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ABSTRACT

The Boundary Behavior of Holomorphic Functions

by

MIN, Baili

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, May, 2011.

Professor Steven Krantz, Chairperson

In the theory of several complex variables, the Fatou type problems, the Lindelöf

principle, and inner functions have been well studied for strongly pseudoconvex do-

mains. In this thesis, we are going to study more generalized domains, those of finite

type. In Chapter 2 we show that there is no Fatou’s theorem for approach regions

complex tangentially broader than admissible ones, in domains of finite type. In

Chapter 3 discussing the Lindelöf principle, we provide some conditions which yield

admissible convergence. In Chapter 4 we construct inner functions for a type of do-

mains more general than strongly pseudoconvex ones. Discussion is carried out in

C2.
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PREFACE

This thesis presents some results concerning the boundary behavior of holomorphic

functions.

There are many topics in this subject, and what I am interested in are the following

three: Fatou type problems, the Lindelöf principle, and inner functions.

These root from the classical results in the case of a single complex variable.

However, as we move on to the case of several complex variables, the story turns out

to be more complicated, and we have to be very careful about the geometry of the

boundary.

For the Fatou type problems, it is worthy of paying attention to the shape of the

approach regions. In the unit disc for a single variable, the nontangential approach

regions are the sharpest regions, but in the unit ball of higher dimension, the nontan-

gential ones, which are cones, are not the sharpest because the admissible approach

regions are broader and there is a Fatou’s theorem for the admissible regions. The

shape of these domains is subtle, nontangential in the complex normal directions

but parabolic in the complex tangential direction. And later it is proved that these

admissible approach regions are optimal, even for strongly pseudoconvex domains.

However, that is not the end of the quest for generalization. After the concept of

type of a boundary point is introduced, mathematicians are trying to see if work can
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be done for domains of finite type. For the Fatou type problems in this case, we

already have the definition of admissible approach regions, and have seen that there

is also a Fatou’s theorem for them. However, we are still not sure if they are optimal.

This thesis, in Chapter 2, gives a result showing that for domains for finite type, there

is no Fatou’s theorem for approach regions tangentially broader than the admissible

ones.

The generalization of the Lindelöf principle is more dramatic. As we have the

nontangential convergence for the unit disc, we hope to have the admissible conver-

gence for the unit ball, which turns out to be false. Then we begin to wonder what

kind of convergence we can have, or under what circumstances we can still have the

admissible convergence. There are already answers to both questions, and in Chapter

3 of this thesis we are going to generalize them for domains of finite type. The key is

the study of the shape of admissible regions.

The problem of the inner functions is tricky. For a single variable case, this

subject has been well explored, and inner functions can be expressed explicitly. But

when it comes to several variables, mathematicians even doubted the existence for

simple domains such as the unit ball. Eventually inner functions were constructed

for the unit ball and strongly pseudoconvex domains. There are quite a few methods

and tools developed in this progress, and in Chapter 4 we are going to apply the

RW-sequences to construct inner functions for a more general type of domains.
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1. Background

1.1 Complex Tangential Space and Convexity

A domain is a connected open set. Let Ω ⊂ Cn be a bounded domain and ∂Ω

be its boundary. A real-valued, continuously differentiable function defined on a

neighborhood U of ∂Ω is called a defining function if it satisfies

Ω ∩ U = {z ∈ U : ρ(z) < 0}

and

∇ρ(z) 6= 0, z ∈ ∂Ω.

We say that a bounded domain Ω has a Ck boundary if ρ is Ck, that is, ρ being

viewed as a function of variables x1, y1, . . . , xn, yn, the derivatives

∂lρ

∂xm1
1 ∂yt11 · · · ∂xmnn ∂ytnn

exist and are continuous, where m1 + t1 + · · ·+mn + tn = l, l = 1, 2, . . . , k.

If ρ is a smooth function, that is, Ck function for all nonnegative integers k, we

say the domain is smooth.

We can think of z = (z1, · · · , zn) = (x1 + iy1, · · · , xn + iyn) ∈ Cn as

(x1, y1, · · · , xn, yn) ∈ R2n,
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then we can describe the tangent space TP (∂Ω) at P ∈ ∂Ω: write w = (w1, · · · , wn) =

(ξ1 + iη1, · · · , ξn + iηn), w ∈ TP (∂Ω) if and only if

n∑
j=1

∂ρ

∂xj
ξj +

n∑
j=1

∂ρ

∂yj
ηj = 0, (1.1)

which is the same as

2Re
( n∑
j=1

∂ρ

∂zj
(P )wj

)
= 0. (1.2)

However, we note that this space is not closed under multiplication by complex

numbers. In fact, we are more interested in the space of vectors w ∈ Cn that satisfy

n∑
j=1

∂ρ

∂zj
(P )wj = 0, (1.3)

which is called the complex tangent space to ∂Ω at P , denoted by TP (∂Ω).

For example, let us consider the unit ball B ⊂ C2. We can equip it with a defining

function ρ(z) = z1z1 + z2z2 − 1. Let P = (1, 0) ∈ ∂B, then TP (∂B) = {(0, z2) : z2 ∈

C}.

We have the inner product operation 〈·, ·〉, that is, for z, w ∈ Cn,

〈z, w〉 = z1w1 + · · ·+ znwn.

Let νP denote the unit outward normal at P , then 〈w, νP 〉 = 0 for w ∈ TP (∂Ω).

Consider the linear operator J on R2n defined by

J(x1, x2, · · · , x2n−1, x2n) = (−x2, x1, · · · ,−x2n, x2n−1),

we can then check that J : TP (∂Ω)→ TP (∂Ω) is one to one and onto, J(νP ) ∈ TP (∂Ω)

but J(J
(
νP )
)

= −νP /∈ TP (∂Ω). We call CνP the complex normal space to ∂Ω at P .
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Now suppose Ω has a C2 boundary. We say that P ∈ ∂Ω is a point of Levi

pseudoconvexity if the Levi form is positive semi-definite:

n∑
j,k=1

∂2ρ

∂zj∂zk
wjwk > 0

for all w = (w1, . . . , wn) ∈ TP (∂Ω). If further the Levi form at P is positive definite,

we say that P is a point of strong pseudoconvexity. For example, the unit ball in

Cn, equipped with a defining function ρ(z) = |z1|2 + · · · + |zn|2 − 1, is strongly

pseudoconvex, that is, every boundary point is a point of strongly pseudoconvexity.

Another example is the domain M2 ⊂ C2 characterized by the defining function

ρ(z) = |z1|2 + |z2|4− 1, which is weakly pseudoconvex at the boundary points (eiθ, 0),

but strongly pseudoconvex elsewhere.

We must note that the notion of pseudoconvexity is independent of the choice

of defining functions (see [18]), so are other notions such as Ck or smooth domains,

tangent spaces, etc.

Strongly pseudoconvex domains have been well studied, as we are going to see in

the next section.

1.2 Historical Facts I: Fatou’s Theorem

We first recall a classical result in his work [12] in 1906 by Fatou. Let D be the

unit disc D = {z ∈ C : |z| < 1}, for w ∈ ∂D and α > 1, define the nontangential

approach region Γα by

Γα(w) = {z ∈ D : |z − w| < αδ(z)},
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where δ(z) = dist(z, ∂D) is the ordinary Euclidean distance from the point z to ∂D.

Fix α > 1. Then, Fatou’s theorem states that

Theorem 1.2.1 Let f be a bounded holomorphic function defined in the unit disc D.

Then for almost every w ∈ ∂D, the limit limΓα(w)3z→w f(z) exists.

In this work, Fatou basically applied the Lebesgue differentiation theorem and Poisson

integrals to obtain the result above. Also according to this result, it makes sense to

consider the boundary value, as for almost every w ∈ ∂D, we can define f ∗(w) =

limΓα(w)3z→w f(z) as the boundary value of f . There are several interesting properties

about the boundary value of a bounded holomorphic function. As the F. and M. Riesz

Uniqueness Theorem (see [28]) says, if f ∗(w) = limr→1− f(rz) = 0 for every w ∈ E,

where E ⊂ ∂D is of positive measure, then f is identically 0. However, we need to be

careful here and should not drop the condition of being bounded, as shown by Lusin

and Privalov in their work [25].

There are other methods and tools. Hardy and Littlewood introduced the Hardy-

Littlewood maximal function in [13] in 1930. This method turned out to be very

powerful for the study of boundary behavior of functions and had great impact for

several complex variables.

That is far from being a complete story for the unit disc. Another fact we must

mention is that Littlewood gave a result in his work [22] showing the Fatou’s theorem

failed for broader approach regions than the nontangential ones:

4



Theorem 1.2.2 Let γ = γ0 ⊂ D ∪ {1} be a simple closed Jordan curve, having a

common tangent with the circle at the point 1. Let γθ be the rotation of γ0 be the

angle θ. Then there exists a bounded holomorphic function f(z) defined in D with the

property that, for almost every θ ∈ [0, 2π], the limit of f along γθ does not exist.

When it comes to several complex variables, a cornerstone is the definition of a

holomorphic function. This definition is a little tricky, but we can just think of it as

a holomorphic function with respect to every single variable while fixing the others.

More details and discussion can be found in [18].

In the quest for generalization of Fatou’s theorem to the case of the unit ball in

Cn, Korányi discovered a new type of approach region, the “admissible” one. Let

B = {z ∈ Cn : |z| < 1} be the unit ball. For ω ∈ ∂B and α > 1, define the admissible

approach region Aα(ω) based at ω by

Aα(ω) = {z ∈ B : |1− 〈z, ω〉| < αδ(z)}.

Unlike the nontangential one, this type of approach region provides nontangential

approach to the base point in complex normal direction but parabolic approacch in

the complex tangential directions.

With these admissible approach regions, there is a Fatou’s theorem for this case:

Theorem 1.2.3 Let f ∈ Hp(B), 0 < p 6 ∞. Then for almost every ω ∈ ∂B, the

limit limAα(ω)3z→ω f(z) exists.

This result is for functions in the Hardy space Hp(B). Generally speaking,

Hp(Ω) = {f holomorphic on Ω : sup
0<ε<ε0

∫
∂Ωε

|f(ζ)|p dσε(ζ) <∞},

5



where Ωε = {z ∈ Ω : δ(z) > ε}, for which we assume that ∂Ωε is C1, and where dσε

is the (2n− 1)-dimensional surface element on ∂Ωε.

The proof proceeds by estimating the Poisson-Szegö integral of g ∈ L1(∂B) and

the Hardy-Littlewood maximal function M2g(w) to obtain a key relation

sup
z∈Aα(ω)

∣∣∣ ∫
∂B

P(z, ζ)g(ζ) dσ(ζ)
∣∣∣ 6 CαM2g(w).

More technical details can be found in Korányi’s original work [17].

This phenomenon was generalized by Stein, who defined the admissible approach

region (see [31]) for holomorphic functions in Hp general domains in Cn as follows:

Suppose that Ω is a domain with C2 boundary, for α > 1, define the admissible

approach region based at P ∈ ∂Ω

Aα(P ) = {z ∈ Ω : |〈z − P, νP 〉| < αδP (z), |z − P |2 < αδP (z)},

where

δP (z) = min{δ(z), dist(z, TP (∂Ω))}.

And Fatou’s theorem in this case is:

Theorem 1.2.4 Let 0 < p 6 ∞. If f ∈ Hp(Ω) then, for almost every P ∈ ∂Ω,

limAα(P )3z→P f(z) exists.

