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FITC images (bottom row) of the tumor region. The FITC image has the pre-injected auto-

fluorescence subtracted from the tumor ROI. (c) Depth estimate maps for each of the tumors. (d) 

Pixel-by-pixel depth estimates for each tumor ROI. (e) Representative tumor histology (M2-LF) 

showing cypate fluorescence (top left), FITC fluorescence (bottom left), overlay of both channels 

(top right), and bright field image (bottom right). (f) Comparison of average measured depth vs. 

average estimated depth for each tumor. ...................................................................................... 71 

Figure 4-7: (a) NIR image of LS904 distribution using the cypate channel. Dual-wavelength 

images of the tumor ROI in the (b) cypate, and (c) FITC channel. (d) Cypate ex vivo bio-

distribution showing organ distribution of the dye, with (e) quantification. (f) Ex vivo tumor 



x 

 

images of a mouse that was not injected with dye (left) and injected with LS904 (right). (g) 

Quantification of the ex vivo image signals for cypate and FITC. ................................................ 72 

Figure 4-8: In vivo tumor images used for post processing. (a) Cypate images (top row), and (b) 

FITC images (bottom row) of the tumor region. The FITC image has the pre-injected auto-

fluorescence subtracted from the tumor ROI. (c) Depth estimate maps for each of the tumors. (d) 

Pixel-by-pixel depth estimates for each tumor ROI. (e) Representative tumor histology (T2) 

showing cypate fluorescence (top left), FITC fluorescence (bottom left), overlay of both channels 

(top right), and bright field image (bottom right). (f) Comparison of average measured depth vs. 

average estimated depth for each tumor. ...................................................................................... 73 

Figure 4-9: (a) Images of silicone sections used to calculate absorption and reduced scattering 

coefficients at multiple wavelengths. Materials A, B, and C were white silicone sheets of 

different thicknesses and durometers. Material D was gray silicone, however it was too opaque to 

obtain optical parameter data. (b) Reduced scattering coefficients as a function of wavelength for 

each material tested. (c) Absorption coefficients as a function of wavelength for each material 

tested. (d) Average fluorescence depth estimates of the simulated silicone vessel under the 

silicone sheets for each material using the optical parameter approach. Materials B and C were 

each stacked to show multiple depth estimates for the same material. (e) Average depth estimate 

deviation from measured for each material. (f) Average fluorescence depth estimates in vivo 

using the optical parameter approach. (g) Average depth estimate deviation from measured for 

each tumor. .................................................................................................................................... 76 

Figure 5-1: Representative fluorophore systems commonly used in lifetime imaging and 

associated photoluminescence lifetimes. These fluorophores can be used in their native forms 

and/or after conjugation to other entities. ..................................................................................... 83 

Figure 5-2: (a) Mean fluorescence lifetime of FR bound LS872 shows significant difference from 

that of FR-Cypate and of LS872 in PBS only. (a) Fluorescence lifetime of BSA-LS872 and BSA-

Cypate are similar (difference not significant). (c) Cypate shows some changes in lifetime in 

presence of FR which can be attributed to non-specific interaction with FR. Plot shows mean±sd 

(n=3). ............................................................................................................................................. 96 

Figure 5-3: Fluorescence lifetime imaging of LS872 (a-c) and cypate (d-f) in KB cells. Intensity 

images of LS872 (a) shows membrane binding and distinct intracellular vesicular signal, while 

cypate (d) shows no membrane signal but diffused cytoplasmic and vesicular signal.  Lifetime 

images LS872 (b,c) show distinct lifetimes with lower lifetime components  (~460 ps) on the 

membrane and some vesicles, and a high component (750 ns) restricted to only vesicles. 

.Lifetime images of cypate show the absence of the lower component. Representative lifetime 

histograms show the existence bimodal distribution in LS872 and only one lifetime in cypate 

close to the higher component. ..................................................................................................... 97 

Figure 5-4: Tracking receptor mediated endocytosis of LS872 using fluorescence lifetime 

imaging (a-d). The lower lifetime component ~0.46 ns in green shows FR bound LS872 while 

any higher lifetime indicates presence of free LS872. In early time points several intracellular 
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structures with only peripheral signal corresponding to the bound fraction are observed (e). 

Changes in free and bound fraction of LS872 in cells over time (f), mean ± sd (n=3). ............... 99 

Figure 6-1: Molecular structures of near infrared fluorescent (NIR) broad spectrum tumor 
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Figure 6-2: Tumor targeting capability of LS811. (a) Increased amounts of mouse serum albumin 

(MSA) leads to increase in fluorescence signal indicating better solubilizing of LS811 for animal 

injection. (b) Representative in vivo images of LS301 (left) and LS811 (right) in KP2-luc-GFP 

pancreatic cancer xenograft models at 23 h post injection. Red circles indicates tumors. (c) 

Corresponding bio-distribution at post injection 23 hours for LS301 (mean ± sd, n=3) and LS811 

(n=1). ........................................................................................................................................... 106 

Figure 6-3 : Absorption (a) and emission (b) spectra of LS811 and the cold labeling reaction 

mixtures with Cu(II) and In(III), diluted in DMSO. Lack of blue shift in absorbance indicates no 

or minimal dimerization. Lack of fluorescence quenching in In(III) labeling confirms no 

corresponding dimerization. Fluorescence quenching is observed in Cu(II) labeling can be 

attributed to the effect of the ions. .............................................................................................. 107 

Figure 6-4: Multimodal imaging of  In111-LS811 in PyMT spontaneous breast cancer mouse. (a) 

NIR image of dorsal side at 27 hours post injection showing high signal from tumors in 

mammary fat pads (white arrows) and liver (green arrow). (b) SPECT/CT image at post injection 

23 hours showing high signal from tumors (white arrows), liver (green arrow) and kidney (blue 

signal). Cross-sectional SPECT/CT images showing localized signal from largest tumor by the 

liver (c), other smaller tumors near the chest (d) and intra-femoral signal (e). Bio-distribution of 

In111-LS811 at 27 hours post injection using NIR signal (mean signal/surface area) (f) and 

counts per minute per gram of tissue (cpm/g) (g). Error bars in tumor signal indicates mean ± sd 

from multiple tumors form same mouse. .................................................................................... 108 

Figure 6-5: In111-LS811 imaging in a 4T1lucGFP xenograft model. (a) Representative 

SPECT/CT image of the thorax showing high signal from tumor (white arrow, liver (green arrow 

and some signal from mammary fat pad (blue arrow). White bar represents CT signal and 

rainbow bar represents SPECT signal. (b) Bio distribution at 24 h post injection from a 
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Figure 6-6: In vivo tumor imaging with Cu64-LS811. Representative white light image (a), NIR 

image (b), and un-collimated gamma scintigraphy image (c) of a PyMT mouse at 24 h post 

injection shows obvious tumor (white arrow, liver (green arrow). (d) Bio-distribution at post 

injection 24 h (radioactivity, mean ± sd, n=9 tumors in 3 mice). ............................................... 109 

Figure 7-1: a) In vitro setup showing the optical configuration. An external light source was used 

to illuminate tubing containing CTCs in either PBS or blood. The image was magnified using the 

objective and recorded in video files using a NIR sensitive CCD. b) Mouse imaging setup 

showing LED illumination through the microscope. c) Photograph of mouse imaging using 

internal thoracic artery while fluorescent cells injected in the left ventricle using a catheter. 

Yellow box shows the field of view captured while imaging. .................................................... 117 
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Figure 7-2: a) Single frame showing a CTC in media. b) Signal intensity along a vertical line for 

a single frame. c) Method for estimating the number of objects passing through the vertical line. 

d) Method for detecting the relative object velocity.  e) Method for calculating the relative object 

2D area. ....................................................................................................................................... 119 

Figure 7-3: Figure 3: a) Absorption and emission spectra of our NIR fluorescent compound in 

DMSO. b) Overlay of brightfield image with nuclear stain (Hoechst 33342, Blue) for blood 

incubated with NIR compound showing both RBCs (anucleate) and WBCs (nucleated). c) In the 

same field of view, no blood cells shows NIR signal (red). d) Overlay of NIR (red) and nuclear 

stain (blue) for a blood sample spiked with 4T1-luc-GFP cancer cells before incubation shows 

NIR signal only in the cancer cell (yellow arrow) but not white blood cells (white arrows). e) 

Cancer cells can be distinguished from blood cells by their GFP signal (green). Other similar 

cancer cells/clusters identified with NIR and GFP signal. f) Low magnification image of a drop 

of blood that was spiked with pre-labeled cancer cells as used in the experiments. Top panel 

shows color image of blood, bottom panel shows overlay with NIR signal (red) showing the 

fluorescent cells/clusters of various sizes (yellow arrows). ........................................................ 121 

Figure 7-4: a) Circulating green microbeads in media (yellow arrows). Yellow lines indicate 

capillary wall. b) Microsphere signal intensity vs. time crossing over the vertical line of interest. 

c) Relative object velocity. Line of squares indicates the same object, and the length of the line 

of squares indicates the duration that the object took to pass through the vertical line. The color 

of the squares represents the relative velocity (red max and blue min). d) The relative object 

areas shown visually over time. e) Histogram of the distribution of object areas over the full time 

of imaging. f) Plot of individual microsphere diameters detected using the algorithm. ............. 122 

Figure 7-5: a) NIR image of a simulated CTC flowing in PBS (yellow arrow). Yellow lines indicate 

capillary edge. Red arrow shows reflection of the excitation light which was avoided while 

choosing line of interest of running the algorithm. b) Relative velocity of each CTC detected. c) 

Relative area of each CTC detected. d) Histogram of the object areas for CTCs. e) NIR image of 

a simulated CTCC flowing in PBS (yellow arrows). f) Relative velocity of each CTCC detected. 

g) Relative area of each CTCC detected. h) Histogram of the object areas for CTCCs. ............ 124 

Figure 7-6: a) Color image of blood mixed with fluorescent CTCs and CTC clusters in the 

capillary. b) NIR image of the same sample. Yellow lines indicate capillary boundary. (c) 

Relative velocity of CTCs and CTC clusters in blood as detected using the algorithm. d) Relative 

areas of CTCs and CTC clusters in blood. e) Histogram of the object areas detected. .............. 125 

Figure 7-7: a) Bright field image of internal thoracic artery. b) Representative NIR image 

snapshot showing edges of blood vessel (blue dashed line) and a fluorescent object (yellow 

object) with higher contrast flowing through c) Corresponding contrast enhanced image. d)  

Relative velocity of the individual CTC detected. e) Relative area of the individual CTC 

detected. f) Histogram of the object area for the CTC. g) Relative velocity of each CTC cluster 

detected. h) Relative area of each CTC cluster detected. i) Histogram of the object areas for CTC 
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Figure 8-1: (a) Absorption and fluorescence spectra of LS668 in dimethylsulfoxide. Fluorescence 

microscopy images showing cellular internalization of LS668 (b) in NPR-C transfected cells, (c) 

inhibition of inter- nalization in presence of excess C-ANF peptide, and (d) absence of 

internalization in NPR-A transfected cells. Blue (DAPI, nuclear stain) and red (LS668). Scale: 

100  μm. ....................................................................................................................................... 134 

Figure 8-2: Coronal (depth ¼ 7 mm), sagittal and transverse sections of reconstructed 

fluorescence molecular tomography (FMT) signal from injured artery and corresponding control 

artery from a representative animal (rabbit 1). White lines indicate the position of the respective 

sagittal and transverse sections. (b) Schematic showing the relationship between the FMT images 

displayed to their orientation with respect to the tissue volume. (c) Time dependent changes in 

integrated fluorescence signal (mean AE SD, n ¼ 3) for injured and control arteries (*P ¼ 

0.0283; **P ¼ 0.0282). (d) Mean (n ¼ 2) fluorescence intensity obtained from the ex vivo 

injured artery containing the lesion and the control artery. Adjoining figure (inset) shows the 

fluorescence images (excitation/emission: 785 nm/ >800 nm) of the injured artery containing the 

lesion (top) and the control artery (bottom). ............................................................................... 136 

Figure 8-3: Ex vivo studies on the paraffin fixed sections of injured (top row) and control artery 

(bottom row) sections obtained at 8 weeks postsurgery. (a) Bright field images showing IEL, 

internal elastic lamina; A, adventitia; M, media; 1° NEO, primary neointima. Scale: 500 µm. (b) 

Corresponding fluorescence images (excitation/emission: 710±75 nm/810±90  nm) after ex vivo 

staining with LS668. Scale: 500 µm. (c) Immunohistochemistry on tissue sections with clone 

RAM11 antibody (1: 100 dilution; blue) for macrophages and counterstained with nuclear fast 

red. Scale: 250 µm. ..................................................................................................................... 138 
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Abstract 

Optical imaging and spectroscopy technologies offer the ability to provide structural and 

functional information in a fast, low-cost, ionizing radiation free, highly sensitive and high 

throughput fashion. The diverse contrast mechanisms and complementary imaging platforms form 

the foundation for the application of optical imaging in pre-clinical studies of pathophysiological 

development as well as direct clinical application as a tool for diagnosis and therapy. Fluorescence 

imaging techniques have been one of the most rapidly adopted methods in biology and 

biomedicine. Visualization of biological processes and pathologic conditions at the cellular and 

tissue levels largely relies on the use of exogenous fluorophores or their bioconjugates. Some 

fluorescent molecular probes provide usable contrast for disease diagnosis due to their 

responsiveness to interactions with other molecular species and/or immediate microenvironment. 

As a result, understanding exogenous fluorescent contrast mechanisms will allow the development 

of efficient strategies for biomedical fluorescence imaging. 
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The present work focuses on exploring novel fluorescent molecular probe strategies for imaging 

cancer and cardiovascular diseases. We have developed a platform for synthesizing activatable 

fluorescent molecular probes using the fluorescence quenching properties of copper (II) ions. We 

used these activatable probes for rapid imaging of cancerous tissue in vivo in mice. While 

developing these molecular probes, we discovered an unexpected molecular interaction that yields 

stable dimeric molecules. This finding can potentially enable the development of new molecular 

entities for modifying the signaling properties of fluorescent dyes to minimize background 

fluorescence. 

Although planar fluorescence imaging methods using exogenous molecular probes provide rapid 

information about molecular processes in vivo, extraction of depth information require complex 

data acquisition and image analysis methods. By designing a dual emission fluorescent probe 

incorporating two spectrally different fluorophore systems, we developed a method to successfully 

estimate the depth of fluorescent inclusions from planar imaging data and demonstrated the 

potential of using this approach to locate a blood vessel and tumorous tissue in mouse in vivo. 

An important feature of fluorescence methods is the availability of various techniques that provide 

complementary information. Combining the fluorescence intensity and lifetime properties of a 

biologically targeted near infrared fluorescent probe, we demonstrate an effective way to 

distinguish specific from nonspecific uptake mechanisms in cancer cells, an approach that can be 

translated in vivo. Alternatively, dynamic fluorescence imaging technique expands the scope of 

applications to include detection and estimation of the size of circulating cancer cells and clusters. 

The approach developed in this work could allow longitudinal monitoring of these cells, which are 

implicated in cancer metastases. 
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To circumvent the shallow penetration of light using optical methods, we developed multimodal 

imaging approaches by incorporating a radionuclide for nuclear imaging into a broad spectrum 

near infrared fluorescent tumor targeting agent. This molecular construct allows for noninvasive 

whole body nuclear imaging of tumors, followed by fluorescence image guided resection. In each 

of these areas, novel fluorescent molecular probes were developed, characterized and applied to 

solve critical biomedical problems. 
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Chapter 1 Introduction 
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1.1. Introduction 

Optical imaging technologies offer the ability to provide molecular and functional information in 

a fast, low-cost, high throughput, highly sensitive fashion.2 This imaging modality exploits the 

interaction of light with biological tissue leading to a number of photophysical events such as 

absorption, scattering, and fluorescence emission (Figure 1-1). These diverse photophysical events 

provide optical imaging contrast which can be used to obtain both functional and structural 

information from the tissue of interest.3 In optical imaging, light interaction with tissues begins 

with the scattering of light by cellular organelles or absorption by chromophores (endogenous or 

exogenous) present in the tissue of interest.  Light scattering is defined as the deviation of a photon 

path from a straight trajectory as it travels through a heterogeneous medium. Mie’s theory provides 

the most useful approximation for describing light scattering in biological tissue.4,5 The theoretical 

and practical application of light scattering in biomedical imaging has been described in detail 

earlier.6 In absorption optical imaging, contrast is generated by the differential intensity of the 

Figure 1-1: Schematic diagram of light pathways in a turbid media such as biological tissue (bronchial tissue shown 

here). 1 
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absorbing chromophores in the target tissue relative to the surroundings. Some intrinsic absorbers 

in the body that are used for generating contrast are oxyhemoglobin, deoxyhemoglobin, melanin, 

myoglobin, and waters. The energy of the light absorbed can also be converted or dissipated as 

heat to the surrounding tissue, a phenomenon that is useful for generating contrast for 

photoacoustic spectroscopy and imaging. 7 A special category of chromophores can convert this 

absorbed energy into re-emitted light at longer wavelengths than the incident light. This 

phenomenon is called fluorescence and the emitted light can be used for imaging the tissue of 

interest. These fluorescent molecules can be indigenous to the tissue of interest, in which case the 

phenomena is known as auto-fluorescence. In general, the term fluorescence is used for emission 

signal generated by exogenous contrast agents that are custom synthesized or expressed in cells 

and administered into the body to achieve contrast. In yet another type of optical contrast, light 

can be generated and emitted as a result of a biochemical reaction, such as the oxidation of luciferin 

by luciferase enzyme. This process is termed bioluminescence. The versatility of optical imaging 

methods and the diverse mechanism to generate optical contrast forms the basis of the optical 

imaging platforms that include spectroscopic, planar, diffuse, and hybrid biomedical optics 

methods. This chapter focuses on brief introduction to optical fluorescence imaging and its various 

characteristics that are explored in the following chapters for applications in imaging cancer and 

cardiovascular diseases.  

1.2. Fluorescence imaging 

 Singlet state fluorescence occurs when a fluorophore molecule absorbs radiation of specific energy, 

followed by the emission of photons as the molecule returns to the ground state, as described in 

the Jablonski diagram [Figure 1-2]. Because energy is lost between the excitation and emission 
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processes, fluorescence is emitted at a higher wavelengths than those of the excitation radiation.8 

Several factors affect molecular fluorescence, including the molecular structures and associated 

vibrational energy levels as well as the physical and chemical environment of the fluorophores.8 

Perturbation of the fluorescence of many organic molecules could decrease the quantum yield at 

the same emission wavelength or cause spectral shift. Both effects are useful for biological 

applications. Within linearity, changes in the fluorescence intensity can be used to determine the 

concentration of fluorophores in a medium. Shifts in the spectral profile of fluorophores can 

provide quantitative data via ratiometric measurements at two different wavelengths. Although 

these approaches are highly reliable for reporting biological events in solutions or shallow 

surfaces, enhanced light scattering and absorption in heterogeneous mediums such as cells and 

tissue can adversely affect the fluorescence intensity in a less predictable manner. For these 

reasons, most fluorescence measurements in cells and tissue are typically reported on a relative 

intensity scale using calibration standards or by self-referencing. A variety of endogenous and 

exogenous fluorescent molecules are widely used for preclinical and clinical imaging of 

pathological processes.  
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Figure 1-2: Jablonski diagram showing various processes following absorption of light by the fluorophore.9 

1.2.1 Endogenous fluorescent molecules 

Biological tissue has intrinsic fluorescence (also known as auto-fluorescence) due to endogenous 

fluorogenic molecules that emit in the UV and visible wavelengths.10 The most prominent tissue 

fluorophores include nicotinamides and flavins, which are key molecules regulating cellular 

metabolism; aromatic amino acids (tryptophan, tyrosine, phenylalanine and histidine) which form 

the basic building blocks of proteins in the body; porphyrins which carry out the functions of 

transporting respiratory gas and fluorescent pigments (lipofuscins, melanin). Polymeric 

biomolecules, which are fluorescent, include structural proteins collagen and elastin. Several of 

these intrinsic fluorophores perform critical cellular and tissue functions and therefore are used. 

As a result, disruption of normal function can alter the endogenous fluorescence which can serve 

as a source of contrast for diagnosing pathophysiological processes. They are also regularly used 

to study the mechanisms of cellular and molecular processes and interactions in their native 

conditions.10,11  
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1.2.2 Exogenous fluorescent contrast agents 

The shallow penetration of light in the UV and visible light regions of the electromagnetic 

spectrum, as well as the low expression of a target endogenous fluorophore in tissues of interest 

confine the applications of conventional optical imaging to specialized cases of pathophysiology. 

In addition, the often weak and nonspecific nature of the endogenous fluorescence further requires 

long signal acquisition time and sophisticated image analysis software to enhance detection 

sensitivity and decipher different types of tissue. These limitations can be overcome by the use of 

exogenous contrast agents and molecular probes.11 Exogenous contrast allows customization of 

biological functionality by conjugation of the agent to appropriate targeting moiety. Fluorescent 

contrast agents that absorb and emit in the visible spectral range are well suited for superficial 

tissue imaging (for example diagnosis of skin cancer) and studies of cellular processes via 

microscopy. However, visible fluorescence signal is greatly attenuated in thick tissue primarily 

due to absorption and scattering. In the context of exogenous contrast, auto fluorescence signal 

provides a high background. In order to bypass these problems, fluorescent agents that absorb and 

emit in the near infrared (NIR) window have been developed (Figure 1-3). The NIR window allows 

greater depth penetration into biological tissue due to reduced absorption from biological 

chromophores and also bypasses tissue auto-fluorescence. Therefore NIR window is greatly suited 

for in vivo and deep tissue imaging. The Achilefu lab has been a pioneer in the development of 

several NIR fluorescent contrast agents for cancer imaging.  
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Figure 1-3: The NIR window (700 - 900 nm), showing the absorption coefficients of oxygenated hemoglobin 

(HbO2), deoxygenated hemoglobin (Hb), and water (H2O) reaching a minimum, making the therapeutic window 

ideal for in vivo imaging.12 

 

1.3. Fluorescence Lifetime Imaging 

Apart from the conventional intensity measurements, fluorescence also allows us to explore other 

features for imaging. An example is fluorescence lifetime (FLT or τ) of fluorophores, which is the 

average time a molecule spends in the excited state between absorption and emission of radiation 

before returning to the ground state. The lifetimes of fluorophores can range from picoseconds to 

hundreds of nanoseconds, which can be measured by the use of modern optical instrumentation. 

Mathematically, FLT is calculated as the time taken for the number of excited molecules to decay 

to 1/e or 36.8% of the original population of excited molecules. Fluorescence typically follows 

first order kinetics. As shown in the intensity decay figure [Figure 1-4], the fluorescence lifetime, 

τ, is the time at which the intensity has decayed to 1/e of the original value. The decay of the 

intensity as a function of time is given by:  
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I(t) = α𝑒−𝑡/τ
  ………………….(1) 

Where, I(t) is the intensity at time t, α is a normalization term (the pre-exponential factor) and τ is 

the lifetime. 

