 

The dissolution of basalt provides divalent cations including Ca
2+

, Mg
2+

 and Fe
2+

, which 

react with dissolved CO2 to form carbonate minerals. The divalent cation sources are silicate 

minerals in basalt such as olivine, pyroxene and plagioclase. The carbonation reaction with 

silicate minerals in basalt can be generalized in the following equations
14

: 

Mg2SiO4 (olivine) + 2CO2 = 2MgCO3 (magnesite) + SiO2 Eq. 5.1 

CaAl2Si2O8 (anorthite) + CO2 + 2H2O = CaCO3 (calcite) + Al2Si2O5(OH)4 (kaolinite) Eq. 5.2 

Carbonation reactions mostly happen in pores and fractures where transport is controlled 

by diffusion 
55, 63

. The diffusion-limited microfractures and pores allow cations to accumulate 

and reach supersaturation status with respect to carbonate minerals in CO2-rich solution. 

Previous studies investigated carbonation on the surfaces of basalt grains in a bulk solution.
25, 26, 

57, 59, 71
 Experiments with basalt rock cores in flow-through system focus on dissolution 

98
 and 

permeability change 
99

. Our previous work with fractured flood basalt cores and serpentinized 
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basalt cores in static batch system and flow-through system discussed siderite mineral formation 

as well as basalt dissolution and fracture evolution (see Chapter 4). 

In this study, we investigated carbonate mineral formation in porous Grand Ronde basalt 

cores with an artificial dead-end microfracture reacted in water equilibrated with 100 bar CO2 in 

100˚C for up to 40 weeks. The objective of this work is to identify the carbonate formation type, 

determine the location of carbonate minerals and quantify precipitate volume in Grand Ronde 

basalt. Through the analysis, the effect of diffusive transport on carbonation was discussed. 

 

5.2 Materials and Methods 

5.2.1 Fractured Grand Ronde basalt cores 

A large core sample from of the Grand Ronde Formation (1022.3~1022.6 m depth), 

which is similar to the formation into which CO2 was injected near Wallula, WA was obtained 

from the DC-6 well in the Hanford archives at Pacific Northwest National Laboratory. The basalt 

core is porous and contains many mm- to cm-scale vesicles (Figure S5.1). The pores are residual 

air bubbles during basalt formation. Most pores are not connected. Mineral composition of the 

sample is listed in Table 5.1. More information can be found in a published report.
64

  

Table 5.1 Grand Ronde basalt sample composition 

Mineral Composition Formula 

Plagioclase 58% Ca0.51Na0.46K0.03Al1.47Si2.49O8 

Pyroxene 14% Mg0.72Fe0.59Ca0.60Si1.90Al0.12O6 

Ilmenite 3% FeTiO3 

Silica-rich matrix and glass 25 % almost no divalent cations 
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The core was drilled and cut to make multiple smaller Grand Ronde basalt (GB) cores 

with 25.4 mm diameter and 40 mm length. Each core was cut to half cylinders. The surface of 

one cylinder was milled with a 100 µm deep and 11 mm wide straight groove pattern (Figure 

S5.2) using a milling machine (Roland Model MDX-40a) with a 0.5 mm diamond bur. The 

groove depth was determined by comparing the z-value of the spots on the groove and the spots 

on the closest polished surface in an optical microscope (ZEISS, Observer Z1). The two half 

cylinders were then attached together and coated with epoxy (MasterBond EP42HT-2) on the 

side and bottom surfaces, only exposing the top surface with the fracture inlet.  

 

5.2.2 Static batch experiment 

Three of the epoxy-coated fractured basalt cores were put in a PTFE sample shelf, which 

sat in a PTFE liner inside of a 600 mL stainless steel high pressure vessel (Parr Instrument) 

(Figure S5.3). A volume of 192 mL (64 mL per core) of deionized water was added to fully 

immerse the cores. The reactor was heated to 100˚C by heating tape with heat controller (Omega 

Benchtop Controller, CSi32 Series). The headspace was pressurized to 100 bar CO2 and 

maintained during the experiment by a syringe pump (500D, Teledyne Isco). The cores were 

collected one by one after reacting for 6, 20 and 40 weeks. At each sampling time 64 mL 

solution was removed after each core was collected to maintain the same solid to water ratio in 

the reactor. Liquid samples were taken from the removed solution and filtered by 0.2 µm filters. 

The collected core samples were air-dried. The process of cooling and depressurizing for sample 

collection and restarting the batch was completed within 5 hours. Before being heated and 

pressurized, the vessel was flushed with 10 bar CO2 for three times to remove residual O2. 
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5.2.3 Analytical Methods 

The three basalt cores were scanned by X-ray computed tomography before (Scanco uCT 

40) and after reaction (Nikon Metrology XTH225, Zeiss Xradia Versa 520). The voxel resolution 

of the CT images was 22.5 µm for the 6-week and 20-week samples and 15.5 µm for the 40-

week sample. The precipitate volume was assessed by CT segmentation using ORS Visual and 

ImageJ. Pore area percentage on each CT slice was calculated in ImageJ using Zen threshold. 

Then each core was cut open by the fracture sides. Optical microscopy (LEICA, DFC295) was 

used to detect precipitates along the groove surface. The precipitates were then scanned via 

Raman spectroscopy (HoloLab Series 5000 Laser Raman Microprobe, Kaiser Optical) with a 

532 nm laser and a 50 power objective that probes a 2-3 μm diameter area. The Raman spectra 

were compared with different carbonate mineral standards from the RRUFF database. The 

precipitate morphology and elemental composition were examined by scanning electron 

microscopy and energy dispersive X-ray spectroscopy (SEM-EDS, FEI Nova 230). A thin 

section of the 20-week sample was prepared and the chemical composition of the precipitates 

was analyzed by an electron microprobe (JEOL JXA-8200) with wavelength-dispersive 

spectrometry (WDS). Aqueous samples were analyzed by inductively coupled plasma mass 

spectrometry (Perkin Elmer, Elan DRC II) and ion chromatography (Theromo Scientific, 

DIONEX ICS-1600). 
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5.3 Results and Discussion 

5.3.1 Identification of precipitates 

The precipitates are calcium carbonate. Most of the precipitates formed in the Grand 