It was shown in [14] by Hakim and Sibony that, on the unit ball in Cn, this is

the best possible approach region in the sense that there is no Fatou’s theorem for

approach regions that are complex tangentially broader. In [21], Lempert defined

another approach region for pseudoconvex domains in Cn, which is comparable to

6



Stein’s definition to some extent: if the domain is convex, then two types of approach

regions are equivalent, but otherwise Lempert’s definition provides a larger approach

region. His result even fits meromorphic Nevanlinna functions, that is, a meromorphic

function f defined in a bounded C2 domain Ω ⊂ Cn satisfying the following conditions.

Condition I:

sup
0<ε<ε0

∫
∂Ωε

log+ |f(ζ)| dσε(ζ) <∞

where log+ t = max{log t, 0};

Condition II: ∫
P(f)

δ(ζ) dµ(ζ) <∞

where P(f) is the set of poles of f and dµ is the (2n−2)-dimensional surface element

with the modification that it counts poles of higher order with multiplicity.

How about more general domains? Recently, mathematicians begin to understand

more about so called domains of finite type.

1.3 Historical Facts II: The Notion of Finite Type

This concept was introduced by J. J. Kohn when he studied the ∂ problem (see

[16]), which eventually had great impact on the geometry of hypersurfaces in Cn.

Among all the work on the finite type conditions, we should mention that by Kohn,

Bloom/Graham, Catlin and D’Angelo: they studied the matter in terms of ideals and

iterated commutators (see [16], [4], [5], [9] and [10]).

7



It will take a long discussion to explain the concept of finite type completely.

Here we hope to provide some easy description. Let us have a look at C2. Thinking

geometrically, we are interested in the maximal order of contact of complex lines

with the boundary of the domain at a boundary point. If a domain is strongly

pseudoconvex, for instance, the unit ball, then it is also of finite type, we can check

that this maximal order of contact is always 2. However, for some other domains,

this order can be bigger. For example, at (1, 0) on the boundary of the domain M2

mentioned previously, it is not strongly pseudoconvex, and the maximal order is 4,

still finite. We can also check other boundary points for M2 and find that all the

maximal orders are finite, and in fact either 4 for points (eiθ, 0), or 2 for other points.

Thinking analytically, let ρ be a defining function for a domain Ω ⊂ C2 and

consider two vector fields:

L = − ∂ρ

∂z2

∂

∂z1

+
∂ρ

∂z1

∂

∂z2

,

and

L = − ∂ρ

∂z2

∂

∂z1

+
∂ρ

∂z1

∂

∂z2

.

At P ∈ ∂Ω, we then keep computing iterated commutators as follows. Degree

1: [L,L]; degree 2: [L, [L,L]]; degree 3: [L, [L, [L,L]]] . . . All of them are lying in

the real tangent space to ∂Ω at P . However, we find that at the beginning, these

commutators are still within the complex tangent space, but after several steps, there

comes a component in the complex normal direction. We are interested in the number

m such that the iterated commutator with degreem−1 still lies in the complex tangent

8



space but the one with degree m will have a component that jumps to the complex

normal direction. For example, for every point in the unit sphere, this number is 2.

But for M2, this number is either 4 for points (eiθ, 0), or 2 for other points.

As we can see from the examples, those numbers coincide. We call it the type of

the point. Actually there is a result in [18] which states that the geometric type and

the analytic type mentioned previously are really the same. If the domain is such

that for every boundary point, the type is finite, then we say that this domain is of

finite type. So this notion is more general than being strongly pseudoconvex. If Ω is

strongly pseudoconvex, then it must be of finite type. But the converse may not be

true. For example, M2 is of finite type but not strongly pseudoconvex.

This concept, especially in terms of iterated commutators, will be mentioned and

studied in Chapter 2.

In the higher-order case, we can still consider the orders of contact of (n − 1)-

dimensional complex manifolds with the ∂Ω. We can also think analytically upon

tangent vector fields and their iterated commutators to define the type of a boundary

point. In [4], a theorem by Bloom and Graham shows that they are the same thing.

Back to the Fatou type problems, we now wish to know what approach regions

will be like if the domain is of finite type, which means it may not be strongly

pseudoconvex. A notable progress is in the joint work [26], where Nagel, Stein,

and Wainger defined the admissible approach region for holomorphic functions and

obtained a Fatou theorem. Then, in his Ph. D. dissertation [27], Neff showed that the

approach region would also work for meromorphic Nevanlinna functions.
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So far, however, it is not known whether these approach regions for the finite type

case are the best possible. In Chapter 2 we will care about domains of finite type

in C2 and study the admissible approach region of Nagel-Stein-Wainger-Neff type.

The main results are Theorem 2.3.1 and Corollary 2.3.1 which assure us that, for

other regions broader only in the tangential direction, we can construct a bounded

holomorphic function that does not have a limit at the base-points, and consequently

there is no Fatou theorem for those broader approach regions: their base-points form

a set of positive measure on the boundary. We are going to see this in C2.

1.4 Historical Facts III: Lindelöf Principle

There is another kind of boundary behavior called the Lindelöf principle. For the

theory of a single variable, the classical result is:

Theorem 1.4.1 Let f be a bounded holomorphic function on the unit disc D ⊆ C.

Suppose that the radial limit

lim
r→1−

f(reiθ) ≡ λ ∈ C

of f exists at the boundary point eiθ. Then f has nontangential limit λ at eiθ.

For several complex variables, we would like to find an analogous theorem. But

what kind of convergence should we have for domains in Cn, n > 2? Strongly pseu-

doconvex domains have been well studied; can we generalize results for the case of

finite type?

10



In the case of a single complex variable, the appropriate approach region is the non-

tangential one, while in the case of several complex variables, as we have seen, we are

more interested in the admissible approach regions. So we wonder: is there a Lindelöf

principle for domains in Cn, n > 2 with admissible convergence? Unfortunately, it

turns out to be false even for the unit ball as a counterexample in [7] indicates.

However if we consider a sequence {zj} ⊂ B converging to P ∈ ∂B such that

there exists an α > 1 and our {zj} satisfies∣∣1− 〈zj, P 〉∣∣
1− |zj|

< α

and

lim sup
j→∞

∣∣zj − 〈zj, P 〉P ∣∣2∣∣1− 〈zj, P 〉∣∣ = 0,

we call this hypoadmissible convergence, which is asymptotically smaller than any

admissible convergence region in the complex tangential directions.

Accordingly, we have the Lindelöf principle:

Theorem 1.4.2 Let B ⊆ Cn be the unit ball. Let f be a bounded holomorphic func-

tion and fix P ∈ ∂B. If the limit

lim
r→1−

f(rP ) ≡ λ ∈ C

exists, then for any sequence {z(j)}∞j=1 ⊆ B that approaches P hypoadmissibly, we

have

lim
j→∞

f(z(j)) = λ.

More details can be found in [6], [7] and [18].
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We still wonder how we can have the admissible limit, because it has been shown

that admissible approach regions are optimal to some extent, for domains strongly

pseudoconvex, and even further of finite type, and it is strictly stronger than hypoad-

missible convergence.

In Chapter 3 we would like to provide two main results with admissible con-

vergence, dealing with domains in C2 of finite type. They are Theorem 3.1.1 and

Theorem 3.2.2, both based on the study of the shape of the admissible approach

regions and the work on strongly pseudoconvex domains.

1.5 Historical Facts IV: Inner Functions

There are other topics on boundary behavior of holomorphic functions. What we

are going to do here is the study of inner functions. If Ω is a domain in Cn and

f : Ω → C is a bounded holomorphic function such that for almost every ζ ∈ ∂Ω,

the radial boundary limit f ∗(ζ) exists and |f ∗(ζ)| = 1, then we say that f is an inner

function. Here, we do not consider the trivial example of constant functions.

Back to the case of a single variable, this subject has been fully studied, and we

know that inner functions are important, such as its central role in the fundamental

factorization theorem. Illustrative examples on the unit disc are the Blaschke products

with prescribed zeros {αi} that satisfy the Blaschke condition:

B(z) = eiθzk
∏ |αi|

αi
· αi − z

1− αiz
, |c| = 1.
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Other examples of zero-free functions are

G(z) = exp
{
−
∫
|ζ|=1

ζ + z

ζ − z
dµ(ζ)

}
where µ is a positive Borel measure on the unit circle. In fact, every inner function

is a product of those two types.

When it comes to the case of several variables, the problem is more complicated.

At one time, the existence of such inner functions was doubted, and it was found

that, even if an inner function existed, it had some pathological properties, such

as being discontinuous at every boundary point of the unit ball in C2. For more

discussion, please see [29] and [17]. Later, a turnaround drew considerable attention:

inner functions were constructed for the unit ball in Cn. For more on this, we refer

the reader to the work of A. Aleksandrov [1], M. Hakim and N. Sibony [15], and

E. Løw [23]. Additionally, in [24], Løw showed that inner functions exist for strongly

pseudoconvex domains. Their work uses various methods and tools, including Ryll-

Wojtaszczyk polynomials, a method developed by Aleksandrov in [2] as an alternative

approach to construct inner functions for the unit ball. Later, W. Rudin wrote a book,

[30], on this method, and provided many other applications.

We keep asking ourselves, can we explore more general domains?

In Chapter 4, inspired by Rudin’s summary in [30], we present some results on

domains that are similar to the unit ball yet more general insomuch as both are com-

plex manifolds and there is a ramified holomorphic map between them. Although we

present our results in the context of C2, our method is generalizable to higher dimen-
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sions. Our principal results are Theorem 4.4.2 and Corollary 4.4.1, which establish

the existence of inner function on these domains.
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2. Approach Regions

The purpose of this chapter is to study one kind of approach region for domains in

C2 of finite type. We first familiarize ourselves with a few standard concepts.

2.1 A Study of Iterated Commutators

The following discussion is carried out in C2, where the notion of finite type has

clear formulations, both geometrically and analytically. This discussion will also shed

insight on higher dimensions.

Let Ω be a smoothly bounded domain in C2 with a defining function ρ. We assume

that Ω is of finite type. Suppose ω0 = (ω0
1, ω

0
2) ∈ ∂Ω. Then, in a small neighborhood

V = Vω0 of ω0, the complex holomorphic tangential vector field has a basis L, L,

where

L = − ∂ρ

∂z2

∂

∂z1

+
∂ρ

∂z1

∂

∂z2

, (2.1)

and

L = − ∂ρ

∂z2

∂

∂z1

+
∂ρ

∂z1

∂

∂z2

. (2.2)

Then we can find a transverse vector field T such that L,L and T span the 3-

dimensional tangent space to ∂Ω at any point in V :

T =
∂ρ

∂z1

∂

∂z1

− ∂ρ

∂z1

∂

∂z1

. (2.3)
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A commutator of two vector fields is another vector field of the form

[L,M ] = LM −ML.

We are going to study the iterated commutators which are vector fields still within

the 3-dimensional tangent space to ∂Ω. To begin with, we say that L and L are of

degree 0.

Suppose that Lk−1 is an iterated commutator of degree k − 1, k > 1. Then we

can write

Lk−1 = f1L+ f2L+ λk−1T, (2.4)

or simply Lk−1 ≡ λk−1T mod(L,L).

Due to the properties of defining functions, we can normalize coordinates so that

the z1-derivatives of ρ do not vanish.

