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Aerosol science and technology enable continual advances in material synthesis and atmospheric 

pollutant control.  Among these advances, one important frontier is characterizing the initial 

stages of particle formation by real time measurement of particles below 2 nm in size.  Sub 2 nm 

particles play important roles by acting as seeds for particle growth, ultimately determining the 

final properties of the generated particles.  Tailoring nanoparticle properties requires a thorough 

understanding and precise control of the particle formation processes, which in turn requires 

characterizing nanoparticle formation from the initial stages.  The knowledge on particle 

formation in early stages can also be applied in quantum dot synthesis and material doping.  This 

dissertation pursued two approaches in investigating incipient particle characterization in 

systems with aerosol formation and growth: (1) using a high-resolution differential mobility 

analyzer (DMA) to measure the size distributions of sub 2 nm particles generated from high-

temperature aerosol reactors, and (2) analyzing the physical and chemical pathways of aerosol 

formation during combustion.  
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Part. 1.  Particle size distributions reveal important information about particle formation 

dynamics.  DMAs are widely utilized to measure particle size distributions.  However, our 

knowledge of the initial stages of particle formation is incomplete, due to the Brownian 

broadening effects in conventional DMAs.  The first part of this dissertation studied the 

applicability of high-resolution DMAs in characterizing sub 2 nm particles generated from high-

temperature aerosol reactors, including a flame aerosol reactor (FLAR) and a furnace aerosol 

reactor (FUAR).  Comparison against a conventional DMA (Nano DMA, Model 3085, TSI Inc.) 

demonstrated that the increased sheath flow rates and shortened residence time indeed greatly 

suppressed the diffusion broadening effect in a high-resolution DMA (half mini type).  The 

incipient particle size distributions were discrete, suggesting the formation of stable clusters that 

may be intermediate phases between initial chemical reactions and downstream particle growth.  

The evolution of incipient cluster size distributions further provided information on the gaseous 

precursor reaction kinetics, which matched well with the data obtained through other techniques.   

Part 2.  The size distributions and their evolution measured by the DMAs help explain the 

physical pathways of aerosol formation.  The chemical analysis of the incipient particles is an 

important counterpart to the existing characterization method.  The chemical compositions of 

charged species were measured online with an atmospheric pressure interface time-of-flight mass 

spectrometer (APi-TOF).  The tandem arrangement of the high-resolution DMA and the APi-

TOF realized the simultaneous measurement of the mobility and the mass of combustion-

generated natively charged particles, which enabled their chemical and physical formation 

pathways to be derived.  The results showed that the initial stages of particle formation were 

strongly influenced by chemically ionized species during combustion, and that incipient particles 

composed of pure oxides did not exist.  The effective densities of the incipient particles were 
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much lower than those of bulk materials, due to their amorphous structures and different 

chemical compositions.  Measuring incipient particles with high-resolution DMAs is limited 

because a DMA classifies charged particles only, while the charging characteristics of sub 2 nm 

particles are not well understood.  The charge fraction of combustion-generated incipient 

particles was measured by coupling a charged particle remover and a condensation particle 

counter.  A high charge fraction was observed, confirming the strong interaction among 

chemically ionized species and formed particles.  The combustion system was modeled by using 

a unimodal aerosol dynamics model combined with Fuchs’ charging theory, and showed that the 

charging process indeed affected particle formation dynamics during combustion.   
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Chapter 1: Introduction 
 

 

 

 

 

 

 

 

 

The results of this chapter have been compiled in Wang, Y., Attoui, M., Biswas, P. (2017). Sub-2 

nm Particle Measurement in High-temperature Aerosol Reactors: a Review. J. Aerosol Sci. In 

preparation.  
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1.1 Background and Motivation 

The monumental agreement at the 21st Conference of the Parties (COP-21) in Paris demonstrates 

that all countries, regardless of their development status, are committed to deep cuts in 

greenhouse gas emissions.  To accomplish this, there is a need to make rapid progress in 

developing new fossil fuel combustion technologies and in manufacturing advanced materials for 

sustainable energy utilization. Aerosol science and technology play a central role in both areas.  

The combustion of fossil fuels is accompanied with the generation of ultrafine particles, from 

both primary (Wang et al. 2013) and secondary sources (Guo et al. 2014).  Through their 

existence in atmospheric and aquatic systems, these particles create negative effects on the 

environment and human health (Biswas and Wu 2005).  Control of airborne particulate matter 

(PM) is becoming a critical issue in developing countries, and is a complicated task to manage 

since a large proportion of PM is composed of secondary aerosols formed from vapor precursor 

reactions and particle growth at nanometer scales.  On the other hand, aerosols synthesized in the 

gas phase have received tremendous attention during the past few decades. Their particular 

mechanical, thermal, acoustic, electrical, and optical characteristics arise from their large specific 

surface area and from quantum effects.  The annual production of functional nanoparticles, 

including silica, titania, and carbon black, is in the millions of tons, valued at over $15 

billion/year (Li et al. 2016). They have been widely applied in areas including catalysis (Nie et 

al. 2016), solar energy utilization (Hu et al. 2016), paint production, sensor technology (Haddad 

et al. 2016), and the rubber industry. Other ambitious uses of nanoparticles are also being 

projected, including water treatment using functional carbon based nanoparticles (Jiang et al. 

2015) and drug delivery using polymeric or metal nanoparticles (Karakoçak et al. 2016).   
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In order to control the aerosol emission from fossil fuel combustion and tailor the properties of 

synthesized aerosols, a thorough understanding of aerosol formation and growth dynamics is 

needed.  Classical theories of aerosol dynamics predict that most nanoparticles develop in a 

“bottom-up” approach, starting with precursor reactions and moving sequentially through 

supersaturated vapor nucleation, vapor condensation, coagulation, and sintering, as shown in 

Figure 1.1.  Among these processes, incipient particle formation and growth, especially in the 

size range near or below 2 nm, still remain mostly mysterious due to the limitations of 

instrumentation.   

 

Figure 1.1 The “bottom-up” approach in aerosol formation and growth dynamics.   

 

Conventional aerosol instruments start to face difficulties in characterizing particles as small as 2 

nm (or in some other work, 3 nm).  For example, the latest generation of condensation particle 

counters (e.g., Model 3776, TSI Inc.) cannot detect particles smaller than 2.5 nm, so the starting 

stages of particle formation, such as nucleation and condensation, cannot be observed.  Although 

operating the condensation particle counters (CPCs) with different types of working fluid and 

operating conditions can slightly lower the detectable size limit, it is still strongly dependent on 

the chemical composition of the particles (Iida et al. 2009; Kangasluoma et al. 2014; Kuang et al. 

2012).  The high diffusivity of sub 2 nm particles also causes diffusion broadening of the 

instrument’s transfer function, causing inaccurate the measurement (Jiang et al. 2011a; 
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Stolzenburg 1988; Wang et al. 2014).  Furthermore, conventional aerosol measurement 

techniques heavily rely on aerosol charging, which is realized via the physical collision between 

ions and particles (Fuchs 1963; Hoppel and Frick 1986).  But for sub 2 nm particles, their 

chemical properties, such as electron and proton affinities, start to play crucial roles during the 

charging process.  Hence the process cannot be fully characterized by particle physics any more 

(Kangasluoma et al. 2016).  These challenges directly lead to the design and manufacture of 

advanced aerosol instruments that will help us uncover the secrets of the initial stages of aerosol 

formation, in both the atmospheric environment and laboratory studies.   

 

1.1.1 Instruments for measuring sub 2 nm particles 

Aerosols can be characterized by many aspects, among which size, concentration, and chemical 

composition are most important.  Various aerosol properties, such as visibility, toxicity, and 

reactivity, are derived from or closely related to these three properties.  In order to characterize 

sub 2 nm particles, conventional aerosol instruments need to be modified and upgraded.   

 

Figure 1.2 a) Schematic diagram of a TSI “Nano” DMA (Taken from the TSI SMPS Model 3080 manual); b) the 

trajectory of particles classified by the DMA; c) transfer functions of a DMA under the non-diffusing condition, a 

TSI “Nano” DMA, and a TSI “Long” DMA, when classifying 3 nm particles (Taken from Jiang et al. 2011a).   
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Differential mobility analyzers 

Differential mobility analyzers (DMAs) are widely used for the online measurement of particle 

mobility sizes.  They act as an electric filter, allowing only particles with certain electrical 

mobilities, i.e., mobility sizes, to pass through and be further monitored by particle counters 

(Figure 1.2).  The mobility size of the classified particles is dependent on the voltage applied on 

the DMA, the DMA flow condition, and the DMA geometry.  Theoretical analysis of flow and 

electric fields using stream functions shows that, when particle diffusion is neglected, the 

resolution of size classification (the ratio of the transfer function peak mobility to the full width 

at half maximum of the transfer function) equals the ratio of sheath flow rate to aerosol flow rate 

(Knutson and Whitby 1975).  Accordingly, the idea of the “transfer function” was developed, 

which describes the probability of particles with an arbitrary mobility being classified at the 

voltage corresponding to a specific mobility (Figure 1.2c).  The shape of the transfer function is 

triangular under the non-diffusing condition, whereas it becomes broadened when particles are 

diffusive.  This broadening is due to particle Brownian motion, which cause them to deviate 

from the theoretical trajectories.  The diffusion broadening of the DMA transfer function is a 

significant issue when we measure sub 2 nm particles, since the diffusion coefficient is inversely 

proportional to the square of particle diameter in the free molecular regime (Friedlander 2000).  

As shown in Figure 1.2c, when a “Long” DMA (Model 3081, TSI Inc.) and a “Nano” DMA 

(Model 3085, TSI Inc.) were used to classify 3 nm particles, the transfer functions become 

broadened in different degrees.  Owing to the longer residence time of particles in the “Long” 

DMA, the transfer function is severely broadened, meaning that particles with sizes between 2.54 

and 3.88 nm can all pass through the classification zone of the DMA.   
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There are two methods for reducing the broadening effect of DMA transfer functions.  One 

remedy is to increase the sheath-to-aerosol flow ratio to inherently enhance the measurement 

resolution.  The other is to reduce the residence time of particles in the DMA.  Based on these 

concepts, much effort has been made to develop DMAs that are optimized for sub 2 nm particle 

measurement (Brunelli et al. 2009; de la Mora and Kozlowski 2013; Rosser and de la Mora 

2005; Santos et al. 2009; Steiner et al. 2010).  The Herrmann DMA (Herrmann et al. 2000) and 

half-mini DMA (de la Mora and Kozlowski 2013) are two representative designs of high-

resolution DMAs.  Both DMAs can accommodate sheath flow rates higher than 800 lpm without 

developing turbulent flow, and the length of the classification zone is significantly reduced in 

order to decrease the particle residence time.  When calculating the mobility size of classified 

particles using conventional DMAs, one needs to know the sheath flow rate of the DMA, 

together with DMA geometry and voltage settings.  This is highly problematic in high-resolution 

DMAs, whose extremely high sheath flow rate cannot be measured accurately.  Hence, high-

resolution DMAs are typically calibrated with ion standards of known mobilities, based on which 

the mobilities of other classified particles can be measured (Ude and de la Mora 2005).   

Particle counters 

Particle concentration is a critical parameter for evaluating the impact of aerosols.  By coupling 

concentration measurement with size classification, the size distribution of aerosols is also 

obtained.  Particle concentrations are normally measured with a condensation particle counter 

(CPC) or an electrometer.  An aerosol electrometer measures the current created by the 

collection of charged aerosols on a metal filter.  It is ideal for the measurement of sub 2 nm 

charged particles, since these particles normally carry one charge only, and the metal filter can 

reach almost 100% efficiency in collecting these charged particles.  However, the usage of 
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electrometers has two drawbacks.  One disadvantage is that an electrometer measures charged 

particles only, while the charging of sub 2 nm particles is highly dependent on the chemical 

composition of the particles (Kangasluoma et al. 2016).  Thus, the electrometer may capture only 

a glimpse of the entire aerosol ensemble, which may lead to considerably biased conclusions.  

The detection limit of an electrometer is another disadvantage.  Presently, the lowest detection 

limit of an electrometer is in the range of fA (femtoampere, 10-15 A).  For aerosols with a 

concentration of 1 #/cc, in order to create a response above this detection limit, the flow rate of 

aerosol going through the electrometer should be at least 600 lpm, but current designs of 

electrometers cannot handle such a high flow rate (the maximum flow rate is 10 lpm for the TSI 

Electrometer, Model 3068B).  CPCs, on the other hand, have a very low detection limit (down to 

0.1 #/cc) and measure particle concentration regardless of the charging state.  A CPC grows a 

sampled particle, by condensing the vapor of a working fluid on the surface of the particle, until 

it has an optically detectable size (~ 1 μm) (Stolzenburg 1988).  The smallest particle that can be 

condensationally grown (or activated) is determined by the Kelvin equation, which considers the 

effect of the saturation ratio, surface tension, temperature, and molecular volume of the working 

fluid (Friedlander 2000).  The Kelvin equation dictates that the commonly used butanol-based 

CPCs have a smallest detectable size of 2.5 nm.  Although changing the CPC’s working 

condition could further lower the detectable size, the improvement is not significant (Kuang et al. 

2012).  A detailed calculation using the Kelvin equation and the data of more than 800 organic 

compounds suggests that diethylene glycol (DEG) is the best candidate working fluid for 

activating the condensational growth of sub 2 nm particles (Iida et al. 2012).  However, because 

the condensational growth rate is another complex function of the above parameters, the grown 

particles are not large enough to be detected by the optical components in the CPC directly.  
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Hence, a two-stage CPC was developed, where the first stage uses DEG to grow particles to a 

moderate size, and the second stage uses butanol to measure the concentration of the grown 

particles (Figure 1.3) (Jiang et al. 2011b).  This design directly led to the manufacture of the two 

newest types of CPC first stages, the particle size magnifier (PSM, Model A11 CNC-system, 

Airmodus Oy) and the Nano Enhancer (Model 3777, TSI Inc.).  Although the activation of sub 2 

nm particles is still strongly dependent on the chemical composition of the sampled particles 

(Kangasluoma et al. 2014), a careful calibration of the system with the tested particle 

composition can effectively extend the detectable size to 1 nm.  These modifications greatly 

facilitate the observation of particle formation and growth in the initial stages.   

 

Figure 1.3 The working principles of a single stage and a two-stage CPC.   

 

Mass spectrometers 

In order to comprehensively evaluate the impact of aerosols, their chemical properties need to be 

characterized.  The aerosol mass spectrometer (AMS, Aerodyne Inc.) is well established for 

measuring the chemical compositions of aerosols with sizes above 40 nm.  However, to resolve 

the participating compounds during particle formation in the initial stages, the chemical 

composition measurements of atmospheric ions/clusters must be improved.  The newly 

developed Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (APi-TOF, 
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Tofwerk AG) can detect and measure ambient ions in the mass/charge range up to 2000 Th 

(Junninen et al. 2010).  It has a mass accuracy higher than 0.002% and a mass resolving power of 

3000 Th/Th.  The Api-TOF provides a nearly universal interface for atmospheric pressure 

sampling, and this key feature is widely utilized in laboratory and field studies of sub 2 nm 

particle formation.   

 

1.1.2 Measuring sub 2 nm particles generated from aerosol reactors 

The combination of the three mentioned enhanced particle detectors (high resolution DMA 

coupled with an electrometer, PSM-bCPC, and APi-TOF) has served as a powerful tool in 

understanding atmospheric particle formation below 2 nm and the role of ions in atmospheric 

nucleation (Almeida et al. 2013; Ehn et al. 2014; Kirkby et al. 2011; Kulmala et al. 2013; 

Schobesberger et al. 2013).  The usage of these instruments in atmospheric studies was reviewed 

by Zhang et al. (2011).  On the other hand, few studies have reported the measurement of sub 2 

nm particles with these instruments in aerosol reactors.  Because aerosol reactors generate 

particles through intense chemical reactions, the mechanism of particle formation and the 

resulting observations are largely different from atmospheric studies.  Existing measurements of 

sub 2 nm particles generated from aerosol reactors are briefly reviewed as follows.   

Flame aerosol reactor 

Combustion is a major source of PM formation.  The precise control of aerosol formation during 

combustion crucially affects both the applications of flame-generated particles and their 

environmental implications.  However, a detailed understanding of the particle dynamics in 

flames is lacking due to the fast reaction rate of combustion, making it difficult to control 
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particle formation and growth processes.  Up until now, most of progress in measuring sub 2 nm 

particles from flame aerosol reactors has been made in the study of soot particles.  Hence, the 

major focus of this dissertation was the characterization of flame-generated incipient particles 

during the combustion synthesis of functional nanomaterials (Fang et al. 2014; Wang et al. 2014; 

Wang et al. 2015; Wang et al. 2016; Wang et al. 2017a; 2017b).  Soot formation is an important 

branch of combustion study, since these particles are a major byproduct of fossil fuel combustion 

and have great environmental and energy impacts.  In order to clarify the mechanism of soot 

formation from the gas to particle phase, many studies have reported the measurement of 

ultrafine (dp < 100 nm) particle size distributions using DMAs (Camacho et al. 2013; Zhao et al. 

2003).  The first measurements of sub 2 nm soot particles were conducted by Sgro et al. (2007, 

2009, 2010, and 2011) through a series of experiments using high-resolution DMAs to unveil the 

charging characteristics of nascent soot particles.  Incipient particle size distributions (>1 nm) 

were measured under a series of equivalence ratios, and showed that the first particles observed 

in flames have a size of 2 nm, consistent with previous measurements using other techniques.  

The charge distribution of the nascent soot particles was very close to the Boltzmann charge 

distribution due to the high temperature in flames (Sgro et al. 2010; Sgro et al. 2011).  Recent 

measurements of nascent soot in flames using a half-mini DMA shed light on the challenges and 

potential artifacts affecting studies on soot inception by DMA techniques (Carbone et al. 2016).  

The sampling of the nascent soot particles was shown to be challenging, since the quenching of 

chemical reactions and particle dynamics was very difficult for sub 2 nm particles.  With an 

appropriate sampling system, the high-resolution DMA-measured particle size distributions 

matched well with those obtained by atomic force microscopy of thermophoretically sampled 

soot particles (Carbone et al. 2017a; b).   
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Furnace aerosol reactor 

Furnace aerosol reactors (FUARs) are widely used in the synthesis of functional nanomaterials, 

because the controllable furnace temperatures help create tunable environments for particle 

formation and growth (Messing et al. 1993).  The relatively lower reaction rates compared to 

those in flame aerosol reactors also assist in analyzing the particle formation and growth 

mechanisms (Cho and Biswas 2006; Cho et al. 2011).  Particles generated from FUARs played 

important roles in the 1990s, when researchers attempted to measure the charge distributions of 

sub-micrometer particles (Wiedensohler 1988; Wiedensohler and Fissan 1991).  FUARs can 

generate sub 2 nm particles by heating a material (such as a metal and a salt) while rapidly 

quenching the particle growth by introducing clean diluting gas at high flow rates.  Recent 

measurements of these sub 2 nm particles with the enhanced particle detectors showed that most 

of these particles were clustered with unidentified organic molecules (Kangasluoma et al. 2013).  

Therefore, there is still room for improving the purity of furnace generated incipient particles.   

Glowing wire generator 

The glowing wire generator (GWG), where material is evaporated from the surface of a heated 

wire and subsequently quenched by a gas stream, was introduced by Schmidt-Ott et al. (1980) 

and has been applied for the production of metallic particles for research since then (Nasibulin et 

al. 2005; Peineke et al. 2006; Peineke and Schmidt-Ott 2008).  The generated particles are 

typically in the range of a few angstroms to a few nanometers, where unexpected behaviors of 

the nanoparticles may be found (Peineke et al. 2009).  The invention of instruments for 

measuring sub 2 nm particles made it feasible to accurately measure the size and concentration 

of these particles (Peineke et al. 2009).  Clusters with characteristic mobility sizes were 
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observed, and the mechanisms of metal evaporation and ion attachment were further elucidated 

(Maisser et al. 2015; Peineke et al. 2009).   

The study of the GWGs, in return, directly accelerated the development of instruments for 

detecting incipient particles.  The GWG is a convenient source of sub 2 nm particles, since it 

produces self-charged particles with a single charge (most particles are attached with OH ) and 

repeatable mass spectrums (Kangasluoma et al. 2013).  Sub 2 nm particles generated from 

GWGs have been used to calibrate the transfer function and transmission efficiencies of high-

resolution DMAs and characterize the detection efficiency of sub 2 nm particles when using two-

stage CPCs under various conditions (Kangasluoma et al. 2015; Kangasluoma et al. 2013; 

Kangasluoma et al. 2014).   

 

1.2  Dissertation Outline 

This dissertation has two main objectives: 

1) To evaluate the performance of high-resolution DMAs in measuring the incipient particles 

generated from flame and furnace aerosol reactors  

2) To investigate the detailed formation pathways of nascent particles during combustion 

synthesis of functional nanomaterials  

The two objectives are studied and described in the five chapters of the dissertation.  Each 

chapter is self-contained, with an introduction, experimental section, results, discussion, and 

conclusions.  Chapters 2 and 3 describe systematic studies using high-resolution DMAs in a 

flame and a furnace aerosol reactor, respectively.  These studies characterized the performance 
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of high-resolution DMAs, and offered new methods for data analysis using the incipient particle 

size distributions.  With the assistance of mass spectrometry and enhanced particle counters, the 

particle formation and growth pathways in a flame aerosol reactor were examined based on the 

existing measurement of incipient particle size distributions.  This work shows the importance of 

chemical ionization in the initial stages of particle formation during combustion, and is 

developed further in Chapters 4 and 5.  In addition, Chapter 6 numerically investigates the 

influence of charging on particle coagulation at different temperatures, aiming to obtain a 

comprehensive picture of particle formation and growth in flames.  
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Abstract 

Conventional Differential Mobility Analyzers (DMA) have had limited success in classifying 

sub 2 nm particles with high resolution, primarily due to diffusion broadening.  High flow DMAs 

have been able to overcome this limitation and achieve high-resolution classification of sub 2 nm 

particles, by maintaining laminar flow at high Reynolds numbers.  A Half Mini DMA was 

compared with a Nano DMA (TSI model 3085) for sub 2 nm size distribution measurements of 

organic ions generated by electrospray of tetra-heptyl ammonium bromide (THAB) solution and 

aerosols generated by a premixed flat flame reactor.  Obscurities in ion peak measurements with 

the Nano DMA indicated a higher diffusion effect.  Calculations of the diffusing transfer 

functions indicated that the Half Mini DMA deviated significantly from ideal conditions, 

possibly due to the higher demands for a more precise electrode placement and a smaller surface 

roughness, since it is operated at a high sheath flow rate.   

The Half Mini DMA was then applied to study the formation of flame-generated aerosols in the 

sub 2 nm range.  This is the first reported measurement of these clusters in an aerosol reactor.  

The effects of the flame synthesis precursor (titanium (IV) isopropoxide), the Kr-85 radioactive 

neutralizer, and the tubing materials on the flame aerosol size distribution measurements were 

investigated.  After the introduction of titanium (IV) isopropoxide, several discrete peaks were 

detected, suggesting discrete cluster formation during the initial stages of TiO2 particle synthesis.  

The addition of a radioactive neutralizer balanced the size distribution of flame aerosols by 

changing the charging mechanisms.  Compared with copper tubing, silicone conductive tubing 

generated extremely high positive ion contamination after neutralization.   
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2.1 Introduction 

Particle nucleation and growth below 2 nm has significant implications for many practical 

applications, such as nanomaterial synthesis and atmospheric pollutant control.  Size distribution 

measurements are a common method of characterizing particle formation and can provide 

fundamental information on primary particle distribution.  In addition, the size distribution can 

be further analyzed to establish particle formation mechanisms.  Differential Mobility Analyzers 

(DMA) are widely used for real-time aerosol size distribution measurements.  A DMA classifies 

the particles as a function of electrical mobility, from which the particle size can be obtained.  By 

connecting a DMA to a particle counting device, the particle concentration can also be obtained.  

The final size distribution function is determined using a standardized data inversion method, by 

taking the neutralizer charging efficiency, DMA transfer function, and particle counter detection 

efficiency into consideration (Stolzenburg & McMurry, 2008).  

As particle size decreases below 10 nm, the effect of Brownian diffusion becomes significant 

and compromises the accuracy of DMAs (Stolzenburg, 1988).  Efforts have been made through 

redesigned DMAs to address the issues of Brownian broadening of the transfer functions.  

Different structures of DMAs for the classification of nanometer-sized aerosols were reviewed 

by Intra and Tippayawong (2008).  Among these, the Nano DMA was designed with a shortened 

aerosol transport passage and optimized based on experimental and numerical results (Chen et al. 

1996, 1998).  Significant improvements were observed when compared with previous DMA 

designs.   

Since then, the field of aerosol research has seen a push in studying particle formation 

mechanisms below 2 nm, an important size range for atmospheric nucleation, vapor deposition, 
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and ion interactions.  These smaller particle sizes bring new challenges to existing designs of 

DMAs since diffusion cannot be further suppressed by simply increasing the sheath flow rates.  

Current DMA designs may demonstrate flow instability inside the instrument at higher sheath 

flow rates (Seto et al. 1997; Aalto et al. 2001).  Recently, de la Mora and Kozlowski (2013) 

developed a high flow DMA (Half Mini DMA, Nanoengineering Corp.) able to achieve 

transonic sheath flow rates.  Laminar flow is maintained at these high sheath flow rates (100~700 

lpm) by incorporating flow straighteners upstream of the classification zone, along with a 

diffuser downstream (Kulkarni et al. 2011).  The design possesses two major advantages.  First, 

the residence time for ultrafine particles in the instrument is decreased by orders of magnitude, 

resulting in a substantial suppression of diffusion losses.  Second, because the theoretical 

resolution of DMAs can be represented as the ratio of the sheath flow rate over the aerosol flow 

rate (Knutson & Whitby, 1975), increasing the sheath flow rate can also considerably enhance 

the resolution for measurement of nanosized particles despite Brownian broadening.  Many 

groups have already taken advantages of high flow DMAs to study various systems: the gas 

phase protein ion density determination (Maißer et al. 2011), the generation of 1-3.5 nm 

monomobile particle size standards (Attoui et al. 2013), the ion composition determination in a 

corona charger (Manninen et al. 2011) and a radioactive charger (Steiner et al. 2013), and the 

observation of heterogeneous nucleation (Winkler et al. 2008).  However, until now, high flow 

DMAs have not been used for measurements in aerosol reactors.   

The accurate mobility measurement of sub 2 nm particles with a high flow DMA depends on 

mobility standards for calibration (Ude & de la Mora, 2005).  In a cylindrical DMA, the product 

of the DMA voltage (V) and classified particle electrical mobility (Z) is a constant, if flow rates 

are kept the same.  Once the DMA voltage corresponding to the mobility standard is known, the 
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electrical mobility of particles classified under other DMA voltages can be calculated.  

Currently, the electrospray of large organic ions, such as tetra-methyl ammonium, tetra-propyl 

ammonium, and tetra-heptyl ammonium ions, is a commonly used method to generate mobility 

standards with large concentrations.  In addition, these ions are insensitive to fluctuations in 

humidity and can be further applied to calibrate and determine the transfer function of DMAs 

(Jiang et al. 2011; Ude & de la Mora, 2005).   

Flame aerosol reactors (FLAR) are important methods for synthesizing nanoparticles with high 

production rates and scale up capabilities.  Functional materials, including metal oxides 

(Thimsen et al. 2008; Zhang et al. 2012), fullerenes (Goel et al. 2002), nanotubes (Height et al. 

2004), and nanowires (Rao & Zheng, 2009), have been produced with this method.  Aerosols are 

formed primarily through nucleation, condensation, coagulation, and aggregation, and have high 

concentrations below 6 nm (Thimsen, 2009).  Numerous studies have been conducted on 

combustion chemistry at the molecular level (Qin et al. 2000; Law et al. 2003) and particle 

growth in the size range above 2 nm (Thimsen & Biswas, 2007; Tiwari et al. 2008).  However, 

particle formation and growth in the size range between the molecular level (~0.1 nm) and 2 nm, 

have not been studied in flame aerosol reactors due to limitations in instrumentation (Jiang et al. 

2007a; Kasper et al. 1997; Zhao et al. 2003; McMurry et al. 2011).  The in situ high flow DMA 

characterization of the aerosols generated from a flame reactor can provide detailed information 

bridging the knowledge gap between combustion chemistry and particle synthesis.   

In order to classify sub 2 nm aerosols based on electrical mobility, the particle charge 

distribution must be known before they enter the DMA.  Radioactive neutralization is the most 

common method for charge conditioning of aerosols.  A steady state charge distribution is 

obtained through the collision of free ions with sample aerosols (Fuchs, 1963; Mohnen, 1977; 
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Reischl et al. 1996).  However, for ultrafine size distribution measurements, the presence of free 

ions may interfere, potentially causing errors in data inversion (Sgro et al. 2010; Manninen, et al. 

2011; McMurry, et al. 2011).  The transport of aerosols through various tubing materials can also 

generate particle contaminants influencing size distribution measurements.  While previous 

studies were focused on pure ion mobility characterization of these contaminants (Steiner & 

Reischl, 2012), the interaction between ion contaminants and sample aerosols has not been 

thoroughly investigated.  Research is needed to find the best operation condition to avoid 

contamination in sub 2 nm particle measurements.   

With diverse DMA designs available for the measurement of ultrafine particle size distributions, 

a comparison of these designs would allow researchers to properly select the appropriate 

instrument.  In particular, the Half Mini DMA and Nano DMA have not been evaluated for size 

distribution measurements below 2 nm.  By comparing such results, we can assess how 

increasing the sheath flow rates can significantly suppress the effects of diffusion.  In this study, 

the accuracies of a Half Mini DMA and a Nano DMA were compared for aerosols generated by 

electrospraying tetra-heptyl ammonium bromide (THAB) and from a premixed methane-air flat 

flame reactor, focusing on sub 2 nm particles.  In addition, size distribution measurements during 

nanoparticle flame synthesis were conducted with a Half Mini DMA.  In order to shed light on 

the charging mechanisms in the flame qualitatively, size distributions were measured with and 

without neutralizers.  The dependence of ion contamination on the tubing material was 

demonstrated.  Issues in data inversion for sub 2 nm particle measurements were also discussed.   
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2.2 Methods 

The experimental setup for particle generation and measurement (Figure 2.1), methods for data 

inversion, and the experimental plan are described as follows.   

 

Figure 2.1 Schematic diagram of the experimental setup.  During the comparison of the Half Mini DMA and Nano 

DMA, the Kr-85 neutralizer was not used. 

 

2.2.1 Experimental setup 

THAB (99%, Sigma Aldrich) ions were generated by electrospray for the calibration and 

comparison of the two DMAs.  An electrospray source designed by Ude and de la Mora (2005) 

was used.  A 200 μM electrospray solution was prepared by diluting THAB into methanol 

(99.9%, Sigma Aldrich).  Ion peaks detected from the electrospray source are displayed in Figure 

2.2a; and they matched well with existing studies (Ude & de la Mora, 2005; Jiang et al. 2011).   

Ions generated from a methane-air premixed flat flame reactor were also measured.  The burner 

body was a 2.54 cm (O.D.) stainless tubing containing 3.18mm stainless steel beads on a mesh 

support, and capped by a stainless steel honeycomb mesh.  A more detailed description of the 
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system can be found elsewhere (Thimsen, 2009; Fang et al. 2014).  Fuel and air flow rates were 

maintained by mass flow controllers (MKS Inc.) at 0.81 lpm of CH4, 1.95 lpm of O2 and 6.60 

lpm of N2.  During TiO2 synthesis, a bypass N2 flow of 0.66 lpm was first introduced into a 

bubbler containing a titanium (IV) isopropoxide precursor (TTIP, Sigma-Aldrich, 97%) and then 

mixed with the main flow.  This arrangement produced a molar feed rate of 0.22 mmol/h of 

TTIP, which was determined by the saturation vapor pressure (Siefering & Griffin, 1990).   