Ronde basalt had a needle or star shape (Figure S5.4, Figure S5.5). The size of the precipitates 

was in the mm-scale. The precipitates were crystal clear. Raman spectra of the large needle and 

star shape precipitate crystals formed in the 20-week basalt and the 40-week basalt match well 

with an aragonite standard from the RRUFF database (Figure 5.1). The SEM-EDX spectra 

confirmed that the rod-shaped precipitates are calcium carbonate (Figure 5.2a). Some µm-scale 

hexagonal shape calcium carbonate minerals (Figure S5.6) with trace amounts of Fe, Mg and Mn 

were also observed (Figure 5.2b Figure S5.7). This diamond precipitate was identified as calcite 

by Raman spectroscopy (Figure 5.1).  Some carbonate minerals were covered by Si-rich 

secondary precipitates, which might be amorphous silica (Figure S5.7). Precipitates looking like 

small round white balls were found on the part close to the fracture inlet of the 20-week sample, 

which might be amorphous silica (Figure S5.4d). 
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Figure 5.1 Raman spectra of the rod and star shape precipitates formed in Grand Ronde basalt 

with different carbonate mineral standards from the RRUFF database. 
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Figure 5.2 a) SEM-EDX on a rod-shape precipitate on the surface in 20-week core with gold 

coating b) SEM-EDX on diamond-shape precipitates in 20-week core with gold coating 

 

Aragonite and calcite are polymorphs with the same chemical composition (CaCO3) but 

different crystal structures. Aragonite has an orthorhombic structure, in which cations are in 9-

fold coordination to carbonate oxygens 
100

. Calcite has a hexagonal structure, in which the cation 

is in 6-fold coordination with oxygen 
101

 Cations such as Sr
2+

 and Ba
2+

 that are larger than Ca
2+

 

are common substitutes in aragonite, while smaller cations such as Mg
2+

 are found more 

frequently in calcite 
102

. This explains why the aragonite was almost pure calcium carbonate 

(Figure S5.6) while the calcite contains trace amounts of Fe and Mg (Figure 5.2).  
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The majority of the precipitates were aragonite and there were a few calcite precipitates. 

The formation preference of aragonite and calcite is affected by both temperature and the Mg/Ca 

ratio in the solution 
102

. Natural observations indicate that calcite is more likely to form in cold 

water than aragonite 
103

. Previous study shows calcite tends to form in lower Mg:Ca ratio than 

aragonite 
103

. At 10˚C, Mg:Ca ratio in the solution needs to exceed 4 in order to form aragonite 

103
. However, when temperature is above 30˚C, aragonite can precipitate at much lower Mg:Ca 

ratio (~0.5). In some experiments, calcite formed initially and then aragonite began to nucleate 

and grow because the solution Mg:Ca ratio increased as precipitation proceeded 
102

. 

Alhough the Grand Ronde basalt is similar to the formation into which CO2 is injected in 

the pilot-scale project in Wallula, WA, the carbonation products are calcium carbonate with 

predominant aragonite in our study, while ankerite Ca(Fe,Mg,Mn)(CO3)2 was observed in the 

pilot-scale field study
22

. In the field injection, the temperature was about 36~44˚C and pressure 

was ~77 bar, which were different with this study
22

. Detected Ca
2+

 and Mg
2+

 concentrations are 

several times higher after equilibrium
22

. Other studies also showed that different carbonate 

products could form in different conditions in basalt. Experiments using basaltic glass showed 

that Ca-Mg-Fe carbonates formed at < 100˚C but at > 150˚C calcite became the dominant 

carbonate type 
26

. Our previous study with flood basalt cores also showed that siderite formed at 

100˚C and Fe-Mg-Ca carbonate formed at 150˚C (Chapter 4). 

Bulk solution chemistry provides information on basalt dissolution. The Grand Ronde 

basalt is rich in Ca, Mg and Fe. Ca
2+

 has the largest concentration in the bulk solution, followed 

by Mg
2+

. Very limited Fe
2+

 and Mn
2+

 were detected (Figure S5.8). It is possible that some of the 

dissolved Fe
2+

 reacted with residual O2 in the system to form iron oxides. The Mg:Ca ratio was 

0.6, favorable for aragonite to form at 100˚C.. There was a lot of Na
+
 (50-70 mmol/L) in the bulk 
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solution as well as appreciable amounts of Cl
-
 and SO4

2-
, which were probably from evaporated 

residual brine left inside the porous basalt. The calculated pH in the bulk solution was 5.1~5.3 

(Figure S5.9), higher than the bulk solution pH of 4 in our previous batch experiments with flood 

basalt and serpentinized basalt cores. The pH and the saturation indices (Figure S5.10) based on 

the measured concentrations and calculated dissolved CO2 
54

 were calculated in SpecE8 in 

Geochemists’ Workbench. Saturation indices changed over time. Multiple carbonate minerals 

including dolomite, rhodochronsite, calcite, magnesite, aragonite, siderite were supersaturated. 

However, the majority of the precipitates observed in the Grand Ronde basalt core were 

aragonite. The formation of carbonate minerals not only depends on supersaturation status but 

also on the kinetics of nucleating and growing a particular precipitate. For example, dolomite is 

often supersaturated in a simple reaction path calculations but it is rarely observed to precipitate 

in a variety of experimental and natural conditions 
102

.  

 

5.3.2 Location of precipitates 

Calcium carbonate minerals mostly formed along the fracture although the entire Grand 

basalt core was porous (Figure 5.3, Figure S 5.11). The fracture area was about 0.2 % of the core 

cross section on each CT image slice. The pore area percentage on each cross section slice along 

the fracture in the samples iss shown in Figure 5.4. Locations with several large pores have pore 

area percentage as high as 10 % (4~10 mm in GB 6 w core). The lowest pore area percentage 

was about 1 % (0~10 mm in GB 40 w core), indicating that the artificial fracture size had very 

little contribution to the overall basalt core porosity. However, the fracture was the main channel 

that was connected to the bulk solution. Diffusive transport and chemical reactions of divalent 

cations and dissolved CO2 primarily took place along the fracture. Most visible pores in the 
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basalt were not connected. The lack of transport pathways largely inhibited the transport of 

solutes from the fracture into the inner basalt body. Some aragonite minerals were observed in 

the pores that were directly connected to the fracture (Figures S5.4b, S5.5b, S5.5d, S5.11, and 

S5.12). After long reaction times, carbonate precipitates were also found in distant pores that had 

no obvious connection with the fracture (Figure 5.3, Figure S5.13). This observation indicates 

that dissolved CO2 can migrate into the inner porous Grand Ronde basalt body and that 

carbonation reactions can happen there if enough time is given.   