If Lk = [L,Lk−1], whose degree we say is k, we can compute that

Lk ≡ λkT mod(L,L) (2.5)

where λk can be expressed explicitly:

λk =
∂λk−1

∂z2

∂ρ

∂z1

− ∂λk−1

∂z1

∂ρ

∂z2

+ λk−1
∂2ρ

∂z1∂z2

− λk−1

∂ρ
∂z2

∂2ρ
∂z21

∂ρ
∂z1

+
f2

∂ρ
∂z1

∂ρ
∂z1

( ∂2ρ

∂z1∂z1

∂ρ

∂z2

∂ρ

∂z2

+
∂2ρ

∂z2∂z2

∂ρ

∂z1

∂ρ

∂z1

− ∂2ρ

∂z1∂z2

∂ρ

∂z2

∂ρ

∂z1

− ∂2ρ

∂z2∂z1

∂ρ

∂z1

∂ρ

∂z2

)
. (2.6)

We can get similar results for [L,Lk−1]. This computation shows that, for any

iterated commutator of degree k, only ∂ρ
∂z1

and/or ∂ρ
∂z1

appear in the denominator of

the coefficient function of the complex normal vector T .
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Let Mk be the collection of all these linearly independent iterated commutators

with degree less or equal to k. Suppose that L ∈Mk, and that λL is the coefficient

function of T in the sense that L ≡ λLT mod(L,L). Then we can define Λk(z) by:

Λk(z) =

√ ∑
L∈Mk

λ2
L (z), (2.7)

a key function for defining the admissible approach regions.

Remark 1 By definition, if Λk−1(ω0) 6= 0, then Λk(ω
0) 6= 0. Actually, the smallest

τ such that Λτ (ω
0) 6= 0 is called the type of ω0. See [10] and [18].

Remark 2 Note that we always have ∇ρ 6= 0, since ρ is a defining function. With

the assumption that ∂ρ
∂z1

(z0) 6= 0 and ∂ρ
∂z1

(z0) 6= 0, all Λk(z
0) <∞, k > 2.

2.2 Admissible Approach Regions

Let Ω be a domain of finite type in C2 such that, for all z ∈ Ω, it is true that

|z| 6 1. Suppose that (1, 0) is on the boundary, that ∂ρ
∂z1

and ∂ρ
∂z1

do not vanish at

(1, 0), and the vector 〈1, 0〉 is also a outward normal vector to the boundary at (1, 0).

Let U ⊂ ∂Ω be a neighborhood of (1, 0) small enough that, for any w = (w1, w2) ∈ U ,

the vector 〈1, 0〉 is transversal to U at w.

We first would like to see the explicit expression of π(z), the Euclidean normal

projection of z on the boundary. Suppose z = (z1, z2) ∈ Ω is sufficiently close to ∂Ω.

Then there is a unique point w = (w1, w2) ∈ ∂Ω determined by
z − w = λνw,

ρ(w) = 0,

(2.8)
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where λ is a real number that will also be fixed by this system of equations, and

where we recall that νw is the unit outward normal unit to ∂Ω at w ∈ ∂Ω. Then we

say w = π(z).

Let τz be the type of the point z if z ∈ ∂Ω, or the type of π(z). We also denote

the ordinary Euclidean distance of z to ∂Ω by δ(z) =
∣∣z−π(z)

∣∣. Let τ = maxz∈∂Ω τz.

Since we assume that Ω is of finite type, we must have τ <∞. We denote τ̃ the type

of (1, 0). Then of course τ̃ 6 τ .

Define D(z):

D(z) = inf
26k6τ

( δ(z)

Λk

(
π(z)

))1/k

. (2.9)

Define the boundary ball β2 such that, for ω0 ∈ ∂Ω and r > 0, ω ∈ β2(ω0, r) if

and only if ω ∈ ∂Ω and 
|ω − ω0| < r,∣∣∣R(ω, ω0

)∣∣∣ < Λr(ω0),

(2.10)

where we use this notation:

Λθ(ζ) =
τ∑
k=2

θkΛk(ζ), (2.11)

and where R is a polarization of ρ, that is, R(z, w) is a C∞ complex-valued function

satisfying the following requirements:

R(z, z) = ρ(z), (2.12)

∂zR(z, w) vanishes to infinite order on z = w, (2.13)

R(z, w)−R(w, z) vanishes to infinite order on z = w. (2.14)
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For example, if ρ(z) = z1z1 + z2
2z

2
1− 1 is a defining function for a domain in C2, then

we can choose one polarization R(z, w) = z1w1 + z2
2w

2
2 − 1.

With these notations, the admissible approach region of Nagel-Stein-Wainger-Neff

type is

Aα(1, 0) =
{
z ∈ Ω ∩ V : π(z) ∈ β2

(
(1, 0), αD(z)

)}
, (2.15)

where α > 0. These definitions can be found in [26] and [27].

We see that the definition of the approach region above is equivalent to
∣∣π(z)− (1, 0)

∣∣ < αD(z),∣∣∣R(π(z), (1, 0)
)∣∣∣ < ΛαD(z)(1, 0).

(2.16)

We recall the relation “ ∼ ”. Suppose that F1(t) and F2(t) are two real-valued

functions, and there exist two positive constants k1 and k2 such that k1F2(t) < F1(t) <

k2F2(t) for all t, then we write F1(t) ∼ F2(t). If we only have the second part

F1(t) < k2F2(t), we write F1(t) . F2(t).

To see more about the admissible approach region, we need the following lemma:

Lemma 2.2.1 If
∣∣π(z)− (1, 0)

∣∣ ∼ D(z), then
∣∣z − (1, 0)

∣∣ ∼ D(z).

Proof From the definition of D(z) and the discussion of the iterated commutators,

we know that

D(z) =
( δ(z)

Λτz

(
π(z)

))1/τz
∼
(
δ(z)

)1/τz
, or

(
D(z)

)τz ∼ δ(z), (2.17)

where τz = τ
(
π(z)

)
is the type of π(z).

We know that, since τz > 2, as δ(z)� 1, it is true that δ(z)� D(z).
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As a result,

∣∣z − (1, 0)
∣∣ =

∣∣z − π(z) + π(z)− (1, 0)
∣∣ ∼ D(z). (2.18)

Therefore we know that the following defines an approach region, denoted by

A (1, 0), which is comparable to A1(1, 0):
∣∣z − (1, 0)

∣∣ < D(z),∣∣∣R(π(z), (1, 0)
)∣∣∣ < ΛD(z)(1, 0).

(2.19)

2.3 The Best Approach Region

Let δn(z) be the component of δ(z), the Euclidean distance δ(z) from the point

z ∈ Ω to π(z) ∈ ∂Ω, in the real tangent space at π(z) but not in the complex

tangential direction.

Let h1 and h2 be two real-valued continuously decreasing functions such that

hi : (0, 1] → [1,+∞) and limx→0+ hi(x) = +∞, i = 1, 2. We may assume that they

decrease to 1 very slowly.

Now we consider an approach region in Ω at the point w ∈ ∂Ω near (1, 0), denoted

by Ah1,h2(w), defined by the following inequalities:
|z − w| < h1

(
δn(z)

)
D(z),∣∣∣R(π(z), w

)∣∣∣ < h2

(
δn(z)

)
ΛD(z)(w).

(2.20)

We can compare Ah1,h2(1, 0) with A (1, 0) to see how these two regions are related.
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First of all, A (1, 0) ⊆ Ah1,h2(1, 0). If z ∈ Ah1,h2(1, 0) \A (1, 0), then δn(z) is very

small. This means Ah1,h2(1, 0) is very similar to A (1, 0), but compared with A (1, 0)

it is broader in the complex tangential direction.

Then, the main result of this chapter is: there is no Fatou’s theorem for this kind

of complex tangentially broader region Ah1,h2 . Therefore the admissible approach

regions of Nagel-Stein-Wainger-Neff type are the best possible ones.

To see this, we are going to construct a bounded holomorphic function f that

does not have a limit Ah1,h2-admissibly at any point in U . It is inspired by Hakim

and Sibony’s work in [14].

For each r > 0, there exists a set of points {ζj}j∈J , such that {β2(ζj, r
τ )} is a

maximal family of pairwise disjoint balls in U , in the sense that {β2(ζj, 2r
τ )} covers

U ⊂ ∂Ω, because we already know that with the boundary balls β2, ∂Ω is a space of

homogeneous type. See [26] and [27].

For each ζj = (ζj,1, ζj,2), define

Vr(ζj) = {ζ ∈ U : |ζ − ζj| < K1r
τ ,
∣∣R(ζ, ζj)

∣∣ < ΛK1r(ζj)},

where K1 is a positive constant to be fixed later.

We want to show that:

Lemma 2.3.1 We can find a positive constant K1 such that

⋃
j∈J

Vr(ζj) = U.

Proof First of all, we realize that we only need to prove that U ⊂
⋃
j∈J Vr(ζj), as

Vr(ζj) ⊂ U for each j.
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Without loss of generality, we just need to show that there exists a point ζj such

that

(1, 0) ∈ Vr(ζj), (2.21)

because, for any other point in the domain U , the same method below shows that it

also belongs to Vr(ζi) for some i ∈ J .

Therefore we just need to show that there exists a positive constant K1 and a

point ζj which makes the following inequalities true:
∣∣(1, 0)− z

∣∣ < K1r
τ ,∣∣∣R((1, 0), z

)∣∣∣ < ΛK1r(z).

(2.22)

But first we are interested in the following inequalities:
∣∣(1, 0)− z

∣∣ < (K1 − 2)rτ ,∣∣∣R((1, 0), z
)∣∣∣ < rτ ,

(2.23)

where K1 is large enough.

We observe that (1, 0) satisfies inequalities in (2.23), thus there exists an open

neighborhood in U of (1, 0) such that any point in this neighborhood also solves the

inequalities, that is, we can find a point w ∈ U such that
∣∣(1, 0)− w

∣∣ < (K1 − 2)rτ ,∣∣∣R((1, 0), w
)∣∣∣ < rτ .

(2.24)

Since {β2(ζj, r
τ )} makes a maximal family in U , there must exist a point ζj in

the ball β2(w, 2rτ ) for some j ∈ J . We then wish to check that this ζj makes the

inequalities in (2.22) valid, by which our goal is achieved.
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To see this, we first check an arbitrary point ζ ∈ β2(w, 2rτ ). Immediately by the

triangle inequality we know that

∣∣(1, 0)− ζ
∣∣ 6 ∣∣(1, 0)− w

∣∣+ |w − ζ|

< (K1 − 2)rτ + 2rτ

= K1r
τ . (2.25)

To check the second inequality in (2.22), we first have

∣∣∣R((1, 0), ζ
)∣∣∣ 6 ∣∣∣R((1, 0), w

)∣∣∣+
∣∣∣R((1, 0), w

)
−R

(
(1, 0), ζ

)∣∣∣. (2.26)

Since we already know that
∣∣∣R((1, 0), w

)∣∣∣ < rτ and

∣∣∣R((1, 0), w
)
−R

(
(1, 0), ζ

)∣∣∣ < K2|w − ζ|

< 2K2r
τ , (2.27)

it is true that ∣∣∣R((1, 0), ζ
)∣∣∣ < K3r

τ . (2.28)

By inequalities (2.25) and (2.28), we can choose a positive constant K1 big enough

such that
∣∣(1, 0)− ζ

∣∣ < K1r
τ ,∣∣∣R((1, 0), ζ

)∣∣∣ < ΛK1r(ζ) = Λτζ(ζ)(K1r)
τζ + · · ·+ Λτ (ζ)(K1r)

τ .

(2.29)

Since there must be one ζj in β2(w, 2rτ ) as argued, this ζj then satisfies the in-

equalities in (2.22), which means that we have (1, 0) ∈ Vr(ζj), and then our statement

is proved.
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For n ∈ N, r > 0 and {ζj}j∈J ⊂ U , define

gn,r(z) =
∑
j∈J

( rτ

R(z, ζj)− rτ
)2n

,

and then define fn = 1− εn − gn,r, where εn = n−1/4, and we know that there exists

a subsequence {εnk} such that
∑
εnk <∞.

