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ABSTRACT OF THE DISSERTATION

On the Aggregation of Subjective Inputs from Multiple Sources

by

Mithun Chakraborty

Doctor of Philosophy in Computer Science

Washington University in St. Louis, May 2017

Research Advisor: Professor Sanmay Das

When we have a population of individuals or artificially intelligent agents possessing diverse

subjective inputs (e.g. predictions, opinions, etc.) about a common topic, how should we

collect and combine them into a single judgment or estimate? This has long been a fundamen-

tal question across disciplines that concern themselves with forecasting and decision-making,

and has attracted the attention of computer scientists particularly on account of the prolifer-

ation of online platforms for electronic commerce and the harnessing of collective intelligence.

In this dissertation, I study this problem through the lens of computational social science

in three main parts: (1) Incentives in information aggregation: In this segment, I analyze

mechanisms for the elicitation and combination of private information from strategic partici-

pants, particularly crowdsourced forecasting tools called prediction markets. I show that (a)

when a prediction market implemented with a widely used family of algorithms called mar-

ket scoring rules (MSRs) interacts with myopic risk-averse traders, the price process behaves

like an opinion pool, a classical family of belief combination rules, and (b) in an MSR-based

game-theoretic model of prediction markets where participants can influence the predicted

xii



outcome but some of them have a non-zero probability of being non-strategic, the equilib-

rium is one of two types, depending on this probability – either collusive and uninformative

or partially revealing; (2) Aggregation with non-strategic agents: In this part, I am agnostic

to incentive issues, and focus on algorithms that uncover the ground truth from a sequence of

noisy versions. In particular, I present the design and analysis of an approximately Bayesian

algorithm for learning a real-valued target given access only to censored Gaussian signals,

that performs asymptotically almost as well as if we had uncensored signals; (3) Market

making in practice: This component, although tied to the two previous themes, deals more

directly with practical aspects of aggregation mechanisms. Here, I develop an adaptation of

an MSR to a financial market setting called a continuous double auction, and document its

experimental evaluation in a simulated market ecosystem.
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Chapter 1

Introduction

1.1 Overview

The main text of the Rigveda (Griffith, 1896), an ancient Indian anthology of hymns that is

one of the earliest extant literary creations of humankind, ends with the following prayer:

samān̄ı va ākūtih. samānā hr.dayāni vah. |
samānamastu vo mano yathā vah. susahāsati ||

“One and the same be your resolve, and be your minds of one accord.

United be the thoughts of all that all may happily agree.”

− r.gvedasam. hitā 10.191.4,

English translation by Ralph T.H. Griffith.

However, in most spheres of human life, thoughts differ and people do not agree on many

questions of general interest. Voters with different political leanings prefer different electoral

candidates; judges might disagree on the ranking of participants in a competition, and jury

members on whether or not the accused is guilty; economists with diverse views on the

impact of current government policies often come up with significantly different estimates

of the future gross domestic product of a country; even experts in science and technology

might disagree on questions such as “Will a manned flight to Mars occur within the next

decade?” But sometimes, for the purpose of planning, decision-making, policy formulation,

1



and suchlike, it is necessary to obtain a single answer to such a question – an answer that

can be interpreted as the collective response of the group or population under consideration.

This gives rise to the following problem:

When we have a population of individuals1 possessing potentially different sub-

jective inputs about a common topic, such as predictions on uncertain events,

noisy observations of hidden truths, etc., how should we collect and combine

them into a single judgment or estimate?

This problem can take on multiple incarnations, and various classes of methods (vote ag-

gregation, pooling, collective judgment, etc.) have been developed to address them; these

methods have traditionally been studied in academic disciplines such as economics and fi-

nance, sociology, political science, business, management, or operations research, and have

attracted the attention of computer scientists particularly on account of the proliferation

of online platforms for electronic commerce, crowdsourcing, and the harnessing of collective

intelligence (Surowiecki, 2005).

Researchers in machine learning / artificial intelligence have been exploring similar issues

under topics such as committee machines (Tresp, 2001), ensemble learning (Opitz and Maclin,

1999), and learning from expert advice (Cesa-Bianchi et al., 1997); but, in areas that lie

at the intersection of the computational and social sciences, e.g. algorithmic economics,

computational finance, computational social choice etc., this problem takes on additional

nuances: One often has to consider the goals and motivations of the providers of subjective

inputs in addition to their knowledge structures as well as the constraints and objectives of

the entity looking to aggregate these inputs.

Some of the interesting facets of the aggregation problem seen through the lens of computa-

tional social science are listed below:

• For a group with human (or, in general, strategic) members, can we take honesty in

reporting for granted? If no, how should we offer approrpiate incentives and / or

handle the potential for manipulation?

1An individual can refer to one of several human beings, institutions, artificially intelligent agents, etc.
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• In what form (e.g. probability distributions over the outcome space, point estimates,

monetary bets, etc.) are individual inputs extracted? How much control do we have

over this form? Are the inputs known to be constrained or corrupted (censoring,

additive noise, etc.) by extraneous factors?

• What is the ultimate objective of our aggregation mechanism? This ties into our

criteria for evaluating individual inputs as well as the output of the aggregator (ground

truth revealed after aggregation that serves as an objective standard for assessment,

peer responses etc.).

• Should individual-level elicitation and aggregation be performed as two decoupled suc-

cessive stages, or is it better to interweave them somehow?

Evidently, these aspects interact with each other in complex ways, and looking for a solution

that addresses all of them simultaneously is often not just impracticable but also unnecessary

since not all these issues may be relevant to a single context. In this dissertation, I have

adopted the approach of identifying and analyzing problem domains that enable us to focus

on a subset of these issues at a time while abstracting away from others; however, my

overarching goal is to develop a richer and deeper understanding of methods for subjective

input aggregation, and identify and address challenges encountered in practical applications

of these techniques. Below is a summary of the specific contributions I intend to make with

this dissertation.

1.2 Contributions

Before summarizing the contributions of this dissertation, it is worthwhile to define termi-

nology that will appear repeatedly in the remainder of the document.

We will assume that there exists an entity (a person or an organization) that is interested

in some currently uncertain event, modeled as a random variable whose realized outcome

may or may not be revealed to it in the future. We will call this entity the principal, and

sometimes the learner or the decision maker. The principal knows that there exist agents,

also called experts (or traders in a market context), each possessing a quantifiable subjective
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input bearing on that event; it does not know the values of these inputs but believes that

if it could extract and aggregate them in some principled way, the result would be the best

possible guess about the outcome.

The three broad themes that I address in the subsequent chapters are as follows:

(1) Incentives in information aggregation. In many situations, the agents might have no

instrinsic motivation to just hand over their subjective inputs to the principal; e.g. an

agent might be a meteorologist expecting compensation for reporting to the principal

the numerical estimate of the global average temperature ten years into the future that

is the product of her education, effort, and expertise. In such cases, it is imperative to

offer agents monetary or money-like incentives2, but there is a catch: If these incentives

are not carefully designed, an agent acting selfishly and rationally might lie to the

principal if she deems lying to be in her best interest.

One real-world approach towards providing such participation and truth-telling in-

centives to agents in the context of aggregating forecasts is to use prediction markets

(Wolfers and Zitzewitz, 2004; Pennock and Sami, 2007; Arrow et al., 2007) – an um-

brella term for a variety of crowdsourced forecasting tools. These online mechanisms

incentivize agents by allowing them to place bets for or against outcomes of the un-

certain event in question, or to buy and sell shares in a specially designed financial

instrument whose final monetary worth is tied to the realization of the event (e.g. the

instrument could be worth $1 per share if a Democrat wins the next US presidential

race, and is worthless otherwise). A publicly displayed property of the prediction mar-

ket – such as the betting odds or the price of the instrument – that is updated as

and when agents interact with the market (or, equivalently, report to the principal)

is interpreted as the principal’s collective forecast. Well-known examples of real-world

prediction markets include the Iowa Electronic Markets3, PredictIt4, Foresight Ex-

change5, Betfair6, and the Hollywood Stock Exchange7.

2A money-like incentive can refer to anything other than compensation in real currency that an agent
values and is willing to accept in exchange for her input, e.g. raffle tickets, reputation score within a
community, etc.

3https://tippie.biz.uiowa.edu/iem/
4https://www.predictit.org/
5http://www.ideosphere.com/
6https://www.betfair.com/
7http://www.hsx.com/
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Given the plethora of empirical evidence that prediction markets are at least as ef-

fective as more traditional means of forecasting such as surveys, polls, expert opinion

elicitation etc. (Wolfers and Zitzewitz, 2004; Graefe and Armstrong, 2011; Cowgill and

Zitzewitz, 2015), considerable effort has been devoted to figuring out, in a rigorous for-

mal sense, how these mechanisms function as collectors, aggregators, and disseminators

of information / belief, and under what circumstances they could go wrong. These are

the major research questions I address in the first (and largest) part of this dissertation.

To this end, I focus on a popular family of algorithms used to implement automated

prediction markets, called market scoring rules, abbreviated as MSRs: (a) I show that,

under reasonable assumptions about the strategic nature of participating agents, the

market’s output (the price) behaves as an aggregate function belonging to a well-known

family called opinion pools that can be viewed as a generalization of weighted aver-

aging in some respects; (b) I analyze the extent to which the predictive power of the

market is retained when some participating agents do not just have information but

also influence on the forecast event so that the introduction of the prediction market

can generate outcome manipulation incentives, and suggest a remedial modification to

the mechanism.

(2) Aggregation with non-strategic agents. The existence of selfish-rational agents who

might try to manipulate an incentivized mechanism is not the only feature of the ag-

gregation problem that makes it hard; the hardness could arise from more fundamental

issues such as how agents’ inputs are formulated and what kind of queries are feasible.

Suppose that the “hidden truth” that the principal wishes to uncover is a real-valued

quantity, and each agent is known to possess a noisy valuation thereof; if the principal

is only allowed to ask each agent whether or not her valuation lies above or below a

threshold, how should it aggregate the binarized signals thus procured so as to arrive at

a good estimate of the real-valued target efficiently? Does the principal get to choose

its threshold(s) and, if so, how should it do so? These are ideas I explore in the next

part of this dissertation, abstracting away from incentive issues, and focusing on learn-

ing from differentially informed agents under the assumption that each agent reports

a censored noisy version of some ground truth that we are interested in.
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(3) Markets in practice. This component of my dissertation, although tied to both of the

above strands, deals more directly with practical issues concerning aggregation mech-

anisms deployed “in the wild” where many aspects of agent behavior not accounted

for above come into play. While discussing theme (1), I considered a principal that de-

signs monetary incentives / compensation schemes and an agent who can only choose

what input (not necessarily consistent with her actual private information) to report –

within a market context, this translates to the market administrator dictating the pric-

ing rule, and a trader only specifying an order size (the quantity she would like to buy

or sell). If a trader does not like the current prices offered but does not mind waiting to

see if market conditions become favorable, there should be some way to accommodate

her, otherwise she might not participate, making her information unavailable to the

principal. One way of doing that in real-world financial markets is to allow a trader

to specify not just an order size but also a limit on the prices acceptable to her (the

highest price she is willing to pay if she is a buyer / the lowest she is willing to accept

if she is a seller), and then push such an order into one of two priority queues (for buy

and sell orders). How should we modify the market price-setting rule so as to make

the aggregation mechanism operate with such agents, and how do those modifications

affect the information aggregation characteristics of the system? Moreover, now that

we are in a market setting, it also makes sense to evaluate the system not just in terms

of its informative / predictive power but also market quality properties studied in the

economics and finance literatures (e.g. trading volume, social welfare, etc.). A signifi-

cant methodological difference that this theme has with the first two is that evaluation

of this complex environment is primarily based on simulation studies rather than the

use of analytical tools.

1.3 Organization of the dissertation

Theme (1) spans Chapters 2 and 3 whereas Chapters 4 and 5 are devoted to themes (2) and

(3) respectively. A survey of the existing literature relevant to each chapter as well as its

relation to the content is provided in the respective chapter. Below is a gist of each chapter:

I cite published material on which the content is based, and indicate additions, if any.
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Chapter 2. I begin the chapter by describing the design of the prediction market algorithm

called the market scoring rule (Hanson, 2003b) that I touched upon while presenting

theme (1) above. I then show that, assuming the agents participating in such a market

to be risk-averse (Mas-Colell et al., 1995), the instantaneous price which can be viewed

as the “output” of this mechanism is formally equivalent to an opinion pool (Genest

and Zidek, 1986) applied to the private inputs of the agents. After establishing this

result under the most general definition of risk-aversion, I deduce further restrictions

on our risk-averse agent model that make the price behave as one of the more familiar

members of the opinion pool family (specifically a weighted arithmetic mean and a

renormalized weighted geometric mean), and show that we can even interpret the

market mechanism as a Bayesian learner for these models.

This is joint work with Dr. Sanmay Das, and is based mainly on our paper (Chakraborty

and Das, 2015) that was accepted for a spotlight presentation at the 29th Annual Con-

ference on Neural Information Processing Systems (NIPS 2015). In this dissertation,

I provide detailed proofs of all theorems as well as additional experiments (Chapter 2

Section 2.4.3).

Chapter 3. In this chapter, I delineate a new game-theoretic model of MSR-based pre-

diction markets that Dr. Das and I built to address the following scenario: Market

participants have power to directly affect the forecast event so that the incentives

brought into the picture by the introduction of a prediction market could potentially

induce some of them to distort the outcome that the market was set up to predict but

not alter in any way (e.g. a referee in a game of basketball could have stakes in a pre-

diction market that intends to forecast the winner). I prove that, if some participants

have a non-zero probability of being non-strategic, the game-theoretic equilibrium of

this process is one of two types, depending on this probability − either collusive and

uninformative or partially revealing. Finally, I show how the compensation scheme

can be modified by incorporating ideas from the literature on peer prediction (Miller

et al., 2005) – a way of providing truth-telling incentives to agents based on what

their reports tell us about the reports of their peers (other agents participating in the

aggregation mechanism) when the hidden truth / uncertain event is never revealed to

the principal – to counteract undesirable incentives.
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This contribution is also co-authored with Dr. Das; parts of it have been published

(Chakraborty and Das, 2016) at the 25th International Joint Conference on Artificial

Intelligence (IJCAI 2016), and presented at the 4th Workshop on Social Computing

and User Generated Content (SCUGC 2014) held in conjunction with the 15th ACM

Conference on Economics and Computation (EC 2014), at the 2nd Collective Intelli-

gence Conference (CI 2014), and also as an invited talk at the 20th Conference of the

International Federation of Operational Research Societies, 2014 (IFORS 2014). I give

proofs of all theorems as well as interesting corollaries and generalizations of the model

(Chapter 3 Section 3.7) that have not been published before.

Chapter 4. Here, I discuss the problem of zeroing in on a real-valued target by observ-

ing only a sequence of censored (binarized) Gaussian samples where the principal (or

learner) gets to choose the threshold that determines how each sample is binarized;

this is followed by the design and analysis of an approximately Bayesian algorithm

that achieves this result in an asymptotically near-optimal time with respect to certain

problem parameters (i.e. almost as good as if we had access to the uncensored signals).

I share authorship for this work, which was published at the 27th Conference on Uncer-

tainty in Artificial Intelligence (UAI 2011), with Dr. Das and Dr. Malik Magdon-Ismail;

I give the proof for the main theorem in this dissertation.

Chapter 5. I describe in this chapter an adaptation of the most commonly used variety

(logarithmic) of MSRs, which takes market orders only (i.e. trading agents can only

pick a quantity to buy or sell), to a setting with limit orders (i.e. trading agents can

state a quantity as well as a limiting price), and an experimental set-up that we used

to uncover interesting properties of the resulting market ecosystem and compare to

benchmarks.

The contents of this chapter were published as a paper at the 29th AAAI Conference on

Artificial Intelligence (AAAI 2015) jointly authored with Dr. Das and Justin Peabody;

I have added some expository notes to underscore the significance of this chapter to

my dissertation.

Chapter 6. In the final chapter, I summarize the contributions made in this dissertation;

possible directions for future research relevant to each theme are already pointed out

in the respective chapter(s).
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Chapter 2

Semantics of aggregation with market

scoring rules

2.1 Introduction

Suppose that the event on which the principal needs a forecast is modeled as a random

variable and each agent’s private input as a personal probability (or distribution) on that

variable. One simple, principled approach towards achieving aggregation here is the opinion

pool (OP) which directly solicits inputs from these agents and then maps this vector of

inputs to a single probability (or distribution) based on certain axioms (Genest and Zidek

(1986)). However, this technique abstracts away from the issue of providing proper incentives

to a selfish-rational agent to reveal her private information honestly. Financial markets

approach the problem differently, offering financial incentives for traders to supply their

information about valuations and aggregating this information into informative prices. A

prediction market is a relatively novel tool that builds upon this idea, offering trade in a

financial security whose final monetary worth is tied to the future revelation of some currently

unknown ground truth.

The branch of finance that studies the rules for exchanging financial assets and their impact

on observable properties of the market is called market microstructure (Krishnamurti, 2009),

and this term also sometimes refers to a specific set of such rules, which is the sense in

which we will use it in the rest of the dissertation. Hanson (2003b) introduced a class of

microstructures for automated prediction markets called market scoring rules (MSRs) of

which the Logarithmic Market Scoring Rule (LMSR) is arguably the most widely used and
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well-studied variety. An MSR effectively acts as a cost function-based market maker – a

market maker being a type of intermediary on a trading platform always willing to take the

other side of a trade with any willing buyer or seller – re-adjusting its quoted price after

every transaction.

One of the most attractive properties of an MSR is its incentive compatibility for a myopic

risk-neutral trader. But this also means that, every time an MSR trades with such an agent,

the updated market price is reset to the subjective probability of that agent; the market

mechanism itself does not play an active role in unifying pieces of information gleaned from

the entire trading history into its current price. Ostrovsky (2012) and Iyer et al. (2014)

have shown that, with differentially informed Bayesian risk-neutral and risk-averse agents

respectively, trading repeatedly, “information gets aggregated” in an MSR-based market in

a perfect Bayesian equilibrium. However, if agent beliefs themselves do not converge, can the

price process emerging out of their interaction with an MSR still be viewed as an aggeragator

of information in some sense? Intuitively, even if an agent does not revise her belief based

on her inference about her peers’ information from market history, her conservative attitude

towards risk should compel her to trade in such a way as to move the market price not all the

way to her private belief but to some function of her belief and the most recent price; thus,

the evolving price should always retain some memory of all agents’ information sequentially

injected into the market. Therefore, the assumption of belief-updating agents may not be

indispensable for providing theoretical guarantees on how the market incorporates agent

beliefs. A few attempts in this vein can be found in the literature, typically embedded in a

broader context (Sethi and Vaughan, 2016; Abernethy et al., 2014), but there have been few

general results; see Section 2.2 for a review.

In this chapter, we develop a new unified understanding of the information aggregation char-

acteristics of a market with risk-averse agents mediated by an MSR, with no regard to how

the agents’ beliefs are formed. In fact, we demonstrate an equivalence between such MSR-

mediated markets and opinion pools. We do so by first proving that for any MSR interacting

with myopic risk-averse traders, the revised instantaneous price after every trade equals the

latest trader’s risk-neutral probability conditional on the preceding market state. We then

show that this price update rule satisfies an axiomatic characterization of opinion pooling

functions from the literature, establishing the equivalence. We identify further conditions on

agent strategy under which the market price behaves (exactly or approximately) as specific
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types of opinion pool. Our results are reminiscent of similar findings about competitive

equilibrium prices in markets with rational, risk-averse agents (Pennock (1999); Beygelzimer

et al. (2012); Millin et al. (2012) etc.), but those models require that agents learn from prices

and also abstract away from any consideration of microstructure and the dynamics of actual

price formation (how the agents would reach the equilibrium is left open). By contrast, our

results do not presuppose any kind of generative model for agent signals, and also do not

involve an equilibrium analysis – hence they can be used as tools to analyze the convergence

characteristics of the market price in non-equilibrium situations with potentially fixed-belief

or irrational agents.

2.2 Related work

Seminal work in establishing a formal relationship between asset prices and the private

information of trading agents was done by Pennock (1999) who showed that linear and

logarithmic opinion pools (see Definition 1 below) arise as special cases of the equilibrium

of his intuitive model of securities markets when all agents have generalized logarithmic

and negative exponential utilities respectively. More recently, an important line of research

(Beygelzimer et al., 2012; Millin et al., 2012; Hu and Storkey, 2014; Storkey et al., 2015)

has focused on a competitive equilibrium analysis of prediction markets under various trader

models, and found an equivalence between the market’s equilibrium price and the outcome

of an opinion pool with the same agents. Unlike these analyses that abstract away from

the microstructure, Ostrovsky (2012) and Iyer et al. (2014) show for that certain market

structures satisfying mild conditions, including MSRs, the market’s belief measure converges

in probability to the ground truth, when we have repeatedly trading and learning agents with

risk-neutral and risk-averse utilities respectively. Our contribution, while drawing inspiration

from these sources, differs in that we delve into the characteristics of the evolution of the

price rather than the properties of prices in equilibrium or upon convergence, and single out

the role played by the price-setting rule itself in inducing aggregation with no regard to how

agent beliefs are formulated.

While there has also been significant work on market properties for other microstructures

such as continuous double auctions or mediation by sophisticated market-making algorithms
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(e.g. Dave Cliff (1997); Farmer et al. (2005b); Brahma et al. (2012) and references therein)

when the agents are “zero-intelligence” or derivatives thereof (and therefore definitely not

Bayesian), this line of literature has not looked at market scoring rules in detail, and ana-

lytical results have been rare.

In recent years, the literature focusing on the MSR family has grown substantially. Chen

and Vaughan (2010) and Frongillo et al. (2012) have uncovered isomorphisms between this

type of market structure and well-known machine learning algorithms. We, on the other

hand, are concerned with the similarities between price evolution in MSR-mediated markets

and opinion pooling methods (see e.g. Garg et al. (2004)). Our work comes close to that of

Sethi and Vaughan (2016) who show analytically that the price sequence of a cost function-

based market maker with budget-limited risk-averse traders is “convergent under general

conditions”, and by simulation that the limiting price of LMSR with multi-shot but myopic

logarithmic utility agents is approximately a linear opinion pool of agent beliefs. Abernethy

et al. (2014) show that a risk-averse exponential utility agent with an exponential family

belief distribution updates the state vector of a generalization of LMSR that they propose to

a convex combination of the current market state vector and the natural parameter vector

of the agent’s own belief distribution (see their Theorem 5.2, Corollary 5.3) – this reduces to

a logarithmic opinion pool (LogOP) for classical LMSR. The LMSR-LogOP connection was

also noted by Pennock and Xia (2011) (in their Theorem 1) but with respect to an artificial

probability distribution based on an agent’s observed trade that the authors defined instead

of considering traders’ belief structure or strategies. We show how results of this type arise as

special cases of a more general MSR-OP equivalence that we establish in Section 2.4 below.

2.3 Model and definitions

The principal is interested in a binary event X ∈ {0, 1}, called the forecast event, whose

outcome will be revealed publicly at a known future date; X can represent a proposition

such as “A Democrat will win the next U.S. presidential election” or “The favorite will beat

the underdog by more than a pre-determined point spread in a game of football” or “The

next Avengers movie will hit a certain box office target in its opening week.” The opinion

of each of n agents on this event is quantified by her subjective point probability πi ∈ (0, 1)
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for X turning out to be 1, i = 1, 2, . . . , n. For the time being, we will be agnostic to how

these probabilities are generated. In such a setting, if the principal had direct access to these

πi-values, the problem would be one of simply unifying them into a consensus or aggregate

– this has been tackled in many fields using opinion pools.

2.3.1 Opinion Pool (OP)

Opinion pools have been studied for a long time, and various characterizations exist thereof

(Genest and Zidek, 1986); here, we present an axiomatic characterization due to Garg et al.

(2004) for an aggregate operator of the form p̂ = f(p1, p2, · · · , pn) ∈ [0, 1] that takes as input

the vector of probabilistic reports pi ∈ [0, 1], i = 1, 2, · · · , n submitted by n agents, also

called experts in this context.

Definition 1. A function f : [0, 1]n → [0, 1] is defined as a valid opinion pool for n proba-

bilistic reports if it satisfies the following three criteria.

1. Unanimity: If all experts agree, the aggregate also agrees with them.

2. Boundedness: The aggregate is bounded by the extremes of the inputs.

3. Monotonicity: If one expert changes her opinion in a particular direction while

all other experts’ opinions remain unaltered, then the aggregate changes in the same

direction.

Two popular opinion pooling methods are the Linear Opinion Pool (LinOP) and the Log-

arithmic Opinion Pool (LogOP) which are essentially a weighted average (or convex com-

bination) and a renormalized weighted geometric mean of the experts’ probability reports

respectively. For a binary event,

LinOP(p1, p2, · · · , pn)=
∑n

i=1 ω
lin
i pi,

LogOP(p1, p2, · · · , pn)=
∏n

i=1 p
ωlog
i
i

/[∏n
i=1 p

ωlog
i
i +

∏n
i=1(1− pi)ω

log
i

]
,

where ωlin
i , ω

log
i ≥ 0 ∀i = 1, 2, . . . , n,

∑n
i=1 ω

lin
i = 1,

∑n
i=1 ω

log
i = 1.
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The following result for recursively defined pooling functions will prove useful for establishing

our desired equivalence.

Lemma 1. For a two-outcome forecasting task, if f2(r1, r2) and fn−1(q1, q2, . . . , qn−1) are

valid opinion pools for two probabilistic reports r1, r2 and n−1 probabilistic reports q1, q2, . . . , qn−1

respectively, then f(p1, p2, . . . , pn) = f2(fn−1(p1, p2, . . . , pn−1), pn) is also a valid opinion pool

for n reports.

