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Professor Herbert W. Virgin, IV, Chairperson 

 

 Macroautophagy (herein autophagy) is a process by which cells degrade long-

lived proteins and organelles.  The autophagy pathway and autophagy genes have been 

implicated in many functions in the cell such as protecting against metabolic stress, 

degrading damaged organelles, and regulating vesicular trafficking.  To study the role of 

autophagy in primary cells with important physiologic functions, we generated mice 

lacking essential autophagy genes in B lymphocytes, T lymphocytes, and osteoclasts.  

We found that the essential autophagy gene Atg5 was important for B cell development 

and for the maintenance of B-1a B cell numbers but not peripheral B-2 B cell numbers.  

In T cells, deletion of the essential autophagy genes Atg5 or Atg7 resulted in decreased 

thymocyte and peripheral T cell numbers in vivo and a decrease in cell proliferation in 

vitro.  Autophagy genes play a critical role in T cell homeostasis, but do not appear 

important for peripheral B-2 B cell homeostasis in vivo.  Whole-genome transcriptional 

profiling of Atg5-deficient and wild-type thymocytes suggested abnormalities in 



iii 

mitochondria in the absence of Atg5.  We confirmed this observation by demonstrating 

that peripheral Atg5-deficient T cells had an increase in mitochondrial mass that 

correlated with increased Annexin-V staining in these cells.  We speculate that autophagy 

is required in T cells for the removal of damaged or aged mitochondria and that excess 

mitochondria contribute to increased cell death in autophagy-deficient T cells.  In 

contrast to lymphocytes, deletion of autophagy genes in osteoclasts did not result in 

dramatic abnormalities in cell development.  However, the biochemical pathway 

necessary for autophagy was critical for directional secretion in osteoclasts.  We found 

that the autophagosome marker LC3 localized to the resorptive microenvironment in 

osteoclasts.  Deleting Atg5 or Atg7 or overexpressing a dominant negative mutant of 

ATG4B to inhibit LC3 conjugation reduced localization of lysosomal markers at the 

resorptive surface and decreased bone resorption in vitro.  Furthermore, mice lacking 

Atg5 in osteoclasts and other myeloid-lineage cells were protected from ovarectomy-

induced bone loss, a mouse model of osteoporosis.  Together, these studies demonstrate 

that autophagy genes are important in cell development, survival, mitochondrial 

maintenance, and directional secretion in physiologically important, primary mammalian 

cells.  
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Overview 

 To maintain homeostasis, cells must both build new macromolecules and 

organelles and degrade excess or damaged ones.  Macroautophagy (herein autophagy) is 

a cellular degradative process by which cells recycle both organelles and long-lived 

proteins.  This process is critical for survival, as mice lacking one of the genes required 

for autophagy die within one day of birth1,2,3.  This introduction will give a summary of 

the process of autophagy and the functions of autophagy genes, with an emphasis on their 

roles in cell survival and vesicle trafficking and secretion.  The work presented in this 

thesis will describe the functions of autophagy genes in lymphocytes and osteoclasts, so 

the development, survival, and function of these cells will be briefly discussed.   

The Autophagy Pathway 

 While the molecular machinery of autophagy was first characterized in yeast, 

gene homologues have been discovered in higher eukaryotes, suggesting that the process 

is evolutionarily conserved.  The autophagy pathway can be divided into four stages: 

vesicle nucleation to form an isolation membrane, expansion and closure of the isolation 

membrane around cytoplasm to form a double-membrane bound autophagosome, fusion 

of the autophagosome with the endo-lysosomal pathway, and breakdown of vesicle 

contents in the lysosome (Fig. 1-1).  Autophagy can be induced by a variety of cellular 

stresses, although many mammalian cell types appear to have some level of constitutive 

autophagy4,2.  These stressors include starvation4, growth factor deprivation5, ER stress6,7, 

microbial infection8,9,10,11,12, hypoxia13,14, and accumulation of reactive oxygen species15. 
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 While the conditions that produce these stress signals are diverse, many of their 

signaling pathways converge in the inactivation of the serine/threonine kinase mTor, a 

master regulator in the initiation of the autophagy cascade.  Inhibition of mTor activity 

results in activation of a class III phosphatidylinositol 3-kinase, Vps34, in complex with 

Beclin-1 and other molecules (reviewed in 16).  Activation of this class III PI3K is 

necessary for nucleation of the isolation membrane17 (reviewed in 18). 

 Formation of the autophagosome requires the recruitment of two ubiquitin-like 

pathways necessary for isolation membrane elongation and closure19.  The E1-like 

enzyme required for both conjugation systems is ATG720,21,1.  The first system conjugates 

the ubiquitin-like molecule ATG12 to a lysine in ATG5 via the action of the E2-like 

enzyme ATG1020,22,23,24.  The majority of ATG5 in mammalian cells is found conjugated 

to ATG1224.  ATG5-ATG12 binds to ATG16L1, which is thought to target the complex 

to the forming autophagosome25.  The ATG5-ATG12 conjugate has E3 ubiquitin ligase-

like activity for the second ubiquitin-like system, the ATG8 conjugation system26.  There 

are many species-specific homologues of ATG8 in mammalian cells, including LC3, 

GATE16, GABARAP, and ATG8L27,28,29, although LC3 is the best characterized of these 

molecules in the context of autophagy. 

The ubiquitin-like molecule LC3 is first cleaved by ATG4B, a mammalian 

homologue of yeast ATG430,31, exposing a C-terminal glycine residue and forming    

LC3-I30.  LC3 is then activated by ATG7, transferred to the E2-like enzyme ATG3, and 

finally conjugated onto the lipid phosphatidylethanolamine (PE) via an isopeptide bond 
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with the exposed glycine residue32,30.  Conjugated LC3 (LC3-II) localizes to the isolation 

membrane30,31 where its membrane-fusion activity is thought to mediate proper 

membrane expansion and/or closure33,3,34.  ATG4B also functions to deconjugate LC3 

from PE after formation of the autophagosome35.  Interestingly, a recent study has 

suggested that macroautophagy may exist in mammalian cells by a mechanism that does 

not require the ATG12/LC3 conjugation cascades36.  Although the physiologic 

significance of this alternative pathway is unclear, this finding highlights the complexity 

of mammalian autophagy. 

 Much less is known about the molecular mechanisms required for the fusion of 

the autophagosome with endo-lysosomal vesicles in mammalian cells.  This step likely 

involves machinery important for the endo-lysosomal trafficking pathway such as the 

Rab small GTPase family.  Indeed, Rab7, which is involved in late endosomal transport, 

phagosome maturation, and lysosome homeostasis37,38,39, has been shown to be important 

in the fusion of autophagosomes with late endosomes/lysosomes40,41,42.  After fusion, 

lysosomal enzymes degrade the contents of the inner membrane43 which are subsequently 

exported back into the cytosol to be recycled as substrates of synthetic pathways.  

Measuring Autophagy 

 The development of reliable and quantifiable assays to measure autophagy over 

the past two decades has allowed significant advancement in this field.  Autophagy was 

first discovered by electron microscopy, and this technique is still widely used to quantify 

autophagosomes44,45,46.  The lipidation of LC3 during autophagosome formation allows 
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unconjugated (LC3-I) and conjugated (LC3-II) forms to be distinguished by their 

electrophoretic mobility30.  Because LC3 is degraded when the autophagosome fuses with 

the lysosome, inhibiting lysosome degradation is important for measuring the 

accumulation of LC3-II as a measure of autophagic activity over time (reviewed in 44).  A 

GFP-LC3 fusion protein has also been generated to allow the localization and 

quantification of autophagosomes within cells30 (reviewed in 44).  It is important to note 

that LC3 can be conjugated in the absence of autophagosome formation (reviewed in 44) 

and form punctuate structures independent of autophagy47.  Finally, levels of the protein 

p62, which binds LC3 and is degraded by autophagy48, are used as a indicator of 

autophagic activity (reviewed in 44). 

Functions of Autophagy Genes 

 In addition to its role in recycling, autophagy has been implicated in many cellular 

functions based largely on studies using gene knockdown and gene deletion approaches.  

However, autophagy genes may have other functions in the cell.  For example, the 

requirement for Atg5 in autophagy is clear49,24, but Atg5 can also induce cell death and 

inhibit cytokine production independent of its role in the LC3 conjugation 

pathway50,51,52,53.  Given this caveat, there is a growing literature suggesting that 

autophagy or autophagy genes function in many different contexts in the cell (reviewed 

in 54).   

 The function of autophagy genes shows remarkable cell-type specificity.  For 

example, numerous secretory cells have co-opted autophagy genes for their specialized 



6 

function55,56,57,58,59, whereas antigen presenting cells use this pathway to process 

cytoplasmic antigens for presentation60,61.  Other functions of autophagy and autophagy 

genes seem to be conserved in many different cell types – for example, the ability of 

autophagy to maintain cell viability during starvation and stress5,62,63 or degrade 

intracellular pathogens12,64,65. Because of the cell-specific and multifunctional roles of 

autophagy genes, it is important to study their function in physiologically relevant cell 

types. 

Autophagy genes in cell survival 

 One of the first discovered functions of autophagy is to maintain cell viability 

during cell stress5,66,67.  Autophagy genes have been shown to be important for cell 

survival after removal of growth hormones, conceivably by allowing cells to acquire 

nutrients from the degradation of cellular constituents5.  In conditions of hypoxia, 

increased reactive oxygen species (ROS) production, or mitochondrial damage, 

autophagy can be targeted to degrade mitochondria to protect cells from the toxic 

byproducts of mitochondrial respiration13,14,15,68.  Deletion of autophagy genes in yeast or 

murine liver, β-islet cells, embryonic fibroblasts, cell lines, or macrophages results in the 

accumulation of mitochondria69,57,1,70,71,72. 

 ROS are one of the major destructive byproducts of mitochondria.  ROS can 

induce DNA damage and oxidize proteins and lipids necessary for cellular function and 

survival73,74,75.  Many different cell types have been shown to accumulate ROS when 

autophagy genes are knocked down or deleted, including yeast69, mouse embryonic 
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fibroblasts15,70, transformed fibroblasts72, and macrophages70,76.  In addition to decreasing 

ROS levels, autophagy may also mitigate the negative effects of ROS by degrading 

oxidized protein aggregates and damaged organelles77,78,79,80.  As evidence of the in vivo 

importance of this function of autophagy, inhibiting autophagy genes in Drosophila or 

Arabidopsis increases the sensitivity of the flies and plants to oxidative stress-induced 

death79,80.  As ROS have been shown to induce autophagy in various cell types15,81,82, this 

suggests a negative feedback loop whereby increased ROS activate autophagy, which 

functions to decrease ROS levels and allay the effects of ROS damage.   

 Paradoxically, a few studies suggest that autophagy can increase ROS, resulting 

in cell death83,84.  Many groups have reported that inhibition of autophagy results in 

decreased cell death85,86, even in the same cell types where it has been shown to have pro-

survival functions66.  Autophagy can function to induce or accelerate cell death (i.e. 

autophagy causes an increase of ROS that are toxic to the cell83), but it may also be a 

distinct mechanism by which cells can die (reviewed in 87).  The function of autophagy as 

cell death mechanism is unclear and will not be further discussed in this thesis (reviewed 

in 87).  Still, it is clear that autophagy can function to both protect cells and induce cell 

death.  One hypothesis to explain this paradox is that autophagy normally has a 

cytoprotective role, but can result in cell death when overutilized (reviewed in 88). 

Autophagy genes in vesicle trafficking and secretion 

 Many of the proteins involved in the induction of the autophagy pathway also 

have functions in vesicular trafficking.  The Vps34 complex, for example, can pair with 
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different subunits to induce autophagy or function in endosomal vacuolar sorting89,90 

(reviewed in 91).  There is now a growing literature suggesting that autophagy genes 

downstream of the Vps34 complex can have a role in vesicular trafficking independent of 

autophagosome formation.  Atg5 is important for the fusion of phagosomes with 

lysosomes in macrophages92.  Beclin-1 and LC3 were found to localize on the 

phagosome, but no double-membrane bound structures associated with the phagosome 

were observed.  Atg5 is also important for clearance of Toxoplasma from infected 

macrophages65.  Atg5-deficient macrophages failed to localize a key immunity-related 

GTPase, Irga693, to the vacuole containing the parasite (parasitophorous vacuole) and 

failed to recruit LAMP1 positive lysosomes to this structure.  No double-membrane 

bound structures were observed associated with the parasitophorous vacuole.  

Interestingly, both of these papers report a defect in the fusion of lysosomes with 

intracellular vesicles, raising the possibility that a common mechanism is involved in 

both processes. 

 A novel role of autophagy genes in cell secretion has also been recently 

suggested.  Paneth cell secretion of lysozyme is deficient in mice that have deleted or 

reduced levels of ATG5, ATG7, or ATG16L1 in the gut epithelium55,56.  Deletion of Atg7 

in pancreatic β-cells disrupts insulin secretion57,58.  Finally, mice heterozygous for 

Beclin-1 have a deficiency in melanosome production by melanocytes, resulting in 

alterations in coat color59.  These studies provide compelling evidence suggesting a role 

for autophagy genes in granule secretion, and it will be important to determine if this 

function is generalized to other secretory cell types.  Moreover, the mechanism by which 
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the autophagy pathway or autophagy genes contribute to vesicle trafficking and secretion 

is of great interest. 

 

 This thesis will explore the functions of autophagy genes in primary mouse B and 

T lymphocytes and osteoclasts, three cell types with physiologically relevant functions 

that can be studied in vivo and in vitro.  The life and death of lymphocytes is a tightly 

regulated process that allows rapid and massive expansion of cells followed by similarly 

drastic reduction over the course of an immune response, providing a well-studied system 

to examine the function of autophagy genes in cell survival and development.  Osteoclast 

function is dependent upon temporally and spatially regulated secretion, allowing 

mechanistic studies of the function of autophagy genes in cell secretion.    

B Cell Subsets 

 B lymphocytes have a variety of functions in the immune response (reviewed in 

94), including the secretion of antibody, presentation of antigen95,96, and production of 

cytokines97,98.  B cells are classified into two subsets, B-1 and B-2, based on cell surface 

marker expression, developmental origin, and functional properties (reviewed in 99).  B-2 

B cells develop from hematopoietic stem cells in the bone marrow, undergoing a series of 

maturational stages that can be defined by expression of cell surface markers (Hardy 

fractions A-F)100.  B-2 B cells exit the bone marrow as immature cells that finish their 

development in the spleen as transitional B cells101.  The majority of B-2 B cells develop 

into follicular B cells, which are found in B cell follicles and respond to infection with 
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production of high-affinity antibodies (reviewed in 102).  B-2 B cells also develop into 

marginal zone B cells, which are located in the spleen and rapidly produce antibodies 

against blood-borne antigens (reviewed in 103). 

 B-1 B cells are part of the innate immune system and are located primarily in 

body cavities.  B-1 B cells are further subdivided into B-1a and B-1b subsets based on 

expression of the cell surface protein CD5.  Studies indicate that B-1a cells produce 

natural antibodies, defined as antibodies present in the serum before exposure to 

exogenous antigen (reviewed in 104).  Natural antibodies are important for early control of 

viral and bacterial infection105,106.  Unlike the spontaneous secretion of antibody by B-1a 

B cells, B-1b cells are induced to secrete antibody that is important for the clearance of 

pathogens107 (reviewed in 99).   

 The developmental origin of B-1 B cells is still controversial, with two competing 

models under study.  According to the selection model, B-1 and B-2 B cells are derived 

from a common progenitor that differentiates into one of the two lineages based on 

antigen selection at the transitional stage (reviewed in 108).  Alternatively, the lineage 

model proposes that B-1 and B-2 B cells originate from distinct progenitors.  The lineage 

model is supported by the recent identification of a B-1 B cell progenitor in fetal and 

adult tissues109.  It has also been suggested that B-1a and B-1b B cells have distinct 

progenitors and lineages110. 
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The Role of Autophagy Genes in B Cells 

 There is little known about the functions of autophagy and autophagy genes in B 

cells.  Two papers demonstrate that autophagy is a constitutive process in human B cell 

lines61,60, which the authors suggest may be involved in bringing cytosolic antigens to 

load onto MHC class II.  B cell receptor (BCR) signaling stimulates autophagy111, which 

is important for synergistic signaling of the BCR and Toll-like receptor 9 (TLR9), an 

innate immune receptor that recognizes unmethylated DNA 112.  Together these studies 

suggest that autophagy is a constitutive process that can be upregulated in B cells and that 

may be important for antigen presentation and B cell signaling.   

T Cell Survival 

 T cells are key regulators and effectors of the immune response responsible for 

both the clearance of pathogens and, when dysregulated, autoimmune disease.  For this 

reason, T cell homeostasis is a tightly regulated process.  T cells differentiate from the 

pluripotent hematopoietic stem cell in the bone marrow and complete their development 

in the thymus, where they undergo a series of well-defined stages defined by cell surface 

marker expression and T cell receptor (TCR) gene rearrangement (reviewed in 113).  

Mature, naïve T cells then emigrate from the thymus to the periphery, where their 

survival is regulated by cytokines and signals through the T114,115,116,117 (reviewed in 118).  

Previously activated T cells can die by a process known as activation-induced cell death 

(AICD) via signaling through TNF receptor superfamily members such as CD95/Fas and 

TNFR1116,119 (reviewed in 120).  Activated cells can also die by neglect when they do not 
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receive appropriate survival factors, known as activated cell-autonomous death (ACAD), 

which is thought to be mediated through the balance of pro- and anti-apoptotic Bcl-2 

family members121 (reviewed in 118,120). 

 ROS regulate T cell activation and homeostasis by modulating cell signaling, 

proliferation, and apoptosis122,123,124 (reviewed in 75,125).  ROS are involved in the 

upregulation of FasL following T cell activation, a process important for AICD126,127.  

ROS also downregulate expression of the anti-apoptotic molecule Bcl-2 in activated T 

cells, resulting in ACAD128,129. 

The Role of Autophagy Genes in T cells 

 Autophagy plays a critical role in the development and survival of T lymphocytes.  

This process is constitutively active in the thymus130,4 and upregulated after T cell 

activation131,132.  Multiple studies suggest that autophagy and autophagy genes can 

contribute to T cell death, such as after growth factor withdrawal131 or in the context of T 

cells lacking FADD activity, caspase-8, or Irgm-1133,134.  T cells exposed to the env 

protein of HIV also undergo cell death that can be blocked by inhibiting autophagy135.  

However, deletion of the autophagy gene Atg5 in primary T lymphocytes results in 

decreased survival132.  In summary, autophagy genes may be important for cell survival 

in normal T cells, but excessive induction of autophagy or autophagy in the context of 

certain genetic deletions may serve as a pro-death mechanism.   
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Osteoclast Function 

Osteoclasts are the primary cell responsible for bone degradation.  The 

coordination of the bone resorption activity of osteoclasts with the bone forming activity 

of osteoblasts is critical for the maintenance of skeletal integrity and calcium homeostasis 

(reviewed in 136).  Diseases disrupting osteoclast activity result in osteopetrosis, an 

increase in bone mass.  In contrast, increased osteoclast activity reduces bone mass, 

resulting in osteopenia and osteoporosis (reviewed in 137).       