 

Figure 2.2 (a) Size distributions of the THAB ions measured by the Half Mini DMA and Nano DMA at a 15:1 

sheath-to-aerosol flow ratio.    Half Mini DMA;    Nano DMA. (b)  Mobility spectrums of the THA+ 

monomer peak measured with the Half Mini DMA and Nano DMA at a sheath-to-aerosol flow ratio of 15:1 and 

curve fitting with Gaussian distributions.   Half Mini DMA measured results;   Nano DMA measured 

results;  Gaussian curve fitting of the Half Mini DMA results;  Gaussian curve fitting of the Nano DMA 

results.  

 

Aerosols in the flame were sampled using a dilution nozzle in order to quench possible chemical 

reactions and coagulation in the sampling lines (Ahn et al. 2001; Sgro et al. 2009; Zhao, et al. 

2003).  In this work, the sampling system described in Ahn et al. (2001) was used.  The inlet of 

the sample nozzle was placed 0.64 cm above the flame sheet.  The flame temperature of 1300K 

was measured using a type R thermocouple (Pt-Rh:Pt 2-mm bead).  The temperature after dilution 
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was 310K.  The sampling and dilution flow rates were 1.50 lpm and 42.4 lpm respectively.  This 

yielded a dilution ratio of 120, defined as )/()( aerosoldilutiondilutionaerosol QTQTR  , considering the 

effect of volume expansion in a flame (Zhao, et al. 2003). 

A sheath-to-aerosol flow ratio of 15:1 was maintained during the comparisons of the two DMAs.  

The sheath and aerosol flow rates were 15.0 lpm and 1.0 lpm respectively for the Nano DMA, and 

136.0 lpm and 9.0 lpm respectively for the Half Mini DMA.  The sheath flow rate of the Half Mini 

DMA was calculated based on the calibration with THAB ions and the data inversion method 

described in Section 2.2.2.  The transfer function is defined as the probability of a particle of a 

given mobility successfully traversing the classifier when a given voltage is applied to the center-

electrode (Knutson & Whitby, 1975).  Maintaining the same sheath-to-aerosol flow ratio would 

result in an identical non-diffusing transfer function shape.  However, due to diffusion effects, the 

transfer function becomes broader and lower (Stolzenburg & McMurry, 2008).  By comparing 

normalized full-width at half-maximum (NFWHM) or the resolution of the size distribution, the 

diffusion effect of the two DMAs were evaluated.   

Both the Nano DMA and Half Mini DMA were operated in a closed loop configuration to 

balance the aerosol inlet and outlet flow rates.  In order to minimize diffusion losses in the 

transport line, the Nano DMA was operated with a bypass flow of 8.0 lpm to ensure that both the 

Half Mini DMA and Nano DMA were taking 9.0 lpm of aerosol flow from the aerosol sources.   

For the Nano DMA system, since the measurements focused on sub 2 nm particles, the 

corresponding applied voltage scan ranged from 0 V to ±10 V with a 15 lpm sheath flow.  The 

applied voltage was provided by a bipolar analog output channel using a data acquisition board 
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(NI 9264, National Instruments).  The sheath and bypass flow rates of the Nano DMA were 

controlled by adjustable blowers in an Electrostatic Classifier (EC 3080, TSI Inc.).   

The voltage across the Half Mini DMA was generated using a high voltage source (Prodisc 

20DC).  In order to remove unclassified particles and maintain the system temperature at around 

25 C , an inline HEPA filter and a homemade heat radiator were applied in the Half Mini DMA 

system.  A controllable sheath flow ranging from 100 lpm to 700 lpm was provided by a pump 

driven by a brushless motor (DOMEL Incorporation).  

In both systems, the DMA voltages and data acquisition were controlled by a Labview program; 

the step voltages for the Nano DMA and the Half Mini DMA were 0.01V and 4V, respectively.  

Classified particles were counted with a custom-built Faraday cup electrometer (FCE).  The 

sample aerosol flow rate was controlled by a mass flow controller (MKS Inc.) downstream of the 

FCE.   

While examining the effects of the precursor, the radioactive neutralizer, and the tubing materials 

on size distribution measurements with the Half Mini DMA, the resolution was increased by 

changing the sheath-to-aerosol flow ratio to 24:1.  This was done by increasing the sheath flow 

to 218.0 lpm while maintaining a sampling flow rate of 9.0 lpm.   

A Krypton-85 neutralizer (Model 3077; 74 MBq; TSI Inc.; half life 10.76 years; produced in 

July, 2005) was applied to study the effect of charge conditioning on sub 2 nm particle 

measurements.  Copper tubing and silicone conductive tubing were used to study the influence of 

the contaminants released from tubing materials.  Both tubings are widely used in aerosol 

sampling and measurement.  In this study, a 20 cm section in the sampling line was left for 

connection with either copper tubing or silicone conductive tubing (Figure 2.1), while copper 
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tubing was used in the rest of the system.  Each tubing had an inner diameter of 4.76 mm and 

both were purged with ultra-purified nitrogen (>99.99%, Air Gas Inc.) for more than 24 hours 

before the start of all experiments.  

2.2.2 Data inversion 

Stolzenburg and McMurry (2008) presented a detailed data inversion process for a cylindrical 

DMA to convert the applied DMA voltage to particle size (
pD ), and the particle number 

concentration to the size distribution function ( pDddN ln/ ).   

In a closed loop cylindrical DMA, the electrical mobility (Z) of a particle is directly dependent 

on the voltage applied to the DMA (V); geometric parameters, such as the bullet length (L), 

bullet inner radius (R1), bullet outer radius (R2); and the flow rates, including sheath flow rate 

(Qc) and aerosol flow rate (Qs) (Knutson & Whitby, 1975).  Z is given by  
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As THAB ions are used for calibration, the sheath flow rate for the Half Mini DMA was 

calculated using Eq. (2.1).   

By definition, Z is also a function of the number of elementary charges carried by a particle (n), 

a single electron charge (e), the particle diameter (Dp), and the air viscosity (  ) 
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where the slip correction factor (C) provided by Allen et al. (1985) is used in this study.  By 

equating both sides of Eqs. (2.1) and (2.2), the correlation between voltage and particle diameter 

can be derived as 
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For small cluster measurements, the inverse mobility, 1/Z, is also frequently used as an indicator 

of particle size, since it is directly proportional to the applied DMA voltage as shown in Eq. (2.1) 

(Attoui et al. 2013; Ude & de la Mora, 2005).  In the following graphs, the inverse mobility 

corresponding to the particle diameter is plotted as the upper x-axis.   

For the conversion of raw data N(V) (measured total concentration downstream of the DMA set 

at voltage V) to the size distribution function ( pDddN ln/ ), if the particle is assumed to carry 

one unit charge, the relationship between the particle number concentration and the size 

distribution function can be written as 
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where   and  are dimensionless flow parameters.  The constant   can be derived from the 

relationship between Z and Dp.  Detailed expressions can be found elsewhere (Stolzenburg & 

McMurry, 2008).  )( pDET D  is the detection efficiency of the particle counter, and )( pc Df  is the 

charging efficiency of the neutralizer.   
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In this study, the detection efficiency of the electrometer is assumed to be 100% for convenience 

of data inversion, despite the possible issue of diffusion loss.  A prediction of particle losses in 

the system would require a detailed analysis of the flow fields in the instruments and transport 

lines.  When data inversion was executed using Eqs. (2.3) and (2.4), the only unknown parameter 

was the charging efficiency.  There are few studies on the charging efficiency of sub 2 nm 

particles in radioactive neutralizers or for flame-generated aerosols (Gopalakrishnan et al. 2013), 

since it is dependent on whether the cluster is natively charged or neutral.  According to Fuchs’ 

theory (1963) and existing experimental results (Wiedensohler & Fissan, 1991; Reischl et al. 

1996), the neutralization efficiency of sub 2 nm particles is very low, due to the low collision 

frequency between neutralizer ions and sampled aerosol.  Natively charged particles most likely 

retain their charges, while a very small fraction of neutral particles become charged after 

neutralization.  Studies have also shown that radioactive neutralization generates a large number 

of sub 2 nm ions or charged clusters that may interfere with sample aerosols (Kallinger, et al. 

2012).  Moreover, below 2 nm, the chemical composition of particles takes on a more important 

role in determining the particles’ properties (McMurry, et al. 2011).  The uniformity of the 

sample aerosol assumed in Fuchs’ theory can no longer be valid.  These issues increase the 

difficulty of correctly executing the data inversion process.  In the results Section 2.3.3, two 

different charging mechanisms were used, assuming the sample aerosol was either natively 

charged or neutral.  The dependence on chemical composition is neglected in this work.   

2.2.3 Experimental Plan 

Twelve sets of experiments were designed, focusing on the comparison of the two types of 

DMAs along with the factors influencing sub 2 nm particle measurements in flames (Table 2.1).  

Cases 1 through 4 targeted DMA comparisons in measurements on electrospray and flame ions.  
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The influences of the precursor and the neutralizer were investigated by cases 5 to 8.  In cases 7 

through 12, measurements on both unburned gas mixture and flame aerosols were conducted to 

study the influence of tubing materials.  

Table 2.1 Experimental Plan 

Case 

Number 

DMA Type Particle 

Source 

Precursor 

(TTIP) 

Neutralizer Tubing 

Material 

Sheath to 

Aerosol ratio 

1 Nano THAB / × Copper 15:1 

2 Nano Flame × × Copper 15:1 

3 Half Mini THAB / × Copper 15:1 

4 Half Mini Flame × × Copper 15:1 

5 Half Mini Flame × × Copper 24:1 

6 Half Mini Flame √ × Copper 24:1 

7 Half Mini Flame × √ Copper 24:1 

8 Half Mini Flame √ √ Copper 24:1 

9 Half Mini Flame × √ Silicone 

Conductive 

24:1 

10 Half Mini Flame √ √ Silicone 

Conductive 

24:1 

11 Half Mini Unburned gas 

mixture 

/ √ Copper 24:1 

12 Half Mini Unburned gas 

mixture 

/ √ Silicone 

Conductive 

24:1 

 

2.3 Results and Discussion 

2.3.1 Comparison between the Half Mini DMA and Nano DMA 

Measurement on THAB ions generated by electrospray 

The Half Mini DMA and Nano DMA were first compared using THAB ions generated by 

electrospray.  Theoretically, three distinct ion peaks with inverse mobility values of 1.03 Vs/cm2, 
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1.52 Vs/cm2, and 1.85 Vs/cm2 can be detected (Ude & de la Mora, 2005).  Figure 2.2a shows the 

ion peaks measured by both the Half Mini DMA and Nano DMA.  A higher resolving power was 

indeed observed in the Half Mini DMA measurements.  By comparing the approximate total 

number concentrations of the first and the second peak, it was concluded that the diffusion loss 

inside the Nano DMA was significant.   

Because THAB ions have been established as monodisperse size standards, information on the 

DMA transfer function could be obtained.  The mobility spectrum of the first peak, THA+, was 

used for the comparison of the two DMA transfer functions (Figure 2.2b).  For the Nano DMA, 

only the higher mobility part of the THA+ peak was analyzed, since the diffusion broadening of 

the THA+(AB) peak caused an overlap with the THA+ peak, as shown in Figure 2.2a.  The 

NFWHMs for the Nano DMA and Half Mini DMA were calculated to be 0.26 and 0.10, 

respectively.  The resolution of a DMA, on the other hand, can be defined as the inverse of the 

NFWHM, i.e., NFWHMZZR FWHM /1/*   (Flagan, 1999).  Therefore, the resolutions of the 

Half Mini DMA and Nano DMA were 10 and 3.8, respectively.  This result demonstrates that in 

the Half Mini DMA, the effects of diffusion broadening are much smaller than in the Nano 

DMA.  The resolution of a DMA without diffusion effects depends on the ratio of the sheath to 

aerosol flow rates, i.e., 15 in this case (Knutson & Whitby, 1975).  Hence it should be noted that 

the Half Mini DMA is still far from conditions where diffusion is eliminated. 

To evaluate the effect of diffusion broadening on the transfer functions quantitatively, diffusing 

transfer function theory (Stolzenburg, 1988) was applied.  The calculated standard deviation 

values of the transfer function were compared with the experimental results.  According to 

Stolzenburg’s theory (1988), the standard deviation of the DMA diffusing transfer function can 
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be represented as the product of the theoretical standard deviation and a multiplicative factor: 

 ftheo  , where f  is dependent on the instrument’s non-ideality, electrode imperfections 

and misalignments, and other factors that may influence the flow or electric fields.  
theo  is 

determined by the geometry of the DMA and the dimensionless diffusion coefficient of the 

classified particles: DGDMAtheo

~
 , where DMAG  is dependent on the DMA classification zone 

length (L), inner diameter (R1), outer diameter (R2).  Detailed expressions of the parameters can 

be found elsewhere (Stolzenburg, 1988; Flagan, 1999; Stolzenburg & McMurry, 2008; Jiang et 

al. 2011).   

Table 2.2 Geometric parameters, theoretical and experimental standard deviations, and multiplicative 

factors of the Half Mini DMA and Nano DMA.  

 L (mm) R1 (mm) R2 (mm) 
theo    f  

Half Mini DMA 4.00 4.00 6.00 0.0144 0.0389 2.70 

Nano DMA 49.9 9.37 19.1 0.111 0.112 1.01 

 

The standard deviation,  , on the other hand, can be derived via curve fitting of the 

experimental results, as shown in Figure 2.2b.  Therefore, the multiplicative factor indicating the 

deviation from the theoretically predicted diffusion condition was calculated.  Geometric 

parameters, standard deviations, and calculated multiplicative factors are listed in Table 2.2.  It 

can be seen that the multiplicative factor for the Half Mini DMA is much higher than 1, 

indicating a large deviation from the theoretically predicted working condition.  The result is 

reasonable for a high flow DMA, since the classification zone, which is within several 

millimeters, becomes sensitive to misplacement of the electrode and surface roughness.   
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On the other hand, the diffusing transfer function theory predicts the Nano DMA experimental 

transfer function very well, signifying the robustness of the Nano DMA design. Similar results 

were also observed by Jiang et al. (2011).   

Measurement of the flame ions generated from a premixed flat flame reactor 

 

Figure 2.3 Size distributions of positive and negative ions generated in a blank premixed flat flame, as measured by 

the Half Mini DMA and Nano DMA.   Half Mini DMA;   Nano DMA. 

 

In experimental case 2 and case 4, the Half Mini DMA and Nano DMA were also compared for 

the measurement of flame ions generated from a premixed flat flame reactor.  Results are shown 

in Figure 2.3.  In the case of a blank flame, i.e., a flame without the addition of precursors, 

characteristic ion peaks below 2 nm were detected.  The Half Mini DMA demonstrated a smaller 

diffusion broadening effect, similar to that for THAB ions.  These results indicated that the Half 
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Mini DMA could clearly distinguish characteristic ion clusters below 2 nm with high resolution.  

Such measurements can further help examine the initial stage of particle formation.  

The detection of characteristic ion peaks in a blank flame raises intriguing questions on the 

origin of these ions and the role they play in particle formation.  There may be several reasons 

for the presence of these ions.  First, we suspect that these ions may be organic radicals produced 

during the combustion of methane.  The combustion process includes complicated pathways with 

the production of multiple free radicals (Turns, 1996).  These ions may be stable radicals 

generated during the combustion process.  Second, it is also possible that these ions are 

generated from thermionic charging.  Existing studies (Jiang et al. 2007b; Sahu et al. 2012) have 

shown that at high temperatures, positive particles can be generated by electron ejection.  This 

mechanism also predicts a higher total positive ion concentration which is consistent with the 

trends of the experimental results.  Although fuel-lean combustion conditions were used, soot 

precursors or organic carbon may still form (Sgro, et al. 2007, 2009).  These particles may lose 

electrons and become charged.  The possibility that these particles were generated by the hot 

burner or dilution probe surface through thermoemission or surface ionization cannot be 

neglected either (Peineke & Schmidt-Ott, 2008).  

Nevertheless, further work with mass spectrometry is needed to investigate the exact chemical 

species of the ions and how these ions interact during the flame synthesis of nanoparticles.  

Existing studies have highlighted the advantages of ionic physical and chemical analysis using a 

tandem arrangement of a high flow DMA and a mass spectrometer (Steiner, et al. 2013; 

Manninen, et al. 2011).  Due to the existence of these ions, ion-induced nucleation may take 

place during nanoparticle flame synthesis (Vishnyakov et al. 2011).  The difference between 
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positive and negative ion concentrations may also cause a biased charge distribution of the 

nanoparticles generated in a flame.   

2.3.2 Factors influencing size distribution measurements of flame aerosols 

Effect of the flame synthesis precursor (TTIP) on size distribution measurement 

 

Figure 2.4 Size distributions of positive and negative ions and charged particles generated in a premixed flat flame 

reactor.    flame only;   flame with TTIP addition; dashed boxes highlight the discrete ion peaks  

 

The performance of a Half Mini DMA for measuring size distributions during the flame 

synthesis of TiO2 was investigated (cases 5 and 6), with the results plotted in Figure 2.4.  This 

was done by adding TTIP as a vapor precursor to the premixed flat flame.   

When compared with the blank flame condition, new ion peaks in both polarities below 1.45 nm 

and a broader distribution after 1.45 nm were observed.  This is the first study that provides 

measured data of discrete clusters during synthesis of particles in a flame reactor, which can be 
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further used in discrete-sectional modeling of particle formation and growth (Wu & Flagan, 

1988; Biswas et al. 1997).    

In the presence of TTIP, the signal strength for the blank flame-generated ion peaks decreased, 

most notably for the positive ion peak at around 1 nm.  TiO2 cluster formation may consume 

more positive ions than negative ions.  The consumption of flame ions may come from either 

particle charging or ion induced nucleation.  According to Fuchs’ theory (1963), the relatively 

small mobility of the positive ions measured in experimental case 5 (Figure 2.3) may result in a 

higher consumption than for negative ions (Reischl et al. 1996).  It should also be noticed that 

the difference between the mobility of the positive and negative ion peaks around 1 nm is not 

significant.  The higher consumption of positive ions is more likely driven by the polarity 

dependence of the ion-cluster reaction, rather than by diffusion charging.  In a study of 

heterogeneous nucleation, negative ions showed a stronger effect on inducing nucleation 

(Winkler, et al. 2008); however, there have not been detailed studies in flame systems.  During 

the flame synthesis of TiO2 in a methane-air flat flame, the total positive ion concentration was 

still higher than the total negative ion concentration, as shown in Figure 2.4.  This can also be 

explained by thermionic charging and the intrusion of positive radicals, as discussed in Section 

2.3.1.   

The resolution of the Half Mini DMA at a higher sheath-to-aerosol flow ratio of 24:1 was 

examined.  By comparing Figure 2.3 and Figure 2.4 for the Half Mini DMA measurement of the 

first positive peak in a flame only condition, a higher resolved shape can be observed at a sheath-

to-aerosol flow ratio of 24:1.  If the first positive peak is regarded as monodisperse, the 

resolutions are calculated to be 7.3 and 11 for sheath-to-aerosol flow ratios of 15:1 and 24:1.  

When compared with the THAB measurements with a 15:1 sheath-to-aerosol ratio (Figure 2.2b), 
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the resolution decreased from 10 to 7.3, since the decreased size (from 1.47 nm to 1.02 nm) 

resulted in a stronger diffusion broadening effect.   

Effect of radioactive neutralizer on size distribution measurement 

 

Figure 2.5 Size distributions of radioactively neutralized positive and negative ions and charged particles generated 

in a premixed flat flame reactor.    flame only;   flame with TTIP addition.  

 

The effect of a bipolar radioactive neutralizer (Kr-85) on size distribution measurements was 

studied (cases 5 through 8).  Figure 2.5 displays the size distributions measured with a 

neutralizer in a blank flame condition and during TiO2 synthesis.  After charge conditioning, two 

main effects were found.  First, flame ions were neutralized differently, based on ion polarity.  

The major positive ion peak at around 1 nm was significantly suppressed, while the negative ion 

signal increased, resulting in a more balanced charge distribution.  However, a near-symmetric 
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charge distribution predicted by Fuchs’ theory is not observed.  The shape of the size distribution 

curve is substantially different for positive and negative ions.  As explained previously, the 

measured particles can be seen as a mixture of neutralizer ions, natively charged particles 

without neutralization, and neutralized particles. The distinct mobilities of each species may 

result in different final size distributions.   

Second, for negative ions, no new ion peaks were observed in comparison to the case without a 

neutralizer, while the signal strengths increased (comparing with Figure 2.4).  This phenomenon 

indicates that the negative ions generated in the neutralizer were identical to those generated in 

the flame.  Hydrated ions, nOHX )( 2


 (X =



3NO , 


2NO  etc.) were believed to be the predominant 

ions generated in neutralizers (Cabane & Playe, 1980), which may depend on the humidity.  A 

recent study with a tandem DMA-mass spectrometer system further shows that by passing clean 

air through a radioactive neutralizer, the ion peak at around 1 nm is mainly composed of 


3NO  

and 
 33 NOHNO  (Steiner, et al. 2013).  In the flame, due to the presence of organic and inorganic 

radicals and high concentration of water vapor, it is also possible that similar ions were formed.   

With the addition of TTIP for the flame synthesis of TiO2, charge conditioning with a neutralizer 

resulted in a different size distribution (Figure 2.4 and Figure 2.5).  This alternation may be 

caused by differences in charging mechanisms in the flame and neutralizer.  Both thermionic 

charging and diffusion charging determine the charge distribution of aerosols in a flame; while in 

a radioactive neutralizer, diffusion charging is the only mechanism that determines the aerosol 

charge distribution (Jiang, et al. 2007b).   

Effect of tubing material on size distribution measurement 



43 

 

 

Figure 2.6 (a) Size distributions of positive and negative ions produced in the Kr-85 neutralizer when copper or 

silicone conductive tubing was used to transport the unburned gas mixture to the Half Mini DMA.    copper 

tubing;   silicone conductive tubing. (b) Size distributions of neutralized positive and negative ions generated 

in a blank flame and flame with TTIP precursor when silicone conductive tubing was used to transport the sample 

aerosols to the Half Mini DMA.     flame only;   TTIP flame.  

 

The effect of tubing material on the size distribution measurement of both the unburned gas 

mixture and flame ions were investigated.  From Figure 2.6a, it can be seen that at normal 

temperatures, for unburned gas mixtures with clean copper tubing, ions were still detected.  

These ions may originate from the neutralizer (Kallinger, et al. 2012).  However, when silicone 
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conductive tubing was used in the system, extremely high amounts of positive ion contamination 

at around 1.37 nm were observed.  For negative ions, an additional ion peak appeared in the 

silicone conductive tubing measurement results.   

During the sampling of flame aerosols, the interference of ion peaks from silicone tubing 

continued to dominate in positive ion measurements, as seen when comparing the TTIP 

measurement results in Figure 2.4 and Figure 2.6b.  This result demonstrated that for 

measurement of sub 2 nm particles, copper tubing may be a better choice for transporting sample 

aerosols.  On the other hand, for negative ions, the contamination from conductive tubing was 

not as strong as that of positive ions, which might be caused by the fact that the organic 

molecules released from the conductive tubing were positively charged.   

2.3.3 Data Inversion Results 

In Figure 2.7, the size distribution functions of the neutralized TiO2 particles (case 8, negative 

ions) were plotted with the assumption of two different charging efficiencies.  By assuming that 

measured negative clusters were natively neutral and became singly charged due to collisions 

with ions in the neutralizer, the Wiedensohler (1986) charge distribution function can be used 

kf 10)1(  ,            (2.5) 

where 





5

0

))(log(
i

ip

i
nm

D
Nak .          (2.6) 

Here, )1(f  is the fraction of singly negatively charged particles in the total population of 

particle having a size of Dp.  k can be calculated by several constants listed elsewhere 
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(Wiedensohler, et al. 1986).  On the other hand, if we assume that measured clusters were 

natively charged before neutralization, and the charge state did not change due to the low 

collision efficiency with the neutralizer ions, a 100% charging efficiency )( pc Df  can be used in 

Eq. (2.4).  Hence a different size distribution function of the negative ions can be derived.   

It is seen in Figure 2.7 that different charge distribution assumptions not only resulted in a large 

difference in particle concentrations, but also caused an alternation of the normalized shape of 

the size distribution function.   

 

Figure 2.7 Size distribution functions of neutralized flame-generated particles (Case 8, negative) calculated from 

data inversion.    assuming particles were natively neutral (using Wiedensohler charging efficiency);    

assuming particles were natively charged (using 100% charging efficiency). 

 

It should also be noted that Fuchs’ theory predicts a near-symmetric charge distribution after 

neutralization, while in our experiments, such symmetry was not observed.  Hence, using the 

Wiedensohler charge distribution (1986) is not the most appropriate approach for deriving the 

size distribution.  However, this issue reveals both the complexity and the uniqueness of 
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charging mechanisms in the sub 2 nm range.  Further research is needed to determine the actual 

charging mechanisms and charge distribution for sub 2 nm particles in both neutralizers and 

flames.  

 

2.4 Conclusions 

This work compared the accuracy of the Half Mini DMA and Nano DMA in measurements of 

sub 2 nm ions and charged particles generated by electrospray and by a premixed flat flame 

reactor.  For both measurements, a lower diffusion effect was observed in the Half Mini DMA.   

The Half Mini DMA was used to investigate the formation of TiO2 clusters during flame 

synthesis, the impact of use of radioactive neutralizers and tubing materials on size distribution 

measurements.  When TTIP was introduced into the flame reactor, discrete TiO2 ion peaks were 

observed, indicating a discrete size distribution at initial stages of particle formation.  Use of a 

radioactive neutralizer resulted in a balanced distribution of the positive and negative particles.  

The alteration in the size distribution when compared with the cases without a neutralizer 

indicated different charging mechanisms in a flame and neutralizer.  During the transport of the 

sample aerosols, the silicone conductive tubing generated very large quantities of positive 

contaminant ions with mobility diameters of approximately 1.37 nm.  This effect remained when 

measuring flame-generated nanoparticles.  These results suggest that copper tubing is a more 

appropriate choice than silicone conductive tubing when measuring size distributions under 2 

nm.   

The size distribution measurements of flame aerosols in the sub 2 nm range can provide 

fundamental information on particle formation processes.  Future work on flame aerosol 
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measurements with the Half Mini DMA is needed, which will greatly broaden our vision of 

nanoparticle synthesis and pollutant control.   
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Abstract  

Particle size distribution measurements from differential mobility analyzers (DMAs) can be 

utilized to study particle formation mechanisms. However, knowledge on the initial stages of 

particle formation is incomplete, since in conventional DMAs, the Brownian broadening effect 

limits their ability to measure sub 2 nm sized particles. Previous studies have demonstrated the 

capability of high flow DMAs, such as the Half Mini DMAs, to measure sub 2 nm particles with 

significantly higher resolutions than conventional DMAs.  

A Half Mini DMA was applied to study the kinetics of sub 2 nm TiO2 nanoparticle formation in 

a furnace aerosol reactor, through the thermal decomposition of titanium tetraisopropoxide 

(TTIP). The influence of parameters such as reaction temperature, residence time, precursor 

concentration, and the introduction of bipolar charges on sub 2 nm particle size distributions 

were studied. A first order reaction rate derived from the dependence of size distributions on 

reaction temperature matched well with existing literature data. The change in precursor 

residence time and precursor concentration altered the size distributions correspondingly, 

indicating the occurrence of TTIP thermal decomposition. The introduction of bipolar charges in 

aerosol reactors enhanced the consumption of reactants, possibly due to ion-induced nucleation 

and induced dipole effects.  
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3.1 Introduction 

A tremendous growth in demand for nanoparticles has been witnessed in recent years. Unlike 

bulk materials, nanoparticles exhibit distinctive physical, thermal, acoustic, electric, and optical 

properties that lead to a wide array of applications. Pristine metal oxide nanoparticles, such as 

TiO2, ZnO, and CuO, and their composites have received extensive attention due to their wide 

usage in pigments, additives, catalysts (Freund et al. 2008; Jiang et al. 2014), photovoltaic device 

components (O’Regan and Grätzel 1991; Thimsen et al. 2008; Wang et al. 2012), and battery 

materials (Zhang et al. 2011; Chadha et al. 2014).  

In industry, gas-phase routes are a major methodology for synthesizing metal oxide 

nanoparticles, with an annual yield of over 2 million tons and a revenue of over 4 billion USD 

(Wegner and Pratsinis 2003). In this process, nanoparticles are formed via a bottom-up method 

involving cluster formation and consumption. The pathway of the formation of metal oxides can 

be described as follows. First, metallic precursors react through thermal decomposition or 

oxidation to form metal oxide vapors; then supersaturated vapor molecules nucleate 

homogeneously or heterogeneously to form stable molecular clusters. Next, metal oxide vapors 

condense on existing nuclei; and finally, metal oxide particles coagulate and sinter to form 

particles with desired sizes, crystal phases, or other characteristics. In order to tailor nanoparticle 

properties, a thorough understanding and precise control of the particle formation processes are 

needed, both of which require the characterization of nanoparticle formation.  

Size characterization is one of the most common methods for measuring nanoparticles, since size 

distributions and their evolution under different synthesis conditions will facilitate the 

understanding of particle formation mechanisms. Real time size distribution measurements of 
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particles are usually conducted with differential mobility analyzers (DMAs) (Knutson and 

Whitby 1975; Wang and Flagan 1990). A DMA, acting as an electric mobility classifier, allows 

only particles with certain electrical mobilities (mobility sizes) to pass through the instrument 

and to be further monitored by particle counters. Utilizing this instrument, various studies on 

particle formation and growth have been conducted, including particle generation in flame 

aerosol reactors (Jiang et al. 2007; Sgro et al. 2007; Fang et al. 2014a), particle sintering 

mechanisms (Cho and Biswas 2006; Cho et al. 2007; Mädler et al. 2002; Eggersdofer et al. 

2012), and particle charging mechanisms (Sahu and Biswas 2011; Kim et al. 2005; Maricq 2004; 

Maricq 2008; Hogan et al. 2009). A detailed review of these studies indicates that particle 

dynamics were investigated only in the size range above 2 nm. Information on particle 

nucleation and growth at initial stages is missing, forming a knowledge gap between chemical 

reactions, which typically happen on the molecular scale, and particle growth above 2 nm. The 

lack of information on incipient nanoparticles is due to Brownian diffusion effects in 

conventional DMAs, which adds uncertainty to particle movements in DMAs and causes 

broadening of measured particle size distributions, compromising the accuracy of the size 

distribution measurements (Stolzenburg 1988; Stolzenburg and McMurry 2008). In order to 

counteract the effects of diffusion, DMAs with high sheath flow rates, typically over 100 lpm, 

were designed; so that the particle diffusing time in the classification zone is reduced, and the 

accuracy and resolution of the measurement is enhanced (Fernandez de la Mora 2011; Fernández 

de la Mora and Kozlowski 2013; Hontañón et al. 2013; Wang et al. 2014). DMAs with high 

sheath flow rates have previously been used in studies including the calculation of ion mobility-

volume relationship (Larriba et al. 2011), the generation of monomobile particle size standards 

(Attoui et al. 2013), the determination of ion composition (Junninen et al. 2010; Manninen et al. 
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2011; Steiner et al. 2013), and the observation of heterogeneous nucleation (Winkler et al. 2008). 

Recently, few studies by our group (Fang et al. 2014b; Wang et al. 2014) have focused on sub 2 

nm cluster formation in flame reactors. These measurements by a hand-held DMA with high 

sheath flow rates (Half Mini DMA) implied that collisional growth is likely to take place in the 

sub 2 nm range (Fang et al. 2014b).   