Proof. Recall from Definition 1 that a valid opinion pool p̂ = φ(p1, p2, . . . , pm), where

p1, p2, . . . , pm ∈ [0, 1] are reported expert probabilities of occurrence of binary event X,

must satisfy

1. Unanimity: If pi = p ∀i = 1, 2, . . . ,m, then p̂ = p.

2. Boundedness: min{p1, p2, . . . , pm} ≤ p̂ ≤ max{p1, p2, . . . , pm}.

3. Monotonicity: p̂ increases monotonically as pi increases, pj being held constant

∀j 6= i, i = 1, 2, . . . ,m, i.e. ∂φ
∂pi

> 0 everywhere ∀i.

By the condition of the lemma, all the above three properties are possessed by each each of

f2 and fn−1, and we need to prove that f has each of these properties, too.

To prove the unanimity of f : Let pi = p ∀i = 1, 2, . . . , n. Then,

f(p, p, . . . , p) = f2(fn−1(p, p, . . . , p), p)

= f2(p, p), by unanimity of fn−1,

= p, by unanimity of f2.

To prove the boundedness of f : Using the upper bounds on f2 and fn−1,

f(p1, p2, . . . , pn) ≤ max{fn−1(p1, p2, . . . , pn−1), pn}

≤ max{max{p1, p2, . . . , pn−1}, pn}

= max{p1, p2, . . . , pn−1, pn}.

14



Similarly, using the lower bounds on f2 and fn−1, we can show that f(p1, p2, . . . , pn) ≥
min{p1, p2, . . . , pn−1, pn}.

To prove the monotonicity of f : The partial derivative of f with respect to each pi,

i = 1, 2, . . . , n− 1 is given by

∂f

∂pi
=

∂

∂pi
f2(fn−1(p1, p2, . . . , pn−1), pn) =

∂f2(fn−1, pn)

∂fn−1

· ∂fn−1(p1, p2, . . . , pn−1)

∂pn
> 0

by the monotonicity of f2 and fn−1 with respect to their respective inputs. Similarly,

∂f

∂pn
=
∂f2(fn−1, pn)

∂pn
> 0

by the monotonicity of f2.

2.3.2 Market Scoring Rule (MSR)

However, these experts may not be inclined to reveal their private beliefs to the principal

without the promise of any reward in return. This brings us to the issue of information

elicitation, the first step towards information aggregation from selfish-rational agents. Elici-

tation at a single-expert level is traditionally accomplished using proper scoring rules (Brier,

1950; Good, 1952; Gneiting and Raftery, 2007).

In general, a scoring rule is a function of two variables s(p, x) ∈ R ∪ {−∞,∞}, where p is

an agent’s probabilistic prediction (density or mass function) about an uncertain event, x is

the realized or revealed outcome of that event after the prediction has been made, and the

resulting value of s is the agent’s ex post compensation for prediction. For a binary event X,

a scoring rule can just be represented by the pair (s1(p), s0(p)) which is the vector of agent

compensations for {X = 1} and {X = 0} respectively, p ∈ [0, 1] being the agent’s reported

probability of {X = 1} which may or may not be equal to her true subjective probability,

say, π = Pr(X = 1).

Assuming the expert to be risk-neutral, i.e. she will choose an action that maximizes her

subjective expectation of her raw ex post compensation, we know that she will report any
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probability value in the set P ∗s,π , arg maxp∈[0,1] [πs1(p) + (1− π)s0(p)]. A scoring rule s is

defined to be proper if it is incentive compatible for a risk-neutral expert; incentive com-

patibility is the property that it is in the expert cannot do better than reporting truthfully,

which in this setting translates to the condition: π ∈ P ∗s,π ∀π ∈ [0, 1]. The properness is

strict if π is the sole maximizer of her expected ex post score.

In addition, a two-outcome scoring rule is regular if sj(·) is real-valued except possibly that

s0(1) or s1(0) is −∞; any regular strictly proper scoring rule can written in the following

form (Gneiting and Raftery (2007)):

sj(p) = G(p) +G′(p)(j − p), j ∈ {0, 1}, p ∈ [0, 1], (2.1)

G : [0, 1]→ R is a strictly convex function with G′(·) as a sub-gradient which is real-valued

expect possibly that −G′(0) or G′(1) is ∞; if G(·) is differentiable in (0, 1), G′(·) is simply

its derivative.

A classic example of a regular strictly proper scoring rule is the logarithmic scoring rule:

s1(p) = b ln p; s0(p) = b ln(1− p), where b > 0 is a free parameter. (2.2)

In principle, if there are n risk-neutral experts, the principal could promise each of them a

reward according to any strictly proper scoring rule, hence elicit their honest reports sepa-

rately, and then combine these reports perhaps using an opinion pooling method; however,

the principal’s total payout (“loss” or cost of information acquisition) would then be O(n).

To circumvent this issue, Hanson (2003b) introduced an extension of a scoring rule wherein

the principal initiates the process of information elicitation by making a baseline report p0,

and then elicits publicly declared reports pi sequentially from n agents; the ex post compen-

sation cx(pi, pi−1) received by agent i from the principal, where x is the realized outcome of

event X, is the difference between the scores assigned to the reports made by herself and

her predecessor:

cx(pi, pi−1) , sx(pi)− sx(pi−1), x ∈ {0, 1}. (2.3)

If each agent acts non-collusively, risk-neutrally, and myopically (as if her current interaction

with the principal is her last), then the incentive compatibility property of a strictly proper
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score still holds for the sequential version. Moreover, it is easy to show that the principal’s

worst-case payout (loss) is bounded regardless of agent behavior. In particular, for the two-

outcome logarithmic score, the loss bound for p0 = 1/2 is b ln 2; b can be referred to as the

principal’s loss parameter.

Definition 2. We call a market scoring rule well-behaved if the underlying scoring rule is

regular and strictly proper, and the associated convex function G(·) (as in (2.1)) is continuous

and thrice-differentiable, with 0 < G′′(p) <∞ and |G′′′(p)| <∞ for 0 < p < 1.

A sequentially shared strictly proper scoring rule of the above form can also be interpreted

as a cost function-based prediction market mechanism offering trade in an Arrow-Debreu

(i.e. (0, 1)-valued) security written on the event X, hence the name “market scoring rule”.

The cost function is a strictly convex function of the total outstanding quantity of the

security that determines all execution costs; its first derivative (the cost per share of buying

or the proceeds per share from selling an infinitesimal quantity of the security) is called

the market’s “instantaneous price”, and can be interpreted as the market maker’s current

risk-neutral probability (Chen and Pennock (2007)) for {X = 1}, the starting price being

equal to the principal’s baseline report p0. Trading occurs in discrete episodes 1, 2, . . . , n, in

each of which an agent orders a quantity of the security to buy or sell given the market’s

cost function and the (publicly displayed) instantaneous price. Since there is a one-to-one

correspondence between agent i’s order size and pi, the market’s revised instantaneous price

after trading with agent i, an agent’s “action” or trading decision in this setting is identical

to making a probability report by selecting a pi ∈ [0, 1]. If agent i is risk-neutral, then pi is,

by design, her subjective probability πi. This view of MSRs is useful for operational purposes

but not relevant to the theoretical results in this chapter; please refer to Hanson (2003b);

Chen and Pennock (2007) for further details. However, we will return to it in Chapter 5

when we describe experiments with an algorithmic trading agent based on extensions to the

logarithmic market scoring rule (LMSR).

2.4 MSR behavior with risk-averse myopic agents

We first present general results on the connection between sequential trading in an MSR-

mediated market with agents having risk-averse utility (see below) and opinion pooling, and
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then give a more detailed picture for representative utility functions without and with budget

constraints in Sections 2.4.1, 2.4.2, and 2.4.3.

Suppose that, in addition to a belief πi = Pr(X = 1), each agent i has a continuous utility

function of wealth ui(c), where c ∈ [cmin
i ,∞] denotes her (ex post) wealth, i.e. her net

compensation from the market mechanism after the realization of X defined in (2.3), and

cmin
i ∈ [−∞, 0] is her minimum acceptable wealth (a negative value suggests tolerance of

debt); ui(·) satisfies the usual criteria of non-satiation i.e. u′i(c) > 0 except possibly that

u′i(∞) = 0, and risk aversion, i.e. u′′i (c) < 0 except possibly that u′′i (∞) = 0, through out

its domain (Mas-Colell et al., 1995); in other words ui(·) is strictly increasing and strictly

concave. Additionally, we require its first two derivatives to be finite and continuous on

[cmin
i ,∞] except that we tolerate u′i(c

min
i ) = ∞, u′′i (c

min
i ) = −∞. Note that, by choosing

a finite lower bound cmin
i on the agent’s wealth, we can account for any starting wealth or

budget constraint that effectively restricts the agent’s action space.

Lemma 2. If |cmin
i | <∞, then there exist lower and upper bounds, pmin

i ∈ [0, pi−1] and pmax
i ∈

[pi−1, 1] respectively, on the feasible values of the price pi to which agent i can drive the market

regardless of her belief πi, where pmin
i = s−1

1 (cmin
i + s1(pi−1)) and pmax

i = s−1
0 (cmin

i + s0(pi−1)).

Proof. Agent i’s ex post wealth for trading in such a way as to revise the market price from

pi−1 to any p̃ ∈ [0, 1] is cx(p̃, pi−1) for outcome x but, from the constraints imposed by the

utility function, this wealth cannot be smaller than cmin
i for any x. Thus,

c1(p̃, pi−1) ≥ cmin
i

⇒ s1(p̃)− s1(pi−1) ≥ cmin
i

⇒ s1(p̃) ≥ cmin
i + s1(pi−1)

⇒ p̃ ≥ s−1
1 (cmin

i + s1(pi−1)) = pmin
i ,

since s1(·) is strictly increasing (hence invertible). Also, since cmin
i ≤ 0,

s1(pmin
i ) = cmin

i + s1(pi−1) =⇒ s1(pmin
i ) ≤ s1(pi−1) =⇒ pmin

i ≤ pi−1.

Similarly, from the inequality c0(p̃, pi−1) ≥ cmin
i and the decreasing monotonicity of s0(·), we

can show that p̃ ≤ s−1
0 (cmin

i + s0(pi−1)) = pmax
i ≥ pi−1.
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Since the latest price pi−1 can be viewed as the market’s current “state” from myopic agent

i’s perspective, the agent’s final utility depends not only on her own action pi and the

extraneously determined outcome x but also on the current market state pi−1 she encounters.

The optimal action of myopic risk-averse agent i is then given by

pi = arg max
p∈[0,1]

[πiui(c1(p, pi−1)) + (1− πi)ui(c0(pi, pi−1))] .

This leads us to the main result of this section, Theorem 1. Here, we sketch and discuss the

major implications of the theorem; a detailed proof can be found in Appendix A Section A.1.

Theorem 1. If a well-behaved market scoring rule for an Arrow-Debreu security with a start-

ing instantaneous price p0 ∈ (0, 1) trades with a sequence of n myopic agents with subjective

probabilities π1, . . . , πn ∈ (0, 1) and risk-averse utility functions of wealth u1(·), . . . , un(·) as

above, then the updated market price pi after every trading episode i ∈ {1, 2, . . . , n} is equiv-

alent to a valid opinion pool for the market’s initial baseline report p0 and the subjective

probabilities π1, π2, . . . , πi of all agents who have traded up to (and including) that episode.

Proof sketch. For every trading epsiode i, by setting the first derivative of agent i’s

expected utility to zero, and analyzing the resulting equation, we can arrive at the following

lemmas.

Lemma 3. Under the conditions of Theorem 1, if pi−1 ∈ (0, 1), then the revised price pi

after agent i trades is the unique solution in (0, 1) to the fixed-point equation:

pi =
πiu
′
i(c1(pi, pi−1))

πiu′i(c1(pi, pi−1)) + (1− πi)u′i(c0(pi, pi−1))
. (2.4)

Since p0 ∈ (0, 1), and πi ∈ (0, 1) ∀i, pi is also confined to (0, 1) ∀i, by induction.

Lemma 4. The implicit function pi(pi−1, πi) described by (A.4) has the following properties:

1. pi = πi (or pi−1) if and only if πi = pi−1.

2. 0 < min{pi−1, πi} < pi < max{pi−1, πi} < 1 whenever πi 6= pi−1, 0 < πi, pi−1 < 1.

3. For any given pi−1 (resp. πi), pi is a strictly increasing function of πi (resp. pi−1).
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Evidently, properties 1, 2, and 3 above correspond to axioms of unanimity, boundedness, and

monotonicity respectively (see Definition 1). Hence, pi(pi−1, πi) is a valid opinion pooling

function for pi−1, πi. Finally, since (A.4) defines the opinion pool pi recursively in terms of

pi−1 ∀i = 1, 2, . . . , n, we can invoke Lemma 1 to obtain the desired result. �

There are several points worth noting about this result.

• Since the updated market price pi is also equivalent to agent i’s action (Section 2.3.2),

the R.H.S. of (A.4) is agent i’s risk-neutral probability (Pennock (1999)) of {X = 1},
given her utility function, her action, and the current market state. Thus, Lemma 3

is a natural extension of the elicitation properties of an MSR. MSRs, by design, elicit

subjective probabilities from risk-neutral agents in an incentive compatible manner; we

show that, in general, they elicit risk-neutral probabilities when they interact with risk-

averse agents. Lemma 3 is also consistent with the observation of Pennock (1999) that,

for all belief elicitation schemes based on monetary incentives, an external observer

can only assess a participant’s risk-neutral probability uniquely; she cannot discern

the participant’s belief and utility separately.

• Observe that this pooling operation is accomplished by an MSR even without direct

revelation.

• Notice the presence of the market maker’s own initial baseline p0 as a component in the

final aggregate; however, for the examples we study below, the impact of p0 diminishes

with the participation of more and more informed agents, and we conjecture that this

is a generic property.

In general, the exact form of this pooling function is determined by the complex interaction

between the MSR and agent utility, and a closed form of pi from (A.4) might not be attainable

in many cases. However, given a paticular MSR, we can venture to identify agent utility

functions which give rise to well-known opinion pools. Hence, for the rest of this paper,

we focus on the logarithmic market scoring rule (LMSR), one of the most popular tools for

implementing real-world prediction markets.
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For the logarithmic market scoring rule (LMSR),

c1(pi, pi−1) = b ln

(
pi
pi−1

)
, c0(pi, pi−1) = b ln

(
1− pi

1− pi−1

)
so that equation (A.4) can be rewritten as

pi
1− pi

=
πi

1− πi
·
u′i

(
b ln
(

pi
pi−1

))
u′i

(
b ln
(

1−pi
1−pi−1

)) . (2.5)

2.4.1 LMSR and constant absolute risk aversion (CARA) utility:

LogOP

Theorem 2. The only risk-averse utility function for which myopic agent i, having a sub-

jective belief πi ∈ (0, 1), and trading with an LMSR market with parameter b and current

instantaneous price pi−1, results in the market’s updated price pi being identical to a loga-

rithmic opinion pool between the current price and the agent’s subjective belief, i.e.

pi = παii p
1−αi
i−1

/ [
παii p

1−αi
i−1 + (1− πi)αi(1− pi−1)1−αi

]
, αi ∈ (0, 1), (2.6)

is given by

ui(c) = τi (1− exp (−c/τi)) , c ∈ R ∪ {−∞,∞}, constant τi ∈ (0,∞), (2.7)

the aggregation weight is αi = τi/b
1+τi/b

.

The proof is in Appendix A Section A.1.1. Note that (A.9) is a standard formulation of the

CARA (or negative exponential) utility function with risk tolerance τi; smaller the value of

τi, higher is agent i’s aversion to risk. The unbounded domain of ui(·) indicates a lack of

budget constraints; risk aversion comes about from the fact that the range of the function

is bounded above (by its risk tolerance τi) but not bounded below.

Moreover, the LogOP equation (A.8) can alternatively be expressed as a linear update in

terms of log-odds (i.e. logit functions of probabilities), another popular means of formulating
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one’s belief about a binary event:

l(pi) = αil(πi) + (1− αi)l(pi−1), l(p) = ln
(

p
1−p

)
∈ [−∞,∞] for p ∈ [0, 1]. (2.8)

Aggregation weight and risk tolerance: Since αi is an increasing function of an agent’s

risk tolerance relative to the market’s loss parameter (the latter being, in a way, a measure of

how much risk the market maker is willing to take), identity (2.8) implies that the higher an

agent’s risk tolerance, the larger is the contribution of her belief towards the changed market

price, which agrees with intuition. Also note the interesting manner in which the market’s

loss parameter effectively scales down an agent’s risk tolerance, enhancing the inertia factor

(1− αi) of the price process.

Bayesian interpretation: The Bayesian interpretation of LogOP in general is well-known

(Bordley, 1982); we restate it here in a form that is more appropriate for our prediction

market setting. We can recast (A.8) as

pi =
pi−1

(
πi
pi−1

)αi
pi−1

(
πi
pi−1

)αi
+ (1− pi−1)

(
1−πi

1−pi−1

)αi .
This shows that, over the ith trading episode ∀i, the LMSR-CARA agent market environment

is equivalent to a Bayesian learner performing inference on the point estimate of the probabil-

ity of the forecast event X, starting with the common-knowledge prior Pr(X = 1) = pi−1, and

having direct access to πi (which corresponds to the “observation” for the inference problem),

the likelihood function associated with this observation being L (X = x|πi) ∝
∣∣∣ 1−x−πi

1−x−pi−1

∣∣∣αi ,
x ∈ {0, 1}.

Sequence of one-shot traders: If all n agents in the system have CARA utilities with

potentially different risk tolerances, and trade with LMSR myopically only once each in

the order 1, . . . , n, then the “final” market log-odds after these n trades, on unfolding the

recursion in (2.8), is given by l(pn) = α̃n0 l(p0) +
∑n

i=1 α̃
n
i l(πi). This is a LogOP where

α̃n0 =
∏n

i=1(1 − αi) determines the inertia of the market’s initial price, which diminishes as

more and more traders interact with the market, and α̃nj , j ≥ 1 quantifies the degree to which

an individual trader impacts the final (aggregate) market belief; α̃nj = αj
∏n

i=j+1 (1− αi),
j = 1, . . . , n− 1, and α̃nn = αn.
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Interestingly, the weight of an agent’s belief depends not only on her own risk tolerance

but also on those of all agents succeeding her in the trading sequence (lower weight for a

more risk tolerant successor, ceteris paribus), and is independent of her predecessors’ utility

parameters. This is sensible since, by the design of an MSR, trader i’s belief-dependent

action influences the action of each of (rational) traders i + 1, i + 2, . . . so that the action

of each of these successors, in turn, has a role to play in determining the market impact of

trader i’s belief.

In particular, if τj = τ > 0 ∀j ≥ 1, then the aggregation weights satisfy the inequalities

α̃nj+1/α̃
n
j = 1 + τ/b > 1 ∀j = 1, · · · , n− 1, i.e. LMSR assigns progressively higher weights to

traders arriving later in the market’s lifetime when they all exhibit identical constant risk

aversion. This seems to be a reasonable aggregation principle in most scenarios wherein the

amount of information in the world improves over time. Moreover, in this situation, α̃n1/α̃
n
0 =

τ/b which indicates that the weight of the market’s baseline belief in the aggregate may be

higher than those of some of the trading agents if the market maker has a comparatively high

loss parameter. This strong effect of the trading sequence on the weights of agents’ beliefs

is a significant difference between the one-shot trader setting and the market equilibrium

setting where each agent’s weight is independent of the utility function parameters of her

peers.

Convergence: If agents’ beliefs are themselves independent samples from the same distri-

bution P over [0, 1], i.e. πi ∼i.i.d. P ∀i, then by the sum laws of expectation and variance,

E [l(pn)] = α̃n0 l(p0) + (1− α̃n0 )Eπ∼P [l(π)] ; Var [l(pn)] = Varπ∼P [l(π)]
∑n

i=1(α̃ni )2.

Hence, using an appropriate concentration inequality (Boucheron et al. (2004)) and the

properties of the α̃ni ’s, we can show that, as n increases, the market log-odds ratio l(pn)

converges to Eπ∼P [l(π)] with a high probability; this convergence guarantee does not require

the agents to be Bayesian.
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2.4.2 LMSR and an atypical utility with decreasing absolute risk

aversion: LinOP

Theorem 3. The only risk-averse utility function for which myopic agent i, having a sub-

jective belief πi ∈ (0, 1), and trading with an LMSR market with parameter b and current

instantaneous price pi−1, results in the market’s updated price pi, results in the market’s

updated price pi being identical to a linear opinion pool between the current price and the

agent’s subjective belief, i.e.

pi = βiπi + (1− βi)pi−1, for some constant βi ∈ (0, 1), (2.9)

is given by

ui(c) = ln(exp((c+Bi)/b)− 1), c ≥ −Bi, (2.10)

where Bi > 0 represents agent i’s budget, the aggregation weight being βi = 1− exp(−Bi/b).

The proof is in Appendix A Section A.1.2. To the best of our knowledge, the above atypical

utility function in (A.13) has not been described before: Its domain is bounded below, and

it below, and it possesses a positive, strictly decreasing Arrow-Pratt absolute risk aversion

measure (Mas-Colell et al., 1995) Ai(c) = −u′′i (c)/u′i(c) = 1
b(exp((c+Bi)/b)−1)

for any b, Bi > 0.

Note that, unlike in Theorem 2, the equivalence here requires the agent utility function to

depend on the market maker’s loss parameter b (the scaling factor in the exponential). Since

the microstructure is assumed to be common knowledge, as in traditional MSR settings, the

consideration of an agent utility that takes into account the market’s pricing function is not

unreasonable.

Since the domain of utility function (A.13) is bounded below, we can derive πi-independent

bounds on possible values of pi from Lemma 2: pmin
i = (1− βi)pi−1, pmax

i = βi + (1− βi)pi−1.

Hence, equation (A.12) becomes pi = πip
max
i + (1− πi)pmin

i , i.e. the revised price is a linear

interpolation between the agent’s price bounds, her subjective probability itself acting as the

interpolation factor.
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Aggregation weight and budget constraint: Evidently, the aggregation weight of

agent i’s belief, βi = (1 − exp(−Bi/b)), is an increasing function of her budget normalized

with respect to the market’s loss parameter; it is, in a way, a measure of her relative risk

tolerance. Thus, broad characteristics analogous to the ones in Section 2.4.1 apply to these

aggregation weights as well, with the log-odds ratio replaced by the actual market price.

Bayesian interpretation: Under the mild technical assumption that agent i’s belief

πi ∈ (0, 1) is rational, and her budget Bi > 0 is such that βi ∈ (0, 1) is also rational, it

is possible to obtain positive integers ri, Ni and a positive rational number mi−1 such that

πi = ri/Ni and βi = Ni/(mi−1 + Ni). Then, we can rewrite the LinOP equation (A.12)

as pi = ri+pi−1mi−1

mi−1+Ni
, which is equivalent to the posterior expectation of a beta-binomial

Bayesian inference procedure described as follows: The forecast event X is modeled as the

(future) final flip of a biased coin with an unknown probability of heads. In episode i,

the principal (or aggregator) has a prior distribution Beta(µi−1, νi−1) over this probability,

with µi−1 = pi−1mi−1, νi−1 = (1 − pi−1)mi−1. Thus, pi−1 is the prior mean and mi−1 the

corresponding “pseudo-sample size” parameter. Agent i is non-Bayesian, and her subjective

probability πi, accessible to the aggregator, is her maximum likelihood estimate associated

with the (binomial) likelihood of observing ri heads out of a private sample of Ni independent

flips of the above coin (Ni is common knowledge). Note that mi−1, Ni are measures of

certainty of the aggregator and the trading agent respectively, and the latter’s normalized

budget Bi/b = ln(1+Ni/mi−1) becomes a measure of her certainty relative to the aggregator’s

current state in this interpretation.

Sequence of one-shot traders and convergence: If all agents have utility (A.13)

with potentially different budgets, and trade with LMSR myopically once each, then the

final aggregate market price is given by pn = β̃n0 p0 +
∑n

i=1 β̃
n
i πi, which is a LinOP where

β̃n0 =
∏n

i=1(1−αi), β̃nj = βj
∏n

i=j+1 (1− βi) ∀j = 1, . . . , n− 1, β̃nn = βn. Again, all intuitions

about α̃nj from Section 2.4.1 carry over to β̃nj . Moreover, if πi ∼i.i.d. P ∀i, then we can proceed

exactly as in Section 2.4.1 to show that, as n increases, pn converges to Eπ∼P [π] with a high

probability.

Implications for logarithmic utility: Theorem 3 is somewhat surprising since it is

logarithmic utility that has traditionally been found to effect a LinOP in a market equilibrium

(Pennock, 1999; Beygelzimer et al., 2012; Storkey et al., 2015). Of course, our results do
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not pertain to an equilibrium / convergence setting, but in light of similarities (elaborated

on in Section 2.4.3) between utility function (A.13) and logarithmic utility, it is perhaps not

unreasonable to ask whether the logarithmic utility-LinOP connection is still maintained

approximately for LMSR price evolution under some conditions.

2.4.3 LMSR and logarithmic utility

In this section, we shall explore the idea mentioned above in Section 2.4.2 that agents with

logarithmic utility induce an approximate linear opinion pool in a LMSR market under

certain conditions.

Comparison of utility function (A.13) with logarithmic utility: The two utility

functions under consideration are

uatyp(c;B, b) = ln(exp((c+B)/b)− 1), c ≥ B,

ulog(c;w) = ln(c+ w), c ≥ w

where constants B,w ∈ (0,∞) are the respective budgets. First note that both are strictly in-

creasing and strictly concave functions with domains bounded below and decreasing absolute

risk aversion, since the respective Arrow-Pratt measures are Aatyp(c;B, b) = 1
b(exp((c+B)/b)−1)

and Alog(c;w) = 1
c+w

. Moreover, uatyp(c) behaves approximately as a logarithmic utility for

small values of (c + B)/b and as a linear utility (corresponding to risk-neutrality) for large

values thereof.