 

Figure 5.3 3D view of the 40-week core sample and segmented precipitates 
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Figure 5.4 Pore area percentages on the core cross section and pre- and post-reaction CT images. 

The entire core porosity based on CT segmentation was 4.04 %, 4.83 % and 2.09 % for the pre-

reaction 6-week, 20-week and 40-week core, respectively. 

 

Although the basalt cores were porous, the presence of carbonate minerals depends more 

on the distance from the bulk solution than on the porosity of the surrounding rock (Figure 5.4). 

Very limited precipitates were observed after 6-week reaction. Lots of rod-like precipitates 

formed below 15 mm from the fracture inlet after 20 weeks of reaction. After 40 weeks of 

reaction, massive star-shape precipitates formed below similar depth (15 mm) along the fracture. 

The star-shape aragonite could be a result of multiple aragonite needles growing in different 

directions. The precipitates were large enough to fill across the 100 µm groove. 
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The spatially localized formation of calcium carbonate within the fracture was a result of 

opposing chemical gradients from the fracture inlet to the dead-end 
27, 55, 63

. The bulk solution 

was rich in dissolved CO2 but contained very limited cations for carbonation reaction. The 

fractured porous basalt core had no CO2 inside initially. Dissolved CO2 diffuses into the core 

mainly through the microfracture. As the reaction went on, dissolved cations were released out to 

the solution in the fracture and pores. Cations diffused out mainly from the fracture to the bulk 

solution. Localized cation concentrations along the fracture were determined by both diffusive 

transport and dissolution/precipitation reactions. Cation concentrations were lower near the 

fracture inlet which contacted the bulk solution. Regions away from the fracture inlet contained 

higher cation concentration and were more favorable for carbonate minerals to precipitate. 

Carbonate minerals were also found in further pores away from the fracture at bottom part of the 

core, indicating that dissolved CO2 could diffuse from the fracture into the basalt body and could 

react with dissolved cations there. This observation also revealed that carbonation reactions not 

only happen on the fracture surface but also can occur in larger region of the porous basalt body.  

 

5.3.3 Quantification of precipitates 

The amounts of secondary precipitates were quantified by CT segmentation. The 

precipitate area per CT slice as a function of distance from the fracture inlet shows a clear spatial 

distribution trend (Figure 5.5a, Figure S5.14). The total precipitate volume can be calculated by 

multiplying the precipitate area in each slice with the voxel resolution and summing the numbers 

together (Figure 5.5b). The carbonate minerals that formed in the 100 µm fracture made up 32% 

and 39% of the total carbonate precipitate in the entire basalt core reacted for 20 weeks and 40 

weeks, respectively. More than half carbonate minerals were also located in both sides of the 
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milled 100 µm groove and in adjacent pores. Not much precipitates were found in the side of the 

milled fracture in our previous study with flood basalt and serpentinized basalt cores. The flood 

basalt and serpentinized basalt had very little porosity beyond that of the milled fracture. The 

higher porosity of the Grand Ronde basalt probably facilitated further diffusion into the narrow 

zone and rock body, which led to carbonation reactions in these regions. 

 

Figure 5.5 a) Precipitate area in each round cross section CT slice from segmentation. b) Total 

precipitate volume in the entire core, in the 100 µm fracture and precipitate volume fraction in 

the fracture.  

 

 

Overall the carbonation products increased over time. The formation of calcium 

carbonate minerals did not block the transport pathways into deeper zone within the reaction 

time in this study. It was estimated that about 12.6 % of the 100 µm fracture volume was 

occupied with secondary precipitates (Figure 5.5b). There was still plenty of space for future 

reactions. As the reaction goes on, it is also expected that more carbonate minerals would form in 

distant pores far away from the microfracture. 

The carbonation rate is almost constant during 6-40 weeks of reaction (Figure 5.5b). The 

first 6 weeks in which carbonates did not form may have been needed for the solution to become 



 

119 

 

sufficiently supersaturated to overcome the nucleation barrier. After nucleation occurred, 

carbonate growth was almost linear. The carbonation rate calculated using the 20-week and 40-

week point is 1.29 ± 0.08 kg CO2/m
3
 basalt·year or 1001 ± 60 cm

3
 CaCO3/m

3
 basalt·year, 

assuming that all precipitates are aragonite (2.93 g/cm
3
). Each core had a mass of 35-36 g. The 

average volume was 17 cm
3
. The average porosity of the three cores was 3.65 %. Assuming that 

in the Grand Ronde basalt that aragonite only precipitates in available pore space (i.e., an initial 

pore volume of 36526 cm
3
/m

3
 basalt) and that the carbonation rate remains constant, it would 

take 36.5 years to completely fill the pore space at 100˚C. It would take longer in lower reaction 

temperature. The mineral trapping capacity of the Grand Ronde basalt under this condition is 47 

kg CO2/m
3
 basalt. Natural analogs have shown that up to 70 kg of CO2 can be stored in a cubic 

meter of basaltic rock 
104

, suggesting that our estimation is reasonable. For the glauconitic 

sandstone aquifer, the total amount of CO2 trapped in mineral phases after 100,000 years is about 

17 kg/ m3 medium by simulation study
105

. For the Gulf Coast sediments, the mineral trapping 

could reach 90 kg CO2/ m
3
 medium after 100,000 years

105
. CO2 mineral trapping is much more 

rapid in basalt and in sandstone reservoirs. In the Big Sky project, 1000 metric tons of CO2 was 

injected into a 59 m Grand Ronde basalt formation layer (828-887 m depth)
22

. A volume of 

21236 m
3
 basalt would be required to mineralize all of the injected CO2, which means that CO2 

needs to spread out to 11-m radius circle from the injection well into surrounding 59 m-thick 

basalt layer. The diffusion transport into basalt body may increase overall mineral trapping time. 