Osteoclasts differentiate from cells of the monocyte lineage by fusion of 

precursors into a polykaryon under the influence of M-CSF and RANKL138 (reviewed in 

137).  The osteoclast is activated and polarizes after recognizing the bone substrate via 

signaling through cell surface molecules such as the αvβ3 integrin139 (reviewed in 140,137) 

(Fig. 1-2).  One of the first steps is the formation of a sealing zone, an area of tight 

adherence of the osteoclast to the bone matrix.  The extracellular mediators of this 

junction are still in question, but intracellularly there is an accumulation of 

microfilaments that form an actin ring.  To degrade bone, osteoclasts deliver vesicles 

containing lysosomal enzymes to the interior of the actin ring where they fuse with the 

plasma membrane, forming a region of membrane folds termed the ruffled border 

(reviewed in 141).  Bone degradation by osteoclasts requires the action of hydrogen ions 

and lysosomal enzymes.  Hydrogen ions are important for the demineralization of bone 

and are secreted by the action of the vacuolar H+ ATPase142,143,144.  The hydrogen ions 

are generated by a carbonic anhydrase enzyme in the cell, which combines water and 
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carbon dioxide to generate hydrogen ions and biocarbonate145 (reviewed in 137).  

Electrical neutrality of the cell and resorption pit is maintained by a chloride/bicarbonate 

pump in the basolateral cell surface (away from the bone) and a chloride channel in the 

apical surface (against the bone)146 (reviewed in 137).  After demineralization, enzymes 

such as cathepsin K degrade the organic matrix of bone147,148.  The degraded collagen 

fragments are transcytosed across the cell for exocytosis at the basolateral side of the 

osteoclast opposite the bone149,150.   

A number of lines of evidence suggest that the vesicles fusing with the plasma 

membrane are lysosomes, often called "secretory lysosomes" (reviewed in 151).  First, 

lysosomal proteins such as LAMP1, LAMP2, and the vacuolar H+ ATPase are localized 

to the plasma membrane at the ruffled border152,153,144.  Second, Rabs associated with late 

endosomes (Rab7 and Rab9) have also been localized on the ruffled border152,153,154, and 

Rab7 has been shown to be important for formation of the ruffled border155.  Finally, 

lysosome-associated enzymes such as cathepsin K are found in the extracellular bone 

resorption pit156.  It has also been shown that small, coated vesicles from the trans-Gogli 

network containing lysosomal enzymes traffic to the ruffled border and fuse with the 

plasma membrane157, thus the exact nature of the vesicle or vesicles necessary for ruffled 

border formation and bone degradation is unclear. 

The molecular mechanisms responsible for the directional secretion of vesicles in 

osteoclasts are poorly understood.  Rab7 is an important GTPase for vesicular trafficking 

of late endosomes39 and maturation of autophagosomes40,41,42 and is important for 
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formation of the ruffled border and localization of the vacuolar H+ ATPase in 

osteoclasts155.  Rab3D, which localizes to the trans-Golgi network, and Synaptotagmin 

VII, an accessory molecule of vesicle fusion proteins involved in lysosome exocytosis158, 

are two additional molecules important for osteoclast secretion159,160.  The machinery of 

vesicle fusion and the signals targeting vesicles to the ruffled border are still unknown. 

Experimental Systems  

 Given our goal to understand the role of autophagy genes in B cells, T cells, and 

osteoclasts, we generated mice lacking Atg5 or Atg7 in these cell types to study the in 

vivo phenotypes and serve a source of primary cells for in vitro studies.  Knockout mice 

lacking either Atg5 or Atg7 are born in mendelian ratios but die within the first day of 

life1,2.  Because of the neonatal lethality, mice containing loxP-flanked Atg5 and Atg7 

genes have been generated to allow cell-type specific deletion of these essential 

autophagy genes1,78.  We bred mice with two copies of a loxP-flanked (“floxed”) Atg5 or 

Atg7 gene with mice expressing the Cre recombinase under control of a B cell specific 

promoter (CD19-Cre)161, T cell specific promoter (Lck-Cre)162, or monocyte/granulocyte 

specific promoter (LyzM-Cre)163.  These mice should express the Cre recombinase in B 

cells, T cells, or osteoclasts, resulting in the cell-type specific deletion of the Atg5 or Atg7 

floxed alleles.  We also reconstituted the hematopoietic compartment of irradiated Rag1-/- 

or CD45.1 mice with fetal liver stem cells from Atg5-/- pups, giving us a second in vivo 

system to study the effects of Atg5 deletion in B and T cells. 
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Figure 1-1.  Overview of the mammalian autophagy pathway 

The autophagy pathway can be divided into four stages.  Stage 1 - vesicle nucleation to 

form an isolation membrane, requires the activity of a class III PI3K complex.  Stage 2 - 

expansion and closure of the isolation membrane around cytoplasm to form a double-

membrane bound autophagosome, requires two highly conserved ubiquitin-like 

conjugation systems that function to conjugate LC3 to phosphatidylethanolamine.  Stage 

3 - fusion of the autophagosome with the endo-lysosomal pathway.  Stage 4 - breakdown 

of vesicle contents in the lysosome.  Figure adapted from Virgin and Levine, 2009164. 
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Figure 1-2.  Function of the bone-resorbing osteoclast 

Osteoclast bone resorption requires activation of the osteoclast by recognition of the bone 

substrate via receptors such as the αvβ3 integrin.  Vesicles containing cathepsin K (Ctsk), 

vacuolar H+ ATPases (red arrow), and chloride channels (pink box) are inserted into the 

plasma membrane against the bone, forming a ruffled border.  Hydrogen ions are pumped 

into the resorption pit, generated by the action of carbonic anhydrase in the cell.  

Electrical neutrality in the cell and resorption pit is maintained by the chloride channel 

and chloride-bicarbonate exchanger.  After demineralization of the bone, the organic 

matrix is degraded by the action of cathepsin K and other enzymes.  Figure adapted from 

www.biology-online.org. 
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Abstract 

Macroautophagy (herein autophagy) is an evolutionarily conserved process, 

requiring the gene Atg5, by which cells recycle organelles and long-lived proteins.  Here 

we show that Atg5 is required for B cell development in the bone marrow and the 

homeostasis of B-1a B cells.  Deletion of Atg5 in B lymphocytes using Cre-LoxP 

technology or repopulation of irradiated mice with Atg5-/- fetal liver progenitors resulted 

in a dramatic reduction in B-1a B cells in the peritoneum.  Atg5-/- progenitors exhibited a 

significant defect in B cell development at the pro- to pre-B cell transition, although a 

proportion of pre-B cells survived to populate the periphery.  Once in the periphery, 

Atg5-deficient peripheral B-2 B cells have no increase in markers of cell death and 

proliferate normally in vitro.  In contrast, inefficient B cell development in the bone 

marrow was associated with increased cell death, indicating that Atg5 is important for B 

cell survival during development.  We conclude that Atg5 is differentially required at 

discrete stages of development in distinct, but closely related, cell lineages.  
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Introduction 

 Autophagy has been reported to be a constitutive process in B cells that is 

important for antigen presentation and signaling1,2,3,4, but the function of autophagy genes 

in B cell survival and development are unknown.  To address these questions we deleted 

the essential autophagy gene Atg5 in primary B lymphocytes in vivo. 

 Developing B cells subsets can be identified in the mouse by expression of cell 

surface markers that correspond to gene rearrangements in the immunoglobulin locus 

(reviewed in 5).  One convenient method to distinguish developing B cells is by the Hardy 

classification system6.  The early fractions of developing B cells (fractions A-C, also 

known as pre-pro-B cells and pro-B cells) express CD43 and undergo rearrangement of 

the heavy chain locus.  The final CD43+ fraction, fraction C', expresses the heavy chain 

on the cell surface with the surrogate light chain.  Cells that have successfully rearranged 

the heavy chain divide and lose expression of CD43.  These cells make up the final 

developing B cell fractions in the bone marrow (fractions D and E).  Fraction D, also 

known as late pre-B cells (fraction C' are considered early pre-B cells), rearranges the 

light chain locus such that fraction E is the first developing B cell to express the complete 

immunoglobulin on the cell surface6.  Fraction E cells leave the bone marrow to finish 

their development in the spleen, but can return as mature B cells (fraction F).  In the 

spleen, immature B cells go through at least two transitional stages before finishing their 

maturation (reviewed in 7).  These stages can be defined by cell surface expression of 

IgM and IgD8. 
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 Mature B cells are divided into two major classifications: B-1 and B-2 B cells.  B-

1 B cells are further subdivided into B-1a and B-1b cells based on expression of the 

marker CD5 and functional properties (reviewed in 9).  B-2 B cells are subdivided into 

marginal zone and follicular B cells, two functionally distinct classes that differ in their 

expression of CD21 and CD23 (reviewed in 10).  Together, these B cells produce 

antibodies important from initial infection to long-lived memory responses.  

 In this chapter we evaluated the role of Atg5 in B cell development and 

homeostasis.  While B-2 B cells can be generated from Atg5-/- precursor cells and 

populate peripheral lymphoid organs, Atg5 was required for efficient development from 

pro- to pre-B cells in the bone marrow.  The absence of Atg5 was associated with a 

significant increase in the death of Hardy fraction D-F B cells.  In addition to its function 

during development, Atg5 is important for the maintenance of mature B-1a B cells. 
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Results 

Atg5 is required to maintain normal numbers of peripheral B-1 B cells 

To study the role of the autophagy gene Atg5 in B cells, we generated Atg5-/- 

chimeric mice.  Atg5-/- or wild-type fetal liver cells were used to reconstitute irradiated 

Rag1-/- hosts11.  In the peritoneum, Atg5-/- reconstituted mice had decreased numbers of 

B-1a B cells (16 fold), B-1b B cells (4 fold), and B-2 B cells (6 fold) (Fig. 2-1).  Lymph 

node B-2 B cell repopulation was equivalent between wild type and Atg5-/- chimeras, 

while both B-1 and B-2 B cell numbers were decreased in the spleen approximately 50% 

(B-2 B cells: p = 0.017; B-1 B cells: p = 0.035).  The proportion of transitional, mature 

follicular, and marginal zone B-2 B cells in the spleen were normal, however (Fig. 2-2).  

This data indicates that Atg5 has a role in maintaining both B-1 and B-2 B cell numbers 

in the periphery, with a more dramatic role in B-1a B cells. 

 

Atg5 is required for the survival of pre-B cells 

The observed decrease in peripheral B cells in Atg5-/- chimeras could be due to a 

decrease in B cell production in the bone marrow or an increase in cell death in the 

periphery.  To test the first hypothesis, we evaluated the stages of bone marrow B cell 

development in Atg5-/- versus wild-type fetal-liver reconstituted irradiated CD45.112 and 

Rag1-/- hosts (Fig. 2-3 and 2-4).  FACS analysis of donor pro-B cells from CD45.1 

chimeras revealed no significant differences in cell numbers of fraction A-C’ developing 

B cells (Fig. 2-3).  In contrast, analysis of Atg5-/- Rag1-/- chimeric mice revealed a 
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decrease in Hardy fractions D (3.7 fold reduction), E (8.3 fold reduction), and F (11.8 

fold reduction) (Fig. 2-4).  CD45.1 chimeras had a similar deficiency of fractions D, E, 

and F (data not shown).  This data indicates that Atg5 has a critical role in the final stages 

of bone marrow B cell development.  We hypothesized that Atg5 may be required for B 

cell survival after the pro-B cell stage of development.  FACS analysis of freshly isolated 

bone marrow cells revealed a greater percentage of fraction D-F cells were dead or dying 

in Atg5-/- Rag1-/- chimeric mice compared with control mice as measured by Annexin-V 

and 7-AAD (Fig. 2-5; Atg5+/+: 3.2 ± 0.8%; Atg5-/-: 22.2 ± 5.3%; p = 0.0056).  We 

conclude that Atg5 is required as a survival factor for developing B cells after the pro-B 

to pre-B cell transition in the bone marrow. 

 

B-2 B cells survive normally in the periphery without Atg5 

 Although the role of Atg5 in B cell development could explain the deficiency in 

peripheral Atg5-/- B cells, we could not rule out that Atg5 is also required for B cell 

survival in the periphery.  To determine if Atg5 is required for B cell homeostasis without 

the confounding role of Atg5 in B cell development, we expressed Cre recombinase in the 

B cells of mice containing two copies of a knock-in Atg5 gene in which LoxP sites were 

inserted flanking the third exon [Atg5flox/flox]13.  B cell specific expression of Cre was 

obtained using the B cell specific CD19 promoter [CD19-Cre]14.  Although the 

expression of Cre from the CD19 promoter effectively deletes loxP-flanked DNA in more 

than 90-95% of mature B cells, it results in incomplete DNA rearrangement in pre-B 
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cells14.  Given that the CD19-Cre construct replaces the wild-type CD19 gene and could 

therefore have an effect on B cells independent of the deletion of Atg515, all mice were 

bred to have only one copy of CD19-Cre.  Furthermore, we used Atg5 wild-type CD19-

Cre+ mice (herein CD19-Cre mice) as a control in subsequent experiments.  

We confirmed rearrangement of the Atg5flox alleles specifically in CD19+ B cells 

from Atg5flox/flox-CD19-Cre+ mice using PCR (data not shown).  In addition, B cells from 

Atg5flox/flox-CD19-Cre+ mice did not express detectable ATG5-ATG12 conjugate and 

failed to convert LC3-I to LC3-II (Fig. 2-6).  Splenic B cells from control Atg5flox/flox-

CD19-Cre- mice expressed ATG5-ATG12 conjugate and converted LC3-I to LC3-II 

(Fig. 2-6).  We conclude that Atg5 is specifically deleted from peripheral CD19+ B 

lymphocytes in our mice and that, as expected16, loss of Atg5 inhibits classical 

macroautophagy as shown by loss of the capacity to generate LC3-II from LC3-I.   

We next determined whether Atg5 is required to maintain normal numbers of B 

cells in peripheral tissues of adult mice.  Importantly, we observed no difference in B cell 

development in fractions A through E in Atg5flox/flox-CD19-Cre+ mice (data not shown).  

There was a twofold decrease in fraction F cells in Atg5flox/flox-CD19-Cre+ mice 

compared with Atg5flox/flox-CD19-Cre- controls (Atg5flox/flox-CD19-Cre-: 1.6 ± 0.27 x 106; 

Atg5flox/flox-CD19-Cre+: 0.81 ± 0.16 x 106; p = 0.0243).  This was consistent with, 

although less severe than, the decrease in fraction F cells observed in chimeric mice.  

There was no decrease in fraction F cells in CD19-Cre mice (data not shown).  In the 

periphery, Atg5flox/flox-CD19-Cre+ mice had normal numbers of B220+ B lymphocytes in 



38 

the spleen and lymph nodes, and IgM and IgD were expressed normally on these cells.  

The percentage and number of splenic and lymph node mature recirculating B cells and 

transitional B cells was comparable between Atg5flox/flox-CD19-Cre-, CD19-Cre, and 

Atg5flox/flox-CD19-Cre+ mice (Fig. 2-7).  As expected, there were no differences in the 

numbers of T cell subsets in the thymus or periphery in these mice (data not shown).  As 

more than 95% of splenic and nearly 100% of lymph node B cells are B-2 B cells9, it 

follows that B-2 B cell numbers are normal in the spleen and lymph node in the absence 

of Atg5.   

We next asked if Atg5 is required for B-2 B cell survival or proliferation.  To 

determine if Atg5 is required for B cell survival, we evaluated Annexin-V and 7-AAD 

staining of freshly isolated splenic and lymph node B220+ cells and observed no 

differences in the numbers of dead or dying B cells (data not shown).  We assessed 

proliferation by stimulating total splenocytes in vitro with LPS and measuring CFSE dye 

dilution.  Flow cytometry of the splenocytes after 72 hours revealed no difference in the 

ability of the Atg5-deficient B cells to divide in response to LPS (Fig. 2-8).  Together, 

this data suggests that Atg5 is not essential for the maintenance of B-2 B cell populations 

in the periphery and is not important for B-2 B cell survival or proliferation.  We 

hypothesize that the decrease in splenic B-2 B cells in Atg5-/- chimeric animals is due to 

the important role of Atg5 in pre-B cells during development.  
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Atg5 is required in a cell-intrinsic manner to maintain normal numbers 

of B-1a B cells 

In contrast to these findings for B-2 B cells, Atg5flox/flox-CD19-Cre+ mice showed 

a 5-fold decrease in the number of B-1a B cells in the peritoneum (Fig. 2-9; Atg5flox/flox-

CD19-Cre-: 4.5 ± 1.2 x 105; Atg5flox/flox-CD19-Cre+: 0.76 ± 0.19 x 105; p = 0.0079).  

There was no statistically significant difference in the number of B-1b or B-2 B cells in 

the peritoneum of Atg5flox/flox-CD19-Cre+ mice.  There was also no decrease in B-1a B 

cell numbers in CD19-Cre mice (Fig. 2-9).  One explanation for this finding would be 

that Atg5 is required for expression of CD5, a marker of B-1a B cells.  In the peritoneum, 

both B-1a and B-1b B cells are B220lo, IgMhi, IgDlo, and CD23-9.  We therefore analyzed 

expression of these additional markers on peritoneal B cells (Fig. 2-9B and 2-9C).  We 

found that Atg5flox/flox-CD19-Cre+ mice contained fewer B-1 B cells in the peritoneum 

than Atg5flox/flox-CD19-Cre- or CD19-Cre mice, confirming that the deficiency of B-1a B 

cells shown using CD5/B220 staining was not an artifact due to lack of CD5 expression 

in Atg5-deficient cells.  In addition, we confirmed that this deficiency is specific for B-1a 

B cells but not B-1b B cells (Fig. 2-9C).  We conclude that the requirement for Atg5 to 

maintain B-1a B cell numbers is cell-intrinsic since only B cells lack Atg5 in Atg5flox/flox-

CD19-Cre+ mice.   This suggests that the observed results in Atg5-/- chimeric mice may 

also be due to cell-intrinsic effects of Atg5 deficiency. 

 As B-1a B cells are responsible for the production of natural antibodies 

(reviewed in 9), we next measured natural antibody titers in these mice.  Anti-
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phosphocholine antibodies have been shown to be an important natural antibody for 

protection against Streptococcus pneumonia17.  Interestingly, there was no dramatic 

decrease in the levels of anti-phosphocholine IgM antibodies in the serum of Atg5flox/flox-

CD19-Cre+ mice (Fig. 2-10), despite the reduction in B-1a B cells in these animals.  We 

hypothesize that the remaining B-1a B cells in Atg5flox/flox-CD19-Cre+ mice produce 

sufficient quantities of natural antibody to compensate for the reduction in cell numbers. 
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Discussion 

In this chapter we demonstrate a critical role for the autophagy gene Atg5 in 

specific B cell developmental stages and lineages.  Atg5 is required for the efficient 

development and survival of pre-B cells in the bone marrow.  A few B-2 B cells survive 

this transition and are able to populate peripheral lymphoid tissues, where Atg5 does not 

seem to be required for their survival or proliferation.  In the absence of Atg5 there is also 

a dramatic reduction in peripheral B-1a B cells.   