Our previous work on sub 2 nm particle measurements showed that flame aerosol reactors 

generate a large amount of background ions, some of which may overlap with the newly formed 

particles in mobility spectrums (Fang et al. 2014b). Furnace aerosol reactors have been widely 

chosen to study particle formation mechanisms due to the less interference of background 

species, and the simplicity and uniformity of the flow and temperature fields, which enable them 

to provide direct evidence of particle formation and growth (Moravec et al. 2001). Previous 

studies on TiO2 nanoparticle formation through the thermal decomposition of titanium 

tetraisopropoxide (TTIP) were carried out in furnace aerosol reactors, and Arrhenius first order 

reaction rates were determined (Nakaso et al. 2003). Discrete sectional models were used to 

simulate these systems, yielding results that qualitatively predicted the experimental results 

(Okuyama et al. 1989, 1990). Nonetheless, due to the limitation of the instrumentation, none of 

these studies investigated initial stage particle dynamics on the sub 2 nm scale. In furnace aerosol 

reactors, particles are generally formed with little charge interaction (Adachi et al. 2003). The 

addition of bipolar charges may enhance the coagulation efficiency of particles due to induced 

dipole effects (Zhang et al. 2011). There is also evidence that charges may alter the size, shape, 

and concentration of the synthesized particles in aerosol reactors due to ion-induced nucleation 

effects (Adachi et al. 2004). Hence, it would be interesting to see the role of the addition of 

bipolar charges on particle formation and growth in the sub 2 nm range.  
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In this study, a Half Mini DMA was utilized to determine the kinetics of TiO2 particle formation 

and growth during the thermal decomposition of TTIP in a furnace aerosol reactor. Sub 2 nm 

particle size distributions as a function of furnace temperatures were obtained and analyzed. 

Arrhenius first order reaction rates were determined from the evolution of measured size 

distributions. The effects of precursor residence time, precursor concentration, and the addition 

of bipolar charges on the evolution of sub 2 nm particle size distributions were also studied.  

 

3.2 Materials and Methods 

3.2.1 Experimental Setup 

 

Figure 3.1 Schematic diagram of the experimental setup. The Kr-85 neutralizer upstream of the furnace was used for 

studying the influence of bipolar ionic charge introduction on particle formation.  

 

The experimental setup for this work consisted of four sections: a precursor feeder, an 

electrically heated furnace, a dilution sampler, and a Half Mini DMA system. A schematic 
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diagram of the experimental setup is shown in Figure 3.1. The TiO2 nanoparticles were 

synthesized by the thermal decomposition of titanium tetraisopropoxide (TTIP, Sigma-Aldrich 

Inc., >97%). TTIP was introduced into the furnace by bubbling clean and dry N2 (Airgas, NI 

300) through TTIP liquid.  The TTIP bubbler (MDC Vacuum Products) was placed in a water 

bath maintained at 25°C. The concentration of TTIP was calculated according to the saturation 

vapor pressure data presented by Siefering and Griffin (1990). Before entering the furnace, the 

TTIP carrier gas mixed with another stream of N2 (dilution N2), so that the precursor 

concentration and the precursor residence time could be varied by altering the flow rates of the 

two streams with mass flow controllers (MKS Inc.). To study the influence of ionic charges on 

particle formation, the dilution N2 was first passed through a Krypton-85 radioactive charger 

(TSI 3077A), so that bipolar ions can be generated (Zeleny, 1931; Bradbury, 1932; Kallinger et 

al. 2012).  

The thermal decomposition of TTIP was accomplished by sending the gas mixture through the 

electrically heated furnace (Fisher Scientific Inc.). A quartz tube with a size of 16 × 356 mm (ID 

× L) was used as the tubular reactor. The stainless steel tubes connecting the bubbler and the 

quartz tube were also maintained at a temperature of 25°C to prevent TTIP from condensing on 

the tube walls. To study the effect of temperature on particle synthesis, the furnace was operated 

at various temperatures. Figure 3.2 shows a temperature profile as a function of the distance from 

the furnace inlet, when the furnace was set to 723 K. To account for the temperature variation 

along the reactor, an “effective reaction zone” (ER zone) was defined, assuming TTIP 

decomposed only in the ER zone, where the furnace temperature was equal to the set temperature 

(Nakaso et al. 2003). The precursor residence time is further calculated by dividing the volume 

of the ER zone by the corrected flow rate considering the effect of thermal expansion.  
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Figure 3.2 Temperature distribution in the reactor as a function of the distance from the reactor inlet when the 

furnace was set to 723 K. Shaded area is the effective reaction zone (ER zone). 

 

At the outlet of the quartz tube, a dilution sampling probe was used to sample particles while 

quenching further reactions and particle growth. The design of the sampling tube was similar to 

the one presented by Ahn et al. (2001). Aerosols were sampled with a flow rate of 1.20 lpm, 

determined with a bubble flow meter (Gilibrator, Sensidyne Inc.). The flow rate ratio of the 

dilution air and the sampled aerosol was measured to be 29.0. Considering the thermal expansion 

effect at high temperatures, the actual dilution ratio ( DR ) was calculated using

dilutionsamplesampledilutiondilutionsampleD TTQTQTR /0.29/  , where 
sampleT  was the temperature at the 

outlet of the furnace, and 
dilutionT  was the temperature of the dilution air (Zhao et al. 2003).  

Prior to entering the DMA for size classification, sampled aerosols were charged with a 

radioactive charger (Kr-85, Model 3077A, TSI Inc.), since the thermal decomposition of TTIP 
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does not involve much ion interaction, and most of the particles remain uncharged, as observed 

in this and previous studies (Adachi et al. 2003). The Half Mini DMA was operated in a closed 

loop, where the sheath flow was filtered, cooled, and recirculated by an inline HEPA filter (Ideal 

Vacuum Products, LLC), a homemade radiator, and a brushless blower (DOMEL Inc.), 

respectively (Wang et al. 2014). The sheath flow rate was calculated to be 220 lpm, according to 

the calibration method mentioned elsewhere (Ude and de la Mora 2005; Wang et al. 2014). The 

aerosol inlet and outlet flow rates were balanced due to the closed loop configuration. Both of 

the flow rates were maintained at 5 lpm by a mass flow controller (MKS Inc.) downstream of the 

DMA.  

A high voltage source (Prodisc 20DC) was used to control the applied voltage on the DMA using 

a Labview program with a voltage step of 5 V. At the outlet of the DMA, a home-built Faraday 

cup electrometer (FCE) recorded the classified particle number concentration (Heim et al. 2010). 

By switching the polarity of the high voltage applied on the DMA, the number concentrations of 

both positively and negatively charged particles could be measured. Charged particle size 

distributions were then obtained by relating the particle mobility size, calculated from the applied 

voltage, with the particle concentration monitored by the FCE (Wang et al. 2014). In this work, 

the mobility sizes calculated from Stokes-Millikan law were reported, representing the drag force 

on particles. According to existing studies, the mobility sizes are approximately 0.3 nm larger 

than the volume sizes for particles below 2 nm (Larriba et al. 2011). Also note that the actual 

particle size distribution function (
pDddN log/ ) was not calculated, due to the complexity of the 

charging mechanisms of sub 2 nm particles (Gopalakrishnan et al. 2013; Wang et al. 2014).  The 

transmission efficiency of the half mini DMA was assumed to be the same for particles with a 
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same size.  Hence, the electrometer-measured cluster concentration was assumed to be 

proportional to the cluster concentration before size-classification.   

3.2.2 Experimental Plan 

Table 3.1 Experimental plan for the thermal decomposition studies of TTIP 

 Temperature 

(T [K]) 

Residence time in ER zone 

(t [s]) 

Precursor Concentration 

(C [mmol/m3]) 

Introduction of 

Bipolar charges 

Group 1 473 to 903 0.132 to 0.252 2.4 – 

Group 2 723 0.101 to 0.303 2.4 – 

Group 3 723 0.152 0.72 to 4.8 – 

Group 4 723 0.152 2.4 √ 

 

The experiments were conducted to systematically investigate the effects of parameters relating 

to the kinetics of particle formation, including reaction temperatures, precursor residence times, 

and precursor concentrations. Furthermore, the effect of bipolar ionic charge introduction on 

particle formation was studied by examining the influence of using a radioactive neutralizer as 

the source of ions. A brief summary of the experimental plan is shown in Table 3.1. To study the 

effect of reaction temperature (Group 1), furnace temperatures were varied from 473 K to 903 K. 

A precursor concentration of 2.4 mmol/m3 was maintained by controlling the flow rate ratio of 

the precursor carrier N2 ( CQ ) to the dilution N2 ( DQ ) to be 1:2, and the total N2 flow to be 3 lpm. 

The change of reaction temperatures also affected the precursor residence time in the ER zone, 

and the actual residence time is calculated with the ideal gas law. Group 2 experiments examined 

the influence of precursor residence time. A furnace temperature of 723K and a precursor 

concentration of 2.4 mmol/m3 were maintained, while total flows of N2 ranging from 1.5 lpm to 

4.5 lpm were used, corresponding to a residence time ranging from 0.101 s to 0.303 s. To 
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investigate the effect of precursor concentration on the kinetics of particle formation (Group 3), 

the furnace was maintained at 723 K and the total flow of N2 was kept at 3 lpm. 
DC QQ :  was 

altered from 1:9 to 2:1, resulting in precursor concentrations ranging from 0.72 mmol/m3 to 4.8 

mmol/m3. The influence of charge addition on particle formation and growth was investigated by 

experiments listed in Group 4. The ER zone temperature, precursor residence time, and precursor 

concentration were maintained at 723 K, 0.152 s, and 2.4 mmol/m3, respectively.  

 

3.3 Results and Discussion 

This section discusses the effects of reaction temperature, precursor residence time, precursor 

concentration, and the introduction of bipolar charges on reaction kinetics and particle formation 

and growth.  

3.3.1 Effect of Reaction Temperature 

 

Figure 3.3 Particle size distributions as a function of reaction temperatures at a precursor concentration of 2.4 

mmol/m3. (a) positively charged particles, (b) negatively charged particles. Size distributions of neutralizer 

generated ions are also displayed.  
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Size distributions of both positively and negatively charged particles measured with the Half 

Mini DMA at different furnace temperatures are illustrated in Figures 3.3 and 3.4, with notable 

ion peaks identified in Figure 3.4 by dashed lines (note different scales of y-axis). Low furnace 

temperature (473 K) experiments detected positively charged ions at 1.4 nm (peak #1 in Figure 

3.4a) and negatively charged ions at 1.15 nm and 1.35 nm (peaks #1 and 2 in Figure 3.4b). These 

ion peaks were possibly generated by the ionization of TTIP and intermediate molecules in the 

Kr-85 radioactive neutralizer, since the temperature was not high enough to trigger extensive 

thermal decomposition of TTIP (Moravec et al. 2001; Eiceman et al. 2013). Figure 3.3 also 

displays the size distributions of the neutralizer ions without the addition of TTIP, which are 

significantly different from the ones detected with TTIP addition.  

 

Figure 3.4 Particle size distributions as a function of reaction temperatures at a precursor concentration of 2.4 

mmol/m3. Note different y-axis ranges compared to Figure 3.3. (a) positively charged particles, (b) negatively 

charged particles. Distinguishable peaks are marked with dashed lines in both positively charged particle size 

distributions (#1 to 2) and negatively charged particle size distributions (#1 to 4). 
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As the furnace temperature increased, a decrease in the signals from positively charged particles 

(peak #1 in Figure 3.4a) was observed, indicating the occurrence of the consumption of TTIP 

molecules. At the same time, the concentration of positively charged particles with sizes between 

1.45 to 1.6 nm increased. At 833 K, newly formed negatively charged particles with sizes of 1.45 

nm and 1.53 nm appeared (peaks #3 and 4 in Figure 3.4b). The concentrations of both peaks 

decreased as temperature further increased, indicating the consumption of these particles through 

further reaction or particle growth. When the furnace temperature was increased to 893 K, the 

signals of the originally detected particles in both polarities were significantly reduced due to 

higher rates of reaction and particle growth into larger sizes. Continuous particle size 

distributions above 1.6 nm were observed in both polarities, indicating the formation and growth 

of TiO2 particles.  

An asymmetry of the positively and negatively charged particle size distributions was observed. 

As shown in Figures 3.3 and 3.4, the total concentration of positively charged particles was much 

higher than that of negatively charged particles. This is likely due to the fact that organic 

molecules are prone to carry positive charges. Similar phenomena were also found on the 

organic contaminants released by tube materials (Steiner and Reischl 2012; Wang et al. 2014). 

According to charge neutrality, the remaining negatively charged particles might be electrons, 

which cannot be detected by the DMA since they have extraordinarily high electrical mobilities 

of over 1000 cm2/Vs (Romay and Pui 1992). As for the number of species of ions detected, it 

was also found that negatively charged particles were more diverse than positively charged 

particles. According to Fuchs’ charging theory, the charging process due to collision with ions 

results in similar size distributions in both polarities (Fuchs 1963; Wiedensohler and Fissan 

1991). The difference in the number of ion peaks in both polarities as shown in the results 
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indicated that the charging mechanism of nanoparticles in the sub 2 nm range was not likely to 

be dominated by collision charging.  

It was further observed that the clusters detected from the furnace aerosol reactor were 

comparatively larger than those detected in flame aerosol reactors (Wang et al. 2014, Fang et al. 

2014b). This was likely to be caused by the different particle formation mechanisms at different 

reaction temperatures. Since the furnace aerosol reactor was operated at relatively lower 

temperatures (below 1000 K), the precursor molecules might grow to larger clusters before 

reacting to form TiO2 clusters. In flame aerosol reactors, the high temperatures encountered 

(around 1700 K) cause a rapid reaction of precursors resulting in the formation of smaller 

clusters.  

3.3.2 Determination of Chemical Reaction Rates 

The decrease of the cluster signal strength as a function of reaction temperature indicated the 

consumption of precursor molecules due to thermal decomposition. Measured results can 

therefore be used to obtain reaction rates. By converting the particle mobility to mass with an 

empirical relationship, )4662.1)ln(0374.0)(ln0347.0exp( 2  mmZ , where Z is the 

electrical mobility of the ion in cm2/V·s and m is the mass of ion in Da (Kilpatrick, 1971; Mäkelä 

et al. 1996), it was found that the calculated mass of the major peak in positively charged particle 

size distributions (peak #1 of Figure 3.4a, calculated atomic mass with 289 Da) matched well 

with protonated TTIP molecules (actual atomic mass with 285.2 amu). The existence of the 

protonated TTIP molecules also agrees with the ionization mechanisms of molecules under the 

effect of   radiation (Kim et al. 1978; Eiceman et al. 2013). To be noted is that the Kilpatrick’s 

mass-mobility relationship is a curve fitted correlation, and the effect of chemical composition is 
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not taken into consideration. These problems compromise the accuracy in predicting the 

chemical composition of the detected clusters from mobility values. The accurate determination 

of the cluster mass depends on the measurement with mass spectrometers. Combined quantum 

mechanics and molecular dynamics simulation were used by others (Larriba et al. 2011; Larriba 

and Hogan 2013; Ouyang et al. 2013) to accurately predict the cluster mass amd mobility 

relationship. A deviation from Kilpatrick’s relationship (Kilpatrick, 1971; Mäkelä et al. 1996) 

below the cluster mass of 200 Da was reported (Steiner et al. 2013). Future work will incorporate 

both experimental and computational methods to investigate the mobility and mass relationship 

of clusters genereated during the particle formation process.  

A first order reaction rate was estimated by utilizing the signal strength of peak # 1 (Figure 3.4a) 

in the positively charged particle size distributions, following the routine shown below. The 

overall chemical reaction for thermal decomposition of TTIP is 

OHHCTiOTTIP 2632 24  .        (3.1) 

Therefore, the first order reaction rate (R) is 

TTIPdCkR  , 

where TTIPC  is the concentration of TTIP, and 
dk  is the first order reaction rate constant, which 

has the form of 

)/exp(0 TREkk gad  .          (3.2) 
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aE  is the activation energy, 
gR  is the gas constant, and 

0k  is a pre-exponential factor. 

Assuming plug flow in the tubular reactor (Nakaso et al. 2003), the concentration of TTIP 

decreases following the differential equation  

TTIPdTTIP CkRdtdC / ,          (3.3) 

yielding 

tkCC dTTIPTTIP )/ln( 0,
,         (3.4) 

where 
0,TTIPC  is the concentration of TTIP without reaction, and t is the precursor residence time 

in the ER zone.  

 

Figure 3.5 First order reaction rate constants of TTIP thermal decomposition as a function of inverse reaction 

temperatures. 
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Ideally, the actual concentration of TTIP is proportional to the area under the peak in Figure 

3.4a. In this work, the signal strength of the peak (height) was used to represent the TTIP 

concentration since the peaks were approximately triangular. 
0,TTIPC  was chosen as the signal 

strength at 473 K, where minimal reaction took place. By extrapolating the signal strengths of 

the TTIP peaks at different temperatures, the reaction rate constant 
dk  was calculated using Eq. 

(3.4). The calculated results (Figure 3.5) quantitatively match existing results derived with 

Fourier transform infrared spectroscopy (FTIR) (Nakaso et al. 2003). However, as mentioned by 

Nakaso et al. (2003), the FTIR method may have issues of signal overlap due to the similarity of 

bond structures among different species, introducing uncertainties into measurement results. The 

size classification method avoids the similarity of chemical properties and hence can serve as an 

alternative methodology for determining reaction rates.  

Results from Figure 3.5 also demonstrated that below 800 K, the reaction rates measured in this 

work matched only with those measured when TiO2 deposited on the wall (Nakaso et al. 2003). 

In the experiments, particle deposition onto the reactor wall could not be well controlled, and 

repeatable size distributions could be obtained only once the reactor wall was completely coated. 

The quick transition from the clean wall reaction regime to the TiO2 deposited wall reaction 

regime observed by Nakaso et al. (2003) (Figure 3.5) also demonstrate this difficulty in 

controlling the reaction conditions. Compared to the gas-phase homogeneous reaction rate 

constant of TTIP thermal decomposition (Okuyama et al. 1990),  

)/]/[5.70exp(][1096.3 15 TRmolkJsk gg  
 ,       (3.5) 

calculated reaction rate constant below 803 K in this work had a form of 
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)/]/[4.16exp(][5.99 1 TRmolkJsk gd  
,       (3.6) 

indicating the significance of wall surface reaction on lowering the activation energy for TTIP 

reaction.  

A notable increase of the reaction rate constant was observed at higher reaction temperatures 

(Figure 3.5). Similar results were also observed by Nakaso et al. (2003), although limited data 

points were presented. After plotting the size distributions obtained under temperatures higher 

than 803 K, it was seen that particles with continuous size distributions larger than 1.8 nm were 

formed (Figure 3.6). The enhanced reaction rates might be caused by the dominance of faster 

gas-phase reaction of TTIP at higher temperatures. This explanation could be confirmed by the 

fact that reaction rates obtained at higher temperatures followed the trendline of gas-phase 

reaction rates presented by Okuyama et al. (1990) (Figure 3.5). Due to the formation of particles 

with larger sizes, surface reactions on existing TiO2 particles in gas phase might also start to play 

a role in TTIP consumption.  
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Figure 3.6 Positively charged particle size distributions at temperatures greater than 803 K. Precursor concentration 

was 2.4 mmol/m3. Formation of particles with continuous sizes larger than 1.8 nm was observed under high 

temperature conditions.  

 

Hence, a mechanism of TTIP thermal decomposition, including two reaction regimes, could be 

proposed, demonstrating the competition between homogeneous gas-phase reaction and 

heterogeneous surface reaction. Under low reaction temperatures (below ~800 K), due to the 

lower activation energy, heterogeneous surface reaction dominated the reaction regime. Under 

higher temperatures (above ~800 K), the reaction rate was promoted by the homogeneous gas-

phase reaction of TTIP.  
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3.3.3 Role of Precursor Residence Time and Precursor Concentrations  

 

Figure 3.7 Charged particle size distributions as a function of precursor residence times in the furnace. Reaction 

temperature and precursor concentration were 723 K and 2.4 mmol/m3 respectively. (a) positively charged particles, 

(b) negatively charged particles. Note different y-axis ranges. 

 

Figures 3.7 and 3.8 show the influences of precursor residence time and precursor concentration 

on the evolution of charged particle size distributions. As the residence time increased, the major 

peaks of positively and negatively charged particles decreased and discrete ion peaks appeared 

(Figure 3.7), similar to the influence of increasing the reaction temperatures. In the case of higher 

residence time (0.303 s), continuous size distributions appeared, indicating the consumption of 

the precursor and the formation of larger particles. The increase in precursor concentration 

mainly resulted in an increase of detected signals, as shown in Figure 3.8a. It should be noticed 

that the measured TTIP signal strength was not strictly proportional to the initial precursor 

concentration, which did not follow the first-order reaction assumptions. This result suggested 

that there might be higher order reactions during the thermal decomposition of TTIP, which was 

also observed by Takahashi et al. (1985). Similarly, with higher precursor concentrations, more 
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discrete ion peaks were detected in negatively charged particle size distributions, indicating a 

higher consumption rate of TTIP molecules.  

 

Figure 3.8 Charged particle size distributions as a function of precursor concentrations. Reaction temperature and 

precursor residence time were 723 K and 0.152 s respectively. (a) positively charged particles, (b) negatively 

charged particles. Note different y-axis ranges. 

 

3.3.4 Influence of Bipolar Ionic Charges 

Figure 3.9 displays the influence of the addition of bipolar ionic charges during the thermal 

decomposition of TTIP. After bipolar ions were introduced into the reactor, TTIP consumption 

was enhanced, as indicated by the decrease of the major positive peak concentration and the 

formation of larger particles. For negatively charged particles, size distributions did not alter 

much, demonstrating the difference in chemical properties between positively and negatively 

charged particles.  
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Figure 3.9 Charged particle size distributions measured with and without bipolar charge introduction into the 

furnace reactor. Reaction temperature, precursor residence time, and precursor concentration were 723 K, 0.152 s, 

and 2.4 mmol/m3, respectively. (a) positively charged particles, (b) negatively charged particles. Note different y-

axis ranges. 

 

Depending on the species of the carrier gases, different types of bipolar charges are generated, 

including nitrate ions, hydrate ions, and organic contaminants (Steiner et al. 2012). A recent 

study conducted by Steiner et al (2013) indicated that nitrate ion ( 

3NO ) may be the dominant 

ions for charging larger particles with negative polarity when using air or nitrogen as the carrier 

gases. The addition of bipolar charges may enhance particle formation and growth in two 

different ways. First, ion-induced nucleation might take place and increase the consumption of 

reactants (Adachi et al. 2004). Ion-induced nucleation has been intensively studied in 

atmospheric research since it accounts for a significant number of nucleation events (Enghoff 

and Svensmark 2008). By acting as nucleation centers, bipolar charges increase the heterogeneity 

of the system and decrease the barrier energy needed for forming stable clusters (Vishnyakov et 

al. 2011). Second, the introduction of ions might enhance the induced dipole effect and result in 
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higher coagulation efficiencies between the nascent clusters (Zhang et al. 2011). In this way, 

particles with larger sizes are formed, and the consumption of reactants is enhanced.  

 

3.4 Conclusions 

The kinetics of TiO2 particle formation and growth at initial stages during the thermal 

decomposition of TTIP were studied with a Half Mini DMA. Clusters below 2 nm were detected 

for the first time during the thermal decomposition of TTIP. Four factors affecting the reaction 

kinetics and particle formation and growth were studied: reaction temperature, precursor 

residence time, precursor concentration, and the introduction of bipolar ionic charges. As 

reaction temperature increased, a higher consumption of TTIP molecules was observed, while 

larger particles with characteristic sizes were detected, signifying the formation and growth of 

particles. The asymmetry of the positively and negatively charged particle size distributions 

implied that the collision charging is unlikely to be the major charging mechanism below 2 nm. 

The first order reaction rate derived from the decay of the TTIP signal as a function of the 

reaction temperature yielded a quantitative match with existing studies, indicating size 

measurement can serve as a new method for monitoring reaction rates. Wall reaction dominated 

the reaction mechanisms of TTIP below ~800 K, while under higher temperatures, homogeneous 

gas-phase reaction promoted the consumption of TTIP. As precursor residence time and 

precursor concentration increased, the change of the particle size distributions confirmed the 

formation and growth of TiO2 particles by the thermal decomposition of TTIP. The addition of 

bipolar charges enhanced the consumption of TTIP molecules, possibly due to ion-induced 

nucleation effects and induced dipole effects. Knowledge on incipient particle formation and 
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growth can bridge the gap between chemical reactions in molecular scale and particle further 

growth beyond nanometer scale, instructing applications such as nanomaterial production and 

atmospheric pollutant control.  
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Abstract  

While flame aerosol reactor (FLAR) synthesis of nanoparticles is widely used to produce a range 

of nanomaterials, incipient particle formation by nucleation and vapor condensation is not well 

understood. This gap in our knowledge of incipient particle formation is caused by limitations in 

instruments, where, during measurements, the high diffusivity of sub 3 nm particles significantly 

affects resolution and transport loss. This work used a high resolution Differential Mobility 

Analyzer (DMA) and an Atmospheric Pressure Interface-Mass Spectrometer (APi-TOF) to 

observe incipient particle formation during flame synthesis. By tandemly applying these two 

instruments, Differential Mobility Analysis-Mass Spectrometry (DMA-MS) measured the size 

and mass of the incipient particles simultaneously, and the effective density of the sub 3 nm 

particles was estimated. The APi-TOF further provided the chemical compositions of the 

detected particles based on highly accurate masses and isotope distributions. This study 

investigated the incipient particle formation in flames with and without the addition of synthesis 

precursors. Results from FLAR using two types of precursors including tetraethyl orthosilicate 

(TEOS) and titanium isopropoxide (TTIP) are presented. The effect of the precursor feed rates 

on incipient particle growth was also investigated.  
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4.1 Introduction 

Flame synthesis is a gas-phase approach for producing nanomaterials on an industrial scale, due 

to its high reaction temperature and fast reaction rates [1]. Flame-synthesized products, such as 

metal oxides and carbon-based materials, have been widely applied in catalysis [2], solar energy 

utilization [3], sensor technology [4], the rubber industry [5], and so on. During flame synthesis, 

the pyrolysis and oxidation of synthesis precursors, the clustering of vapor molecules, particle 

nucleation, and particle growth through coagulation, vapor condensation, and sintering, all take 

place in a single-step manner, resulting in a high yield of nanoparticles [6, 7]. The high 

temperature and fast reaction rate in flames, on the other hand, make it difficult to analyze 

detailed particle formation pathways. As the starting of the entire particle formation process, 

especially below 3 nm, significantly affect the characteristics of the final products, such as size, 

morphology, crystallinity, and chemical composition. However, research on the early stages of 

particle formation mechanisms is limited by the performance of existing instruments [8, 9]. The 

in situ measurement of particle size distributions in aerosol reactors commonly rely on 

Differential Mobility Analyzers (DMAs), which can classify a steady and narrowly monomobile 

stream of charged particles from particles with a continuous spectrum of electrical mobilities 

[10]. However, the high diffusivity of the sub 3 nm particles greatly decreases the resolution of 

conventional DMAs and increases the diffusion loss of the measured particles [11]. Molecular 

Beam Mass Spectrometry (MBMS) is typically used to analyze the composition of flame-

generated particles, but the required low-pressure and fuel-rich environment often deviates from 

the actual operating conditions of flame synthesis [12]. These limitations pose difficulties in 

measuring incipient particles during flame synthesis, hindering a comprehensive understanding 

of the particle formation mechanisms.  
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With the development of a new set of instruments for investigating atmospheric particle 

nucleation [13] and for analyzing protein properties [14] in the past decade, measuring sub 3 nm 

particle size and mass at atmospheric conditions has become feasible. DMAs with sheath flow 

rates of over 100 lpm are used to significantly reduce the residence time and the Brownian 

diffusion of particles in the instruments, increasing the resolution by orders of magnitude when 

measuring sub 3 nm particles [15]. The recently developed Atmospheric Pressure Interface 

Time-Of-Flight Mass Spectrometer (APi-TOF) is able to detect and analyze the chemical 

composition of atmospheric ions and charged clusters with high transmission and resolution [16]. 

Selected groups of molecular species were identified as playing an important role in atmospheric 

particle nucleation and growth [17]. Tandem Differential Mobility Analysis-Mass Spectrometry 

(DMA-MS) can simultaneously measure particle size and mass, and critical information on 

particle structure, charging characteristics, and formation mechanisms is obtained [18-20].  

In this study, the incipient particle formation and growth below 3 nm in a premixed flat flame 

was investigated with the DMA-MS technique, where a high resolution DMA and an APi-TOF 

were used to counteract the particle Brownian diffusion and loss in the system. Direct 

measurement with the high resolution DMA coupled with an aerosol electrometer was conducted 

to provide the size distributions of particles generated during flame synthesis. The APi-TOF was 

used to determine the compositions of important intermediate particles during the synthesis of 

SiO2 and TiO2. The structure of the incipient flame-synthesized particles was further analyzed 

with the size and mass data measured by the DMA-MS.  
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4.2 Methods 

4.2.1 Experimental Setup 

 

Figure 4.1 Schematic diagram of the experimental setup for measuring the incipient particles generated during flame 

synthesis. The Herrmann DMA classified particles with the same electrical mobility. The APi-TOF and the 

electrometer provided the mass spectrum and the concentration of the classified particles. The inset figure shows the 

temperature profile along the centerline above the burner. 

 

Figure 4.1 shows the schematic diagram of the experimental setup. The system consisted a 

premixed flat flame burner, a dilution sampling probe, a high resolution DMA (Herrmann-type 

[21]), an APi-TOF (TOFWERK AG), and an aerosol electrometer (Model 3068B, TSI Inc.). A 

premixed flat flame was used in this study due to its uniformity and stability [22]. The stainless 

steel burner consisted of two concentric tubes with diameters of 0.75 inch and 1 inch, 

respectively, leaving a gap for passing a stream of N2 (>99.95%, Linde AG) to protect the flame 

from the environment. In order to achieve a uniform velocity profile, the head of the burner was 
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capped with a stainless steel honeycomb featuring a mesh size of 0.5 mm. Below the honeycomb 

cap, the inner tube was filled with 2 mm stainless steel beads for laminarizing the premixed flow 

streams. The gas mixture was composed of CH4 (> 99.5%, Linde AG), O2 (> 99.95%, Linde 

AG), and N2, maintained at total flow rates of 1 lpm, 2.85 lpm, and 8 lpm respectively, with the 

help of mass flow controllers (MKS Inc.). The flame equivalence ratio ( ) was calculated to be 

0.7. Organometallic precursors for synthesizing nanoparticles were introduced into the flame by 

bubbling a clean stream of N2 though liquid precursors of tetraethyl orthosilicate (TEOS, > 98 %, 

Sigma-Aldrich Inc.) or titanium isopropoxide (TTIP, > 97 %, Sigma-Aldrich Inc.), at a 

temperature of 20 oC. At high temperatures in flames, these synthesis precursors reacted through 

thermal decomposition and oxidation to generate SiO2 or TiO2
 nanoparticles, and previous 

studies demonstrated that a large amount of sub 3 nm particle were formed during these 

processes [8, 9, 11]. The feed rates of synthesis precursors were calculated according to the 

materials’ saturation pressure data presented by Jang [23] for TEOS and Siefering and Griffin 

[24] for TTIP. Flame temperature was measured with a type R thermocouple, and the 

temperature profile is shown as the inset in Figure 4.1. Due to the low concentration of the 

synthesis precursors (as shown in Table 4.1), the effect of adding precursors on flame 

equivalence ratio and flame temperature were minimal. 5 mm above the head of the burner, a 

dilution sampling probe was used to introduce the flame-generated particles to downstream 

instruments while quenching further reactions and particle growth. By considering the thermal 

expansion of the sampled flow, a dilution ratio of 200 was attained [9]. Note that ionization 

sources were not applied in the system, implying that the downstream instruments measured the 

natively charged flame synthesized particles only. Due to a series of reported chemical ionization 

reactions, the flame acted as a neutral plasma that generated high concentrations of ions, which 
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were sufficient to charge the incipient particles in the flame at various equivalence ratios [12]. It 

should be also noticed that not all of the flame-generated particles were charged, and the fraction 

of charged particles was a function of sampling height and flame conditions. To study the 

properties of neutral particles, well-characterized chemical ionization sources are needed to 

provide the neutral particles with known charges so that they can be detected by the instruments 

[25].  