 

5.3.4 Implications for carbon sequestration 

Carbonate minerals can form very rapidly within weeks in basalt reservoirs. The 

formation of carbonate minerals is spatially distributed in zones of which the transport is 
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controlled by diffusion. In the porous Grand Ronde basalt, the formation of carbonate would not 

block the transport pathways and inhibit reactions into deeper zones within the 40 week 

experimental time of this study. The carbonation products were calcium carbonate, which is 

different from the field study. Laboratory studies such as this one often increase the temperature 

to accelerate the reaction rate in order to observe precipitates at shorter times. While in the field, 

the temperature can be much lower (36-44˚C for the Big Sky project in Wallula). Future 

experiments could be performed at temperature and pressure conditions that are more directly 

comparable to those of the field study. 
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Supporting Information 

 

Figure S5.1 Grand Ronde Flood Basalt
64

. (A) Illustration of Grand Ronde basalt highlights the 

variability of the size and composition of clasts and distribution of vesicles. (B)Porosity varies 

between clasts. Optical image.(C) Vesicles (black space) are coated with glass (arrow). BSE 

image. (D) Plagioclase (feld) grains surrounded by a silica-rich matrix (m). Small pyroxene 

grains are commonly adjacent to ilmenite grains (arrow). BSE image. 
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Figure S5.2 Schematic of artificial dead-end fractured basalt core. 

 

 

Figure S5.3 Schematic of static batch experiment 
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Figure S5.4 Optical microscopic images of secondary precipitates found on the fracture surface 

of the 20-week basalt core sample. 
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Figure S5.5 Optical microscopic images of secondary precipitates found on the fracture surface 

of the 40-week basalt core sample. 
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Figure S5.6 Optical microscopic image of a diamond precipitate in the 20-week Grand Ronde 

basalt core 
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Figure S5.7 SEM-EDX on a precipitate with Si-rich secondary precipitates on the surface in 20-

week core with gold coating 
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Figure S5.8 Dissolved ions in the bulk solution 

 

 

 

Figure S5.9 Calculated pH in the bulk solution at 100˚C 100 bar. 
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Figure S5.10 Saturation indices of selected secondary precipitates in the bulk solution after 40 

weeks of reaction. Calculated using SpecE8 in Geochemists’ Workbench. 

 

Figure S5.11 3D segmentation of 20-week Grand Ronde basalt core 
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Figure S5.12 3D segmentation of 40-week Grand Ronde basalt core 
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Figure S5.13 Orthographic views of precipitates in a pore not connecting the fracture in Grand 

Ronde basalt core reacted for 40 weeks. 

 

 

GB 100C 40w

GB Pre-reaction
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Figure S5.14 Precipitate area in the 100 µm fracture in each round cross section CT slice from 

segmentation. 
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Figure S5.15 Optical microscopic images of the fracture surfaces of the three basalt cores 

reacted for 6, 20 and 40 weeks. 
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Chapter 6. Conclusions and 

Recommendations for Future Work 

6.1 Conclusions 

This research provides information regarding the timing, type and location of carbonate 

mineral formation in zones controlled by diffusion based on experimental results and analysis. 

The findings of this research could help better understanding carbonate formation in fractures 

and porous media and contribute to more accurate estimation of basalt reservoir capacity and 

safety. 

 

6.1.1 Carbonation in porous powder packed beds 

Carbonate mineral formation in porous media is influenced by the coupling of solute 

transport and geochemical reactions. The transport in the porous powder packed beds is 

controlled by diffusion. In the dead-end porous beds packed with reactive forsterite powders, 

carbonate minerals are unevenly distributed along the packed bed as a result of opposing 

chemical gradients driven by concentration differences in the bed and in the outside bulk solution. 

This spatial distribution of chemical gradients leads to massive carbonate mineral formation in 

certain locations that are most favorable for precipitation. Hydromagnesite occurred in early 

reactions and disappeared after a few days of reaction. Magnesite became the only thermostable 

carbonation product after long time of reaction. The carbonation of forsterite packed beds did not 

shut itself down during the 60 days of reaction, but it did slow down after 30 days. 

Olivine power packed beds with smaller powders can provide more reactive surface area 

and sequester more CO2 than larger powder packed beds. More carbonate precipitates formed in 
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packed beds with Fe-containing olivine powders than that with the pure magnesium end-member 

forsterite. CO2 mineralized to magnesite in olivine powder packed beds. In porous packed beds 

with flood basalt powders, siderite was observed as the carbonation product. Different basalt 

types have different carbon mineral trapping capacity. 

 

6.1.2 Carbonation in fractured basalt rocks  

Carbonate mineral formation in basalt happens rapidly, making basalt an effective host 

rock for CO2 mineral trapping. Carbonate minerals precipitation in basalt is orders of magnitude 

faster than in sandstone. Carbonate minerals primarily form in fractures and pores where the 

transport is controlled by diffusion. The precipitates in the fracture are spatially distributed. 

Certain locations are more favorable for carbonate minerals to precipitate. The precipitation did 

not block the transport pathways. Unaltered flood basalt has higher CO2 mineral trapping 

capacity than the serpentinized basalt. Higher temperature can accelerate the carbonation 

reactions. Siderite formed in the flood basalt and serpentinized basalt which are Fe- and Mg-rich. 

In Ca-rich Grand Ronde basalt, calcium carbonate with predominant aragonite was the 

carbonation product. 

The presence of fractures and pores in basalt is important to successful mineral trapping 

of CO2. Fractures and pores provide substantial surface area for dissolution and precipitation 

reactions. The diffusion-controlled transport allows cations to accumulate and for the solution to 

achieve supersaturation with respect to carbonate minerals. The type of basalt is another 

important aspect to consider when choosing injection reservoir. Mineral trapping capacity can be 

different in basalt with different mineral compositions.  
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6.2 Recommendations for Future Work 

Based on the results and analysis in this thesis, there are several directions that future 

work could explore: 

(1) Fracture evolution in basalt after longer times of reaction. Within the reaction time in 

this study, the fractures in basalt were not blocked and the precipitation did not shut down. In a 

reaction that is longer, the precipitation extent can be large enough to crack and expand the 

fracture to create more surface area. It is also possible that the fracture will be totally blocked by 

carbonate minerals and end the reaction progress. Fracture evolution study in long time reaction 

would help to determine whether the process is self-passivating or self-accelerating.  