Unlike fluorescence intensity-based imaging, FLT of molecular probes is less dependent on the 

local fluorophore concentration or the method of measurement, which minimizes imaging artifacts 

and provides reproducible quantitative measurements over time. Accurate determination of the 

FLT of fluorophores and application in biological imaging and spectroscopy depends on both 

instrumentation and understanding of the fluorophore system. The FLT of a fluorophore can be 

measured by spectroscopic, microscopic, or in vivo imaging methods.10 Several FLT instruments 

are commercially available for spectroscopic (e.g., Horiba) and microscopic (e.g., PicoQuant) 

measurements. For in vivo imaging, many studies rely on custom-built FLT systems because 

commercial sources are not available. 
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Figure 1-4: An intensity decay figure showing the fluorescence lifetime, Ƭ, which is the time at which the intensity 

has decayed to 1/e of the original value.13 

 

1.4. Multimodal contrast agents 

The idea behind using multimodal contrast agents is to obtain complementary diagnostic 

information through the administration of a single imaging agent. Dual labeled agents comprising 

of fluorescence and radionuclide moieties are one of the widely explored approaches. Using these 

agents whole body diagnostic imaging can be performed using nuclear imaging while the depth 

limited fluorescence signal can be used to provide real time image guidance during surgery. 

Examples include, fluorescence/PET or fluorescence/SPECT agents14, fluorescence/ultrasound 

agents15, and fluorescence/MRI agents14.  
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1.5. Fluorescence imaging platforms for in vivo imaging 
 

In this section, the basic principles of planar and diffuse optical imaging are described. These 

imaging techniques are used in the following chapters to perform optical fluorescence imaging. 

Detailed description of these methods have been published earlier.16,17 

1.5.1 Planar Imaging 

Planar fluorescence imaging techniques are most widely used for in vivo imaging. In the most 

basic design, light of appropriate wavelength is used to excite the fluorescent molecules. A high 

sensitivity camera (CCD/CMOS) is coupled to a high numerical aperture objective lens, which 

captures images with long exposure times. Desired fluorescence is separated from other signals by 

the use of appropriate band-pass filters. Planar imaging utilizes both ballistic and diffused light to 

rapidly obtain wide-field surface weighted projected fluorescent images of the tissue of interest 

(Figure 1-5). Such images may be used for real time feedback in pre-clinical and clinical 

applications. Exogenous fluorescent contrast agents can be used to provide contrast and thus 

identify the features of interest. When near-infrared (NIR) fluorescent dyes are used, tissues can 

be interrogated to greater depths (centimeter) than with visible light due to the NIR optical window. 
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Figure 1-5: Schematic of the forward-scattered ballistic, snake, and diffusive photons propagating through a turbid 

medium. B, ballistic; S, snake; D, diffusive.18 

   

1.5.1 Diffuse Optical Tomography & Fluorescence Molecular 

Tomography 

To image light originating from greater depths, optical imaging relies on diffuse photons.19 

Diffuse Optical Tomography (DOT) involves combining signal measurements from multiple 

angles to computationally back calculate the spatial location of an object of interest in a scattering 

media such as biological tissue. DOT collects measurements of a 3D volume using a source-

detector array, and these multiple measurements are then used to mathematically localize each 

volume element’s relative contribution to the overall signal. DOT has been applied for imaging of 

brain function and breast cancer in humans. 20,21  

Fluorescence Molecular Tomography (FMT) employs the same principles of DOT, where 

fluorescence instead of absorption is captured. With the help of appropriate fluorescent contrast 

agents, FMT has been applied to image tissue of interest at centimeter depths in small animals.22-

24  One of the drawbacks of FMT is that the calculations require extensive computational capacity, 

which limits real-time feedback applications. 
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1.6. Conclusions 

In this chapter we have briefly discussed basic principles, contrast mechanism and instrumentation 

needed for fluorescence optical imaging. In the following chapters, we will describe development 

application of custom fluorescent imaging agents and techniques to address specific biomedical 

imaging problems. 
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Chapter 2  

Copper quenched fluorescent activatable 

molecular probes 
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2.1 Introduction 

 Fluorescent molecular probes have emerged as indispensable tools for detecting, imaging or 

quantifying diverse chemical and biomolecular processes with exceptional sensitivity. Activatable 

fluorescent probes are attractive in particular, as they allow for the modulation of the output 

fluorescence signal in response to the targeted molecular interaction, thus amplifying the signal in 

the target while minimizing the background signal.25-27 For example, activatable probes based on 

protease susceptible peptides can be used for imaging and quantifying pathophysiological protease 

activity.28-30 However, the development of efficient, versatile and biocompatible activatable probes 

remains challenging and an important area of research. Many activatable probes have been 

designed based on Förster Resonance Energy Transfer (FRET), which utilizes the highly efficient 

non-radiative transfer of excited state energy between molecules in close proximity. 27,29 

 In general, efficient self-quenched activatable probes are obtained when multiple 

fluorophores are conjugated to polymers or nanoparticles. The slow activation and clearance of 

these macromolecules from blood require prolonged imaging time to achieve high contrast over 

background signal.27,31 An alternative approach is to use small molecular fluorophore-quencher 

design to improve response time without loss of high signal-to-background contrast.32 There is a 

paucity of efficient fluorescent quenchers in the near infrared (NIR) fluorescence region, an 

important spectral window for imaging deep tissue in vivo with minimal interference from tissue 

auto-fluorescence.33,34 Most NIR dyes have narrow Stokes shifts, necessitating the development 

of tailored quencher molecules. In addition, many quencher molecules are themselves fluorescent, 

which result in the use of suboptimal excitation wavelengths to minimize signal overlap between 

the two dyes. Although non-fluorescent quencher molecules are available for visible dyes, efforts 
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to develop stable quenchers for broad spectrum NIR activatable probes remain a challenge. 27,35 A 

further complication is the elaborate synthetic route needed to prepare quencher dyes in the NIR 

region, as evidenced by the complex structure and high cost of an available commercial NIR 

quencher dye, which is also unstable under certain reaction conditions. 36  

In this study, we report a novel strategy for designing small molecular activatable probes across 

the visible and NIR spectral range by employing the broad spectrum quenching properties of 

Cu(II).37-40 At room temperature, Cu(II) is a non-fluorescent quencher, facilitating the detection of  

fluorescence with high sensitivity. Complementary changes in fluorescence lifetime were 

associated with fluorescence quenching which could also be used to report probe activation.  

2.2 Materials and Methods 

2.2.1. Synthesis of Cu (II)-quenched activatable probes. 

 To demonstrate our concept, we developed four fluorescent probes 1, 2, 3 and 4 as 

described below. All chemicals and reagents were purchased from commercial sources and were 

used without further purification. Each step was characterized by liquid chromatography-mass 

spectrometry (LC-MS) using electrospray ionization (ESI) as the ionization method). The final 

molecules were characterized by high-resolution mass spectrometry (HRMS). 

Synthesis protocol of compounds 5, 1, and 2  
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3-(2,3,3-Trimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate (8)To a suspension of 2,3,3-

trimethylindolenine (16 mL, 20 mmol) in 1,2-dichlorobenzene (10 mL), 1,3-propanesultone (3.67 

g, 60  mmol) was added.  The mixture was stirred at 140 °C overnight.  After cooled down to room 

temperature, the reaction mixture was filtered through sintered glass and the solid was rinsed with 

diethyl ether and acetone.  The crude was used in the next step without further purification. 

2-[2-[2-Chloro-3-[2-[1,3-dihydro-3,3-dimethyl-1-(4-sulfopropyl)-2H-indol-2-ylidene]-

ethylidene]-1-cyclohexen-1-yl]-ethenyl]-3,3-dimethyl-1-(4-sulfopropyl)-3H-indolium 

hydroxide, inner salt sodium salt (9) 

To a solution of 8 (3.65 g, 13 mmol) and sodium acetate (2.13 g, 26 mmol) in EtOH (32 mL) and 

acetic anhydride (32 mL), N-[(3-(Anilinomethylene)-2-chloro-1-cyclohexen-1-

yl)methylene]aniline monohydrochloride (2.33 g, 6.5 mmol) was added.  The reaction mixture was 

refluxed overnight.  The solvent was then removed under reduced pressure.  The crude was rinsed 
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with acetone followed by crystallization using MeOH and diethyl ether.  The crude was used in 

the next step without further purification. 

2-[2-[2-(4-carboxylphenyl)-3-[2-[1,3-dihydro-3,3-dimethyl-1-(4-sulfopropyl)-2H-indol-2-

ylidene]-ethylidene]-1-cyclohexen-1-yl]-ethenyl]-3,3-dimethyl-1-(4-sulfopropyl)-3H-

indolium hydroxide, inner salt sodium salt (5) 

To a solution of 9 (290.8 mg, 0.4 mmol) and tetrakis(triphenylphosphine)palladium(0) (23.3 mg, 

20 µmol) in H2O (5 mL), 4-carboxyphenylboronic acid (120 mg, 0.7 mmol) was added.  The 

reaction mixture was refluxed overnight.  The crude was purified with reverse column 

chromatography (H2O: MeOH = 1.5:1) to obtain 5 as a green solid. 

1H NMR (600 MHz, DMSO) δ 8.14 (d, J = 7.7 Hz, 2H), 7.44 (d, J = 7.3 Hz, 2H), 7.39 (dd, J = 

11.4, 8.2 Hz, 4H), 7.30 (t, J = 7.5 Hz, 2H), 7.11 (t, J = 7.3 Hz, 2H), 6.98 (d, J = 13.9 Hz, 2H), 6.37 

(d, J = 14.0 Hz, 2H), 4.29 – 4.19  (m, 4H), 2.73 – 2.64 (m, 4H), 2.52 – 2.48 (m, 4H), 1.98 - 1.86 

(m, 6H), 1.06 (s, 12H). 13C NMR (150 MHz, DMSO) δ 171.2, 167.0, 159.8, 146.8, 143.8, 142.1, 

140.7, 130.8, 130.2, 129.7, 129.4, 128.4, 124.5, 122.4, 111.0, 100.6, 48.1, 47.8, 42.5, 27.0, 24.2, 

23.3, 20.9.       

HRMS m/z calculated for C43H47N2Na2O8S2 [M + Na]+: 829.2564, found 829.2546. The yield 

calculated was %. Overall yield calculated was 18%. 
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10: A mixture of 5 (18 mg, 23 µmol), HATU (21.9 mg, 57.5 µmol) and DIEA (7.4 mg, 57.5 µmol) 

in DMF (1 mL) was stirred for 20 min at room temperature. Boc-cystamine hydrochloride (19.9 

mg, 69 µmol) in DMF (1 mL) was added to it and the final mixture was stirred at room temperature 

overnight in the dark. The solvent was then removed under reduced pressure to afford 10, which 

was used in the next step without further purification. 
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11:  To 10, 3 mL of 50% TFA in DCM was added and the reaction mixture was stirred at room 

temperature for 2 hours. The solvent was removed under reduced pressure. The crude was further 

purified by HPLC equipped with a reverse-phase C-18 column to obtain 11 as a green solid. MS 

[ESI]: 820 [M + H]+. Yield calculated was 88%. 

12: A mixture of HATU (37.2 mg, 98 µmol), DIEA (12.7 mg, 98 µmol), DOTA-tris(tert-

butyl)ester (34 mg, 58.8 µmol) in DMF (1 mL) was stirred for 20 min at room temperature. It was 

added to a suspension of 11 (18 mg, 19.6 µmol) in 20% DMSO in DMF (2 mL) and stirred at room 

temperature overnight in the dark. The solvent was then removed under reduced pressure.  The 

crude was further purified by HPLC equipped with a reverse-phase C-18 column to obtain 12 as a 

green solid. Yield calculated was 75%. 

6: To 12, 2 mL of deprotecting mixture (TFA/H2O/Phenol/Thioanisole; 85:5:5:5) was added and 

the mixture was stirred for 4 h. The solvent was removed under reduced pressure and the crude 

was further purified by HPLC equipped with a reverse-phase C-18 column to obtain 6 as a green 

solid.  HRMS m/z calculated for C63H85N8O14S4 [M + H]+: 1305.5063, found 1305.4993. Yield 

calculated was 85%. 

1: Molecule 6 was labeled with copper(II) using a previously use protocol for radioactive copper 

labeling.41 Briefly, to a suspension of 6, (0.2 mM) in 0.1 M ammonium acetate buffer (pH 5.5), 

copper (II) chloride (0.4-0.8 mM) was added. Small amounts of DMSO (<5%) was added to to 

increase the solubility of the compounds in the buffer.  The reaction mixture was incubated at 40 

°C for 1 h with shaking in the dark. The labeled compound was purified by HPLC equipped with 

a reverse-phase C-18 column to obtain 1 as a green solid.  HRMS m/z calculated for 

C63H81CuN8Na3O14S4 [M + 2Na]2+: 716.6867, found 716.6812. Yield calculated was 90%. 
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2: Molecule 2 was synthesized in a similar fashion as 1, by replacing Boc-cystamine hydrochloride 

with N-Boc-1,6-hexanedimaine hydrochloride.  HRMS m/z calculated for C63H85CuN8Na3O14S2 

[M + 2Na]2+: 698.7302, found 698.7265. 

 

 

Synthesis protocol of compound 3 
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Cypate: It was synthesized using a previously reported protocol developed by the lab. 

 17: A mixture of Cypate (21 mg, 30 µmol) and DIC (22.7 mg, 180 µmol) in DMF (2 mL) was 

stirred for 20 min at room temperature. Mono-Boc-cystamine hydrochloride (34.7 mg, 120 µmol) 

in DMF (1 mL) was added to it and the mixture was stirred at room temperature overnight in the 

dark. The solvent was then removed under reduced pressure to afford 17, which was used in the 

next step without further purification. 
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18: To 17 was added 3 mL of 50% TFA in DCM and the reaction mixture was stirred at room 

temperature for 2 h. The solvent was then removed under low pressure. The crude was further 

purified by HPLC equipped with a reverse-phase C-18 column to obtain 18. MS [ESI]: 893 [M + 

H]+. Yield calculated was 81%. 

20: A mixture of HATU (19.1 mg, 50.3 µmol), DIEA (6.5 mg, 50.3 µmol) and DOTA-tris(tert-

Butyl)ester (19.2 mg, 33.5 µmol) in DMF (1 mL) was stirred for 20 min at room temperature. It 

was added to a suspension of 18 (6 mg, 6.7 µmol) in DMF (2 mL) and the reaction mixture was 

stirred at room temperature overnight. The solvent was then removed under reduced pressure.  The 

crude was further purified by HPLC equipped with a reverse-phase C-18 column to obtain 19 as a 

green solid. Yield calculated was 62%. 

20: To 19, 2 mL of deprotecting mixture was added and stirred for 4 h. The deprotecting mixture 

was removed under reduced pressure the crude was further purified by HPLC equipped with a 

reverse-phase C-18 column to obtain 20 as a green solid.  MS [ESI]: 834 [M + 2H]+, 595 [M + 

3H]+. Yield calculated was 79%. 

3: Compound 17 was labeled with Cu(II) with the same method to label 16 to obtain 3. HRMS m/z 

calculated for C81H110Cu2N14O16S4 [M + 2H]2+: 894.2844, found 894.2808. Yield calculated was 

24%. 
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Synthesis protocol of compound 4

 

21: To a suspension of FITC (10 mg, 25.7 µmol) in sodium carbonate – sodium bicarbonate buffer 

solution (3 mL), cystamine hydrochloride (29.2 mg, 257 µmol) was added. The final pH was 

adjusted to 9.5.  The mixture was stirred at room temperature overnight in the dark. The crude was 

further purified by HPLC equipped with a reverse-phase C-18 column to afford 21 as yellowish 

white solid. MS [ESI]: 542 [M + H]+. Yield calculated was 89%. 

Fluorescein 

isothiocyanate  

p-SCN-Bn-DOTA 
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2: To a suspension of p-SCN-Bn–DOTA in (1 mM ) in 0.1 M ammonium acetate buffer (pH 5.5), 

copper (II) chloride (5 mM) was added. The solution was incubated at 50 °C for 1 h with shaking. 

The crude was further purified by HPLC equipped with a reverse-phase C-18 column to obtain 22 

as a greenish blue solid. MS [ESI] : 613 [M + H]+. Yield calculated was 95%. 

4: To a suspension of the 22 (6 mg, 11 µmol) in sodium carbonate – sodium bicarbonate buffer 

solution (3 mL), 21 (18 mg, 33 µmol) was added. The final pH was adjusted to 9.5.  The mixture 

was stirred at room temperature overnight in the dark. The crude was further purified by HPLC 

equipped with a reverse-phase C-18 column to obtain 4 as a pale yellow solid.  HRMS m/z 

calculated for C49H55CuN8O13S4 [M + H]+: 1154.2062, found 1154.2029. Yield calculated was 

78%. 

The constructs were distance dependent quenching studies were synthesized as follows.  

The overall molecular design consists of a cleavable disulfide linker that bridges the fluorescent 

dye and a metal chelating group (DOTA), a versatile chelating agent for many metal ions including 

Cu(II)42. Fluorescence quenching was achieved by chelating Cu(II) ions to DOTA. Furthermore, 

the cleavable disulfide linker can target elevated levels of intracellular reducing biomolecules and 

redox enzymes such as reduced glutathione and thioredoxin in cancer. This biochemical state has 

been used to design disulfide based activatable probes and prodrugs for targeted cancer imaging 

and therapy. 43 Thus, the versatility and selectivity of disulfide cleavage make it attractive for the 

development of Cu(II)-quenched activatable probes, which would be useful for in vitro, in cellulo, 

and in vivo imaging studies.  
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2.2.2. Spectroscopic characterization 

The absorption spectra were measured on a DU 640 spectrophotometer (Beckman-Coulter, Brea, 

CA). For all fluorescence measurements, absorbance at the excitation wavelength was kept below 

0.05. Fluorescence emission spectra were recorded on a FluoroLog 3 spectrofluorometer (Horiba 

Jobin Yvon, Edison, NJ) using 690 nm/705-900 nm, 720 nm/735-900 nm, or 450 nm/465-650 nm 

as excitation/emission wavelength with 5 nm slits for molecules containing 5, cypate or FITC 

respectively. Quenching efficiency (QE) was calculated by quantifying the number of photons 

emitted (measured by the area under fluorescence emission curve) of the molecular probes before 

and after incorporation of Cu(II); with peak area normalized to absorbance at excitation 

wavelength. The following formula was used:  

𝑄𝐸 (%) = [1 −
Normalized fluorescence peak area for 𝟏, 𝟐, 𝟑 or 𝟒

(Normalized fluorescence peak area for 𝟔, 𝟏𝟔, 𝟐𝟎 or 𝟐𝟐
] ∗ 100 

FLT were measured on the FluoroLog 3 spectrofluorometer using a 740 nm,  773 nm and 470 nm 

lasers for compounds containing 5, cypate and FITC, respectively. The detection window was set 

to be centered at 790 nm, 823 nm or 530 nm with 20 nm, 20 nm or 10 nm bandpass respectively. 

The instrument response function was obtained using Rayleigh scatter of Ludox-40 (Sigma-

Aldrich, St. Louis, MO). DAS6 v6.1 decay analysis software (Horiba) was used for FLT 

calculations. All decay curves except for those measured in PBS-BSA were fitted to two 

exponential decay curves unless otherwise stated. The major component (>97% relative 

amplitude) was reported or mean of components were reported. For measurements made in PBS-

BSA, three exponential decay curves were used. The two major components (>95% relative 

amplitude combined) were reported. 
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Anhydrous trifluoroethanol was used to measure quenching efficiencies and lifetime of polyprine 

containing constructs for distance dependence study. 

2.2.3. Spectroscopic study of probe activation 

Solutions of the compounds 6 (0.4 µM), 1 (0.4 µM) and 2 (0.4 µM), 3 (0.2 μM) and 4 (1.4 μM) 

were prepared in 200 mM Tris-HCL buffer, pH 7.4 containing reduced L-Glutathione (GSH, 10 

mM, final pH 6.9). Fluorescence emission spectra were taken from the resulting solutions at 2 min 

intervals.  FLT was measured after 8 minutes of incubation. For calculate mean fluorescence 

recovery the fluorescence signal at 8 min post treatment were used. 

2.2.4. Cytotoxicity assay 

4T1-Luc cells (SibTech, Brookfield, CT) were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% fetal calf serum, 100 units/mL penicillin, and 100 units/mL 

streptomycin. Cells were allowed to grow to 75% confluency and then detached from the plate 

using trypsin-EDTA to determine the number of cells.  Approximately 8000 cells were seeded in 

the wells of a 96-well plate (BD Falcon). The respective compounds were added and the final 

volume in each well was kept 100 µL. Cells were incubated for 44 h at 37 °C in a 5% CO2 

atmosphere. Wells containing untreated cells were used as control. 

Cytotoxicity assay reagent was obtained from a CellTiter96 non-radioactive cell proliferation 

assay kit (Promega).The reagent (20 µL) was added to each well and incubated for another 2.5 

hours at 37 °C in a 5% CO2 atmosphere. Absorbance at 490 nm was measured using a Synergy 

plate reader (Biotek). Data were collected for four separate measurements and averaged. 

2.2.5. Cellular fluorescence and lifetime imaging 

4T1-Luc cells were cultured as mentioned before. About 10,000 cells were seeded per well in 8-

well cell culture slides (BD Biosciences, San Jose, CA) and allowed to grow over-night. Before 
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microscopic imaging, cells were treated with 10 µM of the fluorescent dyes or molecular probes 

dissolved in DMSO, (final concentration of DMSO was kept < 0.8% v/v) and incubated for 0.5, 2, 

4 and 12 hours cell culture incubator (37˚C, 5% atmospheric CO2). After incubation, cells were 

washed three times with PBS and covered with coverslip. The cells were visualized with an 

FV1000 confocal microscope (Olympus, Central Valley, PA) using 785 nm for excitation (Becker 

& Hickl, Germany) and emission passband at > 800 nm.  

Fluorescence lifetime imaging was performed using a custom-built NIR FLIM system using the 

procedure described previously. 3 For each image, the decay data was collected for 120 s. The 

FLIM was performed using 0.921 mW of PW laser power at 50 MHz repetition rate. 

2.2.6. Imaging data analysis 

Confocal images were analyzed using ImageJ. Fluorescence was quantified by measuring the 

corrected whole cell fluorescence (CWCF) as follows: 

CWFC = Total fluorescence signal detected from a single cell – (Mean fluorescence signal 

detected from adjacent background * Area of the cell) 

For each image, mean CWFC was calculated by averaging CWCF from 10 cells. For independent 

experiments, the overall mean CWFC was calculated by averaging mean CWFC from each 

experiment.  

For FLIM data, time traces acquired from the NIR FLIM system were analysed using the 

SPCImage software (Becker-Hickl, Germany). Images were binned to obtain more photon count 

pixel. Pixel by pixel time traces were fit to double exponential decay for 1 and single exponential 

decay for 6 and 2,  assuming only probe 2 will have two fluorescent molecules before and after 

activation in cells. In all cases, background noise was eliminated by thresholding out decay traces 
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with less than 50 photons peak count. However the quenched probe 2 especially at lower time 

points showed very low photon counts. For it, the threshold value was reduced to 30 photons peak 

count. Curve fitting was performed by limiting expected lifetime values between 100-1600 ps as 

expected from the in vitro data. Chi squared values were used to determine goodness of fit. Mean 

FLT value for each image was calculated by averaging the corresponding FLT histogram (100-

1600 ps) obtained. Global decays analyses was performed by obtaining the overall time trace from 

each image. Typical peak photon count >>3000 photons for all global decays. 

All graphs were plotted using Prism software (GraphPad). 

2.3 Results 

2.3.1 Activatable fluorescent molecular probes 

We synthesized four activatable probes 1, 2, 3 and 4 to demonstrate our idea [Figure 2-1]. 