Lemma 2.3.2 For any z ∈ U and n ∈ N large enough, |gn,r(z)| 6 1 + K4

n
, where K4

is a positive constant.

Proof Let ζ0 ∈ U be an arbitrary point and Nk,r be the number of balls β2(ζj, r
τ )

that are contained in the ball β2(ζ0, kr
τ ). Then we know that

Nk,r 6 K5k
t, (2.30)

where t is a positive integer and K5 is a positive constant.

Now fix a point ζ ∈ Ω. For any k ∈ N, define a subfamily of {ζj}j∈J :

J(ζ, k) = {ζj : krτ 6
∣∣R(ζ, ζj)

∣∣ < (k + 1)rτ}.

With these preparations, we can estimate |gn,r|.

First of all, we notice that if |R(z, ζj)| > krτ , we can get

∣∣∣ rτ

R(z, ζj)− rτ
∣∣∣2n 6

∣∣∣ rτ(
|R(z, ζj)

∣∣2 + r2τ
) 1

2

∣∣∣2n
6
∣∣∣ rτ(
k2r2τ + r2τ

) 1
2

∣∣∣2n
=

1

(1 + k2)n
. (2.31)
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It then follows that, for n large enough,

∣∣gn,r(z)
∣∣ 6 1 +K6

∞∑
k=1

kt

(1 + k2)n

≤ 1 +
K4

n
. (2.32)

As {ζj}j∈J is chosen and fn is defined, we will be able to see more about the

functions fn.

Lemma 2.3.3 For each ζj, there exists a zero of fn. Moreover, this zero will approach

to ζj as n goes to infinity.

Proof Here we are just going to consider the case for ζ1 = (1, 0). This method also

applies for other ζj.

We introduce two auxiliary functions:

φn(z1) = fn(z1, 0)

and

ψn(z1) = 1− εn −
( rτ

R
(
(z1, 0), (1, 0)

)
− rτ

)2n

.

Immediately we know that if R
(
(z1, 0), (1, 0)

)
= rτ

(
1− (1− εn)−

1
2n

)
, then z1 is a

zero of ψn.

We can choose a positive sequence {γn} with γn = n−4/3. On the closed curve of

z such that R
(
(z, 0), (1, 0)

)
−R

(
(z1, 0), (1, 0)

)
= γnr

τeiθ, we estimate that

∣∣ψn(z)
∣∣ =

∣∣2nγneiθ(1− εn)1/2n
∣∣+O(ε2). (2.33)
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On the other hand, we then see that

∣∣φn(z1)− ψn(z1)
∣∣ =

∣∣∣ ∑
ζj 6=(1,0)

( rτ

R(z, ζj)− rτ
)2n∣∣∣. (2.34)

If z1 is close enough to 1, the same argument as in the previous proof indicates

that ∣∣∣ ∑
ζj 6=(1,0)

( rτ

R(z, ζj)− rτ
)2n∣∣∣ 6 K7

n
. (2.35)

Therefore, on this closed curve, we have

∣∣φn(z1)− ψn(z1)
∣∣ < |ψn(z1)|, (2.36)

and then by Rouché’s theorem, we know that φn also has at least a zero ωn,r in the

region bounded by the closed curve.

According to the construction of the function φn we then know that fn has a zero

wn,r = (ωn,r, 0). By checking the argument again, we know that wn,r approaches to

(1, 0) as n goes to infinity.

For other ζj, we define

φn(z1) = fn(z1, z2),

and

ψn(z1) = 1− εn −
( rτ

R
(
(z1, z2), (1, 0)

)
− rτ

)2n

,

in both of which z2 is such a complex number that π(z1, z2) = ζj. Then we can do the

same argument to show that the claim is true and in this case we have π(wn,r) = ζj,

and the proof is complete.
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The next key lemma states that if a boundary point is close enough to ζj, then

the broader approach region based there contains a zero of fn.

Lemma 2.3.4 For each n we can choose r = rn such that, if w ∈ Vr(ζj), then

Ah1,h2(w) contains a zero of fn.

Proof Again, without loss of generality, we may assume that ζ1 = (1, 0), and only

check this case. For other situations, the same method applies.

Suppose wn,r = (ωn,r, 0) is the zero of fn near (1, 0) as we had in the previous

lemma. So now our task is to verify that if
∣∣(1, 0)− w

∣∣ < K1r
τ and

∣∣∣R(w, (1, 0)
)∣∣∣ <

ΛK1r(1, 0), we should have
|wn,r − w| < h1

(
δn(wn,r)

)
D(wn,r),∣∣∣R(π(wn,r), w

)∣∣∣ < h2

(
δn(wn,r)

)
ΛD(wn,r)(w).

(2.37)

Before starting the work, we need some setup. We claim that there exists a positive

constant K8 such that

δ(wn,r) > K8r
τ . (2.38)

If otherwise, we will have
∣∣∣R(π(wn,r), (1, 0)

)
−R
(
wn,r, (1, 0)

)∣∣∣ < K9r
τ for any constant

K9. However, this implies that h(z) = R
(
z, (1, 0)

)
, written as a polynomial of z, does

not have terms with degree less or equal to τ other than the constant term. This

violates that the maximal type in U is τ .

First of all, we know that

|wn,r − w| <
∣∣(1, 0)− wn,r

∣∣+
∣∣(1, 0)− w

∣∣. (2.39)
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On the other hand, we check that

h1

(
δn(wn,r)

)
D(wn,r) > h1

(
δ(wn,r)

)
D(wn,r)

> K10h1

(
δ(wn,r)

)
δ(wn,r)

>
K11

2
h1

(
δ(wn,r)

)∣∣(1, 0)− wn,r
∣∣+

K11

2
h1

(
δ(wn,r)

)
δ(wn,r),

(2.40)

because δ(wn,r) =
∣∣(1, 0) − wn,r

∣∣, as π(wn,r) = (1, 0). Recall that in proof of the

previous lemma we have the result that π(wn,r) = ζj.

If r is small enough, it is true that

∣∣(1, 0)− wn,r
∣∣ < ∣∣(1, 0)− wn,r

∣∣ · K11

2
h1

(
δ(wn,r)

)
(2.41)

and

∣∣(1, 0)− w
∣∣ < K1r

τ

<
K1

K8

δ(wn,r)

<
K11

2
h1

(
δ(wn,r)

)
δ(wn,r). (2.42)

These imply that, if r is small enough , we will have

|wn,r − w| < h1

(
δn(wn,r)

)
D(wn,r). (2.43)
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Meanwhile, we have

∣∣∣R(π(wn,r), w
)∣∣∣ 6 ∣∣∣R(π(wn,r), w

)
−R

(
π(wn,r), (1, 0)

)∣∣∣
+
∣∣∣R(π(wn,r), (1, 0)

)
−R

(
wn,r, (1, 0)

)∣∣∣+
∣∣∣R(wn,r, (1, 0)

)∣∣∣
< K12

∣∣w − (1, 0)
∣∣+K13

∣∣π(wn,r)− wn,r
∣∣+
∣∣∣R((z1, 0), (1, 0)

)∣∣∣+ γnr
τ

< K14r
τ +K13δ(wn,r) +

εn
2n
rτ + γnr

τ + o(
εn
n

)

< K15δ(wn,r). (2.44)

We then consider h2

(
δn(wn,r)

)
ΛD(wn,r)(w).

By definition, we know that

h2

(
δn(wn,r)

)
ΛD(wn,r)(w) > K16h2

(
δ(wn,r)

)(
D(wn,r)

)τw
> K17h2

(
δ(wn,r)

)(
δ(wn,r)

) τw
τwn,r

> K18h2

(
δ(wn,r)

)(
δ(wn,r)

) τ
2 . (2.45)

We can then find r so small that this inequality holds:

K15δ(wn,r) < K18h2

(
δ(wn,r)

)(
δ(wn,r)

) τ
2 . (2.46)

In this way we check that

∣∣∣R(π(wn,r), w
)∣∣∣ < h2

(
δn(wn,r)

)
ΛD(wn,r)(w). (2.47)

Therefore, there exists an r > 0 such that
|wn,r − w| < h1

(
δn(wn,r)

)
D(wn,r),∣∣∣R(π(wn,r), w

)∣∣∣ < h2

(
δn(wn,r)

)
ΛD(wn,r)(w),

(2.48)

that is, Ah1,h2(w) contains a zero, wn,r, of fn,r.
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Now we are going to construct a bounded holomorphic function f such that, for

any ζ ∈ U , the limit

lim
Ah1,h2 (ζ)3z→ζ

f(z)

does not exist.

As we have seen from the proof above, for each n we can choose rn such that the

lemma is true. Then we choose a subsequence {εnk} such that
∑
εnk <∞. Also for

each ζj, we can find a zero wnk for fnk such that {wnk} converges to ζj.

We then build a bounded holomorphic function in Ω:

f(z) =
∞∏
k=1

fnk(z)

1− (1− εnk)gk(z)
,

where gk = gnk,rnk .

Fix an arbitrary point ζ ∈ U . We know that, for each nk, with the corresponding

number rnk , there is a maximal set {ζj}j∈J as mentioned, and by the first lemma,

there exists a point ζj such that ζ ∈ Vrnk (ζj). So, by Lemma 2.3.4 we know that a

zero of fnk(z), thus a zero of f , is contained in Ah1,h2(ζ). As k goes to infinity, rnk

converges to 0 and therefore Vrnk (ζ) is shrinking, making ζj converge to ζ. Thus we

have a sequence of zeros of f that converges to the point ζ.

Suppose limAh1,h2 (ζ)3z→ζ f(z) exists, then so does limAh1,h2 (ζ)3z→ζ |f(z)|.

By evaluating f along that sequence of zeros we have

lim inf
Ah1,h2 (ζ)3z→ζ

|f(z)| = 0, (2.49)
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and therefore

lim
Ah1,h2 (ζ)3z→ζ

|f(z)| = lim sup
Ah1,h2 (ζ)3z→ζ

|f(z)|

= lim inf
Ah1,h2 (ζ)3z→ζ

|f(z)|

= 0, (2.50)

which means |f |, being a subharmonic function, is identically zero, because it reaches

its supremum in an interior point. For more facts about subharmonic functions, please

refer to [18]. Here we only mention two facts. The first one: If f is holomorphic

function of several variables, then |f |p is subharmonic for all p > 0. Second, the

maximum principle also applies to subharmonic functions.

So we reach a contradiction, and therefore we know that

lim
Ah1,h2 (ζ)3z→ζ

f(z)

does not exist.

To summarize, we have the theorem

Theorem 2.3.1 On the boundary of Ω there exists a boundary neighborhood U of

(1, 0), and there exists a bounded holomorphic function f , such that for any point

ζ ∈ U , the limit

lim
Ah1,h2 (ζ)3z→ζ

f(z)

does not exist.

Since this U is of positive measure, we immediately have
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Corollary 2.3.1 There is no Fatou’s theorem for these broader approach regions

Ah1,h2.
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3. The Lindelöf Principle

In this chapter we are going to study the Lindelöf principle for several complex vari-

ables. Again, we suppose that Ω is a domain of finite type in C2, characterized by a

defining function ρ, with m > 2 being the maximal type. Suppose that (1, 0) is on

the boundary, and its outward normal direction is 〈1, 0〉. We also suppose that ∂ρ
∂z1

and ∂ρ
∂z1

do not vanish at (1, 0).