(2) Carbonation in basalt in sea water. Most of the flood basalt on earth is located in the 

oceanic crust. This study used only deionized water for simplification. The higher salinity in 

seawater may influence the carbonation rate and products. 

(3) Influence of bulk solution changes on carbonation reactions. In this study, the batch 

reactors have a confined volume in a constant 100 bar CO2 environment. The bulk solution in the 

reactor could become equilibrium in a relatively short period compared to geologic time scale. In 

real situations, the underground aquifer contains huge body of advective water with small 

amount of stagnant water in dead-end fractures and individual pores. Chemical gradients may 

change due to the change of the bulk solution, leading to re-dissolution of carbonate minerals. 

The change of bulk solution may affect carbonate minerals formation in a large system. 
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Appendix 1. Carbonation of Olivine Sinters 
This appendix contains paragraphs from Wells, R. K.; Xiong, W.; Sesti, E.; Cui, J.; 

Giammar, D.; Skemer, P.; Hayes, S. E.; Conradi, M. S., Spatially-variable carbonation reactions 

in polycrystalline olivine. Geochim Cosmochim Ac 2017, 204, 252-266.
81

 

A1.1 Introduction 

Basalt has aroused attention as a promising host rock for CO2 in geologic carbon 

sequestration. Olivine is one of the basalt-forming minerals with the highest dissolution rate and 

CO2 mineral trapping capacity. Olivine dissolution and carbonation can be summarized in the 

following equations using Mg-olivine as an example: 

Mg2SiO4(s) + 4H
+
 ⇌ 2Mg

2+
 + SiO2(aq) + 2H2O Eq. A1.1 

Mg2SiO4 (Olivine) + 2CO2 = 2MgCO3 (Magnesite) + SiO2 Eq. A1.2 

Olivine sinters are artificial polycrystalline aggregates made from fine olivine powders. 

Previous study in porous olivine powder packed beds showed spatial distribution of carbonate 

mineral formation in zones controlled by diffusive transport
27

. The porosity of the powder 

packed beds was about 0.5. In real GCS reservoirs, the porosity of the rock formations is often 

much lower. CO2 mineral trapping in low porosity diffusion-limited zones is not well understood. 

The objective of this study is to observe the timing of precipitation, characterize the 

composition of the precipitates and determine the location of the precipitates in olivine sinters 

reated in GCS-relevant conditions. This study has been published in Geochimica et 

Cosmochimica Acta by Dr. Rachel Wells as the first author
81

. The part I contributed was the 

olivine (Fo90) sinter static batch experiments and the reacted sample analysis including SEM, 

Raman Spectroscopy and optical microscopy. The sinters used in the static batch experiments 
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were provided by Dr. Rolf Bruijn. The contexts below are parts from the paper showing the static 

batch experiments.  

 

A1.2 Part of Materials and Methods 

A1.2.1 Synthesis of starting materials 

All experimental samples were synthesized from olivine powders. One set of samples 

was synthesized from pure synthetic forsterite powder (Fo100) (Mg2SiO4; 99% purity; Alfa 

Aesar), which was sieved to yield particles smaller than 44 μm. The Mg-endmember of olivine 

was required for the NMR experiments as large concentrations of iron might interfere with the 

collection of NMR spectra. A second set of samples was synthesized from natural, iron-bearing 

San Carlos olivine (Fo90) (Mg0.9Fe0.1SiO4). In this case, single crystals of optically clear olivine 

were separated from ultramafic xenoliths from the San Carlos volcanic field. Olivine grains were 

crushed in an agate mortar and pestle under water, mechanically milled using an agate ball mill, 

and sieved to a final grain size of less than 53 μm. Forsterite and olivine powders were used 

without any further processing. 

The powders were pressed and vacuum-sintered following established procedures 
106

. 

Cylindrical pellets were made with 6 mm and 13 mm diameter die molds. The initial porosity of 

the cold pressed pellets was greater than 0.30, which was calculated by comparing the starting 

density of the pellet to the theoretical density of olivine. Each pellet was then vacuum-sintered at 

1300˚C for 48 hrs at a vacuum of less than 10
-5

 Torr. At these conditions, no evidence of grain 

growth was observed. This process results in sintered grain contacts and a decrease in porosity to 
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approximately 0.25. While many of the grain boundaries are sintered, the some of the remaining 

pores may still be interconnected. 

We used two geometries to observe carbonation, one with solid (s) cylinders and one 

with saw-cut (f) cylinders (Figure 1; Table 1). Solid sample geometries (Fo90_s1, Fo90_s2, and 

Fo100_s) were left unaltered following vacuum-sintering. Two cylinders (Fo90_f and Fo100_f) 

were cut in half using a diamond blade rotary saw to simulate a fracture. The fracture orientation 

for the Fo90 sample was made perpendicular to the length of the cylinder, while the Fo100 sample 

was oriented vertically. Each fracture opening is approximately 1 mm as measured using optical 

microscopy.  

 

Figure A1.1 Cross-section of high pressure reactors (A) 300-mL batch reactor and (B) a 2-mL 

in-situ 
13

C NMR reactor, and the corresponding vacuum-sintered samples. 
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Table A1.1 Batch and in-situ NMR experiments 

 

Experiment 
Sample 

ID 
Geometry 

Radius, 

Length 

(mm) 

Mass 

(g) 

Porosity 

(%) 

Temperature 

(˚C) 

Starting 

pressure 

(bar) 

Final 

pressure 

(bar) 

H2O 

volume 

(mL) 

Reaction 

time 

(days) 

1 
Fo90_s1 cylinder 3.0, 10.4 0.8 25.1 

100 100 100 200 15 
Fo90_s2 cylinder 3.0, 10.1 0.7 26.6 

2 Fo90_f 

cylinder 

with saw 
cut 

3.0, 6.7 0.5 24.7 100 100 100 200 15 

3 Fo100_s cylinder 3.0, 6.5 0.5 17.8 100 100 45 2 102 

4 Fo100_f 

cylinder 

with saw 

cut 

6.5, 3.7 0.9 26.9 100 100 100 2 53 

 

 

A1.2.2 Fo90 experiments 

Two different geometries were tested using a high pressure vessel (Parr Instrument, 300 

mL stainless steel vessel) (Figure 1; Table 1). One experiment included two single cylindrical 

samples (each 1 cm in length) (Fo90_s1 and Fo90_s2) stacked end to end. The two samples were 

joined together with rubber tubing, with the top exposed and the bottom blocked by a short glass 

rod with the same diameter as the sintered cores (Figure 1A). This setup creates fracture-like 

openings between the first and second sample and between the outside of the samples and the 

rubber tubing. We devised another setup that included a single sintered olivine pellet (1 cm in 

length) (Fo90_f) with a saw cut oriented perpendicular to the vertical axis of the cylinder in the 

center of the sample. Unlike the fracture-like opening in the stacked experiment, the simulated 

fracture has a different roughness than that of the end sections and cylindrical sides. This sample 

was also assembled in rubber tubing with a glass stopper on the end and the top exposed to limit 

the pathways for fluid transport (Figure 1a). 