(c+B)/b� 1 =⇒ uatyp(c;B, b) ≈ ln(1 + (c+B)/b− 1) = ln(c+B)− ln b ≡ ln(c+B);

(c+B)/b� 1 =⇒ uatyp(c;B, b) ≈ ln exp((c+B)/b) = (c+B)/b ≡ c,

using first order approximations, and applying the fact that a utility function is (strategically)

equivalent to any positive affine transformation of itself.

We provide a visual contrast of the above utility functions in Figure 2.1: Note that for

b = B = 1, the two functions are very close to each other for small (negative and close to

−B) values of wealth c. From the graphs, it appears to be a reasonable conjecture that the
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Figure 2.1: Comparison of a logarithmic utility function ulog(c;B) = ln(c + B), c ≥ −B,
where B = 1 is the (positive) budget, with various instances of the atypical decreasing
absolute risk aversion utility function (A.13) uatyp(c;B, b) = ln(exp((c+B)/b)− 1) with the
same budget B = 1 but different scaling factors b = 0.1, 1, 10.

two utility functions are most similar, in the sense that the switch in the nature of (A.13)

from approximately logarithmic to approximately linear occurs at a higher value of wealth,

for values of b that are comparable to B.

Proposition 1. For a myopic agent with a subjective probability πi ∈ (0, 1) and a logarithmic

utility function with budget wi ∈ (0,∞), i.e.

ui(c) = ln(wi + c), c ≥ −wi,
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the updated instantaneous price of a LMSR market with loss parameter b after interaction

with the agent can be written as

pi = p̂i + ∆, (2.11)

where p̂i is a LinOP of πi and pi−1 given by

p̂i = (1− exp(−w̃i))πi + exp(−w̃i)pi−1, w̃i = wi/b,

and the error term is

∆ = πi(1− pi)
∑∞

j=2
1
j

(
pmax
i −pi
1−pi

)j
− (1− πi)pi

∑∞
j=2

1
j

(
pi−pmin

i

pi

)j
,

with pmin
i = pi−1 exp(−w̃i) and pmax

i = 1 − (1 − pi−1) exp(−w̃i) being the lower and upper

bounds on the price pi imposed by the budget constraint.

The proof is in Appendix 2 Section A.2.

Approximation of actual pi by p̂i: If, instead of the Maclaurin series in the above

proof of Proposition 1, we had used the first-order approximation − ln(1− x) ≈ x, which is

reasonable for |x| � 1,8 we would have obtained pi ≈ p̂i. Informally, the smaller the agent’s

normalized budget w̃i, the smaller the range
[
pmin
i , pmax

i

]
of feasible values of pi, hence the

smaller the fractions (pi− pmin
i )/pi and (pmax

i − pi)/(1− pi) are, hopefully leading to a better

approximation. But this might not even be necessary for achieving a small magnitude of

∆i which is the difference of two terms of comparable orders. On eyeballing the expression

for ∆i, it appears to be roughly two orders of magnitude smaller than p̂i. Since the exact

dependence of the approximation error on the value of w̃i is hard to figure out analytically,

we adopt a simulation-based approach towards exploring this relationship, described below.

But, before that, we perform a quick sanity check on the approximation under consideration.

From (A.19), it is evident that

lim
πi↘0

pi = pmin
i = lim

πi↘0
p̂i; lim

πi↗1
pi = pmax

i = lim
πi↗1

p̂i,

8Note that the relative error of the linear approximation of the logarithmic function, i.e.
∣∣∣x−f(x)f(x)

∣∣∣, where

f(x) = − ln(1− x), is at most 10% for x ≤ 0.193.
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indicating that the actual and approximate updated market prices coincide for extreme agent

beliefs.

Experiments: We ran 5× 9 sets of 1000 simulations each for getting a rough idea about

the quality of the approximation pi ≈ p̂i. For each simulation, we generated a sequence of

n = 100 agents defined by their time-invariant belief-budget pairs {(πi, wi)}ni=1. Since the

parameter of interest is the normalized budget w̃i, the exact value of the LMSR loss parameter

b is immaterial, and we set it to 1. We sampled the w̃i’s uniformly at random from the

interval [0, w̃max], w̃max ∈ {0.1, 0.2, 0.25, 0.5, 0.75}. The beliefs were random samples from the

distribution Beta(ptrue, 1−ptrue), ptrue ∈ {0.1, 0.2, . . . , 0.9}. Thus our knowledge model was

that there was a “true” underlying distibution, Pr(X = 1) = ptrue, according to which nature

would decide the forecast event X in the future, and each agent had some idiosyncratic noisy

version πi of this ptrue, the variability of the agents’ beliefs being represented by the above

Beta distribution with mean α
α+β

= ptrue and pseudo-sample size (confidence) parameter

(α + β) held constant at 1 (α and β denote standard parameters of a Beta distribution).

Over the n trading episodes, we computed two price trajectories starting at p0 = 0.5 each,

one induced by each agent maximizing her myopic expected logarithmic utility9, and the

other by the approximate price update equation that always rejects the error term in (2.11).

At the end of each simulation, we evaluated the root-mean-squared deviation between these

two price trajectories, and averaged these values over all 1000 simulations in the set to obtain

the “mean RMSD between true and approximate price processes” which serves as our error

measure for the approximation.

We report our results in Figures 2.2 and 2.3.

Figure 2.2 gives a quantification of the approximation error for various combinations of

model parameter values. On eyeballing the sample trajectories in Figure 2.3, the path of

approximate prices (dashed black) seems quite close to the path of true prices (solid green),

more so for the lower value of w̃max, as expected; also note the high price volatility in panel

(b) corresponding to the higher agent budgets, which is understandable since the agent is

9For agent i, we discretized the possible range of pi, i.e. [pmin
i , pmax

i ] in steps of 10−4, computed the vector
of expected logarithmic utility values for these discrete pi values, and chose the pi-value corresponding to
the maximum entry in this vector as the updated price.
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Figure 2.2: The error measure increases with increasing difference between ptrue and p0 = 0.5
for any fixed w̃max, and also with an increase in w̃max for any given ptrue-value; nevertheless,
the error appears to be small even for higher values of w̃max (less than 0.03 for 0.1 ≤ ptrue ≤
0.9, w̃max ≤ 0.75). Error bars are not shown since standard errors are consistently two orders
of magnitude smaller than corresponding sample means.

now closer to being risk-neutral. The main takeaway message from our experiments is that

the approximation seems reasonable for a wide range of values of ptrue and w̃max.

We also studied the dependence of the error measure on the parameter (α + β) which is

inversely related to the variance of the traders’ beliefs. We fixed ptrue = 0.7 and varied

(α + β) over {0.1, 0.25, 0.5, 1, 1.5, 2.5, 5, 7.5, 10}. The results are reported in Figure 2.4. For

both w̃max = 0.2 and 0.5, we see that this error measure peaks at 1 and then drops off slowly

as (α + β) increases further.
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Figure 2.3: Price trajectories for two sample simulations with w̃max = 0.2 and w̃max = 2 are
displayed in panels (a) and (b) respectively, ptrue = 0.7 for both. “Lower bound” (dashed
blue curve) and “Upper bound” (dashed red curve) for each trading epsiode i correspond to
price bounds pmin

i and pmax
i respectively.

2.5 Discussion and future work

We have established the correspondence of a well-known securities market microstructure

to a class of traditional belief aggregation methods and, by extension, Bayesian inference

procedures in two important cases. An obvious next step is the identification of general

conditions under which a MSR and agent utility combination is equivalent to a given pooling

operation.

Another research direction is extending our results to a sequence of agents who trade re-

peatedly until “convergence”, taking into account issues such as the order in which agents

trade when they return, the effects of the updated wealth after the first trade for agents with

budgets, etc.

However, there is an implicit assumption common to all the results cited and presented

in this chapter – the outcome of the forecast event, which serves as the ground truth for

verifying all agents’ reports and hence deciding their payoffs, is extraneously determined,

and is beyond all agents’ control. Prediction markets are often used in situations where this
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Figure 2.4: Variation of the approximation error measure in our simulations with respect to
the pseudo-sample size (confidence) parameter of the distribution of agent beliefs.

assumption is violated to a greater or lesser degree – and it is one of these situations that

we will analyze in depth in Chapter 3.
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Chapter 3

Outcome manipulation in incentivized

collective forecasting mechanisms

3.1 Introduction

In Chapter 2, we saw how prediction markets use the idea of offering trade in financial instru-

ments for aggregating and disseminating private information dispersed among a potentially

diverse crowd. However, attention is seldom paid in the literature on prediction markets to

the possibility that market participants might have some degree of control on the outcome of

the forecast event, and hence the presence of a prediction market may make agents affecting

the outcome act differently than they otherwise would. In fact, sometimes it is this very

power to affect outcomes that gives agents the informational edge that such markets get

their value from.

Consider three canonical real-world examples where prediction markets (or betting markets)

have demonstrated their forecasting ability to great effect: elections / politics Berg et al.

(2008), sporting events Wolfers and Zitzewitz (2004), and software product releases Cowgill

and Zitzewitz (2015). In each of these cases, it is easy to see how the presence of a prediction

market on the event may distort incentives. A congressional staffer or member of congress

may know more about the probable outcome of a key vote than the general public, but she

is also in a position to influence said outcome. A referee or player has substantial ability to

influence the results of a game. A software engineer has the potential to delay (or speed up)

the release of a product.
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When trading agents can influence the event on which the market is written to such an

extent that the outcome cannot be considered exogenous, it is natural to ask two questions:

(1) Are market prices still informative of the forecast event, i.e. how much do they still

tell us about the realized outcome?

(2) Are the actions of the outcome-deciders still truthful, i.e. do they take the same actions

that they would in the absence of the prediction market?

While it is acknowledged that prediction markets have value as aids in making business and

policy decisions, they have gone through cycles of hype and bust for reasons that include reg-

ulatory concerns about manipulation, the emblematic anecdote in this vein being the failure

of DARPA’s proposed policy analysis markets (Hanson, 2007b). While their actual proposed

range and purpose was more complex, they became caricatured in the media as “terrorism

futures” (Clifton, 2003), and the project was canceled almost as soon as information about

it became publicly widespread. Stiglitz (July 31, 2003) pointed out some issues with the

idea in an Op-Ed piece:

Did [Poindexter] believe there is widespread information about terrorist activity

not currently being either captured or appropriately analyzed by the “experts”

in the FBI and the CIA? Did he believe that the 1,000 people “selected” for the

new futures program would have this information? If so, shouldn’t these people

be investigated rather than rewarded?

But there are more fundamental problems with the idea. If trading is anonymous,

then it could be subject to manipulation, particularly if the market has few

participants, providing a false sense of security or an equally dangerous false

sense of alarm. If trading is not anonymous, then anyone with information about

terrorism would be, understandably, reluctant to trade on it. In that case, the

market would not serve its purpose.

There are obviously prediction markets that will not work, but stock and futures markets

have been used for a long time as forecasting tools, and prediction markets are similar in

essence. The key is to understand when these markets may be prone to manipulation and

how much to trust them. To this end, we propose and analyze a new model for studying
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manipulative behavior that captures two aspects of real-world prediction markets: (1) agents

directly affect the forecast event, and (2) some of the outcome-deciding agents may not

participate in the prediction market (e.g. employees who have an impact on the outcome

of a product launch typically would not all take part in the company’s in-house prediction

market for its release date). In markets where an individual has a small effect on the outcome

(like large elections), agents’ incentives for manipulation are likely to be weak. With this in

mind, we mainly focus on a two-stage game-theoretic model of a market with two “players”

or agents who affect the outcome and can also trade on it (Sections 3.3 and 3.4), and then

discuss how our insights extend to models with more players in Section 3.7.

But, before getting into the technical details, we provide an informal overview of our model

in Section 3.1.1, followed by a summary of the major contributions of this chapter in Sec-

tion 3.1.2, and review of relevant literature in Section 3.2.

3.1.1 A model for manipulation

In our two-player model, the agents are called Alice and Bob; before the game commences,

each of them receives a private signal about some underlying entity. In the first stage of

the game, both players have the opportunity to participate (sequentially), once each, in a

prediction market mediated by a (variant of a) market scoring rule (MSR) introduced in

Chapter 2. Alice moves first; Bob may or may not participate in trading depending on his

type, and, if he does, he goes second. In the second stage, the two players simultaneously (and

independently) take actions which we term “votes”10 for convenience, although in general

they model each participant’s role in determining the outcome. For example, for a product

release date prediction market, a (binary) private signal could stand for whether an agent

knows / believes she is capable of contributing her share in making sure that the launch is on

time; her (binary) “vote” in this case would indicate whether she actually puts in her share

of the requisite effort. The payoffs from the first-stage prediction market are determined by

a simple function of the stage-two votes. If Bob has not traded, his vote is consistent with

his private signal, otherwise he is strategic; Alice is always strategic.

10The nomenclature is inspired by a vote-share prediction market, e.g. Chakraborty et al. (2013).
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Our model directly captures the experiments of Chakraborty et al. (2013) where prediction

markets with student participants were used to forecast the fraction of “up” (vs “down”)

ratings given by students to course instructors. Moreover, Augur, a “decentralized, open-

source platform for prediction markets” slated for live release in 2017 (Peterson and Krug,

2015), is a real-world mechanism with manipulation incentives similar to those in our model:

A consensus, computed from votes cast by participants called “reporters”, serves as a proxy

for the payoff-deciding ground truth of a market on which these reporters can also wager.

3.1.2 Contributions

The above model yields several interesting insights. Our main result is that the equilibria

of the game can be cleanly categorized into two types, depending on Bob’s probability of

participation in the trading stage. Below a threshold on Bob’s participation probability,

say p̃ (a function of the MSR used and the signal structure), we call the equilibrium a low

participation probability equilibrium (LPPE), and above p̃, we call it a high participation

probability equilibrium (HPPE). In an LPPE, Alice essentially predicts Bob’s vote, and

then bases her trading on the optimal combination of her own and Bob’s votes, and the

prediction market price is reflective of the expected outcome. In an HPPE, on the contrary,

Alice effectively expects Bob to enter and collude with her, and she chooses a market position

that allows Bob and her to split the maximum extractable profit from the market mechanism,

i.e. the MSR’s worst-case loss, in a (not necessarily even) ratio dependent on the MSR. The

following implications of the equilibria are noteworthy:

(a) Informativeness of prices about outcome: The price after Alice trades is equal to her

posterior expectation of the market outcome given her signal and her trading action

(hence, an efficient disseminator of information about the outcome at that point) in

an LPPE, but contains only partial information about the final outcome in an HPPE.

If Bob trades, the final market price is an accurate forecast of the actual outcome.

(b) Consistency of actions with signals: We provide a full characterization of signal struc-

tures under which Alice’s actions are consistent with (or, at least, indicative of) her

private signal. If Bob does participate in the trading stage, his actions are fully deter-

mined by Alice’s trading choice, independent of his signal.
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(c) Effectiveness of prediction markets in the face of participants who influence outcomes

substantially: One implication of point (b) above is that, as long as some fraction of the

outcome-deciders refrain from market participation and are truthful in their outcome-

affecting actions (proxied in our model by Bob with his non-zero non-participation

probability), the introduction of a prediction market to elicit forecasts prior to the

occurrence of the outcome-deciding process is less likely to produce damaging incentives

in the sense that even the potential manipulator Alice is forced to act, under certain

conditions, as if she were truthful.

(d) Choice of market scoring rule: The equilibrium strategies of Alice and Bob, and the

resulting market properties, have a strong dependence on the the functional form of the

MSR used, as shown by Tables , Sections . Thus, our analysis also provides guidelines

on the the scoring rule a designer can use to implement the prediction market if she

wants to achieve certain marker properties.

(e) Strategizing by a one-shot trader on point of entry: The above properties are important

from the perspective of a market observer and / or the market designer, but our results

have implications for the agents too, particularly if they are free to choose when to

interact with the market maker rather than in a pre-defined sequence. In an extreme

case of our two-player model – when both Alice and Bob are deterministically strategic,

and this is common knowledge – our results show that the first mover Alice may sustain

a higher or lower profit (in equilibrium) than the second mover depending on the MSR

used, hence it depends on the MSR whether it is better to be enter the market earlier

or later.

Incentivizing truthful trading and voting: In Section 3.8, we return to the mar-

ket design question, and propose a remedy for manipulation in an extension of the above

two-stage game with n ≥ 2 participants, by introducing two modifications: first, we put

a budget constraint on every trader which limits the amount by which she can alter the

observed market price; second, we combine the prediction market with a payment scheme

based on the peer prediction method (Miller et al., 2005; Jurca and Faltings, 2009) for the

voting mechanism, by tuning parameters, in order to obtain desirable incentive compatibility

properties. We also analyze the level of subsidy needed in the combined prediction / voting

mechanism.
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3.2 Related work

This chapter relates most directly to three major strands of literature: (1) Incentives and

manipulation in prediction markets, (2) Insider trading in financial markets, (3) Information

elicitation when the “ground truth” is not revealed.

(1) The literature on incentives in prediction markets is growing ever since Hanson (2003b)

introduced the concept of market scoring rules. Chen et al. (2009) and Gao et al. (2013) have

studied the effect of non-myopic strategies on an LMSR market modeled as an extensive-form

Bayesian game, under various private information structures of the participants who trade

repeatedly. We consider agents that are still interact at most once each with the market

mechanism but manipulation incentives arise from another source: their power to affect the

forecast event.

Incentives for manipulation in prediction markets may arise in a number of ways. There

are several contributions – both empirical / experimental (Hanson et al., 2006; Rhode and

Strumpf, 2006) and theoretical (Hanson and Oprea, 2009; Boutilier, 2012; Dimitrov and

Sami, 2010; Chen et al., 2011a; Huang and Shoham, 2014) – on price manipulation in pre-

diction markets: tampering with the market price by belief misrepresentation, perhaps even

at a monetary cost, so as to indirectly influence some decision that will be made by the

principal (market organizer) or non-participating market observers based on that price, e.g.

a politically motivated manipulator might make a large investment in an election predic-

tion market to make one of the candidates appear stronger (Rothschild and Sethi, 2016).

A related body of work pertains to decision markets – a collection of contingent markets

set up to predict the outcomes of different decisions such that only markets contingent on

decisions that are taken pay off, the rest being voided – a concept proposed by Hanson

(1999) and built on by several groups (Othman and Sandholm, 2010; Chen et al., 2011b). In

this chapter, we consider MSR-based prediction market settings, and not the above decision

markets. Moreover, the type of manipulation we are interested in is not price manipulation

but outcome manipulation where an agent can take an action that partially influences the

outcome to be predicted, and base her trading decision on her action choice and her relevant

belief about other agents.
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An early formal analysis of prediction market outcome manipulation is that of Ottaviani and

Sørensen (2007) on a two-outcome market model that follows the rules of the Iowa Electronic

Markets (Berg and Rietz, 2006). Their results apply to a rational expectations equilibrium

setting with agents having constant absolute risk aversion utility functions, and they do

not take the market microstructure into account. We explicitly model the microstructure,

focusing on market scoring rules – a well-studied prediction market mechanism that is widely

used in practice (Jian and Sami, 2012) – under a different agent model. More recently, Shi

et al. (2009) have introduced “principal-aligned scoring rules” (a refinement of proper scoring

rules) to provide disincentives for extraneous manipulations by traders that can modify the

probability distribution over outcomes so as to reduce the expected utility of the principal.

However, this technique works only when the principal’s utility vector over outcomes is

publicly known, at least in a probabilistic sense. Moreover, it provides clear incentives

for manipulations that are beneficial to the principal in expectation (which might not be

desirable in some cases).

(2) The second major body of literature comes from theoretical finance and market mi-

crostructure. What happens if there is an “insider” – a market participant who knows the

liquidation value (i.e. final gross monetary worth after revelation of the outcome) of a se-

curity, and can trade on this information? Kyle (1985) proposed a seminal model of insider

trading, and characterized the rate at which a monopolist insider’s information gets dissem-

inated into market prices in the presence of noise trading and a risk-neutral market-maker.

Glosten and Milgrom (1985) presented another view of how asymmetric information affects

price formation, and their model has been adapted for market making in prediction markets

(Das, 2008a; Brahma et al., 2012). There has also been work on extending Kyle’s model to

competing traders with inside information (Holden and Subrahmanyam, 1992; Foster and

Viswanathan, 1996). Ostrovsky (2012) examined information aggregation with differentially

informed traders in a general information framework under both Kyle’s pricing model and

market scoring rules. Again, in all of these models, the liquidation value of the market se-

curity is assumed to be exogenously determined, so there is no interaction between trading

behavior and the behavior that produces the market outcome, unlike in our model.

(3) In the last part of this chapter, we use peer prediction to align the incentives of partic-

ipants in the two-stage game we propose here. This idea is motivated by the literature on

providing truth-telling incentives in traditional means of opinion or information gathering
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such as surveys, polls, and reputation systems that can be subsumed under “information

elicitation sans verification” (Waggoner and Chen, 2013). Prelec et al. have developed and

experimented with the Bayesian Truth Serum or BTS (Prelec, 2004; Prelec and Seung, 2007;

Weaver and Prelec, 2012). In this method, each respondent is required to answer a multiple-

choice question and predict the distribution of responses from the entire population; she is

then assigned a score which rewards an answer whose observed frequency is higher than the

average predicted frequency and penalizes a bad prediction of population response. Under

mild assumptions, this technique induces a Bayes-Nash equilibrium strategy of reporting

one’s private information provided that there is a large number of participants. Several

extensions of BTS have been proposed (e.g. Radanovic and Faltings (2014) and references

therein).

Miller et al. (2005) proposed the peer prediction method (PP) that adapts the concept of

proper scoring rules to the problem of rating. This method scores a rater with respect to the

posterior belief that her report induces on another rater’s report, assuming a common prior

and likelihood structure known to the mechanism. This idea has spawned an interesting

line of research (e.g. Witkowski and Parkes (2012) and references therein). Witkowski and

Parkes (2012) introduce two variants of PP that elicit two temporally separated reports

from each agent, at least one of which is a belief report about another agent’s signal. These

latter techniques can work for arbitrary subjective priors but are restricted to binary signal

domains.

The situations we are interested in analyzing in this chapter are not the ones for which BTS

or PP were derived. They are intended to solve the problem of getting people to vote, or give

their opinion. The kinds of settings we are interested in are ones where people would already

vote / give their opinion / do their work “honestly”, but the introduction of a prediction

market may change their incentive to do so. Therefore, while the ideas from this literature

will turn out to be useful, we cannot simply apply BTS or PP in the first place and ignore the

existence of the prediction market (keeping in mind that the concept of a prediction market

serves as useful shorthand in our model, but this could equally be a liquid real money futures

market or the like).

It is worth mentioning here that our idea of achieving incentive compatibility by a two-stage

game in Section 3.8, each stage having monetary transfers between the principal and the
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participants, is similar in spirit to work on auction design (Crémer and McLean, 1988) that

predates peer prediction. Crémer and McLean design a two-stage mechanism for a seller

of a single item who is unaware of the potential buyers’ valuations. In the first stage, each

bidder makes a payment, conditional on her peers’ announced valuations, to the seller for a

“lottery” to win the item. In the second stage, bidders declare their types and the winner

pays her announced valuation. The second stage by itself would not be truthful but the

authors show that, under certain information structures, the combined payoff from the two

stages induces dominant strategy or Bayes-Nash incentive compatibility, enabling the seller

to “extract the full surplus.”

3.3 Model and definitions

Let τ ∈ T denote the unobservable true value of the random variable on which both the

prediction market and the outcome-deciding (voting) system are predicated. At t = 0, the

two agents, Alice and Bob (A and B in subscripts), receive private signals sA, sB ∈ Ω = {0, 1}
respectively. The signal structure, comprising the prior distribution Pr(τ) on the true value

and the conditional joint distribution Pr(sA, sB|τ) of the private signals given the true value,

is common knowledge.

Let q0(·) denote Alice’s posterior probability that Bob received the signal sB = 0, given her

own signal and common knowledge, i.e.

q0(s) , Pr (sB = 0|sA = s) =

∑
τ∈T Pr(sA = s, sB = 0|τ) Pr(τ)∑

τ∈T Pr(sA = s|τ) Pr(τ)
∀s ∈ {0, 1}. (3.1)

In this chapter, we ignore the uninteresting special cases q0 ∈ {0, 1} which correspond

to Alice having no uncertainty about her peer Bob’s private signal. We need no further

assumptions on the signal structure for our main result (Theorem 4) since it depends only

on the magnitude of q0 regardless of how it is evaluated. We shall discuss a specific signal

structure in Section 3.6. However, it is worthwhile to define here the property of stochastic

relevance (Miller et al., 2005) which is a necessary assumption for one of our important

corollaries (Corollary 1).
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Definition 3. For binary random variables si, sj ∈ {0, 1}, sj is said to be stochastically

relevant for si if and only if the posterior distribution of si given sj is different for different

realizations of sj, i.e. if and only if Pr(si = 0|sj = 0) 6= Pr(si = 0|sj = 1).

An important implication of the above definition for our model is that if sA is stochastically

relevant for sB, there is a one-to-one correspondence between the value s of Alice’s signal and

q0(s) = Pr (sB = 0|sA = s); i.e. if we could somehow learn the value of q0, then we would be

able to extract Alice’s signal unambiguously from it.

We now describe the rules of the two-stage game comprising the market and voting mecha-

nisms. We will call this the trading-voting game, and assume that its rules are known to all

participants and observers.

Stage 1 (market stage): The market price at any time-step t is public, the starting price

at t = 0 being p0 which is the market designer’s baseline estimate of the liquidation value,

i.e. the final gross payoff per unit of the prediction market security which, in our setting, is

identical to the market outcome (see Stage 2 below).