Activatable probe 1 was synthesized using a hydrophilic NIR fluorescent cyanine dye with a 

reactive carboxylic acid function (5). We also synthesized a non-disulfide linker analogue 2, to 

serve as the non-activatable control probe. To demonstrate the versatility of the Cu(II) quenching 

platform, we used a structurally different hydrophobic NIR dye cypate44 to synthesize 3. The two 

reactive carboxylic acid groups of cypate enabled the attachment of two Cu(II)-DOTA chelates 

Figure 2-1: Design concept of disulfide based Cu(II) quenched activatable probe and molecular structures of the 

probes synthesized. 
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per dye molecule. Assessment of the Cu(II)-quenching of visible fluorescence was achieved by 

synthesizing activatable molecular probe 4 using fluorescein isothiocyanate (FITC, isomer 1). The 

ease of cleaving a disulfide bond in the presence of reducing reagents, such as reduced glutathione, 

dithiothreitol and 2-mercaptoethanol, creates a simple molecular platform for designing activatable 

probes. For cancer imaging, the high intracellular redox environment, due to elevated levels of 

intracellular reducing biomolecules such as reduced glutathione and thioredoxin, provides a 

mechanism for enhanced signal amplification in tumor cells. 43,45-48 

2.3.2. Spectral properties 

We measured and compared the optical properties of the  probes 1, 2, 3 and 4 and the corresponding 

non-Cu(II) containing reference molecules in dimethyl sulfoxide (DMSO), phosphate buffered 

saline (PBS; pH 7.4), and PBS with 1% (w/v) bovine serum albumin (PBS-BSA) (except for 4 

which was insoluble in DMSO). In all cases, the incorporation of Cu(II) efficiently quenched the 

fluorescence emission intensity and decreased the fluorescence lifetimes (FLTs) of both NIR and 

visible fluorescent dyes (Error! Not a valid bookmark self-reference., Table 2-1). These 

changes were also found to be solvent dependent. Compared to the quenching efficiencies of 1 and 

2, which have a single Cu(II) chelate per dye molecule, compound 3 with two Cu(II) chelates per 

molecule exhibited higher and relatively less solvent dependent fluorescence quenching. In PBS-

BSA, the FLTs exhibited two decay components, which can be attributed to the presence of free 

and albumin-bound species.8 
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The broad spectrum fluorescence quenching by Cu(II) across visible and NIR wavelengths can be 

explained by the combination of photoinduced electron transfer and energy transfer processes. The 

significant overlap between the absorption spectrum of Cu(II)–DOTA  and fluorescence emission 

spectra of the NIR fluorescent dyes suggests a strong contribution of energy transfer to the 

Table 2-2: Quenching efficienciesa of the molecular probes. 

 DMSO  PBS 1% BSA in PBS 

1 74±3  84±1 82±1 

2 71±1  80±1 80±1 

3 92±4  93±5 95±3 

4b -  71±2 49±8 

a Mean (%) ± s.d. (%) for three independent measurements 

(see ESI† for the formula of quenching efficiency). b 

Compound 4 is insoluble in DMSO. 

 

 

 

 

 

Table 2-1: Fluorescence lifetimesa of the molecular probes and corresponding non-

copper containing reference molecules. 

 DMSO PBS 1% BSA in PBS 

6 1.44 0.41 1.28 [τa =1.53 (60%), τb = 0.75 (38%)] 

1 0.64 0.22 0.69[τa =0.43 (70%), τb = 1.36(28%)] 

2 0.66 0.21 0.66 [τa =0.43 (73%), τb = 1.35(25%)] 

20 0.93 - - 

3b 0.23 - - 

22c - 3.84 3.91 [τa = 4.08 (90%), τb = 2.35 (10%)] 

4c - 2.31 3.19 [τa = 3.85 (71%), τb = 1.58 (29%)] 

a Denoted by τ (ns). Average lifetime with percentage components reported for 

measurements in the presence of BSA. Relative amplitudes of the exponential decay 

components in BSA-PBS are indicated as %. b Compound 3 had very low 

fluorescence for measuring FLT in aqueous media. c Compounds 22 and 4 were 

insoluble in DMSO. See ESI† for the structure of 6, 20 and 22. 
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quenching process. A relatively less overlap with the emission spectra of FITC indicates the 

dominance of electron transfer to the process. The lower quenching efficiencies of 4 probably 

reflect the lack of significant complementary energy transfer process in the visible region. 

2.3.3. Spectroscopic probe activation 

We assessed the fluorescence intensity and FLT recovery of the activatable probes after disulfide 

cleavage in vitro. We used time-dependent fluorescence emission measurement of a solution of 

0.4 µM of 1, the non-activatable probe 2 or 6 (the corresponding non-Cu (II) containing molecule) 

in a typical intracellular concentration of reduced L-glutathione (GSH; 10 mM) in cancer cells. 

We observed a rapid increase in the fluorescence emission of 1 within the first 8 min (~4 fold; 

Figure 2-2A and B) in the solution. Insignificant changes in fluorescence emission of the 

corresponding non-Cu (II) containing molecule 6 and non-activatable probe 2 were observed. This 

result indicates fluorescence activation of 1 occurred by the cleavage of the disulfide bond (Figure 

2-2C). Mass spectral analysis of the GSH-treated 1 and 2 confirmed the presence of the expected 

degradation products. The activation of 3 and 4 under similar conditions resulted in ~6.2 and ~4 

fold increase in fluorescence emission, respectively. (Figure 2-2C). FLT analysis of the 1 and 4 

post-GSH treatment showed an increase in FLT (Figure 2-2D), demonstrating the use of FLT to 

report probe activation.  FLT increase for 3 is not reported as prior activation 3 has very low 

fluorescence emission for measuring FLT in the aqueous buffer. Treatment of the compounds with 

another reducing agent, dithiothreitol, exhibited similar fluorescence enhancement profiles as the 
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GSH-treated samples. 

 

2.3.4. In cellulo fluorescence recovery 

We then explored the feasibility of using the highly reducing intracellular environment of cancer 

cells to activate 1. This required internalization of the activatable probe by cells and fluorescence 

enhancement via intracellular cleavage of the disulfide bond (Figure 2-3A). For this study, we used 

4T1-Luc cells, a highly proliferative murine breast cancer cell line that exhibits high intracellular 

Figure 2-2: (A) Fluorescence spectral response of activatable probe 1 when incubated with 10 mM GSH showing 

fast recovery. (B) Fluorescence spectral response (mean fluorescence emission ± s.d.; three independent 

experiments) of 1 compared to the reference probe 6 and non-activatable probe 2 upon treatment with GSH. (C) 

Mean fluorescence recovery (mean ± s.d.; three independent experiments) upon GSH-mediated activation of all the 

activatable probes. (D) Recovery of FLT upon GSH-mediated activation of the quenched (Q) and activated (A, post 

GSH treatment for 8 min) states of the probes 1 and 4. 



33 

 

redox potential.49 Cytotoxic study with a non-radioactive cell proliferation assay did not show any 

detrimental effects of the fluorescent dye 5 and probe 1 on cell viability at the experimentally 

relevant concentrations (Figure 2-3B). Intracellular fluorescence was quantified by estimating the 

corrected whole cell fluorescence (CWCF) intensity profiles (Figure 2-3C). A plot of normalized 

mean CWCF vs. time for 6, 1 and 2 showed a nearly linear increase in intracellular fluorescence 

Figure 2-3: Cartoon representation of intracellular probe activation of 1. (B) Cytotoxicity assay for 5 and 1 (control 

= untreated cells). (C) Representative confocal fluorescence (red) images of 4T1-Luc cells treated with 10 µM 6, 1 

and 2. (D) Time-dependent increase in normalized mean fluorescence emission from cells (corrected whole cell 

fluorescence (CWCF)) treated with the compounds. (E) Normalized fluorescence intensity for 1 and 2 at the same 

imaging time point. All data represent mean ± sem for at least three independent experiments. Scale bar: 50 µm. 
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for 1 (Figure 2-3D). The non-Cu(II) containing reference compound 6 showed a non-linear 

enhancement of fluorescence emission. The non-activatable probe 2 showed a significantly 

relatively slow and small increase in fluorescence over time. CWCF for 1 was 2, 4, 5 and 7.4 and 

5.4 fold higher than that of 2 at 2 h, 4 h, 7 h and 12 h respectively (Figure 2-3E). 

2.3.5. Lifetime changes associated with probe activation 

Although the increase in fluorescence emission is necessary to indicate probe activation, several 

other factors can affect intracellular fluorescence measurements, including the rate of 

internalization, local concentration of the molecules and stability of Cu(II)-DOTA chelate. To 

minimize this variability, we explored the application of fluorescence lifetime changes associated 

with probe activation by using fluorescence lifetime imaging microscopy (FLIM). Because FLT 

is less dependent on changes in the probe concentration, it can more accurately report the effects 

of molecular perturbation in a heterogeneous medium than fluorescence intensity measurements. 

Representative FLIM images of 4T1-Luc cells treated with 6, 1 and 2 are shown in Figure 2-4A. 

We calculated the mean FLTs at each time point by taking the mean from the histogram of FLTs 

for the corresponding image. Unlike the mean FLT of 6, which showed no significant variation 

with time, the mean FLT value of 1 remarkably increased from ~700 ps almost linearly over time 

before reaching the maximum value of >1000 ps at 7 h (Figure 2-4B). Comparatively, a much 

lesser variation was observed for mean FLT of 2. For further validation, we obtained global decay 

curves for individual compounds by treating the imaging field of view as a single pixel. 

Representative global decay curves reflect faster decays for probes 1 at 2 h and 2, while slower 

decay for 1 at 12 h and 6, as observed with mean FLTs calculated (Figure 2-4C). Any increase in 

FLT of 2 can be attributed to lose of Cu(II) from the chelator under intracellular conditions such 
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as trans-chelation with cellular proteins. Together these findings indicate that cleavage of disulfide 

bond induces the observed fluorescence increase in cells treated with 1. 

 

2.3.6. In vivo imaging  

Finally, we explored the in vivo behavior of the activatable probe 1 in tumor bearing mice. We 

hypothesized that the high intracellular reducing environment of tumor cells will facilitate rapid 

fluorescence activation in tumors. We injected equimolar quantities of 1, 2, and 6 in 4T1-Luc 

tumor bearing mice. Representative whole-body dorsal images are shown in Figure 2-5. Compound 

6 rapidly distributed throughout the body, with high whole body fluorescence. In contrast, 

fluorescence in mice treated with the non-cleavable compound 2 was significantly low. Activatable 

Figure 2-4: (A) Representative images from fluorescence lifetime imaging microscopy of 4T1-Luc cells treated with 

6, 1 and 2. (B) Time dependent changes in FLTs (mean ± sem for at least three independent experiments) of 6, 1 and 

2 in 4T1-Luc cells. (C) Representative global decay curves for 1, 2 and 6. IRF: Instrument response function. Scale 

bar: 50 µm. 
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probe 1 showed a time-dependent increase in whole body fluorescence, with high tumor-to-

background signal. We attribute the rapid increase in 4T1-Luc tumor fluorescence to higher 

permeation and activation of 1 in the tumors.  

 

Figure 2-5: In vivo imaging of cancer with molecular probes in mouse xenograft models of cancer. Representative 

whole body (dorsal) fluorescence images of  4T1-Luc tumor bearing mice injected with 6 (top), 1 (middle) and 

2(bottom). Red circle indicates the tumor region. 

2.3.7. Distance dependence of quenching efficiency 

The spectral overlap between the emission spectra of the fluorescent dyes tested and the absorption 

spectra of copper(II) ions indicates that FRET may play a major role in the fluorescence quenching 

mechanism [Figure 2-6a]. As distance dependence is characteristic of FRET, we studied the 

distance dependence of the fluorescence quenching by copper (II) ions. For this purpose we used 
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constructed a library of probes by flanking a NIR dye LS641 and chelated copper (II) by varying 

lengths of rigid polyproline linkers. Fluorescence quenching efficiency and fluorescence lifetime 

were found to decrease rapidly with increasing distance between dye and quencher as expected 

from FRET induced quenching. 

2.4 Discussions 

A major limitation of optical molecular imaging is the absence of efficient, versatile, and 

biocompatible fluorescent activatable molecular probes which can provide high signal to 

background contrast without longer wait times for imaging. This problem is exacerbated by the 

scarcity of an efficient, non-fluorescent and versatile quencher molecule for fluorescent dyes in 

the NIR region, which is essential for deep tissue and in vivo optical imaging. Application of Cu(II) 

as a universal fluorescence quencher is attractive for molecular imaging be-cause it provides a 

Figure 2-6 (a) Spectral overlap between Cu(II) –DOTA and fluoresce cent used in the activatable probes dyes 

indicate existence of FRET interaction. (b) Polyproline linker was used a rigid linker to create varying distance 

between the dye and quencher (c) Both quenching efficiency and quenching induce decrease in fluorescence lifetime 

shows heavy distance dependence. 
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modular approach for the synthesis of visible and NIR molecular probes. Its dual photoinduced 

electron transfer and FRET based fluorescence quenching mechanisms create a versatile 

quenching platform that is not entirely dependent on spectral overlap or distance between the 

fluorescent dye and the quencher. Since Cu(II) is a non-fluorescent quencher, interference with 

imaging signal is not a concern, facilitating the detection of fluorescence with high sensitivity. 

Moreover, the molecular weight of chelated Cu(II) is relatively small, which minimizes steric 

effect that hinders molecular recognition of cleavable domains in conventional activatable probes. 

Together, these features favor the use of Cu(II) to develop rapid and selective activatable probes 

for interrogating molecular processes in cells and living organisms.  

To demonstrate this strategy, we used two NIR fluo-rescent cyanine dyes (1 and cypate) and a 

visible fluorescent dye (FITC) to synthesize disulfide based Cu(II)-quenched activatable probes 

(Chart 1). We demonstrated that the same synthetic approach could be readily adapted to visible 

and NIR fluorescent dyes. The disulfide bond is readily cleavable under the intracellular reducing 

conditions of cancer cells. The modular nature of the synthesis allows the use of other biologically 

relevant cleavable domains, such as enzyme cleavable peptides, for monitoring the functional 

status of diagnostic enzymes. Spectroscopic studies showed high fluorescence quenching 

efficiencies (>70%) when Cu(II) was present in an equalmolar ratio as the dye (Table 1). Attaching 

multiple Cu(II) ions to one dye molecule gave higher quenching efficiencies (>90%). These 

quenching efficiencies are significantly better than previously reported for molecular beacon 

constructs, which achieved 85% quenching efficiency in the presence of 50 fold excess of free 

Cu(II).20 We further supported these results by measuring the decrease in FLT of the molecular 

probes before and after incorporating Cu(II) (Table 2). Both fluorescence emission and FLT were 

recovered after disulfide cleavage in vitro and in cellulo in cancer cells. The lower concentration 
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de-pendency of FLT measurements allowed us to uncouple probe internalization from 

fluorescence activation in cells.  

We successfully replicated our in vitro results in vivo in tumor-bearing mice, which showed rapid 

probe activation leading to enhanced fluorescence emission from the tumors. Our in vivo results 

suggest that the high permeability of the 4T1-Luc tumors facilitated the uptake and subsequent 

activation of 2 relative to the control compounds. We attribute the rapid increase in 4T1-Luc tumor 

fluorescence to higher activation of 2 in the tumors as well as greater permeation of 2 into the 

tumors.  

We also demonstrated that the fluorescence quenching and associated decrease in lifetime are 

dependent on the distance between the fluorescent dye and chelated copper (II). This suggests a 

strong influence of FRET in the fluorescence quenching mechanism of copper (II). While this 

limits the applications of the strategy to short linkers, however, the existence of unique lifetime 

values with each construct will be still useful for identification and complementary reporting.  

Our results indicate that using multiple Cu(II) chelates improves the fluorescence quenching 

efficacy and gives a further reduction in FLT of the probes. Therefore, a strategy to enhance 

contrast is to employ a dendrimer-based approach, where multiple Cu(II)-ions can be conjugated 

for quenching one fluorescent dye molecule. An alternative approach is to attach the disulfide 

based acti-vatable probe to a small tumor-targeting moiety, such as a tumor specific affibody or 

peptide. This will enhance tumor cell specific accumulation /retention of the activatable probes, 

facilitating selective and further enhanced fluorescence activation in tumor cells. Moreover, this 

approach can also eliminate high levels of activation of the probes in hepatic cells, as observed in 

the case of molecular probe 2. Coupling fluorescence emission intensity with FLT imaging can 
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delineate fluorescence activation from fluorescence enhancement arising from con-centration 

increase caused by cellular internalization and tumor tissue perfusion. Also, a more efficient and 

stable Cu(II) chelator can be used in the design of these activatable molecular probes to avoid the 

in vivo instability of Cu(II)-DOTA. We anticipate that the relevance of Cu(II) to other imaging 

modalities, such as nu-clear and Cherenkov luminescence imaging, can pave the way for 

multimodal imaging applications of Cu(II)-quenched fluorescent activatable molecular probes. 

 

2.5 Conclusions 

In summary, we successfully developed a novel, simple and unified strategy for designing 

activatable probes encompassing both visible and NIR fluorescent dyes. Significant fluorescence 

quenching and decrease in FLT were observed after Cu(II) chelation. Our results indicate that 

using multiple Cu(II) chelates further improves the fluorescence quenching efficacy and decrease 

in FLT, suggesting the potential use of multiple Cu(II) chelates to optimize quenching. Both 

fluorescence intensity and FLT were restored after disulfide-cleavage mediated dissociation of 

Cu(II)-DOTA chelates from the dye used in the in vitro studies. NIR activatable probe 1 showed 

time-dependent fluorescence intensity and FLT enhancement in cancer cells. The versatility of the 

simple Cu(II) chelate provides a new paradigm for designing novel activatable probes for imaging 

cellular and physiological processes across both visible and NIR spectral regions. Moreover, these 

probes are both emission intensity and lifetime-sensitive, which can be used for complementary 

reporting. 

In the following chapter, we will describe an unusual chemical reaction that was discovered while 

working with cyanine dyes with cold copper (II) ions. 
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Chapter 3  

Cu (II) catalyzed dimerization of cyanine 

dyes and their potential applications in 

biological imaging 
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3.1 Introduction 

A few examples of cyanine dyes forming covalently linked dimers via chemically induced radical 

cations have been reported in literature.50 In this chapter, we show similar behavior exhibited by 

some heptamethine and pentamethine dyes when present in aqueous buffer solutions. Particularly, 

we demonstrate this conversion is more pronounced in heptamethine dyes and is facilitated in the 

presence of excess Cu(II) ions. This phenomenon was discovered while working with the cyanine 

dye based fluorescent activatable probes in the preceding chapter, which required exposure of the 

dyes to Cu (II) ions in aqueous solution. We isolate these dimer molecules and show all of them 

exhibit preserved absorption with near zero emission indicating enhanced non-radiative relaxation. 

We confirm this by measuring and comparing photoacoustic signal generated by the monomer and 

dimer of a cyanine dye cypate. Finally, we demonstrate of feasibility of using these non-fluorescent 

dimer molecules as a photoacoustic contrast agents in vivo. We use the dimer of LS30151, a tumor 

targeting bioconjugate of cypate for in vivo photoacoustic imaging in tumor bearing mice. 

Photoacoustic imaging part of this study was done in collaboration with Dr. Chulhong Kim, Seung-

Hyun Lee and Dayoon Kang at Postech, South Korea. 

3.2 Materials & Methods 

3.2.1 Synthesis of cyanine dye dimers 

Solutions of cyanine dyes (0.1 - 1mM) were prepared in 10% organic solvent (DMSO or DMF) in 

0.1 M ammonium acetate buffer, pH 5.5. Copper (II) chloride (5- 10 fold excess) was added to this 

solution and incubated at room temperature or at 70°C for 1-24 h to make the respective cyanine 

dye dimers. The crude were purified by HPLC equipped with a reverse-phase C-18 column and 

the final product was characterized by mass spectrometry (MS-ESI). 
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3.2.2. Spectroscopic characterization 

We measured and compared the optical properties of the dyes and their monomers probes in 

methanol, water and dimethyl sulfoxide (DMSO).  The absorption spectra were measured on a DU 

640 spectrophotometer (Beckman-Coulter, Brea, CA). Fluorescence emission spectra were 

recorded on a FluoroLog 3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) using 620 

nm/635-900 nm, 690nm/705-900, and 720 nm/735-900 nm, as excitation/emission wavelength 

with 5 nm slits for molecules containing cypate-3, HITC, and cypate respectively.  

3.2.3. Photoacoustic imaging 

Photoacoustic amplitude of cypate and its dimer were measured at concentrations 6.5-200 µM in 

10% DMSO in water. For in vivo imaging a 150 µl of 200 µM solutions of LS301 dimer was 

injected into two A549 tumor bearing mice. The mice were imaged at 6 h, 12 h and 24 h after 

injection using a system as described before36. Images were acquired at excitation wavelengths 

800 nm and 890 nm. 
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3.3 Results 

3.3.1. Molecular characterization 
  

Figure 3-1 shows the pentamethine and heptamethine dyes used to synthesize respective dimers. 

We isolated and characterized cypate dimer using high resolution mass spectrometry and high 

resolution 2D NMR analysis as follows: 

 

Figure 3-1: Chemical structures of cyanine dyes which demonstrate Cu(II) facilitated dimerization 
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a. High resolution mass spectroscopy of cypate dimer 

The full mass spectra are shown in Figure 3-2. Expansion of the peak show the corresponding to 

a molecular formula of C82H79N4O8, which is double of the monomeric mass of cypate 

(C41H41N2O4) with the loss of 2 protons [Figures 3-3, 3-4 and 3-5]. 

Figure 3-3: Expanded region of [M+H]+. (a) Observed spectra. (b) Taller peaks observed correspond to [M+H]+ for 

C82H79N4O8. (c) Smaller peaks observed correspond to [M+2H]+ for a dimeric form of C82H79N4O8. 

. Figure 3-2: Observed HMRS spectra for the dimer compound. 
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 Mass spectra of the other dye tested show similar properties, indicating similar phenomena.  

• IR780: [M+H]+ = 509.3 (predicted), 509.5 (observed). IR780 Dimer: [M+H]+ = 1015.6 

(predicted), 1015.8 (observed). 

• HITC: [M+H]+ = 409.3 (predicted), 409.4 (observed). HITC Dimer: [M+H]+ = 815.5 

(predicted), 815.7 (observed). 

Figure 3-4: Expanded region of [M+2H]+. (a) Observed spectra. (b) Peaks observed correspond to [M+2H]+ for 

C82H79N4O8. 

Figure 3-5: Expanded region of a peak at ~415.(a) Observed spectra. (b) Peaks observed can be attributed to the 

[M+3H]3+ for C82H76N4O8, i.e., to the species for after loss of 2 protons from the molecule for C82H79N4O8. 
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• Cypate-3: [M+H]+ = 599.3 (predicted), 599.5 (observed). HITC Dimer: [M+H]+ = 1195.6 

(predicted), 1195.8 (observed). 

• HIDC: [M+H]+ = 383.2 (predicted), 383.4 (observed). HITC Dimer: [M+H]+ = 763.5 

(predicted), 763.7 (observed).  

b. NMR analysis of cypate dimer 

 

Figure 3-6 shows the numbering system used for NMR analysis of cypate and its dimer.  