The requirement for Atg5 in autophagy is clear16,18.  Therefore, we can safely 

conclude from our studies in Atg5flox/flox-CD19-Cre+ mice that autophagy is not required 

for the maintenance of peripheral B-2 B cell numbers.  However, Atg5 may have other 

roles in addition to its primary role in autophagy19.  ATG5 can be cleaved by calpain and 

gain pro-death activity20.  The protein can also interact with Fas-associated protein with 

death domain (FADD) to trigger autophagic cell death21.  We believe it unlikely that 

these pro-death roles of Atg5 are related to our findings in which Atg5 is required for the 

survival of B cells. 

 Our results, in conjunction with the Atg5-/- T cell characterization by Pua et al.12 

and our work in Chapter 3 of this thesis, demonstrate that Atg5 is differentially required 

in T cells versus B cells, two cell types from a common developmental lineage.  Recently 

it has been suggested that B-1a, B-1b, and B-2 B cells may develop from distinct cell 

lineages22,23.  Our results suggest that these distinct lineages have differential 
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requirements for Atg5 or Atg5-dependent autophagy.  In addition, our data suggests that 

Atg5 or autophagy is required at very specific stages in lymphocyte development. 

 We were surprised to find no decrease in anti-phosphocholine natural antibody 

titers in Atg5flox/flox-CD19-Cre+ mice.  We speculate that the reduction in B-1a B cell 

numbers is compensated by an increase in antibody production by the remaining cells.  

To test the ability of these mice to increase production of B-1a B cell derived antibodies, 

it would be interesting to stimulate these cells via immunization with Streptococcus 

pneumonia polysaccharides24.  We predict that Atg5flox/flox-CD19-Cre+ mice would have 

decreased anti-pneumococcal titers after stimulation compared with control mice due to 

the reduced numbers of B-1a B cells. 

 It is intriguing to speculate that the critical role for Atg5 in the maintenance of B-

1a B cells in the periphery and for efficient pro-B cell to pre-B cell transition during B-2 

B cell development in the bone marrow are related phenomena.   B-1a B cells maintain 

their numbers in the adult by self-renewal25.  We speculate that B-1a B cells lacking Atg5 

may not be able to self-renew efficiently resulting in decreased peripheral numbers.  In 

this case the effects of Atg5 on B-2 and B-1a B cells may reflect a critical role for Atg5 in 

survival during specific stages of cellular differentiation.  Given the importance of 

cytokines and growth factors in B cell development, this might be due to a role for Atg5 

in cytokine-driven differentiation or cell survival after growth factor withdrawal26.
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Figure 2-1.  B-1 B cells are deficient in Atg5-/- chimeric mice  

(A) Staining of peritoneal cells from Atg5+/+ and Atg5-/- Rag1-/- chimeric mice to identify 

B cell subsets: B-1a (CD5+, B220lo); B-1b (CD5-, B220lo); B-2 (CD5-, B220hi).  

Numbers indicate percentage of cells in each gate.  Data representative of at least seven 

mice from four independent experiments.  (B) Quantification of B-1 B cells from the 

peritoneum of Atg5+/+ and Atg5-/- Rag1-/- chimeric mice (Atg5+/+: n = 7; Atg5-/-: n = 6).    
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Figure 2-2.  No dramatic differences in the percentages of B-2 B cell 

splenic subsets in Atg5-/- chimeric mice 

IgM/IgD and CD21/CD23 staining of B220+ lymphocytes from the spleens of Atg5+/+ 

and Atg5-/- Rag1-/- chimeric mice to identify B cell subsets: MR, mature recirculating B 

cells (IgMlo, IgDhi); T1, transitional type 1 (IgMhi, IgDlo); T2, transitional type 2 (IgMhi, 

IgDhi) ; MZ, marginal zone B cells (CD21hi, CD23lo); FO, follicular B cells (CD21lo, 

CD23hi).  T1 gating includes marginal zone and splenic B-1 B cells.  Data representative 

of at least eight mice from four independent experiments. 
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Figure 2-3.  Atg5 is not required for the normal development of pro-B 

cells in the bone marrow 

(A) Flow cytometry of bone marrow cells from Atg5+/+ and Atg5-/- CD45.1 chimeric 

mice.  Cells were gated on CD45.2+, GR1-, Mac1-, and 7-AAD-.  B220+, CD43+ cells 

were further analyzed for expression of BP-1 and CD24.  Fraction A (B220+, CD43+, 

CD24-, BP-1-); Fraction B (B220+, CD43+, CD24+, BP-1-); Fraction C-C' (B220+, 

CD43+, CD24+, BP-1+).  Data representative of at least four mice from four independent 
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experiments.  (B) Quantification of Hardy fractions A-C’ in Atg5+/+ and Atg5-/- CD45.1 

chimeric mice (n = 4 for each group).   
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Figure 2-4.  Atg5 is required for normal development of pre-B cells in 

the bone marrow 

(A) Flow cytometry of bone marrow cells from Atg5+/+ and Atg5-/- Rag1-/- chimeric mice.  

Cells were gated on B220+, CD43- and analyzed for expression of IgM.  Fraction D 

(B220+, CD43-, IgM-); Fraction E (B220+, CD43-, IgMhi); Fraction F (B220hi, CD43-, 

IgMlo).  Data representative of at least eight mice from four independent experiments.  
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(B)) Quantification of Hardy fractions D-F in Atg5+/+ and Atg5-/- Rag1-/- chimeric mice (n 

= 8 for each group).   
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Figure 2-5.  A greater percentage of Atg5-deficient developing pre-B 

cells are Annexin-V+ and 7-AAD+ compared with control cells 

Flow cytometry of freshly isolated bone marrow cells from Atg5+/+ and Atg5-/- Rag1-/- 

chimeric mice.  Cells were gated on B220+, CD43- and analyzed for cell death by 

Annexin-V and 7-AAD.  Data representative of at least six mice from three independent 

experiments. 
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Figure 2-6.  B-2 B cells from Atg5flox/flox-CD19-Cre+ mice do not express 

detectable levels of ATG5 

Immunoblotting with antibodies against ATG5 and LC3 from CD19+ (B) and CD19- 

(Other) bead-purified splenocytes.  Representative blot of three independent experiments 

shown.   
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Figure 2-7.  No dramatic differences in the percentages of spleen or 

lymph node B-2 B cells subsets in Atg5flox/flox-CD19-Cre+ mice 

IgM and IgD staining of B220+ lymphocytes from the spleen and lymph nodes.  MR, 

mature recirculating B cells (IgMlo, IgDhi); T1, transitional type 1 (IgMhi, IgDlo); T2, 

transitional type 2 (IgMhi, IgDhi).  T1 gating includes marginal zone and splenic B-1 B 

cells.  Data representative of at least ten mice from five independent experiments. 
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Figure 2-8.  Atg5-deficient B-2 B cells do not have a defect in 

proliferation to LPS 

(A) Total splenocytes from Atg5flox/flox-CD19-Cre+ and Atg5flox/flox-CD19-Cre- mice were 

labeled with CFSE and plated with different concentrations of LPS for 72 hours.  B cells 

were gated by forward and side scatter and B220 staining.  Representative FACS plots 

from one of three independent experiments, 6 mice of each genotype.  (B) Quantification 

A

B
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of the percentage of CFSElow cells, representing cells that had divided at least once, from 

2-3 independent experiments, representing 4-6 mice of each genotype. 
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Figure 2-9.  B-1a B cells are deficient in the peritoneum of Atg5flox/flox-

CD19-Cre+ mice 
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(A-B) Staining of peritoneal cells to identify B cell subsets: B-1a (CD5+, B220lo, CD23-, 

IgMhi, IgDlo); B-1b (CD5-, B220lo, CD23-, IgMhi, IgDlo); B-2 (CD5-, B220hi, CD23lo, 

IgMlo, IgDhi).  All data is representative of at least five mice from three independent 

experiments.  (C) B-1 B cells are gated by B220lo, CD23- and separated into B-1a and B-

1b B cells by expression of CD5. 
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Figure 2-10.  No significant decrease in anti-phosphocholine natural 

antibody titers in Atg5flox/flox-CD19-Cre+ mice 

Enzyme-linked immunosorbent assay (ELISA) to detect anti-phosphocholine IgM 

antibodies in serum from Atg5flox/flox-CD19-Cre+, Atg5flox/flox-CD19-Cre-, and Rag1-/- 

mice.  Figure 2-10A shows one representative experiment.  There was little absorbance in 

the no antigen control wells plated with the highest dilution of serum, indicating little 
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non-specific binding of antibody.  Figure 2-10B shows data pooled from 2-3 experiments.  

To pool the data across experiments, the average absorbance readings for each serum 

dilution were normalized to the average of the no antigen negative control reading for 

that mouse.  There are no statistically significant differences between Atg5flox/flox-CD19-

Cre+ and Atg5flox/flox-CD19-Cre- samples in the linear range of the dilution series (1/200 – 

1/20 dilution).  n = 9 for Atg5flox/flox-CD19-Cre mice, n = 4 for Rag1-/- mice. 
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Materials and Methods 

Mice  ATG5-/- and ATG5flox/flox mice have been previously described27,13.  C.129P2-

Cd19tm1(cre)Cgn/J (CD19-Cre) mice,  B6.129S7-Rag1tm1Mom/J (Rag1-/-) mice, and 

B6.SJL-Ptprca Pepcb/BoyJ (CD45.1) mice were obtained from The Jackson Laboratory 

(Bar Harbor, ME).  In most experiments we compared ATG5flox/flox-CD19-Cre+ to CD19-

Cre mice and littermate ATG5flox/flox-CD19-Cre- mice.  Mice were genotyped as 

described13, with the Atg5 gene detected with the primers exon3-1 

(GAATATGAAGGCACACCCCTGAAATG), short2 (GTACTGCATAATGGTTTAAC 

TCTTGC), and check2 (ACAACGTCGAGCACAGCTGCGCAAGG) using PCR [94°C 

(4 min); 30 cycles of 94°C (30sec), 60°C (30sec), 72°C (1 min); 72°C (5min)].   The Cre 

gene was detected with primers cre1 (AGGTTCGTTCACTCATGGA) and cre2 

(TCGACCAGTTTAGTTACCC) using PCR [94°C (4 min); 25 cycles of 94°C (30sec), 

60°C (30sec), 72°C (1 min); 72°C (5min)].  CD45.1 chimeric mice were generated as 

described12.  For the generation of Rag1-/- chimeric mice, day 15.5-18.5 Atg5+/- x Atg5+/- 

fetuses were harvested and genotyped with the REDExtract-N-AmpTM Tissue PCR Kit 

(Sigma-Aldrich, St. Louis, MO).  Sublethally irradiated (600 rad) Rag1-/- hosts were 

injected with cells from one-fourth of a fetal liver.  Chimeric mice were analyzed at least 

6 weeks after reconstitution.  All animal studies were performed in accordance with 

institutional policies for animal care and usage at the Washington University School of 

Medicine. 
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Flow cytometry  Single-cell suspensions were prepared from the bone marrow, lymph 

nodes, spleens, and thymi while peritoneal cells were harvested by lavage28.  Cells were 

stained and data collected on a FACSCalibur cytometer (BD Biosciences, San Jose, CA) 

for analysis using FlowJo software (TreeStar, Ashland, OR).  Antibodies against IgM, 

IgD, TCRβ, B220, BP-1, CD4, CD5, CD8, CD19, CD21, CD23, CD24, and CD43 were 

from BD Biosciences (San Jose, CA), eBioscience (San Diego, CA), or Southern Biotech 

(Birmingham, AL).  Biotinylated antibodies were detected with streptavidin-PE-Cy7 or 

streptavidin-APC (BD Biosciences, San Jose, CA).  Annexin-V and 7-AAD staining (BD 

Biosciences, San Jose, CA) was performed as per the manufacturer’s instructions except 

that DMEM was used in place of 1x Binding Buffer.  All samples were gated by forward 

and side scatter on lymphocyte populations for analysis. 

 

Immunoblots  B cells were purified using CD19-conjugated microbeads (Miltenyi, 

Auburn, CA).  CD19+ purified B cells and CD19- cells that did not bind to CD19-

conjugated magnetic beads were lysed in 2x Laemmli buffer and subjected to 

immunoblotting using antibodies specific for ATG518 (gift of N. Mizushima, Toyko 

Medical and Dental University, Tokyo, Japan) (1:1000 dilution),  LC3 (Novus 

Biologicals, Littleton, CO) (1:3000 dilution), and β-actin (Sigma-Aldrich, St. Louis, MO) 

(1:5000 dilution).  Immunoblots were developed with HRP-conjugated secondary 

antibodies (Jackson Immunoreseach Laboratories, West Grove, PA) (1:10,000 dilution) 

and visualized by chemiluminescence (Amersham Biosciences, Pittsburgh, PA). 
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Enzyme-linked immunosorbent assay (ELISA) Atg5flox/flox-CD19-Cre+, 

Atg5flox/flox-CD19-Cre-, and Rag1-/- mice were bled by cardiac puncture.  96-well 

Immulon 2HB flat-bottom plates (Fisher Scientific, Pittsburgh, PA) were coated with 

10ug/mL of phosphocholine-BSA (Biosearch Technologies, Novato, CA) or 3% bovine 

serum albumin (BSA) overnight at 4°C.  Wells were blocked with 3% BSA (Sigma, St. 

Louis, MO) for at least 1 hour at room temperature then washed.  Serum was plated in 

triplicate at dilutions starting at 1:10 or 1:20 and left for 1 hour at room temperature.  

Plates were washed and 1:1000 anti-IgM antibody conjugated to HRP (Southern Biotech, 

Birmingham, AL) was added for 1 hour at room temperature.  After a final wash, ABTS 

(2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) substrate with 1:1000 dilution of 

hydrogen peroxide was added to each well for 15 minutes before the reaction was 

stopped by 0.2N phosphoric acid.  Plates were read at 405nm. 

 

B cell proliferation  Single cell suspensions of red blood cell-lysed splenocytes were 

made from Atg5flox/flox-CD19-Cre+ and Atg5flox/flox-CD19-Cre- mice.  Cells were 

incubated with 1µM CFSE (Invitrogen, Carlsbad, CA) for 15 minutes and washed.  106 

cells were plated in 24-well plates with the indicated concentrations of LPS (Sigma, St. 

Louis, MO).  After 72-84 hours the cells were stained with anti-B220 antibody (BD 

Biosciences, San Jose, CA) and analyzed by flow cytometry. 
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Statistical analyses  All data were analyzed with Prism software (GraphPad, San 

Diego, CA) using two-tailed unpaired t tests.  Error bars represent SEM.   
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CHAPTER 3 

Autophagy Genes are Critical for Homeostasis and 

Mitochondrial Maintenance in Primary T Lymphocytes 

 

 

Portions of this chapter are excerpted from: 

Stephenson LM, Miller BC, Ng A, Eisenberg J, Zhao Z, Cadwell K, Graham DB, 

Mizushima NN, Xavier R, Virgin HW, Swat W. Identification of Atg5-dependent 

transcriptional changes and increases in mitochondrial mass in Atg5-deficient T 

lymphocytes.  Autophagy. 2009 Jul;5(5):625-35.  
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Abstract 

 Autophagy is implicated in many functions of mammalian cells such as organelle 

recycling, cell survival, and differentiation, and is essential for the maintenance of T and 

B lymphocytes.  Here, we demonstrate that autophagy is a constitutive process during T 

cell development.  Deletion of the essential autophagy genes Atg5 or Atg7 in T cells 

resulted in decreased thymocyte and peripheral T cell numbers, and Atg5-deficient 

peripheral T cells had an increase in a marker of cell death.  We employed functional-

genetic and integrative computational analyses to elucidate specific functions of Atg5 in 

developing T-lineage lymphocytes.  Our whole-genome transcriptional profiling 

identified a set of 699 genes differentially expressed in Atg5-deficient and Atg5-sufficient 

thymocytes (Atg5-dependent gene set).  Strikingly, the Atg5-dependent gene set was 

dramatically enriched in genes encoding proteins associated with the mitochondrion.  In 

support of a role for autophagy in mitochondrial maintenance in T lineage cells, the 

deletion of Atg5 led to increased mitochondrial mass in peripheral T cells.  We also 

observed a correlation between mitochondrial mass and Annexin-V staining in peripheral 

T cells.  We propose that autophagy is critical for mitochondrial maintenance and T cell 

survival.  We speculate that, similar to its role in yeast or mammalian liver cells, 

autophagy is required in T cells for the removal of damaged or aging mitochondria which 

contribute to cell death in autophagy-deficient T cells.  
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Introduction 

 In Chapter 2 we described the roles of Atg5 in B lymphocyte development and 

homeostasis.  Given our interest in the cell-type specificity of autophagy genes, we next 

chose to study these genes in T lymphocytes, a closely related cell lineage.  The functions 

of autophagy and autophagy genes are not well understand in T lymphocytes, with 

studies reporting both a pro-survival and pro-death role for autophagy1,2,3,4,5.   

 Soon after we initiated these studies, Pua et al. published the first report of the 

role of the essential autophagy gene Atg5 in primary T lymphocytes5.  They demonstrate 

that Atg5 is essential for T cell survival and proliferation using reconstitution of irradiated 

hosts with Atg5-/- fetal liver-derived stem cells.  Total thymocyte numbers are reduced in 

these chimeras.  There are striking decreases in CD4+ and CD8+ T cell numbers in 

peripheral lymphoid tissues, with an increase in the percentage of Annexin-V+ cells.  

Finally, Atg5-/- T lymphocytes have a dramatically reduced ability to proliferate after 

TCR stimulation5.  We decided to confirm their findings and explore some of the 

mechanistic questions raised by the phenotype that they reported.  First, is the observed 

phenotype due to a non-autophagy function of Atg5?  Second, are there abnormalities in 

Atg5-deficient T cells that might suggest a reason why there are fewer cells in vivo? 

 Autophagy is important for the degradation of damaged and excess 

mitochondria6,7,8,9.  Mitochondria have a critical role in T cell survival and activation, 

functioning in activation-induced signaling pathways and providing ATP and metabolites 

important for growth of the cell10 (reviewed in 11).  Mitochondria also contribute to T cell 
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death.  Mitochondria are an important source of reactive oxygen species (ROS), which 

sensitize T cells to AICD and ACAD12,13,14,15,16.  In addition, the balance of pro- and anti-

apoptotic Bcl-2 family members regulates release of the pro-apoptotic factor cytochrome 

c from mitochondria, initiating cell death (reviewed in 17).  Interestingly, an increase in 

mitochondrial mass in T cells has been associated with increased sensitivity to apoptosis 

in HIV-specific CD8+ T cells18.  Because of the function of autophagy in the regulation 

of mitochondria and the importance of mitochondria in T cell survival and death, we 

hypothesized that mitochondria may accumulate in Atg5-deficient T lymphocytes and 

contribute to T cell death. 