A Herrmann-type DMA was used to classify sub 3 nm particles with high resolution. The DMA 

was operated in a closed loop to maintain the same flow rate of the aerosol inlet and outlet flows. 

An inline blower (DOMEL Inc.) provided the recirculating sheath flow (> 500 lpm), and an 

inline filter and heat exchanger removed the remaining particles and released the heat generated 

by the blower, respectively. The DMA classifies particles according to the relationship between 

the drag force and the electrostatic force. When a voltage (V) is applied across the electrodes of 

the DMA, the classified particles have a uniform mobility (Z) [10], which is further related to the 

size of a particle by 
pDCneZ 3/ , where C  is the Cunningham slip correction factor, n  is 

the number of charges on the particle, e  is the electronic charge,   is the air viscosity, and 
pD  

is the particle mobility size. For sub 3 nm particles, it is safe to assume that classified particles 

carry a single charge [26], which was also observed by the mass spectrometer during the 

experiments, since the isotope peaks that differ by mass units other than 1 were not detected. The 

potential across the DMA was applied by a high voltage source (Spellman Inc.) controlled by a 

Labview program. During the measurements, a step voltage of 3 V, a step time of 1 s, and a 

voltage scanning range of 100 to 1000 V were used to classify particles with size from 0.5 to 2 

nm. It should be noted that the mobility size does not necessarily represent the particle physical 

size, especially for sub 3 nm particles whose chemical composition may significantly determine 
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the structure of the cluster, while the size of non-spherical particles is poorly defined. Existing 

studies show that the particle mobility size subtracted by 0.3 nm agrees well with the volume 

size of the sub 3 nm clusters [18]. However, for simplicity, this study used particle mobility size 

as the indicator of particle physical size. At the same time, the inverse mobility values are 

marked in the graphs for reference. Before measuring the flame-generated particles, the DMA 

was first calibrated with the particles generated by electro-spraying a 0.2 mM 

tetraheptylammonium bromide-methanol solution [15]. The mobility of particles classified at an 

arbitrary DMA voltage can be accurately determined. We should also note that, although the 

DMA sheath flow is significantly increased, the high diffusivity of the sub 3 nm particles can 

still play a role in lowering the resolution of the DMA measurements, which is discussed in more 

detail in our previous work [11].  

Downstream of the DMA, an aerosol electrometer (EM) collected the classified monomobile 

particles at a flow rate of 10 lpm. The recorded current was directly proportional to the charged 

particle concentration if particles carried one unit charge. In the following, the particle size 

distributions were qualitatively shown with the EM current as a function of particle size, since 

the data inversion of sub 3 nm particle size distributions was difficult to conduct due to the 

chemistry-dependent charging process [11]. The APi-TOF measured the mass-to-charge ratio 

(m/z) of the DMA-classified sub 3 nm particles. It can achieve a mass resolving power of 3000 

Th/Th and a mass accuracy of 0.002%. The chemical composition of the measured particles was 

further analyzed by tofTools (a Matlab based set of programs [16, 27]), with the help of the 

highly accurate atomic mass and isotope distributions. Before measurements, the APi-TOF was 

calibrated with nitrate ions produced by a chemical ionization source. The DMA-MS technique 

simultaneously measures the particle size and the mass spectrum of the DMA-classified 
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particles. The mass-size relationship further reveals the structure and effective density of the 

detected particles. This study investigated the mass-size relationship of the negatively charged 

particles only, since the positively charged particles were found to be unstable when they were 

transported from the DMA to the APi-TOF [20, 25, 28]. The obtained data are conveniently 

represented as contour plots, with the x-axis being the particle size or electrical mobility, and y-

axis being m/z. The color of the data point denotes the relative abundance of the signal (black 

stands for the most intense signal, and white stands for the least intense signal).  

4.2.2 Experimental Plan 

Five sets of experiments were conducted in this study and tabulated in Table 4.1. Test 1 studied 

the properties of charged particles generated from blank flames without the addition of the 

precursors. Tests 2 and 3 were conducted with the addition of different types of precursors to 

investigate the formation pathways of different types of nanoparticles. Tests 4 and 5, together 

with Test 2, further examined the influence of synthesis precursor feed rates on the incipient 

particle formation during flame synthesis.  

Table 4.1 Experimental plan. 

Test Precursor 

Type 

Feed rates 

[mmol/hr] 

1 N/A N/A 

2 TEOS 0.118 

3 TTIP 0.157 

4 TEOS 0.235 

5 TEOS 0.353 
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4.3 Results and Discussion 

4.3.1 Particle formation in blank flames 

 

Figure 4.2 Size distributions of sub 3 nm charged particles generated from the blank flame. 

 

Figure 4.2 shows the DMA-measured size distributions of the natively charged particles 

generated from the blank flame without the addition of the precursors. Charged particles below 

1.8 nm in both polarities were observed in large quantities. The chemical ionization reactions in 

the flame are major sources of these charged particles [12]. The positively charged particles had 

a larger and broader distribution of sizes, yielding a relatively smaller electrical mobility 

compared to negatively charged particles. Similar results were observed in commonly used 

ionization sources such as radioactive neutralizers [20, 29] and corona dischargers [28]. The 

explanation for this phenomenon may be that, during the ionization process, the relatively large 

organic molecules act as positive charge carriers, while negative charge carriers are dominated 

by electrons. The electrons further combine with other molecules to form relatively smaller 
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negatively charged particles with low proton affinities. Based on charge neutrality, the 

concentration difference between the positively and the negatively charged particles (Figure 4.2) 

also indicated that the remaining negative charge carriers were electrons, whose electrical 

mobility is too high (> 1000 cm2/Vs [12]) to be measured by the DMA. These charged particles 

may actively collide with nanoparticles during flame synthesis conditions. According to Fuchs 

charging theory [25], this difference in the averaged electrical mobility will cause a higher 

fraction of particles carrying negative charges, which has been observed in previous studies [30, 

31].  

 

Figure 4.3 Contour plot showing the abundance of the blank flame-generated negatively charged particles as a 

function of size and m/z.  
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Figure 4.3 displays the mass-size relationship of the negatively charged particles generated from 

the blank flame. At the inverse mobility of 0.48 Vs/cm2 (mobility size of 1.01 nm) where the EM 

detected the highest particle concentration (Figure 4.2), the mass spectrum indicated that these 

particles were mainly composed of nitrate ions ( 

3NO  at m/z of 62 Th, and  33 NOHNO  at m/z 

of 125 Th). The formation of these nitrate ions might be caused by the active NOx production in 

the blank flame, especially when the combustible mixture was premixed and the flame was 

operated in a fuel-lean condition [32]. The NOx species may further react with water vapor to 

form nitrate ions. Due to their low proton affinities, these nitrate ions became the dominant 

negative charge carriers, which was also observed in other types of ionization sources [20, 28, 

33]. The existence of two different masses (62 Da and 125 Da) corresponding to a same mobility 

size (1.01 nm) suggested that the ions might be fragmented when they transported from the 

DMA to the APi-TOF. Aside from the nitrate ions, negatively charged particles with sizes and 

masses larger than 1.01 nm and 125 Da respectively were also detected. They were probably 

generated during the collision between electrons with relatively larger organic molecules. The 

detection of a spectrum of ions implied the complexity of chemical ionization reactions and the 

following particle charging process in flames.  

4.3.2 Addition of flame synthesis precursors 

The sub 3 nm particle size distributions obtained under different synthesis conditions are shown 

in Figure 4.4. When synthesis precursors were added to the flame, the DMA measurements 

detected particles larger than flame-generated particles, as a result of particle formation and 

growth. The sizes of these particles were also found to be discrete instead of continuous, which 

implied that certain stable species might act as important intermediates during particle formation. 

The average size and concentration of the positively charged particles was still greater than those 
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of the negatively charged particles, where the existence of relatively small charge carriers might 

play an important role, as explained above.  

 

Figure 4.4 Size distributions of sub 3 nm charged particles under different synthesis conditions. a) positively 

charged particles; b) negatively charged particles. Note different scales of y-axes.  

 



98 

 

 

Figure 4.5 Contour plots showing the abundance of negatively charged particles during flame synthesis conditions 

as a function of size and m/z. a) using TEOS as synthesis precursor; b) using TTIP as synthesis precursor. The mass-

size relationships assuming that particles were spherical are displayed as short-dashed lines. The fit to Kilpatrick’s 

mass-mobility relationship is displayed as long-dashed lines.  
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Table 4.2 Chemical compositions of major negatively charged particles detected by the APi-TOF under 

different flame conditions. 

Blank flame TEOS addition TTIP addition 

Chemical formula m/z Chemical formula m/z Chemical formula m/z 



3NO  
61.9878 

3NO  
61.9878 

3NO  
61.9878 

 33 NOHNO  
124.9835 

1062 NOHSi  
235.9530 

102OTiN  
235.9032 

  

1263 NOHSi  
295.9198 

113OTiN  
265.9012 

  

1383 NOHSi  
313.9303 

112 NOTi  
285.8437 

  

16104 NOHSi  
319.9077 

1422 ONTi  
347.8308 

 

The mass-size relationships of the flame-generated sub 3 nm particles during synthesis 

conditions are shown in Figure 4.5. Major negatively charged species, such as 



33242 )( NOOHOSi  (236 Th), 

33263 )( NOOHOSi  (296 Th), 

332 )(NOTiO  (266 Th), and 



2382 )(NOOTi  (348 Th) were detected by the APi-TOF. Table 4.2 lists the incipient particles with 

identified compositions and atomic masses. The existence of nitrate ions in the silicon and 

titanium-containing particles implied a strong interaction between the flame-generated ions and 

the synthesized particles. Since flame synthesis is conducted with N2 as the diluting gas on many 

occasions, these detected ions may act as contaminants for particle growth and crystallization. 

Hence, further studies investigating the incipient particle formation mechanisms without N2 

participation are needed. Figure 4.5 also shows that the detected particles fell into different bands 

with strong signal intensities. A lot of these bands were separated by the atomic masses of N (14 

Da), O (18 Da), or H2O (18 Da), instead of by the atomic mass of SiO2 (60 Da) or TiO2 (80 Da). 
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This result suggested the high involvement of blank flame-generated species in particle 

synthesis. To confirm that the measured charged particles represent the characteristics of those 

generated in the flame, further experiments using an enhanced condensation particle counter and 

a charged particle remover was conducted. Results show that under the tested conditions, the 

charging fraction of sub 3 nm particles is extremely high, where more than 90% of the flame-

generated sub 3 nm particles were charged [34]. The high charge fraction also contradicts the 

classical charging theories, suggesting that further studies on the charging mechanisms of 

particles in flames are needed.  

Depending on the type of nanoparticles synthesized, the mass-size relationships show different 

trends in Figure 4.5. At a same mobility size of 1.30 nm, the particles generated from TTIP 

reactions (~ 550 Da) were heavier than the particles generated from TEOS reactions (~ 420 Da), 

which was possibly caused by the higher atomic mass of titanium. Based on the mass and 

mobility size values, an effective density (
eff ) could be calculated for these incipient particles 

following the method introduced below. By assuming that the detected particles were spherical, 

the effective density satisfied the relationship of 6/3

effpDm  , where m  is the particle mass 

and 
pD  is the particle size. The value of the effective density should guarantee that most of the 

data points in the contour plot fall on the curve representing the spherical particle mass-size 

relationship. Further calculation indicated that using particle volume size (mobility size 

subtracted by 0.3 nm [18]) as 
pD  provided a better fit when calculating 

eff , since the mobility 

size of a particle overestimates the physical size below 3 nm, due to the enhanced interaction 

between the charged cluster and the dipole it induced in the gas molecules [18]. The particles 

generated from flames with the addition of TEOS and TTIP had effective densities of 1.42 g/cm3 
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and 1.75 g/cm3, respectively. These incipient particles were less dense than the SiO2 and TiO2 

bulk crystals (2.65 g/cm3 and 4.23 g/cm3), possibly because these particles were in an amorphous 

state, where the atoms were not tightly packed. The attachment of the species other than oxides, 

such as nitrate and organic molecules, on these incipient particles might also lower the density of 

the detected particles.  

The simultaneously measured mobility and mass of the flame-generated incipient particles could 

be compared with the data calculated from empirically determined mass-mobility relationships. 

The most widely used mass-mobility relationship was presented by Kilpatrick [35] and was 

further fitted with a function of 

]4662.1)ln(0376.0)(ln0347.0exp[ 2  mmZ ,       (4.1) 

where Z  and m  represent the particle electrical mobility (unit: cm2/Vs) and atomic mass (unit: 

Da), respectively [36]. The fitted functions of Kilpatrick’s mass-mobility relationship are also 

displayed in Figure 4.5, showing that, at a same electrical mobility, the actual particle mass is 

higher than the mass predicted by the empirical relationship. This discrepancy can be explained 

by the fact that the electrical mobility is largely determined by the structure of particles, while 

particles with similar structures can have different chemical compositions and atomic masses. 

Due to the existence of relatively heavy species such as silicon and titanium, the flame-generated 

incipient particles had higher masses. Since researchers often rely on Kilpatrick’s relationship to 

convert the measured mobility to the mass of particles in order to decipher the particle 

composition, this measured result proves that the existing mass-mobility relationships will be 

dependent on the type of chemical species. Directly using these relationships may therefore 

cause errors. To better predict the mass-mobility relationships, numerical methods were used by 
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researchers to consider the physical collision and potential interaction between the molecular 

clusters and particles, where a desirable agreement was observed between the calculated and the 

experimentally measured mass and mobility data [37].  

4.3.3 Effect of the synthesis precursor feed rates 

Figure 4.6 shows the effect of TEOS feed rates on the DMA-MS measured incipient particle size 

and mass distributions. The concentration of the particles with larger sizes and masses increased 

as more precursors were fed to the flame, indicating a stronger particle growth process by vapor 

condensation and coagulation. The concentration of the smaller charged particles with low mass 

and size decreased due to coagulation and the scavenging effect caused by the existing larger 

particles. The calculated effective density remained the same (Figure 4.6), demonstrating that the 

particle formation pathway did not change as a function of precursor feed rates.  
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Figure 4.6 Contour plots showing the abundance of negatively charged particles generated at different TEOS feed 

rates as a function of size and m/z. a) TEOS feed rate of 0.235 mmol/hr; b) TEOS feed rate of 0.353 mmol/hr. The 

mass-size relationships assuming that particles were spherical are displayed as short-dashed lines.  
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4.4 Conclusions 

The incipient particle formation during flame synthesis was investigated for the first time using 

the tandem DMA-MS technique. A high resolution DMA and an APi-TOF were used to measure 

the size and mass of the sub 3 nm particles simultaneously in the flames without the addition of 

synthesis precursors and with the addition of TEOS or TTIP.  

Measurements in a blank flame detected a large number of sub 3 nm particles generated from 

chemical ionization reactions, and determined that nitrate ions dominated in the negative ions. 

The formation of nitrate ions may be related with the NOx formation in flames. Measurements 

conducted with the addition of synthesis precursors found particles with discrete size 

distributions, indicating the existence of stable particles as important intermediates during flame 

synthesis. The blank flame-generated ions played an important role during particle synthesis, 

since the APi-TOF observed the appearance of nitrate ions in particles containing silicon or 

titanium. Future work on flame synthesis while manipulating the ion properties, may bring new 

perspectives on manufacturing functional nanomaterials at high temperatures. The effective 

densities of the incipient particles were calculated by assuming that the particles were spheres. 

These particles had lower densities than the bulk materials of SiO2 and TiO2, possibly because of 

the impurities in the particles and their amorphous structures. The commonly used Kilpatrick’s 

mass-mobility relationship was also evaluated in this study, and the difference between the 

measured data and the Kilpatrick’s relationship suggested that particle compositions largely 

determined particle mass and mobility. As precursor feed rate increased, particles with larger 

mass and sizes were formed due to enhanced coagulation and vapor condensation. The 

unchanged particle effective density implied that the particle formation pathway in flames was 

not a function of precursor feed rates.    
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generated particles in the size range below 3 nm measured by enhanced particle detectors. 
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Supplementary figures and tables are available in Appendix I  
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Abstract 

Charging in flames significantly affects the properties of the resultant particles produced because 

of its influence in almost all stages of particle formation. The charging characteristics of flame-

generated sub-3 nm particles were investigated with three enhanced particle detectors including a 

high resolution differential mobility analyzer (DMA) coupled with an electrometer, a particle 

size magnifier coupled with a butanol-based condensation particle counter (PSM-bCPC), and an 

atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF). Up to 95% of the 

flame-generated sub-3 nm particles were charged at a sampling height of 5 mm above the burner, 

indicating the existence of a strong ionization process in the investigated flame. This high 

fraction of charged particles contradicts the classical charging theories, which predict < 1% 

charge fraction for particles below 3 nm. Positively and negatively charged sub-3 nm particles 

generated from a blank flame were dominated by organic ions and nitrate ions respectively. The 

flame-generated ions play an important role during titanium dioxide (TiO2) nanoparticle 

synthesis, as shown by the attachment of nitrate species on Ti-containing particles observed by 

the APi-TOF. The effects of the sampling height and precursor feed rate were also investigated. 
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5.1 Introduction 

In recent years, the demand for precise control of functional flame-synthesized nanoparticle 

properties, such as their size, morphology, and crystal phase, has led to a growing interest in 

studying particle formation mechanisms in high temperature systems. While synthesizing 

nanoparticles, the flame generates a large amount of ions and charged particles due to the 

chemical ionization and thermal ionization reactions [1-4]. The existence of these ions makes the 

flame a quasi-neutral plasma that significantly impacts particle formation and growth processes 

that eventually determine the properties of the synthesized nanomaterials. The highly 

concentrated ions and charged species actively collide with the synthesized nanoparticles, 

affecting the final product due to enhanced coagulation effects [5, 6]. More importantly, the 

particle nucleation and growth at initial stages are strongly chemistry-dependent [7, 8], and 

therefore the flame-generated ions and particles may selectively combine with the synthesis 

precursors and nucleated nanoparticles, producing nanomaterials with undesired or in some 

instances, tailored contamination. Therefore, the study of particle charging characteristics needs 

to focus on how the flame-generated ions affect the particle synthesis and what can be done to 

control these processes.  

Much work has been conducted on measuring the charging characteristics of flame-generated 

nanoparticles. Langmuir probes are often used to determine the total concentration of the charged 

species in the flames due to their simple design, although the theory can be complex [1, 9, 10]. 

Condensation particle counters (CPCs) measure total particle concentrations regardless of 

charging states, and by coupling the CPCs with a charged particle remover (CPR), studies have 

determined the neutral fractions of flame synthesized particles [11]. Size-resolved particle charge 

fractions, or charge distributions, are typically determined by using the tandem differential 
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mobility analyzer (TDMA) method. It utilizes two differential mobility analyzers (DMAs), 

which classify particles according to their electrical mobility equivalent size, based on the 

balance between the electrostatic force and drag force [12, 13]. In a TDMA setup, by passing the 

monomobile particles classified by the first DMA into a charge conditioner and then into a 

second DMA for mobility scanning, the fractions of particles carrying a specific number of 

charges can be determined [14, 15]. Theoretical analysis of the particle charging characteristics 

rely on the Fuchs’ charging theory [16] or Boltzmann’s charging theory [17], which assumes that 

particle charging is in a steady state or in equilibrium. Brownian dynamic simulation has been 

conducted to calculate the steady state-charge distribution on particles with arbitrary shapes [18]. 

Experimentally measured charge distributions matched quantitatively with the theoretically 

predicted results in the particle size range between 10 nm and 1000 nm [11, 19].  

It should be noted, however, that most of the charging studies, mentioned above, focused on 

particles larger than 3 nm. Also, the charging of particles in the size ranges of initial stages of 

formation and growth have not been studied in sufficient detail. This has been partly because of 

the limitation in available instruments and methods. For example, DMAs suffer from low 

resolution due to the high diffusivity of the sub-3 nm particles [20], while the activation of sub-3 

nm particles in CPCs has always been a difficult problem [21]. Moreover, as the particle size 

drops below 3 nm, which is comparable to the size of the ions, the particle charging process 

changes from physical collisions between ions and particles to chemical reactions between the 

charged and uncharged molecular clusters. Due to the differences in the chemical properties and 

proton affinities, neutral species can be charged at different efficiencies, which cannot be 

predicted by the classical charging theories. These limitations hinder a comprehensive 
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understanding of the particle charging mechanisms, forming a knowledge gap in the formation of 

particles.  

A series of enhanced particle detectors created in recent decades can be valuable tools to study 

the charging characteristics of sub-3 nm particles. In order to counteract the diffusion broadening 

of the DMA transfer functions, high resolution DMAs with new configurations or with sheath 

flow rates over 100 liters per minute (lpm) were designed [22, 23], so that the residence time and 

diffusional loss of classified particles were significantly reduced. By applying an electrometer 

downstream of the high resolution DMA, the concentration of the classified sub-3 nm particles 

can be readily measured [3, 24-29]. Conventional CPCs have been modified in many aspects, 

which include their working fluid [30], working temperature [31], flow rates [31], and flow 

pattern [32, 33], to effectively activate the condensational growth of particles below 3 nm. Using 

diethylene glycol (DEG) as the working fluid, a particle size magnifier (PSM) can grow particles 

from as small as 1 nm [33] to a size that can be detected by subsequent, conventional butanol 

CPCs (bCPCs). By scanning the saturation ratio, particles with different sizes are activated and 

counted, so that the size distributions of the sub-3 nm particles are obtained [34, 35]. Molecular 

Beam Mass Spectrometry (MBMS) has often been used in studying ion generation in flames, 

these studies were typically conducted in low pressure and fuel-rich conditions due to the strict 

requirements of the setup [1]. Limited studies have been conducted in atmospheric pressure 

CH4/O2/Ar flames wherein important chemical ionization reactions have been identified [36-38]. 

Particle mass spectrometry [39] and transmission electron microscopy of particles collected by 

molecular beam sampling [40] have also been used for investigating the charging characteristics, 

growth dynamics, and shapes of incipient soot nanoparticles. The recently developed 

atmospheric pressure interface time-of-flight mass spectrometer [41] (APi-TOF, Tofwerk AG) 
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greatly helps determine the chemical composition of the sub-3 nm charged particles in accessible 

conditions [42]. The combination of the three mentioned enhanced particle detectors (high 

resolution DMA coupled with an electrometer, PSM-bCPC, and APi-TOF) has served as a 

powerful tool in understanding the atmospheric particle formation below 3 nm and the role of 

ions in the atmospheric nucleation [43, 44]. Table 5.1 is a brief summary of the instruments 

discussed above for incipient particle measurement including their acronyms and functions.  

Table 5.1 A list of instruments commonly for incipient particle measurement. 

Instrument Acronym Function 

Differential Mobility Analyzer DMA Classify particles as a function of mobility size 

Tandem Differential Mobility 

Analyzer 

TDMA Determine particle charge fraction as a function of particle 

mobility size 

Condensation Particle Counter CPC Measure particle number concentrations 

Butanol CPC bCPC Measure particle number concentrations with butanol as 

the working fluid 

Particle Size Magnifier PSM Grow particles as small as 1 nm to a detectable size using 

diethylene glycol as the working fluid 

Molecular Beam Mass Spectrometer MBMS Detect the chemical composition of ions through the well-

designed compact skimmer inlet system 

Atmospheric Pressure Interface 

Time-of-Flight Mass Spectrometer 

APi-TOF 

MS 

Detect the composition of ambient ions with a mass 

accuracy higher than 0.002% and a resolving power of 

3000 Th/Th 

Charged Particle Remover CPR Remove charged ions and particles 

 

In this work, three enhanced particle detectors were applied in studying the particle charging 

characteristics of flame-generated sub-3 nm particles. The total and neutral particle size 

distributions were measured by the PSM-bCPC, and were compared with the high resolution 

DMA-measured particle mobility size distributions. The APi-TOF further identified the chemical 
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compositions of the flame-generated sub-3 nm charged particles. This study also investigated the 

effects of the sampling height, the addition of a synthesis precursor, and the precursor feed rates 

on the chemical compositions, size distributions, and charging characteristics of the flame-

generated sub-3 nm particles.  

 

5.2 Experimental setups and methods 

5.2.1 Premixed flat flame aerosol reactor 

 

Figure 5.1 A schematic diagram of the experimental setup.  

 

Figure 5.1 shows a schematic diagram of the experimental setup. A premixed flat flame was used 

in this study for generating sub-3 nm particles, due to its high stability, one-dimensionality, and 

broad usage. The combustion mixture consisted of methane (CH4, > 99.5%, Linde AG) and 

oxygen (O2, >99.95%, Linde AG). Nitrogen (N2, >99.95%, Linde AG) was used to dilute the 
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system and control the flame temperature. A set of mass flow controllers (MKS Inc.) maintained 

the total flow rates of CH4, O2, and N2 at 1.00 lpm, 2.85 lpm, and 6.00 lpm, respectively, keeping 

the flame equivalence ratio at 0.70 (fuel-lean). The stainless steel burner was made of two 

concentric cylinders with inner and outer diameters of 19 and 25 mm, respectively, forming a 

gap to provide an extra stream of N2 with a flow rate of 3 lpm for shielding the flame. The inner 

cylinder was capped by a honeycomb with a mesh size of 0.5 mm, and was further filled with 2 

mm stainless steel beads to maintain laminar flow with a uniform velocity profile at the head of 

the burner. To study the effects of the addition of a synthesis precursor and precursor feed rates, 

a bypass flow of N2 was passed through a bubbler containing titanium isopropoxide (TTIP, 

Sigma-Aldrich Inc., >97%) at a stable temperature of around 20 oC and subsequently fed into the 

flame. The effect of adding precursors on flame equivalence ratio and flame temperature were 

minimal because of the low feed rates of the precursors (Table 5.2). Due to the imperfect design 

of the burner, the flame does not look entirely flat. The vertical distance from the highest point of 

the flame to the lowest point of the flame was approximately 3 mm, and the flame height (the 

distance between the lower side of the flame sheet and the upper side of the burner) was 

approximately 1 mm. Inside the flame, thermal decomposition, hydrolysis, and combustion of 

TTIP resulted in the production of titanium dioxide (TiO2). Previous measurements conducted 

with a high-resolution DMA have shown that a large quantity of sub-3 nm particles is formed 

during these processes [3, 20, 45], and the existence of these particles were confirmed by atomic 

force microscopy (AFM) images of particles collected by thermophoretic sampling [3]. The 

DMA-measured and AFM-determined particle size distributions matched considerably well in 

the studied particle size range, indicating the accuracy of the DMA measurement. In order to 

quench further reactions and particle growth, the sub-3 nm particles were sampled by a radially 
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positioned dilution probe with an inlet diameter of 0.5 mm at a dilution N2 flow rate of 24 lpm. 

The outer diameter of the dilution probe was 8 mm. A dilution ratio of around 200 was reached 

considering the thermal expansion of the sampled flow. Detailed descriptions of the dilution 

probe can be found in Wang et al. [45] The sampled sub-3 nm particles were then introduced to 

the enhanced particle detectors.  

Table 5.2 Experimental plan. 

Test # Probe height (HAB) [mm] TTIP feed rate [mmol/h] 

1 5 0 

2 10 0 

3 15 0 

4 20 0 

5 5 0.043 

6 5 0.085 

7 5 0.128 

8 5 0.170 

9 5 0.213 

10 10 0.213 

11 20 0.213 

 

5.2.2 Enhanced particle detectors 

This study used a Herrmann-type high resolution DMA (Herrmann DMA) [46, 47], a PSM-

bCPC [33], and an APi-TOF [41] to detect the concentration and chemical composition of the 

sub-3 nm particles.  
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The Herrmann DMA was operated in a closed loop so that the inlet and outlet sheath flows were 

balanced. The rate-controllable sheath flow was provided by a brushless blower (DOMEL Inc.), 

and was further cleaned and cooled by an inline filter and heat radiator. The voltage across the 

two electrodes of the DMA was applied by a high voltage power supply (Spellman Inc.) 

controlled by LabVIEW. The DMA measurement used a step voltage of 3 V and a step time of 1 

s, which were found to be sufficient for obtaining stable signals. After being classified by the 

Herrmann DMA, the charged sub-3 nm particles were introduced to an aerosol electrometer 

(3068B, TSI Inc.) operated at a flow rate of 10 lpm. By assuming that the measured particles 

carried a single charge, the particle concentration was directly proportional to the current 

measured by the electrometer (EM). The EM current data were collected by the LabVIEW 

through RS-232 communication. In the results section, the DMA-measured particle size 

distributions are represented qualitatively by the EM current as a function of particle size, since 

the data inversion of the sub-3 nm particles was found to be highly chemistry-dependent [20]. In 

order to obtain the mobility of the classified particles at each DMA voltage, the Herrmann DMA 

was calibrated by the mobility standards generated from the electrosprays of tetra-heptyl 

ammonium bromide methanol solution (THABr, 99%, Sigma-Aldrich) before the measurements 

[48]. The measurement accuracy of the Herrmann DMA has been thoroughly characterized in a 

recent study [47]. The size of the classified particles was further calculated based on the Stokes-

Millikan equation and the definition of electrical mobility [17],   

pd

eC
Z

3
 ,           (5.1) 
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where Z  is the particle electrical mobility, e  is the electronic charge, C  is the slip correction 

factor,   is the air viscosity, and pd  is the mobility diameter of the particle. Existing studies 

suggest that the volumetric diameter ( vd ) of a sub-3 nm particle can be approximated by 

subtracting pd  by 0.3 nm, which is the gas molecule’s effective diameter [49]. Further 

calculation is also needed to derive the exact value of the particle mobility diameter, since the 

influence of the ion-induced dipole potential on the particle mobility is not evaluated in the 

Stokes-Millikan equation for sub-3 nm particles [49, 50]. However, for simplicity, the mobility 

diameter of the particle calculated by Eq. (5.1) was used to evaluate the particle size 

distributions.  

The PSM-bCPC measured the sub-3 nm particle size distributions based on the size-dependent 

particle activation. Sub-3 nm particles were first grown by the PSM in an environment of 

supersaturated DEG vapors, and then introduced to a bCPC for further growth and optical 

detection. Details about the theory and operation can be found elsewhere [33, 35]. The PSM 

detection efficiency was calibrated using the positively charged particles generated in the flame. 

Conditions of the blank flame and with TTIP addition were calibrated separately to obtain 

different calibration curves. These curves were then used separately for interpreting the PSM 

data. Due to the fact that different species of particles were observed in positively charged, 

negatively charged, and neutral particles, uncertainty exists in the PSM-obtained particle number 

concentrations and charge fractions. Furthermore, existing studies suggested that neutral particles 

are less easy to activate due to the missing of ion-induced dipole effects [5, 6, 49, 50].However, a 

recent study has revealed that heterogeneous nucleation does not clearly favor particles with 

certain charging states, while the chemical composition of the sub-3 nm particles plays a more 
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important role [51]. In this study, the PSM-bCPC (Model A11, Airmodus Oy) was used to 

determine the charge distributions of the sub-3 nm particles. Teflon tubing is widely found to 

significantly remove ions and charged particles due to the electric field built at the inner surface 

of the tube, and this property makes it a convenient and efficient charged particle remover 

(CPR). This charge-removing effect can be achieved with a very short section of the tube (a few 

centimeters), since the mean surface electric field for the Teflon tubing can be in the range of 50-

200 V/cm [52]. This charge-removing effect is significantly suppressed by using conductive 

tubing for aerosol sampling. A 6.0 mm-wide, 10 cm-long Teflon tubing or conductive silicone 

tubing was initiated before the PSM-bCPC, so that both the neutral and total particle size 

distributions can be measured. The same length of tubes could guarantee the same amount of 

diffusion loss in the tubes. The charge distribution of the flame-generated sub-3 nm particles 

were then calculated by comparing the size distributions obtained with different tubes.  