3.1 T -approach

There are some interesting results by Krantz in [19], which give admissible conver-

gence. In that paper, however, the work is done for strongly pseudoconvex domains.

Here we can generalize them for domains of finite type in C2.

Before that, let us have a review of the admissible approach regions and explore

some of their properties.

3.1.1 Shape of the admissible approach region

Recall that the admissible approach region Aα(1, 0) based at (1, 0) is defined by
|π(z)− (1, 0)| < αD(z),∣∣∣R(π(z), (1, 0)

)∣∣∣ < ΛαD(z)(1, 0).

(3.1)
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We have studied this region in Chapter 2, and in this chapter we are going to see

more of it. First write π(z) = (w1, w2), the Euclidean normal projection of z to the

boundary.

By definition, R
(
(w1, w2), (1, 0)

)
is a holomorphic function, and we can expand

it into a formal series around the point (1, 0). Ignoring higher terms, we know that

A1(1, 0) is comparable to the region defined by
|(w1, w2)− (1, 0)| < D(z),∣∣c1(w1 − 1)k1 + c2(w1 − 1)k2wk32 + c1w

k4
2

∣∣ < ΛD(z)(1, 0),

(3.2)

where ci’s are complex numbers and ki’s are positive integers.

As we estimate D(z) and ΛαD(z)(1, 0) in the previous chapter, we know that this

region sits inside, up to comparability, the one defined by
|(w1, w2))− (1, 0)| < δ(z)

1
m ,∣∣c1(w1 − 1)k1 + c2(w1 − 1)k2wk32 + c1w

k4
2

∣∣ < δ(z)k,

(3.3)

where k > 0.

By solving the inequalities, we know that A1(1, 0) is comparable to the region

given by 
|(w1, w2)− (1, 0)| < δ(z)

1
m ,∣∣w1 − 1| < δ(z)k5 ,

(3.4)

which is also comparable to, by doing the same analysis as in Lemma 2.2.1 in the

previous chapter, 
|(z1, z2)− (1, 0)| < δ(z)

1
m ,∣∣w1 − 1| < δ(z)k5 .

(3.5)
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We have

|z1 − 1| . |z1 − w1|+ |w1 − 1| (3.6)

and

|z1 − w1| ∼ δ(z), |w1 − 1| < δ(z)k5 . (3.7)

CASE ONE: k5 > 1.

In this case we have |z1− 1| . δ(z). So up to some comparability, the region (3.5)

is inside 
|(z1, z2)− (1, 0)| < δ(z)

1
m ,

|z1 − 1| < δ(z),

(3.8)

CASE TWO: k5 < 1.

In this case we have |z1 − 1| . δ(z)k5 . Therefore we have
|(z1, z2)− (1, 0)| <

(
δ(z)k5

) 1
k5m <

(
δ(z)k5

) 1
m ,

|z1 − 1| < δ(z)k5 .

(3.9)

Therefore, we can have a result about the shape of the admissible approach region:

Proposition 3.1.1 There is a region A that is comparable with A1(1, 0) and is lying

inside the region bounded by

|(z1, z2)− (1, 0)|m = |z1 − 1|.

Since admissible convergence is equivalent to A -convergence, we will care more

about A and at the same time obtain results about admissible convergence.

Following Krantz’ arguments in [19], we can get some similar ones, to be discussed

in the following subsections.
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3.1.2 Bounded holomorphic functions

First we define a two-dimensional and totally real region:

T = {(s+ i0, t+ i0) ∈ Ω : s, t ∈ R, 0 < s < 1, 0 < |t| < m
√

1− s}.

Then for j = 1, 2, . . ., we define

Ωj = {(z1, z2) ∈ Ω : 1− 2−j 6 Rez1 < 1− 2−j−1, |Imz1| < 2−j and |z2| <
m
√

2−j}.

For each Ωj, the map

ϕj(z1, z2) = (2j−j0(z1 − 1) + 1,
m
√

2j−j0z2)

gives a biholomorphic mapping from Ωj onto a region Ωj0 , where j0 is a positive

integer.

By Proposition (3.1.1), we have

A ⊆
∞⋃
j=1

Ωj =
∞⋃
j=1

ϕ−1
j (Ω0). (3.10)

Proposition 3.1.2 Let f be a bounded holomorphic function in Ω. If

lim
T3z→(1,0)

f(z) = 0,

then

lim
A 3z→(1,0)

f(z) = 0.

Proof First we see that ϕj maps T ∩ Ωj onto T ∩ Ωj0 .

For each j, construct

gj = f ◦ ϕ−1
j : Ωj0 → C.
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These maps are uniformly bounded, so they form a normal family, and therefore we

can find g0, a subsequential limit function.

Note that g0 vanishes on T ∩Ωj0 , a totally real two-dimensional region. It follows

that g0 vanishes identically.

For any compact set K ⊆ Ωj0 such that

A ⊆
∞⋃
j=1

ϕ−1
j (K),

we know that gj → 0 uniformly on K. Therefore f has A -admissible limit 0.

Remark 3 As seen in the analysis above, the crucial part is A ⊆
⋃∞
j=1 Ωj =⋃∞

j=1 ϕ
−1
j (Ω0). If we have more information about types of points near (1, 0), we

may make T sharper.

For example, if p > 1 is an integer, let us consider the domain Mp = {(z1, z2) ∈

C2 : |z1|2 + |z2|2p < 1}. The maximal type for this domain is 2p, shared by points

(eiθ, 0), so, by Proposition 3.1.1 we can say that the admissible approach region based

at any boundary point will sit inside another region whose shape we can describe.

However, for base points away from those of the form (eiθ, 0), the type is 2, so locally

the maximal type is 2, and therefore each of these approach regions can be inscribed

in a parabolic one.

We wish to make this result more general. Define a two-dimensional, totally real

manifold

T = {
(
s+ iρ1(s, t), t+ iρ2(s, t)

)
: (s, t) ∈ T},

where ρi(s, t) : T → R is a C2 function, i = 1, 2.
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Then we have

Proposition 3.1.3 Let f be a bounded holomorphic function in Ω. If

lim
T 3z→(1,0)

f(z) = 0,

then

lim
A 3z→(1,0)

f(z) = 0.

Proof Suppose

ϕj(T ∩ Ωj) = τj(T ∩ Ωj0), (3.11)

then each τj has bounded derivatives. So we can find a subsequence {τjk} that

converges uniformly on compacta to τ0. By the relation (3.11) and the definition of

gj, we know there exists a convergent subsequence {gjk} with the limit g0.

Let T0 be the graph of τ0 over T ∩ Ωj0 . We observe that T0 is a totally real,

two-dimensional manifold.

We claim that g0 vanishes on T0. It is true because for any w ∈ T0, there exists

a point zjk ∈ T ∩ Ωjk such that ϕ−1
jk

(w) = zjk . We then know that {zjk} lies in T

and approaches to (1, 0) as k →∞. By the hypothesis we know that

lim
k→∞

f ◦ ϕ−1
jk

(w) = 0, (3.12)

and therefore the claim is verified.

So we can again conclude that g0 ≡ 0 and it then follows that f has A -limit 0 at

(1, 0).
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3.1.3 Normal functions

First recall the notion of Kobayashi metric. Let D be the unit disc in C. If z ∈ Ω

where Ω ⊂ Cn is a domain, and ξ is a vector in Cn, then the infinitesimal form of the

Kobayashi metric at z in the direction of ξ is defined to be

FΩ
K(z, ξ) = inf

{ ||ξ||
||f ′(0)||

}
,

where f runs through holomorphic mappings from D to Ω with f(0) = z, f ′(0) being

a positive multiple of ξ.

Thinking of Ĉ = C ∪ {∞} as the Riemann sphere and ζ ∈ C as a tangent vector

to Ĉ at w ∈ Ĉ, then the spherical metric of ζ at w is

|ζ|sph,w =
2||ζ||

1 + ||w||2
.

Then we say a holomorphic function f : Ω→ Ĉ is normal if

|f ′(z) · ξ|sph,f(z) 6 CFΩ
F (z, ξ)

for all z ∈ Ω and ξ ∈ Cn.

This is a generalization of the normal functions of a single complex variable. For

more details, please refer to [7].

Theorem 3.1.1 Let f be a normal holomorphic function in Ω. If

lim
T 3z→(1,0)

f(z) = 0,

then

lim
A 3z→(1,0)

f(z) = 0.
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Proof Let D be the unit disc in C. Consider a holomorphic mapping ψ : D → Ωj0

with ψ(0) = p ∈ Ωj0 . We may take ψ to be an extremal function for the Kobayashi

metric at the point p.

Define a function µj : D → Ĉ:

µj = f ◦ ϕ−1
j ◦ ψ.

It follows that

|µ′j(0)| 6
∣∣∇f(ϕ−1

j (p))
∣∣∣∣(ϕ−1

j ◦ ψ
)′

(0)
∣∣. (3.13)

We notice that
∣∣∇f(ϕ−1

j (p))
∣∣ is bounded from the Kobayashi metric on Ω, and∣∣(ϕ−1

j ◦ ψ
)′

(0)
∣∣ is the reciprocal of the Kobayashi metric for Ωj at ϕ−1

j (p). We also

notice that the Kobayashi metric on Ω is smaller than that on Ωj. Therefore we can

see that |µ′j(0)| is bounded on compact subset of D, and this bound is independent

of j, and the choice of p in a compact subset K ⊆ D. By composing with a Möbius

transformation we can have a similar estimate for µ′j at any point of a compact subset

of D.

Therefore we can find a normally convergent subsequence {µ′jk} of µ′j with the

limit function µ′0. Consequently, {µjk = gjk ◦ ψ} is also convergent, and so is {gjk},

with the limit function g0.

As shown in the proof of the previous theorem, we can obtain a totally real,

two-dimensional manifold T0, the graph of τ0, a subsequential limit of {τj}. We can

further deduce that g0 vanishes on T0, then get that g0 ≡ 0 and finally conclude that

f has A -limit 0 at (1, 0).
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3.2 Boundary Approach

Suppose f is a bounded holomorphic function on Ω such that |f(z)| ≤ 1 for any

z ∈ Ω. For P ∈ ∂Ω, we define, only for the rest of this chapter, the boundary value

|f(P )| to be lim supΩ3z→P |f(z)| ∈ R ∪ {∞}.

There are some interesting discoveries in [20] and [7] concerning the boundary

curves. The result in [20] of Lehto and Virtanen states that if limt→1− |f(γ(t))| = 0

where f is a normal function in D ⊆ C and γ : [0, 1] → D is such a curve that

γ(1) = P ∈ ∂D, then f has non-tangential limit 0 at P . For several complex variables,

Cima and Krantz give a similar result for hypoadmissible convergence in [7], which

treats complex normal curves. Recall that γ : [0, 1] → ∂Ω is complex normal if

〈γ′(t), νγ(t)〉 6= 0, all 0 6 t 6 1. Their theorem states:

Theorem 3.2.1 Let Ω ⊂⊂ Cn be a domain with C2 boundary. Let γ : [0, 1] → ∂Ω

be a C2 curve which is complex normal. Let f : Ω → C be a normal and assume

f ∈ Hp(Ω), p > 4n. Suppose that

lim
t→1−

|f(γ(t))| = 0.

Then f has hypoadmissible limit 0 at P ≡ γ(1).

However, it turns out that there is no way to get an admissible limit. Let us

consider this domain

M2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|4 < 1},

which is not strongly pseudoconvex but still of finite type.
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Consider the holomorphic function

f(z) = f(z1, z2) =
z4

2

1− z1

.