  Here we demonstrate that autophagy is a constitutive process in developing and 

mature T cells and that the essential autophagy genes Atg5 and Atg7 are required for 

thymocyte and peripheral T cell homeostasis.  In collaboration with Dr. Ramnik Xavier's 

group, we identify a thymocyte-specific transcriptional signature associated with 

deficiency of Atg5 in T cells and provide evidence that Atg5 is required for regulating 

mitochondrial mass in peripheral T cells.  Finally, we find a correlation between 

increased mitochondrial mass and increased Annexin-V staining in T cells, suggesting 

that abnormal mitochondria contribute to cell death in Atg5-deficient T cells. 
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Results 

Atg5 and Atg7 are required for the maintenance of developing and 

mature T lymphocytes 

 As a first step to understand the role of autophagy in T cells, we measured the 

levels of LC3-II as one marker of autophagic activity in developing and mature T lineage 

cells.  We sorted thymic and peripheral T lineage subsets and probed the lysates with 

anti-LC3 antibodies.  We observed robust LC3-II bands in all T cell subsets, indicating 

that autophagy is an active process in all stages of T cell development (Fig. 3-1A).  To 

confirm that autophagy is an ongoing process in T cells, we cultured thymoyctes for 4 

hours in the presence of increasing concentrations of chloroquine.  Chloroquine results in 

an accumulation of LC3-II in actively autophagic cells19,20.  As expected, LC3-II levels 

increased in a chloroquine dose-dependent manner (Fig. 3-1B), indicating that autophagy 

was ongoing in these cells.  

 Pua et al. reported that the essential autophagy gene Atg5 is essential for normal T 

cell homeostasis5, however the mechanism by which Atg5 controls T cell survival and/or 

proliferation remains unknown.  To address these issues, we generated two different 

mouse models to delete Atg5 in T cells.  First, we used recombination activating gene 

(Rag)-1-deficient complementation21,5,22 with E15.5-18.5 fetal liver cells from Atg5-/- or 

Atg5+/+ embryos23.  As an alternative approach, we generated Atg5-deficient T cells by 

breeding mice with conditionally targeted (floxed) Atg524 alleles to Lck-Cre transgenics 
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(Atg5flox/flox-Lck-Cre+).  In these experiments, Atg5flox/flox-Lck-Cre- mice were used as 

controls.   

 We first confirmed that T cells from these two mouse systems lack the ATG5 

protein.  Thymocyte lysates from Atg5-/- chimeras showed no detectable ATG5 protein 

expression (Fig. 3-2A).  We also were unable to detect LC3-II (Fig. 3-2A), indicating that 

classical macroautophagy is abrogated in the absence of ATG5 in T cells.  ATG5 levels 

were also reduced in Atg5flox/flox-Lck-Cre+ thymocytes (Fig. 3-2B); however residual 

levels of the protein were still detectable upon overexposure of the membrane, in spite of 

efficient recombination of the Atg5flox locus in thymocytes from Atg5flox/flox-Lck-Cre+ 

mice (data not shown).   

 We next analyzed the in vivo phenotype of Atg5-deficient T cells.  In agreement 

with the previously published report5, thymus cellularity of Atg5-deficient chimeric mice 

analyzed between 6 and 13 weeks post-fetal liver transfer was decreased approximately 

2.4-fold compared to controls (Table 3-1), although there were no discernable alterations 

in the percentages of CD4- CD8- double negative, CD4+ CD8+ double positive, CD4+ 

single positive, and CD8+ single positive cells (Fig. 3-3).  Moreover, both the 

percentages and total numbers of CD4+ and CD8+ T cells in the lymph nodes and 

spleens of Atg5-/- chimeric mice were decreased compared to Atg5+/+ chimeras (Fig. 3-3 

and Table 3-1).  A similar reduction in total numbers of thymocytes and peripheral T 

cells was observed in Atg5flox/flox-Lck-Cre+ mice compared to littermate controls (Fig. 3-3 
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and Table 3-1).  We conclude that the decrease in T cell numbers is a result of T cell-

intrinsic effects of the loss of Atg5. 

 It is possible that other functions of Atg5 apart from its role in autophagy may 

contribute to the phenotypic abnormalities of Atg5-deficient T cells25,26,27.  To address 

this issue, we deleted Atg7, another essential autophagy gene, from T cells using a 

conditional knockout approach similar to the one described above.  We bred mice with 

conditionally targeted (floxed) Atg728 alleles to Lck-Cre transgenics (Atg7flox/flox-Lck-

Cre+).  We observed reduced expression of ATG7 in Atg7flox/flox-Lck-Cre+ thymocytes 

by immunoblot analysis (Fig. 3-2C).  Similar to Atg5-/- chimeras and Atg5flox/flox-Lck-

Cre+ mice, total thymocyte and peripheral CD4+ and CD8+ T cell numbers were also 

reduced in Atg7flox/flox-Lck-Cre+ mice (Fig. 3-3 and Table 3-1).  Together these data 

suggest that autophagy is required for the maintenance of both developing and peripheral 

T lymphocytes. 

 

A role for Atg5 in mitochondrial maintenance and cell survival revealed 

by integrative computational analysis of whole-genome datasets   

 To obtain further insights into the functional pathways and networks through 

which Atg5 maintains the T cell compartment, we developed an analytical framework 

that integrates gene expression analyses of wild-type and Atg5-/- thymocytes from 

chimeric mice with diverse information extracted from various genomic screens and 
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databases including Gene Ontology (GO)29 for functional classification, HPRD30 for 

molecular interactions, HomoloGene31 for homology mapping of genes, and NCBI 

PubMed and MILANO for literature co-citation analyses31,32.  Whole-genome 

transcriptional profiling of Atg5-/- and Atg5+/+ thymocytes identified a set of 699 

differentially expressed genes (of which 259 genes were up-regulated and 440 down-

regulated in Atg5-/- thymocytes, as compared to wild-type thymocytes) (Fig. 3-4), 

permitting us to explore functional clusters within the set of differentially expressed 

genes and identify putative pathways and networks relevant to Atg5 function in the T 

lymphoid lineage.   

 To ascertain whether the Atg5-dependent gene set was statistically enriched for 

genes implicated in subcellular compartment-associated processes, we first analyzed their 

annotations in Gene Ontology (GO) cellular component categories.  Strikingly, the Atg5-

dependent gene set was dramatically enriched in genes encoding proteins associated with 

the mitochondrion (p=3.7x10-4) and nucleus (p=1.6x10-4) (Fig. 3-5).  The mitochondrion 

GO signature was particularly interesting given the suggested association between 

autophagy and mitochondrial maintenance.  We identified 64 mitochondrial-associated 

genes in the Atg5-dependent gene set (Fig. 3-5) from GO annotation and a recent 

comprehensive genome-wide survey of genes participating in mitochondrial-associated 

processes33.  This Atg5-dependent gene set GO signature strongly suggests a role for Atg5 

in mitochondrial function and/or maintenance.   

   As an additional computational strategy to elucidate potential connections of Atg5 

with mitochondrial function, we projected the Atg5-dependent gene set onto human 
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orthologs and generated a human protein-protein interaction network (Fig. 3-6).  The 

network was built by interrogating data from the HPRD database which contains protein-

protein interactions from the literature and from multiple large-scale interactome datasets.  

We next intersected this network analysis with GO cellular compartment annotations.  

This approach yielded mitochondrion-anchored subnetworks which we then extended by 

an additional degree of separation, thereby including non-Atg5-dependent gene set 

proteins that interacted with mitochondrion-associated Atg5-dependent gene set-encoded 

products.  We observed that many of these interacting partners are also annotated as 

mitochondrial related, further supporting the involvement of an enriched subset of Atg5-

dependent gene set in mitochondrial processes.   

 We next performed a literature (PubMed) co-citation analysis incorporating 

search terms such as ‘mitochondrial biogenesis’, ‘mitochondrial permeability’ and 

‘electron transport’ to gain additional insights into various mitochondrial processes or 

events in which the Atg5-dependent gene set might be involved (Fig. 3-7A).  We 

extended this analysis to include other terms associated with various general cellular 

processes (e.g. endocytosis) and also events specific to T lineage cells and immune 

function (Fig. 3-7B).  Notably, this analysis revealed described associations in the 

generation of ROS, lymphocyte activation, and lymphocyte proliferation (Fig. 3-7B) in 

the context of potential function of Atg5 in T lineage cells.  Our analyses also revealed a 

connection of Atg5 with cellular processes in which autophagy genes have been shown to 

function, such as phagocytosis, endocytosis, and lysosome formation/function26,34,35 (Fig. 

3-7B).  Finally, we present a diagrammatic summary of the key mitochondrial-associated 
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Atg5-dependent genes in Fig. 3-8, assembled from our literature co-citation analysis, gene 

ontology annotations, network data, and pathway information.  Taken together, these 

transcriptional profiling and computational analyses of orthogonal data, ranging from 

gene co-regulation to protein-protein interaction network with pathway analysis, suggest 

a role for Atg5 in mitochondrial maintenance and function.   

 

Atg5-deficient T cells have a defect in proliferation and increased 

Annexin-V staining  

 Given these transcriptional alterations in Atg5-deficient T cells, we further 

characterized the T cells that develop in the absence of Atg5.  The expression of the 

maturation marker CD24 (HSA) was similar between wild-type and Atg5-deficient T 

cells, indicating that peripheral Atg5-deficient T cells were phenotypically mature.  

Strikingly, however, we observed an alteration in the expression of markers associated 

with activation/memory/homeostatic expansion, CD44 and CD62L (Fig. 3-9A and 3-9B).  

While the majority of wild-type lymph node and splenic T cells were CD62Lhigh CD44low, 

Atg5-deficient T cells were predominantly CD44high and CD62Llow.  Peripheral T cells 

from Atg7flox/flox-Lck-Cre+ mice had a similar expression profile for CD44 and CD62L 

(data not shown).  Increased cell surface expression of CD44 and decreased expression of 

CD62L have been reported in T cells undergoing homeostatic expansion36,37,38,39,40.  

Importantly, expression levels of T cell antigen receptor did not appear altered in the 

Atg5-deficient T cells, nor were there significant differences in the expression of the early 
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activation markers CD25 and CD69 (Fig. 3-9A), consistent with the hypothesis that Atg5-

deficient T cells may be responding to homeostatic rather than antigen-induced expansion 

signals41. 

 T cells in lymphopenic mice undergo multiple rounds of proliferation in order to 

reach peripheral homeostasis42.  The decreased number of peripheral T cells together with 

a surface phenotype indicative of homeostatic expansion suggest that Atg5-deficient T 

cells may be unable to populate the peripheral lymphoid organs, possibly due to survival 

defects, resulting in a compensatory proliferative response.  Consistent with this view, we 

found that a higher percentage of freshly isolated T cells from Atg5-/- chimeras stained 

with Annexin-V compared with T cells from Atg5+/+ chimeras.  The proportion of 

Annexin-V+ cells was 1.5- to 2-fold higher in CD62Llow Atg5-deficient T cells, and 3- to 

7-fold higher in CD62Lhigh Atg5-deficient T cells (Fig. 3-9C).  Annexin-V staining was 

also elevated in CD62Lhigh populations of Atg5flox/flox-Lck-Cre+ T cells (Fig. 3-9D).  

These data suggest that Atg5 is required for the survival of T lymphocytes.   

 Consistent with the results of Pua et al.5, Atg5-deficient T cells exhibited a severe 

defect in TCR-induced proliferation (Fig. 3-10).  We purified CD62Lhigh T lymphocytes 

from control and Atg5-/- chimeras, labeled them with CFSE, stimulated them with anti-

CD3 and anti-CD28 antibodies, and analyzed proliferation at 72 hours.  We also 

measured blast formation using T cells stimulated with anti-CD3 and anti-CD28 

antibodies for 40 hours.  We observed a severe reduction in proliferation and the ability 
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to form blasts in Atg5-deficient T cell cultures compared to controls (Fig. 3-10).  We 

conclude that Atg5 is important for T cell proliferation after antigen receptor stimulation.  

  

Increased mitochondrial mass in Atg5-deficient T lymphocytes 

 Our transcriptional profiling analyses of Atg5-deficient T cells raised the 

possibility that the defects in T cell homeostasis observed in the absence of Atg5 are due 

to impaired mitochondrial function.  To determine if mitochondria were normal in the 

absence of Atg5, we analyzed mitochondrial mass/volume in single cells using the vital 

dye Mitotracker green, a mitochondrial specific dye.  We observed an increase in 

Mitotracker staining in Atg5-deficient splenic CD4+ and CD8+ T cells from both Atg5-/- 

chimeric and Atg5flox/flox-Lck-Cre+ mice relative to controls (Fig. 3-11A and data not 

shown).  The Mitotracker staining of thymocytes from Atg5-/- chimeras was similar to 

wild-type cells, suggesting that the increase in mitochondrial mass occurred as the T cells 

aged (data not shown).   

 We next asked if alterations in mitochondrial mass correlated with the decrease in 

cell survival in Atg5-deficient T cells.  We costained splenocytes from Atg5flox/flox-Lck-

Cre+ and Atg5flox/flox-Lck-Cre- mice with Mitotracker green and Annexin-V.  CD4+ and 

CD8+ T cells that were Mitotrackerhigh had a significantly higher percentage of cells that 

were Annexin-V+ compared with Mitotrackerlow T cells (Fig. 3-11B).  Although this 

trend was apparent in both Atg5flox/flox-Lck-Cre+ and Atg5flox/flox-Lck-Cre- mice, there was 

an increase of approximately 15% in the percentage of Annexin-V+ cells within the 
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Mitotrackerhigh population in Atg5flox/flox-Lck-Cre+ mice (Fig 3-11B).  This data shows 

that mitochondrial mass correlates with Annexin-V staining in CD4+ and CD8+ T cells, 

suggesting that the increase in mitochondrial mass in Atg5-deficient T cells correlates 

with increased death in these cells. 
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Discussion 

 The data presented here indicates that autophagy is an active process during all 

stages of T lymphocyte development and that deletion of the essential autophagy genes 

Atg5 and Atg7 results in profound abnormalities in T cell maintenance.  In addition, we 

showed that Atg5 is important for T cell proliferation in vitro.  Transcriptional profiling 

of Atg5-deficient thymocytes suggests abnormalities in mitochondria in the absence of 

this autophagy gene.  This hypothesis is supported by studies demonstrating that 

peripheral Atg5-deficient T cells have an increase in mitochondrial mass.  Mitochondrial 

mass is correlated with Annexin-V staining in these cells, suggesting a link between 

mitochondrial abnormalities and Atg5-deficient T cell death.  Given our gene chip and 

mitochondrial mass results, we propose that autophagy is required in T lymphocytes for 

normal mitochondrial maintenance.  

 Although dramatic mitochondria-related transcriptional changes were observed in 

thymocytes, we did not observe an increase in mitochondrial mass in Atg5-deficient 

thymocytes, but only in peripheral Atg5-deficient T cells.  Despite the two-fold decrease 

in thymus cellularity in Atg5-/- chimeras, we also did not observe an increase in Annexin-

V staining in the thymus, consistent with previously published results5.  We hypothesize 

that we are unable to detect mitochondrial abnormalities because the cells have not yet 

accumulated sufficient damaged mitochondria to die.  Alternatively, the actively 

phagocytic cells of the thymus responsible for the normal elimination of thymocytes that 
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have failed the selection process43 may be quickly removing those Atg5-deficient 

thymocytes that have accumulated damaged mitochondria.   

 Another group has also recently reported that autophagy genes are important for 

mitochondrial maintenance in T cells47.  Pua et al. studied Atg7-deficient T cells and 

found that, similar to Atg5-deficient cells, these cells have a reduction in peripheral T cell 

numbers with an increase in markers of apoptosis.  Both Atg7 and Atg5-deficient 

peripheral T cells have an increase in mitochondrial mass, which the authors suggest is 

due to an inability of the cells to degrade mitochondria as they mature and leave the 

thymus.  Atg7-deficient cells also have an abnormal accumulation of ROS and 

upregulated expression of Bcl-2 and Bak47.  This report confirms our mitochondrial 

results in Atg5-deficient T cells using Atg7-deficient T cells, suggesting that this 

phenotype is not due to a non-autophagy function of Atg5.  They also extend our findings 

to show that the accumulation of mitochondria is associated with alterations in ROS and 

Bcl-2 family member protein expression, both of which could contribute to increased T 

cell death48,12,13,14,15 (reviewed in 49,50). 

 We utilized three different approaches in this study to address the importance of 

autophagy genes in T lineage cells.  In the first approach, Rag1-/- complementation, 

analysis of Atg5-/- T cells is potentially complicated due to the decrease in viability of 

Atg5-/- chimeras (data not shown) and the deletion of Atg5 in other hematopoietic cell 

types in addition to T cells, resulting in defects in other cell lineages21.  By using a 

conditional knockout approach we ascertained that Atg5 is required within T cells for 
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their maintenance in vivo.  Our immunoblot results suggest that deletion of the Atg5flox 

alleles may be incomplete in some cells or that the ATG5 protein may be retained for a 

significant time after gene deletion.  Despite these caveats, given that the in vivo 

phenotypes of Atg5-/-, Atg5flox/flox-Lck-Cre+, and Atg7flox/flox-Lck-Cre+ T cells are similar, 

it is likely that these phenotypes are due to the lack of autophagy in T cells, and not due 

to non-autophagy functions of Atg525 or Atg7.  However, since ATG7 is essential for the 

conjugation of ATG5 to ATG1245,46, it is possible that a non-autophagy role of the 

ATG5-12 conjugate is responsible.  Further studies would be necessary to distinguish 

between these possibilities.   

 It is interesting that the transcriptional signature observed here for Atg5-deficient 

thymocytes is quite distinct from the signature observed in Paneth cells that express 

lower than normal levels of ATG16L144.  This suggests that the transcriptional response 

to autophagy gene-deficiency may differ depending on the primary cell type involved or 

the specific gene affected.  These differences may help to explain the different functions 

of autophagy genes in closely related cell lineages21. 