The chemical composition of the flame-generated charged particles was obtained by directly 

feeding the sample aerosols to the APi-TOF. The APi-TOF could achieve a mass resolving 

power of 3000 Th/Th and a mass accuracy of 0.002%. The spectra were further analyzed with 

tofTools (a MATLAB®-based set of programs) [53], where the accurate mass and isotope 

distributions determined the exact species of the charged particles. To better analyze incipient 

clusters with similar chemical compositions, a mass defect plot was created which uses measured 

ion mass plotted on the x-axis and mass defect against nominal mass (integer mass) on the y-axis 

[41]. For example, since carbon has an atomic mass of 12.0000 (nominal mass of 12) and 

hydrogen has an atomic mass of 1.0078 (nominal mass of 1), CnHn
 clusters will have a mass 

defect of +0.0078n. By plotting CnHn clusters in a mass defect plot, one can get a straight line 

with a slope of +0.0078/(12+1.0078). In a mass defect plot, each section of straight lines 
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represents species spaced by a same molecular composition. The mass defect plot can further 

help in understanding the conversion and reaction of the species. The “Kendrick mass defect 

spectrum” is based on this idea where both the x-axis and y-axis are scaled to assist the analysis 

of grouped hydrocarbons [54]. 

The particle residence times in the sampling lines were approximately 12 ms, 52 ms, 9 ms, and 

30 ms, for the sections from the dilution sampler inlet to the DMA inlet, from the dilution 

sampler inlet to the PSM-bCPC inlet, from the dilution sampler inlet to the APi-TOF inlet, and 

from the DMA outlet to the EM inlet, respectively. However, the particle loss in the system took 

place dominantly in the instruments. For example, the transmission efficiencies of particles in the 

APi-TOF and the DMA were estimated to be 0.1 to 0.5% and 1 to 22%, respectively, depending 

on the setting of the instruments [41, 47]. Due to the difficulty for calibrating the particle 

transmission efficiencies, the particle loss was not evaluated. It should be noted that sampling in 

a flame with a probe will inevitably alter a sample. Although it has been carefully calibrated, the 

dilution sampler used in this study may not be sufficient to quench all reactions and particle 

dynamics. A recent study by Carbone et al. [24] shows that measuring sub 3 nm soot particles 

with dilution samplers is very challenging, since the critical conditions for suppressing particle 

coagulation and charge distribution were not achieved even at a dilution ratio of 3102.6  . 

Existing studies also suggested that an adequate dilution ratio larger than 104 is typically required 

so that the obtained particle size distributions are “asymptotic” [55]. Furthermore, the rapid 

cooling of the sample may also impact the complex state of vapor-cluster balance in the flame, 

and cause alteration of the incipient particle measurement [38, 56, 57]. Hence, there is a small 

chance that the observed incipient particles might not have been formed in the flame and are not 

reflective accurately of flame species.  
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5.2.3 Experimental plan 

Eleven sets of experiments (Table 5.2) were designed to study the effects of the sampling height, 

addition of synthesis precursor (TTIP), and precursor feed rates on the charging characteristics of 

flame-generated sub-3 nm particles. Tests 1 to 4 were conducted without TTIP addition to study 

the effect of sampling height on the particles generated from blank flames. Tests 5 to 11 

investigated the effect of TTIP feed rates and sampling height during TiO2 synthesis. The 

sampling height (HAB) was the vertical distance from the head of the burner to the inlet of the 

dilution sampler. The TTIP feed rate was calculated based on the saturation vapor pressure of 

TTIP in N2 presented by Siefering and Griffin [58].  

 

5.3 Results and discussion 

5.3.1 Sub-3 nm particles generated from a blank flame 

 

Figure 5.2 PSM and DMA-measured size distributions of blank flame-generated sub-3 nm particles at HAB = 5 mm.  
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Figure 5.2 shows the PSM-measured size distribution of particles generated from the blank flame 

at a sampling height of 5 mm. The neutral particle size distribution was also measured, which is 

not distinguishable in the graph, indicating a minimal formation of neutral particles in this 

condition. This result also explained the qualitative match between the shapes of the PSM and 

DMA-measured size distributions below 3 nm, because the DMA classified charged particles 

only. A large amount of charged clusters below 1.5 nm were generated from the blank flame, 

which was also observed in previous studies [3, 20]. These charged particles were generally 

believed to come from the intensive chemical ionization and thermal ionization during 

combustion [1]. During CH4 combustion, the chemically produced positively and negatively 

charged species mainly come from the reactions  

  eCHOOCH , and          (5.2) 


 eHCHCCH 3322

*
,         (5.3) 

where the formed ions and electrons may collide with other molecules to form more stable 

charged species [59]. According to recent work by Jones and Hayhurst [38], reaction shown in 

Eq. (5.2) dominates more oxygen-rich flames of methane (C/O ≤ 0.4). A pool of positive ions is 

then formed rapidly, mainly through proton transfer from CHO  to other intermediates and final 

products of combustion. Previous measurements with Langmuir probes and MBMS determined 

that the concentration of ions produced by chemical ionization in flames can be as high as 

1011#/cm3 [19, 38, 60]. An estimation of ion concentration in this investigated flame was also 

conducted, and the ion concentration was approximately 1010#/cm3 (supplementary content). 

This value is close to the those obtained in the work of Jones and Hayhurst [38]. The effect of 
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thermal ionization can be briefly evaluated by Saha’s equation, where the equilibrium 

concentrations of thermally ionized charged species can be calculated by  

)exp()
2

(
2 kT
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h

kTm
G

n

nn
K Iee 


  

,       (5.4) 

where K  is the equilibrium constant, n , en , and n  are the concentrations of the positively 

charged species, electrons, and neutral particles. G  is defined as ggg e / , where g , eg , and 

g  are the statistical weights of an ion, electron, and neutral particle, respectively. em  is the 

electron mass, k  is Boltzmann’s constant, T  is temperature (a value of 2200 K is used), and h  is 

Plank’s constant. IA  is the ionization potential of the species, which is typically larger than 10 

eV in a fuel-lean flame [61]. The calculated value of K  was below 10-12 #/m3, indicating a 

minimal effect of thermal ionization in this studied flame. Hence, we could conclude that most of 

these ions were coming from the chemical ionization in the flame.  

The DMA-measured size distributions (Figure 5.2) demonstrates that positively charged particles 

had larger averaged mobility sizes (lower electrical mobilities) than negatively charged particles, 

which is common in ionization sources [62]. The inverse mobilities are labeled in the upper x-

axis of Figure 5.2 as a reference. A possible explanation for the difference in the average 

mobilities between the polarities is that chemical ionization reactions produce relatively large 

organic particles as positive charge carriers, while electrons are the dominant negative charge 

carrier. These free electrons can further attach on other species with smaller mobility sizes to 

generate negative ions at atmospheric pressure [38, 63, 64] through  
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  XHeHX .          

 (5.5) Through this reaction, major negative ions, such as HC 2
and OH , or halogen 

ions, can be generated [38, 64]. According to Fuchs theory, the difference in the electrical 

mobility may cause a higher fraction of particles to carry negative charges, since the more 

mobile negatively charged clusters may collide with neutral particles more frequently. It should 

also be noted that the measured ion mobilities were higher than those obtained in sooting flames 

(~ 1 cm2/Vs), where larger clusters of unsaturated carbon clusters were formed [1].   

 

Figure 5.3 Effect of sampling height on: (a) PSM-measured size distributions and (b) neutral fractions of blank 

flame-generated sub-3 nm particles.  
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Figure 5.3 displays the effect of sampling height on the PSM-measured particle size distributions 

and neutral particle fractions. As the probe height (HAB) increased, a minor decrease in the 

particle concentration was observed (Figure 5.3a), which could be explained by the formation of 

neutral particles by ion recombination above the flame sheet. One should notice that the 

concentration of sub-3 nm particles at different HAB were still in similar orders of magnitude, 

implying a relatively long age (>10 ms) of the generated particles. The neutral fraction of sub-3 

nm particles was very low (< 10%, Figure 5.3b), and as the residence time increased (higher 

HAB), the recombination of ions did not have a significant effect on the neutral fractions. The 

neutral particle fraction was far from the theory-predicted values of around 100% for particles 

below 10 nm, indicating that a large fraction of particles were charged in this size range during 

combustion. Furthermore, the neutral fraction of 1.29 nm particles was always higher than that of 

1.17 nm particles (Figure 5.3b), contradicting the classical charging theories which predict a 

lower charging probability of particles with smaller sizes. This large discrepancy may be caused 

by the chemical ionization which produces positive ions with different sizes as stated earlier, and 

may also be a result of the unsteady charging process, which is not considered in classical 

charging theories. This feature requires additional experimental work.  
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Figure 5.4 Mass spectrum of blank flame-generated ions measured by the APi-TOF. a) mass spectrum of positive 

ions; inset plot: mass defect plot of the positive ions (size of the circle indicates the relative abundance of the 

species); the blue line shows the mass defects of nn HC  clusters and b) mass spectrum of negative ions.  

 

The mass spectra of the positively and negatively charged sub-3 nm particles are shown in 

Figure 5.4. The spectra of the positive particles contained a lot of hydrocarbons peaks, which 

complicated the identification of the ion species (Figure 5.4a). Possible compositions of the 

major peaks were 


3114 OHC  (107.0708 Da), 


616OCH  (120.0634 Da), 
NHC 3014  (212.2378 Da), 

and 
ONHC 3215  (242.2487 Da). Unfortunately, the chemical structure of these charged clusters 

cannot be deciphered. Future work will be attempted to analyze the chemical structures and 

locate functional groups of these clusters, so that more information can be derived for incipient 
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particle formation. The inset figure shows the mass defect plot of the positively charged 

particles, with the fitted line displaying the mass defects of particles with a chemical formula of 

nnHC . The match between most of the data points and the fitted line indicates that the formed 

positively charged sub-3 nm particles were mainly composed of unsaturated hydrocarbons. It is 

also possible that the formation of polycyclic aromatic hydrocarbons (PAH) took place during 

the combustion of methane [65, 66]. These detected species are important intermediates during 

particle formation due to their high abundance. Furthermore, they can provide the surface area 

for particle condensation and coagulation growth. It is interesting that the detected major species 

(such as  


3114 OHC  and 


616OCH ) did not fall on the fitted mass defect line, which requires more 

effort to explain this phenomenon. The negatively charged clusters were mostly composed of 

nitrate ions. Major peaks of 


3NO  (61.9878 Da), 


33NOHNO  (124.9835 Da), and 


323 )( NOHNO  

(187.9791 Da) were detected and confirmed by the highly resolved atomic masses and isotope 

distributions. The existence of nitrogen-containing species might be a result of xNO  formation, 

especially when the flame was operated in a fuel-lean condition which favors xNO  production. 

Further, the electrons and water produced by combustion might react with xNO  to generate 

nitrate ions, which were also found to be the dominant ions in other types of ionization sources 

such as radioactive neutralizers [62, 67] and corona dischargers [68]. Due to its high 

concentration, the nitrate ions were very likely to participate in the charging of sub-3 nm 

particles during particle synthesis, as discussed in the following section.  
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5.3.2 Sub-3 nm particles generated during flame synthesis of TiO2 

 

Figure 5.5 PSM and DMA-measured size distributions of flame-generated sub-3 nm particles during the flame 

synthesis of TiO2. The sampling probe height was 5 mm and TTIP feed rate was 0.170 mmol/hr.  

 

After TTIP was introduced to the flame, particles with mobility sizes larger than 1.5 nm were 

detected by both the PSM-bCPC and DMA (Figure 5.5). This increase in size was a result of 

particle nucleation and growth at the initial stages. The neutral particle concentrations also 

increased compared to the blank flame conditions, although the neutral fraction was still low (~ 

5% at HAB = 5 mm). Due to the large fraction of the charged particles, DMA-measured particle 

size distributions again matched well with the PSM-measured total particle size distributions. 

Separate peaks between 1 nm and 1.25 nm were detected in the DMA-measured particle size 

distributions, indicating the formation of some stable particles during the synthesis of TiO2 [3]. 

These stable particles may act as important intermediates during the formation of TiO2. Again, 

positively charged particles had larger averaged mobility sizes than the negatively charged 

particles.  
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Figure 5.6 Mass spectrum of flame-generated sub-3 nm particles measured by the APi-TOF during the synthesis of 

TiO2. The identified peaks are shown in gray color: a) shows positively charged particles; inset plot: mass defect plot 

of the positive ions (size of the circle indicates the relative abundance of the species) and b) shows negatively 

charged particles; inset plot: mass defect plot of the negative ions (size of the circle indicates the relative abundance 

of the species); the blue line shows the mass defect of clusters with 3NO  as the core and 32 NOTiO  as the 

additional group.  

 

The chemical compositions of the sub-3 nm charged particles were analyzed with the APi-TOF, 

and the mass spectra are displayed in Figure 5.6. A significant number of peaks was detected in 

both polarities. The existence of titanium elements in the particles was confirmed with the high-

accuracy mass and the titanium isotope distribution (48Ti: 73.7%; 46Ti: 8.3%; 47Ti: 7.4%; 49Ti: 

5.4%; 50Ti: 5.2%). The identified peaks are represented in Figure 5.6 and listed in Table 5.3. 

Classical nucleation theories [22] predicted that a TiO2 single molecule could serve as a stable 
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monomer due to its low saturation vapor pressure; however, pure TiO2 particles were not 

detected by the mass spectrometer. A major peak of 
HOHTi 4)(  was found in the positively 

charged particles, which agreed with the TTIP reaction pathways in a 
2H /

2O / Ar  premixed 

flame proposed by Shmakov et al. [69] Similar species were also observed in a fuel-rich C2H2/O2 

premixed flame with the addition of atomized droplets of TiCl4 aqueous solution [70]. Other 

identified positively charged species typically contained unreacted hydrocarbons from TTIP 

propanol groups, indicating the necessity for future controlled experiments studying ion 

generation from propanol flames. As for negatively charged species, the nitrate ions played an 

important role in the formation of sub-3 nm particles. The APi-TOF detected a series of titanium 

and nitrate-containing particles, for example, 


234 )(NOTiO  at m/z of 235.9032 Th, 


332 )(NOTiO  

at m/z of 265.9012 Th, and 


2382 )(NOOTi  at m/z of 347.8308 Th, etc. The detected compositions 

indicate that, in molecular clusters, titanium has preferable oxidation states other than +4. This 

may demonstrate a strong interaction between the flame-generated ions and the synthesized 

materials, where the flame-generated ions were actively consumed during the particle formation 

at initial stages. This scavenging effect also explains the increase of neutral particle fraction 

observed in Figure 5.5. It is also possible that the precursor molecule, TTIP may become readily 

ionized in the flame, serving as the seed for further particle growth. It should be noted that the 

flame-generated ions in the sub-3 nm particles might serve as contaminants for the further 

growth of particles and may affect crystallization. Therefore, it would be worthwhile to conduct 

similar measurements in systems without the presence of hydrocarbon and nitrate species, such 

as in 
2H /

2O / Ar flames, in order to study the effect of organic and nitric ions on particle 

formation and growth. A recent study has shown that pure tungsten oxide clusters can be 
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detected through the measurement with molecular beam mass spectrometry in an 
2H /

2O / Ar 

flame at low pressures. However, since flame synthesis is mainly conducted with the 

participation of N2, and due to safety considerations and cost-effectiveness, hydrocarbons are 

commonly used as fuels, further work investigating the role of nitrate and hydrocarbon species in 

the particle growth and crystallization processes is still needed.  

Table 5.3 List of some major positive and negative compounds within the ion spectra measured by the 

APi-TOF. 

Identified positive ions Identified negative ions 

Integer m/z Chemical formula Integer m/z Chemical formula 

97 

34OHC  
62 

3NO  

117 

45OTiH  
204 

82OTiN  

132 

54OTiH  
220 

92OTiN  

143 

472 OHTiC  
236 

102OTiN  

146 

56OTiCH  
266 

113OTiN  

159 

572 OHTiC  
286 

112 NOTi  

173 

593 OHTiC  
348 

1422 ONTi  

187 

5114 OHTiC  
396 

1423 ONTi  

229 

6136 OHTiC  
460 

1822 ONTi  

 

The mass defect plots of the positively and negatively charged particles are displayed as insets in 

Figure 5.6. Most of the negatively charged particles fell on the straight line representing the mass 

defects of particles containing 3NO  as the core and 32NOTiO  as the additional group. The mass 
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defect plot of the positively charged particles shows some interesting properties. Detected 

particles had a major trend of decreasing mass defects as the atomic mass increased because of 

the addition of titanium and oxygen, which have negative mass defects, i.e., exact atomic mass of 

47.9479 and 15.9949, respectively. However, the whole mass defect plot was composed of 

separate segments where the mass defect was increasing with atomic mass, possibly contributed 

by the existing hydrocarbons, since hydrogen has a positive mass defect (exact mass of 1.0078). 

These segments indicate the presence of dehydrogenation and dehydration during the precursor 

reaction. The different patterns of the mass defect plot clearly suggest the presence of different 

reaction regimes during the formation of TiO2 particles. Apart from the cluster mobility and 

mass spectrum, the mass and mobility information of specific molecular cluster is also of great 

interest, since it can reveal critical information on the structure of these molecular clusters, such 

as collision cross section area, atom arrangement, etc [29]. However, in order to obtain the 

particle mobility and mass simultaneously, a tandem arrangement of the DMA and mass 

spectrometer, and more complex data analysis are required, which can be found in a recent study 

of the same group [4].  

  



133 

 

5.3.3 Effect of precursor feed rate and sampling height 

 

Figure 5.7 Effect of the precursor feed rate and sampling height on: (a) PSM-measured size distributions and (b) 

neutral fractions of flame-generated sub-3 nm particles. Figure 5.7a displays the size distributions of sub-3 nm 

particles synthesized at a feed rate of 0.213 mmol/hr at HAB = 10 and 20 mm. (a). Figure 5.7b shows the neutral 

fractions of 1.17 nm particles generated with a TTIP feed rate of 0.213 mmol/hr at HAB = 10 and 20 mm.  

 

Due to the scavenging of flame-generated ions by the synthesized materials, one would expect a 

positive correlation between the neutral particle fraction and the precursor feed rate. Figure 5.7 

shows the PSM-measured size distributions and neutral particle fractions as a function of the 

precursor feed rate. It was observed that when HAB = 5 mm, particles larger than 1.5 nm were 

formed, while smaller particles at around 1.1 nm were first generated and then consumed, due to 

the enhanced coagulation and continue particle growth (Figure 5.7a). The neutral particle 

fraction indeed increased with the TTIP feed rate, reaching around 10% with a precursor feed 



134 

 

rate of 0.213 mmol/hr where HAB = 5 mm, confirming the strong interaction between the flame-

generated ions and the synthesized particles.  

Unlike the case for the blank flame-generated ions (Figure 5.4), sampling height significantly 

changed the size distribution and neutral fraction of particles formed from the flame with 

precursor addition. At a precursor feed rate of 0.213 mmol/hr, the particle size distribution 

shifted from 1.1 nm to 2.25 nm as sampling height increased (Figure 5.7a). The neutral fraction 

also greatly increased, approaching around 90% when the sampling height was 20 mm. The 

neutral fractions of 1.17 nm and 1.29 nm particles were 53.8±11.2 % and 56.8±13.4 % at 

HAB=10 mm, and 88.9±7.1 % and 82.3±18.3 % at HAB=20 mm. This large difference in the 

charge fraction is  attributed to the existence of particles with larger sizes. The ions produced by 

the chemical ionization in the flame randomly collided with and attach onto particles formed 

from TTIP reaction. Particles with larger sizes possessed larger cross-sectional areas (and 

coagulation sink [71]), facilitating the recombination and neutralization of the system. This effect 

might have also been maximized, due to the small size scale of this charging process. Still, the 

neutral particle fractions were far from the theoretically predicted values, indicating a need for 

analytically studying the time-dependent charging mechanisms in the flame [2].  

 

5.4 Conclusions 

With the help of three enhanced particle detectors, the charging characteristics of sub-3 nm 

flame-generated particles were studied for the first time (to the best of our knowledge). The 

PSM-bCPC and high resolution DMA matched qualitatively well in measuring the sub-3 nm 

particle size distributions. Coupled with a CPR, the PSM-bCPC measured the neutral particle 
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size distributions during combustion, and the neutral particle fraction in the flame was found to 

be significantly lower than predicted by classical theory. The APi-TOF provided the chemical 

compositions of the sub-3 nm charged species. Under blank flame conditions, the positively 

charged particles were mainly composed of hydrocarbons, while nitrate ions dominated the 

negatively charged particles. xNO  formation was considered to be the major reason for 

generating nitrate species. A strong interaction between the flame-generated ions and synthesized 

materials was observed, which was indicated by the existence of nitrate species in the Ti-

containing particles. The appearance of these ion species might further affect the quality of the 

final synthesized product. The formation of particles during combustion consumed the flame-

generated ions, which further increased the neutral particle fraction in the flame. Flame-

generated ions play an important role during the particle formation at the initial stages. New 

perspectives on synthesizing functional nanomaterials through combustion may be obtained 

through changing the ion characteristics in flame environments. 
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Abstract 

Flames generate a large amount of chemically and thermally ionized species, which are involved 

in the growth dynamics of particles formed in flames. However, existing models predicting 

particle formation and growth do not consider particle charging, which may lead to bias in the 

calculated size distribution of particles. In this study, Fuchs’ charging theory was coupled with a 

monodisperse particle growth model to study the simultaneous charging and coagulation of 

nanoparticles during combustion. In order to quantify the charging characteristics of 

nanoparticles, a high-resolution DMA was used to measure the mobilities of ions generated from 

a premixed flat flame operated at various conditions. The effect of temperature on ion-particle 

and particle-particle combination coefficients was further examined. The proposed model 

showed that the influence of charging on particle growth dynamics was more prominent when 

the ion concentration was comparable to or higher than the particle concentrations, a condition 

which may be encountered in flame synthesis and solid fuel-burning. Simulated results also 

showed that unipolar ion environments strongly suppressed the coagulation of particles. In the 

end, a simplified analysis of the relative importance of particle charging and coagulation was 

proposed by comparing the characteristic time scales of these two mechanisms.  
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6.1 Introduction 

Combustion is a major source of particulate matter (PM) generation (Biswas and Wu 2005).  The 

precise control of aerosol formation during combustion is equally crucial for both the 

applications of flame-generated particles (Hu et al. 2016; Li et al. 2016b; Liu et al. 2015) and 

their environmental implications (Li et al. 2016a; Wang et al. 2013).  However, a detailed 

understanding of the particle dynamics in flames is lacking due to the fast reaction rate of 

combustion, making it difficult to control the particle formation and growth processes. Due to the 

limitations of instruments, the particle nucleation and growth at initial stages during combustion, 

especially below 3 nm, still remain to be a knowledge gap (Wang et al. 2014). At the same time, 

because of chemical ionization and thermal ionization mechanisms (Fialkov 1997), flames 

generate large numbers of ions and charged clusters with concentrations as high as 1010 /cm3.  A 

recent study conducted with a series of enhanced particle detectors showed that the fraction of 

charged species can be high in a premixed flame (Wang et al. 2017). The presence of these ions 

makes the flame a quasi-neutral plasma that may notably affect the property of the produced 

particles. The highly concentrated ions and charged clusters actively collide with the formed 

nanoparticles, adding electrostatic potentials to the system, and further altering the properties of 

the generated particles, such as their size, shape, and crystallinity (Jiang et al. 2007a; Zhang et al. 

2012). This effect is significantly enhanced when manipulated ion environments (such as 

unipolar-ion environments and concentrated ion environments) are imposed (Vemury and 

Pratsinis 1995; 1996; Vemury et al. 1997; Xiong et al. 2016; Zhang et al. 2012; Zhang et al. 

2011; Karnani et al. 2015; Weinberg et al. 2013).  

According to Fuchs’ charging theory, the particle charging probability is determined by the mass 

and mobility of the surrounding ions (Fuchs 1963).  Although it neglects the effect of particle 
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morphology and absolute ion concentrations, Fuchs’ charging theory provides a quantitative 

match with the experimentally measured charging probabilities of particles between 3 nm to 1 

μm (Gopalakrishnan et al. 2015; Hoppel and Frick 1986; Jiang et al. 2007a; Reischl et al. 1996). 

Therefore, direct measurement of ion mass and mobility can shed light upon particle charging 

probabilities in flames.  Previously, this type of measurement was difficult due to the low 

resolution of instruments determining the mobility of highly diffusive ions below 3 nm.  With the 

development of differential mobility analyzers (DMAs) with high sheath flow rates, the 

residence time for particle diffusion in the instrument is greatly reduced, enhancing the 

resolution of ion mobility measurements (Fang et al. 2014; Kangasluoma et al. 2016a; Wang et 

al. 2014; Wang et al. 2015; Carbone et al. 2016).  The coupling of a high-resolution DMA with 

an atmospheric pressure-inlet mass spectrometer (MS), i.e., tandem DMA-MS, enables the 

simultaneous measurement of ion mobility and mass, through which the accurate calculation of 

the interaction between ions and particles becomes achievable (Gopalakrishnan et al. 2015; 

Maißer et al. 2015). Apart from creating the ion-particle interactions, the presence of ions in 

particle systems also modifies the charge distributions of particles, changing the electrostatic 

potentials among the flame-generated particles and altering the coagulation growth of flame-

generated nanoparticles.  In existing models predicting particle formation in flames, the influence 

of particle charging is not evaluated, although the attractive or repulsive forces among particles 

can vary the coagulation coefficients greatly (Friedlander 2000).  

In order to study how ions affect particle formation in flames, one needs to solve the particle 

general dynamic equation by coupling particle charging and coagulation (Jiang et al. 2007b). 

Existing studies have attempted to solve these two mechanisms separately.  By assuming particle 

size distributions remain constant, kinetic equations tracking the concentrations of ions and 
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particles with different charging states were solved based on the ion-particle combination 

coefficients (Fuchs 1963; Jean et al. 2015; Reischl et al. 1996; López-Yglesias and Flagan, 

2013).  There is a plethora of modeling methods predicting particle formation dynamics where 

particle charging is not considered, including the unimodal model, bimodal model, method of 

moments, and discrete-sectional model (Wu and Flagan 1988; Landgrebe and Pratsinis 1990; 

Tsantilis et al. 2002). These models are applicable when there is a large difference between the 

characteristic times for particle charging and coagulation.  However, when the two time scales 

are similar to each other, such assumptions ignoring certain mechanisms cannot be made, 

especially in flame systems, where the particle coagulation time may have a broad range 

depending on the particle concentrations in different scenarios.  Few studies to date have 

investigated simultaneous charging and coagulation during particle formation and growth. 

Alonso et al. (199) studied the transient charging and coagulation of nanoparticles in an aerosol 

charger with constant ion concentration, in order to examine the effect of mean aerosol residence 

time on the output concentration of charged particles.  Fujimoto et al. (2003) calculated the 

unipolar ion charging and particle coagulation during aerosol formation from titanium 

isopropoxide thermal decomposition at temperatures below 500 oC, and predicted that the 

particles’ average size, standard deviation, and concentration were affected greatly. Recently, 

Kim et al. (2016) simulated the charging and coagulation of radioactive and non-radioactive 

particles in the atmosphere and found that the mutual effects of the two mechanisms indeed alter 

the particle size distribution. These studies demonstrate that simultaneous particle charging and 

coagulation may be different from particle dynamics predicted by commonly used models.  
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In this paper, the simultaneous charging and coagulation of flame-generated particles by 

coupling Fuchs’ charging theory with a monodisperse model predicting particle growth 

dynamics was simulated. In order to quantify the particle charging mechanism, a high-resolution 

DMA was used to measure the mobility distributions of ions generated from a premixed flat 

flame.  Different operating conditions of the flame were applied to study their influence on ion 

generation. The obtained ion mobilities were used as inputs to the proposed model for 

calculating particle growth dynamics in the presence of charging, where the effects of initial 

particle concentration and the polarity of the ions were specifically investigated. 

 

Figure 6.1 Schematic diagram of the experimental setup, including a premixed flat flame and a high-resolution 

DMA system.   

 

6.2 Methods 

6.2.1 Experimental setup 

Figure 6.1 shows a schematic diagram of the experimental setup.  A premixed flat flame was 

used in this study to measure ion mobility distributions, due to its high stability, uniformity, and 
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broad usage.  A detailed description of the setup can be found elsewhere (Wang et al. 2016).  

The combustion mixture was composed of methane (CH4, Airgas Inc.), oxygen (O2, Airgas Inc.), 

and nitrogen (N2, Airgas Inc.) whose flow rates were controlled by mass flow controllers (MKS 

Inc.).  Before their mobility distributions were examined, the flame-generated ions were sampled 

with a dilution probe operated at a dilution ratio of 180, with N2 (Airgas Inc.) as the dilution gas.  

A high-resolution DMA (half mini-type (Fernández de la Mora and Kozlowski 2013)) was used 

to measure the mobility of the flame-generated ions.  Details of the DMA setting and calibration 

method (Ude and de la Mora 2005) can be found in the supplemental information.  The ion 

mobility distributions in both polarities can be obtained by scanning the DMA voltage from 0 to 

±5 kV.  The mobility size of the ions ( iond ) was then calculated by  

iondCneZ 3/            (6.1) 

where C  is the Cunningham slip correction factor, n  is the number of charges on the particle, e  

is the electronic charge,   is the air viscosity, and iond  is the ion mobility size.  It should be 

noted that the iond  value calculated with this equation is larger than its actual value (volumetric 

size) due to the ion-induced dipole created on the surrounding gas molecules (Larriba et al. 

2011).  However, since size information is not needed in calculating the charging characteristics 

of flame-generated particles, Eq. (6.1) is still used to qualitatively show the size of the ions. In 

this study, it was assumed that all the flame-generated ions carry one charge only, which is 

typical in combustion systems (Fialkov 1997).  The concentration of charged clusters was 

calculated based on the current recorded by the electrometer, as introduced in the supplemental 

information.   
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Table 6.1 Experimental plan showing the combination of flow rates, adiabatic flame temperatures, and 

sampling heights.  

Test # 
Flow rates (lpm) 

  TA (K) HAB
 (mm) 

CH4 O2 N2 

1 0.85 2.85 7.33 0.60 2015 5 

2 1.20 2.85 8.10 0.85 2401 5 

3 1.42 2.85 9.09 1.00 2529 5 

4 1.57 2.85 8.09 1.10 2416 5 

5 1.20 2.85 8.10 0.85 2401 5 – 20 

 

A series of flow rates in the flat flame was used to study the effects of the flame equivalence 

ratio on flame-generated ions.  Additional measurements at different heights above the burner 

(HAB) were conducted to elucidate the ion properties as a function of residence time after their 

formation. The detailed flow rates, flame equivalence ratio ( ), and HAB combinations are listed 

in Table 6.1.  The flow rate settings achieved   values of 0.60, 0.85, 1.00, and 1.10 in Tests 1 

through 4.  Since changing   can result in different flame speeds and flame positions, N2 flow 

was adjusted accordingly to maintain a constant height of the flame sheet.  Table 6.1 also lists 

the adiabatic flame temperatures under different flow rate settings calculated using the major-

minor species model (Turns, 1996). Note that due to temperature and dilution effects, the 

sampling at the same HAB does not imply equal residence time in different flames. The ion 

mobility distributions were measured in a broad range of HAB (5 – 20 mm), where different 

characteristics of positive and negative ions were observed. The effect of sampling height on ion 

size and mobility distribution is discussed in the supplemental information due to the page limit.  
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6.2.2 Simulation method 

Ion-particle and particle-particle combination coefficients 

In order to track simultaneous particle charging and coagulation, combination rates among the 

ions and particles, which are determined by the ion-particle and particle-particle combination 

coefficients were calculated. 