 Each assembly was vertically fixed to tubing that is attached to the reactor head, and then 

placed in a 300-mL pressure vessel with a PTFE liner. Ultrapure water (200 mL) (resistivity > 
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18.2 MΩ-cm) was added so that the samples were entirely immersed. After the vessel head was 

assembled, the sample was heated and then a syringe pump (500D, Teledyne Isco) provided a 

constant CO2 pressure (100 bar) on the headspace, with 1% air remaining. The pressure 

stabilized within 1 hour, indicating the water was at equilibrium with the CO2. The entire vessel 

was maintained at 100˚C by a heating mantle, and the stirring speed was set at 60 rpm. These 

Fo90 samples were reacted for 15 days. At the end each experiment, the heating mantle was 

removed and the vessel was allowed to cool to room temperature. The remaining pressure was 

allowed to bleed off over several hours. Samples were removed from the vessel and allowed to 

air-dry at room temperature. Precipitates were observed on the surface of the sample before 

drying.  

 

A1.2.3 Post-reaction analysis 

Fo90 samples (Fo90_s1, Fo90_s2, and Fo90_f) were dissected into five slices from the top 

in 1 mm increments. The outer surface was analyzed using Raman spectroscopy (HoloLab Series 

5000 Laser Raman Microprobe, Kaiser Optical), with a 532 nm laser and a 20x power objective 

that probes a 5 µm area. The pH of the starting solution was calculated using charge balance for 

a water and CO2 system at 100˚C and 100 bar. Equilibrium constants were determined with the 

program SUPCRT92, and CO2 solubility was calculated using the model
54

. Analysis of 

precipitates on the outer surface of the Fo90 samples was made using optical and electron 

microscopy (JEOL 7001LVF FE-SEM; FEI Nova 230). 
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A1.3 Part of Results 

A1.3.1 Single cylinder experiments (Fo90_s1 and Fo90_s2) 

After 15 days of reaction, we observed precipitates on the outer surface of each sample 

using both optical and electron microscopy (Figure 2a). These precipitates occurred between the 

sample and the rubber tubing ~2-3 mm below the top of the sample that was open to the CO2-

rich aqueous solution. We also observed precipitates between the bottom of Fo90_s1 and the top 

of Fo90_s2 (Figure 2b). No precipitates were observed on the top surface of Fo90_s1 or within 

either sample. Mg concentrations are too low for nucleation on the top surface of the sample that 

is exposed to the bulk solution because Mg can diffuse away from the surface into the 200 mL of 

solution, and the pH is also at its lowest here. The precipitates grew to a size of 5-40 μm on the 

surface of the samples, and are at their maximum concentration approximately 1 cm down from 

the top of the uppermost cylinder (Fo90_s1). Raman spectroscopy of the precipitates on the 

surface shows strong peaks at 1094 cm
-1

 and 330 cm
-1

, which correspond to the CO3
2-

 symmetric 

stretching external mode (V1) in magnesite (Fig. 2c) 
46, 67

. We also analyzed the surface of the 

sample that had no visible precipitates. The peaks at 824, 855, and 964 cm
−1

 correspond to the 

stretching modes of the three types of Si−O bonds in olivine 
45

. The three olivine peaks are also 

observed in the magnesite spectra because the beam, which was bigger than the magnesite grain, 

detected both the precipitate and the host Fo90. No other precipitates were observed on the 

surface of the samples. 
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Figure A1.2 San Carlos Olivine (Fo90) experimental microscopy and spectroscopy results with 

(A) SE image of magnesite (Mg) crystals on the side of one Fo90 (Ol) cylinder (Fo90_s1), (B) 

optical photomicrograph of the bottom surface of Fo90_s1, which contains ~50 μm magnesite 

grains, (C) Raman spectra of two surface sites (R1, R2) indicating Fo90 (arrows) and magnesite 

(dashed box), and (D) optical photomicrograph of magnesite grains on the surface of the fracture 

(OL3_f). 

 

A1.3.2 Fractured cylinder experiment (Fo90_f) 

The fractured Fo90 sample (Fo90_f) was also reacted for 15 days, and contains 

precipitates on the vertical walls of the cylinder, between the sample and the rubber tubbing, 
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which is where we observed precipitates in the single cylinder (Fo90_s1 and Fo90_s2 ). 

Precipitates are also observed on the fracture surface (Figure 2d). Within the horizontal fracture, 

the grains are 10-50 μm and do not seal the fracture opening. Raman spectroscopy confirmed 

that these precipitates are also magnesite. These findings are similar to what we observed in the 

stacked single cylinder experiments, which suggests that these results are consistent and 

reproducible. 

 

A1.4 Part of Discussion 

A1.4.1 Precipitate composition and morphology 

Magnesite is observed as precipitates on the surface of the Fo90 and Fo100 reacted samples 

despite the different geometries, reaction times, pressure conditions, and solid-to-water ratios. 

Single grains formed on all of the Fo90 samples. The euhedral grains on the surface of every 

reacted sample are likely the result of crystal growth following heterogeneous nucleation. 