   

  

. 
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Table 3-1.  Loss of T cells in Atg5-/-, Atg5flox/flox-Lck-Cre+, and Atg7flox/flox-

Lck-Cre+ mice 

Data are mean ± SEM and represent multiples of 106 cells.  The number of mice per 

group is indicated in parentheses.  Chimera mice were analyzed between 6 and 13 weeks 

post-reconstitution.  Atg5flox/flox-Lck-Cre+ and Atg5flox/flox-Lck-Cre- mice were analyzed 

between 6 and 13 weeks of age.  Atg7flox/flox-Lck-Cre+ and Atg7flox/flox-Lck-Cre- mice 

were analyzed between 8 and 14 weeks of age. 
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Figure 3-1.  Constitutive autophagy in all subsets of wild-type T cells  

(A) Lysates from FACS-sorted C57BL/6 thymocytes and MACS-bead sorted peripheral 

T cells were probed with antibodies against LC3 and β-actin.  Representative blot from 4 

independent experiments shown.  (B) Lysates from C57BL/6 thymocytes cultured for 4 

hours with the indicated concentrations of chloroquine were probed with antibodies 

against LC3 and β-actin.  Representative blot from 3 independent experiments shown. 
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Figure 3-2.  Deletion of ATG5 in Atg5-/- and Atg5flox/flox-Lck-Cre+ 

thymocytes and ATG7 in Atg7flox/flox-Lck-Cre+ thymocytes 

(A) Lysates from Atg5+/+ or Atg5-/- chimeras or C57BL/6 control thymocytes were 

probed with antibodies against ATG5, LC3, or β-actin.  Representative blot from 2 

independent experiments shown.  (B) Lysates from Atg5+/+ and Atg5-/- SV40-transformed 

murine embryonic fibroblasts and from Atg5flox/flox-Lck-Cre+ and Atg5flox/flox-Lck-Cre- 

thymocytes were probed with antibodies against ATG5 and β-actin.  Representative blot 

from 3 independent experiments shown.  (C) Lysates from Atg7flox/flox-Lck-Cre+ and 

Atg7flox/flox-Lck-Cre- thymocytes were probed with antibodies against ATG7 and β-actin.  

Representative blot from 2 independent experiments shown.   
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Figure 3-3.  Loss of T cells in Atg5-/-,  Atg5flox/flox-Lck-Cre+, and 

Atg7flox/flox-Lck-Cre+ mice 

Single-cell suspensions of thymocytes, splenocytes, and lymph node cells were analyzed 

by flow cytometry as described in Materials and Methods.  Cells were gated by forward 

and side scatter on lymphocyte populations.  Shown is one representative experiment 

from n ≥ 3 experiments, with at least 7 mice of each genotype analyzed. 
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Figure 3-4.  Atg5 is required for the proper 

regulation of 699 genes in thymocytes 

Microarray analysis showing genes differentially 

expressed (p<0.05), of which 259 genes were induced and 

440 down-regulated in Atg5-/- thymocytes compared to 

wild-type thymocytes.  Expression values for each 

probeset were z-score-transformed across all arrays and 

their intensities above and below the mean are represented 

on the heatmap by red and green colors respectively, as 

shown on the color bar.  Genes were hierarchically 

clustered using Cluster 3.0 and visualized with Java 

TreeView.  
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Figure 3-5.  Atg5 is required for the proper regulation of mitochondrial-

associated genes 

(A) Differentially expressed genes were classified into gene ontology (GO) cellular 

component categories. Categories assigned with at least 3 genes are displayed in the pie 

A
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chart, with enrichment p-values shown in 

brackets alongside each category.  The bar 

chart displays enrichment p-values as 

negative log-transformed values, which 

reveals a dramatic enrichment of 

mitochondria- and the nucleus-associated 

genes.  (B) 64 differentially expressed genes 

that fall into the mitochondrion GO category 

are displayed by heatmap, prepared as 

described in Fig 3-4.  

B
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Figure 3-6.  Construction of a human protein-protein interaction 

network 

Differentially expressed genes were mapped onto human orthologs for which interaction 

data was available. Circles representing up-regulated components are colored red and 

down-regulated components green. Solid lines denote protein-protein interactions. 

Mitochondrion-anchored subnetworks (highlighted by the grey region) emerged when 

extending connections by an additional degree of separation, capturing components of 

interest (blue circles) in the functional neighborhood of mitochondrial-related genes that 

were found to be differentially expressed.  Network clusters containing connections 

between at least 3 components are displayed. 
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 Figure 3-7.  Matrices generated from 

literature co-citation analysis of 

differentially expressed genes and citation 

terms associated with mitochondrial and 

cellular functions 

(A) Mitochondrial functions and (B) general cellular 

processes or specific T-lineage immune functions 

displayed as a heatmap.  The intensity of red on the 

heatmap denotes the extent to which each gene is 

co-cited with each specific term in the PubMed 

database. 

A

B
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Figure 3-8.  Diagrammatic mitochondrion representation showing 

important differentially-expressed gene products participating in 

mitochondria-associated processes 
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Red and green ovals denote up- and down-regulated components in Atg5-/- thymocytes, 

respectively.  Functional associations with biological processes are represented by dashed 

lines. 
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Figure 3-9.  A higher percentage of T cells are CD44high, CD62Llow, and 

Annexin-V+ in Atg5-/- chimeras and Atg5flox/flox-Lck-Cre+ mice compared 

with controls  
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(A-B) Flow cytometric analysis of lymph node T cells from Atg5+/+ or Atg5-/- chimeric 

mice (A) or Atg5flox/flox-Lck-Cre- and Atg5flox/flox-Lck-Cre+ mice (B).  Cells were gated by 

forward and side scatter for lymphocytes, then gated on CD4+ or CD8+ cells.  One 

representative experiment shown of at least five independent experiments.  (C-D) Lymph 

node T cells from Atg5+/+ or Atg5-/- chimeric mice (C) or Atg5flox/flox-Lck-Cre- and 

Atg5flox/flox-Lck-Cre+ mice (D) were stained with Annexin-V and antibodies against CD4, 

CD8, and CD62L.  Cells were gated by forward and side scatter for lymphocytes, then 

gated on CD4+ or CD8+ cells.  Data pooled from at least four independent experiments.  

(* p < 0.05, ** p < 0.005, *** p < 0.0005, n.s. = not statistically significant) 
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Figure 3-10.  Atg5-deficient T lymphocytes have a defect in proliferation 

Purified CD62Lhigh T cells from Atg5+/+ or Atg5-/- chimeric mice were either untreated or 

stimulated with anti-CD3 (1μg/mL) and anti-CD28 (1μg/mL) and analyzed 40 hours later 

for T cell blasts (left panels) or loaded with CFSE, stimulated as above, and analyzed 72 

hours later (right panel).  Shown is one representative experiment of three. 
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Figure 3-11.  Atg5-deficient T lymphocytes have an increase in 

mitochondrial mass 

(A) Splenocytes from Atg5flox/flox-Lck-Cre- and Atg5flox/flox-Lck-Cre+ mice were loaded 

with MitoTracker green, stained with antibodies against CD4 or CD8, and analyzed by 

flow cytometry.  Analysis was performed on CD4+ or CD8+ splenocytes without gating 

by forward and side scatter.  Shown are representative FACS plots of at least fifteen mice 
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of each genotype and the quantification of the mean fluorescence intensity (MFI) of 

Mitotracker staining from one of three independent experiments.  (B) Splenocytes from 

Atg5flox/flox-Lck-Cre- and Atg5flox/flox-Lck-Cre+ mice were stained with CD4, CD8, 

Mitotracker green, and Annexin-V.  Representative FACS plots and quantification of the 

percentage of Annexin-V+ cells from the Mitotrackerhigh and Mitotrackerlow gates are 

shown.  Analysis was performed on CD4+ or CD8+ splenocytes without gating by 

forward and side scatter.  Data pooled from three independent experiments.  (* p < 0.05, 

** p < 0.005, *** p < 0.0005, n.s. = not statistically significant) 
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Materials and Methods 

Mice and cells  The generation of Atg5-/-, Atg5flox/flox, and Atg7flox/flox mice has been 

previously described24,23,28.  Chimeric mice were generated by reconstituting sublethally 

irradiated B6.129S7‑Rag1tm1Mom/J (Rag1-/-, The Jackson Laboratory, #002216) mice with 

Atg5+/+ or Atg5-/- fetal liver cells, as previously described21.  Atg5flox/flox and Atg7flox/flox 

were bred to Lck-Cre (C57BL/6NTac-TgN(Lck-Cre)) transgenic mice (Taconic, 

#004197, Hudson, NY).  Mice were maintained at Washington University School of 

Medicine in accordance with institutional policies for animal care and usage.  Atg5-/- and 

Atg5+/+ embryonic fibroblasts were generated from day 13.5 embryos.  To establish 

immortalized cell lines, 106 cells were transformed with 1µg of pEF321-T, an SV40 large 

T antigen expression vector (a gift from T. Hansen), by the FuGENE HD transfection 

reagent (Roche, Basel, Switzerland) according to the manufacturer’s instructions. 

 

Genotyping  Genotyping of the mice was performed as described24,28, with the Cre 

gene detected with primers cre1 (AGGTTCGTTCACTCATGGA) and cre2 

(TCGACCAGTTTAGTTACCC) using PCR [94°C(4 min); 25 cycles of 94°C (30 sec), 

60°C (30 sec), 72°C (1 min); 72°C (5 min)].  The Atg5 gene was detected with the 

primers exon3‑1 (GAATATGAAGGCACACCCCTGAAATG), short2 

(GTACTGCATAATGGTTTAACTCTTGC), and check2 (ACAACGTCGAGCA 

CAGCTGCGCAAGG) using PCR [94°C (4 min); 30 cycles of 94°C (30 sec), 60°C (30 

sec), 72°C (1 min); 72°C (5 min)].  The same PCR program was used with the primers 



99 
 

short2, check2, and 5L2 (CAGGGAATGGTGTCTCCCAC) to check for the Atg5flox and 

deleted Atg5flox alleles in thymocytes from Atg5flox/flox Lck-Cre+ and Atg5flox/flox Lck-Cre- 

mice.  The Atg7flox allele was detected with primers Hind-Fw 

(TGGCTGCTACTTCTGCAATGATGT) and Pst-Rv 

(CAGGACAGAGACCATCAGCTCCAC) using PCR [94°C (5min); 30 cycles of 94°C 

(20 sec), 68°C (30 sec), 72°C (90 sec); 72°C (10 min)].  Confirmation of the wild type 

Atg7 locus was done with primers Ex14 F (TCTCCCAAGACAAGACAGGGTGAA) 

and Ex14 R (AAGCCAAAGGAAACCAAGGGAGTG) using PCR [94°C (5min); 35 

cycles of 94°C (20 sec), 60°C (15 sec), 72°C (60 sec); 72°C (10 min)]. 

 

Stimulation and proliferation assays  Single cell suspensions from the spleens 

and lymph nodes of chimeric mice were first B cell depleted using negative selection 

with anti-B220-Dynal beads (Invitrogen, Carlsbad, CA), followed by positive selection 

for CD62Lhigh lymphocytes.  Briefly, cells were incubated with biotin-conjugated anti-

CD62L antibody (Caltag, Carlsbad, CA) followed by anti-biotin MACs beads (Miltenyi 

Biotec, Auburn, CA) and isolated according to the manufacturer’s instructions.  

CD62Lhigh purities were greater than 90%.  Lymph node T cells were plated at 1x106/mL 

in complete media (DMEM (Gibco, Carlsbad, CA) plus 10% fetal calf serum (FCS), 

100Units/mL penicillin, 100ug/mL streptomycin, 1mM sodium pyruvate, 2mM L-

glutamine, 1x non-essential amino acids (Gibco, Carlsbad, CA) and 57uM β-

mercaptoethanol).  Cells were stimulated with 1.0 μg/mL anti-CD3 and 1.0 μg/mL anti-
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CD28 (BD Biosciences, San Jose, CA).  To label cells with CFSE, cells were incubated 

with 1μM CFSE (Invitrogen, Carlsbad, CA) for 30 minutes at 37° and then washed in 

complete media.  Labeled cells were cultured with the indicated stimuli for 72 hours and 

then analyzed by flow cytometry. 

 

Flow cytometry and cell sorting  Single cell suspensions were prepared from the 

spleens, thymi, and lymph nodes and stained with antibodies against TCRβ, CD4, CD8, 

CD24, CD25, CD44, CD62L, and CD69 (BD Biosciences, San Jose, CA).  Annexin-V 

labeling was performed by surface staining cells with the indicated lineage markers, 

washing with complete media, and staining for 15 minutes with Annexin-V (BD 

Biosciences, San Jose, CA).  Thymocytes were sorted on a FACS Vantage SE (BD 

Biosciences, San Jose, CA) by FSC/SSC gating on a live lymphocyte population, 

followed by gating out CD11b+, CD11c+, and B220+ cells.  The remaining cells were 

then sorted based on expression of CD4 and CD8.  Purities were greater than 94% for 

each population (n = 4 independent experiments).  Peripheral CD4+ and CD8+ T cells 

were isolated using negative selection by MACS magnetic bead sorting according to the 

manufacturer’s instructions (Miltenyi Biotec, Auburn, CA).  Peripheral T cells were 

negatively selected from pooled spleen and lymph node samples, followed by negative 

selection against either CD4+ or CD8+ cells.  Purities averaged 86% for CD4+ cells and 

92% for CD8+ cells (n = 4 independent experiments). 
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Immunoblots  Cells were washed with PBS and then lysed in cold NP-40 lysis buffer 

[0.5% NP-40, 50 mM Tris-Cl, 150 mM NaCl, 1mM EDTA, 1 mM phenylmethylsulfonyl 

fluoride] or cold lysis buffer B [50mM Tris-HCl pH8.0, 150mM NaCl, 1% Triton X-100, 

0.1% SDS, 0.2% deoxycholic acid sodium salt] supplemented with complete pretease 

inhibitors (Roche, Basel, Switzerland) for 10 minutes at 4°C.  Lysates were cleared by 

centrifugation at 14,000 x g for 10 minutes at 4°C.   Samples were analyzed by 

immunoblotting21 using antibodies against ATG5 (Novus Biologicals, Littleton, CO and 

Nanotools, Teningen, Germany), ATG7 (Sigma, St. Louis, MO), LC3 (Novus 

Biologicals, Littleton, CO) and β-actin (Sigma, St. Louis, MO). 

 

Microarrays and analysis  Total thymocyte RNA was harvested from Atg5-/- and 

Atg5+/+ chimeras by lysing single cell suspensions of thymocytes in Trizol (Invitrogen, 

Carlsbad, CA).  RNA analyses were performed at the microarray core facility at the 

Harvard Medical School and Partners Healthcare Center for Genetics and Genomics. The 

quantity, purity and integrity of RNA were evaluated by UV spectrophotometry and 

RNA-nano Bioanalyzer (Agilent, Santa Clara, CA). Sample processing and hybridization 

on Mouse Genome 430 2.0 GeneChip microarrays (Affymetrix, Santa Clara, CA) were 

performed according to manufacturer’s instructions. Probe-level normalization of the raw 

.CEL data files using the GC Robust Multi-array Average (GCRMA) algorithm51 was 

implemented in the R programming language. Two-sided t-tests were performed for each 

probeset, comparing between Atg5-/- and Atg5+/+ chimera samples. Probesets with p<0.05 
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were considered differentially expressed.  Hierarchical clustering (pairwise complete-

linkage) of probesets corresponding to differentially expressed genes was performed with 

Cluster 3.052 using the Pearson’s correlation coefficient as the similarity metric. Z-score 

transformation was applied to each probeset across all arrays prior to generating 

‘heatmaps’ for visualization implemented in the Python language.  

 

Gene Ontology (GO) analysis  Differentially expressed genes were examined in 

terms of GO cellular component categories29.  To assess enrichment of these categories 

within the set of differentially expressed genes against all genes represented by probes on 

the Affymetrix Mouse Genome 430 2.0 microarray GeneChip, p-values were computed 

using Fisher’s exact test implemented in Python and R programming languages. 

Categories with p<0.05 were considered significantly enriched.  

 

Protein interaction network  The network was constructed by iteratively 

connecting interacting proteins, with data extracted from a collection of genome-wide 

interactome screens and curated literature entries in HPRD30.  The network uses graph 

theoretic representations, which abstract components (gene products) as nodes and 

relationships (e.g. interactions) between components as edges, implemented in the Perl 

programming language.  
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Literature co-citation analysis  Co-citation analysis was performed using Milano 

search32, identifying the number of times a gene was co-cited with a specified term in 

articles from the PubMed database. Vectors capturing the co-citation profiles for each of 

these genes were generated for a set of terms and clustered using pairwise complete-

linkage hierarchical clustering with the Pearson’s correlation coefficient as the similarity 

measure.  The results were displayed as a heatmap implemented in the Python language. 

 

Mitochondria mass/volume assay  Cells were loaded with 100nM MitoTracker 

Green (Invitrogen, Carlsbad, CA) for 30 minutes at 37°C in the presence of flourochome-

conjugated antibodies against CD4 and CD8.  Cells were washed and then analyzed by 

flow cytometry.  When necessary, Annexin-V was added after washing the cells in 

complete media. 

 

Statistics  All non-gene chip data was analyzed with Prism software (Graphpad; San 

Diego, CA), using two-tailed unpaired Student’s t tests. 
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CHAPTER 4 

The LC3 Conjugation System is Important for Directional 

Secretion in Osteoclasts 
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Abstract 

 Osteoclasts function to degrade bone by regulated secretion of lysosomal enzymes 

and acid against the bone surface.  The mechanisms regulating this secretion are poorly 

understood.  Here we show that the biochemical pathway necessary for autophagy is 

critical for secretion in osteoclasts.  We found that LC3 localizes to the ruffled border in 

osteoclasts.  We hypothesized that this localization may be important for osteoclast 

function, so we inhibited the LC3 conjugation cascade by deleting the essential 

autophagy genes Atg5 or Atg7 or overexpressing a dominant negative mutant of ATG4B.  

All of these disruptions inhibited bone resorption and localization of lysosomal markers 

to the resorptive surface in vitro.  Expression of dominant negative ATG4B also 

decreased localization of LC3 to the ruffled border, suggesting that LC3 localization and 

osteoclast function are connected.  Finally, deletion of Atg5 in osteoclasts and other 

myeloid-lineage cells in vivo protected mice from ovariectomy-induced bone loss, a 

mouse model of osteoporosis.  Our results demonstrate that the LC3 conjugation pathway 

is important for directional secretion in osteoclasts. 
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Introduction 

 Osteoclasts are multinucleated cells of the monocyte lineage that degrade bone by 

directionally secreting lysosomal enzymes and hydrogen ions against the bone surface 

(Fig. 1-2, reviewed in 1).  This secretion is targeted through undefined mechanisms to an 

area of the plasma membrane juxtaposed to the bone and circumscribed by an actin ring, 

forming a “ruffled border” of convoluted membrane.   The goal of this chapter is to 

determine if autophagy or autophagy genes are important for osteoclast function. 

 Many of the proteins involved in autophagosome nucleation also regulate vesicle 

trafficking.  There is a growing literature suggesting that autophagy genes downstream of 

nucleation are important for secretory cell function2,3,4,5.  In addition, LC3 localizes to the 

phagosome during phagocytosis and enhances fusion of phagosomes to lysosomes6, 

suggesting that the LC3 conjugation system may be involved in vesicular trafficking 

pathways independent of classical autophagosome formation.   