It is bounded because
∣∣z4

2/(1− z1)
∣∣ < ∣∣(1− |z1|2)/(1− |z1|)

∣∣ = 1 + |z1| < 2.

We notice that f has a radial limit 0 at (1, 0). If there exists a complex normal

curve terminating at (1, 0), along which f has a limit λ 6= 0, then according to some

other results in [7] by Cima and Krantz, f should have a hypoadmissible limit λ

and thus radial limit λ, which gives a contradition. This means, along any complex

normal curve, if f has a limit, then this limit must be 0. Alternatively, we can just

check this curve ϕ(t) = (eit, 0), 0 6 t 6 π
2
, and note that it is complex normal and

along it f has limit 0.

However, this does not yield the admissible limit 0, as we can find a sequence

of points {z(k)}∞k=0 with z(k) = (1 − 2−4k, 2−k), which are in an admissible approach

region, and

f(z(k)) =
2−4k

2−4k
= 1. (3.14)

Therefore we have the limit

lim
k→∞

f(z(k)) = 1. (3.15)

So we need to apply more restrictive conditions.

Suppose that

lim
t→1−

f(ϕ(t)) = `

for any boundary curve ϕ : [0, 1]→ ∂Ω with ϕ(1) = (1, 0). We hope to find a Lindelöf

principle for this case, that is, we wish that f had the admissible limit ` at (1, 0).
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Since the boundary values of f are defined through nontangential limit and along

all curves near (1, 0), |f | is defined, we may assume that there exists a neighborhood

W ⊂ ∂Ω of (1, 0) such that

lim
W3ω→(1,0)

f(w) = `,

and may even assume that W is also part of the boundary of another domain V inside

Ω that is of C2 boundary, and f has the nontangential limit at every point in W .

As stated in the previous section, we may just consider the region A which is

comparable with A1(1, 0). So we hope to get this result:

lim
A 3z→(1,0)

|f(z)− f(1, 0)| = 0.

So we begin to estimate |f(z)− f(1, 0)|.

First we have the triangle inequality

|f(z)− f(1, 0)| 6
∣∣f(z)− f((1, 0)− 1

k
ν)
∣∣

+
∣∣f((1, 0)− 1

k
ν)− f(1, 0)

∣∣ (3.16)

for any k ∈ N, where ν is the outward unit normal vector at (1, 0).

We have no need to worry about the second expression because it has the limit 0

when k →∞, so we hope to have the limit 0 for the first expression. To see this, we

use the Poisson integral over ∂V . So the problem turns out to estimate in terms of

Poisson kernels.

For any positive ε small enough, define

Wε = {P ∈ W : |P − (1, 0)| < ε3},
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then σ(Wε) ∼ ε9.

We estimate that

∣∣f(z)− f((1, 0)− 1

k
ν)
∣∣ 6 ∫

∂V

∣∣P (z, ζ)− P ((1, 0)− 1

k
ν, ζ)

∣∣|f(ζ)| dσ(ζ)

=

∫
∂V \Wε

∣∣P (z, ζ)− P ((1, 0)− 1

k
ν, ζ)

∣∣|f(ζ)| dσ(ζ) (∗)

+

∫
Wε

∣∣P (z, ζ)− P ((1, 0)− 1

k
ν, ζ)

∣∣|f(ζ)| dσ(ζ) (∗∗) (3.17)

We are not worried about (*) because on ∂V \Wε, as z is approaching to (1, 0)

and k is tending to ∞, ζ is away from the singularities of the Poisson kernels, and

|f(ζ)| is bounded. Therefore the expression (*) has limit 0.

We know that P (z, ζ), as in the complex 2-space, equals δ(z)/|z−ζ|4 plus an error

term, so we want to estimate, for ζ ∈ Wε,

∣∣∣ δ(z)

|z − ζ|4
−

δ((1, 0)− 1
k
ν)

|(1, 0)− 1
k
ν − ζ|4

∣∣∣. (3.18)

If C1ε < δ(z) < C2ε and C3ε <
1
k
< C4ε, we have

|z − ζ|4 > (δ(z))4 > C4
1ε

4 (3.19)

and ∣∣(1, 0)− 1

k
ν
∣∣4 = (

1

k
)4 > C4

3ε
4. (3.20)

We also need their upper bounds. By the triangle inequality we know that

|z − ζ| 6 |z − (1, 0)|+ |ζ − (1, 0)|. (3.21)

Since z ∈ A , as shown in (3.5), there is the relation |z − (1, 0)| < δ(z)
1
m .
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By the definition of Wε, we have |ζ − (1, 0)| < ε3. So we can estimate that

|z − ζ| < C6ε
1
m . (3.22)

However, we estimate that

∣∣(1, 0)− 1

k
ν − ζ

∣∣ 6 ∣∣(1, 0)− 1

k
ν − (1, 0)

∣∣+ |ζ − (1, 0)| < C7ε. (3.23)

Therefore we have

∣∣∣δ(z)
∣∣(1, 0)− 1

k
ν − ζ

∣∣4 − 1

k
|z − ζ|4

∣∣∣ < C8 · ε · (ε
1
m )4 = C8ε

1+ 4
m . (3.24)

Now we can estimate that

∣∣∣ δ(z)

|z − ζ|4
−

δ((1, 0)− 1
k
ν)

|(1, 0)− 1
k
ν − ζ|4

∣∣∣ =
∣∣∣ δ(z)

|z − ζ|4
−

1
k

|(1, 0)− 1
k
ν − ζ|4

∣∣∣
=

∣∣∣δ(z)|(1, 0)− 1
k
ν − ζ|4 − 1

k
|z − ζ|4

∣∣∣
|z − ζ|4|(1, 0)− 1

k
ν − ζ|4

6
C9

ε8

∣∣∣δ(z)
∣∣(1, 0)− 1

k
ν − ζ

∣∣4 − 1

k
|z − ζ|4

∣∣∣
<
C9

ε8
· C8ε

1+ 4
m

=
C10

ε7− 4
m

. (3.25)

Therefore, by the boundedness of f on the boundary, we see that∫
Wε

∣∣P (z, ζ)− P ((1, 0)− 1

k
ν, ζ)

∣∣|f(ζ)| dσ(ζ) < C11ε
9 · C10

ε7− 4
m

= C12ε
2+ 4

m

< C12ε
2. (3.26)

This means |f(z)− f((1, 0)− 1
k
ν)| has limit 0 as z approaches to (1, 0) admissibly

and k tends to infinity.
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Therefore we can establish this result:

Theorem 3.2.2 Let Ω be a domain in C2 that is of finite type. Suppose f is a

bounded holomorphic function on Ω such that |f(z)| 6 1 for any z ∈ Ω, and

lim
t→1−

f(ϕ(t)) = `

for any boundary curve ϕ : [0, 1]→ ∂Ω with ϕ(1) = (1, 0). Then

lim
A 3z→(1,0)

|f(z)− f(1, 0)| = 0.
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4. Inner Functions

In this chapter we will construct inner functions for a general kind of domain in Cn.

Although in the text we are dealing with C2, the method can be carried out for higher

dimensions.

4.1 Integral Formulas

Let B be the unit ball in C2 and S be its boundary.

Suppose that f : C2 → C2 holomorphic, and M ⊂ C2 is a compact manifold with

smooth boundary such that f(M) = B, f(∂M) = S.

Also suppose that f = (f1, f2) : M → B is a finite ramified covering, with N

sheets. Let Z = {(z, w) ∈ M : either z is a zero of f1 or w is a zero of f2}. Denote

Z1 = Z ∩ ∂M , Z2 = f(Z) ∩ S.

We can then think of {U1, . . . , Un} as an open cover of S \ Z2 such that, for each

Ui, f
−1(Ui) contains N disjoint components Vi1, . . . , ViN such that each component is

biholomorphic to Ui, and {Vi1, . . . , ViN}i covers ∂M \ Z2.

Then we choose {W1, . . . ,Wn} such that they are pairwise disjoint, Wi ⊂ Vi,

and ∪ni=1Wi = S \ Z2. If we let {Xi1, . . . , XiN} = f−1(Wi), then we know that

∪Nj=1 ∪ni=1 Xij = ∂M \ Z1 and for each k, the intersection of the interiors of Xik and

Xjk, i 6= j, is an empty set.
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This case is of interest because it can furnish domains that are more general

than strongly pseudocovex ones. For example, for any positive integer p, the map

fp(z1, z2) = (z1, z
2p
2 ) relates the domain Mp = {(z1, z2) ∈ C2 : |z1|2 + |z2|2p < 1},

which is not strongly pseudoconvex but still of finite type, with the maximal type

2p for points (eiθ, 0), to the unit ball. For the notion of finite type, please refer to

previous chapters or works such as [5] by D. Catlin.

For z, w ∈ ∂M \Z2 on the same sheet and sufficiently close to one another, define

dM(z, w) =

√
1−

∣∣〈f(z), f(w)〉
∣∣2, (4.1)

we can then introduce the open boundary ball EM(ω, r), centered at ω ∈ ∂M , with

radius r sufficiently small:

EM(ω, r) = {ζ ∈ ∂M : dM(ω, ζ) < r}. (4.2)

We wish to introduce a measure over ∂M . The way to do this is to relate it to a

measure on S, the boundary of the unit ball in C2.

Specifically, for η ∈ S, put

E(η, r) = {ξ ∈ S : d(η, ξ) =

√
1−

∣∣〈η, ξ〉∣∣2 < r}, (4.3)

and let σ be the unique rotation-invariant probability measure on S.

With the map f : ∂M → S, we immediately have the relations

dM(z, w) = d(f(z), f(w)), (4.4)

and

f(EM(ω, r)) = E(f(ω), r), (4.5)
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because ξ = f(z) ∈ f(EM(ω, r)) if and only if z ∈ EM(ω, r), which is the same to say

that
√

1−
∣∣〈f(z), f(ω)〉

∣∣2 < r, or equivalently, ξ = f(z) ∈ E(f(ω), r).

This inspires us to define a measure σM by

σM(EM(ω, r)) = σ(f(EM(ω, r))) = σ(E(f(ω), r)), (4.6)

for r sufficiently small.

Although here, σM is defined in terms of boundary balls, it also works for open

subsets of sheets of ∂M \ Z2. We have the relation

σM = σ ◦ f. (4.7)

The study in [29] of E(η, δ) shows that σ(E(η, δ)) = δ2. Consequently, we have

σM(EM(ω, r)) = r2. (4.8)

Now we turn our attention to the relation between the integrals over S and those

over ∂M .

For j = 1, 2, . . . , N ,

n⋃
i

∫
Xij

F
(
f(w)

)
dσM(w) =

n⋃
i

∫
Wi

F (z) dσ(z) =

∫
S−Z2

F (z) dσ(z). (4.9)

Since σ(Z2) = 0, we have the equation

n⋃
i

∫
Xij

F
(
f(w)

)
dσM(w) =

∫
S

F (z) dσ(z). (4.10)
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Therefore, since σM(Z1) = 0, we know the relation between these two kinds of

integrals is:

∫
M

F
(
f(w)

)
dσM(w) =

∫
M−Z1

F
(
f(w)

)
dσM(w) (4.11)

= N ·
( n⋃

i

∫
Xij

F
(
f(w)

)
dσM(w)

)
= N

∫
S

F (z) dσ(z).

If α = (α1, α2) is a multi-index, where α1 and α2 are non-negative integers, we

have the following notations: α! = α1!α2!, |α| = α1 + α2, and for z ∈ C2, zα =

z(α1,α2) = zα1
1 zα2

2 .