Because the market outcome for this problem has a different structure from that in Chap-

ter 2, the prediction market is implemented using a slight variation of the market scoring

rule (MSR) algorithm introduced in Chapter 2: As usual, we denote the underlying strictly

proper scoring rule as s(r, ω), where ω is the true (revealed) market outcome, and r is an

agent’s forecast / report on it but we now use a formulation of the rule that is used for

elicitation of personal expectations of a continuous random variable ω ∈ [0, 1] and not per-

sonal probabilities. The principle is a natural extension to that in our Chapter 2 formulation:

strict propriety implies that if an agent is promised an ex post compensation of s(r, ω), then

the only way she can maximize her subjective expectation of her ex post compensation is by

reporting her expectation of the random variable ω as her forecast r. Similar formulations

were used by Ostrovsky (2012) for theoretical analyses and by Chakraborty et al. (2013) for

experiments. Moreover, for a clean analysis, we shall focus on strictly proper rules satisfy-

ing some regularity and smoothness conditions (Gneiting and Raftery, 2007; Abernethy and
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Frongillo, 2012):

s(r, ω) =

f(ω), r = ω

f(r) + f ′(r)(ω − r), otherwise
, ω, r ∈ [0, 1] (3.2)

where f(·) is a continuous, finite, strictly convex function on [0, 1]; its first derivative f ′(·) is

continuous, monotonically increasing, and finite on [0, 1] except possibly that f ′(0) = −∞ or

f ′(1) =∞; its second derivative f ′′(·) is positive11 on [0, 1] and finite in (0, 1). Additionally,

we need the function to have the following symmetry:

f(1+y
2

)− f(1−y
2

) = yf ′(1
2
) ∀y ∈ [0, 1]. (3.3)

Henceforth, we shall refer to (market) scoring rules possessing all the above properties as

symmetric well-behaved (market) scoring rules.12 This covers a large family of MSRs that

includes three of the most widely used and studied – (LMSR), quadratic (QMSR), and

spherical (SMSR) – respectively defined as:

LMSR: s(r, ω) = ω ln r + (1− ω) ln(1− r),

QMSR: s(r, ω) = ω2 − (ω − r)2,

SMSR: s(r, ω) = (rω + (1− r)(1− ω)) /
√
r2 + (1− r)2.

At t = 1, Alice interacts with the market maker, and takes such as position as to change

the price to pA. At t = 2, Bob has an opportunity to trade but may not show up with a

commonly known probability π ∈ [0, 1] called Bob’s non-participation probability ; if he does

trade, he changes the price to pB. Regardless of whether Bob trades, the market terminates

after t = 2.

11The strict positivity of f ′′(·) is sufficient but not necessary for the strict convexity of f(·) to hold on [0, 1]
(all we need is non-negativity). Nevertheless, for technical convenience, we shall restrict our presentation to
convex functions with strictly positive second derivatives, and refer to such functions only when we use the
expression “strict convexity”, in a slight abuse of terminology.

12Note that the definition of “well-behaved” used here is slightly different from that in Chapter 2 but this
overloading of terms should not create a confusion since this term is not relevant to subsequent chapters,
and follows the new definition throughout this chapter.
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Stage 2 (voting stage): In this stage, Alice and Bob simultaneously declare their “votes”

vA, vB ∈ Ω. Taking part in Stage 2 is mandatory for both agents.

We define truthful voting as declaring one’s private signal as one’s vote, i.e. vk = sk,

k ∈ {A,B}.

We assume that, if Bob did not trade in Stage 1, he votes truthfully, and we call such a

Bob honest. Any agent participating in the prediction market is Bayesian, strategic, and

risk-neutral. Hence, if Bob trades, we refer to him as strategic Bob.

The liquidation value of the security, i.e. the market outcome, is given by the average13 vote

v = (vA + vB) /2 ∈ {0, 1
2
, 1}. The ex post net payoffs of Alice and Bob, which we will also

sometimes refer to as their profits, follow from the definition of a market scoring rule as a

sequentially shared proper scoring rule Hanson (2007a), and are respectively given by

RA(pA, p0, vA, vB) = s(pA,
vA+vB

2
)− s(p0,

vA+vB
2

),

RB(pB, pA, vA, vB) = s(pB,
vA+vB

2
)− s(pA, vA+vB

2
).

(3.4)

This completes the technical description of our model, but there are a few points worth

noting here:

• Agents derive utility solely from their profits in the prediction market, and have no

vested interest in any realized outcome although they have power to influence it, exactly

as in the works of Ottaviani and Sørensen (2007) and Shi et al. (2009); this can be

viewed as a model of agents who are inherently non-strategic in the absence of any

financial incentives, as is often experimentally observed (e.g. Gao et al. (2014)).

• Bob does not strategically decide whether to take part in the prediction market; it

is determined extraneously – the proclivity to trade can be viewed as one of the two

independent components of Bob’s type, the other being his private signal sB: The

complete distribution of Bob’s type is given by the signal structure detailed above and

the two-point distribution {Pr(honest Bob) = π,Pr(strategic Bob) = 1−π}. Here,

13In general, we can have v = αvA + (1− α)vB , α ∈ (0, 1), where α models Alice’s degree of control over
the final outcome. In this chapter, we focus on the special case α = 1

2 as a starting point where both agents
are equally powerful.
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honest Bob models agents who remain unaffected by the introduction of the prediction

market owing to social norms or some exogenous payoff.14 Among other things, we

aim to study what effect, if any, the uncertainty around the market participation of

some outcome-deciders has on the actions of a strategic agent when there is incentive

for manipulation.

In the rest of the chapter, we will often use the terms Stage 1 action and trading action

to denote pA, pB, and Stage 2 action to denote vA, vB. Unlike in a traditional predic-

tion market, the true value τ of the underlying random variable is never revealed in this

trading-voting game. However, if every agent were to vote truthfully (and this were com-

mon knowledge), then by the properties of MSRs, an agent’s expected net payoff would be

maximized by “reporting”, in Stage 1, her posterior expectation of the liquidation value v.

With this in mind, we will sometimes refer to pA and pB as the “reports” or “price-reports”

of Alice and Bob respectively.

3.4 Equilibrium analysis of the two-player game

The solution concept we will use for the two-stage trading-voting game described in Sec-

tion 3.3 is the perfect Bayesian equilibrium (PBE) which is a refinement of Nash equilibria

for Bayesian games (Fudenberg and Tirole, 1991). A PBE is a specification of an assessment,

comprising a strategy and a belief structure, for each player such that each player’s action

according to her strategy and belief at any stage of the game is a “best reponse” (sequential

rationality), and each player’s belief about all currently unknown aspects of the game at any

stage is obtained from all players’ actions until that stage using Bayesian inference whenever

possible (consistency). For this game, a strategy profile of the players Alice and Bob is a

specification of the vector ((pA, vA), (pB, vB)), and we shall denote a PBE strategy profile by

((pPBEA , vPBEA ), (pPBEB , vPBEB )).

14For an MSR-mediated prediction market, Alice’s payoff function (3.4) depends only on Bob’s Stage 2
action vB and not on his Stage 1 action pB . Hence, our results for Alice in Section 3.4 also apply to a
slightly modified model where honest Bob can still trade strategically in Stage 1 but is constrained to vote
truthfully in Stage 2.

45



In the game under consideration, Alice makes her first move by updating the market price

from p0 to pA which becomes publicly known; then, Bob makes his first move by either

participating in the market and revising pA to the publicly observable pB or not participating,

the latter being equivalent to setting pB = pA; after this sequential first stage, both Alice

and Bob make their second moves (picking vA and vB respectively) simultaneously. Thus,

our analysis of the game consists of the following three steps:

1. Lemma 5 delineates the inference about Alice’s second move vA that can be drawn by

the rest of the world including Bob from her Stage 1 action pA, for any p0 ∈ (0, 1).

2. Lemma 6 presents, for any p0 ∈ (0, 1), strategic Bob’s best response (pB, vB) to his

observation of pA and belief about vA; it also tells us what inference about vB the rest

of the world including Alice can draw from pB in this case. We already know that, for

honest Bob, pB = pA and vB = sB.

3. Finally, Theorem 4 completes the equilibrium specification for the particular case of

p0 = 1
2

by providing Alice’s best choices for pA and vA given her signal, her knowledge

of the above two lemmas, and her observation of pB.

Lemma 5. For the trading-voting game described in Section 3.3, if the prediction market

has a starting price p0 ∈ (0, 1), and (pA, vA) denotes Alice’s combined action in the two-stage

game, i.e. her report-vote pair, then

• for any pA < p0, Alice’s action (pA, 0) strictly dominates (pA, 1);

• for any pA > p0, her action (pA, 1) strictly dominates (pA, 0); and

• she is indifferent between the actions (p0, 0) and (p0, 1).

This result holds regardless of Bob’s report-vote pair (pB, vB).

Informally, if Alice pulls the market price down (resp. up) from its initial value, she is

“forecasting” that the final outcome will be lower (resp. higher) than the market’s initial

estimate and, since her payoff is higher for a prediction closer to the realized outcome (the

average vote), it is in her best interest to do everything in her power to ensure a low (resp.

high) average vote.
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Proof. Using equations (3.4) and (3.2), we can show by simple algebra that, for any pA, the

difference between Alice’s profits for voting vA = 1 and vA = 0 is

RA(pA, p0, 1, vB)−RA(pA, p0, 0, vB) = 1
2

(f ′(pA)− f ′(p0)) , ∀vB ∈ {0, 1}.

From the increasing monotonicity of f ′(·) for a symmetric well-behaved MSR, we have

pA R p0 ⇐⇒ f ′(pA) R f ′(p0) ⇐⇒ RA(pA, p0, 1, vB) R RA(pA, p0, 0, vB)

for pA ∈ [0, 1]. Thus Alice’s optimal vote, regardless of Bob’s actions, is vA = 0 if pA < p0

and vA = 1 if pA > p0; she is indifferent only if pA = p0.

The above theorem implies that immediately after Alice has traded, one can infer that vA = 0

deterministically if pA < p0, vA = 1 deterministically if pA > p0. However, if pA = p0, which

is equivalent to Alice not trading with the market maker, the rules of the game do not allow

Bob to predict vA deterministically: He knows that Alice does not stand to make any profit

from the market regardless of the outcome, and hence, must be indifferent between voting

0 and 1. Hence, it is reasonable to assume a belief structure in which Bob’s posterior belief

assigns equals probabilities to vA = 0 and vA = 1 whenever pA = p0. 15

Assumption 1. If PB denotes Bob’s posterior belief (about Alice’s vote), given his signal

sB and Alice’s price report pA, then for any signal s ∈ 0, 1,

PB(vA = 0|sB = s, pA = p0) = PB(vA = 1|sB = s, pA = p0) = 1
2
.

Obviously, PB(vA = 0|sB = s, pA < p0) = PB(vA = 1|sB = s, pA > p0) = 1, by Lemma 5.

Before we proceed further with our analysis, we will define two positive proper fractional

quantities that are purely functions of the structure of the MSR used for designing the predic-

tion market and play key roles in determining the equilibrium of the game. We can invoke

the mean value theorem to show that, for a symmetric well-behaved MSR, the equation

15We shall later see in Sections 3.4.1 through 3.4.3 that, for the case p0 = 1
2 which are main focus in this

paper, Alice never leaves the market price unchanged in equilibrium for any positive value of Bob’s non-
participation probability π. But, we still include a discussion of the case pA = p0 for the sake of completing
the PBE description.
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f ′(r) = (f(1
2
)− f(0))/(1

2
− 0) has a root in (0, 1

2
), which is unique owing to the monotonicity

of f ′(·); let this root be denoted by pL, i.e.

pL , (f ′)−1
(

2
(
f(1

2
)− f(0)

) )
∈ (0, 1

2
). (3.5)

Similarly, let pH denote the unique root of the equation f ′(r) = (f(1) − f(1
2
))/(1 − 1

2
) in

(1
2
, 1), i.e.

pH , (f ′)−1
(

2
(
f(1)− f(1

2
)
) )

∈ (1
2
, 1). (3.6)

We call pL and pH the “lower threshold” and “upper threshold” of the MSR respectively

since they mark points of discontinuity in the players’ equilibrium behavior, as we will see

shortly. From the definitions, it is obvious that

0 < pL < 1
2
< pH < 1. (3.7)

Moreover, using definitions (3.5) and (3.6) and the symmetry condition (3.3), we can obtain

the following results (the detailed proof is in Appendix B Section B.1).

Proposition 2. For a symmetric well-behaved market scoring rule, the lower and upper

thresholds pL, pH defined in (3.5) and (3.6) satisfy the equalities

f ′(pL) + f ′(pH) = 2f ′(1
2
); (3.8)

pL + pH = 1; (3.9)

f(pH)− f(pL) = (2pH − 1)f ′(1
2
) = (1− 2pL)f ′(1

2
). (3.10)

Table 3.1 provides the functional forms of f(·) and f ′(·), and the values of the thresholds

pL, pH for each of the three specific MSRs mentioned in Section 3.3.

Notice that, as soon as strategic Bob arrives to trade, he acquires all the information

relevant to his decision making procedure that the rules of the game allow him to have (he

can observe both p0 and pA, and draw inference about vA in accordance with Lemma 5);

Bob also knows that he and Alice are the only outcome-deciders and, even if an agent traded
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LMSR QMSR SMSR

f(r)

{
r ln r + (1− r) ln(1− r) 0 < r < 1,

0 r ∈ {0, 1}
r2

√
r2 + (1− r)2

f ′(r) ln
(

r
1−r

)
2r 2r−1√

r2+(1−r)2

pL 0.2 0.25 1
2

(
1−

√√
2−1
2

)
≈ 0.2725

pH 0.8 0.75 1
2

(
1 +

√√
2−1
2

)
≈ 0.7275

Table 3.1: Structural properties of the three representative market scoring rules considered
in this paper.

after him, that agent would have no effect on his payoff. Thus, strategic Bob makes his

trading and voting decisions (pB, vB) simultaneously.

Lemma 6. For the trading-voting game described in Section 3.3, where the market scoring

rule has lower and upper thresholds pL, pH , and has a starting price p0 ∈ (0, 1),

• if pA < p0, then strategic Bob’s best-response vote is vB = 1 (resp. vB = 0) if

pA < pL (resp. pA > pL) but he is indifferent between the two possible voting choices if

pA = pL, and his accompanying price-report is pB = 1+vB
2

;

• if pA > p0, then strategic Bob’s best-response vote is vB = 1 (resp. vB = 0) if

pA < pH (resp. pA > pH) but he is indifferent between the two possible voting choices

if pA = pH , and his accompanying price-report is pB = 1+vB
2

;

• if pA = p0, then strategic Bob’s best-response vote is vB = 0 (resp. vB = 1) if

p0 >
1
2

(resp. p0 <
1
2
) but he is indifferent if p0 = 1

2
, and his accompanying price-report

is pB =
1
2

+vB

2
.

This result is independent of Bob’s private signal sB.

Before proving the above lemma, we present a detailed tabular representation of the results

of Lemmas 5 and 6 in Table 3.2. Evidently, the quantities pL, pH , and p0 split the possible

range of market prices [0, 1] into three or four sub-intervals depending on their relative

magnitudes such that strategic Bob’s best response is to “disagree with” Alice’s voting
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choice (revealed through pA) in Stage 2 if Alice’s price-report pA lies in either of the “outer”

sub-intervals [0,min(p0, p
L)) or (max(p0, p

H), 1], and to “agree with” Alice if pA lies in the

remaining one or two “inner” sub-interval(s) between min(p0, p
L) and max(p0, p

H); in any of

these situations (except pA = p0), strategic Bob knows exactly what the market outcome

v is going to be, so he can make a perfect forecast pB = v. The special cases pA ∈ {pL, pH , p0}
represent points of transition in best-response characteristics.

Proof. If pA 6= p0, Bob knows vA unambiguously. So, by the properties of a symmetric well-

behaved MSR, Bob’s payoff function RB (pB, pA, vA, vB) from (3.4) is maximized uniquely

at pB = vA+vB
2

for any vB, i.e. his combined two-stage action (vA
2
, 0) dominates (p, 0) for any

p 6= vA
2

, and (vA+1
2
, 1) dominates (p, 1) for any p 6= vA+1

2
. Hence, for a known vA, it suffices to

compare RB(vA
2
, pA, vA, 0) and RB(vA+1

2
, pA, vA, 1) to determine strategic Bob’s optimal

decision.

Case I: pA < p0 ⇒ vA = 0 from Lemma 5. In this scenario, strategic Bob selects action

(pB = 0, vB = 0) if RB(0, pA, 0, 0) is larger and (pB = 1
2
, vB = 1) if RB(1

2
, pA, 0, 1) is larger.

The difference simplifies to

RB(1
2
, pA, 0, 1)−RB(0, pA, 0, 0) =

[
2
(
f(1

2
)− f(0)

)
− f ′(pA)

]
/2

=
[
f ′(pL)− f ′(pA)

]
/2, by (3.5).

Then, since f ′(·) is strictly increasing,

pA R pL ⇐⇒ f ′(pA) R f ′(pL) ⇐⇒ RB(1
2
, pA, 0, 1) Q RB(0, pA, 0, 0).

Thus, if strategic Bob observes that pA is smaller than p0, his best response is to report

pB = 1
2

and vote vB = 1 if pA is also smaller than pL (which is always true if p0 < pL) but

to report pB = 0 and vote vB = 0 if pA exceeds pL (which is possible for a pA smaller than

p0 only if pL < p0), and to be indifferent between these two actions if pA = pL.
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p0 pA Best vA
Best (pB, vB)

for strategic Bob

0 < p0 ≤ pL 0 ≤ pA < p0 0
(

1
2
, 1
)

pA = p0 0 or 1
(

3
4
, 1
)

p0 < pA < pH 1 (1, 1)
pA = pH 1

(
1
2
, 0
)

or (1, 1)
pH < pA ≤ 1 1

(
1
2
, 0
)

pL < p0 <
1
2

0 ≤ pA < pL 0
(

1
2
, 1
)

pA = pL 0 (0, 0) or
(

1
2
, 1
)

pL < pA < p0 0 (0, 0)
pA = p0 0 or 1

(
3
4
, 1
)

p0 < pA < pH 1 (1, 1)
pA = pH 1

(
1
2
, 0
)

or (1, 1)
pH < pA ≤ 1 1

(
1
2
, 0
)

p0 = 1
2

0 ≤ pA < pL 0
(

1
2
, 1
)

pA = pL 0 (0, 0) or
(

1
2
, 1
)

pL < pA < p0 0 (0, 0)
pA = p0 0 or 1

(
1
4
, 0
)

or
(

3
4
, 1
)

p0 < pA < pH 1 (1, 1)
pA = pH 1

(
1
2
, 0
)

or (1, 1)
pH < pA ≤ 1 1

(
1
2
, 0
)

1
2
< p0 < pH 0 ≤ pA < pL 0

(
1
2
, 1
)

pA = pL 0 (0, 0) or
(

1
2
, 1
)

pL < pA < p0 0 (0, 0)
pA = p0 0 or 1

(
1
4
, 0
)

p0 < pA < pH 1 (1, 1)
pA = pH 1

(
1
2
, 0
)

or (1, 1)
pH < pA ≤ 1 1

(
1
2
, 0
)

pH ≤ p0 < 1 0 ≤ pA < pL 0
(

1
2
, 1
)

pA = pL 0 (0, 0) or
(

1
2
, 1
)

pL < pA < p0 0 (0, 0)
pA = p0 0 or 1

(
1
4
, 0
)

p0 < pA ≤ 1 1
(

1
2
, 0
)

Table 3.2: Alice’s best vote and Bob’s best report-vote pair if he trades, given starting price
p0 and Alice’s report pA. Recall that pL ∈ (0, 1

2
) and pH ∈ (1

2
, 1) for any symmetric well-

behaved MSR, hence the table covers all possible combinations of the values of pL, pH , and
p0. Theorem 4 applies to the p0 = 1

2
shown in the middle of the table.
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Case II: pA > p0 ⇒ vA = 1 from Lemma 5. Arguing as before, we now need to consider the

difference

RB(1, pA, 1, 1)−RB(1
2
, pA, 1, 0) =

[
2
(
f(1)− f(1

2
)
)
− f ′(pA)

]
/2

=
[
f ′(pH)− f ′(pA)

]
/2, by (3.6).

Again, from the increasing monotonicity of f ′(·),

pA R pH ⇐⇒ f ′(pA) R f ′(pH) ⇐⇒ RB(1, pA, 1, 1) Q RB(1
2
, pA, 1, 0).

Thus, if strategic Bob observes that pA is larger than p0, his best response is to report

pB = 1
2

and vote vB = 0if pA is also larger than pH (which is always true if p0 > pH) but to

report pB = 1 and vote vB = 1 if pA is smaller than pH (which is possible for a pA larger

than p0 only if pH > p0), and to be indifferent between these two actions if pA = pH .

Case III: pA = p0. Let us define

R̂p0

B (pB, vB) , EPB [RB(pB, pA, vA, vB)|pA = p0],

where PB is Bob’s posterior as defined in Assumption 1. Clearly, EPB [vA|pA = p0] = 1
2
.

On simplification using the linearity of expectation, for any vB, we have

R̂p0

B (pB, vB) = f(pB) + f ′(pB)

(
1
2

+vB

2
− pB

)
− f(p0)− f ′(p0)

(
1
2

+vB

2
− p0

)
≤ f

( 1
2

+vB

2

)
− f(p0)− f ′(p0)

(
1
2

+vB

2
− p0

)
∀pB ∈ [0, 1],

equality holding only at pB =
1
2

+vB

2
due to strict convexity of f(·)

= RB

( 1
2

+vB

2
, p0,

1
2
, vB

)
, vB ∈ {0, 1}.
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Hence, Bob’s problem of choosing an action reduces to considering the difference

RB

( 1
2

+1

2
, p0,

1
2
, 1
)
−RB

( 1
2

+0

2
, p0,

1
2
, 0
)

= f(3
4
)− f(1

4
)− f ′(p0)/2

=

[
f(3

4
)− f(1

4
)

1
2

− f ′(p0)

]
/2

=
[
f ′(1

2
)− f ′(p0)

]
/2 by symmetry condition (3.3) with y = 1

2
.

Thus, by the increasing monotonicity of f ′(·), strategic Bob should choose (pB = 1
4
, vB =

0), or (pB = 3
4
, vB = 1), or should remain indifferent between these two choices according to

whether p0 (= pA) is larger than, smaller than, or equal to 1
2

respectively.

Now that we have fully characterized how the game unfolds (in a PBE) after Alice has taken

her Stage 1 action, the next and final step towards completing the equilibrium specification

is to figure out her best-response price-report pA. For the rest of the analysis, we will

assume that the strategic selfish-rational agent Alice bases her trading decision on her belief

about Bob’s action, quantified by q0 defined in (3.1) and Bob’s non-participation probability

π ∈ [0, 1], as well as on her knowledge of Lemmas 5 and 6 above. It is germane at this

point to articulate a somewhat surprising implication of Lemma 5: Although Alice can see

Bob’s first move pB between making her own first and second moves, this additional piece

of information has no bearing on her voting choice once she has already taken her Stage 1

action.

To understand the impact of π on Alice’s decision and hence the game outcome, let us first

consider the two extreme cases π = 1 and π = 0.

3.4.1 Equilibrium when Bob’s non-participation is certain (π = 1)

In this scenario, Alice knows that there is another outcome-decider Bob who will vote ac-

cording to his private signal (i.e. vB = sB), and there is no way for her to influence vB

through her maket action. Hence, if PA represents Alice’s subjective belief about all uncer-

tain aspects of the game (including Bob’s unobserved private signal and the future Stage

2 outcome) given her private signal, then the “equilibrium” is fully described by specifying

Alice’s report-vote pair (pA, vA) that optimizes the expectation with respect to PA of her
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net payoff in this one-player game. For π = 1,

EPA [vB] = EPA [sB] = 0 · q0 + 1 · (1− q0) = 1− q0, (3.11)

where q0 = q0(s), defined in equation (3.1), is Alice’s subjective probability of Bob’s signal

being 0 given her own private signal. Let us define

R̂A(pA, vA) , EPA [RA(pA, p0, vA, vB)|sA, p0] .

Then, from equations (3.2), (3.4), and (3.11), using the linearity of expectation, we have,

R̂A(pA, vA) = f(pA) + f ′(pA)
(
vA+1−q0

2
− pA

)
− f(p0)− f ′(p0)

(
vA+1−q0

2
− p0

)
≤ RA(vA+1−q0

2
, p0, vA, 1− q0) ∀pA ∈ [0, 1],

equality holding only for pA = vA+1−q0
2

. Thus, for determining Alice’s best response, it

suffices to compare RA(1−q0
2
, p0, 0, 1− q0) and RA(1− q0

2
, p0, 1, 1− q0); the difference between

them simplifies to

∆RA(q0, p0) , RA(1− q0
2
, p0, 1, 1− q0)−RA(1−q0

2
, p0, 0, 1− q0)

= f(1− q0
2

)− f(1−q0
2

)− 1
2
f ′(p0)

=
[
(1− q0)f ′(1

2
) + f( q0

2
)
]
− f(1−q0

2
)− 1

2
f ′(p0)

= f(1− q0
2

)−
[
f(1+q0

2
)− q0f

′(1
2
)
]
− 1

2
f ′(p0),

the last two equalities following from the symmetry condition (3.3), plugging in y = 1 − q0

and y = q0 respectively.

Obviously, Alice should take the action (pA = 1−q0
2
, vA = 0) if ∆RA(q0, p0) < 0, the action

(pA = 1 − q0
2
, vA = 1) if ∆RA(q0, p0) > 0, and should be indifferent between these two

actions otherwise. Thus, for a general value of p0, Alice’s decision making depends in a

complex manner, through ∆RA(q0, p0), on the interaction between the properties of the

convex function f(·) and the magnitudes of q0 and p0, and so her equilibrium action cannot

be expressed as a simple function of her posterior belief q0. However, for the special but
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practically important case p0 = 1
2
, we can obtain clean and insightful results as follows.