 In this chapter we report that LC3 is found concentrated at the ruffled border in 

osteoclasts, but this localization is reduced in osteoclasts expressing a dominant negative 

mutant of ATG4B, ATG4BC74A.  Deletion of Atg5 or Atg7 or overexpression of 

ATG4BC74A or a mutant of ATG5, ATG5K130R, all inhibit osteoclast function in vitro, as 

measured by bone pit formation and localization of lysosomal proteins to the ruffled 

border.  Deletion of Atg5 in myeloid-lineage cells in vivo protects mice from bone loss 

induced by ovariectomy.  We demonstrate an important role for the LC3 conjugation 

machinery in osteoclast secretion. 
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Results 

GFP-LC3 localizes to the ruffled border 

 As a first step to understand the role of autophagy and LC3 conjugation in 

osteoclasts, we visualized LC3 localization in osteoclasts using GFP-tagged LC3 (GFP-

LC3)7.  LC3 is normally found on the developing autophagosome where it promotes 

membrane elongation8,9,10,11,12.  We cultured osteoclasts from GFP-LC3 transgenic mice13 

by growing bone marrow-derived macrophages in the presence of M-CSF-containing 

conditioned media for 4 days and then replating equal cell numbers on bone in the 

presence of M-CSF and RANKL, a cytokine necessary for osteoclastogenesis14.  We 

stained the cells to visualize actin and GFP-LC3 and identified active osteoclasts as 

multinucleated cells with an actin ring.  Confocal microscopy showed LC3 not only in 

punctate cytoplasmic structures, which we presume to be autophagosomes, but also 

concentrated within the actin ring in approximately 25% of osteoclasts (Fig. 4-1).  We 

also stained the cells with an antibody against cathepsin K, a lysosomal protease that is 

secreted from the cells and localizes to the ruffled border15.  GFP-LC3 was found in the 

same region of the cell as cathepsin K, demonstrating that GFP-LC3 localizes to the 

resorptive microenvironment.  Interestingly, we did not observe colocalization of GFP-

LC3 and cathepsin K puncta in the cell periphery, suggesting that LC3 does not localize 

to cathepsin K+ vesicles.  Based on these results, we sought to determine the functional 

significance of the presence of LC3 in the actin ring. 
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Atg5 is not required for osteoclast differentiation but is important for 

osteoclast secretion 

 ATG5 is an essential autophagy protein required for the conjugation and 

localization of LC3 to autophagosomes and phagosomes16,6.  To delete Atg5 in 

osteoclasts, we bred mice containing two copies of a knock-in Atg5 gene in which LoxP 

sites were inserted flanking the third exon [Atg5flox/flox]17 to mice expressing the Cre 

recombinase under control of the LyzM promoter, resulting in expression of the 

recombinase in cells of the myeloid lineage17,18,19.  Given the function of Atg5 in B and T 

cell development (see Chapters 2 and 3), we first determined if osteoclasts can be 

differentiated from Atg5flox/flox-LyzM-Cre+ bone marrow.  We counted osteoclasts grown 

on plastic on days 3, 4, and 5 post addition of RANKL.  Osteoclasts were identified as 

cells with at least 3 nuclei that stained for the osteoclast marker tartrate-resistant acid 

phosphatase (TRAP)20,21,22.  Atg5flox/flox-LyzM-Cre+ cells had a delay in osteoclast 

formation, but by day 5 we observed equal numbers of mature osteoclasts in Atg5flox/flox-

LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- cultures (Fig. 4-2).  To explore this difference, 

we performed immunoblots against cathepsin K and c-Src, two proteins that are 

upregulated during osteoclastogenesis23,20,24.  Immunoblot analysis revealed similar 

kinetics of upregulation of both cathepsin K and c-Src, indicating that this aspect of 

differentiation of macrophages into osteoclasts is not impaired in Atg5flox/flox-LyzM-Cre+ 

cells (Fig. 4-3A).   

 To further assess osteoclast formation in the absence of Atg5, we grew cells from 

Atg5flox/flox-LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- mice on bovine cortical bone 
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fragments and counted the number of nuclei per osteoclast on day 6.  We observed no 

difference in the average number of nuclei per cell between Atg5flox/flox-LyzM-Cre+ and 

Atg5flox/flox-LyzM-Cre- osteoclasts (Fig. 4-3B).  We also stained for actin and confirmed 

that nearly 100% of both Atg5flox/flox-LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- osteoclasts 

form actin rings, a hallmark of active osteoclasts grown on bone substrate (data not 

shown).  Finally, to ensure that osteoclasts from Atg5flox/flox-LyzM-Cre+ mice had deleted 

Atg5 and that non-recombined cells were not growing out in culture, we analyzed ATG5 

protein expression in osteoclasts grown for 6 days in vitro.  We observed a dramatic 

reduction in ATG5 protein levels, inhibition of LC3 conjugation, and accumulation of 

p62, consistent with an inhibition of autophagy in these cells (Fig. 4-4)25.  From these 

results we conclude that Atg5 is not required for osteoclast formation. 

 We next determined whether Atg5-deficient osteoclasts were functionally 

competent by analyzing their ability to degrade bone in vitro.  We cultured Atg5flox/flox-

LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- osteoclasts on bone for 6 days, removed the 

osteoclasts from the bone fragments and stained the bones with FITC-conjugated wheat 

germ agglutinin, a lectin that binds to the organic matrix of bone exposed by 

degradation26.  This technique allowed us to measure the depth of bone pits generated by 

the cells using confocal microscopy.  Bone resorption pits formed by Atg5flox/flox-LyzM-

Cre- control osteoclasts were approximately twofold deeper than pits formed by 

Atg5flox/flox-LyzM-Cre+ osteoclasts (Fig. 4-5).  This data suggests that Atg5 is required for 

normal bone resorption by osteoclasts in vitro. 
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 Osteoclast bone degradation requires regulated, directional secretion of lysosomal 

enzymes against the bone surface (reviewed in 27).  To determine if this process was 

normal in Atg5flox/flox-LyzM-Cre+ osteoclasts, we examined the intracellular localization 

of cathepsin K, a lysosomal protease important for bone degradation, and LAMP1, a 

lysosomal transmembrane protein.  Secretion of lysosomes by active osteoclasts localizes 

both of these markers to the ruffled border, with LAMP1 localized on the plasma 

membrane28,15.  We observed a significant reduction in the percentage of Atg5flox/flox-

LyzM-Cre+ osteoclasts with cathepsin K localized in the actin ring compared with 

Atg5flox/flox-LyzM-Cre- osteoclasts (Fig. 4-6; Atg5flox/flox-LyzM-Cre-: 53.1 ± 2.4%; 

Atg5flox/flox-LyzM-Cre+: 24.3 ± 3.2%; p = 0.002).  Similarly, LAMP1 localization was 

also reduced in Atg5flox/flox-LyzM-Cre+ osteoclasts (Fig. 4-6; Atg5flox/flox-LyzM-Cre-: 59.0 

± 1.4%; Atg5flox/flox-LyzM-Cre+: 23.7 ± 3.7%; p = 0.0009).   

 Cathepsin K is synthesized as a pro-enzyme that must be cleaved in the lysosome 

to be active29.  To confirm that we were measuring lysosome secretion in our 

immunofluorescence assays and not abnormal cathepsin K expression in Atg5flox/flox-

LyzM-Cre+ osteoclasts, we measured levels of pro-form and active cathepsin K.  

Immunoblotting of lysates from plastic-grown osteoclasts 6 days after addition of 

RANKL revealed no difference in the levels of the pro-form or processed, active form of 

cathepsin K (Fig. 4-7), arguing that delivery of cathepsin K to lysosomes is intact in the 

absence of Atg5.  Together, this data suggests that secretion of lysosomes at the ruffled 

border is impaired in the absence of Atg5.   
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Conjugation of ATG5 to ATG12 is important for osteoclast function 

         To assess if this phenotype may be due to a non-autophagy function of Atg5, we 

deleted Atg7, another essential autophagy gene, in osteoclasts.  ATG7 is an E1-like 

enzyme that is required for conjugation of ATG5 to ATG1230.  We bred Atg7flox/flox mice 

to LyzM-Cre mice to generate Atg7flox/flox-LyzM-Cre+ mice31.  Immunoblotting of 

osteoclasts grown from these mice revealed that these cells had a significant reduction in 

ATG7 protein levels and partial inhibition of LC3-I to LC3-II conversion (Fig. 4-8).  

There was no delay in the formation of Atg7flox/flox-LyzM-Cre+ osteoclasts (data not 

shown).  Similar to our findings with Atg5-deficient osteoclasts, we observed a decrease 

in the depth of bone pits generated by Atg7-deficient osteoclasts (Fig. 4-9a).  Atg7flox/flox-

LyzM-Cre+ osteoclasts also had a significant reduction in cathepsin K localization (Fig. 

4-9B; Atg7flox/flox-LyzM-Cre-: 58.6 ± 2.1%; Atg7flox/flox-LyzM-Cre+: 30.2 ± 3.1%; p = 

0.017) and LAMP1 localization (Fig. 4-9B; Atg7flox/flox-LyzM-Cre-: 58.6 ± 2.1%; 

Atg7flox/flox-LyzM-Cre+: 37.8 ± 0.8%; p = 0.0116).  These data demonstrate that a second 

essential autophagy gene is important for osteoclast function.  Given the requirement of 

ATG7 for the conjugation of ATG5 and the concordance of the phenotypes of Atg5- and 

Atg7-deficient osteoclasts, we hypothesize that the ATG5-ATG12 conjugate is involved 

in osteoclast secretion. 

To test our hypothesis, we generated retroviruses expressing either mCherry-

ATG5WT or mCherry-ATG5K130R, a mutant of ATG5 in which the lysine required for 

conjugation to ATG12 has been changed to an arginine32,16,33.  Immunoblotting of 

transduced osteoclasts demonstrated expression of the wild-type and mutant mCherry-
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ATG5 fusion proteins at higher levels than endogenous ATG5.  We confirmed that 

mCherry-ATG5K130R does not form the higher molecular weight band of the expected 

size for the mCherry-ATG5-ATG12 conjugate, consistent with the published phenotype 

of this mutant (Fig. 4-10)32.  Expression of mCherry-ATG5WT, but not mCherry-

ATG5K130R, restored the synthesis of LC3-II in Atg5flox/flox-LyzM-Cre+ osteoclasts.  

Interestingly, expression of the ATG5K130R mutant, but not the wild-type protein, in 

Atg5flox/flox-LyzM-Cre- osteoclasts reduced LC3-II levels, suggesting that this mutant 

might function as a dominant negative in the LC3 conjugation pathway in our system. 

We measured bone pit depth and cathepsin K localization in ATG5-transduced 

Atg5flox/flox-LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- osteoclasts.  Expression of mCherry-

ATG5WT in Atg5flox/flox-LyzM-Cre+ osteoclasts restored bone pit depth to control levels, 

whereas mCherry-ATG5K130R did not increase bone pit depth (Fig. 4-11A).  Similarly, 

expression of wild-type ATG5, but not ATG5K130R, increased cathepsin K localization in 

Atg5flox/flox-LyzM-Cre+ osteclasts to levels comparable to Atg5flox/flox-LyzM-Cre- controls 

(Fig. 4-11B).  Interestingly, Atg5flox/flox-LyzM-Cre- osteoclasts expressing mCherry-

ATG5K130R had decreased bone pit formation and cathepsin K localization, consistent 

with our observation that ATG5K130R inhibits the function of endogenous ATG533,9,34.  

Based on these results and our studies in Atg7-deficient osteoclasts, we conclude that the 

ATG5-ATG12 conjugate is important for osteoclast secretion. 
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Inhibiting the LC3 conjugation pathway decreases osteoclast secretion 

 The ATG5-ATG12 conjugate is important for LC3 conjugation, but it may have 

additional functions in the cell35.  To determine if LC3 conjugation is required for 

osteoclast function, we next inhibited the LC3 conjugation pathway without affecting the 

conjugation of ATG5 to ATG12.  ATG4B is a cysteine protease required for processing 

of the pro-form of LC3 and deconjugation of LC3 from phosphatidylethanolamine (PE) 

36.  Mutating the catalytic cysteine residue generates a dominant negative enzyme 

(ATG4BC74A) that sequesters LC3 and inhibits its conjugation to PE, inhibiting autophagy 

without disrupting formation of the ATG5-ATG12 conjugate37.  We retrovirally 

expressed ATG4BC74A fused to mStrawberry in wild-type osteoclasts.  As a control, we 

used either GFP or vector-only retroviruses.  Immunoblotting revealed expression of the 

ATG4BC74A fusion protein (Fig. 4-12).  We measured bone pit formation and cathepsin K 

localization and found that ATG4BC74A-expressing osteoclasts had reduced bone pit 

depth and cathepsin K localization in the actin ring compared with control transduced 

cells (Fig. 4-13A and 4-13B).  Expression of ATG4BC74A in GFP-LC3 osteoclasts also 

inhibited localization of GFP-LC3 to the actin ring (Fig. 4-14).  This data demonstrates 

that the LC3 conjugation pathway is required for osteoclast function and suggests that 

LC3 conjugation is an important process in osteoclast secretion.  Since inhibition of GFP-

LC3 localization correlates with decreased vesicular secretion, one explanation is that 

osteoclast function requires the proper targeting of LC3 to the actin ring through its 

conjugation by the autophagy machinery. 
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Atg5flox/flox-LyzM-Cre+ mice are protected from ovariectomy-induced 

bone loss 

 Estrogen-deficiency osteoporosis is a common disease of the elderly associated 

with significant morbidity and mortality (reviewed in 38).  This condition can be induced 

in female lab animals by ovariectomy39.  To determine if the Atg5 is important for 

regulating skeletal mass in vivo, we induced osteoclast activity by removing the ovaries 

from female Atg5flox/flox-LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- mice.  We measured bone 

mass in 8-week old Atg5flox/flox-LyzM-Cre+ and Atg5flox/flox-LyzM-Cre- mice by 

microcomputed tomography (μCT) before and after ovariectomy or a sham operation.  At 

baseline, we observed a small increase in trabecular bone volume (BV/TV) in Atg5flox/flox-

LyzM-Cre+ mice (Fig. 4-15A).  One month after the sham operation we observed no 

difference in the percentage of bone lost between Atg5flox/flox-LyzM-Cre+ and Atg5flox/flox-

LyzM-Cre- sham-treated animals.  However, Atg5flox/flox-LyzM-Cre+ mice had a 55% 

reduction (p = 0.0393) in ovariectomy-induced bone loss compared with Atg5flox/flox-

LyzM-Cre- controls (Fig. 4-15B).  This data is consistent with the hypothesis that 

Atg5flox/flox-LyzM-Cre+ mice have dysfunctional osteoclasts, suggesting that our in vitro 

phenotype is relevant in vivo.  In addition, the function of Atg5 in osteoclasts may be 

important for the pathophysiology of osteoporosis. 
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Discussion 

 Here we show that GFP-LC3 localizes to the actin ring in activated osteoclasts.  

Deletion of two essential autophagy genes (Atg5, Atg7) in the autophagy pathway or 

retroviral expression of a dominant negative ATG4BC74A or ATG5K130R inhibit osteoclast 

function as measured by bone pit depth and cathepsin K localization.  We confirmed that 

the secretion defect in Atg5flox/flox-LyzM-Cre+ osteoclasts is due to deletion of ATG5 in 

these cells by rescuing this phenotype with retroviral expression of wild-type ATG5.  

Together, these studies demonstrate that the biochemical pathway required for LC3 

conjugation and autophagosome formation is critical for osteoclast secretion.  Finally, 

mice lacking Atg5 in osteoclasts and other myeloid-lineage cells are protected from 

ovariectomy-induced bone loss.  

 Given these findings connecting proteins involved in a cellular degradation 

pathway and osteoclast secretion, it is useful to compare our results with published 

phenotypes of osteoclasts deficient in proteins known to be important for bone 

degradation, osteoclast activation, and secretion.  We found a 55% reduction in bone pit 

depth generated by Atg5-deficient osteoclasts, which is comparable with the reduction in 

pit depth by cathepsin K knockout osteoclasts (44% reduction) and β3 integrin knockout 

osteoclasts (38% reduction)40,41.  We observed a twofold reduction in cathepsin K 

localization in the actin ring, similar to the 3-fold reduction reported in osteoclasts 

lacking Synaptotagmin VII, an important regulator of lysosome exocytosis42,43.  Finally, 

our results demonstrating a 55% reduction in ovariectomy-induced bone loss are 

comparable with protection offered by bisphosphonate treatment of ovariectomized rats 
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(74% reduction) or cathepsin K inhibitor treatment of ovariectomized mice (73% 

reduction)44,45.  This comparison demonstrates the importance of autophagy genes in 

osteoclast biology and suggests that the biochemical pathway necessary for autophagy 

may be a new target to treat bone disease. 

 The observation that 8-week old Atg5flox/flox-LyzM-Cre+ mice have a minimal 

increase in basal bone mass but are protected from ovariectomy-induced bone loss 

suggests that ATG5 is important for osteoclast function after activation in vivo.  Our in 

vitro results demonstrate that Atg5-deficient osteoclasts can be activated, as demonstrated 

by normal formation of actin rings, but have reduced secretion after activation.  

Interestingly, β3 integrin-deficient mice are also protected from ovariectomy-induced 

bone loss, do not have a basal difference in bone density when young (<4 months), but 

develop severe osteosclerosis by six months of age41,46.  It will be interesting to determine 

if Atg5flox/flox-LyzM-Cre+ mice develop osteosclerosis as they age.   

 We have identified a novel biochemical pathway involved in secretion in 

osteoclasts.  Autophagy genes have been implicated in secretion in other cell types, and 

the molecular mechanisms connecting autophagy genes and secretion are of great 

interest2,3,4,5,47.  In these studies it is unclear how the formation of autophagosomes would 

be necessary for secretion.  In osteoclasts, we favor the working hypothesis that LC3 is 

conjugated to the plasma membrane at the ruffled border, as suggested by our localization 

studies with GFP-LC3.  In our experiments employing the dominant negative protein 

ATG4BC74A, localization of GFP-LC3 correlates with osteoclast function, suggesting that 

LC3 localization might be important for vesicle secretion in osteoclasts (Fig. 4-16).  We 
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hypothesize that LC3 at the ruffled border is important for the trafficking or fusion of 

lysosomes with the plasma membrane.  Indeed, LC3 localization to the phagosome 

membrane correlates with increased fusion of phagosomes with lysosomes6.  How the 

resorptive microenvironment is targeted for LC3 localization remains to be determined. 
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Figure 4-1.  GFP-LC3 localizes to the actin ring in active osteoclasts 

Confocal image of a GFP-LC3 osteoclast grown on bone stained for actin (red), cathepsin 

K (ctsk, blue), and GFP (green) showing localization of cathepsin K and GFP-LC3 within 

the actin ring in both the xy plane and z plane.  Representative image from two separate 

experiments, 3 bones/experiment. 