According to Fuchs’ charging theory (1963), the only unknown parameters in calculating the 

ion-particle combination coefficient are the positive and negative ion mobilities and masses.  

Ideally, the mobility and mass of an ion should be measured with a tandem DMA-MS setup, 

where these values are obtained at the same time (Maißer et al. 2015; Wang et al. 2016). Due to 

the instrument limitation, ion mobility was the only parameter measured in this study. 

Approximate mass values of 140 amu and 70 amu for positive and negative ions were used, 

which are in the range of existing measurement results obtained with mass spectrometers 

(Fialkov 1997). These atomic mass values also agree with a recent study on the measurement of 

premixed flat flame-generated ions with an atmospheric pressure-inlet time-of-flight mass 

spectrometer, where the dominant positive charge carriers were hydrocarbons (100-250 amu) and 

dominant negative charge carriers were nitrate-related ions (62 amu and 125 amu) (Wang et al. 

2017). As pointed out by the study of the sensitivity analysis in Fuchs’ charging model, the main 

influential variable is the difference between the positive and negative ion mobilities, which were 

measured accurately in this study (Tigges et al. 2015).  Because the DMA-measured flame-

generated ions had distributed mobilities, the number-weighted mean mobilities of the positive 

and negative ions was calculated. Furthermore, since the mobility values were measured at 298 

K, which was the sheath flow temperature of the DMA, one needs to convert the measured 

mobility values to those at other temperatures.  Here, a mobility-temperature dependence of 
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5.0TZ   was used (Larriba et al. 2011). The influence of other mobility-temperature 

dependences on calculating the ion-particle combination coefficient was discovered to be small 

(Figure A2.1). The ion-particle combination coefficient 


i  of positive (+) and negative (–) ions 

with a particle carrying i elementary units of charge can be derived as  

dxkTxDkT
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The particle-particle combination coefficient for the Brownian collision of spherical particles in 

the free molecular and continuum regime (Seinfeld and Pandis 2012) is given by 
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In the presence of electrostatic interaction between charged particles, the combination coefficient 

is modified by a correction factor (W) (Friedlander 2000) which is given by  
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dd
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
          (6.4) 

Detailed explanations and calculation results of Eqs. (6.2) to (6.4) are included in the 

supplemental information.   

Calculation of simultaneous particle charging and coagulation  

Using the ion-particle and particle-particle combination coefficients, the detailed equations 

describing the concentrations of ions and particles with different charging states can be written. 
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The following differential equations track the ion number concentration ( n ), particle number 

concentration (
kpN ,
), and total particle volume concentration (

kpV ,
) at any time:  

,

k m

k p k

k m

dn
q n n n N

dt
 




  



             (6.5) 

In this equation, k is the number of charges carried by each particle, q  is the generation rate of 

ions,   is the ion recombination coefficient, and k


 is the ion-particle combination coefficient 

calculated in Eq. (6.2). The three terms on the right hand side (RHS) of Eq. (6.5) correspond to 

the rate of ion generation, the loss of ions due to recombination, and the loss of the ions due to 

collision with particles, respectively. When solving Eq. (6.5), for simplicity, the rate of ion 

generation was set to 0 due to the thinness of the reaction zone (flat flame sheet) in combustion, 

and the initial concentration of ions was set to be 1010 /cm3, based on a summary of existing 

measurements of ion concentrations in flames (Fialkov, 1997; Kim et al. 2005; Alquaity et al. 

2016).  As illustrated in previous studies, the change of fuel type and combustion equivalence 

ratio will affect the ion concentrations, however, the influence was not strong, where the ion 

concentrations were in the range of 109 to 1011 /cm3.  It reveals that the ion concentrations in the 

flame may be an intrinsic value, which may not be very sensitive to flame conditions due to 

combustion chemistries. Regarding the ion recombination, theoretically, since the masses and 

mobilities of electrons and negatively charged clusters were significantly different from each 

other, a complete model should consider this difference in recombination coefficients. However, 

due to the difficulty in retrieving the data on recombination coefficients between positive ions 

and elections, in this model, the recombination was considered to take place between positively 

and negatively charged clusters only, and a constant value of 
7101   cm3/s obtained in various 
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combustion studies was used (Fialkov, 1997).   increases as temperature decreases, since the 

attractive electrostatic potential start to dominate over kinetic movement of ions with opposite 

polarities. In this study, the influence of using larger   values at lower temperatures was 

determined to be minimal. The number concentration and total volume of particles carrying k 

charges are described by 
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V
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In these equations, 
kv  is the volume of each particle with charge k , 

,i j

coag is the particle-particle 

combination coefficient calculated with Eqs. (6.2) and (6.4), and 
kZ is the mobility of particles 

with k charges. In both equations, the first and second terms on the RHS together account for 

the gain of particles by ion-particle collision. The third and fourth terms together account for loss 

of particles by ion-particle collision. The fifth term represents the gain of particles through the 

coagulation of charged particles. The sixth term accounts for the loss of particles through 

coagulation, and the seventh term accounts for the loss of particles due to electrostatic 

dispersion. Note that m, the highest charging state of particles, is assumed to take values between 

-4 and +4 in this study.  
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The simulation assumes a constant temperature environment (300, 600, 1200, or 2400 K) 

synthesizing TiO2 nanoparticles, and records the particle size and the concentrations of ions and 

particles as a function of time.  It should be noted that in flame systems, the flow field and 

temperature field are not uniform, so the assumption of a constant temperature may not be valid.  

However, in premixed flat flames, the one-dimensionality and uniformity of the flame makes it 

similar to a plug flow reactor, where investigating particle charging and coagulation at specific 

temperatures is meaningful.   

 

Figure 6.2 Schematic diagram of the monodisperse model for charge ( k ) from 2 to +2. For each charge there is 

one mode represented by ,p kN and ,p kd . The arrow pointing towards right indicates that as time goes by 

coagulation leads to increase in size for all the modes. Note that the size ( ,p kd ) may be different for different values 

of k . 

 

Eqs. (6.5) to (6.8) together represent a population balance on the ion concentration, particle 

number concentration and particle volume concentration, respectively. This system of coupled 



157 

 

ordinary differential equations is non-dimensionalized and solved using the VODE solver in 

Python with backward differentiation formulas (BDF). At any time t , this monodisperse model 

assumes one size mode for each charge, 
kv , calculated by Eq. (6.8), instead of a particle size 

distribution (Vemury et al. 1997). The schematic of the model is shown in Figure 6.2. This 

model is found to be in good agreement with the predictions of highly accurate aerosol dynamics 

model. The slight error which is contributed by the overestimation of mean particle diameter and 

underestimation of the particle number concentration is inconsequential (Landgrebe and Pratsinis 

1990). Both bipolar and unipolar ion environments were simulated, since flame synthesis under 

these conditions can be achieved (Vemury and Pratsinis 1995; 1996; Vemury et al. 1997).  A 

baseline group that calculates particle dynamics with coagulation only was also conducted for 

comparing the results.  A total simulated time of 1 s was used, since in flame systems, the 

residence time of particles in a specific temperature zone is less than 1 s. For the simulations 

performed, the total number concentration of particles at any time t , ( )pN t  is the sum of all the 

positively charged, negatively charged and neutral particles.  

,( ) ( )
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p p k

k m

N t N t
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The average diameter of particles at any time t , 
, ( )p avgd t  is defined as:  

 
, ,

,

( ) ( )

( )
( )

k m

p k p k

k m
p avg

p

N t d t

d t
N t






                      (6.10) 

The average charge on the particles at any time t , 
, ( )p avgq t  is calculated as: 
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Table 6.2 lists the parameters and their values used in the simulation. Different initial particle 

concentrations were used to study influence of initial particle-to-ion concentration ratio on 

particle growth, since in real situations, the initial particle concentration in a flame can be easily 

changed by adjusting the precursor concentration. The initial particle size was assumed to be 0.4 

nm, which is the diameter of a TiO2 molecule (Tsantilis et al. 2002). Furthermore, particles were 

set to be neutral at the initial time.  

Table 6.2 Parameters used in the simulation of particle simultaneous charging and coagulation.  

Parameters Values 

Initial Positive Ion Concentration (
0, tiN ) 1010 /cm3  

Initial Negative Ion Concentration (
0, tiN ) 1010 /cm3 (bipolar)/ 0 /cm3 (unipolar) 

Positive Ion Mobility and Mass 1.54 cm2/Vs and 140 amu 

Negative Ion Mobility and Mass 1.97 cm2/Vs and 70 amu 

Initial Particle Concentration (all neutral) (
0, tpN ) 108 / 1010 / 1012 / 1013 /cm3 

Initial Particle Diameter 0.4 nm 

Temperature ( T ) 

Ion Recombination Coefficient ( ) 

300 / 600 / 1200 / 2400 K 

10-7 cm3/s 
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6.3 Results and Discussion 

6.3.1 Size and mobility distribution of flame-generated ions 

 

Figure 6.3 Positive and negative ion size distributions as a function of flame equivalence ratio ( ).  Sampling height 

HAB = 5 mm.  The corresponding ion inverse mobility is labeled in the upper x-axis. Note that the y-axis is the raw 

counts monitored by the electrometer.   

 

Figure 6.3 displays the size and mobility distributions of positive and negative ions generated 

from flames operated at different equivalence ratios ( ). The high-resolution DMA detected 

characteristic peaks at 1.04, 1.10, and 1.27 nm in positive ions and at 1.01 and 1.06 nm in 

negative ions. These charged particles were believed to come from the intensive chemical 
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ionization in the studied flames, where the temperatures were not high enough to generate 

charged species through thermal ionization (Fialkov 1997; Jiang et al. 2007b; Wang et al. 2017). 

One can also notice that the measured ion sizes are larger than those expected from clusters 

composed of a few atoms. The mobility size shown in the size distributions is inherently larger 

than the volumetric size of a charged cluster due to the ion-induced dipole effect, which pose a 

stronger drag force on charged cluster. Recent studies (Wang et al. 2016; 2017) also indicates 

that the major peak (1.01 nm) in the negative ion size distributions is mainly composed of nitrate 

ions ( 

3NO ), which has an ionic radii of 0.179 nm (Volkov et al. 1997). Hence, further study with 

a mass spectrometer is needed in order to determine the exact chemical composition of the 

measured ions and charged clusters. On the other hand, the relatively large mobility size might 

be caused by the limitation of the sampling system, where the rapid quenching not only stopped 

particle dynamics, but also altered the chemical equilibriums, introducing new species to the 

measurement (Carbone et al. 2016). During CH4 combustion, the chemically produced positively 

and negatively charged species mainly come from two reactions:  

  eCHOOCH          (6.12) 


 eHCHCCH 3322

*
          (6.13) 

where the formed ions and electrons collide with other molecules to form more stable charged 

species.  According to recent work by Jones and Hayhurst (2016), the reaction shown in Eq. 

(6.12) dominates in fuel-lean combustion of methane (C/O ≤ 0.4).  A pool of positive ions is then 

formed rapidly, mainly through proton transfer from CHO  to other intermediates and final 

products of combustion.  The average mobility of negative ions was higher than that of positive 

ions, possibly because the positive ions were composed of organic species, which had higher 
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proton affinities.  As the flame transited from fuel-lean to fuel-rich, the concentration of the 

detected ions first increased and then decreased.  The increase in ion concentration was caused 

by the stronger chemical ionization processes in the flame, while the decrease was a result of 

depletion of free oxygen atoms in the reaction zone (Jones and Hayhurst 2016).  It also shows 

that the number concentration of positive ions is higher than that of negative ions. According to 

charge neutrality, this result suggests that electrons may serve as a major species of negative 

charge carriers. The presence of highly mobile electrons can lead to a higher fraction of particles 

being negatively charged. The chemical species of these stable intermediates did not change as a 

function of   (as indicated by the same peak location), except that the relative magnitude of 

these charged species differed. For example, at 1.1 , the concentration of the larger positive 

ions (1.10 and 1.27 nm) was higher than that at 6.0 , while the concentration of 1.04 nm 

positive ions was lower than that at 6.0 , implying a conversion from smaller to larger ions as 

  increased.  However, as indicated in existing studies conducted with molecular beam mass 

spectrometry, these charged species may alter as   further increases to sooting conditions (Jones 

and Hayhurst 2016). Based on the measurement results, the positive and negative ion mobilities 

used for calculating ion-particle combination coefficients were 1.54 cm2/Vs and 1.97 cm2/Vs, by 

averaging the mobility distributions measured at 85.0  and HAB=5 mm. 

6.3.2 Simultaneous particle charging and coagulation 

Using the calculated ion-particle and particle-particle combination coefficients (Figures A2.2 and 

A2.3), particle and ion concentrations are analyzed with the population balance equations (Eqs. 

(6.5) to (6.8)). The results of simultaneous particle charging and coagulation in the unipolar and 

bipolar ion environments are shown as follows.  
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Unipolar ion environment 

 

Figure 6.4 Evolution of average particle size as a function of time at different temperatures, with and without 

charging effects in a unipolar ion environment. Subplots represent initial particle-to-ion concentration ratios of a) 

0.01, b) 1, c) 100, and d) 1000. Note the different scales of x-axes and y-axes.  

 

Figures 6.4 and 6.5 show the change of particle average size and concentration as a function of 

time in a unipolar ion environment with different initial particle-to-ion ratios. The effect of the 

unipolar ion environment on particle growth is very prominent. Due to particle charging, the 

coagulation among unipolarly charged particles is significantly suppressed. In all the calculated 

cases, the average particle size first increases and then reaches a plateau where particle size stops 

increasing (Figure 6.4). Similar results were observed in existing experimental studies when 

unipolar ions were introduced into flames synthesizing nanoparticles: The electrostatic repulsion 

dispersed the synthesized particles, and a monodisperse product was obtained (Vemury and 

Pratsinis 1995).  The point where particle size stopped increasing was determined by the relative 

concentrations of particles and ions, which is shown more directly in Figure 6.5.  The particle 
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concentration stops decreasing when it is comparable to the initial ion concentration (Figures 

6.5c and 6.5d).  Hence, creating unipolar ion environments during flame synthesis of 

nanoparticles can effectively suppress particle growth, and the size of the synthesized particles 

can be controlled by manipulating the relative concentrations of unipolar ions and particles.  

 

Figure 6.5 Evolution of normalized particle number concentration as a function of time at different temperatures, 

with and without charging effects in a unipolar ion environment. Subplots represent the cases with initial particle-to-

ion concentration ratios of a) 0.01, b) 1, c) 100, and d) 1000. Note the different scales of x-axes and y-axes.  
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Bipolar ion environment 

 

Figure 6.6 Evolution of average particle size as a function of time at different temperatures, with and without 

charging effects in a bipolar ion environment. Subplots represent initial particle-to-ion concentration ratios of a) 

0.01, b) 1, c) 100, and d) 1000. Note the different scales of x-axes and y-axes.   

 

Figure 6.6 shows the evolution of average particle size as a function of time in a bipolar ion 

environment. When the initial particle concentration is low ( 01.0/ 0,0,  titp NN , Figure 6.6a), 

minimal particle growth is observed after a simulated time of 1 s. The bipolar ion environment is 

found to enhance particle growth, especially at higher temperatures. This finding also agrees 

with atmospheric studies on ion-induced nucleation, where the participation of ions plays a more 

significant role when the molecular cluster concentration is lower (Kangasluoma et al. 2016b; 

Laakso et al. 2002). The effect of a bipolar ion environment is less important or even negligible 

when the initial particle concentration is comparable to or higher than the initial ion 

concentration (Figures 6.6b, 6.6c, and 6.6d). The limited effect of bipolar ions is a result of ion 

recombination, which quickly consumes all the available ions. As the initial particle 
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concentration increases, the grown particle size also becomes larger, reaching 9 nm at a 

temperature of 2400 K after 1 s. The evolution of normalized particle concentration as a function 

of time with different initial particle-to-ion concentration ratios is displayed in Figure A2.5, 

which corresponds well with the results on particle size, showing that the initial particle-to-ion 

concentration determines the influence of bipolar ion environment.  

 

Figure 6.7 Evolution of normalized average particle size (
coagavgpchrgcoagavgp dd ,,,, /

) and average charge as a 

function of initial particle-to-ion concentrations ratio at a) 1200 K and b) 2400 K. Here, ion concentration = 1010 

/cm3.  
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Due to the continuous chemical ionization in certain flames, the ion concentrations may remain 

relatively constant during a period of time before the quick consumption of ions through 

recombination.  To simulate such a system, it was assumed that the ion concentrations stay 

constant (1010 /cm3) during a period of 10 ms. Different initial particle concentrations in the 

flame were simulated to understand the effect of a constant ion presence on the particle 

dynamics.  In Figure 6.7, the ratio of final particle sizes obtained with and without charging (

coagavgpchrgcoagavgp dd ,,,, /
), and the average charge on each particle (

avgpq ,
) are plotted against the 

initial particle-to-ion concentration ratios.  As particle concentration increases, initially, 

coagavgpchrgcoagavgp dd ,,,, /
increases due to the similar concentrations of positively and negatively 

charged particles at small sizes, resulting in attractive forces among particles.  Note that an 

average negative charge is developed, due to the higher negative ion-particle combination 

coefficients caused by the larger mobilities of negative ions.  As the initial particle concentration 

further increases, the particle size becomes larger through coagulation, and the difference 

between negatively and positively charged particle concentrations also becomes larger.  Hence, 

the average negative charge increases to a higher value, causing a decrease of

coagavgpchrgcoagavgp dd ,,,, /
.  This result indicates that, during simultaneous particle charging and 

coagulation with a constant ion concentration, initially, the attractive forces between oppositely 

charged particles play a more important role in influencing the particle size. Gradually, as the 

average charge increases, repulsive forces dominate, and therefore the average particle size drops 

compared to the coagulation-only case. This phenomenon is, to some extent, similar to the 

screening effect in aquatic environments. Similar results were obtained in a bipolar ion 

environment with higher ion concentrations, as shown in Figure A2.6, where a constant ion 

concentration of 1012 /cm3 is applied.  
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6.3.3 Time scale analysis of particle charging and coagulation 

The competition between particle charging and coagulation can be simplified by comparing the 

characteristic time scales for these two processes. According to Eq. (6.6), initially, since all 

particles are neutral and have the same size, the decrease in neutral particle concentration is 

mainly caused by ion collisions with particles and particle self-coagulation. Additionally, due to 

the similar magnitude of the positive and negative ion-particle combination coefficients, Eq. 

(6.6) can be simplified as  

2

0,

0,0

0,0

0,
2/12 pcoagp

p
NNn

dt

dN
            (6.14) 

 

Figure 6.8 Ratio of characteristic charging time over coagulation time as a function of particle size at particle-to-ion 

concentration ratios of 1, 102, and 104. The ratio of the characteristic time determines the sequence of the two 

mechanisms. When 1/ coagchrg  , coagulation takes place much earlier than charging. When 

1/ coagchrg  , charging is faster than coagulation.  
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Hence, two characteristic time scales can be derived, where the characteristic charging time can 

be derived as 
 nchrg 02/1  , and the characteristic coagulation time can be derived as 

0,

0,0/2 pcoagcoag N  . The ratio of these two time scales ( coagchrg  / ) further determines the 

relative sequence of the two physical processes. coagchrg  /  is plotted as a function of particle 

size with different initial particle-to-ion concentration ratios (
0,0, /  titp NN ) in Figure 6.8. As 

particle size increases, the collision-cross section area of particles also increases, leading to a 

faster charging process, but the effect of the enlarged collision-cross section area on particle 

coagulation is counteracted by the smaller particle diffusion coefficient. Hence, introducing ions 

to particles with larger sizes can cause a stronger influence on particle growth dynamics. The 

particle-to-ion concentration ratio significantly affects the temporal sequence of charging and 

coagulation, especially when particle size is smaller than 10 nm, which has already been shown 

in Figures 6.4 to 6.6. When the particle-to-ion concentration ratio is 1, charging takes place 

significantly earlier than coagulation, which can induce or suppress particle growth, depending 

on the ion environment. When the particle-to-ion concentration ratio is 104, particle coagulation 

is much faster than particle charging, so particles can grow to a relatively larger size before the 

electrostatic potential begins to play a role. This effect is more evident in a unipolar ion 

environment, where particles grow until the concentration of ions and particles are comparable 

(Figure 6.5). No noticeable difference in coagchrg  /  is observed when system temperature 

increased from 300 K to 2400 K, since as temperature increases, both the ion-particle and 

particle-particle combination coefficients increase. By comparing the relative magnitudes of the 

characteristic charging and coagulation time, it can be concluded that particle size and the initial 

particle-to-ion concentration determine the influence of flame-generated ions on the 
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simultaneous charging and coagulation of nanoparticles, and this influence becomes more 

significant when particle size or ion concentration is larger.  

 

6.4 Conclusions  

By coupling Fuchs’ charging theory with a monodisperse particle dynamics model, the 

simultaneous charging and coagulation of nanoparticles was simulated at various temperatures.  

As input values for Fuchs’ charging theory, the mobility distributions of flame-generated ions 

were measured with a high-resolution differential mobility analyzer (DMA).  Measurements 

showed that positive ions had smaller mobilities than negative ions, which resulted in higher 

probabilities of nanoparticles carrying negative charges.  Characteristic peaks at 1.04, 1.10, and 

1.27 nm in positive ions and at 1.01 and 1.06 nm in negative ions were detected by the high-

resolution DMA.  The modeling of particle dynamics with simultaneous charging and 

coagulation showed that the effect of ion interaction was more prominent in unipolar ion 

environments, where particle coagulation is significantly suppressed.  The presence of bipolar 

ions promoted particle growth only when the particle concentration was lower than the ion 

concentrations.  A simplified model using time scale analysis was proposed, suggesting that the 

initial particle-to-ion concentration and particle size were two important factors that determine 

the relative importance of particle charging and coagulation.  
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7.1 Conclusions 

This section summarizes the major findings of this dissertation.  

7.1.1 Applicability of high-resolution DMAs in sub 2 nm particle 

characterization (Chapters 2 and 3) 

While particle formation and growth above 2 nm have been well characterized with current 

microscopic, spectroscopic, and chromatographic techniques, the initial stages of particle 

formation are still not well understood.  This is partly due to the limitations of instruments, 

which cannot characterize the highly diffusive and condensationally inactive particles.  The first 

part of this dissertation studied the applicability of high-resolution DMAs in measuring sub 2 nm 

particles generated from aerosol reactors, i.e., a flame aerosol reactor and a furnace aerosol 

reactor.  In the measurement of sub 2 nm ions and charged particles generated by electrospray 

and by a premixed flat flame reactor, the comparison between a half mini DMA (one type of 

high-resolution DMAs) and a Nano DMA showed that the half mini DMA withstood the 

diffusion effects better.  This superior performance attributed to the significantly increased 

sheath flow rate, which enhanced the resolution and shortened the residence time of particles in 

the DMA.   

The half mini DMA was first used to investigate the formation of TiO2 clusters during flame 

synthesis (Chapter 1).  When TTIP was introduced into the flame reactor, discrete TiO2 ion 

peaks were observed, indicating a discrete size distribution in the initial stages of particle 

formation.  The use of a radioactive neutralizer and different types of tube materials resulted in 

different size distributions of sub 2 nm particles, suggesting the challenges of sampling these 

incipient particles.   
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Further, the half mini DMA was used in a furnace aerosol reactor to investigate the initial stage 

kinetics of TiO2 particle formation and growth during the thermal decomposition of TTIP 

(Chapter 2).  For the first time, clusters below 2 nm were detected, during the thermal 

decomposition of TTIP.  As the reaction temperature increased, a higher consumption of TTIP 

molecules was observed, and larger particles with characteristic sizes were detected, signifying 

the formation and growth of particles.  The first order reaction rate derived from the decay of the 

TTIP signal as a function of the reaction temperature yielded a quantitative match with existing 

studies, implying that sub 2 nm particle size measurement can serve as a new method for 

monitoring reaction rates.  These reaction rates are important information for engineering the 

structure of flame-synthesized nanomaterials (Appendix III).  The obtained knowledge on 

incipient particle formation and growth can bridge the gap between chemical reactions on the 

molecular scale and particle growth beyond the nanometer scale, which is of interest in 

applications such as nanomaterial production and atmospheric pollutant control. 

7.1.2 Analysis of the physical and chemical formation pathways aerosol 

during combustion (Chapters 4, 5, and 6) 

In addition to the physical characterization of sub 2 nm particles with DMAs, the chemical 

analysis of sub 2 nm particles can complete the picture of particle formation and growth 

pathways at high temperatures.  Furthermore, despite the limitations of instruments that measure 

charged particles only, the charging characteristics of these incipient particles are of great 

interest.  Studies conducted with the combination of a high-resolution DMA, an atmospheric 

interface time-of-flight mass spectrometer (APi-TOF MS), and a particle size magnifier (PSM) 

facilitated our understanding of particle formation during combustion.   
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For the first time, incipient particle formation during flame synthesis was investigated using the 

tandem differential mobility analysis-mass spectrometry (DMA-MS) technique (Chapter 4). A 

high resolution DMA and an APi-TOF were used to measure the size and mass of the sub 3 nm 

particles simultaneously in the flames, without the addition of synthesis precursors and with the 

addition of TEOS or TTIP.  Measurements in a blank flame detected a large number of sub 3 nm 

particles generated from chemical ionization reactions, and determined that nitrate ions 

dominated in the negative ions.  The formation of nitrate ions may be related to the NOx 

formation in flames. The blank flame-generated ions played an important role during particle 

synthesis, since the APi-TOF observed the appearance of nitrate ions in particles containing 

silicon or titanium.  The effective densities of the incipient particles were calculated by assuming 

that the particles were spheres. These particles had lower densities than the bulk SiO2 and TiO2, 

because of the impurities in the particles and their amorphous structures. The commonly used 

Kilpatrick’s mass-mobility relationship was also evaluated in this study, and the difference 

between the measured data and the Kilpatrick’s relationship suggested that particle compositions 

largely determined particle mass and mobility.   

With the help of three enhanced particle detectors (a high-resolution DMA, an APi-TOF, and a 

PSM), the charging characteristics of sub-3 nm flame-generated particles were studied for the 

first time (Chapter 5).  The PSM-bCPC and high resolution DMA matched qualitatively well in 

measuring the sub-3 nm particle size distributions.  Coupled with a CPR, the PSM-bCPC 

measured the neutral particle size distributions during combustion, and the neutral particle 

fraction in the flame was found to be significantly lower than predicted by classical theory.  The 

formation of particles during combustion consumed the flame-generated ions, which further 
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increased the neutral particle fraction in the flame. These results show that flame-generated ions 

play an important role during particle formation in the initial stages.   

To elucidate the influence of ion environments on particle formation and growth during 

combustion, we numerically simulated simultaneous particle charging and coagulation at various 

temperatures.  This was done by coupling Fuchs’ charging theory with a monodisperse particle 

dynamics model.  As input values for Fuchs’ charging theory, the mobility distributions of 

flame-generated ions were measured with a high-resolution differential mobility analyzer 

(DMA).  The modeling of particle dynamics showed that the effect of ion interaction was more 

prominent in unipolar ion environments, where particle coagulation was significantly suppressed.  

The presence of bipolar ions promoted particle growth only when the particle concentration was 

lower than the ion concentrations.  A simplified model using time scale analysis was proposed, 

suggesting that the initial particle-to-ion concentration and particle size were two important 

factors that determine the relative importance of particle charging and coagulation.  These 

findings provide new perspectives on the synthesis of functional nanomaterials by changing the 

ion characteristics in flame environments. 

7.1.3 Relevance of this work to industrial synthesis of functional nanoparticles 

Flame aerosol reactors have been shown to be one of the most stable, scalable, and economical 

methods for the synthesis of functional nanomaterials.  Recently, flame aerosol reactors have 

also been demonstrated to be capable for the synthesis of quantum dots, whose sizes are typically 

below 5 nm.  The size and chemical composition of quantum dots must be strictly controlled.  

Analyzing the incipient particle formation and growth with high-resolution DMAs and mass 

spectrometers can provide important insights to the flame synthesis of quantum dots.  In this 

work, the high charge fraction and the strong influence of flame chemical ionization demonstrate 
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that the synthesis of incipient particles cannot be solely predicted by precursor reaction and 

particle coagulation growth.  Additional measurements are still needed to extend the 

measurement size, while new modeling methods are needed which are based on these 

observations.  On the other hand, material doping in flame synthesis has become a routine 

method for synthesizing functional materials due to the exceptional properties of 

nanocomposites.  In order to understand the doping mechanisms (molecular doping, surface 

doping, or doping segregated phases), characterizing incipient particles synthesized with multiple 

precursors is indispensable.  Size analysis that can monitor the evolution of characteristic peaks 

could suggest the direct influence of adding different precursors to existing flame synthesis.  

Mass spectrometers that can measure the chemical composition of particles without 

fragmentation could show the mixing states of particles starting from molecular scales.  

Synthesis techniques can then be modified to control the doping of multicomponent 

nanomaterials.   

7.2 Suggestions for Future Work 

7.2.1 Incipient particle characterization in various combustion sources 

As indicated in this dissertation, premixed flat flame aerosol reactors were used in most of the 

studies due to their high stability, uniformity, and broad usage.  At the same time, the 

nanoparticle synthesis precursor, such as TTIP or TEOS, was fed to the flame in the vapor phase, 

ensuring the combustion mixture was homogeneous.  A flame with a stable structure greatly 

facilitated the sampling of incipient particles with a dilution probe.  However, in industries, for 

safety, diffusion flames are widely used.  The natural and anthropogenic burning of biomass also 

take place heterogeneously most of the time.  Hence, a series of experiments whose combustion 

conditions are systematically changed will greatly help us understand the particle formation in 
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combustion sources.  These conditions include, but are not limited to, the flame mode (premixed 

flame/diffusion flame), flame structure (flat/conical), precursor choice 

(organometallic/inorganic/none (sooting flame)), fuel species (H2/CH4/others), diluting gas 

species (N2/Ar/none).  As shown in the mass spectrometric measurement in this dissertation, 

nitrate species were found in fuel lean premixed flames, and these species played important roles 

in the formation of incipient particles.  These nitrate species might come from the diluting N2 gas 

in the combustible mixture.  Hence, it will be interesting to study how incipient particle 

formation and growth may be affected by eliminating these species through the usage of another 

type of diluting gas.  Studies on particle charging characteristics in these flame conditions can be 

conducted in a similar manner to that described in Chapter 5, which will elucidate the electrical 

properties of the flames.   

7.2.2 Electric field-assisted combustion and flame synthesis 

The high charge fraction of flame-generated sub 2 nm particles observed by the experiments in 

Chapter 5 suggests that combustion can be manipulated by external electric fields.  Lately, 

plasma-assisted combustion and electric field-assisted combustion have become new research 

directions in the combustion field.  As shown in recent research studies, flame properties, such as 

structure, temperature, and reactions, are strongly affected by external electric fields.  As a result, 

flame-synthesized particles can be impacted by these techniques.  Future work may focus on 

particle formation and growth during combustion under the influence of electric fields.   