∆RA(q0,
1
2
) = (1

2
− q0)f ′(1

2
) + f( q0

2
)− f(1−q0

2
) = f(1− q0

2
)− f(1+q0

2
) + (q0 − 1

2
)f ′(1

2
).

From the strict convexity of f(·), we have f( q0
2

) > f(1−q0
2

) + (q0 − 1
2
)f ′(1−q0

2
) so that

∆RA(q0,
1
2
) > (1

2
− q0)

(
f ′(1

2
)− f ′(1−q0

2
)
)
> 0, ∀q0 ∈ (0, 1

2
)

since f ′(1
2
) > f ′(1−q0

2
) ∀q0 ∈ (0, 1) owing to the increasing monotonicity of f ′(·). Likewise,

we have f(1+q0
2

) > f(1− q0
2

) + (q0 − 1
2
)f ′(1− q0

2
) so that

∆RA(q0,
1
2
) < −(q0 − 1

2
)
(
f ′(1− q0

2
)− f ′(1

2
)
)
< 0, ∀q0 ∈ (1

2
, 1)

since f ′(1− q0
2

) > f ′(1
2
) ∀q0 ∈ (0, 1) owing to the increasing monotonicity of f ′(·). Obviously,

∆RA(1
2
, 1

2
) = 0.

We conclude that, for p0 = 1
2

and π = 1, Alice’s equilibrium action is (pA = 1−q0
2
, vA = 0) if

q0 >
1
2
, and (pA = 1− q0

2
, vA = 1) if q0 <

1
2
. She is indifferent between the report-vote pairs

(pA = 1
4
, vA = 0) and (pA = 3

4
, vA = 1) if q0 = 1

2
.

In summary, if the market starts out with a uniform prior over all possible Stage 2 outcomes,

and it is commonly known that Bob is honest, then in a PBE, Alice picks the mode of her

(binary) posterior distribution over the possible values of Bob’s signal as her own vote vPBEA

after moving the market price to pPBEA =
vPBEA +1−q0

2
. Although it is unsurprising that the

strategic player Alice’s actions are not necessarily consistent with her private signal sA, the

above equilibrium analysis has certain interesting implications for the informativeness of her

price-report pPBEA that do not easily follow from intuition.

First of all, for p0 = 1
2

and any q0 ∈ (0, 1), note that pPBEA 6= p0; hence, using Lemma 5, we

can figure vPBEA out right as a simple function of pPBEA after Alice’s Stage 1 action:

vPBEA =

0 pPBEA < 1
2
,

1 pPBEA > 1
2
.
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Next, since vB in this scenario has no dependence on pPBEA , it be shown be from the linearity

of (conditional) expectation that pPBEA satisfies the following fixed-point equation.

EPA
[
v|pA = pPBEA

]
=
vPBEA + EPA [vB]

2
=
vPBEA + (1− q0)

2

= pPBEA ,

i.e. Alice’s price-report is the Bayesian estimate of the market outcome given all the infor-

mation available to everyone in the world but Bob just after Alice takes her Stage 1 action.

Finally, note that

pPBEA = (1− q0
2

) ∈ (3
4
, 1) ∀q0 ∈ (0, 1

2
) =⇒ q0 = 2(1− pPBEA ) ∀pPBEA ∈ (3

4
, 1);

pPBEA = 1−q0
2
∈ (0, 1

4
) ∀q0 ∈ (1

2
, 0) =⇒ q0 = 1− 2pPBEA ∀pPBEA ∈ (0, 1

4
);

pPBEA is either 1
4

or 3
4

only if q0 = 1
2
, and it can never lie in (1

4
, 3

4
). Hence, an external observer

can deduce Alice’s posterior belief q0 uniquely from pA in an equilibrium. If we further

assume the stochastic relevance of sA for sB (Definition 3) within a common-knowledge

signal structure, then the observer can recover Alice’s private signal sA from the above value

of q0, regardless of her actual vote (announced signal) vA! In view of these characteristics,

we can call an equilibrium of this type a “partially revealing equilibrium”.

3.4.2 Equilibrium when Bob’s participation is certain (π = 0)

In this scenario, Alice knows that Bob’s signal has no bearing on his action and, in fact, she

can fully control his actions, as indicated in Lemma 6. From Table 3.2, it follows that for

pA lying in each of the outer sub-intervals [0,min(p0, p
L)) and (max(p0, p

H), 1], where Bob

(being deterministically strategic) definitely disagrees with Alice, the average vote is 1
2

so

that Alice’s ex post payoff is given by the function

R̃p0(pA) = RA(pA, p0, 0, 1) = RA(pA, p0, 1, 0)

= f(pA) + f ′(pA)
(

1
2
− pA

)
− f(p0)− f ′(p0)

(
1
2
− p0

)
∀p0 ∈ (0, 1).
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The first derivative of the above function with respect to pA over [0, 1] is given by

R̃′p0
(pA) = f ′′(pA)

(
1
2
− pA

)
R 0 ⇐⇒ pA Q 1

2
since f ′′(pA) > 0.

Thus, R̃p0(·) is a strictly convex function for pA ∈ [0, 1] with a unique global maximum at

pA = 1
2
. Since min(p0, p

L) ≤ pL < 1
2
< pH ≤ max(p0, p

H), the suprema of the segments

of Alice’s actual overall payoff function over [0,min(p0, p
L)) and (max(p0, p

H), 1] are at the

respective “inner” extremities min(p0, p
L) and max(p0, p

H). However, the behavior of the

payoff function over the inner interval(s) depends strongly on the relative magnitudes of

pL, pH , and p0. Since this makes the general analysis technically complicated and hard to

interpret qualitatitively, we focus on the case p0 = 1
2
, as in Section 3.4.1.

For p0 = 1
2
, Table 3.2 tells us that Alice’s ex post net payoff as a function of pA over the

sub-intervals [0, pL), (pL, 1
2
), (1

2
, pH), and (pH , 1] is given by the corresponding segments

of RA(pA,
1
2
, 0, 1), RA(pA,

1
2
, 0, 0), RA(pA,

1
2
, 1, 1), and RA(pA,

1
2
, 1, 0); hence, the pA that

maximizes the overall payoff function, given Lemmas 5 and 6, can be obtained by analyzing

these four function segments.

First note, from expressions (3.4) and (3.2), that

RA(1
2
, 1

2
, 0, 1) = RA(1

2
, 1

2
, 0, 0) = RA(1

2
, 1

2
, 1, 1) = RA(1

2
, 1

2
, 1, 0) = 0. (3.12)

Moreover, by considering the first derivative of each of these functions as above, we can

show that each is strictly convex over [0, 1] with unique global maxima at 1
2
, 0, 1, and 1

2

respectively. Since 0 < pL < 1
2
< pH < 1, the local suprema for the sub-intervals [0, pL),

(pL, 1
2
), (1

2
, pH), and (pH , 1] are at pL, pL, pH , and pH respectively; let the values of the

corresponding suprema be denoted by R∗0,1, R∗0,0, R∗1,1, and R∗1,0. Note that

R∗0,1 < R∗0,0 = R∗1,1 > R∗1,0,
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which we can establish as follows.

R∗0,1 = RA(pL, 1
2
, 0, 1)

< RA(1
2
, 1

2
, 0, 1) since RA(pA,

1
2
, 0, 1) is uniquely maximized at pA = 1

2
,

= 0 from (3.12),

= RA(1
2
, 1

2
, 0, 0) from (3.12),

< RA(0, 1
2
, 0, 0) since RA(pA,

1
2
, 0, 0) is uniquely maximized at pA = 0,

= R∗0,0;

by similar reasoning, R∗1,1 > R∗1,0; and

R∗1,1 −R∗0,0 = RA(pH , 1
2
, 1, 1)−RA(pL, 1

2
, 0, 0)

=
[
f(pH)− f(pL)

]
+ pL

[
f ′(pH) + f ′(pL)

]
− f ′(1

2
),

using pL = 1− pH from (3.9),

= (1− 2pL)f ′(1
2
) + pL · 2f ′(1

2
)− f ′(1

2
), from (3.10) and (3.8)

= 0.

Figure 3.1 illustrates the variation of RA with pA over [0, 1] for LMSR, QMSR, and SMSR.

From the above discussion, it is clear that this special case of the game has two PBEs with

strategy profiles ((pL, 0), (0, 0)) and ((pH , 1), (1, 1)). If Alice makes the first move pA = pL,

then (pB = 0, vB = 0) is a best response by Bob according to Lemma 6, and Alice’s preferable

Stage 2 action is vA = 0 from Lemma 5; from Alice’s perspective, if she knows that Bob

will respond with vB = 1 for 0 ≤ pA < pL and vB = 0 for pL ≤ pA ≤ 1
2
, then it is in her

best interest to set pA = pL, and hence vote vA = 0 in accordance with Lemma 5, thereby

resulting in a market outcome of v = 0. Although (pB = 1
2
, vB = 1) is Bob’s alternative best

response to Alice’s pA = pL by Lemma 6, it cannot be part of a (subgame perfect) Nash

equilibrium where Alice’s action is (pL, 0) because Alice would prefer pA = pL + ε for any

ε ∈ (0, 1
2
− pL) to pA = pL if she knew that Bob would respond with vB = 1 for 0 ≤ pA ≤ pL

and vB = 0 for pL < pA ≤ 1
2
, owing to the jump discontinuity at pL. By similar arguments,

we can establish that ((pH , 1), (1, 1)) is another equilibrium.

Thus, Alice and Bob jointly create a fake world where they pretend to agree regardless

of their signals, and thereby reap the maximum possible profit from the mechanism (the
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principal organizing the market incurs maximum loss whenever Bob participates since the

last trader Bob makes an accurate forecast, in accordance with Lemma 6 Hanson (2007a)).

We call equilibria of this type “collusive”. Further, observe that for π = 0, Alice’s price-

report gives us no information about her private signal or her belief about that of Bob; it

merely indicates her vote as per Lemma 5 (vA = 0 if pA = pL and vA = 1 if pA = pH).
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Figure 3.1: Alice’s payoff as a function of her Stage 1 action for three representative MSRs
with Bob’s non-participation probability π = 0 and starting market price p0 = 1

2
; the

general characteristics are similar for other symmetric well-behaved MSRs: We have jump
discontinuities at the lower and upper thresholds, and a value of zero at pA = 1

2
. For

LMSR, the figure is truncated, and both the outer segments actually continue towards −∞
symmetrically, away from 1

2
.

3.4.3 Equilibrium when Bob’s participation is uncertain (0 < π <

1)

We shall now delve into the “grey area” where Alice as well as the rest of the world has

some finite uncertainty about Bob’s participation. In view of the lessons learned from the

relatively simpler scenarios π ∈ {0, 1}, we shall present the analysis of this more general

scenario π ∈ (0, 1) for a starting market price of p0 = 1
2

only16, in order to obtain clean

results; in fact, we included the symmetry assumption (3.3) in our model (Section 3.3)

16The initial price p0 = 1
2 corresponds to starting the market at a uniform “prior” – a standard practice

in prediction markets.
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for the same reason. For a larger family of MSRs that satisfy all the criteria stated in

Section 3.3 except the symmetry condition and for values of p0 other than 1
2
, one can still

adopt an approach similar to the one in this paper to analyze the game but the procedure

will be algebraically more involved.

It is not unreasonable to conjecture that there exists some critical value of Bob’s non-

participation probability below which the PBE of the resulting game is of the partially

revealing variety as in Section 3.4.2, and above which it is closer to the collusive equilibrium

obtained in Section 3.4.1. The following theorem formalizes this intuition.

Theorem 4. For any value of Bob’s non-participation probability π ∈ (0, 1) and Alice’s

posterior belief q0 ∈ (0, 1), the trading-voting game described in Section 3.3 has a perfect

Bayesian equilibrium with the following attributes:

For every q0, there exists a fixed value of Bob’s non-participation probability, say πc(q0),

which we call the “crossover” probability (dependent on the MSR), on either side of which the

equilibria are qualitatively different. We call the sub-interval π < πc the high participation

probability (HPP) equilibrium domain, and the sub-interval π > πc the low participation

probability (LPP) equilibrium domain.

• In an HPP equilibrium:

– In Stage 1, Alice moves the market price to pA = pL if q0 >
1
2
, and to pA = pH if q0 <

1
2

where pL, pH are the upper and lower thresholds, independent of π, q0, defined in (3.5) and

(3.6); strategic Bob’s price-update is pB = 0 if pA = pL, and pB = 1 if pA = pH .

– In Stage 2, Alice votes vA = 0 if she set pA = pL, vA = 1 if pA = pH ; strategic Bob

votes vB = 0 if he set pB = 0, and vB = 1 if he set pB = 1.

• In an LPP equilibrium:

– In Stage 1, Alice’s price-report pLPPA is equal to her posterior expectation of the market

liquidation value (average vote) given the parameters π, q0 and her report pLPPA , i.e. pLPPA =

E
[
v|π, q0, pA = pLPPA

]
. Moreover, pLPPA < 1

2
if q0 >

1
2
, pLPPA > 1

2
if q0 <

1
2
. strategic Bob’s

price-update is pB = 0 if pL ≤ pA ≤ 1
2
, pB = 1 if 1

2
< pA ≤ pH , and pB = 1

2
otherwise.
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– In Stage 2, Alice votes vA = 0 if pA >
1
2
, vA = 1 if pA <

1
2
; strategic Bob votes vB = 0

if pA ∈
[
pL, 1

2

]
∪
(
pH , 1

]
, vB = 1 otherwise.

Figure 3.2 illustrates the general characteristics of Alice’s and Bob’s actions in the two

equilibrium domains for q0 >
1
2
.

p
B
= 0 p

0
 = 0.5p

A
= pL

Alice's HPP report → v
A
 = 0

Bob's HPP report → v
B
 = 0, if he trades

p
0
 = 0.5pL

Alice's possible LPP report → v
A
 = 0

Bob's LPP report → v
B
 = 0, if he trades

0 p
B
= p

0
 = 0.5pL

Alice's possible LPP report → v
A
 = 0

Bob's HPP report → v
B
 = 1, if he trades

p
A

p
Ap

B
= 0

Figure 3.2: Alice’s price-reports for q0 >
1
2

and strategic Bob’s responses for HPP (left)
and LPP domains. The actual magnitude of pA in the LPP domain depends on values of
π, q0. Results are symmetric for q0 <

1
2
.

More specifically, pLPPA is one of the following:

µ0,0 =
π(1− q0)

2
, µ0,1 =

1− πq0

2
, µ1,0 =

1 + π(1− q0)

2
, µ1,1 = 1− πq0

2
,

where 0 < µ0,0 < µ0,1 <
1

2
< µ1,0 < µ1,1 < 1, ∀π, q0 ∈ (0, 1). (3.13)

Tables 3.3, 3.4, and 3.5 detail the dependence of Alice’s equilibrium trading action pPBEA

on π, q0 for any symmetric well-behaved market scoring rule with pL ∈ (0, 1
4
), pL = 1

4
, and

pL ∈ (1
4
, 1

2
) respectively (“Domain” signifies whether the equilibrium is of the HPP or LPP

type as defined above). The quantities π∗H(q0) and π∗L(q0) in Tables 3.3 and 3.5, and π∗ in

Table 3.5 are defined as follows:

• π∗H(q0) is the unique root in (0, 1) of the following equation in π:

f(1+π(1−q0)
2

)− f(pH)−
(
1− πq0

2
− pH

)
f ′(pH) +

(
1−π

2

)
f ′(1

2
) = 0

for a given convex function f(·) associated with a symmetric well-behaved MSR (which

has a well-defined pH), and any given value of the parameter q0 ∈ (0, 1). For 0 < q0 <

min(1
2
, 2pL), we have 1−2pL

1−q0 < π∗H(q0) < 1.
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• π∗L(q0) is the unique root in (0, 1) of the equation

f(1−πq0
2

)− f(pL)−
(
π(1−q0)

2
− pL

)
f ′(pL)−

(
1−π

2

)
f ′(1

2
) = 0

for a given f(·) and q0 as before. For max(1
2
, 1 − 2pL) < q0 < 1, we have 1−2pL

q0
<

π∗L(q0) < 1.

• π∗ is the unique root in (2− 4pL, 1) of the equation

f(1
2
− π

4
)− f(pL)−

(
π
4
− pL

)
f ′(pL)−

(
1−π

2

)
f ′(1

2
) = 0

for a given f(·) with pL ∈ (1
4
, 1).

For the proof of existence and uniqueness of each of the above roots, refer to Appendix B

Lemma 10. Table 3.6 presents the crossover probability πc as a function of q0 for all three

mutually exclusive and exhaustive sub-classes of symmetric well-behaved MSRs, defined on

the basis of the value of pL.

Proof sketch. Here we just outline the proof of Theorem 4, the details are in Appendix B

Section B.2. As in Section 3.4.1 for the case π = 1, we have to work with Alice’s expected ex

post profit that averages out her uncertainty with respect to two questions – what signal Bob

received, and whether he will trade in the prediction market. Owing to the linearity of the

profit function (3.4) in the market outcome, the expectation of the profit across outcomes

is equal to the profit function evaluated at the expected outcome. The rest of the proof is

similar to the analysis presented in Section 3.4.2 for the case π = 0: We need to consider the

four sub-intervals [0, pL), (pL, 1
2
], (1

2
, pH), (pH , 1[, over which Alice’s expected ex post payoff

as a function of her price-report pA is given by the corresponding segments of the functions

RA(pA,
1
2
, 0, 1), RA(pA,

1
2
, 0, 0), RA(pA,

1
2
, 1, 1), and RA(pA,

1
2
, 1, 0) respectively, with special

emphasis on the jump discontinuities at the thresholds pL and pH . An important difference

from Section 3.4.2 is that, for π ∈ (0, 1), the global maxima of these functions are no longer

located at 1
2
, 0, 1, and 1

2
respectively but at µu,v = u+(1−π)v+π(1−q0)

2
for u, v ∈ {0, 1}. So,

the local suprema of some of the four segments that we are interested in may not lie at the

extremities of the corresponding intervals but rather at an “interior” point, depending in a

complex manner on the values of pL, π and q0. For example, if π < 2pL

1−q0 , then the local

62



q0 π pPBEA (for pL < 1
4
) Domain

0 < q0 < 2pL 0 < π < π∗H(q0) pH HPP
π = π∗H(q0) pH or µ1,0 LPP or HPP

π∗H(q0) < π < 1 µ1,0 LPP
q0 = 2pL 0 < π < 1 pH HPP

2pL < q0 <
1
2

0 < π < 2pL

q0
pH HPP

π = 2pL

q0
pH = µ1,1 LPP or HPP

2pL

q0
< π < 1 µ1,1 LPP

q0 = 1
2

0 < π < 4pL pL or pH HPP

π = 4pL
pL = µ0,0 or
pH = µ1,1

LPP or HPP

4pL < π < 1 µ0,0 or µ1,1 LPP
1
2
< q0 < 1− 2pL 0 < π < 2pL

1−q0 pL HPP

π = 2pL

1−q0 pL = µ0,0 LPP or HPP
2pL

1−q0 < π < 1 µ0,0 LPP

q0 = 1− 2pL 0 < π < 1 pL HPP
1− 2pL < q0 < 1 0 < π < π∗L(q0) pL HPP

π = π∗L(q0) pL or µ0,1 LPP or HPP
π∗L(q0) < π < 1 µ0,1 LPP

Table 3.3: Alice’s PBE price-report for a symmetric well-behaved MSR with pL ∈ (0, 1
4
),

p0 = 1
2
.

supremum over [0, pL) of the overall RA is at µ0,0 ∈ (0, pL). Taking these issues into account,

we can determine the local suprema of the four segments and compare them to establish

that we have perfect Bayesian equilibria where Alice’s Stage 1 action is in accordance with

Tables 3.3, 3.4, and 3.5, her Stage 2 action is given by Lemma 5, and strategic Bob’s

actions are given by Lemma 6 with the restriction that vB = 0 if pA = pL and vB = 1 if

pA = pH (as in Section 3.4.2). �

Behavior at crossover probability If π = πc, then Alice is indifferent between her

LPP and HPP price-reports although the values of these reports are, in general, distinct.

However, if the prediction market is implemented with a symmetric well-behaved MSR with

pL < 1
4
, and q0 lies in (2pL, 1−2pL), then Alice’s LPP and HPP price-reports at the crossover

probability are identical so that the two domains coincide. This is illustrated in Figure 3.4

for LMSR under a specific signal structure, the details of which are provided in Section 3.6:
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q0 π pPBEA (for pL = 1
4
) Domain

0 < q0 <
1
2

0 < π < π∗H(q0) pH HPP
π = π∗H(q0) pH or µ1,0 LPP or HPP

π∗H(q0) < π < 1 µ1,0 LPP
q0 = 1

2
0 < π < 1 pL or pH HPP

1
2
< q0 < 1 0 < π < π∗L(q0) pL HPP

π = π∗L(q0) pL or µ0,1 LPP or HPP
π∗L(q0) < π < 1 µ0,1 LPP

Table 3.4: Alice’s PBE price-report for a symmetric well-behaved MSR with pL = 1
4
, p0 = 1

2
.

q0 π pPBEA (for pL > 1
4
) Domain

0 < q0 <
1
2

0 < π < π∗H(q0) pH HPP
π = π∗H(q0) pH or µ1,0 LPP or HPP

π∗H(q0) < π < 1 µ1,0 LPP
q0 = 1

2
0 < π < π∗ pL or pH HPP

π = π∗
pL or pH or
µ0,1 or µ1,0

LPP or HPP

π∗ < π < 1 µ0,1 or µ1,0 LPP
1
2
< q0 < 1 0 < π < π∗L(q0) pL HPP

π = π∗L(q0) pL or µ0,1 LPP or HPP
π∗L(q0) < π < 1 µ0,1 LPP

Table 3.5: Alice’s PBE price-report for a symmetric well-behaved MSR with pL ∈ (1
4
, 1

2
),

p0 = 1
2
.

In the left panel, we have a signal structure where q0 ≈ 0.52 < 1 − 2pL = 0.6. Hence, by

Tables 3.3 and 3.6, Alice’s unique PBE price-report at the crossover probability πc(q0) =
2pL

1−q0 ≈ 0.83 is pL = µ0,0 = πc(1−q0)
2

= 0.2. However, in the right panel, q0 ≈ 0.82 > 0.6, hence

Alice has two alternative PBE price-reports, pL = 0.2 (HPP) or µ0,1 = 1−πcq0
2
≈ 0.11 (LPP),

at the crossover probability πc(q0) = π∗L(q0) ≈ 0.96.

Figure 3.3 depicts the crossover probability πc as a function of q0 for each of the three selected

MSRs − logarithmic, quadratic, and spherical.
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q0
πc(q0)

0 < pL < 1
4

pL = 1
4

1
4
< pL < 1

2

0 < q0 < 2pL π∗H(q0) π∗H(q0) π∗H(q0)
q0 = 2pL 1 π∗H(q0) π∗H(q0)

2pL < q0 <
1
2

2pL

q0
π∗H(q0) π∗H(q0)

q0 = 1
2

4pL 1 π∗

1
2
< q0 < 1− 2pL 2pL

1−q0 π∗L(q0) π∗L(q0)

q0 = 1− 2pL 1 π∗L(q0) π∗L(q0)
1− 2pL < q0 < 1 π∗L(q0) π∗L(q0) π∗L(q0)

Table 3.6: The crossover probability πc as a function of q0 over the sub-intervals into which
the pL splits the entire possible range (0, 1) of q0 values, for symmetric well-behaved MSRs
with pL smaller than, equal to, and larger than 1

4
.

3.5 Implications of the equilibrium result

The following are some interesting corollaries to our main result, that shed light on various

aspects of the operation of prediction markets in the face of outcome manipulation possi-

bilities, including our main concerns about informativeness (Section 3.5.4) and truthfulness

(Section 3.5.2).

3.5.1 Dependence of crossover probability on Alice’s uncertainty

From Table 3.6 and the representative curves in Figure 3.3, observe a peculiarity of symmetric

well-behaved MSRs with pL < 1
4

such as LMSR. For 2pL < q0 < 1−2pL, which can be seen as

a region of “high” uncertainty in Alice’s posterior about Bob’s private signal after receiving

her own, the crossover probability actually decreases with Alice’s increasing uncertainty:

πc is inversely proportional to q0 and (1 − q0) over 2pL < q0 <
1
2

and 1
2
< q0 < 1 − 2pL

respectively. This means that the partially revealing LPP domain is realized for lower values

of Bob’s non-participation probability for these MSRs than for those with pL ≥ 1
4

over this

central region surrounding q0 = 1
2
. On the flip side, outside this high uncertainty region,

πc increases faster as Alice’s certainty moves away from q0 ∈ {0, 1} for MSRs with “low”

pL-values so that there exist values of q0, namely 2pL and (1 − 2pL) for pL ≤ 1
4
, for which

any value of π ∈ [0, 1] induces an HPP equilibrium.
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Figure 3.3: Dependence of crossover probability on Alice’s posterior belief about Bob for the
three MSRs; e.g. for QMSR, if q0 = 0.25. then πc ≈ 0.9537, so we have an LPP equilibrium
with pA = (1 + π(1 − q0))/2 for π > 0.9537, and an HPP equilibrium with pA = pH = 0.75
for π < 0.9537.

3.5.2 Private signal revelation

Unfortunately, strategic Bob’s report-vote pair is fully determined by Alice’s report and

does not depend on sB. There is no guarantee that Alice’s vote will be truthful either: In

general, as Tables 3.3, 3.4, and 3.5 indicate, regardless of whether we are in the LPP or HPP

domain, for p0 = 1
2
,

q0(sA) < 1
2

=⇒ pPBEA > 1
2

=⇒ vPBEA = 1;

q0(sA) > 1
2

=⇒ pPBEA < 1
2

=⇒ vPBEA = 0,
(3.14)

i.e. Alice votes the mode of her posterior distribution over Bob’s signal, as in Section 3.4.1.