123 
 

0

250

500

750

1000

1250

1500

TR
A

P+
 m

ul
tin

uc
le

at
ed

ce
lls

 p
er

 w
el

l

Atg5flox/flox-LyzM-Cre-

p = 0.0039 

Atg5flox/flox-LyzM-Cre+

p = 0.0057 
n.s.

day 3 day 4 day 5

Atg5flox/flox-LyzM-Cre-
Atg5flox/flox-LyzM-Cre+

A

B

  

Figure 4-2.  Atg5flox/flox-LyzM-Cre+ cells have a slight delay in formation 

of TRAP+ multinucleated osteoclasts 

(A) Representative images of osteoclasts differentiated on plastic for 5 days from 

Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ macrophages, stained for the 

osteoclast marker TRAP (purple). (B) Quantification of the number of TRAP+ 

multinucleated cells in plastic cultures on day 3-5.  Quantification of one representative 

experiment from 5 independent experiments. P values generated by unpaired Student's t 

test, n.s. = not statistically significant.  
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Figure 4-3.  Atg5flox/flox-LyzM-Cre+ cells express osteoclast 

differentiation markers normally during osteoclastogenesis and form 

osteoclasts with normal numbers of nuclei 

(A) Immunoblot analysis of macrophages induced to differentiate into osteoclasts, probed 

against cathepsin K (Ctsk), c-Src, and β-actin.  Lysates were made on the indicated days 

after addition of osteoclastogenic cytokines.  One of four representative blots shown.  

(B) Quantification of the number of nuclei per osteoclast grown for 6 days on bone.  



125 
 

Individual cells were identified by actin staining and the number of nuclei counted per 

cell.  All cells with 3 or more nuclei were included in this analysis.  Data pooled from 

three independent experiments.  There was no statistically significant difference in mean 

nuclei number in any of the three experiments. 



126 
 

Atg5flox/flox

β-actin

p62

ATG5-ATG12

LC3-I

LC3-II

LyzM-Cre

 

Figure 4-4.  Atg5flox/flox-LyzM-Cre+ osteoclasts express reduced levels of 

ATG5 and LC3-II and increased levels of p62 

Immunoblot analysis of lysates from Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ 

osteoclasts grown on plastic for 6 days.  Lysates were probed with antibodies against 

ATG5, p62, LC3, and β-actin.  Representative blot of 6 independent experiments. 
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Figure 4-5.  Atg5flox/flox-LyzM-Cre+ osteoclasts have a defect in bone pit 

formation 
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(A) Bone pits were imaged by removing osteoclasts grown on bone and staining 

degraded bone with FITC-conjugated wheat germ agglutinin.  Representative images of 

bone pits viewed in the z plane.  (B) Quantification of bone pit depth from one of four 

experiments, analyzed in a blinded fashion.  Each point represents an individual bone pit.  

P value generated by unpaired Student's t test.  (C) Pooled analysis of the mean bone pit 

depths from 4 independent, blindly read experiments.  To pool the results, we normalized 

the mean of the pit depth generated by Atg5flox/flox-LyzM-Cre+ cells to the mean depth 

generated by Atg5flox/flox-LyzM-Cre- cells, which was set to 100.  P value generated by 

paired Student's t test.   
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Figure 4-6.  Atg5flox/flox-LyzM-Cre+ osteoclasts have reduced localization 

of cathepsin K and LAMP1 in the actin ring 

(A) Representative confocal images of Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ 

osteoclasts, grown on bone and stained for actin (green) and cathepsin K (Ctsk, red).  (B) 

Quantification of the percentage of Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ 

osteoclasts with cathepsin K or LAMP1 localized in the actin ring.  Cells of each 
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genotype were grown on at least three pieces of bone in separate culture wells.  Each 

point represents the percentage of cells with localization from one bone – a minimum of 

10 cells analyzed per bone, with at least three bones analyzed per genotype per 

experiment.  All data was collected by a blinded observer.  The largest p value from any 

of the three experiments is shown, calculated by unpaired Student's t test. 
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Figure 4-7.  No difference in cathepsin K processing in Atg5flox/flox-LyzM-

Cre- and Atg5flox/flox-LyzM-Cre+ osteoclasts 

Immunoblot of lysates from Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ 

osteoclasts grown on plastic for 6 days and probed for cathepsin K (Ctsk) and β-actin.  

One representative of four independent experiments shown. 
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Figure 4-8.  Atg7flox/flox-LyzM-Cre+ osteoclasts have reduced expression 

of ATG7 and LC3-II 

Immunoblot analysis of lysates from day 6 Atg7flox/flox-LyzM-Cre- and Atg7flox/flox-LyzM-

Cre+ osteoclasts grown on plastic.  Lysates were probed for ATG7, LC3, and β-actin.  

One representative of three independent experiments shown. 
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Figure 4-9.  Atg7flox/flox-LyzM-Cre+ osteoclasts have a defect in bone pit 

formation and cathepsin K and LAMP1 localization 

(A) Quantification of bone pit depth from one of two experiments.  Each point represents 

an individual bone pit.  All data was collected by a blinded observer.  P value generated 
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by unpaired Student's t test.  (B) Quantification of the percentage of Atg7flox/flox-LyzM-

Cre- and Atg7flox/flox-LyzM-Cre+ osteoclasts with cathepsin K (Ctsk) or LAMP1 localized 

in the actin ring.  Each point represents the percentage of cells with localization from one 

bone – a minimum of 10 cells analyzed per bone, with at least two bones analyzed per 

genotype per experiment.  All data was collected by a blinded observer.  The largest p 

value from any of the two experiments is shown, generated by unpaired Student's t test. 
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Figure 4-10.  Expression of ATG5WT, but not ATG5K130R, rescues LC3 

conjugation in Atg5flox/flox-LyzM-Cre+ osteoclasts 

Immunoblot analysis of Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ osteoclasts 

transduced with control retrovirus or retroviruses expressing mCherry-Atg5WT or 

mCherry-ATG5K130R fusion proteins.  Lysates were probed for ATG5, LC3, and β-actin.  

Asterisks (*) indicate unpredicted bands that we hypothesize are degradation products of 

the fusion protein.  One of three experiments shown.   
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Figure 4-11.  Expression of ATG5WT, but not ATG5K130R, rescues bone 

pit depth and cathepsin K localization in Atg5flox/flox-LyzM-Cre+ 

osteoclasts 
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(A) Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ osteoclasts were transduced with 

control retroviruses or retroviruses expressing mCherry-ATG5WT or mCherry-

ATG5K130R.  Pooled analysis of the mean bone pit depths from 2-3 independent, blindly 

read experiments.  Data normalized as described in Figure 4-5.  P values calculated by 

paired Student's t test.  (B) Quantification of cathepsin K localization in actin rings in 

transduced Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ osteoclasts.  Average 

localization from 2-3 independent experiments was pooled.  All data was collected by a 

blinded observer.  P values generated by unpaired Student's t test. 
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Figure 4-12.  mStrawberry-ATG4BC74A is expressed in wild-type 

osteoclasts after retroviral transduction 

Immunoblot analysis of lysates from wild-type osteoclasts transduced with mStawberry-

ATG4BC74A-expressing or control retrovirus, probed with antibodies against ATG4B and 

β-actin.  The asterisk (*) indicates an unpredicted band that we hypothesize is a 

degradation product of the fusion protein.  One representative blot of three independent 

experiments shown. 
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Figure 4-13.  Transduction of wild-type osteoclasts with retrovirus 

expressing mStrawberry-ATG4BC74A causes a reduction in bone pit 

depth and cathepsin K localization 
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(A) Wild-type osteoclasts were transduced with control retrovirus or retrovirus 

expressing mStrawberry-ATG4BC74A.  Pooled analysis of the mean bone pit depths from 

3 independent, blindly read experiments.  Data normalized as described above in Figure 

4-5.  P values generated by paired Student's t test.  (B) Quantification of the percentage of 

mStrawberry-ATG4BC74A or control transduced osteoclasts with cathepsin K (Ctsk) 

localized in the actin ring.  Each point represents the percentage of cells with localization 

from one bone – a minimum of 10 cells analyzed per bone, with at least three bones 

analyzed per genotype per experiment.  All data was collected by a blinded observer.  

The largest p value from any of the three experiments is shown, generated by unpaired 

Student's t test. 
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Figure 4-14.  Expression of mStrawberry-ATG4BC74A in GFP-LC3 

osteoclasts decreases GFP-LC3 localization in the actin ring 

Quantification of the percentage of mStrawberry-ATG4BC74A or control transduced 

osteoclasts with GFP-LC3 localized in the actin ring.  Each point represents the 

percentage of cells with localization from one bone – a minimum of 10 cells analyzed per 

bone, with at least three bones analyzed per genotype per experiment.  All data was 

collected by a blinded observer.  The largest p value from either experiment is shown, 

generated by unpaired Student's t test. 
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Figure 4-15.  Atg5flox/flox-LyzM-Cre+ mice are protected from 

ovariectomy-induced bone loss 

(A) Trabecular bone volume over total volume of the marrow space (BV/TV) of 8-week 

old female Atg5flox/flox-LyzM-Cre- and Atg5flox/flox-LyzM-Cre+ mice, as measured by 

microcomputed tomography.  Pooled data from 3 independent experiments, n = 12 mice 

per genotype.  P value generated by unpaired Student's t test. (B)  Quantification of 
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ovariectomy-induced bone loss.  BV/TV was measured at day 0, mice were 

ovariectomized or sham operated on day 1, and BV/TV was reanalyzed at day 29.  The 

average bone loss in sham-operated Atg5flox/flox-LyzM-Cre- control animals was 

subtracted from all measurements.  Pooled data from 2 (sham) or 3 (ovariectomy) 

independent experiments, n = 4-5 mice for the sham treatment and 7-8 mice for the 

ovariectomy treatment groups. 
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Figure 4-16.  Working hypothesis for the role of LC3 and the LC3 

conjugation pathway in osteoclast function 

We propose the following model to explain the function of the LC3 conjugation pathway 

in osteoclast secretion.  (1) We speculate that the LC3 conjugation cascade (see Fig. 1-1), 

employing ATG7, the ATG5-ATG12 conjugate, and ATG4B, is involved in localization 

of LC3 to the ruffled border, suggesting that LC3 is directly conjugated to the ruffled 

border (2).  We did not observe colocalization of LC3 and cathepsin K puncta in the cell 

periphery, arguing that LC3 is not conjugated to the membranes of secretory lysosomes.  

At the ruffled border, LC3 may function either to promote (green arrows) trafficking of 

cathepsin K-containing, LAMP1 positive vesicles to the ruffled border (3) or the fusion 

of these vesicles with the plasma membrane (4).  Key: cathepsin K (Ctsk) – blue; LAMP1 

– red; conjugated LC3 – green box with green line; bone – orange box 
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Materials and Methods 

Mice  The generation of Atg5flox/flox, Atg7flox/flox, Atg5flox/flox-LyzM-Cre+, and GFP-LC3 

mice has been previously reported17,31,18,13.  To generate Atg7flox/flox-LyzM-Cre+ mice, we 

bred mice Atg7flox/flox mice to mice expressing the Cre recombinase from the Lysozyme M 

locus (strain #004781, Jackson Laboratory, Bar Harbor, ME).  Atg5flox/flox, Atg7flox/flox, 

Atg5flox/flox-LyzM-Cre+ mice were genotyped as described48.  GFP-LC3 mice were 

genotyped with primers GFP-1: 5′-TCCTGCTGGAGTTCGTGACCG-3′ and LC3: 5′-

TTGCGAATTCTCAGCCGTCTTCA 

TCTCTCTCGC-3′ using PCR [94°C(4 min); 35 cycles of 94°C (30 sec), 57°C (30 sec), 

72°C (1 min); 72°C (5 min)].   Mice were maintained at Washington University School 

of Medicine in accordance with institutional policies for animal care and usage. 

 

Cell culture  Osteoclasts were grown in alpha10 media, containing alpha-MEM 

(Sigma Aldrich, St. Louis, MO), 10% fetal calf serum (Hyclone, Waltham, MA), 

100U/mL penicillin and 100ug/mL streptomycin.  Plat-E retrovirus packaging cells were 

purchased from Cell Biolabs, Inc. (San Diego, CA) and maintained in DMEM media 

(Cellgro, Manassas, VA) containing 10% fetal calf serum (Hyclone, Waltham, MA), and 

2mM L-glutamine (Gibco, Carlsbad, CA).  Osteoclasts were differentiated from bone 

marrow as described, with minor modifications42.  Briefly, bone marrow was extracted 

from mice and cultured in the presence of 10% CMG 14-12 supernatant49, an M-CSF-



146 
 

containing cell supernatant, on day -4.  After 4 days (day 0), cells were lifted and replated 

on plastic or bovine bone fragments in alpha10 media supplemented with 2% CMG and 

100ng/mL recombinant RANKL.  Bone grown cells were fixed in 4% paraformaldehyde 

6 or 7 days after plating for immunofluorescence and bone pit measurements.  Plastic-

grown cells were fixed on days 3, 4, and 5 in 4% paraformaldehyde/PBS for 

osteoclastogenesis or lysed on various days for immunoblot analysis.  TRAP staining on 

fixed cells was performed using a commercially available kit according to the 

manufacturer's instructions (Sigma, St. Louis, MO). 

 

Retroviral DNA constructs  mCherry-ATG5WT and mCherry-ATG5K130R were 

generated in the laboratory of Dr. A. B. Gustafsson33.  mStrawberry-ATG4BC74A was 

kindly provided by Dr. T. Yoshimori37.  The eGFP construct was purchased from 

Clontech (Mountain View, CA).  All constructs were cloned into the pMXs-IRES-Puro 

retroviral vector (Cell Biolabs, Inc., San Diego, CA).  eGFP-IRES-Puro retrovirus and 

vector only retrovirus were used as controls. 

 

Retroviral transduction  Retroviral transduction of bone marrow macrophages was 

done as previously described, with slight modifications42.  Briefly, 8ug of retroviral DNA 

was transfected into Plat-E cells using the Fugene HD transfection reagent (Roche, Basel, 

Switzerland) the same day as bone marrow isolation.  Plat-E media was replaced 24 
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hours later and virus harvested 48 and 72 hours after for transduction of plated bone 

marrow cells.  To transduce the bone marrow cells, culture media was replaced at 48 and 

72 hours with alpha10 containing 25% Plat-E viral media, 10% CMG 14-12 supernatant, 

and 4ug/mL polybrene.  At 96 hours the transduction media was replaced with alpha10 

with 10% CMG 14-12 supernatant and 2ug/mL puromycin.  Cells were allowed to grow 

for 3 days before being harvested and plated to form osteoclasts.  Control, untransduced 

cells were killed by the puromycin. 

 

Immunofluorescence  Osteoclasts grown on bone fragments were fixed in 4% 

paraformaldehyde for 10 minutes and washed in PBS.  Cells were permeabilized in 0.1% 

Triton-X for 10 minutes at room temperature and blocked for 1 hour in PBS containing 

0.2% BSA, 10% normal goat serum, and 10% normal rabbit serum.  The following 

antibodies and detection reagents were used: anti-cathepsin K (Millipore, Billerica, MA) 

(1:500 dilution), mouse IgG1 isotype control (Southern Biotech, Birmingham, AL), anti-

GFP conjugated to Alexa 488 (Molecular Probes, Carlsbad, CA), polyclonal rabbit 

antibody conjugated to Alexa 488 isotype control (anti-fluorescein, Molecular Probes, 

Carlsbad, CA),  anti-CD107a (eBioscience, San Diego, CA), rat anti-mouse IgG2a 

isotype control (anti-mouse CD8a, BD Biosciences, San Jose, CA), phalloidin-Alexa 555 

and phalloidin-Alexa 488 (Molecular Probes, Carlsbad, CA), goat anti-rat-Alexa 488 

(Molecular Probes, Carlsbad, CA), goat anti-mouse Cy5 (Jackson Immunoresearch, West 

Grove, PA), and donkey anti-mouse-Alexa 555 (Jackson Immunoresearch, West Grove, 
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PA).  All antibodies were diluted in blocking buffer.  Primary antibodies were applied 

overnight.  After washing in PBS, secondary antibodies were applied for 1 hour at room 

temperature.  Bones were then mounted in 30% glycerol or VECTASHIELD Mounting 

Media with DAPI (Vector labs, Burlingame, CA) and imaged on a Nikon Eclipse 

epifluorescent microscope (Nikon, Melville, NY), Olympus BX51 epifluorescent 

microscope (Olympus, Center Valley, PA), or Axiovert 100M confocal microscope 

(Zeiss, Thornwood, NY).  Confocal images were analyzed using LSM 510 software 

(Zeiss, Thornwood, NY).  For localization of GFP-LC3, cathepsin K, and LAMP1, 

confocal microscopy was used to identify cells with complete actin rings.  If the area 

outlined by the actin ring was completely occupied by CatK in any z-plane containing the 

actin ring, and CatK was not visualized outside the ring in those z-planes, the cell was 

said to have positive CatK localization.  The same procedure was followed for LAMP1 

and GFP-LC3 localization.  All data was collected by a blinded observer. 

 

Bone pit depth measurements  Osteoclast-generated bone pits were stained by 

removing the cells from bone fragments with a soft brush and incubating with 20ug/mL 

FITC conjugated wheat germ agglutinin (Sigma, St. Louis, MO) for 30 minutes at room 

temperature.  After washing the bones, pits were imaged by confocal microscopy.  The 

pit depth was measured from the surface of the bone down to the deepest point in the pit.  

All data was collected by a blinded observer. 
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Nuclei and actin ring measurements  Osteoclasts were grown on bone for 6 days 

and fixed and permeabilized as described above.  Cells were stained with Alexa 555-

conjugated phalloidin and mounted with VECTASHIELD Mounting Media with DAPI to 

visualize actin rings and nuclei.  Actin rings were quantified in any cell with at least three 

nuclei.  Nuclei per cell were quantified counting any cell with at least three nuclei. 

 

Immunoblots  Cells were lysed in RIPA buffer + protease inhibitors for 10 minutes on 

ice, the lysates were clarified, 5x Laemmli sample buffer added, and the samples boiled.  

Immunoblotting was performed using antibodies against ATG5 (Nanotools, Teningen 

Germany) (1:200 dilution), LC3 (Cosmo Bio Co, LTD, Tokyo, Japan) (1:500 dilution), 

ATG7 (Sigma-Aldrich, St. Louis MO) (1:2,000 dilution), B-actin (Sigma-Aldrich, St. 

Louis MO) (1:40,000 dilution), p62 (Progen Biotechnik, Heidelberg, Germany) (1:1,000 

dilution), ATG4B (MBL, Woburn, MA) (1:1,000 dilution), c-Src (monoclonal antibody 

directed against c-Src was a gift from A. Shaw) (final concentration: 2ug/mL), and 

cathepsin K (Millipore, Billerica, MA) (1:500 dilution). 

 

Microcomputed tomography and ovariectomy  Trabecular volume in the distal 

femoral metaphysis (right leg) was measured using in vivo microcomputed tomography 

(vivaCT 40, Scanco Medical, Brüttisellen, Switzerland) while the mice were anesthetized 

with isofluorane.  A threshold linear attenuation coefficient of 1.2 cm− 1 was used to 
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differentiate bone from non-bone.  A threshold of 120 was used for evaluation of all 

scans. 30 slices were analyzed, starting with the first slice in which condyles and primary 

spongiosa were no longer visible.  Trabecular volume was measured one day before 

ovariectomy or sham operation (basal bone volume) and 28 days after surgery (post-ovx).  