Proton integration for cypate spectra indicates there are seven protons in the polymethine chain of 

cypate [Figure 3-7]. Overlapped protons H14-H20, H15-H19 and H16-H18 showed symmetrical 

polymethine chain structure. TOCSY experiment reveals continuous spin propagation from H14 

to H20 in vinyl bridge [Figure 3-7]. HMQC H1-C13 correlated resonances indicated seven C-H 

carbons in the polymethine chain [Figure 3-8].  

Figure 3-6: Numbering of protons and carbons on cypate for use in NMR analysis 
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In comparison, the polymethine chain in the dimeric molecule displays an unsymmetrical 

structure, particularly with H20 showed an upfield shift of 1.2 ppm from H14 [Figure 3-9]. Proton 

H17 also showed a 0.5 ppm downfield shift as compared to Cypate H17 resonances. Furthermore, 

TOCSY resonances in dimer breaks to two sections of spin propagation, H19 -H20 and H14 – H17 

Figure 3-7: TOCSY spectrum of Cypate vinyl bridge in DMSO-d6. 
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with the absence of H18 [Figure 3-9]. Quaternary carbon C18 was confirmed by the absence of 

H1-C13 correlation in HSQC [Figure 3-10]. Moreover, multiple bonds correlations between C18 

and H16, H17, H19 and H20 in HMBC indicating C18 is still residing in the chain and the 

substitution of H18 may contribute to the formation of Cypate-dimer. A full spectrum of C13 

assignments are shown in Figure 3-11. 

Figure 3-8: HMQC spectrum of Cypate in DMSO-d6. 
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Figure 3-9: TOCSY spectrum of Cypate-dimer in DMSO-d6. 

Figure 3-10: HSQC(a)  and HMBC(b) spectra of Cypate-dimer in DMSO-d6. 
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Figure 3-11: C13 assignments of Cypate-dimer in DMSO-d6. (a)  Full spectrum.  (b,c)  Expanded region of aromatic 

regions. 
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NMR and HRMS data indicates the formation of a new C-C between two cypate monomers by the 

loss of two protons. NMR predicts the position of this new bond to be between the C18s of 

respective dimers, indicative of the structure as shown in Figure 3-12. 

 

 

3.3.2. Spectroscopic properties 

The absorption spectra of all the dimeric molecules were very similar to that of the respective 

monomers [Figure 3-13]. There was a consistent hypsochromic shift of the peak absorption for ~3-

5 nm, and relatively more pronounced aggregate peaks. . The molar extinction coefficient of cypate 

dimer was 1.7 times that of the monomer (measured in methanol). There was almost complete loss 

of fluorescence in all cases which is expected due to self-quenching. 

 

Figure 3-12: Structure of Cypate Dimer 
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3.3.3. Dimerization of heptamethine dyes is facilitated by Cu (II) ions. 

The dimerization reaction for hepamethine dyes cypate, HITC and IR0780 were facilitated by the 

presence of Cu (II) ions. HITC showed highest yields (Table 3-1).   Figure 3-a shows that 

dimerization of IR780 dye is greatly increased when an excess (10X) is present. Also, the 

dimerization process is not affected by the organic solvent DMSO or DMF used for enhanced 

solubilization of the dyes the dye into the aqueous buffer. 

Table 3-1: Percentage yields of cyanine dye dimers in absence and presence of excess Cu (II) 

 Cypate IR780 HITC Cypate-3 HIDC 

No Cu(II) 12 % 5 32 % < 1% < 1% 

+ Cu(II) 67 % 63% 80 % < 1% < 1% 

 

Figure 3-13: Absorption (top) and fluorescence emission (bottom) spectra of the dyes cypate (a), IR780 (b), HITC 

(c)  , Cypate-3 (d) and their respective dimers. 
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3.3.4. Dimerization of cypate is pH independent:  

The cyanine dye cypate has two acidic carboxyl groups. We tested if these groups affect the 

dimerization reaction. Figure 3-14b shows that dimerization at different pH shows that the reaction 

is pH independent. Because basic pH has been shown to degrade the dye molecules, the 

dimerization reaction could not be followed for long in basic conditions. 

 

3.3.5. Photoacoustic imaging with cyanine dye dimers. 

Absorptive molecules undergo both radiative (fluorescence) and non-radiative (vibrational and 

collisional relaxations) relaxations upon excitation. The non-radiative relaxations coverts the 

excited state energy into heat which in turn increase in pressure and subsequent generation of 

acoustic waves. These acoustic waves can be detected when traveling to the surface, and used as 

Figure 3-14: (a) Dimerization of HITC is facilitated in presence of excess Cu(II) ions and is independent of the 

organic solvent used for solubilizing the dye in the aqueous buffers. (b) Dimerization of cypate is independent on 

the pH (acidic vs. neutral). The dye degrades at basic pH so it is suitable for dimerization. 
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contrast for photoacoustic (PA) imaging 52. Previous studies have shown experience with in vivo 

PA imaging with cypate and other NIR dyes has shown that free dyes do not produce sufficient 

PA signal at biologically relevant concentrations, while a much higher PA signal can be achieved 

when the molecules are at a quenched such as when incorporated on a nanoparticle53. We 

envisioned higher PA signals from cyanine dye dimers due to a combined effect of enhanced molar 

absorptivity and enhanced non-relative relaxations. The photoacoustic spectrum of cypate and its 

dimer shows greater PA amplitude of the dimer compared to the monomer at equimolar 

concentrations. (Figure 3-15a). Maximum PA absorption was detected at 800 nm for both 

molecules.  At 200 µ M concentration, the dimer generated 3.6 times PA amplitude than the 

monomer (Figure 3-15b). 

3.3.6. Photoacoustic imaging with cyanine dye dimers. 

We then tested feasibility to image tumors using PA contrast from molecularly targeted dimers. 

For this purpose, we used the dimer of a bio-conjugate of cypate (LS301 dimer) which has been 

shown to have highly specific in vivo tumor targeting capacity. When injected in to a A549 

tumor bearing mouse, in vivo PA imaging shows time dependent enhancement of contrast in 

Figure 3-14: (a) Photoacoustic spectrum of cypate and dimer in 10%DMSO in water. (b) Concentration dependent PA 

amplitude. 
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liver and tumor areas of the mouse, demonstrating feasibility of using dimer molecules for in 

vivo.  PA imaging (Figure 3-16). 

3.4 Discussions 

While working with cyanine dyes and Cu (II) ions in solution in the preceding chapter, we 

observed that the later facilitates irreversible dimerization of these dyes. We show at least five 

cyanine dyes (and their bioconjugates) that demonstrate this phenomena. NMR and HRMS 

characterization of the dimer of cyanine dye cypate indicates the stable dimer has a new symmetric 

C18-C18 bond between the polymethine chains. Dimerization of few cyanine dyes have been 

reported earlier, and shown to be formed via oxidation and radical cation formation of the dye 

monomers.50 The radicle cations then can dimerize and deprotonate forming the final irreversible 

dimer molecule. As observed in this study, presence of Cu(II) may facilitate oxidation of the dye 

monomers and stabilization of  the intermediate cation, leading higher yield of the dimer. 

Spectroscopic studies showed higher molar absorptivity of the dimers and preservation of 

Figure 3-16: A549 tumor bearing mouse whole body PA images with LS301 dimers. (a)Control PA map image 

before injecting materials. PA images after injecting 200 µM of LS301 dimer after (b) 6h, (c) 12 h and (c) 24 h. 

Average PA amplitude in the (e) tumor region and (f) liver region over time. 
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absorption properties with the near complete loss of fluorescence. Loss of fluorescence leads to 

higher non-radiative relaxation of the excited molecules, which was manifested as enhanced 

photoacoustic signal generated by the dimer than the monomer. Cyanine dyes have been used 

photoacoustic contrast agents, we envisioned the cyanine dye dimers would be more potent 

photoacoustic contrast agents and showed feasibility of performing in vivo tumor imaging using 

the dimer of a tumor targeted bioconjugate of cypate. Future studies with this new class of 

molecules will test them as fluorescence quenchers and as fluorescent reporters for chemical 

processes that can revert the reaction.  

3.5 Conclusions 

We have synthesized, isolated and characterized dimers of some pentamethine and heptamethine 

cyanine dyes. We dimerization in aqueous solutions is favored in heptamethine dyes than 

pentamethine dyes under similar conditions. Also presence of Cu(II) ions in 5-10 fold excess 

facilitates dimerization in heptamethine dyes. We demonstrate feasibility of using these non-

fluorescent dimers for generating photoacoustic contrast in tumor bearing mice.  

In the preceding two chapters we have worked with fluorescent probes and stuSdied fluorescence 

quenching for developing activatable probes. In the next chapters we will demonstrate the 

development of a use a broad spectrum dual-emission fluorescent molecular probe and use it to 

estimate the depth of a fluorescent inclusion in vitro and in vivo.  
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Chapter 4  

Dual emission fluorescent molecular probe 

for depth estimation 
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4.1. Introduction 

 Using light to evaluate disease is increasingly common for both preclinical and clinical 

applications54. This increase is partly due to advances in fluorescent molecular probes that have 

diverse emission wavelengths as well as the ability to bind specific biological structures55,56. 

Fluorescence method allows for real-time imaging without the use of ionizing radiation, and shows 

promise in translational applications such as intraoperative imaging57,58. Currently, planar optical 

imaging relies on the intensity of the fluorescent signal to determine the extent of the pathology59. 

Many factors can impact the relative intensity of a signal, including tissue optical properties, dye 

concentration, and depth of the overlying tissue. The ability to assess the extent of a biological 

structure, such as a tumor or blood vessels, using a fluorescent dye will improve disease detection 

and monitoring disease progression60.  

The challenge in determining the depth of a fluorescent signal stems from the ill-posed nature of 

the inverse problem. If the depth of a fluorescent object is known, we can readily correlate the 

intensity of the signal with the depth. However when the depth is unknown, there are insufficient 

parameters available that can describe the system in order to accurately calculate the depth based 

on the fluorescent signal. Approaches that have demonstrated depth resolution include analyzing 

the point-spread function of light61, temporal based imaging62, and structured illumination63-65. 

Currently, the mainstay of depth profiling is fluorescence molecular tomography (FMT)66-70. FMT 

uses source-detector pairs, and solves the inverse problem based on relative changes in light 

intensity. FMT has proven to be useful in depth profiling for both preclinical and clinical 

applications. However the complexity of solving the numerous equations makes it computationally 

expensive and less practical for some imaging applications, particularly those that require real-

time feedback.  
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In an attempt to measure fluorescence depth in a less complicated manner, we investigated wide-

field dual-wavelength imaging. Previous studies demonstrated the ability to depth-profile in a 

turbid medium by imaging at multiple wavelengths71,72. The intensity of the fluorescence light 

detected varies as a function of depth due to the attenuation of light at that wavelength in a specific 

medium. Light attenuation is dependent on the optical properties of the medium, μa (absorption 

coefficient) and μ’s (reduced scattering coefficient). When imaging is conducted in the same 

medium at two different wavelengths, the attenuation coefficients are constant for each 

wavelength. The natural log of the ratio of the detected light at two wavelengths varies linearly 

with depth73.  

To implement this approach, we developed a dual emitting fluorescent molecular system 

consisting of two different fluorescent molecules covalently linked in a 1:1 molar ratio. Spectrally 

distinct signals are important to ensure non-overlapping signal collection. Our results demonstrate 

the feasibility of dual-wavelength imaging for determining the depth of blood vessels and 

characterizing the sub-surface depth of tumors in vivo. 

Part of this work was done in collaboration with Jesse Lam and Bruce Tromberg and University 

of California, Irvine. 

4.2 Materials & Methods 
4.2.1 Synthesis and spectral characterization of dual fluorescence imaging 

agents:   

The dual-wavelength fluorescent imaging agent LS903 was synthesized using cypate74 and 

fluorescein isothiocyanate (FITC, Sigma). Briefly, an octapeptide with 6 proline residues flanked 

by glycine and lysine residues was synthesized on solid support using standard Fmoc chemistry. 

One of the free carboxylic acid group on the dye cypate was conjugated to the free N-terminal 
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amine on glycine. The product was cleaved from resin, deprotected, and purified by high 

performance liquid chromatography (HPLC). Fluorescein isothiocyanate (FITC) was conjugated 

to the free epsilon amine on lysine. The resulting product (LS903; Fig. 1a) was purified by HPLC 

and characterized by ESI-MS: m/z for [M + H]+: 1,781.6 (calculated), 1781 (observed);  [M + 

2H]2+: 891.3 (calculated),  891 (observed). To increase the water solubility and enhanced 

circulation in mice, PEG2000 (Laysan Bio, Inc.) was conjugated to the free carboxylic acid group 

of LS903, and the resulting product (LS904; Fig. 1a) was characterized by MALDI-TOF, which 

showed the expected uniform mass distribution around M = 3763.  

For spectral characterization, the compounds were diluted in phosphate buffered saline (PBS, pH 

7.4) containing 1% bovine serum albumin (BSA) to simulate the interaction of the molecules with 

proteins in vivo. Absorption spectra were measured on a DU 640 spectrophotometer (Beckman-

Coulter, Brea, CA). Fluorescence emission spectra were recorded on a FluoroLog 3 

spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) using 475 nm/490-900 nm and 720 nm/735-

900 nm as excitation/emission wavelength with 5 nm slits for FITC and cypate, respectively. 

4.2.2 In vitro Imaging  

All dyes were prepared in a 1% BSA in PBS prior to in vitro imaging. In vitro imaging was 

conducted using LS903 obscured by various materials layered on top. In our initial study, we used 

lunchmeat (turkey breast, Budding; 0.65 mm thick) to obscure a 32 μM LS903 sample in an 

Eppendorf tube. To obtain higher depth resolution we switched to silicone and plastic sheets of 

0.254 mm and 0.13 mm thick, respectively (Mc. Master-Carr, Elmhurst, IL). Simulated vessels 

were created using polyurethane tubing 0.015” ID x 0.033” OD (Braintree Scientific, Braintree, 

MA), and LS903 was imaged at two different concentrations (25 and 50 μM) for vessel studies. 
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All dual-wavelength imaging was conducted using the Optix MX3 system (ART Advanced 

Research Technologies, Montreal, CA) with excitation and emission wavelengths at 480/535 nm 

for the FITC channel, and 785/810 nm for the cypate channel. Normalized fluorescence was used 

for dual-wavelength image analysis, with the fluorescence signal normalized by the excitation 

power for each pixel. Image analysis was conducted using custom developed code in MATLAB® 

(The Mathworks, Inc., Natick, MA).   

4.2.3 In vivo Imaging  

All mouse studies were conducted in compliance with the Washington University Animal Welfare 

Committee’s requirements for the care and use of laboratory animals in research. Balb/c mice were 

injected with 1 x 106 4T1 murine breast carcinoma cells on the flanks and the resulting 

subcutaneous orthotropic tumors were allowed to grow until they were approximately 10 mm in 

diameter. Mice were shaved prior to injection and imaging. The Optix was used to acquire tumor 

fluorescence for dual-wavelength analysis, and the Pearl small animal imaging system (Licor, 

Lincoln, NE) for NIR-specific analysis. For intra-tumor injections (n = 3), LS903 was prepared in 

a 1% mouse serum albumin (MSA) solution in PBS, for a final dye concentration of 60 μM in 20 

μL of solution per tumor. For intravenous injections (n = 2) LS904 was prepared in a 1% MSA in 

PBS, for a final dye concentration of 60 μM in 100 μL of solution per mouse. Animals were imaged 

both before and after injection for intra-tumor injections, and at 0, 2, and 4, hours post injection 

for intravenous injections. The maximum in vivo contrast was detected at 2 hours post injection, 

and images at this time point were used for depth analysis. 

4.2.4 Optical Parameter Measurement  

White silicone rubber sheets 0.010, 0.015, and 0.020 inches in thickness (86435K121, 86435K13, 

and 86435K15, respectively, McMaster-Carr, Elmhurst, IL) with 35A durometer were divided into 
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2x2 inch sections. Three samples per thickness were measured using a custom integrating sphere 

setup (Beckman Laser Institute, University of California, Irvine, CA). By placement of the samples 

at the entrance or exit ports of an integrating sphere (4P-GPS-033-SL, Labsphere, North Sutton, 

NH), transmittance and reflectance values were measured using a broadband light source (HL2000 

20W Quartz-Tunsten-Halogen lamp, Ocean Optics, Winter Park, FL), and spectrometer (Prime-

X, B&W Tek, Newark, DE). Optical properties from 500 to 1000 nm were calculated with a 

MATLAB-based (MathWorks, Natick, MA) inverse adding-double algorithm (IAD) assuming a 

refractive index of 1.43, and anisotropy factor of 0.9. In brief, given transmittance and reflectance 

values, the IAD algorithm obtains absorption and scattering properties by iteratively solving the 

radiative transport equation until transmittance and reflectance values are matched75. 

4.3 Results 

4.3.1 Structures and optical properties of dual fluorescent dyes 

(Figure 4-1a) shows the structures of LS903 and LS904, with red and green colors representing 

the NIR and visible fluorescent dyes cypate and fluorescein, respectively. The absorption spectrum 

of LS903 showed the existence of both the cypate and FITC moieties (Figure 4-1b). FITC peak 

emission was at 518 nm (Figure 4-1c) and cypate peak emission was at 812 nm (Figure 4-1d). The 

presence of two distinct fluorescent peaks allowed for imaging at dual-wavelengths, which was 

used to calculate the depth of the fluorescent signal. 
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Figure 4-1: Properties of dual fluorescent dyes. (a) Molecular structure of LS903 and LS904; (b) absorption spectra 

of LS903; and emission spectra of LS903 at (c) 460 nm and (d) 720 nm excitation. All spectra were taken in a 

solution of 1% BSA in PBS, pH 7.4. 

4.3.2 Simulation of in vitro tissue depth estimation  

Description of tumor depth involves multiple depths that are of clinical significance. In the case of 

intraoperative imaging, the distance from the edge of the tumor to the edge of the healthy tissue is 

important in margin determination in the vertical direction. This distance is analogous to the sub 

surface depth (dss) when delineating the tumor margin in the z-direction (Figure 4-2a), or locating 

the depth of a fluorescent vessel under a tissue surface. There is also a depth of the tumor itself 

(dobj), and the overall depth of the tumor from the surface of the tissue (dtotal). The dtotal depth is 

important in tumor staging for malignancies that invade deeper structures. For our analysis we 

quantified the signal from dual-wavelengths as a function of depth to determine the dss for the 

application of in vivo tumor margin estimation, and in vitro simulated vessel depth determination.  
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We obscured a solution of LS903 in a 1.5 ml Eppendorf tube under an increasing number of 

lunchmeat slices to represent increasing depth of a fluorescent inclusion below the surface. Figure 

4-2b shows the NIR signal (cypate) was visible at greater depths than the signal in the green 

channel (FITC). We plotted the signal for each channel vs. depth (Figure 4-2c). The natural log of 

the ratio was plotted as a function of depth (Figure 4-2d), and the linear equation of the relationship 

was obtained (slope = 3.44, y-int = -0.27). 

 

Figure 4-2: (a) Diagram showing depth configuration of fluorescent inclusion overlaid by a medium (lunchmeat, 

silicone, plastic, or skin). The layers represent the depth layers used for in vitro testing, the absolute number of 

layers varied depending on the test. (b) Images in both the cypate and FITC channels (rows) of an Eppendorf tube 

obscured by increasing layers of lunchmeat. No overlying lunchmeat in the left column, 1 layer of overlying 

lunchmeat in the middle column, and 2 layers of overlying lunchmeat in the right column. (c) Fluorescence signal 

vs. depth curve for the fluorescent ROI for LS903. (d) Natural log of the ratio of cypate-to-FITC for LS903. 
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4.3.2 In vitro vessel depth estimation  

We simulated a vessel running beneath a layer of tissue by using silicone as our tissue phantom 

and polyurethane tubing as our vessel model. LS903 was flowed through the vessel at varying 

concentrations (25 μM and 50 μM) and curves for the natural log of the ratios were generated 

(slope = 2.08, y-int = 0.43; slope = 2.10, y-int = 0.37). Next, we tested the performance of our 

method using a different material of unknown depth to obscure our vessel and imaged at both 

wavelengths (Figure 4-3a). The predicted depth values for the vessel were mapped by using the 

ratio-curves previously generated (Figure 4-3b). The average estimated depth was 0.40 mm and 

the measured depth was 0.52 mm. 

Varying the optical properties, by changing the overlying material, impacted our depth estimate 

(Figure 4-3c). Materials that attenuated light more produced a higher slope value than materials 

that attenuated light less. Ideally this slope would be predictable prior to estimating the depth. We 

quantified the difference in accuracy of our depth estimates using average parameters from 

different materials and specific parameters using the same material (Figure 4-3d). There was a 

significant difference when using the different values (p < 0.001), thus indicating the importance 

of calibration studies with the same material used to perform the depth estimate. To translate this 

approach to in vivo imaging, we needed to generate a curve fit equation using the same material 

intended for the imaging study. To accomplish this goal, we layered mouse skin at varying depths 

to obtain a tissue-specific curve (slope = 3.08, y-int = 0.05) (Figure 4-3e). 
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Figure 4-3: a) Dual-wavelength images of the fluorescent vessel under layers of plastic with unknown depth and 

optical properties. b) Depth map of estimated depth of vessel below the surface. c) Natural log of the ratio of dual 

signals vs. measured depth for different overlying materials and concentrations showing differing slopes depending 

on the medium. d) Comparison of the method accuracy for estimating depth in when using the average slope 

parameters and the specific slope parameter for a given medium. e) Calibration curve using the fluorescent vessel 

under ex vivo mouse skin to determine the curve fit parameters for skin. 

4.3.3 In vivo Tumor Depth Estimation 

For in vivo depth estimation, we injected LS903 directly into 4T1 mouse flank tumors. Mouse 1 

(M1) was injected bilaterally, and mouse 2 (M2) was only injected in the left flank tumor. The two 

mice were imaged using a NIR-specific imaging system, and a dual-wavelength imaging system. 

The NIR-specific imaging system shows the fluorescence distribution of LS903 in the mice (Figure 

4-4b,c). The dual-wavelength imaging system shows the fluorescence in the tumors in both the 

cypate and FITC channels (Figure 4-4d-f). The relative tumor signals were calculated in Fig. 4g, 

and in both channels the treated tumors had higher fluorescence signal than the untreated control 

tumor (M2-RF – not shown). 
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Figure 4-5 outlines the image processing method used in this study. Briefly, to estimate the depth 

of the fluorescence in the tumors, regions of interest (ROIs) were generated that included only the 

tumor in both the cypate (Figure 4-6a) and FITC channels (Figure 4-6b). The cypate image was 

thresholded to create the tumor ROI. This ROI was then applied to the FITC channel, and the auto-

fluorescence was subtracted by using a pre-injection image. The ratio of the images obtained at 

two wavelengths was used to create a map of the tumor depths for each of the tumors (Figure 

4-6c). 

 

Figure 4-4: (a) Bright field image of 4T1 cells injected for xenograft model. NIR image of LS903 distribution using 

the cypate channel for (b) M1 and (c) M2. Dual-wavelength images of the tumor ROI in the cypate channel (top 

row) and FITC channel (bottom row) for column (d) M1-left flank, (e) M1-right flank, and (f) M2-left flank. (g) 

Quantification of the in vivo tumor ROI signals for the cypate channel (top) and FITC channel (bottom). 