However, if we invoke the additional assumption of stochastic relevance (Definition 3), then

we can use pA to uncover sA, as in Section 3.4.1, in an LPP equilibrium. This stands in

contrast to the situation where Bob’s participation is certain, the limiting case of the HPP

domain, where pA ∈ {pL, pH} has no dependence on q0 (Section 3.4.2).

Corollary 1. If the signal structure is such that Alice’s signal sA is stochastically relevant

for Bob’s signal sB, then the value of sA can be recovered from Alice’s price-report in an LPP

equlibrium pLPPA = µu,v (π, q0), u, v ∈ {0, 1}, regardless of whether vA = sA.
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Proof. Since pA being either pL or pH indicates that we are in the HPP domain, pLPPA 6∈
{pL, pH}. We also know that pLPPA 6∈ {0, 1

2
, 1} from inequalities (3.13). Moreover, by observ-

ing which sub-interval,
(
0, pL

)
,
(
pL, 1

2

)
,
(

1
2
, pH

)
or
(
pH , 1

)
, contains Alice’s LPP price-report,

we can infer Alice’s vote vA and Bob’s vote vB if he participates in the market (Lemmas 5

and 6), and hence which µu,v, u, v ∈ {0, 1}, equals pA. Since π is common knowledge, we can

solve for q0 from the expression for µu,v. For example, if 0 < pA < pL, then we can be certain

that pA = µ0,1 = 1−πq0
2

so that q0 = 1−2pA
π

. Under the assumption of stochastic relevance,

q0(sA) is one-to-one, so we can deduce sA uniquely from its value.

In a general HPP equilibrium (0 < π < πc), we can only tell whether q0 >
1
2

(if pA = pL)

or q0 <
1
2

(if pA = pH), but this is insufficient for recovering sA without further assumptions

about the signal structure. The following corollary presents sufficient conditions on the signal

structure for sA to be recoverable from Alice’s equilibrium action regardless of whether we

are in the LPP or HPP domain.

Corollary 2. If the signal structure is such that Alice’s posterior probability q0 of Bob

obtaining signal 0, given sA, lies strictly on different sides of 1
2

for different values of sA ∈
{0, 1}, i.e. either (q0(0) < 1

2
and q0(1) > 1

2
) or (q0(0) > 1

2
and q0(1) < 1

2
), then the value of

sA can be recovered from her PBE price-report (or, equivalently, vote).

Proof. From (3.14), we can tell by looking at pA (or equivalently vA) whether q0 <
1
2

or

q0 >
1
2
, and can hence deduce whether sA = 0 or sA = 1 from the signal structure.

Note that the signal structure in Corollary 2 automatically implies the stochastic relevance

property of Corollary 1. In light of the two corollaries above, we can conclude that whenever

there is a non-zero probability of Bob not trading but voting truthfully, there are signal

structures for which Alice’s trading action (in equilibrium) indirectly reveals her private

information!

In particular, if q0(0) > 1
2

and q0(1) < 1
2
, then it follows from (3.14) that, for p0 = 1

2
, vA = sA,

regardless of whether the value of π puts us in the LPP or HPP domain. In other words, in

our model, a sufficient condition on the binary signal structure for Alice to vote truthfully

in equilibrium regardless of Bob’s non-participation probability is that she believes it more

likely than not for Bob to receive the same signal that she has.
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3.5.3 HPP profit sharing

The HPP equilibria are a world where collusion appears with Alice as the “leader” picking

the vote that both will coordinate on, and pushing the price to just the level where it

makes sense for strategic Bob to push the price all the way to 0 or 1 and vote the same

way as Alice. In this way, they extract the maximum profit from the market maker, and

split it between the two of them in a ratio that is dependent on the functional form of the

MSR. In particular, for the three major MSRs considered, Alice makes more profit than Bob

in a collusive equilibrium, with the discrepancy being the least for LMSR – we omit the

straightforward calculations, and present the results in the following table:

Share in total HPP profit

if Bob is strategic
LMSR QMSR SMSR

Alice’s share 67.81% 75% 78.32%

Bob’s share 32.19% 25% 21.68%

However, it is possible to construct a symmetric well-behaved MSR with lower threshold

pL < 1
4

for which Alice makes less profit than strategic Bob in an HPP equilibrium: For

f(r) = 0.99(r− 1
2
)6 + 0.01r2, 0 ≤ r ≤ 1,17 with pL ≈ 0.1550 < 1

4
, Alice’s HPP profit share is

approximately 46.91%!

Corollary 3. In a trading-voting game where the prediction market is implemented by any

symmetric well-behaved MSR with lower threshold pL ≥ 1
4
, Alice’s ex post net profit in an

HPP equilibrium is greater than that of strategic Bob.

Proof. Regardless of the value of q0, if we are in the HPP domain, the starting price is p0 = 1
2
,

and Bob trades in Stage 1, then Alice and Bob’s ex post net profits in an HPP equilibrium

are respectively given by

RHPP
A = f(pH) + (1− pH)f ′(pH)− f(1

2
)− 1

2
f ′(1

2
)

= f(pL)− pLf ′(pL)− f(1
2
) + 1

2
f ′(1

2
);

RHPP
B = f(1)− f(pH)− (1− pH)f ′(pH)

= f(0)− f(pL) + pLf ′(pL).

17The term 0.01r2 ensures that f ′′( 1
2 ) 6= 0 so that the associated MSR satisfies all our technical desiderata.
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These expressions follow readily from Alice and Bob’s HPP report-vote pairs as shown in

Tables 3.3, 3.4, 3.5, and 3.2, as well as definitions (3.4) and (3.2). To prove the equivalence of

the two expressions for RHPP
A , we invoke relations (3.8), (3.9), and (3.10) from Proposition 2,

and simplify. For RHPP
A , we additionally use the result f(1) − f(0) = f ′(1

2
) obtained from

the symmetry condition (3.3) by plugging in y = 1. Hence,

RHPP
A −RHPP

B = 2
[
f(pL)− pLf ′(pL)

]
− f(0)− f(1

2
) + 1

2
f ′(1

2
)

= 2
[
f(pL)− 2pL

(
f(1

2
)− f(0)

)]
− f(0)− f(1

2
) + 1

2
f ′(1

2
),

from definition (3.5)

= 2f(pL) + (4pL − 1)f(0)− (1 + 4pL)f(1
2
) + 1

2
f ′(1

2
)

> 2
[
f(1

2
) +

(
pL − 1

2

)
f ′(1

2
)
]

+ (4pL − 1)f(0)− (1 + 4pL)f(1
2
) + 1

2
f ′(1

2
),

from the strict convexity of f(·)

= 4
(
pL − 1

4

) [
f(0)− f(1

2
) + 1

2
f ′(1

2
)
]
, on simplification

≥ 0, for pL ≥ 1
4

since f(0) > f(1
2
) + (0− 1

2
)f ′(1

2
) from the strict convexity of f(·). Hence RHPP

A > RHPP
B for

any symmetric well-behaved MSR with pL ≥ 1
4
.

If Bob is honest, Alice’s payoff is obviously a function of his private signal faithfully an-

nounced in the outcome-deciding voting stage. Corollary 3 tells us that, even if Bob is

strategic and hence ends up colluding with the manipulator Alice, her profit share in a

collusive equilibrium depends strongly on the MSR used – an insight that can potentially

inform the choice of an MSR for market design.

3.5.4 Informativeness of market prices about final outcome

Rewriting all our results so as to focus on what the market prices pA at t = 1 and pB at

t = 2 predict about the outcome (average vote), we obtain the following table (recall that

the final price pB = pA for honest Bob, and pB = v for strategic Bob):
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strategic Bob honest Bob

LPP HPP LPP HPP

pA Bayesian estimate Predetermined Bayesian estimate Predetermined

pB Actual outcome Actual outcome Bayesian estimate Predetermined

“Predetermined” signifies that pA ∈ {pL, pH};
“Bayesian estimate” denotes Alice’s expectation of the average vote.

3.6 A specific signal structure

Thus far, we have been non-specific about the signal structure, proving general results; we

now consider a concrete example scenario to illustrate our findings: The underlying random

variable takes values in the signal space itself, i.e. T = Ω = {0, 1}, the prior probability

of τ = 0 being ρ0 ∈ (0, 1). Given τ , the agents’ signals are independently and identically

distributed: for any “true” τ ∈ {0, 1}, each participant gets the “correct” signal (identical to

the true τ) with probability (1− ρe), otherwise gets the wrong signal; the error probability

ρe ∈ (0, 1)\{1
2
}. Note that if and only if ρe = 1

2
, we have q0(0) = q0(1) = 1

2
regardless of ρ0,

hence signals are not informative Chen et al. (2009), i.e. the prior and posterior probabilities

are equal. Then,

q0(0) =
(1− ρe)2 ρ0 + ρ2

e (1− ρ0)

(1− ρe) ρ0 + ρe (1− ρ0)
, q0(1) =

(1− ρe) ρe
ρeρ0 + (1− ρe) (1− ρ0)

.

This signal structure has multiple interesting information-revealing characteristics: First,

we have q0(0) 6= q0(1), i.e. Alice’s signal is stochastically relevant for that of Bob. Hence,

Corollary 1 applies. Second, it is easy to show that, if ρ0 = 1
2

(a uniform common prior),

then Alice’s vote is always truthful since, for any ρe ∈ (0, 1), sA = 0⇔ q0 >
1
2
⇔ vA = 0, by

(3.4).

Figure 3.4 shows Alice’s equilibrium report in a LMSR market and her expected liquidation

value vs. π, for signal sA = 0 and fixed ρ0, ρe (hence, a fixed q0). The HPP and LPP

regions are clearly visible to the left and right of the cross-over probability, where Alice’s

price-report (the dashed curve) is distinct from and coincides with her expected liquidation

value (the continuous curve) respectively. The corresponding plots for the other two MSRs

are qualitatively similar, hence omitted.
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Figure 3.4: Crossover from HPP to LPP equilibria regions for LMSR over 0 < π < 1 for
the signal structure described in Section 3.6 with two different sets of parameter values: the
prior probability of τ being 0 is ρ0 = 1

2
for both panels, and the error probability ρe is 0.4

and 0.1 for the left and right panels respectively. For the left panel, pLPPA = µ0,0 = π(1−q0)
2

,

hence pA increases with π for π > πc whereas for the right panel, pLPPA = µ0,1 = 1−πq0
2

, hence
pA decreases with π in the LPP domain. In both panels, pA = pL = 0.2 in the HPP domain.
For each curve, we have shown with a dashed blue line Alice’s expected average vote taking
Lemmas 5 and 6 into account, which coincides with pA in the LPP domain.

3.7 Extensions to more than two agents

Our model is stylized, but the framework and methodology can be applied to more complex

scenarios. Below, we sketch two specific lines of generalization.

Additional outcome-deciders who do not trade: Consider a scenario in which Alice

and Bob are the only traders but jointly decide less than 100% of the outcome, say, v =
vA+vB+

∑n
i=1 vi

n+2
, where {vi}ni=1 are the votes (and also the private signals) of n non-strategic

agents. We can still use the methodology of Section 3.4 to solve for the PBE, and show

that it is still of two broad types − we do need further specifications for a consistent belief
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structure, and the equilibria may have some additional characteristics depending on model

parameters.

For example, suppose that there are three outcome-deciders Alice, Bob, and Charlie each

of whom draws a signal from a structure identical to that in Section 3.6 but Charlie is

deterministically honest; the market outcome is v = vA+vB+vC
3

, where C is the subscript

corresponding to Charlie, and all other aspects of the model are the same as in Section 3.3.

It is easy to show that the natural extension of Lemma 5 still holds, i.e. (pA, 0) dominates

(resp. is dominated by) (pA, 1) for any pA < 1
2

(resp. pA > 1
2
) regardless of Alice’s signal

and all actions taken in the game after her price update. But, now strategic Bob’s best

response depends not only directly on Alice’s price-report pA but also on his posterior belief

about Charlie’s vote / signal which is, in turn, based on his own signal sB as well as his

inference about Alice’s signal sA. Let us denote by qA0 (sA) Alice’s posterior probabilities that

another agent received a signal 0, given her own signal sA, and by qB0 (sA, sB) the same for

Bob, given he knows not just sB but also Alice’s signal sA.

To complete the description of a consistent belief structure for this signal structure, we

assume that Bob infers sA = 0 (resp. sA = 1) whenever pA < 1
2

(resp. pA > 1
2
). Then,

the main deviation from the analysis in Section 3.4 is that Bob’s thresholds pL and pH now

become functions of sB ∈ {0, 1} so that each has two possible values, say pLsB=0, pLsB=1, and

pHsB=0, pHsB=1 respectively. Hence, we can show that in any PBE, pA < 1
2

for sA = 0 (i.e.

qA0 > 1
2
) and pA > 1

2
for sA = 1 (i.e. qA0 < 1

2
). Morever, Alice’s best response is, for a

low enough π, to set pA at one of the above thresholds, and, for a high enough π, at her

expectation of the outcome, given her t. Consider, for example, a scenario in which the

signal structure has ρ0 = 0.5 and ρε = 0.075 and Alice receives signal sA = 0. Calculations

show that qA0 (sA) = 0.8613, and hence pLsB=0 ≈ 0.1694, pLsB=1 ≈ 0.3257, pHsB=0 ≈ 0.6743, and

pHsB=1 ≈ 0.8306.

For π = 0.2, Figure 3.5(a) shows that Alice sets pA = pLsB=0 and vA = 0 in equilibrium.

Now, if sB = 0, then strategic Bob “agrees” with Alice and votes vB = 0 because pA lies

at his signal-dependent threshold pLsB=0, but if sB = 1, he votes vB = 1 because pA is now

lower than his threshold pLsB=0. i.e. in a “disagreement sub-interval”. Moreover, the above

result also suggests that for such a low-π equilibrium, Bob’s vote is always identical to his

signal, hence his signal is always revealed. For π = 0.98, Figure 3.5 (b) reveals that Alice’s
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expected payoff, given her knowledge of how the game unfolds after she trades, is maximized

at pA =
0+((1−π)·1+π·(1−qA0 (0))+(1−qA0 (0)))

3
≈ 0.982, i.e. Alice’s expected outcome, and this gives

her PBE price-report; but now, pA is less than both pLsB=0 and pLsB=1 so that, regardless of

his signal, strategic Bob disagrees with Alice, and his signal cannot be inferred from his

action (just as in the two-player game). In any case, strategic Bob moves the price to his

posterior expectation of v, which is no longer in {0, 1}.
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Figure 3.5: Alice’s expected payoff for different values of her trading action pA given her
knowledge of the extensions of Lemmas 5 and 6 for the case of three outcome-deciders. For
both plots, Alice has the same signal (sA = 0) and all model parameters are equal, except
Bob’s non-participation probability π, as noted above.

Additional traders who do not affect the outcome: Agents with no control over the

outcome who trade before Alice only matter in the level to which they move the price seen by

Alice but, from Alice’s perspective, this is equivalent to a general ‘starting’ price p0 ∈ (0, 1);

if they all trade after Bob, Alice and Bob’s equilibrium actions remain unchanged because,

for an MSR, an agent’s payoff depends on the actions of her predecessors and not on those

of her successors, by design (as long as these successors are not outcome-deciders).
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The game becomes more complex when there are intermediate traders between Alice and

Bob. To test how the equilibrium strategies implied by Theorem 4 fare in such scenarios, we

ran some simple simulations with an LMSR market maker. The market starts at p0 = 0.5,

and Alice moves first, but she is followed by a sequence of 10 “boundedly rational” myopic

budget-limited traders, described in greater detail in the next paragraph; then Bob trades in

the market (i.e. is of the strategic type) with probability 1 − π. As before, the outcome

is Alice and Bob’s average vote; the other traders do not vote.

Each intervening trader i obtains her private signal from the same source as Alice and Bob,

and then draws her estimate wi of the market outcome from a beta distribution: The mean

of this distribution is equal to her posterior expectation of any other agent’s signal given her

own realized signal, mi = E[sj|si] = Pr(sj = 1|si) for any j, and the variance is mi(1−mi)/2

or, in other words, the “pseudo-sample size” parameter of the beta distribution is 1. In

addition, each trader has the same budget B, i.e. each of these agents trades in such a way

that her loss (negative ex post payoff) never exceeds B. From the properties of the LMSR,

it can be easily shown that such an agent i can move the market price from her observed

value pi−1 to a maximum of pmax
i = (1 − γp̄i−1) and to a minimum of pmin

i = γpi−1, where

γ = e−B/b, p̄i−1 = 1 − pi−1. This budget constraint captures the intuition that agents who

do not influence an outcome and / or have poor knowledge thereof should be conservative in

their trading decisions. The intervening trader i buys a quantity that moves the market price

up to min(wi, p
max
i ) if wi > pi−1, sells a quantity that pushes the price down to max(wi, p

min
i )

if wi < pi−1, and does not trade otherwise.

As in Section 3.4, it is easy to show that Alice’s vote is revealed immediately after she

trades (this is consistent with the empirical observation that insiders are often “big players”,

and can be identified by other traders from their trading decisions). Thus, the problem

is still easy for strategic Bob who can see his immediate predecessor’s report and infer

Alice’s vote from her price update, and base his actions on this knowledge. But, how should

Alice play? This is a strategically more complex game, and finding equilibrium strategies

may be difficult. However, one possibility is for Alice to simply ignore the existence of the

intermediate traders and use her strategy from Theorem 4 – we will call an Alice taking

such an action strategic. While this is not necessarily an equilibrium (or a priori even a

good) strategy, in our simulations, we observe that it significantly improves upon a simple

alternative – declaring one’s private signal as the vote after updating the price to one’s
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posterior expected average vote – which we shall designate being truthful18. Thus, the

model may well have predictive value even in this more complex setting.

Profits Strategic Bob Truthful Bob

Strategic Alice 0.303,0.479 0.123, 0.265

Truthful Alice 0.280, 0.479 0.131, 0.265

Table 3.7: Alice and Bob’s expected profits for being strategic vs. truthful, with 10
intervening traders for the signal structure described in Section 3.7. Results are averaged
over 105 simulations. The first entry in each cell corresponds to Alice, the second to Bob. The
table does not list all strategies available to the players, and does not depict the equilibrium;
it shows that when both players employ Theorem 4 strategies, each achieves at least as much
expected profit as they would for any strategy-pair in which at least one is truthful. We
observed similar results for other parameter combinations.

Table 3.7 shows a sample of our findings for a signal structure similar to that in Section 3.6

with ρ0 = 0.5, ρε = 0.4, π = 0.4; the budget is B = 0.5. Strategic Bob is as described

in Section 3.3; the difference between truthful Bob and honest Bob is that the former

not only votes truthfully but also participates in Stage 1, updating the price to the realized

outcome. Note that Bob’s profit in Table 3.7 appears to be independent of whether Alice is

strategic or truthful. This is due to two factors: Bob’s action (and hence his profit)

depends only on whether Alice’s report pA is above or below 0.5, indicating her vote, and

for this information structure, pA is always on the same side of 0.5 given Alice’s signal,

irrespective of her strategy; his profit depends on his immediate predecessor’s report too, but

with a sufficiently large number of intermediate traders, this price-report is also practically

stable.

3.8 Incentivizing truthful trading and voting

Until this point, we have assumed that there is zero compensation for the agents associated

with the outcome-deciding process. But, if agents derive some extra-market utility, known to

the principal, from the the outcome itself or if the principal itself can offer additional payment

18For computing the posterior expected average vote, truthful Alice just assumes that Bob will vote his
private signal.
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to each agent corresponding to her role in the outcome-deciding process, it is reasonable to

ask whether the resulting (modified) two-stage game has an equilibrium where all n ≥ 2

agents “vote” truthfully (and, of course, trade in a way that reflects their truthful vote).

We propose a design for a combined two-stage trading-voting mechanism (“voting” again

being a metaphor for an agent’s outcome-affecting action) for the general case of n agents

(n ≥ 2) that disincentivizes manipulative behavior. The basic model is a natural extension

of that described in Section 3.3 but this section is independent of the analysis in Section 3.4.

In the first stage of the game, the n agents trade in a prediction market in some pre-

determined order, and then simultaneously choose their actions vi ∈ Ω (not necessarily

binary) in the second stage, the market liquidation value v being some function of {vi}ni=1

(not necessarily the average). Each agent has zero non-participation probability in the

market and trades exactly once. Thus, although the myopic assumption still holds, the

scenario is adversarial in the sense that all outcome-deciders participate deterministically

in the prediction market. The number of participants n as well as the belief structure on

the underlying type τ and the agents’ private signals {si}ni=1 is common knowledge. Let us

denote the agents’ price reports {pi}ni=1, the starting market price being p0.

Here, we demonstrate our approach with a LMSR market with liquidity parameter b, the

treatment for other scoring rules being similar. Although the worst-case loss in a traditional

LMSR market is bounded, it is theoretically possible for an individual trader to earn an

unbounded profit from it. To circumvent this issue, we place a fixed budget B on every

agent (i.e. each agent trades in such a way that their loss can never exceed B).19 From the

properties of LMSR, it can be easily shown that agent i can move the market price from their

observed value pi−1 to a maximum of pmax = (1− γp̄i−1) and to a minimum of pmin = γpi−1,

where γ = e−B/b, p̄i−1 = 1− pi−1. Thus, agent i’s net payoff from the prediction market is

rPMi (pi, pi−1, v) = b
[
v ln

(
1/pi−1−1

1/pi−1

)
− ln

(
1−pi−1

1−pi

)]
. (3.15)

19With the budget constraint, the market may lose some of its expressiveness (Abernethy et al., 2011), i.e.
a trader may not be able to update the market price so as to coincide with their estimate of the liquidation
value, but it is still directionally expressive in the sense that it is still rational for an agent to shift the price
as close to her estimate as possible.
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Simple algebra shows that for each i, the maximum and minimum possible values of the

above under the budget constraint are

rPMi,max = b ln

(
max

{
1− γpi−1

1− pi−1

,
1− γp̄i−1

1− p̄i−1

})
, rPMi,min = −B = b ln γ. (3.16)

Let l̂i(vi) denote agent i’s posterior expectation of the liquidation value based on her decision

to vote vi (declared signal) and her inference from the common prior, her private signal

si, and the prices p0, p1, . . . , pi−1 (assuming every other agent is Bayesian and truthful in

both voting and trading), and r̂PMi (p̃, pi−1, vi) be her posterior expected net payoff from the

market mechanism on updating the price from pi−1 to any reachable p̃. From the above

linear dependence of rPMi on v, r̂PMi is readily seen to be a simple linear function of l̂i(vi).

Our key idea is to introduce a compensation scheme for the voting mechanism such that the

combined payoff from the market and the voting system when an agent is truthful in both

stages (and believes that everyone else is going to be similarly truthful) exceeds the largest

profit she can make by deviating from truth-telling. A promising technique for achieving

this end is the peer prediction scheme introduced by Miller et al. (2005) proposed in the

literature providing truth-telling incentives to experts in a traditional (non-market) means

of information gathering like a survey or poll when the ground truth is never accessible to

the principal. The following is a brief description thereof tailored to our setting.

We choose a reference participant f(i) a priori for agent i such that i’s vote is stochas-

tically relevant for that of f(i) (the posterior is different for different realizations of the

signal). At the end of voting, the transfer made to participant i by the center is a func-

tion of the posterior on participant f(i)’s vote vf(i) under the common prior, likelihood

and agent i’s vote vi, the function being a strictly proper scoring rule. Suppose we use

a strictly proper scoring rule R(·) (not necessarily logarithmic) so that agent i’s peer-

prediction score is given by rPPi (vf(i), vi) = αiR
(
g
(
vf(i)|vi

))
, where g(·|·) is said posterior.

Thus, agent i’s expected peer-prediction score is r̂PPi (si, vi) = αiφ(si, vi) where φ(si, vi) =∑
vf(i)∈Ω R

(
g
(
vf(i)|vi

))
g
(
vf(i)|si

)
and g(·|·) is said posterior, αi > 0, i = 1, 2, · · · , n. Miller

et al show that truthful voting is a strict Nash equilibrium for this mechanism. The con-

stants αi have no effect on the truth-telling incentives of the voting stage alone, and we

show below how to tune these free parameters to ensure honest behavior. Note that while
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the LMSR prediction market has a single parameter b that determines all its properties, the

proposed combined mechanism has n additional parameters.

Now we can state our result: there is a way to set the parameters b and αi (which are under

the designer’s control) that guarantees that the overall expected earnings r̂i =
(
r̂PMi + r̂PPi

)
for every i is uniquely maximized under the imposed constraints when their trading and

voting are both consistent with their private information (in equilibrium). Let ∆φm =

mins,s′∈Ω, s′ 6=s [φ(s, s)− φ(s, s′)], which is strictly positive by the incentive compatibility of

the peer-prediction method and is a function of the signal structure.

Theorem 5. Let there be n participants in the above mechanism, each with budget B. If we

promise every agent i, when she arrives to trade, a peer- prediction payment with some αi

satisfying

αi >
b

∆φm
ln
(

max
{

1−γpi−1

γ(1−pi−1)
, 1−γp̄i−1

γ(1−p̄i−1)

})
,

where all symbols have the meanings stated above, then there exists an ex interim Bayes-Nash

equilibrium where each agent i announces vi = si in the outcome-deciding stage after having

updated the market price as close as possible to her to truthful expected liquidation value, i.e.

pi =


pmin if l̂i(si) < pmin,

l̂i(si) if pmin ≤ l̂i(si) ≤ pmax,

pmax otherwise.