7.2.3 Improvement to current incipient particle sampling methods 

Dilution sampling is commonly used in the online and offline characterization of aerosols, when 

the aerosol concentrations are higher than the detection limit of instruments.  It is especially 

challenging when the dilution sampling is conducted for aerosols generated in high temperature 
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environments, such as flames and furnace reactors, because the dilution should be operated not 

only to reduce the aerosols to a measurable concentration, but also to quench all the ongoing 

reactions and particle growth.  The design of dilution sampling systems should satisfy the two 

requirements of: sampling as close to isokinetic conditions as possible, and choosing the dilution 

ratio to ensure minimal deposition loss due to thermophoresis and diffusion and minimal 

alteration of size distribution by nucleation, coagulation, and condensation.  Existing dilution 

sampling systems has not been fully evaluated in the measurement of sub 3-nm particles 

generated at high temperature environments.  Concerns may be raised regarding the validity of 

the measurement, especially in such a minuscule size range, where the particles may be very 

unstable.  Dilution sampling involves the reduction of temperature, which inevitably alters the 

equilibrium of reactions in the sampled stream.  This influence may be substantial for the 

incipient particles that are physically and chemically instable.  Future work can focus on the 

design and evaluation of dilution sampling systems for incipient particle measurement at high 

temperatures to ensure the validity of incipient particle measurements.  Some preliminary work 

on evaluating dilution samplers for incipient particle measurement is discussed in Appendix V.   

7.2.4 Comprehensive characterization of high-resolution DMAs 

The inversion of DMA measured particle size distributions needs DMA transfer function as an 

important parameter.  The transfer function of a DMA is commonly characterized with tandem 

DMAs, where the first DMA size-classifies monodisperse particles, and the second DMA 

measures the size distribution.  The transfer function of the second DMA can be obtained from 

the spread of size distribution being measured.  Due to limited instrument resources, the transfer 

functions of the high-resolution DMAs used in this work were not characterized.  Future work 

may focus on the comprehensive characterization of high-resolution DMAs, including DMA 
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transfer function, particle transmission efficiency, and the influence of RH/temperature on the 

size classification of incipient particles.  Simulation software, such as Fluent® and COMSOL® 

can be utilized to compare with experimental observations.  Due to the short time scale of the 

experiments, the commonly used diffusion coefficient and other equations may not work for 

these studies in quasi-steady state.  The ballistic collision may dominate the particle dynamics, 

while equilibrium and steady states are not reached.  Regarding influences on data inversion 

should be considered.  The error propagation of the measurements, from the inlet of the DMA to 

the outlet of particle counting devices, should also be considered to evaluate the uncertainties of 

the measurements.    
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Appendix I. Supporting materials for 

Chapter 5  
 

Estimating ion concentration in the investigated flame 

The estimation of ion concentration in the investigated flame was done by evaluating the I-V 

characteristics of the flame [1]. A ring-shaped stainless steel electrode with a diameter of 51 mm 

and a height of 3 mm was placed around the flame. A high voltage source (Bertan 205B, 

Spellman Inc.) was connected with the electrode, and the stainless steel burner was grounded. By 

increasing the voltage, the charged species will transport towards or against the electrode, 

forming an electric current. When the applied voltage exceeds certain value, all the charged 

species will become depleted and form a saturation current. As shown in the figure below, for a 

premixed flame at an equivalence ratio of 0.7, the saturation current was around 40 μA. As 

voltage further increases, corona effect appears, which further increases the ion current.  

 

Figure A1.1 Setup for estimating the ion concentration in the investigated flame (left) and the I-V characteristics of 

the flame (right).  
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An estimation of the ion/charged species concentration can be done by following the Appendix 

A of Katzer et al. [1] The ion flux densities towards the electrode can be expressed as  

iivN
A

eI
n 

/
 ,  

where I  is the electric current, e  is the elementary charge, A  is the area of the ring electrode 

facing the flame, 
iN  is the ion/charged species concentration, and 

iv  is the velocity of the 

ions/charged species. 
iv  can be calculated based on the definition of electrical mobility,  

E

v
Z i

i  ,  

where 
iZ  is the ion electrical mobility obtained from DMA measurements, and E  is the electric 

field strength. In this experiment, the saturation voltage was determined as 4 kV and an averaged 

ion mobility of 1.6 cm2/Vs was used (from Figure 5.3). By using a simple estimation of electric 

field strength with E=V / d, where d is the distance between the electrode and the burner, 
iN  can 

be calculated as 
91095.9  #/cm3. This value is similar to the one obtained by Jones and Hayhurst 

[2]. We should note that adding an electric field in the flame can change the flame chemistry by 

introducing ionic winds [3]. This effect may introduce errors in estimating the ion 

concentrations.   
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Appendix II. Supporting materials for 

Chapter 6  
 

In this supplemental information, the following aspects will be discussed: 

1. DMA setting and calibration method 

2. Detailed explanations and calculation results of ion-particle and particle-particle combination 

coefficients 

3. Size and mobility distribution of flame-generated ions at different sampling heights 

4. Effect of bipolar ion environment on normalized particle concentration  

5. Effect of bipolar ion environment on particle charging and coagulation with a different initial 

constant ion concentration 
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A2.1 DMA setting and calibration method 

The recirculating sheath flow of the DMA was provided by a high-power brushless blower 

(Domel Inc.), and was cooled and cleaned inline by a homemade heat radiator and a HEPA filter 

(Ideal Vacuum Products, LLC). Since the DMA was operated in a closed loop, the sheath gas 

was gradually replaced by the sampling gas, whose major composition was N2. The temperature 

of the sheath gas was 298 K as determined by a type-K thermocouple. The DMA electrodes were 

connected to a high voltage power supply (Bertan 205B, Spellman High Voltage Electronics 

Corp.), which was controlled by a Labview program. The program used a modest step voltage of 

5 V and a relatively long step time of 2 s to ensure the repeatability of the measurement.  A 

homemade electrometer measured the concentration of the classified particles at a flow rate of 10 

lpm. Before measuring flame-generated ions, the DMA was calibrated using monodisperse ionic 

standards generated from the electrospray of tetraheptylammonium bromide-methanol solution 

(Ude and de la Mora 2005). During the calibration, the voltages (V ) at which DMA detected 

these monodisperse ions with known mobilities ( Z ) were recorded. Furthermore, for a DMA 

operated at the same flow condition, the product of voltage and mobility ( ZV  ) remains 

constant. Hence, mobility of ions detected at an arbitrary voltage can be calculated. The size 

distributions of charged clusters were obtained by relating the particle mobility size calculated 

from the applied DMA voltage, to the particle concentration monitored by the electrometer, via 

using the relationship of I=ceQ, where I is the electrometer current, c is the charged cluster 

concentration, e is the elementary charge, and Q is the flow rate through the electrometer. Note 

that the actual particle size distribution function (
pDddN log/ ) (Stolzenburg and McMurry 

2008) was not calculated, due to the complexity in determining the transfer function and 

transmission efficiency of the high-resolution DMA (which will use two high-resolution DMAs 



190 

 

arranged in tandem). A recent study shows that the transmission efficiency of sub 3 nm clusters 

in another type of high-resolution DMA (Herrmann DMA) was in the range of 1 to 22% 

(Kangasluoma et al. 2016).  

A2.2 Detailed explanations and calculation results of ion-particle and particle-particle 

combination coefficients 

The ion-particle combination coefficient 


i  of positive (+) and negative (–) ions with a particle 

carrying i elementary units of charge can be derived as  

dxkTxDkT

kT

iii

ii

i

]/)/([exp]4/][/)(exp[1

]/)(exp[
1

0















      (A2.1) 

In this equation, 


i  is the proportionality between the ion flux onto a particle and the ion 

concentration, 
  is the radius of the limiting sphere (inside which the movement of ions is 

guided by the electrostatic potential between the ion and the particle), k  is the Boltzmann’s 

constant, T  is temperature, and D  is the diffusion coefficient of the ions.  


i  and D  are 

functions of ion mass and mobility respectively. The averaged mobilities measured by the high-

resolution DMA were used as inputs for calculating the ion-particle combination coefficient. 

However, since the mobility values were measured at 298 K, which was the sheath flow 

temperature of the DMA, one needs to convert the measured mobility values to those at other 

temperatures.  In this study, the mobility of the particle in the free molecular regime is set to be 

proportional to 5.0T  (Larriba et al. 2011).  The effect of mobility-temperature dependence (

0TZ  , 5.0T , or 1T ) on the ion attachment coefficient was further explored.  Figure A2.1 shows 

the ion attachment coefficients between a positive ion and particles with different charging states 
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as a function of particle size. A temperature of 2400 K was used, since the difference among 

mobilities was the largest based on different mobility-temperature relationships.  It can be seen 

that the ion attachment coefficients do not differ significantly by using different mobility-

temperature relationships.  This result, on the other hand, matches with the study conducted by 

Tigges et al. (2015).   

 

Figure A2.1 The effect of using different mobility-temperature relationships on calculating ion-particle combination 

coefficients.  

 

A detailed derivation of the terms in Eq. (A2.1) can be found in Reischl et al. (1996) The three 

body trapping was not included in calculating the ion-particle combination coefficient, since it 

did not cause a significant change in simulation, as also indicated by previous studies (Hoppel 

and Frick, 1986; López-Yglesias and Flagan, 2013). It should be noted that Fuchs’ charging 

theory assumes the ion attachment on particles is in steady state, which may not apply for 

environments with intense chemical reactions, such as combustion.  Future studies comparing 

Fuchs’ charging theory and charging mechanism predicted by Langevin equation will be 
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conducted for conditions with high temperatures and high ion concentrations to evaluate the 

effect of nonsteady-state process on particle charging (Gopalakrishnan et al. 2015).  

 

Figure A2.2 Ion-particle combination coefficients ( 

i ) as a function of particle size at different temperatures. Left 

column: positive ion-particle combination coefficient; Right column: negative ion-particle combination coefficient. 

The numbers labeled on each curve indicate the particle charging state.  

 

Figure A2.2 displays the calculated ion-particle combination coefficients as a function of particle 

size at different temperatures. The positive and negative ion mobilities used in calculation were 
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1.54 cm2/Vs and 1.97 cm2/Vs by averaging the measured mobility distributions measured at 

85.0  and HAB=5 mm. As particle size increases, the combination coefficients increase due 

to the enlarged collision cross section. Because of the attractive electrostatic forces, the 

combination coefficients of ions and particles with opposite polarities are larger than those with 

the same polarity. However, this difference becomes smaller as temperature increases, which can 

be explained by the higher kinetic energy of ions at elevated temperatures. When an ion moves 

towards a particle with opposite polarity, the chance of the ion escaping from the particle 

becomes higher if the kinetic energy of the ion is large; similarly, when the ion moves towards a 

particle with the same polarity, the chance of the ion overcoming the repulsive potential and 

finally colliding with the particle is also higher. This behavior also suggests that at high 

temperatures, the charging process is dominated by ballistic collisions between the ions and 

particles, where the electrostatic potential becomes less important. The relatively higher mobility 

of negative ions did not result in a significant increase in the ion-particle combination 

coefficients which can be seen by comparing the left and right columns of Figure A2.2. The 

difference in the combination coefficients is observable with highly charged particles at low 

temperatures only (particles with ±4 charges in Figure A2.2a and Figure A2.2b). This difference 

is even smaller at higher temperatures, which shows that Fuchs’ charging theory is not sensitive 

to small differences in ion properties, as pointed out by several other studies (Reischl et al. 1996; 

Tigges et al. 2015).  

The particle-particle combination coefficient for the Brownian collision of spherical particles in 

the free molecular and continuum regime (Seinfeld and Pandis 2012) is given by 
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where id  is the diameter of the colliding particle, and ic is the mean particle velocity, where

1/2(8 / ( ))i B ic k T m .  mi is calculated by multiplying the particle volume by the density of the 

bulk material.  In this study, the bulk density of TiO2 (4230 kg/m3) was used. iD  is the diffusion 

coefficient of the particle, where  
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, and iKn  is the particle 

Knudsen number. Furthermore,  3 2 2 3/ 21
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      and 8 / ( )i i il D c . Eq. 

(A2.2) calculates the coagulation coefficient for Brownian diffusion in the absence of any force 

field.  In the presence of electrostatic interaction between charged particles, the combination 

coefficient is modified by a correction factor (W) (Friedlander 2000) which is given by  
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. In these equations, zi is the number of 

elementary charge on the particle, di is the size of the particle with zi elementary charges,   is 

the relative permittivity of the medium, 
0  is the dielectric constant of vacuum, and e is the 

elementary charge.  

Figure A2.3 shows the particle-particle combination coefficients of two equally sized particles as 

a function of their diameters. The three lines in each subplot represent the particle charging states 
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of no charge, same charge, and opposite charges. Similar to the ion-particle combination 

coefficients, as system temperature increases, the difference among the particle-particle 

combination coefficients with different charging states becomes smaller because of the higher 

kinetic energy of the particles. Due to the enhanced effect of the exponential term in Eq. (A2.3), 

the effect of electrostatic potential for smaller particles is much greater than that for larger 

particles. The fact that larger particles are less sensitive to the charging states indicates that 

particles can scavenge more particles and carry more charges as they grow.  

 

Figure A2.3 Particle-particle combination coefficients (
ji

coag

, ) as a function of particle size at different 

temperatures. Conditions are plotted for two particles carrying no charge, opposite single charges, and the same 

single charge. 

 

A2.3 Size and mobility distribution of flame-generated ions at different sampling heights 

As the ion residence time increased, the positive and negative ions demonstrated different 

characteristics. Figure A2.4 shows the size distribution of flame-generated ions sampled at 

different heights above the flame. As sampling height increased, the first peak in the positive 
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ions decreased, possibly caused by the chemical reactions that form larger clusters and diffusion 

loss. However, characteristic peaks at 1.04 and 1.27 nm were detectable repeatedly even at a 

sampling height of 20 mm, demonstrating the high stability and long age of these ions. The 

negative ions, however, displayed contrary properties in terms of ion stability. The size 

distributions were detectable at a sampling height between 5 and 6 mm only (note that the radius 

of the dilution probe was 5 mm). This rapid dissipation might be caused by the instability of 

these ions, since they may release electrons as they pass out of the flame reaction zone. The 

different properties of the measured ions will affect the particle coagulation and growth as time 

proceeds; for example, ion environments biased towards a certain polarity may be created at 

higher locations above the flame.  

 

Figure A2.4 Positive and negative ion size distributions as a function of sampling height (HAB).  Flame equivalence 

ratio   = 0.85. The corresponding ion inverse mobility is labeled in the upper x-axis. Note that the y-axis is the raw 

counts monitored by the electrometer.   
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A2.4 Effect of bipolar ion environment on normalized particle concentration  

The bipolar ion environment is more influential on particle growth dynamics with a lower initial 

particle concentration, where the particle growth is also slower (Figure A2.5). When the initial 

particle concentration is comparable to or higher than the ion concentration, the particles speed 

up the coagulation process, and the normalized particle concentration can quickly drop to 10-4 

after 1 s at 2400 K.   

 

Figure A2.5 Evolution of normalized particle number concentrations as a function of time at different temperatures, 

with and without charging effects in a bipolar ion environment. Subplots represent the cases with initial particle-to-

ion concentration ratios of a) 0.01, b) 1, c) 100, and d) 1000. Note the different scales of x-axes and y-axes.  

 

A2.5 Effect of bipolar ion environment on particle charging and coagulation with a 

different initial constant ion concentration 

Figure A2.6 shows the ratio of particle sizes obtained with and without charging (

coagavgpchrgcoagavgp dd ,,,, /
), and the average charge on each particle (

avgpq ,
) as a function of initial 

particle-to-ion concentration ratio. A bipolar ion concentration of 1012 /cm3 is kept constant for 
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10 ms. As the initial particle-to-ion concentration ratio increases, firstly, particle coagulation was 

enhanced by the bipolar ion environment. As this ratio further increases, the average negative 

charge also becomes higher, causing a suppress of particle growth. Similar results were observed 

with a lower initial ion concentration (1010 /cm3) as shown in the main body of the manuscript.  

 

Figure A2.6 Evolution of normalized average particle size (
coagavgpchrgcoagavgp dd ,,,, /

) and average charge as a 

function of initial particle-to-ion concentrations ratio at a) 1200 K and b) 2400 K. Here, ion concentration = 1012 

#/cm3.  
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The results of this chapter have been compiled as a paper: Hu, Y.*, Wang, Y.*, Jiang, H., Li, Y., 

Cohen, T., Jiang, Y., Wang, B., Zhang, L., Biswas, P., Li, C. (2017). Engineering the outermost 

layers of TiO2 nanoparticles using in situ Mg doping in a flame aerosol reactor. AIChE J. 

63:870-880. * Equal contribution 



202 

 

Abstract 

Titanium dioxide nanoparticles with disordered outermost layer sturctures have significantly 

enhanced light absorption and photocatalytic properties and thus receiving enhanced attention in 

recent years. Engineering the outermost layers using in situ magnesium doping to tailor the band-

edge of TiO2 nanoparticles was achieved via a flame aerosol reactor (FLAR).  We proposed that 

the distribution of doped elements in nanoparticles could be controlled in a high temperature 

flame process, and which could be predicted by the comparison of different characteristic time 

scales, such as reaction time, coagulation time, and sintering time. In situ magnesium doping on 

the outermost layers effectively tailored the conduction band and electron structure of the TiO2 

nanoparticles, and simultaneously improved the maximum photocurrent as well as the maximum 

photovoltage in dye-sensitized solar cells (DSSCs). These improvements were largely attributed 

to red-shifted light absorption, and rapid photoelectron injection into the conduction band.  
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Introduction  

Sustainable and clean energy producing devices are urgently needed to meet the challenges of 

global environmental pollution and the energy crisis.1,2 TiO2 nanoparticles have attracted 

tremendous interest due to their applications in transforming solar energy into electric energy, in 

photocatalytic hydrogen generation, and in environmental pollution management.3,4 More 

recently, it has been shown by Chen et al.5 that solar energy conversion can be enhanced by 

introducing a controlled disorder in the surface layers of black TiO2 nanoparticles through 

hydrogenation. These authors proposed that disorder-engineered TiO2 nanocrystals exhibit 

substantial solar-driven photocatalytic activities, including the photo-oxidation of organic 

molecules in water and the production of hydrogen with the use of methanol as a sacrificial 

reagent. The improved performance caused by disordered layer structures in application such as 

photoelectric conversion and photocatalysis has triggered world-wide research interest.6 Based 

on the high-pressure hydrogen thermal treatment process, a variety of methods have produced 

TiO2 nanoparticles with disordered outermost layer structures. These methods include hydrogen 

plasma,7 aluminium reduction,8 X-doping (X= H, N, S, I),9 and chemical oxidation. Dhumal et 

al.10 have demonstrated the synthesis of oxygen deficient titanium dioxide with superior visible 

light activated photocatalytic properties. However, most existing techniques involve multiple 

steps and require a long synthesis time and high temperature to produce the outermost disordered 

layer on the surface of TiO2 nanoparticles, making them unattractive for industrial scale up.11,12 

Flame aerosol reactors (FLAR), which are an industrially successful route to synthesize 

nanoparticles, provide an alternate choice for designing and fabricating nanostructures in a one-

step and scalable process.13-21 Thimsen et al.22 used a FLAR system to deposit a nanostructured 

photocatalytic film of titanium dioxide with well-controlled morphologies, and various aerosol 



204 

 

phase characteristic times were estimated to confirm that the deposition of individual particles 

was important. Buesser et al.13 elucidated the gas-phase coating in considerable details via 

computational fluid dynamics (CFD) and particle dynamics for core-shell TiO2@SiO2, and 

assessed the performance of a simpler coating model by comparison with the present detailed 

CFD model. Huo et al.23 synthesized blue TiO2 nanoparticles with disordered outermost layers 

by introducing H2 via a quench ring in a FLAR system. The nanoparticles’ visible light 

absorption and photocatalytic performance were enhanced significantly. Teleki and Pratsinis24 

achieved the synthesis of blue titania in diffusion flames by rapid quenching, and the oxygen 

deficiencies were found to be located in the bulk and not only on the surface of the particles. 

Using a flame spray pyrolysis (FSP) method, Fujikawa et al.25 synthesized “black” titania which 

showed a strong photo-reduction of cationic species and photo-oxidation of organics. However, 

due to the complex interactions among different process parameters, such as the precursor 

concentration, time-dependent flame temperature profile, chemical reaction rate, particle growth 

rate, coagulation rate, and sintering rate, it is truly hard to relate process conditions to the 

nanoparticles’ structures (such as shape, crystallinity, chemical composition, etc., except particle 

size) obtained from one-step FLARs.26-31 Specifically, it should be remarked that the 

comprehensive effects of the modification at the surface structure by in situ doping in the rapid 

flame process have been scarcely considered to date. The surface disordered layers and surface 

bonded groups may play a noteworthy role in the yield of photoelectric conversion taking place 

at the surface, bearing in mind that the outermost layers can determine the surface density, band 

gap, and recombination kinetics of the photo-generated electrons.   

The photoelectronic performance of dye-sensitized solar cells (DSSCs) can be effectively altered 

by tailoring the band-edge of TiO2 nanoparticles in a photoanode, which determines the photo-
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induced voltage and current, and the efficiency of DSSCs. Up until now, many strategies have 

been developed to minimize the interfacial charge recombination in a TiO2-based photoelectrode. 

Among them, impurity-doping has been proved to be a convenient way to promote the 

photoelectric performance by adjusting the band gap structure and the electrical conductivity of 

photoanode materials. With an ionic radius close to that of Ti4+, Mg2+ ions are widely used as 

dopants to fine tune the band-edge and electron structure of TiO2, since Mg2+ doping can usually 

lead to a negative shift in the energy level of the conduction band of TiO2. 

In this work, TiO2 nanoparticles were engineered with disordered outermost layers, using in situ 

magnesium doping and a FLAR system. To the best of our knowledge, for the first time, we 

proposed that the distribution of doped elements in nanoparticles could be controlled in a high 

temperature flame process, and which could be predicted by the comparison of different 

characteristic time scales, such as reaction time, coagulation time, and sintering time. In situ 

magnesium doping on the outermost layers effectively tailored the conduction band and electron 

structure of TiO2 nanoparticles, and simultaneously improved the maximum photocurrent as well 

as the maximum photovoltage in DSSCs. The proposed methodology is simple, single-step, and 

rapid, and thus has great potential for commercial-scale applications.  

 

Experimental Methods 

Material Synthesis 
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Figure A3.1 Schematic of flame aerosol reactor and measured temperature as a function of height above the burner 

(HAB). 

 

 

Unless stated otherwise, all chemicals (magnesium nitrate hexhydrate (≥ 99 %, AR, SCRC), 

titanium butoxide (TBT) (≥ 98 %, CP, Yonghua), and alcohol (≥ 98 %, AR, Titan)) were reagent 

grade. TiO2 and Mg2+-doped TiO2 nanoparticles each was synthesized via a fast and convenient 

liquid-feed flame spray pyrolysis (FSP) process. In brief, for synthesizing doped TiO2 

nanoparticles, a homogeneous precursor solution was prepared by dissolving TBT and 

magnesium nitrate hexahydrate in alcohol. The TBT concentration was controlled at 0.5 M. Then 

the precursor solution was injected with O2 (5 L/min) at a flowrate of 5 mL/min through a spray 
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nozzle while the pressure drop at the tip of nozzle was about 0.15 MPa. To support flame 

combustion, 1.5 L/min H2 and 15 L/min air was fed through the nozzle. Schematic of flame 

aerosol reactor (FLAR) and the temperature profile as a function of the height above the burner 

(HAB) are shown in Figure A3.1. The temperatures were measured with a type B thermocouple 

(Pt/Rh 70%/30%-Pt/Rh 94%/6%) along the centerline of above the nozzle. It should be noted 

that measuring temperatures in FSP systems is very difficult and may not be accurate due to the 

harsh environment (high gas velocity and high temperature). This effect is much more significant 

at locations near to the outlet of the nozzle, where short-time measurements can be conducted 

only, since the high-velocity gas can easily break the thermocouple. With the precursor chemical 

reaction, nucleation, coagulation, and sintering process, the precursor was finally converted into 

Mg2+-doped TiO2 nanoparticles. Various experimental amounts of magnesium were added, in 

Mg/Ti atomic molar ratios of x %, where x=0, 0.5, 1.0, 1.5, and 2.0. The as-prepared samples 

were denoted as x Mg-TiO2. To obtain pure TiO2 nanoparticles, we followed the same procedure, 

but omitted magnesium nitrate hexahydrate from the precursor. 

Materials Characterizations 

A field emission scanning electron microscope (FE-SEM: HITACHI S-4800), transmission 

electron microscope (TEM: JEOL JEM-2100) and high resolution transmission electron 

microscope (HRTEM: JEOL JEM-2100) were utilized to study the morphological structures of 

the samples. X-ray diffraction (XRD: D/max 2550V) in a 2θ range from 10° to 80° measured the 

crystal phases of the products. The doping of Mg into the TiO2 lattice was examined with an 

X−ray photoelectron spectroscope (ESCALAB MK II), using Mg Kα (hν = 1253.6 eV) as the 

standard. A Shimadzu UV3600 UV-vis-NIR spectrometer was utilized to plot the UV-vis 

reflectance spectra of the particle samples. To evaluated the amount of dye loaded on the TiO2 
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films, A UV-vis-NIR spectrophotometer (UV-3150) was used to plot the absorption spectra of 

N719 dye-desorption solutions (dye-absorbed TiO2 film was immersed into 0.05 M NaOH 

aqueous solution for 10 s).  

 

Results and discussion 

Characteristic times and particle formation mechanism in FLAR system 

Droplet combustion Time 

In a spray nozzle, the high kinetic energy of the gas flow breaks the liquid into droplets. In this 

study, the size of the sprayed droplets was determined by an Aerodynamic Particle Sizer (APS, 

TSI 3321) based on the time-of-flight technique. The sprayed droplets had a mode size of around 

2 μm. On the other hand, sprayed droplet diameter is often estimated by32 
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where Dd is average droplet diameter, σ is the surface tension of the precursor solution, 
l  is the 

density of the precursor solution, 
l is the viscosity of the precursor solution, 

relu  is the relative 

speed of the gas and liquid, 
lQ  is the volume of the liquid flow, 

aQ  is the volume of the 

diffusion gas flow. The calculated droplet size is 42 μm, which is far larger than the measured 

droplet size. This huge difference indicates that semi-empirical equations predicting droplet sizes 

are dependent on the design of the spray nozzles, which may not accurately predict the size of 

the particles. Droplet combustion times were determined using the simplified differential energy 

balance model from Turns et al.33 The model was developed assuming that droplets combust in a 
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quiescent, infinite medium and that the droplets are pure ethanol. The energy balance yields a 

vaporization time of 
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where 
gk  is the average specific heat capacity of the surrounding gas, 

l  is the density of the 

liquid ethanol, and 
pgc  is the specific heat of the ethanol vapor. Furthermore, 

qB  is calculated as 

follows: 
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In this expression, T  is the temperature of the surrounding gas, 
boilT  is the boiling temperature 

of the ethanol droplet, 
fgh  is the enthalpy of vaporization of the droplet, 

ch  is the enthalpy of 

combustion of the droplet, and   is the stoichiometric air-fuel ratio. All gas properties are 

assumed to be the values obtained at the average of 
boilT  and the adiabatic flame temperature 

(2200 K). It should be noted that the temperature and velocity gradients in the FSP process are 

very steep, affecting the validity of this assumption. However, due to its wide usage in studying 

single droplet combustions29, this assumption is still used in this study to simplify the calculation 

of different time scales. Also, droplet combustion and precursor reaction were assumed to be 

taking place separately, since water molecules was produced at the flame sheet outside, instead 

of on the surface of the droplet. Furthermore, no hollow spherical structures were observed in the 
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synthesized particles, and particle sizes measured in TEM images showed a unimodal shape, 

suggesting the precursor reaction on the surface of the droplet was unlikely. After droplet 

combustion completed, the precursor molecules were released from the droplet and went through 

further reactions.  

TBT reaction time 

In flames, the TBT could react through thermal decomposition and hydrolysis: 

OHHCTiOHOCTi Heat

2842494 24)(  , and      (A3.5) 

OHHCTiOOHHOCTi 9422494 42)(  .       (A3.6) 

However, it should be noted that the hydrolysis of TBT is significantly faster than its thermal 

decomposition.34,35 Since combustion generates a high concentration of water vapour, it is 

reasonable to neglect the thermal decomposition of TBT and to assume that hydrolysis is the 

only reaction that produces 2TiO  nanoparticles. Further, by assuming that the hydrolysis of TBT 

is a first-order reaction, the time-dependent TBT concentration satisfies the differential equation 

of  

TBThTBT CkdtdC / ,           (A3.7) 

where TBTC  is the concentration of TBT, t is the time, and 
hk  is the first-order hydrolysis 

reaction rate constant. Due to the lack of data on TBT’ hydrolysis reaction rate and the similarity 

among titanium alkoxides,36 we used the first-order reaction rate of titanium isopropoxide (TTIP) 

hydrolysis,34  
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to calculate the characteristic reaction time of the precursor’s hydrolysis, according to the 

equation 

hhTBTrxn k/1,,  .          (A3.9) 

On the other hand, it should be noted that precursor hydrolysis rates are often obtained from 

experiments conducted in liquid environments. By considering the fact that the precursor 

hydrolysis is a bimolecular reaction which involves the collision between a water molecule and a 

precursor molecule, the collision-limited pseudo-first order reaction rate which assumes each 

collision converts to a successful reaction can be calculated (supporting information) and shown 

as:  
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The characteristic time for this reaction is then 

collcTBTrxn k/1,,  .          (A3.11) 

Mg(NO3)2 reaction time 

At elevated temperatures (> 400 oC), Mg(NO3)2 reacts through thermal decomposition producing 

MgO:  

2223 2/12)( ONOMgONOMg Heat  .       (A3.12) 
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It should be noted that the thermal decomposition rate of 
23)(NOMg  in vapor form may be 

different than that obtained in its crystal form. Due to the difficulty in verifying the actual 

decomposition rate, the available data from literature was used. It is also possible that the crystal 

water attached in the 
23)(NOMg  might react with TBT before the precursors react in the flame. 

However, due to the low concentration of the 
23)(NOMg  precursor, this reaction is neglected. 

We obtained the first-order decomposition reaction rate by fitting data from the work of Stern37 

(ESI) and using the equation: 

)
30304

exp(1067.5 22

T
kd  .        (A3.13) 

The thermal decomposition of Mg(NO3)2 has a high activation energy due to the high stability of 

the ionic bond. The high activation energy also result in a fast reaction rate at high temperatures. 

The characteristic time for Mg(NO3)2 decomposition is calculated by  

dNOMgrxn k/1
23 )(,  .          (A3.14) 

Coagulation time 

The synthesis precursors react in the FLAR and generate highly concentrated metal oxide 

monomers which are the building blocks of nanoparticles. Typically, the saturation vapour 

pressures of metal oxides are extremely low, meaning that a single metal oxide molecule is stable 

enough to be a particle, and thus particle coagulation and growth become irreversible. A 

simplified model to evaluate monodisperse particle coagulation uses the coagulation coefficient 

  and total particle concentration 
0N  to calculate the characteristic coagulation time38, where  
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The coagulation coefficient is further given by  
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where D is the particle diffusion coefficient, rc is the particle collision radius, c is the particle 

velocity, and g is the transition parameter. Detailed expressions of these parameters can be found 

in Seinfeld and Pandis.39 For simplicity, the particle collision radius was considered to be the 

same as the primary particle radius. It should be noted that Eq. [16] covers the particle 

coagulation characteristics from free molecular regime to continuum regime. 
coag  was examined 

at several primary particle sizes. Mass balance gives the that 
3

0 pdN   remains a constant during the 

monodisperse particle coagulation. 
0N at dp=0.4 nm can be calculated based on the flow rates of 

the gas species and TBT precursor, and has a value of. 
22100.7   #/m3.  

Sintering time 

The characteristic sintering time is calculated with the equation used in Tsantilis et al.34  

)
31000

exp(104.7 416

sin
T

Td pter  ,        (A3.17) 

where 
pd  is the particle size in meters.  