The depth values for each pixel were plotted in Figure 4-6d showing the distribution throughout 

the ROI. The tumor was then excised and prepared for histological analysis. The cypate and FITC 

channels were imaged, and areas of co-localization were analyzed (Figure 4-6e). The apparent 
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outline of the co-localized fluorescence region was determined by visual analysis, then 10 

measurements from this outline of the co-localized area to the surface were taken. The average 

measured tumor sub-surface depths were 1.31 ± 0.442 mm, 1.07 ± 0.187 mm, and 1.42 ± 0.182 

mm, compared to the average estimated depths of 0.972 ± 0.308 mm, 1.11 ± 0.428 mm, 1.21 ± 

0.492 mm, respectively Figure 4-6f). 

Figure 4-5: Overview of method for depth map generation from dual-wavelength imaging. Columns represent the 

(1) pre-injection image, (2) image immediately following the injection of the dye, and (3) image two hours 

following the injection of the dye. For intravenous probe administration, tumor accumulation of the dye was 

apparent at 2 hours post injection in the cypate channel (Row A, Column 3), so the 2 hour image was thresholded to 

determine the tumor ROI (Row B, Column 3). The FITC channel images contained high levels of auto-fluorescence 

from the hair and moderate levels in the skin (Row C). The tumor signal was not visible on a 0 – 255 grayscale until 

the high signal from the fur was removed. To remove the unwanted regions from the analysis, the pixels identified 

as the ROI using Cypate were applied to the FITC images (not shown). The remaining pixels were then compared to 

the average pre-injection FITC image values within the ROI. The pre-injection FITC image values were considered 

background and subtracted from the 2 hour FITC image, resulting in a FITC image that was of the ROI of interest 

with the pre-injection background values subtracted to remove auto-fluorescence (Row D, Column 3). The dual-

wavelength images for cypate (Row B, Column 3) and FITC (Row D, Column 3) were used to calculate the depth 

estimate maps. 

To evaluate if the dual emitting imaging agent dye could be used to estimate depth when 

administered systemically, we increased the water solubility of LS903 by conjugating it to 



71 

 

PEG2000, to obtain LS904. The signals were measured in both channels as a function of depth 

and the natural log of the ratios for LS903 and LS904 were comparable.

 

Figure 4-6: In vivo tumor images used for post processing. (a) Cypate images (top row), and (b) FITC images 

(bottom row) of the tumor region. The FITC image has the pre-injected auto-fluorescence subtracted from the tumor 

ROI. (c) Depth estimate maps for each of the tumors. (d) Pixel-by-pixel depth estimates for each tumor ROI. (e) 

Representative tumor histology (M2-LF) showing cypate fluorescence (top left), FITC fluorescence (bottom left), 

overlay of both channels (top right), and bright field image (bottom right). (f) Comparison of average measured 

depth vs. average estimated depth for each tumor. 

 

A 4T1 tumor bearing mouse was injected via the tail vein with LS904 and then imaged using the 

NIR-specific and dual-wavelength imaging systems. The cypate image shows that LS904 was 

present in the tumor region, as well as at the injection site in the tail. Dorsal view of the non-

invasive image shows accumulation of the agents in the kidneys (Figure 4-8a). The dual-

wavelength images show that there was signal present in the tumor ROI in both channels (Figure 

4-8b,c). The kidney was likely not visible in the FITC channel because it was deeper in the tissue 

than the green light could penetrate. Ex vivo imaging of major organs and tissues showed the 
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compound was primarily in the tumor, as well as the clearance organs, the kidney and liver (Figure 

4-8d). Fluorescence from different tissues was quantified (Figure 4-8e). Similarly, the ex vivo 

signals were measured in both channels for a control and the injected tumors (Figure 4-8f), and 

the signals were quantified in Figure 4-8g.  

 

Figure 4-7: (a) NIR image of LS904 distribution using the cypate channel. Dual-wavelength images of the tumor 

ROI in the (b) cypate, and (c) FITC channel. (d) Cypate ex vivo bio-distribution showing organ distribution of the 

dye, with (e) quantification. (f) Ex vivo tumor images of a mouse that was not injected with dye (left) and injected 

with LS904 (right). (g) Quantification of the ex vivo image signals for cypate and FITC. 

Depth maps were created for two tumors using the dual-wavelength images shown in Figure 4-8. 

Figure 4-8a shows the cypate images with the FITC images of the tumor ROIs in Figure 4-8b. 

Depth maps were created using our dual-wavelength images (Figure 4-8c). Figure 4-8d shows a 

pixel-by-pixel representation of the depth estimates, and Figure 4-8e shows the dual-wavelength 

histological analysis used for validation. The average measured depth values vs. the average 

estimated depth values for each of the tumors are shown in Figure 4-8f. The measured tumor sub-
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surface depths were 1.28 ± 0.168 mm, and 1.50 ± 0.394 mm, and the estimated depths were 1.46 

± 0.314 mm, and 1.60 ± 0.409 mm, respectively (Figure 4-8e). 

In previous trials, we assigned the slope of our curve based on empirical data. To lay the 

translational framework for this dual-wavelength approach, we next focused on a method for 

estimating the slope given the optical parameters of the material. We used an integrated sphere 

approach to calculate the absorption and scattering properties of silicone sections76. Figure 4-9a 

shows the silicone sections tested. Materials A, B and C were white silicone sections of different 

thicknesses and durometers, and Material D was a gray silicone section. Because the materials 

were each of different durometers, and therefore had different material properties, they each had 

different absorption and scattering coefficients that could be measured. Figure 4-9b and Figure 

4-9c show the absorption and reduced scattering coefficients as a function of wavelength. Material 

Figure 4-8: In vivo tumor images used for post processing. (a) Cypate images (top row), and (b) FITC images 

(bottom row) of the tumor region. The FITC image has the pre-injected auto-fluorescence subtracted from the 
tumor ROI. (c) Depth estimate maps for each of the tumors. (d) Pixel-by-pixel depth estimates for each tumor 
ROI. (e) Representative tumor histology (T2) showing cypate fluorescence (top left), FITC fluorescence 
(bottom left), overlay of both channels (top right), and bright field image (bottom right). (f) Comparison of 
average measured depth vs. average estimated depth for each tumor. 
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D did not allow enough light to pass through to calculate the optical parameters, and was therefore 

excluded from subsequent analysis. We then measured the Cypate and FITC signals obtained at 

both wavelengths of interest for each material, and used these values to calculate the coefficients 

of a transformation matrix. The coefficients of this matrix represented the transformation that 

could be used to determine the slope when the optical parameters were known. Equation 1 was 

used to represent the linear system of equations. 

Φ ∗ 𝑥 = 𝑚                (1) 

Where  is a matrix of measured optical parameters for materials A, B and C at the wavelengths 

of interest, and m is a vector of the desired slopes for an optimized depth estimate. In expanding 

Equation 1, the individual optical parameter values for  were entered for each material (A, B 

and C), and the series of equations represented by Equation 2 was solved for each coefficient (x) 

𝜇𝑎518𝑥𝐹𝐼𝑇𝐶_𝑎𝑏 + 𝜇𝑎812𝑥𝐶𝑦𝑝_𝑎𝑏 +  𝜇′𝑠518𝑥𝐹𝐼𝑇𝐶_𝑟𝑠 + 𝜇′𝑠812𝑥𝐶𝑦𝑝_𝑟𝑠 = 𝑚    (2) 

 

Table 4-1 outlines the individual optical parameter values used to solve the system of linear 

equations represented by Equation 2. 

Table 4-1: Measured optical parameters used for the matrix to solve for the transform coefficients. 518 nm used for 
material properties for FITC fluorescence and 812 nm used for material properties for Cypate fluorescence. 

(mm-1) μa518 μa812 μ's518 μ's812 

Material A 0.09 0.080 6.20 4.40 

Material B 0.07 0.058 7.05 5.15 

Material C 0.05 0.041 6.20 4.60 

 

In solving the system of linear equations in the form of Equation 1, we found each x value 

(transform matrix coefficients). These coefficients allowed us to calculate the slopes in systems 

with known or measured optical parameters: xFITC_ab = 0; xCyp_ab = 336.51; xFITC_rs = -26.56; xCyp_rs 
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= 33.37.  The depth of the simulated vessel was estimated using only the transform coefficients to 

calculate the slope. The silicone slices were stacked and the depths for the various materials were 

estimated (Figure 4-9d). The deviations for each material are shown in Figure 4-9e, with each 

material falling within 0.1 mm error. Table 4-2 shows a summary of the results. 

Table 4-2: Summary of estimated depths of simulated vessel under silicone obtained using the slope calculated from 
the measured optical parameters. 

Material A B B C C 

Estimated Depth (mm) 0.318 0.302 0.695 0.481 0.986 

StDev (mm) 0.116 0.269 0.394 0.350 0.414 

Measured Depth (mm) 0.254 0.381 0.762 0.508 1.016 

Deviation (mm) 0.064 -0.079 -0.067 -0.027 -0.030 

 

The approach was then repeated using our previously obtained mouse tumor images along with 

optical parameter values reported in the literature for mouse skin. Mouse skin values at 518 nm 

and 812 nm were used to conduct this analysis with the absorption coefficients at approximately 

0.175 and 0.070 mm-1, and the reduced scattering coefficients at approximately 1.65 and 0.70 mm-

1, respectively77. Using these optical parameter values, and our calculated transform coefficients, 

we calculated a slope of 3.09 to use for the fluorescence depth estimates. The results obtained 

using this slope are shown in Figure 4-9f, and the deviations from the depths obtained using 

histology are shown in Figure 4-9g. 

Using the forward model of optical parameters to estimate depth yielded results within 0.38 mm 

for the intra-tumor injections, and 0.63 mm for the intravenous injections. A summary of the results 

is shown in Table 4-3. 
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Figure 4-9: (a) Images of silicone sections used to calculate absorption and reduced scattering coefficients at multiple 
wavelengths. Materials A, B, and C were white silicone sheets of different thicknesses and durometers. Material D was 
gray silicone, however it was too opaque to obtain optical parameter data. (b) Reduced scattering coefficients as a 
function of wavelength for each material tested. (c) Absorption coefficients as a function of wavelength for each material 
tested. (d) Average fluorescence depth estimates of the simulated silicone vessel under the silicone sheets for each 
material using the optical parameter approach. Materials B and C were each stacked to show multiple depth estimates 
for the same material. (e) Average depth estimate deviation from measured for each material. (f) Average fluorescence 
depth estimates in vivo using the optical parameter approach. (g) Average depth estimate deviation from measured for 

each tumor. 

  

Table 4-3: Summary of estimated depths of tumor fluorescence in vivo obtained using the slope calculated from 
literature optical parameters. 

Tumor M1 - LF M1 - RF M2 - LF T1 T2 

Estimated Depth (mm) 1.271 1.448 1.578 1.913 2.085 

StDev (mm) 0.401 0.557 0.641 0.408 0.532 

Measured Depth (mm) 1.310 1.070 1.420 1.280 1.500 

Deviation (mm) -0.039 0.378 0.158 0.633 0.585 
 

4.4 Discussion 
 We have outlined a method for determining the sub-surface depth of a fluorescent inclusion 

obscured by a scattering medium for the applications of depth determination of blood vessels and 

tumors. Using a monomolecular dual-wavelength probe eliminates errors caused by the difficulty 
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in accurately determining the concentration of different dyes, because the dyes are present in 

equimolar quantities. As such, the ratio of the signal obtained from each dye is predictable and can 

be used to calculate the depth. Because our green light signal attenuates rapidly in the tissue, we 

were only able to apply this technique to determine the sub-surface depth when the fluorescent 

inclusion was near the surface. By conjugating a red or NIR dye to cypate, we would be able to 

obtain deeper tissue imaging.  

Our method is beneficial because it is non-invasive, and it can be used in situations where a 

physical measurement is not possible. In the case of the tumors containing the fluorescence, the 

distance of the fluorescence below the surface could not be measured using calipers because there 

was no defined physical surface to measure from. Assessing the tumor sub-surface depth using 

calipers would require perturbing the tissue, and would be difficult to execute since skin and 

subcutaneous tissue deform when physically contacted. We attempted this, however we were only 

able to obtain measurements of the skin itself (which was also distorted). This measurement was 

not representative of the system because the fluorescence in our tumors was localized to tissue 

deeper than just the skin layer. Because a physical measurement was not possible, we relied on 

fluorescence histology to validate our approach. We conducted 10 measurements from the co-

localized signal to the surface, however additional measurements over a larger area would be 

needed to report the robustness of the method.  

Others in optical imaging have investigated FMT for depth estimation. The depth resolution that 

we were interested in was on the order of tenths of a millimeter as we were interested in the sub-

surface depth. The spatial resolution of FMT is on the order of millimeters to tenths of a millimeter 

in an idealized situation, however imperfect fluorophore localization to the tumor makes FMT 

impractical for this application given the desired spatial resolution. FMT is suited for 
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understanding the spatial distribution of a fluorescent inclusion where the dimensions of the 

inclusion itself are of interest such as dobj in Figure 4-2a. Because our approach relies on the location 

of the fluorescence signal for depth determination, the targeting moiety must be specific to the 

structure of interest. We employed the EPR effect to deliver our probe, and demonstrated higher 

tumor signal compared to surrounding tissue Figure 4-7. Many tumor targeting probes are under 

development, and these probes have the potential to improve the accuracy of the method.   

The dual-wavelength approach for sub-surface depth estimation is also impacted by tissue optical 

properties. As such, a priori knowledge of the type of tissue could be applied in a feed-forward 

manner for translational imaging. Our method involved a preliminary calibration study to correlate 

the expected signal at measured depths in a specific medium. Other researchers have developed 

methods for estimating tissue optical properties including parameterized mathematical models78 

and in vivo spatial-frequency domain imaging79. By combining these techniques with a dual-

wavelength probe, accurate depth-resolved tissue imaging may be achievable in many different 

tissue types. 

We have demonstrated the feasibility of using a dual-wavelength custom developed 

fluorescent probe to determine the sub-surface depth of structures in tissue. An advantage of using 

an optical probe over auto-fluorescence spectral data alone, is that dyes also can be readily targeted 

to specific biologic structures using cellular receptors. The specificity of optical imaging allows 

for flexibility in the approach for different preclinical and clinical uses, such as when a physical 

depth measurement would disrupt the tissue or be difficult to obtain. The simplicity of real-time 

planar optical imaging is advantageous for applications such as intraoperative imaging; allowing 

for the same fluorescent probe to be used for both the identification of and the depth 

characterization of structures in tissues. By understanding the sub-surface depth of a tumor, 
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positive margins in the z-direction may be reduced. Further, once a gross pathological specimen 

is removed from the body, real-time margin assessment can be performed via imaging prior to 

histological evaluation. 

4.5 Conclusions 
We demonstrated the feasibility of using a dual-wavelength custom developed fluorescent 

probe to determine the sub-surface depth (dss) of structures in tissue. We used a dual-wavelength 

method utilized LS903 with a green-emitting, and a NIR-emitting portion for this purpose.  

In the previous chapters, we have discussed about fluorescence imaging agents and used 

emission signal in various ways to gather information. In the next chapter, we will explore 

fluorescence lifetime properties of such imaging agents and describe one application of lifetime 

imaging for tracking intracellular processes. 
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Chapter 5  

Molecular probes for fluorescence lifetime 

imaging  
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5.1. Introduction 
 

  This chapter briefly introduces molecular probes used for generating fluorescence lifetime contrast 

as published before,80 and describes synthesis and application of a molecular probe which shows 

protein binding dependent changes in fluorescence lifetime.  Singlet-state fluorescence occurs 

when a fluorophore absorbs radiation of specific energy followed by the emission of photons as 

the molecule returns to the ground state. Because energy is lost between the excitation and 

emission processes, fluorescence is emitted at a higher wavelengths than those of the excitation 

radiation.8 Several factors affect molecular fluorescence, including the molecular structures and 

associated vibrational energy levels as well as the physical and chemical environment of the 

fluorophores.8 Perturbation of the fluorescence of many organic molecules could decrease the 

quantum yield at the same emission wavelength or cause spectral shift. Both effects are useful for 

biological applications. Within linearity, changes in the fluorescence intensity can be used to 

determine the concentration of fluorophores in a medium. Shifts in the spectral profile of 

fluorophores can provide quantitative data via ratiometric measurements at two different 

wavelengths. Although these approaches are highly reliable for reporting biological events in 

solutions or shallow surfaces, enhanced light scattering and absorption in heterogeneous mediums 

such as cells and tissue can adversely affect the fluorescence intensity in a less predictable manner. 

For these reasons, most fluorescence measurements in cells and tissue are typically reported in a 

relative intensity measurement using calibration standards or by self-referencing. 

Unlike fluorescence intensity-based imaging, fluorescence lifetime (FLT) of molecular probes is 

less dependent on the local fluorophore concentration or the method of measurement, which 

minimizes imaging artifacts and provides reproducible quantitative measurements over time.8 The 
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FLT of fluorophores is the average time a molecule spends in the excited state between absorption 

and emission of radiation before returning to the ground state.8 Accurate determination of the FLT 

of fluorophores and application in biological imaging and spectroscopy depend on both 

instrumentation and understanding of the fluorophore system. The FLT of a fluorophore can be 

measured by spectroscopic, microscopic, or in vivo imaging methods. Several FLT instruments are 

commercially available for spectroscopic and microscopic FLT measurements. For in vivo 

imaging, many studies rely on custom-built FLT systems81 because the only company (ART, 

Advanced Research Technologies, Canada) producing a commercial system is no longer 

operational. Because several papers have reviewed advances in FLT measurement methods and 

devices, this review will focus on fluorophore systems and how changes in their FLT contribute 

to our understanding of biological events. FLT of a molecule changes with small changes in the 

immediate microenvironment of the molecules and therefore can be used to report cellular and 

molecular processes with very high sensitivity. 8 

5.2. Classification of molecular probes for lifetime imaging 
 

Classification of molecular probes used for FLT imaging can be based on their FLT properties, 

emission wavelengths, or response to specific biological microenvironment.81 Figure 5-1 shows 

some fluorophore systems commonly used for lifetime imaging and the range of their 

photoluminescence lifetimes. Broadly, molecular probes used in FLT imaging can be classified 

into endogenous fluorophores and exogenous contrast agents. Exogenous agents can then be 

grouped according to their response mechanism and applications. Comprehensive reviews and 

classification for these molecules can be found in literature. 80,81 
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5.2.1. Endogenous fluorophores  

Most biospecimen possess intrinsic fluorescence because of the presence of some fluorescent 

biomolecules such as aromatic amino acids, fluorescent pigments, reduced nicotinamide adenine 

dinucleotide (NADH), flavin adenine dinucleotide (FAD), porphyrin, and some structural 

proteins.82 The expression levels or locations of these biomolecules can inform investigators on 

the functional status of cells and tissue. Below is a summary of the application of the most 

commonly reported endogenous fluorophores in FLT imaging. 

Melanin. Melanin (ex/em: 340-400/360-560 nm) is a pigment produced by melanocytes and 

widely present in living organisms.83 FLTs of melanin range up to ~8 ns.82 Current literature has 

Figure 5-1: Representative fluorophore systems commonly used in lifetime imaging and associated 

photoluminescence lifetimes. These fluorophores can be used in their native forms and/or after conjugation 

to other entities. 
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focused on studying FLT of melanin in healthy and cancerous skin. One such study has shown that 

the mean FLT of melanin can discriminate between healthy skin, basal cell carcinoma (BCC), and 

melanoma in fresh biopsies.84 Another work demonstrated a significant difference in FLT between 

keratinocytes and melanocytes, information that was used to characterize melanoma.85  FLT of 

melanin has also been shown as the baseline indicator for detecting oxidative stress conditions in 

retinal pigment epithelial cells.86 With the miniaturization of FLT systems, it is expected that FLT 

measurements can be used to screen suspicious lesions at point-of-care settings in future. 

NADH/FAD. NADH and its phosphate derivative NADPH (ex/em: 350/450 nm) are the dominant 

endogenous fluorophores in cells participating in cell metabolism, reductive biosynthesis, 

antioxidation, cell signaling, aging, and regulation of apoptosis.87 They have a mean FLT ~2.3-3.0 

ns when bound to proteins and a short FLT ∼0.3-0.4 ns in free form.82 Their FLTs are sensitive to 

solvent polarity and viscosity, and affected by their dynamic quenching in the presence of adenine 

moiety.88,89 FAD is another endogenous fluorophore that plays the role of redox cofactor in cells. 

FAD emits at a longer wavelength (ex/em: 450/535 nm) than NAD(P)H. Only the unbound form 

of FAD is fluorescent, with an FLT of 2.3-2.9 ns.82 The complementary metabolic functions of 

FAD and NAD(P)H allow the use of their FLT changes to report the metabolic state of cells. 

Physiologic parameters such as pH and O2 levels, as well as changes in tyrosine or tryptopham 

concentrations and local temperature are readily obtained from NAD(P)H/FAD FLT 

measurements.90  

FLT of NADH has been extensively studied in early detection and diagnosis of skin cancer. A 

recent study reported measuring the FLT of NADH at different depths from the tissue surface in 

fresh biopsies of both healthy skin and BCC. A different mean FLT was measured along different 

healthy skin layers, ranging from 800-950 ns. This is attributable to differences in the metabolic 
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state of different layers of healthy tissue. In contrast, negligible variation of FLT was observed in 

BCC skin layers because BCC is characterized by hyper-proliferation of basal cells inside the 

epidermis, obviating the cellular differentiation typical of healthy skin.91 The inverse relationship 

between the FLT of protein-bound FAD and NAD concentration (a non-fluorescent oxidized form 

of NADH) has been used to determine NAD level in cells.92  Imaging of brain activity has become 

an exciting field of research because of the potential to predict a variety of neurological diseases 

via imaging. In optical imaging, absorption mode is currently used to map brain activity, but this 

method relies heavily on subtle changes in the ratio of oxy- and deoxy-hemoglobin. To improve 

detection sensitivity, the FAD/NAD(P)H fluorescence ratio can be used for determining changes 

in cellular metabolism during neuronal activity. However, FLT measurements may provide more 

stable longitudinal data in high throughput format by measuring the FLT of either NAD(P)H or 

FAD at a single wavelength. This information can then be correlated with other factors without 

the need to measure multiple FLTs.  

5.2.2. Exogenous molecular probes 

The shallow penetration of light in the UV and visible light regions of the electromagnetic 

spectrum, as well as the low expression of a target endogenous fluorophores in tissues of interest 

confine the applications of these measurements to specialized cases of pathophysiology. In 

addition, the weak and nonspecific nature of the endogenous fluorescence further requires long 

signal acquisition time and sophisticated image analysis software to enhance detection sensitivity 

and decipher different types of tissue. These limitations can be overcome by the use of exogenous 

contrast agents.81    

The FLTs of some fluorophores are minimally affected under diverse biologically relevant 

conditions. These molecules provide stable FLT imaging data in different tissues. In many cases, 
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the local environment can alter the FLTs of other fluorophores. To achieve specific response, 

changes in FLTs can be induced through diverse molecular designs.  

Static FLT Probes. Fluorescent molecular probes and nanoparticles that do not exhibit 

significant changes in their FLT in  biological medium are static FLT probes. Stability of the FLTs 

provides reliable imaging signal over time and can be used to improve the spatial resolution of the 

molecular probe distribution without distortion from intractable FLTs in different compartments. 