Proof. Part I: For any voting choice vi = v′, agent i’s expected market liquidation value

assuming everyone else to be truthful is l̂i(v
′) , and since r̂PPi is independent of pi, from

Equation (3.15), it follows that

∂r̂i
∂pi

=
∂r̂PMi
∂pi

= l̂i(v
′)−pi

pi(1−pi) R 0 ⇐⇒ pi Q l̂i(si).

Part II: For proving that when subsidies are set to yield the conditions on αi above, it is in

an agent’s best interest to pick her honest vote, it suffices to show that for any possible signal

values s, s′ where s′ 6= s, and any feasible prices p̃,p̃′,p̃′′, r̂i(si = s, pi = p̃′, pi−1 = p̃, vi = s) >

r̂i(si = s, pi = p̃′′, pi−1 = p̃, vi = s′) which reduces to αi[φ(s, s) − φ(s, s′)] > r̂PMi (p̃′′, p̃, s′) −
r̂PMi (p̃′, p̃, s). The greatest lower bound on the L.H.S. is, by definition, αi(∆φm) where ∆φm
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is a known constant and always strictly positive. An upper bound on the R.H.S. is obviously

the range of all possible payoffs from the prediction market of agent i with budget B whose

predecessor’s price-report is pi−1, i.e. (rPMi,max − rPMi,min), given by Equations (3.16). Thus,

setting αi to a value exceeding the (finite positive) bound specified in the theorem statement

is a sufficient condition for the desired inequality to hold.

The two parts together complete the proof.

If R(·) ≡ ln(·), then the “raw” peer-prediction scores rPPi are always negative, so there

is no incentive for voluntary participation. This problem can be solved, as in Miller et al.

(2005), simply by subtracting from the raw score of agent i the constant αi mins,s′∈Ω(ln(s|s′))
which is a function of the prior and likelihood structures and independent of actual trader

behavior. This ensures positive peer-prediction payments but also necessitates subsidization

of the mechanism. For our budget-constrained LMSR market, b ln 2 is a (perhaps loose)

upper bound on its loss so the market subsidy is linear in b and independent of n. The

amount of subsidy for the voting phase is proportional to
∑n

i=1 αi. A reasonable choice for

αi is αi = κb
∆φm

ln
(

max
{

1−γpi−1

γ(1−pi−1)
, 1−γp̄i−1

γ(1−p̄i−1)

})
where κ is a constant slightly greater than 1.

It is straightforward to show that

ln
(

2
γ
− 1
)
≤
(

∆φm
κb

)
αi ≤ ln

(
2(1− γ)

(
1
γ

)i+1

+ 1
γ

)
∀i,

assuming that the starting market price is 0.5. Since γ = e−B/b, it is clear that, for fixed b,

αi is Ω(B) and O(iB) and, for fixed i, B, it is Θ(1). Hence the total peer prediction subsidy

is linear in B, independent of b, and Ω(n) and O(n2).

3.9 Discussion

In this chapter, we have taken a significant step in exploring the crucial incentive issues that

have the potential to derail the effectiveness of prediction markets for various forecasting

tasks. We have introduced a new formal model for studying the incentives for and the

impact of manipulation in prediction markets whose participants can affect the outcome

by taking actions external to the market but there is some uncertainty about the market
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participation of some outcome-deciders. We have characterized the equilibria of the induced

game, discussed their properties, and outlined important extensions. Interesting avenues for

future work include generalizing our results to markets with other price-setting mechanisms,

richer signal structures, outcome functions other than the mean vote (such as non-linear and

/ or noisy functions of the agents’ second-stage actions), and agents who also strategically

pick the time-points at which they trade.
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Chapter 4

Aggregating censored signals from

non-strategic noisy agents

4.1 Introduction

In this chapter, we will abstract away from the task of providing truth-telling incentives,

and concentrate on methods that can be used for combining signals obtained from agents

as responses to queries designed by the principal, with the aim of getting as close to an

unknown “ground truth” as possible; our agent model will assume a lack of strategization

and consist only of the signal structure – the sampling distribution of agents’ signals given

the ground truth – to account for the subjectivity in their inputs to the aggregator.

There exist many problem domains where the learner’s goal is to locate a certain target,

given access only to a sequence of (potentially) oracles each of which provides a noisy binary

response to the question of whether the target belongs to a sub-space (chosen by the learner)

of its range of variation. Examples explored in the literature include dynamic pricing of goods

and services (Harrison et al., 2012), object localization in images (Sznitman et al., 2013),

and drug dosage discovery in Phase I clinical trials (Cheung and Elkind, 2010b).

Although the material in this chapter has general applicability, let us stay true to the spirit

of information aggregation within a (prediction) market context presented in Chapters 2

and 3, and try to motivate the discussion by recounting the automated market maker for

financial markets developed by Das and Magdon-Ismail (2009), henceforth referred to as

MM. Recall that a market maker is a trading agent that places both buy and sell orders
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within the same market (unlike buyers and sellers who respectively have demand and supply

only), and readjusts its prices after every trade with some financial objective in mind, e.g.

expected long-term profit maximization.

In the market model of Das and Magdon-Ismail (2009), the asset being traded attains a “true”

(unknown) value at market inception that remains unchanged henceforth, and each trading

agent acquires a noisy version of this value. At each time-step or episode, the MM publicly

quotes an ask price and a (lower) bid price defined as the price at which it is willing to sell

and buy one unit of the asset respectively in the episode. Exactly one agent interacts with the

MM per episode and buys one unit, sells one unit, or does nothing depending on whether her

valuation is higher than the ask price, lower than the bid price, or in between these quotes.

Agents following such simple trading rules that are not “immediately” irrational but lack

sophisticated optimization or learning components are often called zero-intelligence traders

(Gode and Sunder, 1993), and have been used to illustrate the emergence of interesting

aggregate-level properties (e.g. market efficiency) from individual properties (e.g. bounded

rationality).

Since the MM sees which of the three above actions the agent took, the ask and bid prices, in

addition to determining revenues, also serve as thresholds defining three (mutually exclusive

and exhaustive) sub-intervals such that the MM knows which of these sub-intervals the latest

trader’s valuation lies in. It can use this knowledge to adjust its quotes for the next episode

with the ultimate aim of converging on the true asset value so that it stands to profit (in the

long run) from the imperfectly informed traders. Das and Magdon-Ismail (2009) accomplish

this task within a reinforcement learning setting by having the MM maintain a Gaussian

belief state over the unknown value (which serves as the unchanging state of the world), use a

moment-matching approximation to its Bayesian posterior after every agent interaction, and

set bid-ask quotes as an action in its updated belief state; they show experimentally that this

methodology has impressive price discovery properties. If we consider the single-threshold

variant of this problem (where bid and ask price always coincide), the MM can be viewed as

a learner or principal performing an aggregation of stochastic binary (thresholded) signals

with its mean belief acting as the aggregate, albeit with a potential long-term profit-making

aim unlike in Chapters 2 and 3. We will concern ourselves only with what the principal

wishes to learn, and not why it wants to learn it.
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We present an algorithm that starts with a Gaussian prior belief on a real-valued target,

maintains a Gaussian belief at all times (after an initial transient phase; see below for details)

by applying a moment-matching approximation to the true (complicated and non-Gaussian)

posterior, and sets its threshold for querying each agent in a sequence at the mean of its

current belief distribution. We show that it unconditionally converges to the target with high

probability, and the asymptotic rate of convergence is near-optimal with respect to many

problem parameter, optimality being defined with respect to an exact Bayesian inferential

procedure that observes agents’ real-valued (unthresholded) signals.

4.2 Related work

The literature on learning with thresholded signals or binarized observations is scattered

across various lines of academic research. For example, in online dynamic pricing, a seller

wishes to determine the demand curve. She sets a price for a good and observes whether

or not the arriving buyer chooses to purchase at that price (Harrison et al., 2010). In

drug dosage discovery, the goal is typically to estimate the maximum dosage level that

causes toxicity with less than some target probability (this is typically the focus of Phase I

clinical trials) (Cheung and Elkind, 2010a). Threshold queries are also used in image or face

localization, where classifiers are used as subroutines to determine whether or not a face or

letter or character appears in the query region of some image (Sznitman and Jedynak, 2010).

Most contributions in this vein have focused on noise of a particular form: Nature generates

the correct answer, but it is then sent through a noisy transmission channel (Jedynak et al.,

2011). Thus, the probability of seeing the wrong signal is constant, independent of the point

of measurement (the particular threshold set by the learner). Several papers have focused on

proving the asymptotic optimality of policies that measure either at or around the median

(Horstein, 1963; Burnashev and Zigangirov, 1974; Castro and Nowak, 2008). More recent

work shows that measuring at the median is sequentially optimal for entropy reduction in the

case of symmetric noise (Waeber et al., 2011). In a different vein, Karp and Kleinberg (2007)

consider noisy binary search: in this problem, a finite sequence of biased coins, ordered in

increasing probability of a “heads” outcome, has to be searched for the last element with a

probability of heads lower than a specified target value.
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The bisection problem itself can also be thought of as a version of the classic problem of

stochastic root finding (Robbins and Monro, 1951), where the learner is trying to learn the

root of a real-valued, decreasing function f . The model is that the learner sequentially queries

at points θ1, θ2, . . . , θn, and receives observations of f(θ1), f(θ2), . . . , f(θn) after addition of

noise (e.g. zero-mean Gaussian noise). A natural extension to binary signals is to assume

that the learner observes whether or not the corrupted signal is above or below zero. This

directly corresponds to a noisy binary signal indicating whether the threshold is smaller than

or larger than the root. In this case, the noise model is heavily dependent on how close the

threshold is set to the target root. When the threshold is near the target, the probability of

seeing the wrong signal is significantly higher and no longer bounded away from 1
2
.

4.3 The learning problem

We set up a formal model for studying this sequential learning problem as follows: The

aim is to determine, within error tolerance ε, a fixed but unknown “target” value V ∈ R,

by querying a sequence of agents (or oracles) at episodes t ∈ {1, 2, . . .}; agent t has an

idiosyncratic estimate wt of the target due to independently and identically distributed

additive (zero-mean Gaussian) noise with a fixed, known variance σ2
z , i.e.

wt = V + zt, where zt ∼i.i.d. N (0, σz) ∀t = 1, 2, . . . ,

where N (µ, σ) denotes a Gaussian distribution with location and scale parameters µ and σ

respectively. If the learner had access to these raw samples w1, w2, . . ., the learning problem

could be solved by a classic Bayesian approach: one could start with a Gaussian prior (the

conjugate prior for this scenario) over the possible values of the unknown target v ∈ R, i.e.

p0(v) = N (µ0, σ0) for some µ0 ∈ R and σ0 > 0, and hence perform a standard inference on

this sequence of observations − it is well-known that the leaner’s belief distribution pt(v)

after every observation xt will be Gaussian with mean µt and standard deviation σt given

by the following two-dimensional updates:

µt+1 = µt +
ρ2
t

1 + ρ2
t

(wt − µt), ρ2
t+1 =

ρ2
t

1 + ρ2
t

, where ρt = σt/σz, ∀t = 1, 2, . . . .

(4.1)
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The learner returns µt at every t as her current estimate of V . Moreover, note that, the

higher the value of the ratio ρt which quantifies the learner’s uncertainty relative to that of

the noisily informed crowd, the larger the step-size |µt+1 − µt| for any given µt and wt, i.e.

as long as this Bayesian learner has a higher relative uncertainty, she takes a larger step “in

the right direction” in expectation, since Ept [µt+1 − µt] =
ρ2
t

1+ρ2
t
(V − µt) where Ept [·] denotes

expectation with respect to the learner’s time-t belief.

The catch in our model is that the learner is constrained to ask agent t only if wt is above

or below some threshold θt of the learner’s choice, i.e. she only observes the binary signal

xt = I(wt ≥ θt) = sign(V + zt − θt) ∀t.

Such an observation, where we only know whether or not a data point is above a specified

threshold, is said to be censored. With a Gaussian prior, our posterior distribution with this

type of observation is not Gaussian. Our problem can thus be seen as a censored variant

of stochastic root finding (Robbins and Monro, 1951) where a learner, trying to learn the

root of a real-valued decreasing function f(·), sequentially queries at points θ1, θ2, . . . , θn to

receive observations of f(θ1), f(θ2), . . . , f(θn) after addition of noise zt; in our scenario, the

learner just sees I(f(θt)+zt ≥ 0) where f(θ) = V −θ. Moreover, our probability of obtaining

a “wrong” signal at t is

Pr(wt ≥ θt|V < θt)I(V < θt) + Pr(wt < θt|V ≥ θt)I(V ≥ θt) = 1− Φ(∆t/σz),

on simplification, where Φ(·) is the standard normal cumulative distribution function, and

∆t , |θt − V |. Evidently, the above probability increases towards 1
2

as ∆t approaches 0 or,

in other words, as the threshold gets closer to the target. This is a significant deviation from

earlier models for learning from noisy binary signals which assume that the correct response

to every binary query at t = 1, 2, . . . reaches the learner after passing through a transmission

channel whose noise characteristics are independent of the query or, equivalently, the time-

step (Jedynak et al., 2012).

In this setting, the learner is faced with the two-step task, at every t:

(i) Choosing a query threshold θt given its current belief about the target (which implies

that our problem can be subsumed under active learning (Castro and Nowak, 2008)).
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(ii) Updating its belief, and hence its estimate of the target, on receiving the response xt.

Note that the learner is free to pick each θt on the basis of her prior belief, the entire

history {θ1, x1, θ2, x2, . . . , θt−1, xt−1}, and a learning objective of her choice, e.g. minimizing

her uncertainty at the end of a pre-specified time horizon. In principle, a Bayesian learner

could set up a dynamic program to solve its two-part problem, where the state is an entire

probability (belief) distribution and in every state, the action of computing a threshold is

taken. But instead of dealing with an infinite-dimensional state space, we will aim to come up

with a heuristic strategy with simple threshold-setting rules and state updates comparable

to (4.1) but having provable performance guarantees. We provide in detail the underlying

rationale for our algorithm in Section 4.4.

4.4 The intuition for our solution approach

The Bayesian Setting. At time t = 0, 1, 2, . . ., assume a (prior) distribution for V , which

we denote pt(v). After observation xt, the Bayesian update to the distribution is given by

pt+1(v) = Φ (xt(v − θt)/σz) pt(v)/At, −∞ < v <∞,

where At =
∫∞
−∞ dv pt(v) Φ (xt(v − µt)/σz), and Φ(·) is the standard normal cumulative

distribution function (CDF). Assuming pt is correct, which may not be the case, pt+1 incor-

porates all the new information from xt. At time t, the best estimate of V is given by the

mean of the distribution, which we define as

µt = Ept [V ] =

∫ ∞
−∞

dv vpt(v).

If the learner had to output an estimate for V at time t, the expected cost is the variance,

σ2
t = Varpt [V ] =

∫ ∞
−∞

dv v2pt(v)− µ2
t .

The Starting Prior. As with all Bayesian inference algorithms, we need to start with some

prior p0(v). In our context, the noise in the signals is based on a normally distributed random
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variable zt ∼ N (0, σz). One way to quantify the uncertainty in the learner’s prior is through

the learner’s initial variance, which we define as σ2
0 = ρ2

0σ
2
z (and, in general, σ2

t = ρ2
tσ

2
z).

Given the learner’s initial variance, in accordance with the principal of maximum entropy,

we adopt the least informative prior. This happens to be the normal distribution, so we

assume that p0(v) = N (0, ρ0σz) (we can always assume µ0 = 0 by translating V ).

A few words about the dimensionless parameter ρ0, an important measure of the harshness of

the learning environment, are in order. The harshest environment has ρ0 → 0, where, if the

prior is correct, the learner is very sure of her belief about V , but the signals are essentially

random signs, and so it is hard to make any progress in learning from the observations.

This is the regime we are interested in because (i) it is the hard interesting problem; and,

(ii) any inference based algorithm will eventually get more and more certain as it receives

more observations, which means that ρt → 0. Thus, if it is to succeed, any algorithm has

to be able to make good progress in this harsh regime. In fact, any reasonable heuristic

(and we present one) can learn when the observations are relatively noiseless; the ultimate

performance of an algorithm is dependent on its behavior in this ρ → 0 regime. From now

on, we set the scale of the problem by choosing σ2
z = 1 (which is without loss of generality;

the scale can always be added back through powers of σz using dimensional arguments).

Myopic Thresholds. Within this Bayesian setting, we perform task (i) of our problem

using the the simple myopic strategy of setting θt = µt, the expectation of the learner’s

current belief pt, at each t. This may or may not be sequentially optimal, but as we show

in Section 4.6, it is sufficient to obtain near-optimal asymptotic performance. In the multi-

threshold generalization of this problem, the selection of thresholds becomes non-trivial and

is dictated by further assumptions / constraints. However, our state update procedure that

we introduce in Section 4.5 can be extended to such situations and, since multiple thresholds

provide strictly more information, the performance cannot be worse than that of the single-

threshold algorithm which itself is near-optimal.

It is true that, to implement this myopic single-threshold strategy, one only needs to compute

µt at every time step, and perform the Bayesian update after observing xt. Unfortunately,

this computation requires the calculation of two integrals (one to compute At, and one to

compute the expectation) which are not analytically tractable, even for elementary starting
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priors p0(v). The natural alternative is to use numerical integration. However, numerical

integration leads to issues of numerical stability and efficiency. To compute pt, one needs

to store the entire history of θt, xt, At, which is O(t), and then the running time to set

θt, if we compute the integrals numerically with N quadrature points, is O(Nt). Together

with the numerical instability, this rapidly becomes computationally infeasible. In addition,

algorithmic issues can arise in selecting appropriate finite bounds for the integration domain.

As such, it makes sense to investigate whether approximate belief updates exist that enable

easier computation of thresholds and yet come with good performance guarantees. This

leads us to Section 4.4.1

4.4.1 Non-Parametric Histograms

Once the choice of thresholds has been made, the main challenge is to efficiently update the

prior (task (ii)). Consider the method, which we call NonParam henceforth, that uses a

non-parametric finite-support distribution to approximate the belief state after each episode.

Let v1 < · · · < vN be N possible values for V , the prior distribution p0(v) being given by the

probability-vector (p0(v1), . . . , p0(vN)), a truncated and renormalized discretization of our

actual Gaussian prior; the Bayesian update after observing every xt is then given by

pt+1(vi) =
1

At
Φ (xt(vi − θt)) pt(vi), i = 1, 2, . . . , N, At =

N∑
i=1

Φ (xt(vi − θt)) pt(vi).

The computation of the threshold / expectation in each episode as a finite sum θt = µt =∑N
i=1 vipt(vi) takes O(N) time; to converge to within ε of V , the resolution in the finite

prior should be O(ε), i.e. N = Ω(ε−1), making this a computationally intense procedure.

Another problem with this approach is that one must commit to a range for V , introducing

additional assumptions, and leading to serious problems when V is outside, or in the tail of,

the range. In spite of being impracticable, this method offers insights into the behavior of

the Bayesian update, aiding the design of our proposed algorithm, and also serves as a (near-

exact) benchmark for evaluating our accuracy. Starting from a Gaussian prior, using our

myopic thresholds, and running these non-parametric histogram-based updates, we illustrate

how the posterior evolves in Figure 4.1.
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(i) Truncation (ii) Collapse (iii) Convergence

Figure 4.1: Evolution of pt(v) using non-parametric histograms and Bayesian updates; p0(v)
is N (0, 10), σε = 1, V ≈ 9.45. Typical evolution consists of 3 main phases. (i) Truncation
(ρt = σt/σε � 1): All observations are in the same direction (here xt = +1) and almost
noiseless, so the Bayesian update results in a skewed distribution. Shown for comparison is
a truncated (on one side only) and renormalized Gaussian distribution (using our heuristic),
which approximates this phase better than Gaussian. (ii) Collapse: When the first observa-
tion in the opposite direction arrives (here xt = −1), the distribution collapses to something
more symmetric, although not quite normal. Shown for comparison is the entropy-matched
normal with the same mean. (iii) Convergence: ρt is typically small and µt is close to V ,
i.e. the algorithm has (probabilistically) bracketed V . From then on, nearly independent
observations which are close to random signs cause the distribution to rapidly converge to
normal, as would be expected with truly independent observations.

4.5 The algorithm

We can now delineate the operation of our algorithm for belief updates (or, equivalently,

learner’s state transitions), illustrated in Figure 4.2.

The state of the learner at time t is completely described in terms of four parameters,

(lt, rt,mt, st), that describe its current belief distribution, which can take on two forms:

either Gaussian, or truncated Gaussian. The support of the distribution is given by (lt, rt).

In all cases, either the left bound lt = −∞ or the right bound rt = ∞). The location

and shape of the distribution are determined by mt, s
2
t , the mean and the variance of the

underlying Gaussian. Thus the learner’s belief distribution is a rescaled normal distribution
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Figure 4.2: Learner’s state transitions.

on the support (lt, rt).

pt(v) =


N
(
v−mt
st

)
st

(
Φ
(
rt−mt
st

)
− Φ

(
lt−mt
st

)) v ∈ (lt, rt),

0 otherwise,

where N(·) is the standard normal probability density function (PDF). The initial prior is

normal with mean m0 = µ0 = 0 and variance s2
0 = σ2

0 (equal to ρ2
0 for σz = 1), which is

described by the state (−∞,∞, 0, ρ0). These approximations to the true Bayesian evolution
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allow us to compute the mean belief µt, identical to the threshold θt, by a simple known

formula at every t.

Additionally, the algorithm has a switch-over parameter ρ∗ such that, roughly speaking, a

value of the relative uncertainty ρt, defined in (4.1), higher than ρ∗ is taken to suggest that

we are in a situation where the truncation heuristic (Figure 4.1 Panel (i)) is most reasonable.

We use ρ∗ ≥ 1 since small ρt values (� 1) constitute the “challenging” regime.

A high level description of our method is given in Algorithm 1, and the general idea is as

follows. We start with Gaussian belief but since initial observations are likely to be all in

the same direction, we maintain a truncated normal distribution (as in Figure 4.1 Panel (i)).

Upon collapse (i.e. when the learner receives the first observation in the opposite direction,

as in Figure 4.1 Panel (ii)), we revert back to Gaussian, using entropy matching to set its

parameters. Though the Gaussian is not very accurate at collapse, this is only a transient

phase; as convergence occurs (as in Figure 4.1 Panel (iii)), the Gaussian becomes a better

and better approximation, so we remain in the Gaussian world, using moment matching to

update the parameters. The algebraic updates are provided below.

Algorithm 1 The Learning Algorithm

Initialize l0 = −∞, r0 =∞, m0 = µ0, s0 = σ0.
for t = 0, 1, 2, . . . do

Set threshold at µt;
Receive noisy thresholded signal xt;
Update lt, rt,mt, st;
Compute µt+1, ρt+1 = σt+1/σz;

end for

Approximate Gaussian Inference (ρt ≤ ρ∗). As in Das and Magdon-Ismail (2008),

in transitioning from Gaussian to Gaussian, we can compute the mean and variance of the

true posterior, and we approximate this with the Gaussian that has the same mean and

variance. So we perform approximate moment matching inference in this case. Das and

Magdon-Ismail (2008) derive exactly such moment matching equations for two thresholds,

91



which we can directly specialize to the single threshold case:

µt+1 = µt + xt

(
σz
√

2/π
)
ρ2
t√

1 + ρ2
t

; (4.2)

ρ2
t+1 = ρ2

t

[
1 + ρ2

t (1− 2/π)

1 + ρ2
t

]
. (4.3)

Truncation (ρt > ρ∗). When ρt is large, we approximate the inference by truncating (as

in Figure 4.1) as long as the signal is consistent with the truncation. The state updates are:

(lt,∞,mt, st)
(θt,xt=+1)−→ (θt − 2σz,∞,mt, st);

(−∞, rt,mt, st)
(θt,xt=−1)−→ (−∞, θt + 2σz,mt, st).

Collapse. No matter what ρt is, if the signal is inconsistent with the truncated Gaussian,

then we collapse back to Gaussian (see Figure 4.1). Unfortunately, updating to a Gaussian

using moment matching would take the distribution with finite support and collapse to a

distribution with infinite support and the same variance, typically producing a Gaussian that

is too localized although there can be a lot of uncertainty in the learner’s posterior. So a

better way to capture this uncertainty is by matching the entropy. We call this approximate

inference by entropy matching. To make the entropy matching analytically tractable, we first

doubly truncate the distribution (as in regular truncation), compute the mean and entropy

of the resulting distribution, and then collapse to the Gaussian with this mean and entropy.

For finite lt and rt, the state updates are:

(lt,∞,mt, st)
(θt,xt=−1)−→ (−∞,∞, µt+1, ρt+1);

(−∞, rt,mt, st)
(θt,xt=+1)−→ (−∞,∞, µt+1, ρt+1).

We abuse notation above, in that the updates are not the same in both cases. In the top

case (xt = −1), set l = lt and r = µt + 2σz; in the bottom case (xt = +1), set l = µt − 2σz

and r = rt. Then, a tedious but straightforward computation of the mean and entropy of

the resulting rescaled doubly truncated Gaussian with support (l, r) and parameters (mt, st),
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followed by entropy matching gives:

µt+1 = mt+1 + st+1

[
N(l′)−N(r′)

Φ(r′)− Φ(l′)

]
,

σ2
t+1 = s2

t+1

[
(Φ(r′)− Φ(l′))2e

l′N(l′)−r′N(r′)
Φ(r′)−Φ(l′)

]
.

where l′ = (l −mt) /st, r
′ = (r −mt) /st.

4.6 Analysis

Note that exact Bayesian inferential procedure, described in (4.1), that we can perform

for the scenario mentioned in Section 4.3 when the learner has access to raw valuations

(with a Gaussian starting prior and Gaussian observations) serves as a “gold standard” for

evaluating our algorithm in Section 4.5 since one is certainly getting more information from

the unthresholded signals and so should be able to do better. Hence, we first analyze the

raw-valuation algorithm, and then compare the asymptotic performance of our method that

works with thresholded signals to it.