Since, as shown in Rudin’s book [29], for α 6= β,

∫
S

zαzβ dσ(z) = 0, (4.12)

and ∫
S

zαzα dσ(z) =
α!

(1 + |α|)!
, (4.13)

we can then obtain similar equations for the case ∂M , which will play important roles

in the analysis of RW-sequences in a following section:

∫
∂M

f(z)αf(z)
β
dσM(z) = 0, α 6= β, (4.14)

and ∫
∂M

f(z)αf(z)
α
dσM(z) =

Nα!

(1 + |α|)!
. (4.15)
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4.2 Boundary Balls

Put L = sup dM(z, w) and l = inf
(
dM(z, u) + dM(u,w)

)
, where z, w, u ∈ ∂M and

they are on the same sheet. We notice that L <∞ and l > 0 are constants, and for

any z, w, u ∈ ∂M on the same sheet, we have

dM(z, w) 6 L 6
L

l

(
dM(z, u) + dM(u,w)

)
, (4.16)

which means we have a triangle inequality, that is, there exists a positive constant C1

such that

dM(z, w) 6 C1(dM(z, u) + dM(u,w)). (4.17)

With the help of this general result, or, more simply, from the definition of the

area of boundary balls as shown in (4.8), along with what we established in (4.5), we

can check that:

1. 0 < σM(EM(ω, r)) <∞;

2. There exists C2 > 0 such that σM(EM(ω, 2r)) 6 C2σM(EM(ω, r));

3. There exists C3 > 0 such that if EM(ω, r) ∩ EM(ζ, s) = ∅ and r 6 s, then

EM(ω, r) ⊆ EM(ζ, C3s).

These properties show that ∂M is actually a space of homogeneous type (see [8]),

which gives us a geometric result:

Theorem 4.2.1 For r > 0, there exists a maximal set {ω1, . . . , ωK} ⊂ ∂M with

respect to having the balls EM(ωj, r) pairwise disjoint but ∪Kj=1EM(ωj, 2r) cover ∂M .

As a consequence of this, we have

C4 = σM(∂M) 6 KσM(EM(ωj, 2r)) = K(2r)2 = 4Kr2, (4.18)
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which implies that

K >
C4

4r2
. (4.19)

4.3 Construction of f-Polynomials

Let r1, . . . , rK be Rademacher functions:

rj(t) = sgn sin(2jπt), t ∈ [0, 1],

and define

Qt ◦ f(z) =
K∑
j=1

rj(t)〈f(z), f(ωj)〉k, (4.20)

where k ∈ N.

We first notice that Qt ◦ f is a polynomial of f1(z) and f2(z), and Qt(λf1, λf2) =

λkQt ◦ f .

Now, take r = 1/
√
k. We wish to find bounds for |Qt ◦ f |.

4.3.1 Lower Bounds

We first calculate that

∣∣〈f(ζ), f(ωj)〉
∣∣2k =

(
f1(ζ)f1(ωj) + f2(ζ)f2(ωj)

)k(
f1(ζ)f1(ωj) + f2(ζ)f2(ωj)

)k
(4.21)

=
∑

06i,s6k

Di,sf(ζ)(i,k−i)f(ζ)
(s,k−s)

,

where

Di,s =

(
k

i

)2

f(ω)(s,k−s)f(ω)
(i,k−i)

. (4.22)
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We note that |f1(ω)|2 + |f2(ω)|2 = 1 for ω ∈ ∂M . Using (4.14) and (4.15), we

have the equations:

∫
∂M

∣∣〈f(ζ), f(ωj)〉
∣∣2k dσM(ζ) =

∫
∂M

∑
06i,s6k

Di,sf(ζ)(i,k−i)f(ζ)
(s,k−s)

dσM(ζ) (4.23)

=
k∑
i=0

Di,i

∫
∂M

f(ζ)(i,k−i)f(ζ)
(i,k−i)

dσM(ζ)

=
k∑
i=0

(
k

i

)2

f(ω)(i,k−i)f(ω)
(i,k−i)

· Ni!(k − i)!
(1 + k)!

=
N

1 + k

k∑
i=0

(
k

i

)
f(ω)(i,k−i)f(ω)

(i,k−i)

=
N

1 + k

k∑
i=0

(
k

i

)
(|f1(ω)|2)i(|f2(ω)|2)k−i

=
N

1 + k
(|f1(ω)|2 + |f2(ω)|2)k

=
N

1 + k
.

Therefore, by the definition of Qt ◦ f , we have estimations:

∫ 1

0

dt

∫
∂M

|Qt ◦ f(ζ)|2 dσM(ζ) =
K∑
j=1

∫
∂M

∣∣〈f(ζ), f(ωj)〉
∣∣2k dσM(ζ) (4.24)

=
KN

(1 + k)

>
C4N

4(1 + k)r2

> C5.

This implies that there exists t ∈ [0, 1] such that

∫
∂M

|Qt ◦ f(ζ)|2 dσM(ζ) > C5. (4.25)

Our focus will be on this Qt ◦ f .
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4.3.2 Upper Bounds

Fixing ζ ∈ ∂M , for m = 0, 1, 2, . . ., define the set Hm by

Hm = {ωj : mr 6 dM(ζ, ωj) < (m+ 1)r}.

If ωj ∈ Hm, we have ∣∣〈f(ζ), f(ωj)〉
∣∣2 6 1−m2r2, (4.26)

and ωj ∈ EM(ζ, (m+1)r), which implies that EM(ωj, r) ⊂ EM(ζ, C1(m+2)r), because

for any ω ∈ EM(ωj, r), we have

dM(ζ, ω) 6 C1

(
dM(ζ, ωj) + dM(ωj, ω)

)
(4.27)

6 C1

(
(m+ 1)r + r

)
= C1(m+ 2)r

and therefore

σM(EM(ωj, r)) ·#Hm 6 σM(EM(ζ, (m+ 2)r)), (4.28)

where #Hm denotes the cardinality of Hm. According to the estimation (4.8),

#Hm 6 C2
1(m+ 2)2. (4.29)
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Thus we have estimations

|Qt ◦ f(ζ)| 6
K∑
j=1

∣∣〈f(ζ), f(ωj)〉
∣∣k (4.30)

=
∞∑
m=0

∑
ωj∈Hm

∣∣〈f(ζ), f(ωj)〉
∣∣k

6 C2
1

∞∑
m=0

(m+ 2)2(1−m2r2)
k
2

< C2
1

∞∑
m=0

(m+ 2)2e−
k
2
m2r2

< C2
1

∞∑
m=0

(m+ 2)2e−
m2

2 .

The last series is convergent. Using Σ to denote the sum, we therefore have

∣∣∣Qt ◦ f(ζ)

Σ

∣∣∣ < 1. (4.31)

4.3.3 RW-Sequences

According to the results above, we define, for ζ ∈ ∂M ,

Wk ◦ f(ζ) =
Qt ◦ f(ζ)

Σ
, (4.32)

which is a polynomial of f1(z) and f2(z). Moreover, Wk

(
λf1(z), λf2(z)

)
= λkWk ◦ f .

We call this a homogeneous f -polynomial of degree k. This leads us to the following

theorem.

Theorem 4.3.1 There exists a positive constant c such that, for k ∈ N and Wk ◦ f

as defined, we have

1. Wk ◦ f is a homogeneous f -polynomial of degree k,
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2. |Wk ◦ f(ζ)| 6 1, and

3.
∫
∂M
|Wk ◦ f |2 dσ > c.

Letting U be a compact subgroup of U(2), we have that∫
U

|Wt ◦ U ◦ f |2 dU =

∫
∂M

|Wt ◦ f |2 dσ > c. (4.33)

If µ is a positive Borel measure on ∂M , we have∫
U

dU

∫
∂M

|Wt ◦ U ◦ f |2 dµ > c

∫
∂M

dµ, (4.34)

and therefore we can find Uk such that∫
∂M

|Wt ◦ Uk ◦ f |2 dµ > c

∫
∂M

dµ. (4.35)

Note that the results in the theorem remain true if we consider Wt ◦Uk ◦f instead

of Wt ◦ f . We add another property for this f -polynomial:

Proposition 4.3.1 There exists a positive constant c such that, for k ∈ N and Wk◦f

as defined, we have

1. Wk ◦ f is an homogeneous f -polynomial of degree k,

2. |Wk ◦ f(ζ)| 6 1,

3.
∫
∂M
|Wk ◦ f |2 dσ > c, and

4.
∫
∂M
|Wk ◦ f |2 dµ > c

∫
∂M

dµ, if µ is a positive Borel measure.

4.4 Inner Functions

Any holomorphic function can be written as a series of homogeneous polynomials:

h(z) =
∞∑
k=0

hk(z) (4.36)
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Therefore h ◦ f can be written as a series of f -homogeneous polynomials

h ◦ f(z) =
∞∑
k=0

hk ◦ f(z) (4.37)

Let E be a set of nonnegative integers, an (E, f)-polynomial is a finite sum of the

form
∑

k∈E Fk, where Fk is a f -homogeneous polynomial of degree k. If we take k

range from 0 to ∞, we call this series an (E, f)-function.

If, additionally, E is such that there are such integers am (m = 1, 2, 3, . . .) that

E contains j + am for j = 1, 2, . . . ,m, we say that E is an LI-set, which means E

contains arbitrarily long intervals of consecutive integers. A quick result is that the

removal of any finite subset of an LI-set still gives an LI-set.

Proposition 4.4.1 Suppose that ϕ ∈ C(B), E is an LI-set, and for k = 1, 2, . . ., fk

is an f -homogeneous polynomial of degree k, with |fk| 6 1 on M .

Then there is a sequence {ki}, and there are (E, f)-polynomials Fi such that

lim
i→∞
|Fi(z)− fki(z)ϕ

(
f(z)

)
| = 0 (4.38)

uniformly on M .

The following gives a proof of this proposition, which is analogous to Rudin’s

in [30], with a few necessary modifications. First of all, we need to give a Cauchy

integral formula for our case.

Using the change of variables z = f(w) and applying the known Cauchy integral

over S, we have

F (f(w)) =
1

N

∫
∂M

F (f(ζ)) dσM(ζ)(
1− 〈f(w), f(ζ)〉

)2 . (4.39)
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We may assume that ϕ(z) is actually a polynomial of z1, z2, z1 and z2, and we first

consider the monomial case ϕ(z) = ψ(z) = z(α1,α2)z(β1,β2).

We then define

Pk =
1

N

∫
∂M

fk(ζ)ϕ
(
f(ζ)

)
dσM(ζ)(

1− 〈f(z), f(ζ)〉
)2 . (4.40)

Note that fk(ζ) is a finite sum of terms of the form f(ζ)(i,k−i). We expand

(1 − 〈f(z), f(ζ)〉)−2, and due to (4.14), we are only interested in the following non-

vanishing integral, with the integer t to be fixed:

∫
∂M

f(ζ)(α1,α2)f(ζ)
(β1,β2)

f(ζ)(i,k−i)
(
f1(z1)f1(ζ) + f2(z2)f2(ζ2)

)t
dσM(ζ). (4.41)

We compute

(
f1(z)f1(ζ) + f2(z)f2(ζ)

)t
=

t∑
j=0

(
t

j

)
f(z)(j,t−j)f(ζ)

(j,t−j)
. (4.42)

Therefore, in order for the integral to be nonzero, we must have relations
α1 + i = β1 + j,

α2 + k − i = β2 + t− j,
(4.43)

from which we obtain

t = k + (α1 + α2)− (β1 + β2), (4.44)

and this fixes t.