For example, the stable FLT of fluorescent nanodiamonds, which is distinct from tissue 

autofluorescence FLT, was successfully used to track lung stem cells in vivo.93 Static FLT 

molecular probes are particularly useful in information multiplexing. By targeting different 

biomolecules with molecular probes exhibiting different FLTs, quantitative ratio-imaging can 

readily be achieved without compensating for imaging artifacts encountered in intensity-based 

measurements. A unique feature of this approach is the potential to image fluorophores with 

similar excitation and emission wavelengths, but with different FLTs. Not only will this approach 

overcome wavelength-dependent attenuation of light that affects fluorescence intensity readouts, 

but it also facilitates rapid data acquisition and analysis. Furthermore, the limited number of 

emission channels in regular confocal microscopes or in vivo imaging systems limits the scope of 

intensity-based multiplex imaging or cell sorting. In contrast, it is possible to track different types 

of cells labeled with fluorescent dyes of distinct FLTs in small animals or cell culture to understand 

disease pathology.94,95 

Responsive FLT Molecular Probes. Unlike stable FLT molecular probes, the need to 

quantitatively interrogate molecular processes without resorting to ratiometric imaging techniques 

has stimulated the design of reporter molecules that changes FLT as a function of their 

environment. These designs utilize similar approaches used to develop intensity-based activatable 
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molecular probes.96 We have classified these FLT imaging agents on the basis of the response 

mechanism – biomolecular, biochemical, and biophysical. Below we have discussed biomolecular 

binding responsive FLT probes and described synthesis, characterization nd application of such 

probe. 

Biomolecular Binding-Responsive FLT Molecular Probes.  

Many fluorescent probes are designed to alter their FLTs in response to biological events. For 

imaging molecular interactions, structural features that utilize Förster resonance energy transfer 

(FRET) technique is used. Adjacent fluorophores can perturb the residence time of fluorescent 

molecules in the excited state, leading to a decrease in the average residence time in this state. 

Although FLT is less dependent on fluorophore concentration, detectable fluorescence signal is 

still required to measure this parameter. In molecular designs where the fluorescence is completely 

quenched, FLT imaging would resemble traditional fluorescence enhancement via activatable 

probe method. However, instead of reporting an increase in fluorescence intensity, a well 

calibrated FLT decrease relative to the distance of the quenching or acceptor molecule could be 

used to determine distance-dependent molecular interactions with high accuracy. Here, energy 

transfer from a fluorescent donor to an acceptor molecule is expected to decrease the donor FLT 

and increase the acceptor FLT. In this section, we discuss FRET-based studies that alter FLTs 

through biologically-induced disruption of interaction between the acceptor and donor fluorescent 

molecules.   

FLTs of fluorescent proteins (0.1–4 ns) used to design donor-acceptor FRET pairs provide 

excellent FLT maps of biomolecular interactions or activities by fluorescence lifetime imaging 

microscopy (FLIM). Examples of fluorescent protein pairs for FRET-based FLIM include green 
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fluorescent protein (GFP)–DsRed (ex/em: 395/509–554/586 nm),97 GFP–mCherry (ex/em: 

395/509–587/610 nm),98 cyan fluorescent protein (CFP)–Venus (ex/em: 435/485–515/528 nm),99 

and CFP–yellow fluorescent protein (YFP) (ex/em: 435/485–514/527 nm).100 Small organic dyes 

(FLT: 0.1-90 ns) that undergo FRET are also used for FRET-based FLIM. Examples of such pairs 

include Alexa Fluor (AF) 488–Cy3 (ex/em: 495/519–550/570 nm),101 AF488–AF647 (ex/em: 

495/519–650/665 nm),102 Cy3–Cy5 (ex/em: 550/570–650/670 nm),103 and AF700–AF750 (ex/em: 

702/723–749/775 nm).104 Lanthanides paired with organic dyes105 or with fluorescent proteins,106 

have also been used as FRET donors because of their stable and long FLTs (µs to ms).81   

FRET-based FLT molecular designs have been used to report the activity of enzymes, such as 

proteases. This approach is particularly useful for endoproteases, where the amide cleavage site is 

flanked by several amino acids, allowing the incorporation of donor-acceptor fluorescent 

molecules at both ends of a peptide substrate without disrupting the enzyme activity. Examples 

include imaging the use of caspase-3 FRET-FLT substrate to image the up-regulation of caspase-

3 in cancer.107 Similarly, a FRET pair consisting of fluorescein (donor)-bovine serum albumin 

(BSA; acceptor) conjugate, was used to determine intracellular proteolysis of BSA via FLT 

increase from 0.5 to 3.0 ns.108 

Instead of using dynamic donor-acceptor fluorophore quenching for FRET, some investigators 

prefer static quenching using macro-molecular self-quenched probe designs. Here, multiple 

fluorescent molecules are linked to a polymeric or large molecule to alter the absorption and, most 

often, quench the dye fluorescence. By using FLT instead of intensity measurement, high 

fluorescence quenching, which could affect enzyme recognition of the substrate, is not necessary. 

A change in FLT from the initial value will then be used to track biological activity. Recently, 

Goergen et al.109 synthesized cathepsin B activatable macromolecular probe, consisting of IRDye 
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800CW (ex/em: 778/794 nm). Spectroscopic analysis showed FLT increase upon cleavage of 

specific amide bonds by cathepsin B. In vivo FLT imaging of cathepsin B activity in mouse 

infarcted myocardium was achieved with the molecular probe. FLT imaging was able to 

distinguish nonspecifically accumulated molecular probe in the liver from the cathepsin B 

activated reporter system in the infarcted regions.109 A similar study by Solomon et al. employed 

a self-quenched enzyme cleavable FRET probe, MMPSense750 FAST (ex/em: 749/775 nm), for 

imaging the expression of matrix metalloproteinases in tumor bearing mice.110 

As described above, FLT imaging can add valuable and complementary information to that 

provided by regular emission intensity measurements. Several near-infrared cyanine dyes 

demonstrate fluorescence lifetime sensitivities to changes in hydrophobicity of the immediate 

microenvironment.111 The same is manifested as two distinct lifetimes of the dyes when bound to 

two different pockets of albumin with varying hydrophobicity. We hypothesized that the same will 

be demonstrated by a molecularly targeted version of such dyes. The targeted molecular probe will 

have distinct lifetime changes associated with binding to the target protein and thus longitudinal 

lifetime imaging with such a construct may potentially allow us to follow the behavior of the target 

proteins in cells or in vivo. To demonstrate this, we constructed a molecular probe containing NIR 

dye cypate which was targeted the folate receptor (FR) using a folic acid moiety. FRs have 

prominent roles in several types of aggressive cancers. We used lifetime imaging of our molecular 

probe to study the kinetics of internalization of FR in KB cells and were able to differentiate 

specific vs. non-specific uptake. 
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5.3. Materials & Methods 

5.3.1. Synthesis protocols 

All chemicals and reagents were purchased from commercial sources and were used without 

further purification. Each step was characterized by liquid chromatography-mass spectrometry 

(LC-MS) using electrospray ionization (ESI) as the ionization method).  

Synthesis of molecule 2: Folate acid (1, Sigma Aldrich) was functionalized with and primary 

amine as indicated using hydrazine. Folic acid (44.14 mg, 100 µmoles) was dissolved in 3 mL 

anhydrous DMSO with sonication over few hours. 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (28.76 mg, 150 µmoles) and N-Hydroxysuccinimide (12.66 

mg, 110 µmoles) were added to this solution and left overnight on a shaker. Hydrazine (36 mg, 

1.1 mmoles).The crude mixture was further purified by HPLC equipped with a reverse-phase C-

18 column to obtain 2 as a pale yellow solid. Yield calculated was 73%. MS(ESI) m/z calculated 

for 2 [M + H]+: 455.4, found 456. 

Synthesis of LS872: All solids were dried overnight under vacuum to get rid of moisture. Cypate 

(66 mg, 100 µmoles) was dissolved in 3 mL anhydrous DMF. N,N′-Diisopropylcarbodiimide (12.8 

mg, 100 µmoles) and N-Hydroxysuccinimide (11.7 mg, 100 µmoles) were added to this mixture 
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and shaken overnight. Next day, compound 2 (46 mg, 100 µmoles) was added and shaken 

overnight. The crude mixture was further purified by HPLC equipped with a reverse-phase C-18 

column to obtain LS872 as a yellowish green solid. Yield calculated was 63%. MALDI TOF m/z 

calculated for LS872 [M + H]+: 1063.2, found 1063.43. 
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5.3.2. Spectroscopic characterization 

For spectral characterization, the cypate and LS872 diluted in DMSO. Absorption spectra 

were measured on a DU 640 spectrophotometer (Beckman-Coulter, Brea, CA).  

5.3.3. Cell studies 

Folate receptor (FR) expressing KB cancer cell line was obtained from ATCC. The cells were 

maintained in MEM supplemented with 10% fetal bovine serum and 1% Pen-Strep. For the cell 

experiments, the cells were culture in RPMI without folic acid supplemented similarly. This was 

done for enhanced expression of folate receptor by the cells.  

For establishing specificity of LS872, about 10,000 FR+ KB cells per well were plated in 8-well 

cell culture slides (BD Biosciences, San Jose, CA) and allowed to grow over-night. FR+ KB cells 

were treated with 1 µM LS872 with and without 100uM folic acid. FR- A549 cells were also 

treated with 1 µM LS872. To observed membrane receptor binding, cells were incubated at 4°C 

for 15 min with 5 µg/mL Hoechst 33342 (ThermoFisher Scientific) for nuclear staining. Cells were 

washed and replenished with fresh media before imaging. 

For lifetime imaging studies, about 40,000 KB cells were plated on glass bottom dishes (35 mm, 

No.1, MatTek Corporation) allowed to grow over-night. For initial studies, cells were treated with 

1 µM LS872 or cypate and incubated for 1 hour at 37°C. Cells were washed thrice and replenished 

with fresh media and imaged immediately. For tracking lifetime changes associated with receptor 

mediated endocytosis of LS872, cells were incubated with 1 µM LS872 at 4°C for 10 to allow 

binding with cells surface FR.  Cells were washed thrice and replenished with fresh media and 

imaged over time. 
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Cells were imaged with Olympus BX51 upright fluorescence microscope (Olympus America, PA, 

USA). LS872 was imaged using 775/50 nm excitation and 845/55 nm emission. Hoechst 33342 

was imaging using 330-385 nm excitation and 420 long pass emission. Images were processed on 

ImageJ. 

5.3.4. Fluorescence lifetime spectroscopy and microscopy 

Lifetime data collection was performed on a Picoquant Micrtotime200 microscope.  For 

spectroscopy, solutions of 1.32 µM LS872 or cypate in PBS, or PBS containing 6.6 µM FR or 

bovine serum albumin were used. The protein – dye solutions were allowed to incubate for at least 

2 minutes to allow to maximum binding. The final mixtures were excited using a 785 nm laser at 

40 MHz pulse rate with instrument response function below 300 ps. Emission was collected with 

an 819 nm long pass emission filter.  Spectroscopic data was collected with a 40X objective.  

For tracking lifetime changes associated with receptor mediated endocytosis, after washing cells 

were maintained in a stage top incubator (W. Nuhsbaucm Inc.) at 37°C with 5% CO2 for imaging 

over hours.  

5.3.5. Lifetime data analysis: 

Spectroscopy and microscopy data was analyzed on the SymphoTime software (Picoquant). Decay 

data fitted to exponential decay equations using n-exponential tail-fit method. Chi square values 

were used to judge goodness of fit.  

5.4. Results 

5.4.1. Imaging agent LS872:  

Absorption spectra of FR targeted LS872 [Figure 5-2a] shows cypate spectra and additional peaks 

at ~283 nm and ~368 nm due to absorption by the folic acid moiety [Figure 5-2b]. The binding 
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specificity of the LS872 to cell surface FR is demonstrated using FR+ KB cells and FR- A549 

cells [Figure 5-2c-e] Cell membrane binding can be observed in KB cells in presence of 1 µM 

LS872 [Figure 5-2c] which could be blocked by co-incubation with 100 µM folic acid [Figure 1d]. 

No cell membrane is observed in FR – A549 cells [Figure 5-2e]. 

 

 

 

Figure 5-2: (a) Molecular structure of LS872. (b) Absorption spectra of LS872 and cypate in DMSO. The unique peaks for 

LS872 at 283 nm and 368 nm are due to absorption by folic acid. Specificity of LS872 (red) to cell surface FR is shown by cell 

membrane binding of LS872 in FR+ KB cells, (c) inhibition of binding in presence of 100X excess folic acid and (d) absence of 

binding in FR- A549 cells. Blue (Hoechst 33342, nuclear stain). Scale: 100 μm. 
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5.4.2. Fluorescence lifetime properties of LS872 and Cypate 

Next we explored if the binding of LS872 to FR results in distinct changes in its fluorescence 

lifetime. As a control we used cypate which would not bind to the folate specific binding pocket 

of the receptor i.e. would not show specific binding. We measured the fluorescence lifetime of 

LS872 and Cypate in the presence of 5X molar excess of the folate receptor in PBS. Excess FR 

was used in order to ensure no free LS872 in the solution. Decay curves from LS872-FR and 

Cypate-FR could be fitted to a double exponential decay curves with amplitude average lifetime 

τavg = 450 ps ± 30 ps and τavg = 350 ps ± 40 ps [Figure 5-3a]. LS872 in PBS with no FR gave a 

much shorter lifetime τavg = 320 ps ± 10 ps [Figure 5-3a]. The significant difference between 

LS872-FR and cypate–FR and between LS872-FR and LS872-PBS can be attributed to the specific 

binding interaction of LS872 with FR which manifests as a unique lifetime value. Free LS872 can 

thus be distinguished from FR bound LS872 using deviation from this unique lifetime.  We also 

used bovine serum albumin (BSA) which is not expected to interact with folate but it interacts with 

cypate.111 We showed that the lifetime of both LS872 and Cypate in excess (5X) BSA are similar 

(difference is insignificant) which again indicates lack of folate specific binding to BSA [Figure 

5-3b]. Fluorescence lifetime of cypate in the presence of FR is different from that seen in PBS 

only [Figure 5-3c]. This indicates cypate interacts non-specifically with FR but the difference 

between lifetimes of LS872-FR and Cypate-FR confirms that this interaction is different from the 

folate binding pocket in FR. 
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5.4.3. Fluorescence lifetime properties of LS872 and Cypate in cells 

We wanted to explore if the unique lifetime of FR bound LS872 can be observed in a biological 

system. For this purpose we incubated FR+ KB cells with LS872 and Cypate (as control) at 37 

degrees for 1 hour and performed fluorescence lifetime imaging microscopy. Intensity images of 

LS872 treated cells show signal from plasma membrane and punctate intracellular, indicating 

endocytosed material [Figure 5-4a]. In contrast cypate shows no membrane binding [Figure 5-4d]. 

It shows both diffused and punctate fluorescence inside the cells indicative of internalization of 

passive diffusion as well as endocytosis. Decay data from multiple KB cells’ plasma membrane 

with bound LS872 could consistently fit to a double exponential decay with showed an amplitude 

average lifetime τavg = 460 ps ± 30 ps, which coincides to that observed with LS872-FR in the 

preceding spectroscopic studies. This indicates LS872 on the plasma membrane is bound to FR as 

expected, and that its unique lifetime is consistent between solution and on cell surface. 

Intracellular lifetime of LS872 showed two populations. Majority of intracellular vesicles show a 

high lifetime (τavg = 750 ps ± 40 ps) and few vesicles with low lifetime corresponding to FR 

bound LS872 (460 ps ± 30 ps) [Figure 5-4b-c]. Interestingly, decay data from cypate from 

Figure 5-3: (a) Mean fluorescence lifetime of FR bound LS872 shows significant difference from that of 

FR-Cypate and of LS872 in PBS only. (a) Fluorescence lifetime of BSA-LS872 and BSA-Cypate are 

similar (difference not significant). (c) Cypate shows some changes in lifetime in presence of FR which 

can be attributed to non-specific interaction with FR. Plot shows mean±sd (n=3). 
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intracellular vesicles showed a lifetime τavg = 730 ps ± 30 ps similar to the high lifetime 

component from LS872 [Figure 5-4e-f]. The higher lifetime components from LS872 and its 

similarity to that of cypate’s lifetime indicates absence of FR bound LS872 in these intracellular 

structures. In other words, in these vesicles the lifetime of both cypate and LS872 is determined 

the cypate moiety of LS872 and its interactions and not by the binding properties folic acid moiety. 

The vesicles still showing low lifetime components can be attributed to FR still binding bound 

LS872. Figure 5-4g shows representative lifetime distribution histogram from the images. 

 

 

Figure 5-4: Fluorescence lifetime imaging of LS872 (a-c) and cypate (d-f) in KB cells. Intensity images of LS872 

(a) shows membrane binding and distinct intracellular vesicular signal, while cypate (d) shows no membrane signal 

but diffused cytoplasmic and vesicular signal.  Lifetime images LS872 (b,c) show distinct lifetimes with lower 

lifetime components  (~460 ps) on the membrane and some vesicles, and a high component (750 ns) restricted to 

only vesicles. .Lifetime images of cypate show the absence of the lower component. Representative lifetime 

histograms show the existence bimodal distribution in LS872 and only one lifetime in cypate close to the higher 

component. 
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5.4.4. Live cell lifetime imaging of endocytosis of LS872 

We then exploited the distinct lifetime associated with FR bound (460 ps) and free LS872 (750 ps) 

in cells to track them through the endocytosis process in KB cells. In order to limit cellular 

internalization of only FR bound LS872 (and prevent endocytosis of LS872 in the culture media 

by non-specific processes such as pinocytosis) we incubated KB cells in the presence of LS872 

for 10 min at 4 degrees. We then washed the cells to remove all unbound dye and then replenished 

it warm media and live cells imaging. Decay data obtained from single cells were fit using a double 

exponential decay model 460 ps and 750 ns as initial values. Fluorescence lifetime images show 

cells immediately after washing show only membrane signal corresponding to the lower lifetime 

or the bound fraction [Figure 5-5a]. Cells till ~1.5 h of warm incubation show only bound fraction 

components both in the plasma membrane and intracellular structures, and some free fraction 

components appear intracellularly after that [Figure 5-5b-d]. In early time points (t<2h) several 

intracellular structures are seen with peripheral fluorescence with lifetime corresponding to bound 

fraction [Figure5-5e]. These structures appear to be recently endocytosed vesicles with FR bound 

LS872 still on the membrane. Although they appear to be endocytosed we cannot differentiate if 

they ate receptor mediated or pinocytosis/phagocytosis. A plot of the relative amplitudes of the 

free and bound fraction show changing of the bound fraction to free fraction over time.  

5.5. Discussions 
We have developed a fluorescent molecular imaging agent that shows distinct fluorescent lifetime 

depending upon its binding state with the targeted molecule. We exploited lifetime sensitivity of 

the probe to image its endocytosis and quantified changes in the bound and free fraction of the 

imaging agent over time in cells.  We showed that the imaging agent  LS872 remains bound to the 
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target protein FR in internalized fractions till about 2 h and them free fraction begin to appear. A 

comparison of cell images with LS872 incubated at 37 degrees for 1 h to that incubated at 37 

degrees after washing of free LS872 shows considerably more of the free fraction in the former. 

This indicates that this free fraction is not from the LS872 fallen off from the internalized FR-

LS872. They can be attributed to internalization of free LS872 by a non-specific process such as 

pinocytosis. A similar approach can be translated into in vivo imaging and tissue histopathology 

where by lifetime values will indicate specific and nonspecific uptake of molecularly targeted 

probes.   

Figure 5-5: Tracking receptor mediated endocytosis of LS872 using fluorescence lifetime imaging (a-d). The lower 

lifetime component ~0.46 ns in green shows FR bound LS872 while any higher lifetime indicates presence of free 

LS872. In early time points several intracellular structures with only peripheral signal corresponding to the bound 

fraction are observed (e). Changes in free and bound fraction of LS872 in cells over time (f), mean ± sd (n=3). 
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5.6. Conclusions 
 

We have developed a fluorescent molecular making agent that shows distinct fluorescent lifetime 

depending upon its binding state with the targeted molecule. We exploited lifetime sensitivity of 

the probe to image receptor mediated endocytosis of the probe and quantify changes in the bound 

and free fraction of the imaging agent over time in cells.  A similar approach can be translated into 

in vivo imaging where by lifetime values will indicate specific and nonspecific uptake of 

molecularly targeted probes.  

 In the previous chapters we have explored and applied various properties of the fluorescence 

phenomena to develop imaging agents and applied them to study biological and pathological 

processes. In the next chapter we will combine fluorescence with nuclear imaging and explore 

multimodality imaging of diseases. 
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Chapter 6  

Broad spectrum multimodal (PET/Optical) 

tumor targeting imaging agent 
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6.1 Introduction 

In the previous chapters, we have worked on various type of fluorescence molecular probes and 

exploited complementary properties of fluorescence phenomena for imaging. Due to many 

advantages such as high sensitivity, possibility of biological targeting, cost-efficiency, lack of 

ionizing radiations and high throughput operations optical imaging in general, and fluorescence 

imaging, in particular, is rapidly moving into clinical settings. There are several examples of 

fluorescent agents to provide image guidance during surgical procedures and perfusion studies.112 

While fluorescence imaging has the capability to provide rapid high sensitivity imaging, it is not 

equipped to provide whole body information at an organism level and thus cannot suffice as a 

diagnostic tool due to limited of depth penetration in biological tissue. One way to circumvent the 

shallow penetration of light using optical methods, is to develop multimodal imaging approaches 

by incorporating a radionuclide for nuclear imaging into a fluorescent imaging agent. In this 

Chapter we will discuss the development of a multimodal analogue of a broad spectrum fluorescent 

imaging agent LS301. Recently developed in the lab, LS301 is a small molecular NIR fluorescent 

imaging agent with a cyclic peptide targeting moiety. It has a been shown to target tumors of 

various kinds tested in the lab in cell lines, animal models and patient models of cancers of the 

breast, lungs, prostrate, ovarian, pancreas as well as lymphoma and leukemia. 
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6.2 Materials & Methods 

6.2.1 LS301 and LS811 

The broad-spectrum tumor targeting NIR fluorescent agent has been described in previously 

published studies.113 To make it dual modal, an FDA approved metal ion chelator DOTA was 

conjugated to the free carboxylic acid group of NIR dye cypate in LS301.  The resulting molecular 

is LS811. 

6.2.2 Cold Indium (III) and copper (II) labeling of LS811 

A 240 µl solution of 40 µM LS811 was prepared in 20% DMSO in 0.1 M ammonium acetate 

buffer, pH 5. DMSO was added to enhance solubility of the compound in the buffer. Indium (III) 

chloride was added to this solution at a final concentration of 80 µM. the resultant was incubated 

at 70 °C with frequent shaking for one hour. For purification, the cold labelled compound was 

purified using a waters sep-pak C18 plus light cartridge (WAT023501). The catridge was activated 

by passing water (0.1 %TFA) and kept for ~30 min. The labeling mixture was passed through it. 

The compound was eluted in acetonitrile (0.1 %TFA) and dried in lyophilizer overnight.  

For cold copper (II) labeling, a 240 µl solution of 40 µM LS811 was prepared in 20% DMSO in 

0.1 M ammonium acetate buffer, pH 5.5. DMSO was added to enhance solubility of the compound 

in the buffer. Copper(II) sulphate was added to this solution at final concentration of 80 µM. The 

resultant was incubated at 43 °C with frequent shaking for 30 min. 

6.2.3 In111 labeling and Cu64 labeling of LS811 

To 470 µCi in 100 uL, 92 uL of buffer to it, 0.1 M ammonium acetate buffer, pH 5 was added.  
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LS811 (30 ug) was prepared in 48 uL DMSO. This solution was added to 192 uL of In 111 chloride 

in 0.1 M ammonium acetate buffer, pH 5. This mixture was incubated with shaking for 1 hour at 

70 degrees C. After labeling the product was purified using a Waters sep-pak column as in cold-

labeled case. The eluent was dried by blowing nitrogen and dissolved in 0.5% MSA in PBS. 