For ovariectomies, mice were anesthetized with ketamine/xylene delivered by 

intraperitoneal injection, and ovaries were removed through two small dorsal incisions.  

Sham operated mice were anesthetized and opened equivalently, but ovaries were not 

removed. 

 

Statistics  All data was analyzed with Prism software (Graphpad, San Diego, CA), 

using two-tailed unpaired or paired Student’s t tests, as indicated.  Error bars represent 

standard error of the mean (SEM). 
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Conclusions and Future Directions 
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Summary of Results 

 The canonical functions of autophagy are to degrade unwanted cytoplasmic 

constituents and provide recycled material back to the cell.  As groups have identified 

and studied the molecular mechanisms of autophagy in a variety of model organisms and 

cell types, it has become clear that autophagy and autophagy genes have a plethora of 

additional functions.  The goal of this thesis is to better understand the functions of 

autophagy genes in primary mammalian cells with important physiologic functions.  We 

chose to study B cells, T cells, and osteoclasts because much is known about the 

development, homeostasis, and functions of these cell types.   

 Our studies in lymphocytes revealed a role for autophagy genes in cellular 

development and homeostasis.  B cells lacking Atg5 had an increase in cell death during 

the late stages of development in the bone marrow and decreased numbers of B-1a B 

cells.  In contrast, T cells deficient in either Atg5 or Atg7 had a profound defect in 

peripheral homeostasis, associated with an increase in markers of cell death and 

decreased ability to proliferate.  Transcriptional studies suggested abnormalities in 

mitochondria, which we corroborated by demonstrating an increase in mitochondrial 

mass.  High mitochondrial mass correlated with the increased markers of cell death in 

Atg5-deficient T cells. 

 In contrast to lymphocytes, Atg5-deficient osteoclasts did not have gross 

abnormalities in cellular development.  Instead, these cells had a reduction in their 

capacity to degrade bone.  Delivery of the lysosomal markers cathepsin K and LAMP1 to 
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the bone surface was impaired in the absence of Atg5, suggesting a role for Atg5 in cell 

secretion.  To further explore the mechanism behind this observation, we showed that 

osteoclasts lacking Atg5 or Atg7 or overexpressing ATG5K130R or ATG4BC74A all shared 

the same phenotype.  Together, this data identifies the biochemical pathway necessary for 

LC3 conjugation as important for osteoclast secretion.  Interestingly, LC3 is found at the 

ruffled border in activated osteoclasts.  This localization is inhibited by ATG4BC74A 

expression, suggesting a connection between LC3 localization and osteoclast function. 

 

Conclusions and Future Directions: Lymphocytes 

Cell type specificity 

 Our studies reveal that Atg5 has very dramatic cell-type specific functions.  B and 

T lymphocytes are closely-related lineages that differentiate from a common progenitor, 

yet Atg5 is required for peripheral T cell, but not B-2 B cell, homeostasis.  Also, T cells 

accumulate mitochondria in the absence of Atg5, whereas peripheral B-2 B cells do not1.  

Even more striking is the discrepancy within B cells – B-1a B cell numbers are 

dramatically reduced in Atg5flox/flox-CD19-Cre+ mice, but B-1b and B-2 B cells are not.  

These results demonstrate that one must be cautious when taking lessons learned about 

the function of autophagy genes in one biological system or cell type and trying to apply 

them to another, and support our bias that it is necessary to study the function of 

autophagy genes in primary cells with physiologically important roles. 
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Autophagy in lymphocyte survival and death 

 There are many reports in the literature that autophagy can accelerate or induce 

cell death in different cell types2,3,4.  Even within the T cell literature, autophagy is 

suggested to be an important death pathway after nutrient withdrawal, exposure to HIV, 

or in a variety of genetic deletion models5,6,7,8.  In contrast to these results, we observed 

either no effect or an increase in cell death when we deleted autophagy genes in primary 

T cells.  If autophagy were a physiologically important cell death pathway in 

lymphocytes, one would have predicted an accumulation of B and T cells, possibly 

resulting in autoimmunity.  We have followed both Atg5flox/flox-CD19-Cre+ and 

Atg5flox/flox-Lck-Cre+ mice and their Cre- controls as they age and have not seen 

abnormalities in long-term survival.  We hypothesize that in physiologic circumstances 

autophagy functions as a pro-survival mechanism in lymphocytes, and that this process is 

only important for inducing cell death in conditions of genetic abnormalities or when 

excessively induced. 

 One of the major questions raised by our studies in T lymphocytes is why the lack 

of Atg5 or Atg7 resulted in decreased T cell survival.  Both our work and the work of Pua 

et al.1 demonstrate that mitochondria are abnormal in the absence of essential autophagy 

genes, suggesting that autophagy is important in T cells for degradation of excess or 

damaged mitochondria.  While it is known that damaged mitochondria can produce toxic 

byproducts, such as reactive oxygen species, that can result in cell death, we were unable 

to rescue T cell survival with pharmacologic inhibitors of reactive oxygen species (data 

not shown).  Until Atg5-deficient T cells can be rescued from cell death, the downstream 
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cause of death from deletion of essential autophagy genes will be unknown.  Given the 

important role of Bcl-2 family members in T cell survival and the misregulation of these 

proteins in Atg7-deficient T cells1, one hypothesis is that disruption in the balance of pro- 

and anti-apoptotic Bcl-2 family members contributes to T cell death in the absence of 

autophagy genes.  One could breed Atg5flox/flox-Lck-Cre mice to mice expressing Bcl-2 in 

T cells9 to determine if overexpression of this anti-apoptotic molecule protects Atg5-

deficient T cells from death and restores peripheral T cell numbers.  Rescue of Atg5-

deficient T cell death by Bcl-2 overexpression would suggest that the T cells are dying in 

a Bax/Bad-dependent fashion, prompting further studies of the regulation of these family 

members in Atg5-deficient T cells. 

 

B cell secretion 

 Given the role of autophagy genes in osteoclast secretion, it would be interesting 

to determine if B lymphocytes lacking Atg5 are able to secrete antibody.  Atg5flox/flox-

CD19-Cre mice provide a good model system in which to study B cell antibody 

production, both in vivo and in vitro.  Antibody titers in serum from naïve Atg5flox/flox-

CD19-Cre+ mice should be measured to determine if Atg5 is important for the 

homeostasis of antibody levels.  Given that antibody levels are tightly regulated,10 a 

deficiency in B cell secretion may not be observable until the mice are challenged to 

produce an antibody response.  Injection of mice with standard, well-characterized 

antigens that elicit robust immunoglobulin production (i.e. TNP-KLH) would allow 
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measurement of specific antibody responses.  Also, B cell antibody production can be 

measured in vitro by stimulating cells with LPS and measuring total IgM levels in the 

supernatant.  Given that our anti-phosphocholine titer experiments in these mice suggest 

that Atg5-deficient B cells are able to secrete antibody, we hypothesize that antibody 

secretion will be unaffected in Atg5flox/flox-CD19-Cre+ B cells.  It is likely that autophagy 

genes are not involved in secretion in every cell type, as mice lacking Atg5 or Atg7 in 

neurons are able to survive for weeks, proving that neuronal secretion is not dramatically 

inhibited11,12. 

 

Conclusions and Future Directions: Osteoclasts 

 The function of autophagy genes in cell secretion is an area of active interest in 

our lab, given the importance of these genes in Paneth cell secretion and the work 

described in Chapter 4 in osteoclasts.  Osteoclasts provide a manipulable in vitro system 

for pursuing mechanistic questions.  Using this system we have identified that the LC3 

conjugation pathway is important for osteoclast secretion, and our data suggest that LC3 

localization to the ruffled border may be involved.  Based on this data we have developed 

a working model summarized in Figure 4-16. 

Exploring the role of LC3 in osteoclasts 

 To test our working model, one must first confirm that LC3 localization to the 

ruffled border requires LC3 conjugation.  Second, identification of the membrane(s) onto 
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which LC3 is conjugated would guide our hypotheses about the function of LC3.  Finally, 

direct assessment of LC3 function would be important to determine the mechanism of its 

action at the ruffled border.  Each of these three lines of inquiry is discussed in more 

detail below. 

 The first hypothesis predicted from our model is that LC3 conjugation is required 

for localization of GFP-LC3 to the ruffled border.  Our studies with the ATG4BC74A 

mutant suggest this conclusion, but given that this mutant binds to and sequesters LC313, 

it is possible that the inhibition in GFP-LC3 localization is simply due to sequestering of 

LC3 in the cytoplasm.  To test if conjugation is required for localization, one could 

transduce GFP-LC3 into cells lacking ATG5.  We predict that GFP-LC3 will localize to 

the ruffled border in Atg5flox/flox-LyzM-Cre- but not Atg5flox/flox-LyzM-Cre+ osteoclasts, 

indicating that Atg5 is required for LC3 localization.  This hypothesis could be further 

assessed by transducing control osteoclasts with a mutant of LC3 that cannot be 

conjugated to phosphatidylethanolamine (LC3G120A)14.  If our hypothesis is correct, then 

GFP-LC3WT, but not GFP-LC3G120A, will localize to the ruffled border.  If LC3 

conjugation is not required for localization, then one would study the functions of the 

LC3 conjugation pathway outside of the context of LC3.  For example, this pathway is 

required for conjugation of additional mammalian ATG8 homologues, including 

GABARAP, GATE16, and ATG8L15,16,17, that may be responsible for the observed 

osteoclast phenotype. 
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 If LC3 conjugation is required for its localization, it will be important to know 

what structure(s) LC3 is conjugated to within the actin ring.  Immunoelectron microscopy 

of active GFP-LC3 osteoclasts on bone should allow us to determine if the LC3 is located 

on the plasma membrane or on vesicles or autophagosomes near the ruffled border.  

Electron microscopy would also be useful to determine if there are any double-membrane 

bound vesicles in the vicinity of the ruffled border in control cells which might suggest a 

role for autophagosomes in cell secretion.   

 Finally, the function of LC3 in mediating directional secretion needs to be 

determined.  As a first step towards addressing this question, it would be useful to 

understand the kinetics of LC3 localization using live cell imaging of osteoclasts on bone 

substrate18.  Luckily, live imaging of both the dynamics of actin ring formation in 

osteoclasts and GFP-LC3 localization in macrophages has already been reported,19,18 

suggesting that it might be possible to visualize both of these processes in live 

osteoclasts.  Trafficking of lysosomes can also be visualized in live cells20. 

 Kinetic analysis experiments might explain two puzzling observations from our 

studies: first, why we observe GFP-LC3 localization in only 25% of osteoclasts, despite 

localization of cathepsin K in 50% of osteoclasts; second, why nearly 100% of cells with 

localization of GFP-LC3 in the actin ring also had localization of cathepsin K in the actin 

ring.  Three non-mutually exclusive hypotheses may explain these results.  First, LC3 

localization may function to enhance secretion (through some of potential mechanisms 

discussed below), but may not required for initial secretion.  Visualizing the kinetics of 
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lysosome and GFP-LC3 trafficking to the actin ring could address this hypothesis.  

Second, targeting of LC3 to the ruffled border may be a transient signal that rapidly 

initiates secretion.  Kinetic studies would also address this hypothesis.  Third, cathepsin 

K and LAMP1 may be targeted to the ruffled border via two distinct secretory pathways 

(i.e. secretory lysosomes and directly from the Golgi apparatus, see Chapter 1), only one 

of which requires the LC3 conjugation machinery.  To study this hypothesis, one would 

need to do a detailed analysis of cathepsin K secretion in osteoclasts.  Luckily, such an 

analysis is currently underway in the laboratory of one of our collaborators, Dr. Judith 

Klumperman.  Understanding which, if any, of these hypotheses is correct may also 

explain why Atg5- and Atg7-deficient osteoclasts still are able to form shallow bone pits 

and localize cathepsin K in a fraction of cells. 

  LC3 is a multifunctional protein that could mediate directional secretion in 

osteoclasts through several potential mechanisms.  First, LC3 interacts with many 

different proteins in the cell21,22,23,24 including p62, an important molecule in osteoclast 

biology.  Second, LC3 promotes the tethering and hemifusion of membranes25, 

suggesting it may be part of the machinery necessary for vesicle fusion with the plasma 

membrane at the ruffled border.  Third, LC3 binds to microtubules26, suggesting that it 

might be important for vesicle trafficking on the cytoskeleton.  As we do not observe 

colocalization of GFP-LC3 and cathepsin K puncta in the cell periphery in osteoclasts, 

we do not believe that LC3 is localized to secretory lysosomes in osteoclasts and will not 

discuss this hypothesis further. 
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 P62 is an attractive target for study because mutations in p62 have been 

associated with Paget's disease of bone (PDB), a human disease characterized by focal 

areas of bone degradation and hyperactive osteoclasts (reviewed in 27).  Understanding 

the role of p62 in PDB has been very complicated because of the multiple roles of this 

scaffolding protein, including interacting with many signaling molecules necessary for 

osteoclast formation28.  There is little known about the functions of p62 in osteoclasts 

outside of these osteoclastogenic signaling pathways.  LC3 targeted to the ruffled border 

may function by binding p62, localizing this important scaffold molecule to the 

resorptive microenvironment.  As a first step to understand if LC3 binding to p62 is 

potentially important for the function of LC3 at the ruffled border, one could determine if 

p62 localizes within the actin ring and colocalizes with LC3.  It would also be useful to 

determine if the interaction of these proteins is important by studying mutants of p62 that 

abolish LC3 binding29,23.  Transducing these mutants into p62-/- macrophages before 

inducing osteoclastogenesis may rescue the defect in osteoclast formation in these cells28 

and allow analysis of the function of the p62-LC3 interaction in osteoclasts. 

 LC3 is also involved in membrane tethering and hemifusion, an important 

function for autophagosome formation25.  The fusion machinery required for secretion of 

vesicles at the ruffled border in osteoclasts is unknown.  The ability of LC3 to facilitate 

membrane tethering and fusion may be important at the ruffled border for either bringing 

the vesicular membrane in proximity with the plasma membrane or for directly fusing 

these two membranes to allow release of vesicular contents.  To test this hypothesis, one 

could generate mutants of LC3 that cannot participate in membrane fusion.  These 
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mutants have already been generated and characterized in ATG8, the yeast homologue of 

LC325.  Overexpression of these mutants in osteoclasts may inhibit secretion.   

Differentiating the functions of autophagy from the functions of 

autophagy genes 

 As discussed briefly throughout this thesis, one of the major challenges that the 

field of autophagy is now facing is to understand the difference between the functions of 

autophagy genes and the autophagy pathway.  The gold standard for defining that a 

phenotype is dependent on autophagy requires demonstration that the mechanism 

involves a function of autophagosomes, such as degradation of long-lived proteins or 

organelles.  Alternatively, inhibiting the autophagy pathway at multiple points, from 

induction to autophagosome-lysosome fusion, and demonstrating that each has the same 

phenotype is highly suggestive that autophagosome formation is involved.  

Unfortunately, even processes that require proteins from multiple steps in autophagosome 

formation may not involve classical autophagy.  For example, both Beclin-1 and LC3 

localize to single-membrane bound phagosomes before phagosome-lysosome fusion19, 

suggesting co-opting of the autophagy machinery from the class III PI3K to LC3 

conjugation for phagosome maturation.   

 Our studies in osteoclasts have identified that the LC3 conjugation pathway is 

important for secretion, but we do not know if this pathway is working in the context of 

autophagosome formation or in an alternative role.  To address this question, one could 

knock down or knock out proteins in the autophagy pathway outside of the LC3 
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conjugation pathway and determine if osteoclast secretion is inhibited.  Since many of the 

upstream signaling molecules have separate functions in vesicular trafficking30,31 

(reviewed in 32), targets for knockdown must be carefully selected.  mATG9 is a 

homologue of the yeast protein ATG9 that is hypothesized to transport membrane to the 

forming autophagosome (reviewed in 33).  ATG14L is a binding partner in the Vps34-

beclin complex necessary for autophagosome induction30,31.  Knocking down these 

proteins in mammalian cells inhibits autophagosome formation34,30,31 but is not known to 

affect vesicular trafficking.  If knocking down expression of these proteins does not affect 

osteoclast secretion but still inhibits autophagosome formation in osteoclasts, this would 

demonstrate that autophagosomes are not required for osteoclast secretion.  ATG14L, and 

possibly mATG9, is important for LC3 conjugation34,30,31.  If these knockdowns do 

inhibit osteoclast secretion but also inhibit LC3 conjugation, it does not prove that 

autophagosomes are required for secretion.  The best approach is to inhibit multiple 

proteins both upstream and downstream of LC3 conjugation and demonstrate that they all 

result in defects in osteoclast secretion.  This result would be highly suggestive that 

formation of autophagosomes is important for osteoclast secretion.  The alternative 

hypothesis is that the biochemical pathway required for autophagy has an entirely 

separate and currently undefined function in secretion.  Immunoelectron microscopy 

studies to localize LC3 and electron microscopy to visualize double-membrane bound 

vesicles in osteoclasts would help distinguish between these two hypotheses. 
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Autophagy genes in cell secretion 

 Cell secretion in osteoclasts is not well understood, but a number of lines of 

evidence suggest that the vesicles involved in secretion are secretory lysosomes (see 

Chapter 1).   It is interesting to note that of the three cell types in which autophagy genes 

have been shown to be important for secretion – Paneth cells, melanocytes, and now 

osteoclasts – both melanocytes and osteoclasts utilize secretory lysosomes (reviewed in 

35).  This suggests that there may be a common mechanism employing autophagy 

machinery for the secretion of lysosomes.  Also, this may explain why some cells require 

autophagy genes for secretion, whereas other cells do not.  It would be interesting to 

determine if the role of autophagy genes in cell secretion is specific for secretory 

lysosomes, and if this role is applicable across multiple cell types. 

 Related to the hypothesis that there may be a common mechanism for the 

secretion of lysosomes that involves the autophagy machinery, a small GTPase, Rab7, is 

known to be important both for autophagosome fusion to lysosomes36,20,37  and osteoclast 

localization of vacuolar H+ ATPase to the actin ring38.  These results suggest that 

molecular machinery may be shared between autophagosome maturation and vesicular 

secretion in osteoclasts.  This may be due to a role for autophagosomes in secretion or a 

function of the LC3 conjugation pathway in recruiting shared mechanisms.  It would be 

interesting to determine if additional molecules involved in autophagosome maturation, 

such as the vesicular snare VAMP739, are also involved in vesicular secretion in 

osteoclasts and other cell types with secretory lysosomes. 
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 In conclusion, we have shown that autophagy genes have important functions in 

survival, development, mitochondrial maintenance, and secretion in primary mammalian 

cells.  We have also demonstrated that these functions are highly cell-type specific.  

Together, these results suggest that autophagy or autophagy genes have been co-opted for 

multiple functions during evolution. 
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