Magnesite was the only magnesium-rich carbonate mineral observed, and no 

hydroxylated or hydrated magnesium carbonate minerals (i.e., nesquehonite, hydromagnesite) 

were observed. The reaction of Fo90 and Fo100 samples with aqueous CO2 results in magnesite 

only, rather than a mixture of such species, as found previously with powdered Mg2SiO4 at lower 

temperatures
107

. At lower temperatures (< 100˚C) and pressures, nesquehonite and 

hydromagnesite are more likely to precipitate than magnesite
108-111

. Xiong and Giammar
27

 

documented the occurrence of hydromagnesite within 5 days of reaction using packed forsterite 

powder beds at 100˚C, but hydromagnesite was not observed in samples reacted for longer time 

periods. These observations suggest that there might also be a time component to the formation 
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of magnesite or dehydration from hydromagnesite to magnesite. All samples within this study 

were reacted at 100˚C, which is more likely for magnesite precipitation, and were reacted for 15-

102 days, which may have offered time for magnesite to precipitate as opposed to other 

kinetically slow phases. 

Amorphous silica is also observed in all experiments. Amorphous silica occurred as a 

minor precipitate on the surface of a Fo90 sample (Figure 2A). In previous short term 

experiments, layers of amorphous silica observed on the surface of individual forsterite grains 

are thought to be the result of hydrolysis reaction with nearby silica following the dissolution of 

Mg
2+

 and SiO2(aq) from the surface of individual forsterite grains 
17, 112-116

. The formation of these 

grain-like structures has only been documented in a few experimental studies that reacted natural 

peridotite in aqueous CO2 
42, 43

 and olivine in a strongly acidic H2SO4 solution 
117

. The tendency 

for the amorphous silica to preserve the approximate shape of the host forsterite grain indicates 

that dissolution of the forsterite and precipitation of the amorphous silica occurred 

simultaneously and were tightly coupled at the reaction interface 
117, 118

.  

 

A1.4.2 Analysis of post-reaction texture 

This study observes similar spatial trends documented in previous study
27

 on the vertical 

surface of the reacted Fo90 samples. The highest concentration of magnesite crystals in the zone 

between the surface of the Fo90 samples and the rubber tubing occurred approximately 1 cm 

below the top surface of the cylinder. 
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A1.4.3 Implications for Geologic Carbon Sequestration 

 An enticing prospect of carbon storage in fractured basalt is the possibility of mineral 

trapping as a permeant storage solution. In other lithologies (e.g., sandstones, carbonates, shale, 

coal), mineral trapping is thought to occur over thousands of years
3
. Based on the experiments 

presented in this study, the timing of carbonation of olivine-rich lithologies (e.g., peridotites) is 

expected to begin much earlier, particularly at higher temperatures (e.g., ≥100˚C). Even at lower 

temperatures more realistic to carbon storage (<50˚C), the mineralization of the injected CO2 is 

expected to occur at faster rate compared to other reservoir types. 

 The spatial relationships of precipitates in our sintered forsterite experiments suggest that 

the reaction between olivine-rich lithologies and injected supercritical CO2 may also be more 

complicated than in previous studies using unconsolidated particles or single grains. Despite the 

homogeneous mineralogy, pre-existing structural features influence the spatial progression of the 

reaction. Fractures will act as diffusion-limited zones, and carbonate minerals will precipitate 

within and into the surrounding fracture wall, guided by the intragranular porosity, while the 

overall shape of the fracture remains constant. While earlier studies
17, 38, 39, 113

 suggest that 

amorphous silica may block reactive mineral surfaces and slow down subsequent reactions, the 

dissolution of silicate minerals may not be impeded by the formation of an amorphous silica 

layer. Our study indicates that this does not occur in individual grains or as a lithic unit, but 

rather contributes to the overall texture of the post-reaction sample. The concurrent dissolution of 

olivine grains and precipitation of amorphous silica results in a post-reaction sample that is not 

noticeably different from the starting geometry. As carbonation progresses, amorphous silica and 

magnesite that are already precipitated will influence the location of subsequent precipitation. 
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 Current basalt carbon storage test sites indicate the mineralization of injected CO2 occurs 

within 2 years
19, 22

. While the carbonation is promising, the resulting precipitate structure may 

influence additional CO2 injections or any reaction-driven fracture propagation. A heterogeneous 

mineralogy with different dissolution rates and more diverse carbonation reactions will influence 

any progressive reaction structures (e.g., the amorphous silica layer) and overall geometry of the 

reaction products, which may not be observed in studies of homogeneous materials. Additional 

studies are needed to address the influence heterogeneous compositions exert on the final 

reaction in natural reservoirs. 
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Appendix 2. Flood basalt core reacted in 

wet-scCO2 

A2.1 Introduction 

Global warming is regarded as an environmental issue caused by excessive 

anthropogenic CO2 emissions. Geologic carbon sequestration is a method to mitigate CO2 

emission to atmosphere by injecting supercritical CO2 into deep geologic formations
3
. CO2 can 

ultimately be trapped as stable carbonate minerals. Basalt was proposed as an efficient host rock 

with high mineral trapping capacity of CO2.
20

 Two pilot-scale CO2 injections into basalt have 

been conducted in Iceland
19

 and in Washington State, USA
22

. The Big Sky project in 

Washington directly injected supercritical CO2 as a separate buoyant phase into deep a porous 

basaltic layer at more than 800-m depth.
20

  

The injected CO2 is buoyant in contact with the host formation and caprock, becoming a 

water-bearing scCO2 phase.
119

 Most studies on geologic carbon sequestration considered 

traditional aqueous systems with dissolved CO2 in the water phase. However, a water-bearing 

scCO2 (wet-scCO2) system in which nonaqueous-dominanted types of mineral dissolution and 

precipitation reactions take place should also be considered.
120

 According to a model of mutual 

solubility of CO2-H2O mixture, H2O mole fraction in CO2-rich phase is only 0.017 at 100˚C and 

100 bar.
121

 The water content in the scCO2 phase is crucial for successful carbonation. Previous 

study used in situ infrared spectroscopy to examine carbonation of synthetic forsterite in dry and 

wet scCO2 and found no reaction products under dry conditions
122

. Only when a thin water film 

on forsterite grains appeared could carbonation occur as water in scCO2 reached 55% of the 

saturation level
122

. Another study also observed hydrated Mg-carbonates on the surface of 
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forsterite grains when scCO2 was undersaturated with 74% water.
123

 Water in the scCO2 phase 

should be enough to maintain a thin water film in order for carbonation reactions to occur.
124

 

In water-saturated wet-scCO2 carbonation should be able to happen. However, in basalt 

reservoirs with a lot of fractures and pores, carbonation in wet-scCO2 may be greatly inhibited by 

diffusive transport limitations. The majority of research on wet-scCO2 focused on carbonation on 

highly reactive olivine mineral surfaces that were entirely exposed to the bulk wet-scCO2 

environment. In this study, we investigated secondary mineral formation in an artificial dead-end 

fracture in flood basalt in water-saturated wet-CO2 in 100 bar 100˚C for up to 40 weeks. 