To 5µg LS811, 1.0 mCi 64Cu was added in 100µl 0.1 M ammonium acetate buffer, pH5.5 buffer. 

This mixture was incubated at 45 degree C for 15 min. The mixture was diluted in 0.5% MSA in 

PBS for injection. 

6.2.4 Animal models 

All animal studies were conducted according to protocols approved by the Washington University 

Animal Studies Committee. For LS811 tumor targeting, murine pancreatic cancer (KPC, courtsey 

Denardo Lab, WUSM) were grown (Charles River Laboratories, Wilmington, MA) by 

subcutaneous injection of 1 million cells in the right flank of 8-week old male NCR nude mice.  

For multimodal imaging (with 111In-LS811 and 64Cu-LS811), a spontaneous cancer model PyMT 

mice with sporadic breast cancer was used. For multimodal imaging (with 111In-LS811) in a 

subcutaneous tumor xenograft model, 1 million 4T1-luc-GFP cells (courtesy Weilbaecher Lab, 

WUSTL), were injected cells in the right flank of 8-week old female BALB/c Mice  (Charles River 

Laboratories, Wilmington, MA). Tumors were allowed to grow to ~0.5 min size. 

6.2.5 Multimodal imaging 

In111-LS811 (160 µCi) was injected into PyMT tumor bearing mice which were imaged till 24 h 

post injection.  Nuclear imaging a performed on the NanoSPECT/CT (Mediso Medical Imaging 

Sytems) machine and NIR fluorescence imaging was done on the Pearl in vivo imager (LICOR). 

For 4T1 –luc-tumors, each mouse received In111-LS811 (250 µCi) followed by similar imaging. 
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For 64Cu-LS811, about 111 µCi each was injected three PyMT mice. NIR fluorescence imaging 

was conducted on a Kodak In vivo Multispectral system System (Bruker). 

  

6.3 Results 

6.3.1 Imaging agent:  

The broad spectrum tumor targeting NIR fluorescent agent has been described in previously 

published studies (Figure 6-1a).113 To make it dual modal, an FDA approved metal ion chelator 

DOTA was conjugated to the free carboxylic acid group of NIUR dye cypate in LS301.  The 

resulting molecule is LS811 (Figure 6-1 b) 

 

6.3.2 Tumor targeting ability of LS811:  

LS811 formulation in increased concentrations of mouse serum albumin (MSA) resulted in 

increased fluorescence indicating better solubility of the molecule (Figure 6-2a). Hence a solution 

of LS811 in 0.5% MSA was used for animal injection. Upon injection, similar tumor uptake of 

LS811 in a subcutaneous model of pancreatic cancer indicates preservation of tumor targeting 

property after addition of radionuclide chelating moiety (Figure 6-4b). LS811 in this study with 

Figure 6-1: Molecular structures of near infrared fluorescent (NIR) broad spectrum tumor targeting agent 

LS301 (a) and its PET analogue LS811 (b). 
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one mouse shows much higher kidney uptake and liver uptake as well at post injection 23 hours 

showing more compound being targeted through clearance routes and lesser bioavailability and 

can be an undesirable side-effect of DOTA moiety (Figure 6-2c). 

6.3.3 Cold labeling of LS811 

To optimize radiolabeling conditions we first performed labeling of LS811 with cold indium (III) 

chloride and copper (II) chloride. LCMS analysis was used to confirm incorporation of the indium 

(II) and copper (II). The absence of blue shift in absorption and no fluorescence quenching after 

labeling with indium indicates no or minimal dimerization. While incorporation of copper (II) 

resulted in fluorescence quenching as observed in earlier chapters, the lack of blue shift and 

absorbance indicated minimal dimerization under labeling conditions (Figure 6-3).  

 

 

Figure 6-2: Tumor targeting capability of LS811. (a) Increased amounts of mouse serum albumin (MSA) leads to increase 

in fluorescence signal indicating better solubilizing of LS811 for animal injection. (b) Representative in vivo images of 

LS301 (left) and LS811 (right) in KP2-luc-GFP pancreatic cancer xenograft models at 23 h post injection. Red circles 

indicates tumors. (c) Corresponding bio-distribution at post injection 23 hours for LS301 (mean ± sd, n=3) and LS811 

(n=1). 
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6.3.4 In vivo tumor imaging with In111-LS811 

For preliminary study, one PyMT mouse with spontaneous breast cancer was used.  Dual imaging 

shows simultaneous high NIR and PSECT signal from obvious tumors as well as sporadic regions 

from the mammary fat pad as expected to be cancerous in such an animal model (Figure 6-4a-e). 

There is a high signal from kidney and liver as observed with the previous studies with unlabeled 

LS811. Localized high signal from region in the femoral bone was observed in both NIR and 

SPECT images and may indicate metastasis being pick up (Figure 6-4f). NIR and radioactive bio-

distribution data show a high tumor to muscle ratio of 4 (NIR signal) and 4.2 (radioactivity) at 24 

hours post injection (Figure 6-4f, g). 

 

 

 

Figure 6-3: Absorption (a) and emission (b) spectra of LS811 and the cold labeling reaction mixtures with Cu(II) and 

In(III), diluted in DMSO. Lack of blue shift in absorbance indicates no or minimal dimerization. Lack of fluorescence 

quenching in In(III) labeling confirms no corresponding dimerization. Fluorescence quenching is observed in Cu(II) 

labeling can be attributed to the effect of the ions. 
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For further studies, BALB/c mice with subcutaneous 4T1-luc-GFP tumors were used. In111-811 

showed high tumor uptake in these mice (Figure 6-5a). Bio-distribution (radioactivity) at 24 h post 

injection showed a tumor to muscle ratio of 10 (mean, n=2) and tumor signal were 6.2 % injected 

dose/g (ID/g) (mean, n= 2) (Figure 6-5b). 

Figure 6-4: Multimodal imaging of  In111-LS811 in PyMT spontaneous breast cancer mouse. (a) NIR image of dorsal 

side at 27 hours post injection showing high signal from tumors in mammary fat pads (white arrows) and liver 

(green arrow). (b) SPECT/CT image at post injection 23 hours showing high signal from tumors (white arrows), 

liver (green arrow) and kidney (blue signal). Cross-sectional SPECT/CT images showing localized signal from 

largest tumor by the liver (c), other smaller tumors near the chest (d) and intra-femoral signal (e). Bio-distribution of 

In111-LS811 at 27 hours post injection using NIR signal (mean signal/surface area) (f) and counts per minute per 

gram of tissue (cpm/g) (g). Error bars in tumor signal indicates mean ± sd from multiple tumors form same mouse. 
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6.3.5 In vivo tumor imaging with Cu64-LS811 

In a PyMT model of spontaneous breast cancer, dual imaging (NIR and scintigraphy) shows 

simultaneous high signal from obvious tumor and kidneys and liver (Figure 6-6a-d). Tumor to 

muscle ratio (radioactivity) from all tumors 24 h post injection was 8.7 (mean, n = 9 tumors, in 3 

mice). 

Figure 6-5: In111-LS811 imaging in a 4T1lucGFP xenograft model. (a) Representative SPECT/CT image of the 

thorax showing high signal from tumor (white arrow, liver (green arrow and some signal from mammary fat pad 

(blue arrow). White bar represents CT signal and rainbow bar represents SPECT signal. (b) Bio distribution at 24 h 

post injection from a representative mouse. 

Figure 6-6: In vivo tumor imaging with Cu64-LS811. Representative white light image (a), NIR image (b), and un-

collimated gamma scintigraphy image (c) of a PyMT mouse at 24 h post injection shows obvious tumor (white 

arrow, liver (green arrow). (d) Bio-distribution at post injection 24 h (radioactivity, mean ± sd, n=9 tumors in 3 

mice). 
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6.4 Discussions 

Fluorescence/SPECT or Fluorescence/PET multi modal imaging agents can be useful for whole 

body nuclear imaging for initial diagnosis followed by real time NIR image guided surgery if 

needed. From molecular probe development perspective it is important to evaluate that the 

biological activity of the imaging agent is preserved after addition of new moieties, which we 

demonstrated in Figure 6-2. We used mild radionuclide labeling conditions and blew drying with 

nitrogen (in place of heating or blowing air) in order preserve the peptide and NIR dye moieties. 

Successful tumor targeting by 111In-LS811was demonstrated in two different tumor models, PyMT 

and 4T1-luc-GFP. Even though tumor signal was observed with a high tumor to muscle ratio, the 

non-specific uptake of the probe in the clearance organs kidneys and liver indicates lesser bio-

availability of the molecule. Tumor targeting is also shown by 64Cu-LS811 with a tumor to muscle 

ratio of upto 13. However the %ID/g retained in the organs were all less than 1% at post injection 

24 h. This may be due to the well documented in vivo instability of 64Cu-DOTA i.e., most for the 

radionuclide falls of the imaging agent and are cleared by 24 h. Future work includes efforts to 

introduce additional moieties to enhance blood retention and bioavailability as well as the 

introduction of alternative radionuclide chelators with greater in vivo stability.  

6.5 Conclusions 

We have developed a SPECT/PET compatible dual modal analogue of broad-spectrum NIR 

fluorescent tumor targeting agent LS301 by conjugating it to a FDA approved radionuclide 

chelator DOTA. With this new construct we have successfully performed SPECT/CT and NIR 

fluorescence imaging with 111In-LS811 as well shown potential for PET/CT and NIR fluorescence 

imaging with the same agent. Future work will be focused on optimizing probe construct for 

minimizing non-specific kidney and liver uptake and enhanced stability of radionuclide. 
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In the next two chapters we will demonstrate the applications of custom fluorescent molecular 

probes for dynamic imaging, identification and characterization of circulating tumor cells and to 

longitudinally monitor molecular changes in atherosclerotic plaque development.  



112 

 

Chapter 7  

A simple all-near-infrared planar 

fluorescence imaging platform for 

identification and size stratification of 

fluorescent circulating entities 
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7.1 Introduction 

Fluorescence imaging and detection methods have been widely used for basic biomedical research 

as well as for clinical procedures. The sensitivity of fluorescence detection, availability of a variety 

of customizable fluorescent contrast agents, and relatively inexpensive instrumentation together 

makes fluorescence-based methods attractive for addressing pressing biomedical needs. For 

example, fluorescent imaging and detection strategies have been used for the detection and 

enumeration of a rare population of cells which play an important role in cancer metastasis,114 stem 

cell research,115 and immunology research.116  Particularly in cancer, the frequency of occurrence 

of disseminated cancer cells in the blood circulation holds information about disease progression; 

having prognostic and predictive values of clinical significance.117-119 Besides clinical 

applications, fluorescence based approaches for real time in vivo detection of circulating tumor 

cells (CTCs) and CTC clusters in animal models have proven very useful to study critical steps in 

cancer progression and for monitoring treatment response. 114,120   

Amongst all fluorescence detection strategies for in vivo CTC detection, near infrared (NIR) 

fluorescence (700nm – 900nm) based methods are being increasingly used as they offer several 

advantages over visible fluorescence.121 NIR excitation and emission has greater depth penetration 

in tissue and blood due to less absorption than visible light. Also, NIR wavelengths have minimal 

interference from tissue auto-fluorescence. Due to these factors, NIR fluorescence is attractive for 

in vivo detection of CTCs. NIR light may allow for the detection of circulating fluorescent entities 

with higher sensitivity than using visible light. Additionally, it can image deeper within blood 

vessels, allowing for analysis of larger diameter blood vessels for faster blood sampling.  NIR 
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fluorescence based methods can be paired with suitable NIR fluorescent imaging agents to allow 

accurate and rapid studies in animal models in vivo. For example, several NIR fluorescent agents 

(range of optical excitation/emission: 745-785nm/780 – 840 nm) have been described in the recent 

past which show highly specific accumulation in cancer cells in blood. 122-124 These or similar 

fluorescent agents can be injected into the blood circulation to selectively label the cancer cells 

that are present within the blood. Alternatively, an agent could be delivered to a tumor to 

selectively label tumor cells before they become CTCs, allowing for detection once they escape 

the solid tumor. 

In addition to frequency of occurrence, it has been shown the metastatic potential of CTCs depends 

greatly on the number and/or type of cells. For example, current data indicates that multicellular 

aggregates of tumor cells (2 or more tumor cells) may show a much greater potential (up to 50 

times) to cause distant organ metastasis than single CTCs.114,125,126 Therefore it is will be valuable 

to not only detect and enumerate these entities in vivo but also to determine their size to accurately 

predict their relative potential as a biomarker for metastasis.  

In this study, we have designed and validated a simple approach that allows for all near infrared 

(NIR) planar fluorescence imaging (excitation/emission – 780 nm/ >808 nm) of fluorescent 

circulating entities. In addition, we developed a simple image processing algorithm that will allow 

us to measure size of the fluorescent entities from the NIR-video captured. We first validated our 

imaging method by imaging fluorescent microbeads flowing through a capillary mimicking a 

blood vessel and demonstrated the performance of our algorithm by accurately detecting their size.  

To simulate fluorescent CTCs and CTC clusters, we used cells that were pre-labeled with a NIR 

fluorescent molecular probe which has been shown to target a variety of tumors in vivo in mice 

with high specificity.127-129 We mixed labeled tumor cells with heparinized whole blood and 
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imaged them while flowing through our capillary setup. We then estimated and stratified the size 

of the detected entities. Finally we demonstrated the feasibility of using this approach in mice by 

imaging the internal thoracic artery of a mouse with flowing NIR fluorescent CTCs.  

Our method adds to the existing methods available for fluorescence in vivo imaging of CTCs, 

which has not been previously described for an all-NIR application.115,130-132 Also, our method uses 

a planar imaging technique which can be a simpler approach than the standard in vivo flow 

cytometry approaches using confocal or diffuse optics techniques.123,130 Our simple approach for 

the size stratification of fluorescent entities in motion can be optimized further and applied to 

extract size information from videos of fluorescent objects in motion. Mouse imaging highlights 

that this approach can be executed peripherally or via an implant in a CTC rich region of the 

circulation with appropriate fluorescent contrast.  

7.2 Materials & Methods 

7.2.1 Cell Culture and Treatment 

All experiments were performed using murine breast carcinoma cell line (4T1-luc-GFP). The cells 

were cultured in DMEM (Gibco) supplemented with 10% fetal bovine serum and 1% Pen-Strep.  

To first test preferential uptake of our NIR fluorescent compound in cancer cells, we incubated 

heparinized porcine blood alone or spiked with 4T1-luc-GFP cancer cells (~5x104 cancer cells per 

50 uL blood). We incubated the samples with 10 µM NIR compound, 3 mM added calcium 

chloride (to enhance compound internalization)) for 2 h at 37 degrees, 5 % atmospheric carbon 

dioxide. After 1.5 hours of incubation, Hoechst 33342 (5 µg/mL, Thermo Fisher Scientific) was 

added to the samples stain for nucleus. After a total of 2 h incubation the cells were washed with 

Hank’s Balanced Buffered Solution (Thermo Fisher Scientific) to get rid of non-internalized dyes 
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and spun down to pellet the cells. The pellet was smeared on glass slides for microscopic 

visualization. Cells were imaged using an epifluorescence microscope (Olympus BX51), λex/λem 

= 775nm/845 nm for NIR fluorescence; λex/λem = 480nm/535 nm for GFP; λex/λem = 357 

nm/420 nm for Hoechst 33342.  

For flow imaging experiments,  the 4T1-luc-GFP cells were plated in culture plates in culture 

media with 20 μM NIR compound,  and 3 mM calcium chloride (to enhance compound 

internalization) and incubated for 24 h at (37˚C, 5% atmospheric CO2). Cells were washed and 

imaged using an epifluorescence microscope (Olympus BX51), λex/λem = 775nm/810 nm LP. 

After the initial images were obtained, cells were treated with trypsin for ~4 min and re-suspended 

in either PBS or heparinized porcine blood. To obtain single cell rich suspensions, post 

trypsinization cells were pipetted (1mL pipette tip) gently ~20 times and filtered through a cell 

strainer (40 μM mesh size). In contrast, to obtain clusters rich suspension cells were incubated in 

trypsin for ~1min and exposed to minimal pipetting. 

7.2.2 In vitro Imaging 

In order to test our method of detecting CTCs, we developed an imaging setup consisting of a 

microscope and an excitation light source. The microsphere in water, tumor cell in media, or tumor 

cell in blood mixture was passed through a 0.015 in ID x 0.033 in OD polyurethane tube (PU-033, 

SAI Infusion Technologies) at a flow rate of 3 mm/sec. Imaging was conducted using a microscope 

(Leica MZ10F) at 80x magnification. Calibration imaging was conducted using Fluoresbrite® YG 

Microbeads (Polysciences, Inc.) with a 10 µm diameter because NIR microbeads in a cellular 

diameter were not available. Excitation was provided via a 460 nm LED (ThorLabs), with a 515 

nm LP filter, for microsphere imaging. Excitation light power was measured at 0.8 mW/cm2. NIR 

imaging was conducted using a 793 nm laser (BWT Beijing), set to a power output of 10 mW/cm2, 
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and the emission light was filtered using an 808 nm LP filter. The in vitro imaging configuration 

is shown in Figure 7-1a. The microbeads were imaged using the microscope input light port instead 

of external illumination. Image files were recorded in video files using a NIR sensitive camera 

(Fluorvivo 1500 BG, INDEC Biosystems) with an exposure time of 100 msec. 

7.2.3 In vivo Imaging 

In vivo imaging was conducted using the same microscope as in vitro imaging, however the light 

configuration was modified (Figure 7-1 a,b). Excitation was provided via the microscope light port 

using a 780 nm LED (ThorLabs), with an 808 nm LP filter. Excitation light power was measured 

at 7.3 mW/cm2. Internal thoracic artery imaging was conducted with an exposure time of 500 

msec. PBS (50 ml) containing CTCs was injected into the left ventricle of a sacrificed mouse while 

the heart remained beating. Cells were imaged as they were pumped from the heart into the 

circulation (Figure 7-1 c). 

Figure 7-1: a) In vitro setup showing the optical configuration. An external light source was used to illuminate tubing 

containing CTCs in either PBS or blood. The image was magnified using the objective and recorded in video files 

using a NIR sensitive CCD. b) Mouse imaging setup showing LED illumination through the microscope. c) 

Photograph of mouse imaging using internal thoracic artery while fluorescent cells injected in the left ventricle using 

a catheter. Yellow box shows the field of view captured while imaging. 
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7.2.4 Algorithm to Distinguish CTCs from Cell Clusters 

We developed an image processing algorithm to analyze video recordings of circulating objects in 

our imaging setup. We developed our algorithm first using fluorescent tumor cells in media before 

moving to cells in blood and then in vivo imaging. The algorithm was validated using microbeads 

with known diameters. The algorithm analyzes the video files frame-by-frame with the user 

selecting a vertical line within the first frame (Figure 7-2a).  That vertical line is used frame-by-

frame to generate intensity profiles along that line (Figure 7-2b). The user inputs a threshold value, 

above which any pixels are considered an object. Subsequent pixels along the line are followed 

until the values rise above and then fall below the threshold. The length of subsequent pixels above 

threshold are the object height (h). The midpoint of the pixels above the threshold is recorded as 

the midpoint of a unique object. The same line is examined in the subsequent frame, and if the 

midpoint is within a certain distance of the first midpoint, it is considered the same object. The 

object is tracked until a frame is reached where an object with the same midpoint is absent, thus 

ending the object. 

The time for an object to completely pass through the vertical line is captured using the width in 

time (τ) as calculated using Equation 1. Where fn is the number of frames, and fr is the frame rate. 

The velocity (v) is calculated by assuming that the distance the object is occupying in the y-

dimension is similar to the distance in the x-dimension, and then using Equation 2. The object area 

(A) is calculated by multiplying the height by the physical width (w) in Equation 3. The object’s 

physical width is a function of the velocity and time for the object to pass, so it is estimated using 

Equation 4, which is substituted into Equation 3, to derive Equation 5. Equation 5 is then used to 

calculate the relative object area. The term relative is applied in this case because the area is 

represented by a height multiplied by a width, using the simplifying assumption that the object is 
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rectangular. However, even with this assumption, the relative sizes of single cells and cell clusters 

can be compared. 

 

Figure 7-2: a) Single frame showing a CTC in media. b) Signal intensity along a vertical line for a single frame. c) 

Method for estimating the number of objects passing through the vertical line. d) Method for detecting the relative 

object velocity.  e) Method for calculating the relative object 2D area. 
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7.3 Results 

7.3.1 Labeling cancer cells with NIR fluorescent compound  

Fluorescence microscopy images of blood smears post incubation with our NIR fluorescent 

compound (Figure 7-3a) showed no internalization in both RBCs and WBCs (Figure 7-3b,c). 

Preferential uptake of the compound was observed in the GFP+ cancer cells that were added to 

blood before incubation with the compound (Figure 7-3 d,e). At this time we have not investigated 

the sensitivity and specificity of this compound for cancer cells in blood or mechanism of 

preferential uptake. For developing our method, we used this NIR compound to represent any NIR 

imaging agent that may be used for imaging or detecting CTCs. In order to obtain enhanced NIR 

contrast for imaging in flowing blood, we pre-labeled cancer cells then mixed them with blood to 

simulate fluorescently labeled CTCs in our experiments (Figure 7-3f). 
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7.3.2 Algorithm validation with fluorescent microbeads 

Our algorithm was validated using fluorescent microbeads in media. We selected microbeads with 

diameters similar to that of our CTCs. Figure 7-4a shows a frame containing multiple microbeads, 

with the relative fluorescence intensities frame-by-frame (along the vertical line) in Figure 7-4b. The 

relative velocities of each object detected are shown in Figure 7-4c overlying the intensity map. The 

relative areas are represented visually as a function of time in Figure 7-4d, and the histogram of the 

Figure 7-3: a) Absorption and emission spectra of our NIR fluorescent compound in DMSO. b) Overlay of 

brightfield image with nuclear stain (Hoechst 33342, Blue) for blood incubated with NIR compound showing both 

RBCs (anucleate) and WBCs (nucleated). c) In the same field of view, no blood cells shows NIR signal (red). d) 

Overlay of NIR (red) and nuclear stain (blue) for a blood sample spiked with 4T1-luc-GFP cancer cells before 

incubation shows NIR signal only in the cancer cell (yellow arrow) but not white blood cells (white arrows). e) 

Cancer cells can be distinguished from blood cells by their GFP signal (green). Other similar cancer cells/clusters 

identified with NIR and GFP signal. f) Low magnification image of a drop of blood that was spiked with pre-labeled 

cancer cells as used in the experiments. Top panel shows color image of blood, bottom panel shows overlay with 

NIR signal (red) showing the fluorescent cells/clusters of various sizes (yellow arrows). 
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calculated areas is shown in Figure 7-4e. The microbeads had a diameter of 10 µm, and using the 

algorithm area calculation method the idealized area would be 100 µm2 (assumes 2D square 

geometry). The algorithm histogram predicted object areas clustered around 100 µm2, thus 

confirming the accuracy of the algorithm. The detected object heights were output and plotted in 

Figure 7-4f, and they closely represent the microsphere diameter values, with a mean value of 10.81 

± 6.643 µm. Some of the causes of error may have been from multiple spheres passing at the same 

time, background fluorescence, and out of plane scattered light.  