So we can conclude that Pk defined in (4.40) is actually an f -homogeneous poly-

nomial of degree k + |α| − |β|.

Taking into consideration that ϕ ◦ f(z) =
∑
Cαβf(z)αf(z)

β
, and that E is an

LI-set, we can check that Pk is an (E, f)-polynomial for infinitely many k.

58



To check for uniform convergence, we first note that

Pk(z)− fk(z)ϕ
(
f(z)

)
= Ξk(z) =

1

N

∫
∂M

fk(ζ)
(
ϕ
(
f(ζ)

)
− ϕ

(
f(z)

))
dσM(ζ)(

1− 〈f(z), f(ζ)〉
)2 (4.45)

for z ∈M, ζ ∈ ∂M − {z}.

Then we can check that

lim
k→∞

Ξk(z) = 0. (4.46)

Noting that {Ξk} is equicontinuous completes our verification of the proposition.

Now, suppose that ϕ is a positive LSC function on B, that is, lim supB3ξ→ξ0 ϕ(ξ) >

ϕ(ξ0) for any ξ0 ∈ B. We also suppose that ϕ ◦ f ∈ L2(µ). In fact, we may simply

assume that ϕ ∈ C(B) because we can use increasing sequences of positive continuous

functions to approximate LSC ϕ from below.

According to the result in Proposition 4.3.1, for any k, we can find f -homogeneous

polynomials Wk ◦ f such that |Wk ◦ f | 6 1 and∫
∂M

|(Wk ◦ f)(ϕ ◦ f)|2 dµ > c

∫
∂M

(ϕ ◦ f)2 dµ. (4.47)

As the constant c in Proposition 4.3.1 is fixed, we can choose another positive

constant C sufficiently small, such that C(2−C) < c/2. Then applying to Proposition

4.4.1, we can find an (E, f)-polynomial F and one Wk ◦ f with the relation

|F − (Wk ◦ f)(ϕ ◦ f)| < Cϕ ◦ f, (4.48)

since Cϕ ◦ f > 0.

Then it comes to two cases. If |F | 6 |(Wk ◦ f)(ϕ ◦ f)|, then we have |(Wk ◦ f)(ϕ ◦

f)| − |F | < Cϕ ◦ f , which indicates that

|(Wk ◦ f)(ϕ ◦ f)| −Cϕ ◦ f < |F | 6 |(Wk ◦ f)(ϕ ◦ f)| 6 ϕ ◦ f < (1 +C)ϕ ◦ f, (4.49)

59



because |Wk ◦ f | 6 1; if instead, |F | > |(Wk ◦ f)(ϕ ◦ f)|, it follows that |F | − |(Wk ◦

f)(ϕ ◦ f)| < Cϕ ◦ f , and we have

|(Wk ◦ f)(ϕ ◦ f)| − Cϕ ◦ f < |(Wk ◦ f)(ϕ ◦ f)| < |F | < (1 + C)ϕ ◦ f. (4.50)

Therefore, in either case, we always have

|(Wk ◦ f)(ϕ ◦ f)| − Cϕ ◦ f < |F | < (1 + C)ϕ ◦ f. (4.51)

Now, let P = 1
1+C

F . From the inequality (4.51), we immediately have the result

|P | = 1

1 + C
|F | (4.52)

<
1

1 + C
(1 + C)ϕ ◦ f = ϕ ◦ f.

Additionally, we estimate that, as |(Wk ◦ f)| 6 1,

|F |2 > |(Wk ◦ f)(ϕ ◦ f)|2 − 2C|(Wk ◦ f)(ϕ ◦ f)|ϕ ◦ f + C2(ϕ ◦ f)2 (4.53)

> |(Wk ◦ f)(ϕ ◦ f)|2 − (2C − C2)(ϕ ◦ f)2.

This gives us:∫
∂M

|P |2 =
1

(1 + C)2

∫
∂M

|F |2 (4.54)

>
1

(1 + C)2

∫
∂M

(
|(Wk ◦ f)(ϕ ◦ f)|2 − (2C − C2)(ϕ ◦ f)2

)
>

1

2

∫
∂M

(
|(Wk ◦ f)(ϕ ◦ f)|2 − (2C − C2)(ϕ ◦ f)2

)
>

1

2

(
c− C(2− C)

) ∫
∂M

(ϕ ◦ f)2

=
c

4

∫
∂M

(ϕ ◦ f)2,

with our assumptions 0 < C < 1 and C(2− C) < c/2.

To summarize, we re-state the result in a theorem:
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Theorem 4.4.1 If ϕ is a positive LSC function on B and ϕ◦f ∈ L2(µ), we can find

an (E, f)-polynomial P such that |P (z)| < ϕ
(
f(z)

)
and∫

∂M

|P |2 dµ > c

4

∫
∂M

(ϕ ◦ f)2 dµ,

where c is the same positive constant that appears in Proposition 4.3.1.

We can now verify the existence of inner functions.

Theorem 4.4.2 Suppose ϕ > 0 on S, ϕ ◦ f ∈ LSC ∩ L2(σM), and E is an LI-

set. Then there is a nonconstant E-function F ∈ H2(M) such that for almost every

ζ ∈ ∂M , with respect to the measure σM , we have

|F ∗(ζ)| = ϕ ◦ f(ζ). (4.55)

Proof We start with an (E, f)-polynomial P0 satisfying |P0| < ϕ ◦ f , and denote

the set of integers which are degrees of monomials in P0 by E0. For example, we may

take P0 = 0.

Letting Q0 = P0, then on ∂M we have

|Q0| < ϕ ◦ f. (4.56)

Thus, according to Theorem 4.4.1 we can construct an (E \E0, f)-polynomial P1

such that |P1| < ϕ ◦ f − |Q0| on ∂M , and∫
∂M

|P1|2 dσM >
c

4

∫
∂M

(ϕ ◦ f − |Q0|)2 dσM . (4.57)

Denote the set of integers which are degrees of monomials in P1 by E1, and note that

E0 ∩ E1 = ∅ and therefore, P0 and P1 are orthogonal to each other. We can still

regard P1 as an (E, f)-polynomial.
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Now, suppose we have found pairwise orthogonal (E, f)-polynomials P0, P1, . . . , PN

such that

|QN | < ϕ ◦ f (4.58)

and ∫
∂M

|PN |2 dσM >
c

4

∫
∂M

(ϕ ◦ f − |QN−1|)2 dσM , (4.59)

where we define Qj =
∑j

i=0 Pi.

Then, by Theorem 4.4.1 we can find an
(
E \ ∪Ni=0Ei, f

)
-polynomial PN+1, which

can be also regarded as an (E, f)-polynomial, satisfying

|PN+1| < ϕ ◦ f − |QN |, (4.60)

and ∫
∂M

|PN+1|2 dσM >
c

4

∫
∂M

(ϕ ◦ f − |QN |)2 dσM . (4.61)

We note that PN+1 is orthogonal to P1, . . . , PN . By definition of QN+1 and the

inequality (4.60), we see that

|QN+1| 6 |QN |+ |PN+1| < |QN |+ ϕ ◦ f − |QN | = ϕ ◦ f. (4.62)

In short, we start with an (E, f)-polynomial P0 and then construct Q0. If we

already have pairwise orthogonal (E, f)-polynomials P1, . . . , PN , with QN = P0 +

· · ·+ PN , satisfying

|QN | < ϕ ◦ f (4.63)

and ∫
∂M

|PN |2 dσM >
c

4

∫
∂M

(ϕ ◦ f − |QN−1|)2 dσM , (4.64)
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then we can inductively construct an (E, f)-polynomial PN+1 orthogonal to Pi, 0 6

i 6 N , and QN+1 = QN + PN+1, such that

|QN+1| < ϕ ◦ f (4.65)

and ∫
∂M

|PN+1|2 dσM >
c

4

∫
∂M

(ϕ ◦ f − |QN |)2 dσM . (4.66)

Next, we notice that for any N , because of the orthogonality of {Pi},∫
∂M

|QN |2 dσM =

∫
∂M

∣∣∣ N∑
i=0

Pi

∣∣∣2 dσM =
N∑
i=0

∫
∂M

|Pi|2 dσM . (4.67)

On the other hand, by the inequality (4.63), we have

∫
∂M

|QN |2 dσM <

∫
∂M

(ϕ ◦ f)2 dσM . (4.68)

Therefore we have the relation

∞∑
i=0

∫
∂M

|Pi|2 dσM 6
∫
∂M

(ϕ ◦ f)2 dσM , (4.69)

and it makes sense to define F =
∑∞

i=0 Pi, because this series converges and further-

more we know that F ∈ H2(M).

According to (4.67), we can deduce that |QN | → |F ∗| in L2(σM). However, by

(4.64), whose left-hand side goes to 0 as N →∞, we have |QN | → ϕ ◦ f in L2(σM).

Thus, we can conclude that |F ∗(ζ)| = ϕ ◦ f(ζ) for almost every ζ ∈ ∂M , and the

theorem is then proved.

We are finally ready to state the main result of the existence of inner functions,

simply a special case of Theorem 4.4.2, taking ϕ ≡ 1:
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Corollary 4.4.1 Inner functions exist for the domain M .

As a reminder, M ⊂ C2 is such a compact domain with smooth boundary that

there exists a ramified holomorphic mapping f : C2 → C2 with f(M) = B and

f(∂M) = S. This assumption provides room for domains more general than strongly

pseudoconvex ones, such as Mp = {(z1, z2) ∈ C2 : |z1|2 + |z2|2p < 1} which we have

already seen.
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5. Concluding Remarks

Before ending the thesis, we would like to give several remarks about potential work

to do in the future.

In Chapter 2 we are discussing the problem in C2 and obtain the result that

admissible approach regions for domains of finite type are optimal and there is no

Fatou’s theorem for approach regions that are complex tangentially broader than

admissible ones. We are wondering if this method could also be applied to explore

domains of finite type in complex space of higher dimension, because we will have

to be more careful about the definition of admissible approach regions and analyzing

inequalities.

That’s the same problem for Chapter 3. In this chapter we give several results

regarding the admissible convergence as supplements to the Lindelöf principle. If we

wish to move on to domains of finite type in Cn, n > 2, we will first need to figure out

the shape of admissible approach regions and consider applying the same method.

In Chapter 4 our result shows the existence of inner functions a more general type

of domains. Although we can think of this for such domains by just composing with

the mapping f , we provide more work than that such as set up integral formulas and

construct RW-sequences for our case. Actually, if we just consider a specific domain,

for example, M2 as mentioned, we may approach by setting up different measures at
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the beginning instead of making compositions. But the idea is still the same. This

also provides insight for some domains of finite type. However, not all domains of

finite type can be related to the unit ball in such a way. Therefore, it is still unknown

whether for all domains of finite type inner functions exist. There are other methods

and tools we may take advantage of. We may also take into consideration that the

weakly pseudoconvex points form a set of measure zero on the boundary of domains

of finite type, which is a result from the work of D. Catlin in [5].
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[12] P. Fatou Séries trigonométriques et séries de Taylor, Acta Math. 30(1906), 335-

400.

[13] G. Hardy and J. Littlewood A maximal inequality with function-theoretic appli-

cations, Acta Math. 54(1930), 81-116.

[14] M. Hakim and N. Sibony Fonctions holomorphes bornées et limites tangentielles,

Duke Math. J. 50(1983), 133-141.

[15] M. Hakim and N. Sibony Fonctions holomorphes bornées sur la boule unite de

Cn, Invent. Math. 67(1982), 213-222.

[16] J. J. Kohn Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimen-

sion two, J. Diff. Geom. 6(1972), 523-542.

68
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