 

A2.2 Materials and Methods 

A2.2.1 Fractured basalt cores  

Columbia River Flood basalt (FB) from Pullman, Washington was purchased from 

Ward’s Science. Multiple cylindrical cores with 25.4 mm diameter and ~43 mm length were 

made from the bulk rock. Each core was cut to half cylinders. The surface of one cylinder was 

polished with sandpaper. The other half surface was milled with a straight 11 mm wide groove 

using a milling machine (Roland Model MDX-40a) with a 0.5 mm diamond bur. The grooved 

half was polished until the groove was 100 µm deep. The groove depth was determined by 

comparing the z-value of the spots on the groove and the spots on the closest polished surface in 

an optical microscope (ZEISS, Observer Z1). The two half cylinders were attached together to 

form one cylinder with the 100 µm groove in the middle as a dead-end microfracture. The 

bottom and the side surfaces of the core were coated with epoxy (MasterBond EP42HT-2), only 

exposing the top surface with the fracture opening. The flood basalt is composed of 31% feldspar, 
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22% pyroxene, 1% orthopyroxene, 9% olivine, 1% serpentine, 33% potassium-rich matrix and 3% 

ilmenite
64

. 

 

A2.2.2 Static batch experiments  

Three fractured flood basalt cores were placed on a multilevel PTFE holder, which was 

put in a PTFE liner inside a 600 mL stainless steel high pressure vessel (Parr Instrument). A 

small amount of deionized water (50 mL) was added to the reactor. All three cores were above 

the water. The batch was heated to 100˚C by heating tapes with heat controller (Omega, CSi32 

Series). A headspace of 100 bar CO2 was maintained in the reactors by a syringe pump (500D, 

Teledyne Isco). At 100˚C and 100 bar, 50 mL water was enough for the CO2 phase to be 

saturated with H2O 
121

. Core samples were collected one by one after reacting for 6, 20, 40 weeks. 

Before starting each experiment, the reactor was flushed with 10 bar CO2 for three times to 

minimize residual O2. The process of cooling and depressurizing for sample collection and 

restarting the reactor was ~5 hours. 

 

A2.2.3 Analytical methods 

The 40-week core was scanned by X-ray computed tomography (CT) after reaction 

(Nikon Metrology XTH225). The voxel resolution of the CT images was 24.3 µm. The core was 

cut open after CT scanning. Optical microscopy (LEICA, DFC295) was used to examine the 

fracture surface. Raman spectra on observable secondary precipitates were collected (HoloLab 

Series 5000 Laser Raman Microprobe, Kaiser Optical) with a 532 nm laser. The Raman spectra 

were compared with Raman standards from the RRUFF database. 
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A2.3 Results and Discussion 

For the cores after reaction, there were plenty of noticeable red dots on the fracture 

surface (Figure A2.1), which might be iron oxides. Especially in the 40-week sample, the top 3-

13 mm region near the fracture inlet was covered with red spots. A lot of pores resulting from 

basalt mineral dissolution were observed in this region. It was possible that a thin film of water 

was stuck in this region due to capillary force and accelerated dissolution here. This mechanism 

is similar to the residual trapping of CO2 during geologic carbon sequestration.  

 

Figure A2.1 Groove surfaces before and after reaction in wet-CO2. 

 

A very limited amount of secondary precipitates was observed on the fracture surface of 

basalt cores reacted in wet-CO2. In the post-reaction CT scan, one potential carbonate mineral 

was about 28 mm away from the fracture inlet (Figure A2.2). The precipitate was lighter than the 

background in CT. The cross section image showing the 100 µm fracture revealed that the 
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precipitate was on the groove side surface and was about 50 µm. This precipitate was also 

located in optical microscopy and then examined by Raman spectroscopy. A 12 µm long needle-

like carbonate precipitate formed on top of a 50 µm mineral cluster. The needle precipitate was 

identified as aragonite. 

 

 

Figure A2.2 Post-reaction CT image of the flood basalt core reacted for 40 weeks in 100˚C and 

100 bar wet-CO2. The arrow points to a carbonate precipitate shown in Figure A2.3. 
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Figure A2.3 Needle precipitate identified as aragonite in Raman spectroscopy 

 

Carbonation reactions are much slower in wet-CO2 than in CO2-rich water. In previous 

experiments with fractured flood basalt reacted in CO2-rich water, large amounts of carbonate 

minerals covered the fracture surface in the same pressure and temperature reacting for the same 

time.  

Other secondary precipitates containing sulfur were observed. A few other secondary 

precipitates were identified as anhydrite at the fracture end (Figure A2.4). In experiments with 

multiple 2.0-0.42 mm basalt chips from a variety of places in the CO2-SO2-O2 water system at 

90˚C, 88~114 bar for 98 days, secondary precipitates containing sulfur such as gypsum were 

observed on the basalt surface.
59

 The CO2 used in this study was pure and no SO2 was present. 

The sulfur might come from the dissolution of basalt. In our previous study with the same flood 

basalt, an appreciable amount of dissolved SO4
2-

 was measured in the bulk solution. 
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Figure A2.4 Anhydrite found at the bottom of the fracture. 

 

Overall, the fractured basalt reacted in wet-scCO2 did not sequester much CO2 in 

carbonate minerals. Pre-injection treatment of dissolving supercritical CO2 into large volume of 

water can be a good way to improve CO2 mineral trapping. In the CarbFix project in Iceland, 

CO2 is released as small bubbles at 350-m depth into down-flowing water within the injection 

well, allowing CO2 to dissolve in water.
20

 This would greatly reduce the time needed for mineral 

trapping. 95 % of the injected CO2 mineralized within 2 years.
19

 However, this method would 

require huge amount of water and may not be economically favorable.   
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