 

Figure 7-4: a) Circulating green microbeads in media (yellow arrows). Yellow lines indicate capillary wall. b) 

Microsphere signal intensity vs. time crossing over the vertical line of interest. c) Relative object velocity. Line of 

squares indicates the same object, and the length of the line of squares indicates the duration that the object took to 

pass through the vertical line. The color of the squares represents the relative velocity (red max and blue min). d) 

The relative object areas shown visually over time. e) Histogram of the distribution of object areas over the full time 

of imaging. f) Plot of individual microsphere diameters detected using the algorithm. 

7.3.3 In vitro imaging and size stratification of flowing cells and clusters 

The goal of our algorithm was to differentiate small individual CTCs from large CTCCs. We tested 

our detection system and post-processing algorithm by imaging NIR fluorescence labelled cancer 
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cells and clusters first in PBS then in heparinized blood. To accomplish this, we first suspended 

individual cells in media via vigorous pipetting during re-suspension, then we compared our 

findings to larger clusters with reduced pipetting. Figure 7-5a shows a video frame containing a 

fluorescent CTC passing through the field of view. Figure 7-5b is an intensity map of the vertical 

line across all of the video frames under analysis (sub-frames). The relative velocities for each 

object detected were represented by boxes overlying the intensity map (Figure 7-5c), and the 

relatives areas are represented in Figure 7-5d. The distribution of object areas observed within the 

sub-frames analyzed were displayed in a histogram (Figure 7-5e). The algorithm was able to detect 

10 objects out of the 13 objects observed in the video for a sensitivity of 76.9%. Some objects 

were below the fluorescence intensity threshold and were not detectable. We then analyzed our 

video containing large clusters. In this video the clusters were traveling faster at the beginning of 

the video, and then slower over time. This trend is reflected in the relative velocities reducing at 

later time points (Figure 7-5f). The relative areas were significantly larger than the previous video, 

as evident in Figure 7-5g-h. Because the cells were moving very rapidly at the beginning of the 

video, it was not possible to discern the sensitivity of detection. Of the clusters that were detected 

the algorithm was able to detect a difference in size as compared to individual cells, with the 

clusters much larger than the individual CTCs. 

Next we imaged simulated CTCs and CTC clusters in blood to determine if our detection system 

was capable of detecting fluorescence in a scattering medium. The blood was opaque in 

appearance, and the RBCs scattered our excitation light (Figure 7-6a). We were able to obtain video 

as shown in Figure 7-6b, however individual changes in intensity due to fluorescent objects were 

not as readily apparent as when imaging through media. We ran our algorithm to return Figure 7-6c 

which shows the detected cells and velocities, and Figure 7-6d,e show the areas of the CTCs and 
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CTC clusters detected. We also ran the post-processing algorithm on videos of our control groups 

of blood only, and blood with non-fluorescent CTCs and CTC clusters, and the algorithm did not 

return any detected object. Therefore, the algorithm was able to detect the presence of fluorescent 

CTCs and CTC clusters though blood, although the relative areas cannot be verified visually do to 

the reduced contrast between the fluorescent cells and blood. 

 

 

Figure 7-5: a) NIR image of a simulated CTC flowing in PBS (yellow arrow). Yellow lines indicate capillary edge. 

Red arrow shows reflection of the excitation light which was avoided while choosing line of interest of running the 

algorithm. b) Relative velocity of each CTC detected. c) Relative area of each CTC detected. d) Histogram of the 

object areas for CTCs. e) NIR image of a simulated CTCC flowing in PBS (yellow arrows). f) Relative velocity of 

each CTCC detected. g) Relative area of each CTCC detected. h) Histogram of the object areas for CTCCs. 
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Figure 7-6: a) Color image of blood mixed with fluorescent CTCs and CTC clusters in the capillary. b) NIR image 

of the same sample. Yellow lines indicate capillary boundary. (c) Relative velocity of CTCs and CTC clusters in 

blood as detected using the algorithm. d) Relative areas of CTCs and CTC clusters in blood. e) Histogram of the 

object areas detected. 

 

7.3.4 Mouse imaging and size stratification of flowing cells and clusters 

Next we simulated CTCs and CTC clusters by intra-cardiac injection of pre-labeled cells/clusters 

in a mouse via a left ventricle catheter then imaging the fluorescent in the objects in the internal 

thoracic artery. Figure 7-7a shows a color image of the internal thoracic artery of a mouse. To 

correctly focus and find edges of the blood vessel, we first injected the NIR compound only. We 

then injected our CTCs and CTCCs into the heart and imaged the downstream artery to visualize 

the movement through the circulation. Figure 7-7b shows a representative snapshot with a 

fluorescent object flowing through field of view. Edges of the blood vessel (blue dashed line) are 

identified by fluorescence from the dye injected. Figure 7-7c shows the contrast enhanced view of 

the same.  During our experiment we first injected only cells. A single CTC was visible as it passed 
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through the field of view, and it was detected using our algorithm (Figure 7-7d,e). The estimated 

object area was 113 μm2, supporting the detection of a single CTC rather than a cluster (Figure 7-7f). 

We next injected cell clusters into the heart and repeated our imaging and analysis (Figure 7-7g,h). 

The algorithm detected the presence of multiple objects of larger areas than single CTCs, 

suggesting the presence of clusters (Figure 7-7i). 

 

Figure 7-7: a) Bright field image of internal thoracic artery. b) Representative NIR image snapshot showing edges of 

blood vessel (blue dashed line) and a fluorescent object (yellow object) with higher contrast flowing through c) 

Corresponding contrast enhanced image. d)  Relative velocity of the individual CTC detected. e) Relative area of the 

individual CTC detected. f) Histogram of the object area for the CTC. g) Relative velocity of each CTC cluster 

detected. h) Relative area of each CTC cluster detected. i) Histogram of the object areas for CTC clusters. 
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7.4 Discussion 

We have outlined an imaging/detection scheme that allows the imaging and detection of a 

fluorescence microscopic object in motion, and their differentiation depending on size. 

Additionally, we validated our method and demonstrated feasibility of an in vivo application. NIR 

light has advantages over visible light of reduced scattering in blood, increased imaging 

penetration depth, and decreased auto-fluorescence due to endogenous fluorophores. We chose to 

use a CCD for our detection device to allow for future translation of our technique. Because we 

use a simple CCD along with magnification and a light source, a device could be constructed that 

combines these elements for versatile imaging.  

The sensitivity of the current approach was dependent on contrast of the cells from the background. 

We used an in-house NIR fluorescent compound to pre-label the cells before introducing them into 

the blood or mouse. We used this compound as it gave the best NIR contrast in cells (compared to 

commercially available Qtracker® 800 Cell Labeling Kit, ThermoFisher Scientific). We achieved 

enhanced cellular internalization of our NIR compound by increasing the incubation concentration, 

time of incubation, and adding calcium during the incubation. Presumably, an in vivo labeling 

technique could be developed that allows for bright signal emission from cells, possibly using 

nanoparticle technology. Another limitation of the approach was that the threshold used to 

determine the presence of a fluorescent object was determined at the time of image analysis. This 

was necessary because the light and location of detection would need to be consistent in order to 

set a consistent threshold. Achieving a consistent threshold would be achievable with the 

development of a stand-alone device with consistent lighting and imaging configurations. A stand-

alone device would be ideal for the versatile imaging of CTCs in different anatomical locations.  
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Developing this technology could aid in the fight against cancer through the early detection and 

prevention of tumor metastases. Patients could be stratified based on size of CTC clusters and their 

therapy and surveillance programs could be tailored to match their individual prognosis. Our 

imaging method for CTC size stratification demonstrates that CTCs and CTC clusters can be 

detected and assessed in vivo using NIR fluorescence. Improvements in the miniaturization of the 

technology, and increasing the cellular fluorescence signal, will allow for the translation of this 

technology to improve cancer treatment for the numerous patients impacted each year. 

7.5 Conclusions 

We have now explored detection and size stratification of circulating tumor entities as diagnostic 

aspects of fluorescence imaging. In the next chapter, we focus on longitudinal high-throughput 

monitoring of the development of pathological presses using a fluorescent molecular imaging 

agent and diffuse optical tomography.    
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Chapter 8  

Noninvasive imaging of focal atherosclerotic 

lesions using fluorescence molecular 

tomography 
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8.1 Introduction 

Carotid artery atherosclerosis is classified as an important cause of stroke. Clinicians lack tools to 

detect lesion instability early enough to intervene, and are often left to manage patients empirically, 

or worse, after plaque rupture. Insights into the etiology of stroke and myocardial infarction 

suggest that rupture of unstable atherosclerotic plaque is the precipitating event. Noninvasive 

imaging of the molecular events signaling prerupture plaque progression has the potential to reduce 

the morbidity and mortality associated with myocardial infarction and stroke by allowing early 

intervention.133 Unstable plaque is characterized by an eccentric neointimal lesion with a lipid core 

covered by a thinning cap of smooth muscle cells, active angiogenesis, increased matrix 

metalloproteinase activity, and translocation of monocyte/macrophages that transform into foam 

cells. Timely noninvasive imaging that could signal prerupture plaque progression will reduce the 

morbidity and mortality by allowing early intervention.133 Although positron emission 

tomography (PET) and magnetic resonance imaging (MRI) are routinely used for metabolic and 

morphologic imaging, these modalities are not suited for frequent monitoring or even screening of 

at-risk patients because of ionizing radiation (PET) and expense (PET, MRI). Transcutaneous 

Doppler and intravascular ultrasound are insensitive to the subtle molecular changes of critical 

importance. Fluorescence molecular tomography (FMT) is an emerging optical imaging 

technology that allows tomographic and quantitative visualization of molecular events in vivo.134 

In this study, a custom built, fiber-based, portable, video-rate FMT system was used for proof-of-

principle studies to detect C-type natriuretic peptide receptors (NPR-C) on focal atherosclerotic 

lesions in the superficial rabbit femoral arteries. Here, we demonstrate proof-of-principle in vivo 

molecular imaging of C-type natriuretic peptide receptor in focal atherosclerotic lesions in the 

femoral arteries of New Zealand white rabbits using a custom built fiber-based, fluorescence 
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molecular tomography (FMT) system. Longitudinal imaging showed changes in the fluorescence 

signal intensity as the plaque progressed in the air-desiccated vessel compared to the uninjured 

vessel, which was validated by ex vivo tissue studies. In summary, we demonstrate the potential 

of FMT for noninvasive detection of molecular events leading to unstable lesions heralding plaque 

rupture. 

 

8.2 Materials and Methods 

8.2.1 Fluorescence Molecular Tomography System   

The FMT system has been described in a previous publication.135 The FMT system consisted of a 

flexible imaging pad (3 cm×3  cm), containing 12 sources 785 nm 20 kHz, and 830 nm 17-kHz 

laser diodes as excitation source and reference, respectively.The detectors allowed for dynamic 

concurrent acquisition of frequency encoded fluorescence emission (830 nm; 20 kHz) and 

transmission reference (830 nm; 17 kHz) signals for the fast generation of ratio-metric data for 

tomographic reconstruction of the tissue volume. The system could report varying concentrations 

(1 nM to 1 μM) of indocyanine green at various depths up to 13.5 mm with a depth-dependent 

spatial resolution on the order of 12 mm. 

8.2.2 Animal model  

We used a model of focal atherosclerotic-like plaques in the femoral arteries (located ∼1 to 1.5 cm 

from skin surface) of New Zealand white rabbits. All animal studies performed were approved by 

the Washington University Animal Studies Committee. Endothelial denudation of surgically 

exposed right femoral artery was induced by air desiccation of the luminal surface as described 

previously.136 The uninjured left femoral artery served as the internal control. The animals were 
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maintained on a cholesterol-enriched diet (>200  mg/dL in blood), and over time the air desiccation 

led to a focal lesion. In this animal model, anatomical co-registration was not used because the 

location of the lesion was apparent due to the surgical markings and identification by the surgeon 

at each imaging session. 

8.2.3 Fluorescent imaging agent 

We chose to monitor the progression of the receptor, NPR-C, which has been shown to undergo 

changes during atherosclerotic plaque progression and was recently evaluated as a PET imaging 

marker.5 NPR-C is a cell surface protein found on endothelial, vascular smooth muscle, and 

macrophage cells. Natriuretic peptides (NPs) play an important role in regulating cardiovascular 

homeostasis. NPR-C (clearance receptor) removes NPs from circulation by receptor mediated 

endocytosis.137 We evaluated a bioconjugate LS668 (Cypate-RSSc[CFGGRIDRIGAC]), 

consisting of a near infrared (NIR) fluorescent dye cypate conjugated to a targeting peptide, C-

type atrial natriuretic peptide, specific for NPR-C (). NIR fluorescent (700 to 900 nm) imaging 

agents are desirable for in vivo imaging due to enhanced depth penetration of NIR light. The 

absorption spectra of LS668 was measured on a DU 640 spectrophotometer (Beckman-Coulter, 

Brea, CA). For all fluorescence measurements, absorbance at the excitation wavelength was kept 

below 0.05. Fluorescence emission spectra were recorded on a FluoroLog 3 spectrofluorometer 

(Horiba Jobin Yvon, Edison, NJ) using 720 nm/735-900 nm excitation/emission wavelength with 

5 nm slits. The spectra were measured in dimethylsulfoxide.  

8.2.4 Cell culture and microscopy of probe uptake  

Stably transfected 293-T NPRC and 293-T NPRC cells were cultures in 8 well glass slides. LS668 

was added to the wells (1 µM) 293-T NPRC for 1 hour. Uptake of LS668 was blocked by adding 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229053/#r5
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100 µM free CANF peptide. Cells were washed after 1 hour incubation and mounted in V 

ectashield mounting media with DAPI (Vector Labs), followed by imaging with fluorescence 

imaging on Olympus BX51 upright microscope (Olympus America, PA, USA).   

8.2.5 In vivo imaging 

For in vivo imaging, we determined 24 h post injection of LS668 as the optimal time point, as 

complete clearance of LS668 from blood was achieved (serial blood sampling, data not shown). 

Both injured and control femoral artery of 3 animals were imaged at day 3 and weeks 1, 2, 4, 6 

and 8 following the surgery. For each time point, LS668 (0.1 mg/kg intravenous) was injected and 

24 h later FMT scans were performed (5 min each) in triplicates for each artery. FMT 

reconstruction was performed as reported earlier138 to obtain 3D data from the tissue containing 

the lesion. FMT scans of the respective arteries before surgery were used as blank scans for image 

reconstruction. 

8.2.6 Histological Analysis 

Ex vivo validation studies were performed on the arteries at week 8 following the final imaging 

session. Prior to collecting the arterial segments, the vascular system was flushed with saline and 

then perfusion fixed with 4% paraformaldehyde and embedded in paraffin. Tissue sections were 

deparaffinized for further studies. The bright-field images of the injured artery showed a thick 

concentric layer of primary neo-intima (1° NEO) within the internal elastic lamina (IEL). The 

control artery showed intact adventitia (A), media (M) and IEL. Ex vivo staining of the injured 

artery section with LS668 (10µM; 30 min; 37 °C) followed by fluorescence microscopy 

(excitation/emission: 710±75 nm/ 810±90 nm. To validate the presence of macrophages 

infiltration, the sections were stained for macrophages with mouse monoclonal antibody to rabbit 
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macrophages, (clone RAM11, Dako, Carpenteria, CA, USA, 1:100 dilution). A positive signal was 

visualized using Vector Laboratories (Burlingame, CA, USA) alkaline phosphatase-conjugated 

secondary antibody and blue substrate, and nuclear fast red counterstain.  

8.3 Results 

8.3.1 Probe uptake in cells 

The absorption and emission spectra of LS668 are shown in (Figure 8-1a). Fluorescence 

microscopy images demonstrated that LS668 (1 μM, 30-min incubation at 37°C, 5% CO2) was 

selectively internalized by stably transfected 293TNPR- C cells (Figure 8-1b). Internalization was 

blocked in the presence of excess (100 μM) C-ANF peptide and additionally, LS668 did not 

internalize into the control 293T-NPR-A cells Figure 8-1 b-d), supporting receptor mediated 

endocytosis of LS668.  

 

8.3.2 In vivo tomographic imaging 

For in vivo imaging, 24 h post injection of LS668 was selected as the optimal time point as 

clearance of LS668 from blood was achieved at 24 h. Both injured and control femoral arteries of 

Figure 8-1: (a) Absorption and fluorescence spectra of LS668 in dimethylsulfoxide. Fluorescence microscopy 

images showing cellular internalization of LS668 (b) in NPR-C transfected cells, (c) inhibition of inter- nalization in 

presence of excess C-ANF peptide, and (d) absence of internalization in NPR-A transfected cells. Blue (DAPI, 

nuclear stain) and red (LS668). Scale: 100  μm. 
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three animals were imaged at day 3 and weeks 1, 2, 4, 6, and 8 following the surgery. For each 

time point, LS668 (0.1 mg/kg intravenous) was injected and 24 h later FMT scans were performed 

(5 min each) in triplicates for each artery. FMT reconstruction was performed as reported earlier 

to obtain three-dimensional (3-D) data from the tissue containing the lesion.138 FMT scans of the 

respective arteries before surgery were used as blank scans for image reconstruction. In the 

reconstructed data, localized fluorescence signal indicating accumulation of LS668 was observed 

at a depth of 4 to 16 mm and over 15 mm of length consistent with the location of the focal lesion. 

Coronal section images of the 3-D volumes are shown at a depth of 7 mm for one representative 

animal [Figure 8-2a]. The corresponding sagittal and transverse sections show the spread of the 

lesion along the length and breadth [Figure 8-2a,b]. Near background signal from the tissue 

surrounding the localized fluorescent region indicated negligible nonspecific uptake by 

surrounding tissue. Contralateral non-injured femoral arteries showed minimal signal indicating 

negligible background uptake of LS668 in the control artery. [Figure 8-2b]. Integrated 

fluorescence signal (directly related to the quantity of LS668 in tissue) was calculated from each 

tissue volume (thresholded at above 20% of respective maximum signal) [Figure 8-2c]. 

Unpaired t test (two tailed) showed statistically significant difference between control and injured 

arteries at week 2 (P=0.0283) and week 6 (P=0.0282) [Figure 8-2 c]. The changes in the signal 

over time most likely result from a transient increase in macrophages after injury usually at week 

2, followed by a decrease resulting from the increased amount of the matrix and decrease in 

cellularity. Inflammation resumes in the following days or weeks due to the diet-induced 

macrophage-enriched unstable lesions. The variance within the cohorts highlights the differences 

in the pace of lesion formation in individual animals, probably as a function of their cholesterol 

levels. Ex vivo tissue biodistribution even after 24-h postinjection at week 8 showed ∼3.7-fold 
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(n=2) higher localization of LS668 into the injured femoral artery as compared to the control 

femoral artery [Figure 8-2 d].  

 

 

8.3.3 Ex vivo and histological validation 

Ex vivo histological validation studies were performed on the arteries at week 8 following the final 

imaging session. Prior to collecting the arterial segments, the vascular system was flushed with 

Figure 8-2: Coronal (depth ¼ 7 mm), sagittal and transverse sections of reconstructed fluorescence molecular 

tomography (FMT) signal from injured artery and corresponding control artery from a representative animal (rabbit 

1). White lines indicate the position of the respective sagittal and transverse sections. (b) Schematic showing the 

relationship between the FMT images displayed to their orientation with respect to the tissue volume. (c) Time 

dependent changes in integrated fluorescence signal (mean AE SD, n ¼ 3) for injured and control arteries (*P ¼ 

0.0283; **P ¼ 0.0282). (d) Mean (n ¼ 2) fluorescence intensity obtained from the ex vivo injured artery containing 

the lesion and the control artery. Adjoining figure (inset) shows the fluorescence images (excitation/emission: 785 

nm/ >800 nm) of the injured artery containing the lesion (top) and the control artery (bottom). 
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saline and then perfusion fixed with 4% paraformaldehyde and paraffin embedded. Tissue sections 

were deparaffinized for further studies. The bright-field images of the injured artery showed a 

thick concentric layer of primary neointima (1° NEO) within the internal elastic lamina (IEL) 

[Figure 8-3a]. The control artery showed an intact adventitia (A), media (M), and IEL. Ex 

vivo staining of the injured artery section with LS668 (10 μM; 30 min; 37°C) followed by 

fluorescence microscopy showed an increased signal in the layers between A and the lumen (L), 

which is most likely due to the presence of infiltrating NPR-C expressing macrophages migrating 

from the adventitia through the media (smooth muscle cells) to accumulate in the base of the NEO 

closest to the media [Figure 8-3b]. The control section had a uniform fluorescence signal akin to 

nonspecific background. Histology sections were also stained for macrophages with mouse 

monoclonal antibody to rabbit macrophages (clone RAM11). Positive signal was visualized using 

alkaline phosphatase-conjugated secondary antibody and blue substrate, and nuclear fast red 

counterstain. In the injured artery, IHC showed a thickened adventitial layer and neointima with a 

dense accumulation of infiltrating macrophages primarily in the adventitial and medial layers of 

the injured femoral artery, and also some in the neointima [Figure 8-3c]. The control artery showed 

a negligible staining for macrophages. Serial sections were also stained for alpha-smooth muscle 

actin (SMA). The injured artery demonstrated medial hypertrophy and the staining for alpha-SMA 

was also markedly higher as compared to the control vessel (data not shown). 
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8.4 Discussion  

Noninvasive molecular imaging of atherosclerotic lesions with FMT allowed convenient frequent 

(weekly/biweekly) - a feature that is not practical for performing similar PET studies. Sequential 

imaging with FMT over several weeks showed quantifiable relative changes in the fluorescence 

intensity that may provide insights into receptor concentration as the lesion progressed. The large 

difference in signal from lesion between animals calls for closer monitoring of diet and disease 

progression in this animal model. To differentiate specific probe accumulation from inflammation 

related uptake, a sham injured artery can be used instead of uninjured artery. Receptor 

concentration can be quantified from the fluorescence signal as previously described. Additional 

NIR-fluorescent imaging agents to serially evaluate the progression of high-risk plaques can be 

employed to evaluate their potential as biomarkers. 

Figure 8-3: Ex vivo studies on the paraffin fixed sections of injured (top row) and control artery (bottom row) 

sections obtained at 8 weeks postsurgery. (a) Bright field images showing IEL, internal elastic lamina; A, adventitia; 

M, media; 1° NEO, primary neointima. Scale: 500 µm. (b) Corresponding fluorescence images (excitation/emission: 

710±75 nm/810±90  nm) after ex vivo staining with LS668. Scale: 500 µm. (c) Immunohistochemistry on tissue 

sections with clone RAM11 antibody (1: 100 dilution; blue) for macrophages and counterstained with nuclear fast 

red. Scale: 250 µm. 
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8.5 Conclusions 

This pilot study demonstrates a unique application of an FMT system for serial imaging of focal 

atherosclerotic plaques in the shallow femoral arteries in a rabbit model of atherosclerosis using a 

targeted NIR-fluorescent molecular imaging probe.  
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Chapter 9 Conclusions 
 

Fluorescence imaging methods at molecular, cellular and systemic levels have demonstrated 

tremendous promise for studying the development of pathophysiological processes and potential 

as a tool for clinical diagnosis. Progress in the field is dependent on the development of novel and 

customized imaging probes. Through this body of work, we have developed and characterized 

novel fluorescent molecular probes strategies. We have then demonstrated their applications in 

solving critical biomedical problems. This work lays the foundation for further exploration and 

validation of these strategies towards broader applications.  
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