Residence time 
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The residence time (
res ) of particles in high temperature zone significantly affect the 

characteristics of the synthesized.40 However, determining the residence time is a difficult task, 

since it is strongly dependent on the temperature and flow field during the heterogeneous FSP 

process. Based on the temperature profile above the burner, and further by assuming the gas 

species transports and reacts similar to the ones in a tubular reactor (with a diameter of 5 cm) 

where the temperature and flow field can be seen as one-dimensional, the residence time of 

particles in the high temperature zone can be estimated. The residence time of particles in the 

region where temperature is higher than 2000, 1000 K, and 700 K are 0.008, 0.198 s, and 0.613 

s, respectively. Note that in real situations, the heat expansion is not in one dimension. The three-

dimensional expansion can result in a longer residence time in high temperature regions.  

 

Figure A3.2 Various characteristic time scales in the flame synthesis process. 

 

The characteristic time scales in the flame are shown in Figure A3.2. The relative magnitude of 

Mg(NO3)2 and TBT reaction time is dependent on the system temperatures. At low temperatures, 

TBT reaction is faster than Mg(NO3)2 thermal decomposition, while this trend is reversed at high 



215 

 

temperatures. The collision-limited reaction rate of TBT is much lower than the hydrolysis rate 

predicted by Eq. [8]. We should note that the collision-limited reaction rate predicts the highest 

possible rate that is achievable in the gas-phase reaction of TBT (considering the fact that the 

hydrolysis of a TBT molecule needs two water molecules). This large difference between the 

reaction rates indicates that more caution is needed when reaction rate formulas determined from 

different experimental conditions are used. On the basis of these estimated characteristic time 

scales, one can first briefly analyse the doping characteristics of the synthesized materials by 

imagining an environment with a constant temperature and an infinitely long processing time 

(imaging drawing a vertical line corresponding to a specific temperature).  

Point A (A’) marks the crossover temperature of TBT reaction and Mg(NO3)2 reaction. At this 

temperature, TBT and Mg(NO3)2 converts to metal oxides with similar time scales, forming a 

homogeneous mixture. As time proceeds, TiO2 molecules coagulates together with the available 

MgO molecules, leading to uniform Mg2+-doping throughout the TiO2 nanoparticles. The 

primary particle size at a specific time can be estimated by looking for the crossover point of 

sintering time and coagulation time (not shown in the figure), although residence time is another 

limiting factor in real situations, which is also discussed in the following section.  

At low temperatures (e.g., point B), the TBT quickly reacts and coagulates, while Mg(NO3)2 is 

still in its precursor form. When the TiO2 coagulation time is comparable to the thermal 

decomposition time of Mg(NO3)2, Mg ions can dope into TiO2 nanoparticles at outermost layers, 

but not completely penetrate them. As particles further sinter, the highly concentrated Mg 

contents remain in the outer layers of the TiO2 nanoparticles. At temperatures higher than Point 

A (A’), Mg(NO3)2 thermal decomposition is significantly faster than TBT reaction. However, the 

low concentration of MgO and high concentration of TiO2 used in this study determines that 
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MgO molecules will dope uniformly in coagulated TiO2 particles, similar to the situation taking 

place at point A (A’).  

 

Figure A3.3 Formation mechanism of TiO2 nanoparticles with Mg2+ doping in the outermost layers in the flame.  

 

Note that in a FSP process, the particle residence time plays a critical role in determining the 

synthesized particle properties, where the assumption of infinitely long residence time is not 

valid. On the basis of these conclusions, we proposed a formation mechanism for TiO2 

nanoparticles with Mg2+-doping in the outermost layers in a rapid flame process, as shown in 

Figure A3.3. First, precursor solution was dispersed into droplets, which began to evaporate and 

combust as the temperature rose. After the precursors were released from the droplets, TBT starts 

hydrolysing. Since the thermal decomposition rate of Mg(NO3)2 is far less than the hydrolysis 

rate of TBT, we got a mixture of TiO2 molecules and Mg(NO3)2 in the gas phase. Second, TiO2 

molecules coagulated into nanoparticles, and at the same time, the Mg(NO3)2 thermal 

decomposition took place. The residence time of particles at high temperature regions in the 

flame determines the size of the particles. It was found that the residence time at the temperature 
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above 2000 K was similar to the sintering and coagulation time of particles with diameters 

between 20 nm and 80 nm. Hence, we are more likely to obtain nanoparticles in this size range, 

and Mg2+ were doped on the outermost layers of these TiO2 nanoparticles.  

Structural characterization and outermost layer analysis 

 

Figure A3.4 Images of 1.0 Mg-TiO2 nanoparticles: (a) SEM image, (b) TEM image (inset figure shows the size 

distribution of the particles), (c) SAED pattern image, (d) HRTEM image, (e-h) TEM image of single particles and 

corresponding elemental mapping images. 

 

The morphology and crystal structure of 1.0 Mg-TiO2 produced by the FLAR system were 

observed by SEM and TEM. Figure A3.4a and Figure A3.4b show a wide size distribution, 
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ranging from 20 - 50 nm. Figure A3.4d shows the SAED pattern, indicating that the 1.0 Mg-TiO2 

nanoparticles are polycrystalline, which is consistent with XRD. The disordered layer structure 

on the surface of the TiO2 nanoparticles can clearly be seen in Figure A3.4d, the thickness of the 

disordered layer was about 1 - 2 nm. Clear lattice fringes in the HRTEM image (Figure A3.4d) 

demonstrate that the obtained doped TiO2 nanoparticles have a high crystallinity and a 

polycrystalline nature. The crystal lattice distances were measured to be 0.35 nm, 0.33 nm and 

0.25 nm, which respectively correspond with the (101) plane of anatase TiO2 (JCPDF No.: 21-

1272), the (110) plane of rutile (JCPDF No.: 65-0191), and the (101) plane of rutile TiO2 (JCPDF 

No.: 65-0191). Further, the TEM elemental mapping of the spatial distribution of Ti, O, and Mg 

(as shown in Figure A3.4e-h) confirms that the Mg2+-doping on the surface of TiO2 nanoparticles 

is very homogeneous.  

 

Figure A3.5 (a) XPS profile of pristine TiO2 and 1.0 Mg-TiO2 nanoparticles; (b) High resolution XPS spectra of Ti 

2p of pristine TiO2 and 1.0 Mg-TiO2 nanoparticles.  

 

To confirm the presence of Mg2+ ions and the chemical states of Ti ions in TiO2, X-ray 

photoelectron spectroscopy was employed, as shown in Figure A3.5. The corresponding XPS 
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depicts the elements and associated chemical bonds of the top atomic layers of the samples, 

because the escape-depth of electrons is several nanometers. Figure A3.5a shows the XPS curves 

of pristine TiO2 and 1.0 Mg-TiO2 nanoparticles. Compared with pristine TiO2, the curve of 1.0 

Mg-TiO2 has an obvious peak of Mg2+ ions, which indicates the successful of Mg-doping. The 

ratio of Mg /Ti detected in the 1.0 Mg-TiO2 is 13.9 %, which is much larger than 1.0 %. This 

ratio suggests that Mg2+ ions are enriched on the surface, in accordance with our conclusion 

obtained by estimate characteristics times, it can also be confirmed by disorder layers structures 

causing by Mg2+ in situ doping on the surface of TiO2 nanoparticles that have be shown in TEM 

images.  

High resolution XPS spectra of the Ti 2p molecular orbital of pristine TiO2 and 1.0 Mg-TiO2 are 

shown in Figure A3.5b. Two peaks, of Ti 2p3/2 (458.39 eV) and Ti 2p1/2 (464.15 eV), are shown 

in the high resolution Ti 2p XPS spectrum of 1.0 Mg-TiO2, while the peaks of pristine TiO2 are 

Ti 2p3/2 (458.67 eV) and Ti 2p1/2 (464.43 eV).41 The peak of 1.0 Mg-TiO2 shows a shift towards 

the lower binding energy, indicating that the chemical environment of Ti atoms is different from 

that in pristine TiO2 because of the Ti3+ ion produced by oxygen vacancies introduced via Mg2+-

doping. The Ti 2p peaks of Mg doped TiO2 are well de-convoluted into two peaks: Ti3+ 2p3/2 at 

457.90 eV, Ti4+ 2p3/2 at 458.51 eV. The abundance of Ti3+ ions on the surface of the 1.0 Mg-

TiO2 was calculated to be ~9.46%, and is related to the band-edge shift. Such a high content of 

Ti3+ ions is due to the enrichment of Mg2+ ions in situ doping on the surface of TiO2 

nanoparticles in flame process.  
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Figure A3.6 XRD spectra for flame spray produced TiO2, 1.0 Mg-TiO2, and 2.0 Mg-TiO2 nanoparticles.  

 

Table A3.1 Anatase and rutile contents of three samples with different Mg contents. 

Sample 
Phase content (%) Crystal size (nm) Anatase 

c (nm) Anatase Rutile Anatase Rutile 

Pure TiO2 74.84 25.16 31.7 48.7 0.9519 

1.0 Mg-TiO2 59.70 40.30 33.8 42.6 0.9515 

2.0 Mg-TiO2 46.08 53.92 35.6 40.7 0.9498 

 

The phase compositions of TiO2, 1.0 Mg-TiO2, and 2.0 Mg-TiO2 were characterized by XRD. As 

shown in Figure A3.6, all the diffraction peaks are consistent with those of standard XRD 

patterns of anatase TiO2 (JCPDF No.: 21-1272) and rutile TiO2 (JCPDF No.: 65-0191), which 

identifies the polycrystalline nature of the product, in agreement with the results from selected 

area electron diffraction (SAED). It is noted that no diffraction peak of impurities, such as MgO, 

was detected in XRD spectra, which means that doping did not change the critical form of TiO2, 

and Mg2+ was doped into the lattice, which we attributed to rapid sintering in the high 
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temperature process. The stronger three peaks of (101) anatase, (110) rutile, and (101) rutile are 

observed in both pure and doped TiO2.
42 The rutile peaks from Mg2+-doped TiO2 are obviously 

stronger, which suggests that doping with Mg2+ can promote the generation of rutile (the anatase 

and rutile contents of three samples are shown in Table A3.1). Existing studies found that the 

phase transition temperatures of Mg(NO3)2-doped TiO2 from amorphous to anatase and to rutile 

were significantly reduced.43 Rutile generation can be attributed to the formation of oxygen 

vacancies induced by the doping of Mg2+ in the lattice of TiO2, and every Mg2+ means two 

oxygen vacancies in theory. According to the Kroger-Vink notation, the defective reaction 

caused by Ti4+ substitution by Mg2+ can be expressed as follows12: 


O

X

OTi

TiO
VOMgMgO ''2        (A3.18) 

Where ''

TiMg indicates a Mg2+ in a Ti4+ lattice site; X

OO represents a O2- in a normal lattice site and 

O
V  an ionized oxygen vacancy. In addition, the lattice cell parameter in the c-axis calculated for 

the pure TiO2 sample was c = 0.9519 nm, while those for the Mg2+-doped TiO2 sample were c = 

0.9515 and 0.9498 nm (1% and 2% Mg2+-doping) indicating that Mg2+ insertion into the TiO2 

lattice could slightly contract the lattice. The average crystallite sizes calculated from the 

broadening of the (101) and (110) XRD peak of the anatase phase were about 31.7, 33.8 and 35.6 

nm for TiO2 and Mg2+-doped TiO2 samples, respectively. These sizes are relatively larger 

compared to a similar study which also conducted Mg2+-doping in TiO2 nanoparticles, which may 

be due to the difference in synthesis methods. Future work will be conducted to further tune the 

flame conditions to control the crystal characteristics. 

Photovoltaic Performance, Optical Properties, and Charge Transfer Dynamics 
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Figure A3.7 J-V curves of DSSCs based on TiO2 and Mg doped TiO2 nanopaticles, as well as the curve for 

commercially available P25 nanopaticles.  

 

Table A3.2 Summary of DSSC performance parameters obtained from different 5 µm thick photoanodes: 

TiO2, Mg2+-doped TiO2 nanopaticles, and P25 nanoparticles, all under one sun illumination (100 

mW/cm2). 

Samples 
VOC 

(mV) 

JSC 

(mAcm-2) 

Fill factor 

(FF) 

Conversion Efficiency 

( ) (%) 

P25 788 11.93 65.94 6.19 

TiO2 790 11.97 66.27 6.27 

0.5 Mg-TiO2 797 11.03 68.10 5.98 

1.0 Mg-TiO2 813 12.34 66.07 6.63 

1.5 Mg-TiO2 797 12.89 61.85 6.35 

2.0 Mg-TiO2 787 11.67 65.88 6.05 

 

Using the measured characteristics of the photocurrent density - voltage (J-V) under simulated 

AM 1.5 G solar light illumination (100 mW/cm2), photoanode electrodes were prepared to 
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investigate the influence of Mg2+-doping on the photovoltaic performance of TiO2 as an anode 

material, as shown in Figure A3.7 and summarized in Table A3.2. With an approximately 5 µm 

thick film, the TiO2 showed an efficiency of 6.27 % based on a Voc of 790 mV and a Jsc of 11.03 

mA/cm2. As expected, Mg-TiO2 showed significantly improved Voc and Jsc compared with 

pristine TiO2. With an increase in Jsc of up to 12.34 mA/cm2 (3.1 % higher) and a Voc of 813 mV 

(3.0 % higher), the 1.0 Mg-TiO2 sample improved the efficiency from 6.27 % to 6.63 % (5.8 % 

higher).  

Mg2+-doping improved the Jsc for 1.0 Mg-TiO2 in two ways: a red shift in light absorption and 

enhanced electron transfer and injection. The red shift results from a downward shift of the 

conduction band, and the enhanced electron transfer and injection result from narrowing of the 

energy gap. The reasons that the overall incident photon-to-current efficiency (IPCE) of 0.5 Mg-

TiO2 and 2.0 Mg-TiO2 are lower than for pristine TiO2 are different. If the amount of Mg doped 

into TiO2 is too small, Mg2+ ions will become defects that impede electron injection and transfer, 

as shown (0.5 Mg-TiO2) in Table A3.2. If the amount is too large, too many oxygen vacancies 

will be produced, which will capture more electrons, so that Voc and Jsc will become lower 

together. In addition, for comparison, a sensitized photoanode film was also prepared with P25 

TiO2 nanoparticles, and its efficiency was 6.19 %.  

Figure A3.8a displays the IPCE of DSSCs based on TiO2, Mg-doped TiO2, and P25 

nanoparticles. It is clear that TiO2 1.0 is higher than the others, especially in the 400-580 nm 

range. As is known, the IPCE is connected with light-harvesting efficiency, charge collection 

efficiency, and electron injection efficiency. The data in Figure A3.8a suggest that the 

downward-shift in conduction caused by Mg2+-doping narrows the energy gap and enlarges the 

D-value between the conduction band of the photoanode and the lowest unoccupied molecular 
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orbital (LUMO) of dye, which would improve Jsc.  

 

Figure A3.8 (a) IPCE and (b) Impedance spectra of DSSCs using TiO2 and Mg-doped TiO2 nanopaticles, as well as 

for P25 TiO2 nanopaticles.  

 

Table A3.3 Rct for solar cells with different photoanodes. 

Samples P25 TiO2 1.0 Mg-TiO2 2.0 Mg-TiO2 

Rct, (ohm) 51.67 56.84 50.12 57.35 

 

EIS is a powerful characterization method to research charge transport properties in the 

photoelectrode films of DSSCs. Figure A3.8b shows the Nyquist plots of EIS for DSSCs based 

on pristine TiO2, 1.0 Mg-TiO2, 2.0 Mg-TiO2,a P25 nanoparticles, which are all similar in shape 

and size. The corresponding equivalent circuit is shown in the inset. Two general semicircles can 

be observed in the EIS Nyquist spectra, where the plot reflects the kinetic processes of electrons 

at the interfaces between the TiO2, dye, and the electrolyte. The capability of electron-hole 

recombination can be calculated from the diameters of the semicircular Z2 frequency current, 
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which are representative of charge transfer resistance (Rct). Table A3.3 shows the Rct for 

different solar cells.  

Owning to the electron concentration on the surface of the photoanode, a result of the oxygen 

vacancy produced by Mg doping, the Rct of 1.0 Mg-TiO2 is the minimum. In 1.0 Mg-TiO2, 

electrons on the surface more easily recombine with holes because of the electron concentration. 

As the number of oxygen vacancies increases, the capacity of attracting electrons increases 

rapidly, so that Rct becomes larger in 2.0 Mg-TiO2. In conclusion, compared with the beneficial 

influence of Mg2+-doping on current production, any detrimental influence can be ignored. 

Conduction Band and Quasi-Fermi Level Movement 

 

Figure A3.9 (a) Band gaps of TiO2 and 1.0 Mg-TiO2; (b) Mott-Schottky plots of TiO2 and 1.0 Mg-TiO2 electrodes in 

KCl and Na2SO4 electrolyte solutions (Ag/AgCl reference electrode).  

 

The change in the band gap from doping with Mg2+ is shown in Figure A3.9a, calculated from 

the UV-vis absorption spectra of pure TiO2 and 1.0 Mg-TiO2. The energy band gap of TiO2 is 

3.20 eV, while the energy band gap of 1.0 Mg-TiO2 is 3.05 eV. The obvious decrease in the 
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energy gap means the shift of the conduction band moving negatively is less than that of the 

valence band moving negatively. The presence of Mg2+ ions can produce oxygen vacancies, 

leading to a negative shift of the original conduction band and a narrowing of the energy gap.44 

This change in the energy gap leads to a red shift in light absorption, which is beneficial to 

sunlight absorption, as  the IPCE showed before. In addition, the movement of the conduction 

band can improve the electron injection efficiency because of the smaller energy difference 

between the LUMO of the dye and the CB of TiO2. Compared with pure TiO2, the potential 

maximum photocurrent (Imax) in DSSCs based on Mg2+-doped TiO2 is improved. 

In the present work, the TiO2 nanoparticles ranged from 20 nm to 50 nm in diameter, and this 

diameter range presented a band bending phenomenon which could not be ignored. The flat-band 

potentials (Vfb) of the TiO2 and 1.0 Mg-TiO2 photoanodes were tested by Mott-Schottky analysis, 

and the results are plotted in Figure A3.9b. An obvious negative shift of the potential could be 

observed for 1.0 Mg-TiO2 photoanodes, corresponding to the upward movement of the quasi-

Fermi level from Mg2+-doping. The oxygen vacancies induced by doping play an important role 

in the movement of the quasi-Fermi level. Because oxygen vacancies in nanoparticles attract free 

electrons, the resulting higher density of free electrons causes an upward shift to appear in the 

quasi-Fermi levels. This upward shift improves the maximum photovoltage (Vmax) obtained in 

the DSSCs, because Vmax is governed by the energy difference between the quasi-Fermi level of 

the photoanode and the redox potential of the redox mediator in the electrolyte. Compared with 

pure TiO2, the Vmax in DSSCs based on Mg2+-doped TiO2 is improved. 

Figure A3.10 schematically shows the band-edge and the quasi-Fermi level movements in Mg2+-

doped TiO2. The conduction band moves negatively, which leads to a red shift in light absorption 

and higher electron injection efficiency, and thus improves the maximum photocurrent (Imax). 
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Although the quasi-Fermi level moves upward, the potential Vmax increases because of the higher 

energy gap between the quasi-Fermi level of the photoanode and the redox potential of the redox 

mediator in the electrolyte. These phenomena both increase the efficiency of DSSCs.  

 

Figure A3.10 Schematic of conduction band and quasi-Fermi level movements in Mg2+-doped TiO2.  

 

Conclusions 

Using in situ magnesium doping in a flame aerosol reactor, we tailored the band-edge of TiO2 

nanoparticles by disordering their outmost layers. For the first time to our knowledge, the various 

characteristic times of precursor chemical reaction, coagulation, and sintering were estimated to 

explain the formation mechanism of TiO2 nanoparticles’ outermost layer in one-step high 

temperature flame process. In situ magnesium doping on the outermost layers effectively tailored 

the conduction band and electron structure of TiO2 nanoparticles, and simultaneously improved 

the maximum photocurrent as well as the maximum photovoltage in dye-sensitized solar cells. 

The negatively shifted band-edge resulting from Mg-doping led to a red shift in light-absorption 
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and enhanced electron injection in DSSCs, resulting in a 3.1 % improvement in the photocurrent. 

The upward shifted quasi-Fermi level led to a higher energy gap between the quasi-Fermi level 

of the photoanode and the redox potential of the redox mediator in the electrolyte, which resulted 

in a 3.0 % improvement of the photovoltage. As a result, the cell efficiency improved by about 

5.8 %. More generally, the fast and convenient in situ doping method via flame spray pyrolysis 

can be used with most metal ions and oxides, and estimation of the various characteristic times 

can provide a reference for the design of nanoparticles with disordered outermost layers.  
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Appendix IV: Ion Generation in a 

Radioactive and a Soft X-ray Neutralizer: 

Effects of Carrier Gas and Humidity   
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Introduction 

This set of experiments was aimed at: 

1. Compare the concentration and mobility of the ions generated through these two charge 

conditioning methods.  Further numerical evaluation on charging efficiency can be made.  

2. Study the effect of carrier gas species on ion generation to evaluate the change of charging 

efficiency when measuring aerosol size distribution under different conditions (e.g. flue gas of 

combustion have high concentration of H2O, CO2, N2, but low O2, charging efficiency may be 

different). 

3. Existing studies indicate that the ions generated in charge conditioners are strongly influenced 

by humidity . Positive and negative ions may be composed of H3O
+(H2O)n and X-(H2O)n. 

Experiment can be conducted to observe how ion mobility/species distribution evolve with 

humidity .  

Methods 

Half Mini DMA – Electrometer. Open loop setup.  

Aerosol flow: 6 lpm; Sheath flow: 224 lpm  (ambient lab air); Sheath to aerosol ratio: 1: 37.3 

Reason for not using closed loop: aerosol flow recirculation in the DMA will change the 

property of the sheath flow. The change in collision cross section area between sheath air 

molecule and sample aerosol will cause a mobility drift . At the same time, the change in 

viscosity results in the instability of blower. PTFE  and copper tubings are used to transport 
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aerosols to minimize the contamination. 7 different carrier gases were used in experiments. 

Properties are listed in Table A4.1.  

 

Figure A4.1 Experimental setup for measuring the mobility of ions generated from a radioactive and a soft X-ray 

neutralizer.   

Table A4.1 Properties of the carrier gases. 

Species Air N2 O2 CO2 Ar He N2 wet 

Purity Ambient UHP (Ultra 

High Purity) 

UHP Lab 

grade 

UHP UHP UHP pass through Milli-

Q water (18.2 MΩ·cm) 

 

Results 

1. Ion generation in a radioactive neutralizer 

Positive ions: 

6 characteristic peaks can be detected when passing ambient air through a neutralizer (black 

line). Peak positions are marked with dashed lines.  It could be seen that when passing different 
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species of carrier gases through the neutralizers, several peaks can be detected repeatedly (peak 

1, 3, 4, 5, 6), meaning the generation of certain ions is not dependent on the carrier gas species.  

When passing wet N2 through neutralizer, there is a significant increase in the position 

corresponding to peak 2, indicating humidity indeed influences ion generation. However, the 

influence on mean mobility is not very large.  Therefore, we may classify the 6 peaks into two 

categories: inherent peaks (peak 1, 3, 4, 5, 6) and humidity influenced peak (peak 2).  

 

Figure A4.2 Mobility distribution of positive ions generated in a radioactive neutralizer.  

 

Negative ions: 

Similar phenomena can be observed in negative ions. There is an inherent peak (peak 1) with an 

inverse mobility of 2.17 Vs/cm2 (0.986 nm, similar to size measured in previous works). Peak 2 

was found to be humidity dependent as shown in the case of wet N2.  
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Figure A4.3 Mobility distribution of negative ions generated in a radioactive neutralizer.  

 

2. Ion generation in a soft X-ray charger 

Positive ions: 

 

Figure A4.4 Mobility distribution of positive ions generated in a soft X-ray charger.  
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It could be seen that the change in carrier gas species do not have a significant effect on ion 

generation in the soft X-Ray charger. However, positive ions generated in soft X-Ray possess a 

continuous distribution. The mean ion mobility is smaller than the case using radioactive 

neutralizer. The negative ions generated in soft X-ray source have a similar distribution with that 

of a radioactive neutralizer. Both have a sharp peak at 1/Z of 0.46 Vs/cm2 and a broad peak at 

around 0.8 Vs/cm2. The similar distribution of negative ions implies that the ion generation 

mechanism may be the same in a radioactive and a soft X-ray neutralizer. The difference in 

positive ions may be explained by the difference of ion age. In the experiments, I used a larger 

chamber for soft X-ray neutralization. This may increase the residence time of the ions and form 

larger ion clusters having a reduced mobility. The negative ions might have higher stability to 

keep them from aging.  

Negative ions: 

 

Figure A4.5 Mobility distribution of negative ions generated in a soft X-ray charger.  
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Appendix V: Effect of Dilution Sampler 

Designs on the Measurement of Sub 3-nm 

Particles Generated during Combustion 
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Introduction 

The sampling of incipient particles from high temperatures is challenging, because the dilution 

probe should sufficiently quench all particle growth dynamics and gas-phase reactions during the 

particle transport in the sampling line.  On the other hand, the perturbation to flames caused by 

the insertion of the dilution probe should also be minimized.  Concerns may be raised regarding 

the validity of the measurement, especially in such a minuscule size range, where the particles 

may be very unstable.  Two types of dilution samplers were assembled for the measurement of 

incipient particles generated from combustion. They are called a hole-in-a-tube (HiaT) sampler 

and a straight tube (ST) sampler. These two types of dilution samplers have been evaluated in 

previously on the sampling of agglomerates generated from flame synthesis. However, as the 

particle size reduces to sub nanometer range, the sampling of these particles becomes more 

difficult, as they may actively coagulate to form larger particles.  

Methods 

These two types of dilution samplers were evaluated with the following experimental setup.  The 

gas analyzer was used to calculate the dilution ratio (DR) of the sampler. After the particles are 

sampled, they are introduced to the Half Mini DMA for size measurement. The size distributions 

measured at different dilution ratios will become “asymptotic” (has a same normalized shape) 

when the DR is high enough to stop all the chemical reaction and further particle growth.  
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Figure A5.1 Designs of the dilution samplers (HiaT, ST) 

 
Figure A5.2 Experimental setup for evaluating the performance of the dilution samplers (HiaT, ST).   
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Figure A5.3 Size distributions of sub 2 nm particles generated in the premixed flat flame without precursor addition 

measured with the HiaT dilution sampler operated at various dilution ratios.   

 

Figure A5.4 Size distributions of sub 2 nm particles generated in the premixed flat flame with precursor addition 

measured with the HiaT dilution sampler operated at various dilution ratios.   

Results 

Up until now, the HiaT sampler has been evaluated. The size distributions of particles generated 

in the flame without and with precursor addition at different dilution ratios (DR) are shown 

above.  It is observed that when DR is higher than 133, the shape of the particle size distribution 

becomes identical, meaning that the DR is high enough to stop the particle growth dynamics. 
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This also indicates that the HiaT sampler can be used in measuring incipient particles generated 

during combustion.  

The effect of precursor concentration and sampling height were also studied at a DR of 200, and 

the results are shown in Figures A5.5 and A5.6. As precursor concentration and sampling height 

increased, the particle size also increased, which can be simulated with a detailed discrete-

sectional model.  

 

Figure A5.5 Size distributions of sub 2 nm particles generated in the premixed flat flame with precursor addition at 

different precursor concentrations.  The HiaT dilution sampler was operated at a DR of 200.   

  

Figure A5.6 Size distributions of sub 2 nm particles generated in the premixed flat flame with precursor addition 

measured at different sampling heights.  The HiaT dilution sampler was operated at a DR of 200.   
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The temperature at the sampling location (5 mm above the burner) was approximately 1800 K 

without the interference of the sampling probe.  With the addition of the sampling probe, the 

local temperature will be inevitably reduced.  Existing studies showed that a difference of 500 K 

was expected due to the perturbation of inserting the dilution probe (Zhao et al. 2003).  Due to 

this temperature decrease, combustion and reaction of TTIP may be interfered.  The 

characteristic reaction time of TTIP can be evaluated using the one-step reaction rates of TTIP.  

The first-order reaction rate of TTIP thermal decomposition is )/8480exp(1096.3 5 Tkg   

(Tsantilis et al. 2003).  The characteristic reaction time is then calculated by grxn k/1 .  Based 

on the calculation, the reaction time scale ranged from 0.3 to 1.7 ms, corresponding to a 

temperature range from 1800 K to1300 K (considering the effect of temperature reduction due to 

probe insertion).  The particle residence time (1.5 ms) was comparable to TTIP reaction time, 

indicating the measured clusters could be not fully reacted precursor clusters.  The comparable 

time scales also suggested that the insertion of the cold dilution probe may affect the reaction of 

precursor molecules in the high temperature zone.   

The performance of the dilution sampling system in quenching the particle growth dynamics can 

be evaluated through comparing the characteristic time scales of particle transport and particle 

coagulation.  The transport time of particles can be calculated through dividing the volume of the 

transport line (tube with 4.35 mm diameter and 0.2 m length) by the gas flow rate (25 lpm), 

yielding a value of 7 ms.  The characteristic coagulation time is dependent on the coagulation 

coefficient   and total particle concentration 0N , where  

0

2

N
coag


  .            (A5.1) 
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The coagulation coefficient for neutral particles in the free molecular regime is given by 

23/13/12/12/16/1 )()
11

(
6

4

3
ji

jip

b vv
vv

Tk
 ）（）（


 ,      (A5.2) 

where bk  is the Boltzmann constant, p  is the particle density, T  is temperature,  and iv  is the 

volume of the particle i.  Based on this equation, the self-coagulation coefficient of 1 to 2 nm 

particles ranges from 16100.1   to 16104.1   m3/s at a temperature of 298 K .  Further by 

assuming each TTIP molecule converted to a particle, the highest particle concentration ( 0N ) in 

the dilution probe after dilution was 17107.1  /m3 (in the case of 0.22 mmol/hr, 8.8 ppm).  Based 

on these values, the minimum characteristic coagulation time of incipient particles ( coag ) was 84 

ms, which was longer than the transport time of 7 ms.  This comparison of time scales 

demonstrates that particle growth dynamics was sufficiently quenched in the dilution sampling 

system.   

However, the suppression of gas-phase reactions could not be verified through similar 

calculations or experimental techniques.  Dilution sampling involves the reduction of 

temperature, which inevitably alters the equilibrium of reactions in the sampled stream.  This 

influence may be substantial for the incipient particles that are physically and chemically 

instable.  Due to the lower stability of nitrate species at elevated temperatures, the detected 

nitrate-bounded Ti-containing clusters might be formed through a post oxidation step during 

dilution, or between the sampling nozzle and the APi-TOF inlet.  Furthermore, charged species 

typically observed in methane flames, for example, CH*, CHO+, and C3H3
+, were not detected 

by the APi-TOF, implying the possible conversion of these species in the dilution system.  It was 

possible that this conversion took place instantaneously, where increasing dilution ratio could not 
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efficiently suppress the regarding chemical reactions.  The chemical composition of the diluent 

gas (N2) may also play a role in this rapid conversion of incipient particles.  However, the 

research findings of this study can still be applied in quantum dot synthesis and material 

molecular doping, where rapid dilution is needed to control the small size and uniform 

composition of particles.  This calculation also suggests that the synthesis of quantum dots 

requires a set of parameters, such as precursor concentration, dilution ratio, and sampling height, 

to accommodate the growth, quenching, and sampling of particles.  In this study, a TTIP 

concentration of 8.8 ppm (0.22 mmol/hr), sampling height of 5 mm, and dilution ratio of 180 was 

suitable for the synthesis of quantum dots below 2 nm.  The synthesis of quantum dots with 

larger sizes, needs a higher precursor concentration, a higher sampling height, and an adequate 

dilution ratio.  Future work can focus on the design, testing, and evaluation of dilution sampling 

systems for incipient particle measurement at high temperatures with various diluent gas species 

to ensure the validity of incipient particle measurements.    
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