The proofs of all results furnished in this chapter are highly technical and relegated to

Appendix C.

4.6.1 Bayesian inference with uncensored signals

Since wt = V + zt, we can rewrite state update equations (4.1) as

µt+1 =
µt + ρ2

t (V + zt)

1 + ρ2
t

and ρ2
t+1 =

ρ2
t

1 + ρ2
t

.

Assuming that µ0 = 0, and that {zt}t≥0 are i.i.d. N (0, 1), i.e. σz = 1, we can unfold the

above recursion to show that µt has a Gaussian distribution with

E[µt] = V − V

1 + tρ2
0

and Var[µt] = ρ2
0

tρ2
0

(1 + tρ2
0)2
. (4.4)
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Theorem 6 below gives the convergence of µt both in expectation and with high probability.

Fix an error tolerance ε > 0. The dependence of the expected value on t immediately implies

a lower bound on the time after which the expectation of µt (which is our output estimate

V̂ ) is within ε of V . Further, the distribution for µt tells us that if we fix a small confidence

parameter δ, 0 < δ � 1, and define ζ = −Φ−1(δ), then (for V > 0) with probability at

least δ, µt ≤ E[µt] − ζ
√

Var[µt], which allows us to get a lower bound on t if we want high

probability convergence.

Theorem 6. Fix ε < |V |
2

, δ ≤ Φ(−1).

(i) For t > |V |/ερ2
0, |V | − |E[µt]| < ε.

(ii) For t > max
{

2|V |
ερ2

0
, 4ζ2

ε2

}
, where ζ = −Φ−1(δ) ≥ 1,

Pr[µt > V − ε] > 1− δ if V > 0; Pr[µt < V + ε] > 1− δ if V < 0.

Proof. Here, we will prove the result for the case {V > 0}. Note that for V > 0, we must

have V
1+tρ2

0
< V since t, ρ2

0 > 0, so that E[µt] > 0 ∀t ≥ 1, from result (4.4).

(i) The L.H.S. of the required inequality is

V − E[µt] =
V

1 + tρ2
0

, from result (4.4),

<
V

1 + V
ε

for t > V/ερ2
0,

=
ε

ε
V

+ 1

< ε ≡ R.H.S.,

since ε
V
> 1.
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(ii) From the definition of the standard normal cumulative distribution function,

Pr[µt < V − ε] = Φ

(
V − ε− E[µt]√

Var[µt]

)
,

where
V − ε− E[µt]√

Var[µt]
=
V − ε(1 + tρ2

0)

ρ2
0

√
t

, from result (4.4), after simplification,

<
V − εtρ2

0

ρ2
0

√
t
, since ε > 0,

=
V

ρ2
0

√
t
− ε
√
t

<
1

ρ2
0

√
t
· εtρ

2
0

2
− ε
√
t, for t >

2V

ερ2
0

,

=
ε
√
t

2
− ε
√
t

= −ε
√
t

2

< −ζ, for t >
4ζ2

ε2
,

= Φ−1(δ)

=⇒ Pr[µt < V − ε] < δ,

from the strict increasing monotonicity of Φ(·). Now, the L.H.S. of the required in-

equality is

Pr[µt > V − ε] = 1− Pr[µt < V − ε] > 1− δ ≡ R.H.S.

The proof for {V < 0} is analogous.

Part (i) of the theorem says that to get convergence in expectation, O(V/ερ2
0) time is needed.

Note that, from the well-known Gaussian tail inequality (see e.g. Boucheron et al. (2004)),

it is easy to show that ζ = −Φ−1(δ) = O(
√

ln(1/δ)); so, if one wants convergence with

probability at least 1−δ, then part (ii) of the theorem makes it clear that O(V/ερ2
0 +ln 1

δ
/ε2)

time is needed. These bounds will be useful in showing that our algorithm is nearly as good

as exact inference with non-thresholded observations.
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4.6.2 Approximate Bayesian inference with censored signals

The algorithm in Section 4.5 has two basic phases. The first is if ρt is large, in which case the

algorithm is a heuristic that truncates the distribution until colapse into the Gaussian world,

at which point the process (truncation→collapse) repeats until ρt gets below ρ∗. We do not

go into the details of the dynamics for ρt > ρ∗ because in this relatively noiseless regime,

many heuristics can “localize” the posterior quickly. The interesting regime is ρt → 0, when

the signals start to get noisy. In this regime, our algorithm will always be doing approximate

Gaussian inference (since ρt is decreasing), updating according to Equations (4.2) and (4.3).

Once in this regime, we essentially show that our algorithm is near-optimal by proving that

µt converges quickly to V in expectation, and it also does so with high probability. For

asympotic results, we have in mind that ρ0 → 0. Proposition 3 below mirrors part (i) of

Theorem 6 above, and speaks to the speed of convergence to the target in expectation for

the case of censored signals; the (heuristic) proof is provided in Appendix C.

Proposition 3. There exist absolute positive constants C > 0 and k, 1 ≤ k < π
√

2 ≈ 4.44

such that, if t > C/(ρ2
0ε
k), then |V | − |E[µt]| < ε.

Recall that the expectation is with respect to p0(v) and the i.i.d. zt ∼ N (0, 1), hence this

result is relevant when the prior is correct. From Theorem 6, the best we could hope for,

even with non-thresholded signals, for the expectation to get within ε of V is t = O(1/ρ2
0ε).

Thus, our dependence on ρ2
0 is optimal. The theorem gives polynomial convergence in 1/ε

but, in practice, k is almost 1, which is near-optimal asymptotic convergence, as illustrated

with an example in Figure 4.3.

Our second result (the proof, again, is in Appendix C) demonstrates unconditional conver-

gence with high probability, regardless of whether our prior p0(v) is correct. For simplicity,

we assume without loss of generality that V > 0. Note that µt follows a stochastic process.

We ask how long we have to wait before, with high probability, µt will have crossed V − ε.
This analysis is sufficient to convey the main point of the convergence, because once you cross

this barrier, the stochastic process has an attractor at V , and so will stay in this region. The

tough part is getting to this region.
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Figure 4.3: A log-log plot showing the time taken by E[µt] (approximated by the average
computed over 106 simulations) to converge to V − ε when V = 3, µ0 = 0, ρ0 = 0.5.
Evidently, the convergence time approaches O(1/ε) as ε becomes small, which gives us
empirical evidence that it is near-optimal.

Theorem 7. Fix 0 < δ < 1, 0 < ε < V , 0 < ρ0 ≤ 1, and define ∆ = V − ε. There is an

absolute constant C > 0 such that if t > T = eC(ln(1/δ)+∆)/ε/ρ2
0, then with probability at least

1− δ, maxi≤t µi > V − ε.

This constant T gives us an upper bound on the time at which µt first crosses V − ε. In the

practical setting where the prior is ill-specified, V is very large and ε is usually specified as a

percentage of V . Then, the exponent is some constant and the dependence on 1/ρ0 is what

we are interested in. Comparing with part (ii) of Theorem 6, we see that our algorithm is

asymptotically optimal with respect to 1/ρ0.
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4.7 Experimental results

We perform experiments to evaluate the practical performance of our algorithm. Our simu-

lations measure convergence time as the time taken by µt to enter the region [V − ε, V + ε]

for the first time. We are interested in the dependence of the convergence time on ρ0 and ε.
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Figure 4.4: Plot of average correct-prior convergence time vs ρ0, logarithmic along the
vertical axis.

First, we compare the non-parametric algorithm (NonParam) to exact inference on non-

thresholded signals, and show that noisy binary signals are almost as informative as the

unthresholded signals. This is already surprising. Assuming that the prior is correct, we set

the support of the non-parametric histogram to [−6ρ0, 6ρ0] and use 1,000 histogram bins.

We generate V randomly according to p0 and any value of V outside this finite support is

discarded. For our algorithm, we set the switch-over parameter ρ∗ = 2.5. The number of

steps taken by each algorithm to converge to the region [V − ε, V + ε], averaged over 108

runs for NonParam and 109 runs for each other algorithm, is reported in Figure 4.4.
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In our second set of simulations, we fix σ0 at 0.5 and vary ε. To ensure adequate resolution

for NonParam, we use 24ρ0/ε bins (giving a resolution of ε/2). The number of steps to

convergence is presented in Figure 4.5. The average is over 105 runs for NonParam (owing

to computational burden) and 107 runs for each other algorithm. It is clear from the figures

that not only is learning from noisy binary thresholds feasible in this Bayesian model, but

can be performed almost as well as learning from non-thresholded signals, in accordance

with the theory.
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Figure 4.5: Plot of average correct-prior convergence time vs ε, logarithmic along the vertical
axis.

4.8 Discussion

This contibution can be viewed as constructive proof of the claim that it is possible to learn

a real-valued target from noisy valuations binarized by a threshold, asymptotically almost
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as efficiently as if the actual valuations were accessible to the learner. This means that

thresholding does not significantly impede our ability to learn!

These results also provide theoretical underpinnings to the Bayesian market making algo-

rithm, introduced by Das and Magdon-Ismail (2009), and employed (with modifications to

make it more practical) by Brahma et al. (2012) and Chakraborty et al. (2013).

An interesting direction for future research would be to chalk out the generalization to

multiple thresholds and study how the performance converges towards the scenario where

the learner observes the agents’ actual (uncensored) signals as we increase the number of

thresholds.
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Chapter 5

Market making in practice: CDA

with LMSR

5.1 Introduction and related work

In this chapter, we will review the market microstructure called the continuous double auction

(CDA) which has traditionally been employed in many real-world financial markets, including

early prediction markets, e.g. the Iowa Electronic Markets (Berg and Rietz, 2006)). This

microstructure offers participating traders more flexibility in terms of the types of orders

they can place, compared to the models we encountered in previous chapters where an agent

/ trader could only specify whether or not she wished to buy from or sell to the principal

(Chapter 4) or additionally the quantity she wanted to trade (Chapters 2 and 3). We will

then demonstrate how the market scoring rule concept can be modified to design an agent

that operates within this CDA framework, and experimentally study the impact this MSR-

based agent has on the properties of a CDA market, particularly on its power to aggregate

traders’ information. In doing so, we will use an extension of the zero-intelligence trader

model mentioned in Chapter 4.

With this in view, let us now step outside the domain of prediction markets into the larger

world of more general financial markets, such as those for stocks, bonds, and options, that

provide participants with opportunities for hedging, investment, and speculation. The orga-

nizers of these markets have always had to deal with the chicken-and-egg problem of providing

liquidity, which, roughly speaking, is a measure of ongoing trading activity or open interest

in the market. To this end, many such markets employ specially designated agents, called
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market makers (as we have seen in previous chapters) or, sometimes, specialists, that are

responsible for providing liquidity by always being ready to transact with traders. In the

last decade or so, research on algorithmic market making has become one of the interesting

contact points between artificial intelligence and finance, both in the general context (Das,

2005, 2008b; Wah and Wellman, 2015), and specifically in the design of prediction mar-

kets (Hanson, 2003b; Chen and Pennock, 2007; Brahma et al., 2012; Othman et al., 2013;

Abernethy et al., 2014).

Most research on algorithmic market making in both financial and prediction markets has

either focused on market making as a trading strategy (Chakraborty and Kearns, 2011;

Schmitz, 2011) or has modeled the market as a pure dealer market, where the market maker

takes one side of every trade (Hanson, 2003b; Das, 2008b; Othman et al., 2013). The market

can therefore be modeled in terms of the market maker’s quoted bid (buy) and ask (sell)

prices, and traders’ decisions on whether or not to transact at these prices. However, most

modern markets, ranging from big financial markets like the NYSE and NASDAQ to smaller

prediction markets like the Iowa Electronic Markets, use the continuous double auction

(CDA) mechanism (Forsythe et al., 1992). In CDAs, participants can place limit orders

that specify a transaction price and are guaranteed to only execute at that price or better

(although execution is, of course, no longer guaranteed). The key element of CDAs is the

limit order book, which contains all active buy and sell limit orders; the highest buy and the

lowest sell constitute the market bid and ask prices at any point in time.

While most practical market making algorithms (for example, those used by market makers

on the NYSE and NASDAQ) are deployed in markets with limit order books, the academic

literature on algorithmic market making has thus far produced almost no analysis of the

impact of market making in CDA markets (with the exception of Wah and Wellman (2015)).

Here we begin to tackle this problem in the context of market making in prediction markets.

The logarithmic market scoring rule proposed by Hanson (2003b) is probably the most

commonly deployed automated market maker in prediction markets. Hanson (2003a) also

provides a scheme for integrating order books with his market making algorithm which,

to the best of our knowledge, has not yet been evaluated in the literature. This scheme, as

proposed, involves the market maker having special access to orders before they hit the order

book, and a “parallel” implementation that looks at the incoming order, the order book, and

executes portions of the trade with the market maker and portions with the existing orders
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on the order book. In addition to the special system privileges this requires, it is not entirely

transparent to traders, since the order books themselves never reflect the market maker’s

presence (and thus give a worse impression of the state of prices and the bid-ask spread than

reality).

In this paper, we propose a modification of Hanson’s scheme for integrating LMSR with CDA

mechanisms that allows an LMSR-based market making agent to compute limit bid and ask

prices and participate in the order books as any other trader would, while still maintaining the

key desirable properties – namely improved liquidity with bounded worst-case loss. We call

this the “Integrated” market maker (as opposed to the “Parallel” market maker of the original

scheme). In general, analysis of the properties of market making algorithms in practice is

difficult, since they affect the dynamics of the pricing mechanism itself, and therefore the

standard practice of backtesting on historical data is of very limited value. However, there is

evidence that simulation models with zero-intelligence (ZI) traders (Gode and Sunder, 1993)

can replicate many key features of limit order book dynamics (Farmer et al., 2005a; Othman,

2008) and have practical value in assessing the properties of market making algorithms

(Brahma et al., 2012). Therefore, we evaluate market properties in prediction markets

populated by ZI traders; we compare the parallel and integrated implementations of LMSR

with a situation where no market maker is present, and also a pure dealer market mediated

by LMSR.

We are mostly interested in general market properties. In particular,

• Information aggregation properties: For example, how fast does the market price

converge to the true underlying asset value? How far away is the price from the true

value, on average?

• Market quality properties: For example, how liquid is the market, as measured by the

bid-ask spread? How much surplus or price improvement does the market generate?

In our experiments we find that the presence of the market maker leads to generally lower

bid-ask spreads and higher trader surplus (or price improvement), but, surprisingly, does

not necessarily improve price discovery and market efficiency; this latter effect is more pro-

nounced when there is higher variability in trader beliefs.
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5.2 Market Model

In this section, we describe the precise market model we use and the algorithms used for

trading and market making. We simulate four different market microstructures:

(1) A Continuous Double Auction (CDA) mechanism without any market maker (pureCDA);

(2) A CDA with the “Integrated” implementation of LMSR (INT);

(3) A CDA with the “Parallel” implementation of LMSR (PAR);

(4) A pure dealer framework with all trades going through a traditional LMSR market

maker (pureLMSR).

Prediction market We focus on a prediction market set up to forecast whether a single

extraneous uncertain event, which can be modeled as a binary random variable X, will occur

at some pre-determined future date; on that date, the market terminates, and every unit

(share) of the asset traded in the market is worth $1 if the event occurs and is worthless

otherwise; we call this cash equivalent of the asset its liquidation value or true value. Before

that date, anyone can place orders to buy or (short-)sell any amount of the asset in the

market at prices in the interval [0, 1], i.e. the market institution does not impose any budget

constraints on traders. We also assume that there is a fixed probability distribution with

Pr(X = 1) = ptrue from which the realization of X is drawn on the termination date so

that the expected “true” value of the asset is ptrue, but no agent in the world knows this

ptrue precisely. However, under a “rational expectations” assumption, the market price in

equilibrium is expected to approach ptrue (Pennock and Sami, 2007).

Types of orders Traders in a financial exchange can typically place buy/sell orders of

two kinds: (1) market orders that specify only a quantity and demand immediate execution,

hence accept any price offered by the other party, and (2) limit orders that specify both a

quantity and a limit on acceptable transaction prices (called a limit price or marginal price)

but are not guaranteed execution. A Continuous Double Auction (CDA) maintains two order

books, one for buy orders (bids) and the other for sell orders (asks), which are two priority
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queues for outstanding limit orders prioritized by limit price and arrival time (higher priority

is assigned to a buy order with a higher bid price and a sell order with a lower ask price). Any

incoming limit order is placed on the appropriate book, and the mechanism automatically

checks to see if the current best (highest) bid is at least as large as the current best (lowest)

ask; if yes, then the smaller of the two quantities ordered is traded at the limit price of

the order that arrived earlier, the books are updated, and this is continued till the best ask

exceeds the best bid. Any new market order is executed immediately, perhaps partially,

against the best available outstanding order(s) or is rejected if the book on the other side is

empty. In our simulations, all traders place limit orders only but some of them can become

market orders effectively, e.g. if an incoming limit buy order “crosses” the books. i.e. its

bid is no less than the best ask(s) on the sell order book, and its demand does not exceed

the supply of said booked order(s).

Logarithmic Market Scoring Rule We now describe the cost function-based operational

formulation of the LMSR market maker, that we touched upon in Chapter 2, for a single-

security prediction market liquidating20 in {0, 1} (Hanson, 2003b; Chen and Pennock, 2007).

Its “state” is described by a real scalar qmm, interpreted as the net outstanding quantity

of the security; its instantaneous price at this state, i.e. cost per share of buying/selling

an infinitesimal amount from/to LMSR, is given by pmm = eqmm/B

1+eqmm/B
where B > 0 is a

parameter controlling all properties of the market maker. A trader placing a market order

for buying any finite quantity Q of assets from LMSR would have to pay it a dollar amount

C(qmm;Q) = B ln
(

1+e(qmm+Q)/B

1+eqmm/B

)
and after the transaction, the market maker’s state is

updated to (qmm +Q); for a sell order, the same formula applies by setting Q to the negative

of the supplied quantity, and −C(qmm;Q) > 0 becomes the sales proceeds. One key property

of LMSR is that it’s loss is bounded (for the binary case by B ln 2).

Population of traders Every agent other than the market maker is called a “background”

trader (Wah and Wellman, 2015). Before every simulation, the expected true asset value

ptrue is chosen at random from a common-knowledge common prior which is a uniform

distribution on [0, 1]. Every trader i then observes a private sequence of Ntrials Bernoulli

20The security is said to liquidate when the forecast event is realized, i.e. we know whether X = 1 or
X = 0, so that the market terminates and
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trials with probability of success ptrue, and sets her idiosyncratic valuation of the asset to

her Bayesian posterior expectation of the true value, vi = xi+1
Ntrials+2

where xi is the number of

successes in her sample. Thus, Ntrials is a measure of the precision of the signal that each

trader receives, related to the inverse of the variance of beliefs across the population, similar

to the model of Zhang et al. (2012). The implementation of a trading decision on top of the

belief then follows the zero-intelligence (ZI) trader model (Gode and Sunder, 1993; Othman,

2008), with the addition of non-unit trade sizes. At each step of a simulation (a “trading

episode”), a trader is picked uniformly at random and is assigned buyer or seller status with

equal probability except for pureLMSR (see below). She then places her limit order, the

limit price being drawn uniformly at random from [vi, 1] if she is a seller and from [0, vi] if

she is a buyer, and the order quantity from a common exponential distribution with mean

λ = 20 which is known to the market mechanism.

(1) pureCDA We have already fully explained the interaction between a CDA mechanism

with no market making and the trading population under Types of Orders.

(2) PAR The parallel implementation is a single-security version of Robin Hanson’s “booked

orders for market scoring rules” (Hanson, 2003a). We delineate its operation for a buy order,

the treatment of sell orders being symmetric. Suppose a limit buy order for a quantity qb

at a limit price (bid) pb arrives when the LMSR market maker’s instantaneous price is pmm,

and the current best bid and ask prices are bmax, amin (at market inception, both books are

empty, and pmm = 0.5). If pb ≤ pmm
21, the order cannot be immediately executed, so it is

pushed on to the limit buy order book. If pmm < pb, and qb is not large enough to drive

pmm beyond min{pb, amin}, then the incoming order is completely executed with the market

maker according to the traditional LMSR algorithm; otherwise, if pmm < pb < amin, it is

only partially executed with LMSR till pmm reaches pb, the residual order being placed on

the buy order book; but if pb ≥ amin, LMSR sells only till its instantaneous price hits amin

after which the incoming order executes against the best booked ask. If the top level of the

book is exhausted but the incoming order is not, LMSR is invoked again, and this process

recurs till either the order is finished or the new best ask exceeds the order’s bid price. The

loss bound of the standard LMSR algorithm is maintained in this case.

21In this implementation, pmm always lies between the best ask and bid prices on the books, so pb ≤ pmm

implies that pb does not exceed the minimum ask price either.
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(3) INT In this novel “integrated” implementation that we propose, whenever the best ask

and bid prices on the books change, an LMSR-based agent steps in.

1. If its instantaneous price pmm ≤ bmax, then LMSR generates only a limit sell order for a

quantity qask = B ln
(

1/pmm−1
1/amin−1

)
at an ask price of B

qask
ln
(

1−pmm

1−amin

)
.

2. If pmm ≥ amin, then it generates a buy order for qbid = B ln
(

1/bmax−1
1/pmm−1

)
at a bid of

B
qbid

ln
(

1−bmax

1−pmm

)
.

3. If bmax < pmm < amin, both orders are generated.

Note that if fully executed immediately these orders would take the LMSR price to bmax and

amin respectively. The LMSR trader then replaces all its earlier orders with the new order(s)

if this action does not immediately cross the books, otherwise it sits idle. After this step,

the market is now ready to accept a new order from the background traders, or continue

the execution of a partially filled outstanding order, as the case may be. Thus, this market

maker can be implemented in practice as just another trader, which is a significant benefit

over the PAR framework where the market maker requires some special access to incoming

trades and order books. Moreover, any feasible trade with the INT market maker is executed

at its actual quoted price rather than following the non-linear LMSR pricing function, which

makes trading more transparent and intuitive to traders.

The original LMSR loss bound again holds. Also, we can prove that INT myopically imposes

at least as high a cost on the next arriving trader as PAR, assuming that the market makers

and order books are in the same state.

Proposition 4. Suppose the LMSR market maker in both PAR and INT are in state q, and

the order books are also otherwise identical. For any next arriving trade, the immediate cost

incurred by the next trader is at least as high for INT as it is for PAR.

The proof is uncomplicated, so we only sketch it here. Consider the last of the three cases

for INT above, bmax < pmm < amin, and let Q∗ be the quantity one would need to buy from

LMSR to bring its price to amin. Then, if the current state of the INT market maker is q, it

will place a sell order of Q∗ at an ask of C(q;Q∗)
Q∗

. Now if a buy order for Q < Q∗ arrives with a
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Figure 5.1: Illustration of how the market maker in the INT setting places ask and bid quotes
every time the state of the books changes.
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sufficiently high bid, the whole of it will execute with the market maker, and the immediate

earnings of the latter will be QC(q;Q∗)
Q∗

. If the PAR market maker had the same state q (hence

the same pmm) when the same buy order arrived, the ensuing trade would cost the trader

C(q;Q) which is less than INT’s earnings since C(q;Q)
Q

< C(q;Q∗)
Q∗

from the convexity of C.

Similar arguments apply to the other cases.

This result suggests that INT might provide somewhat less liquidity in general than PAR,

and incur less loss in doing so, but we do not expect them to be very different. However,

this is a loose prediction, since the result is myopic – it says nothing about price evolution

in a market; given the market maker’s active role, the dynamics of the evolution of q and

the order book could conceivably end up quite different. We examine this issue further in

the experiments.

(4) pureLMSR In this setting, traders still place limit orders but an LMSR market maker

takes one side of every trade. At each trading episode, a trader arrives and compares her

private valuation vi to the current market price pmm. If vi > pmm, she decides to buy; if

vi < pmm, she decides to sell, and leaves without placing any order otherwise. Then she picks

her limit price and order size exactly as the ZI traders above. The quantity bought/sold is

the minimum of the order size and the quantity needed to drive the LMSR’s instantaneous

price to the trader’s limit price, and monetary transfers are determined by the above function

C(·; ·).

Note that all components of each limit order of a trader are independent of the market state

for all four settings, except for the direction of the trade (buy/sell) in pureLMSR.

5.3 Evaluation

We present an overview of the various measures we use to evaluate the properties of our

market environments.

Information aggregation properties:
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Figure 5.2: Experimental results, averaged over 1000 simulations each. The labels along the
horizontal axis indicate the number of private Bermoulli trials with success probability ptrue

observed by each trader in the respective simulation set; this number is directly related to
the precision in trader beliefs.
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• ConvTime (Convergence time): This is defined as the number of trading episodes it takes

for the “market price” pM to get within a band of size ±0.05 around the true expected

asset value ptrue for the first time; pM(t) is measured at the end of every trading episode t

as the mid-point of the bid-ask spread ((bmax(t) + amin(t))/2) for each of the models with

CDA, and as the LMSR instantaneous price for the pure dealer case.22 Thus,

ConvTime = min{t : pM(t) ∈ [ptrue − 0.05, ptrue + 0.05]}. A lower convergence time means

that the market’s estimate (price) quickly gets close to the true expected asset value, i.e.

the market is efficient.

• RMSD and RMSDeq: RMSD is the root-mean-squared deviation of the market price

(defined above) from ptrue over the entire simulation (ntrades trading episodes). RMSDeq is

the root-mean-squared deviation between the same quantities but over only the “equilib-

rium period”, i.e. for t ≥ ConvTime. Lower values of these measures indicate lower price

volatility, another desirable property from an information aggregation perspective.

Market quality properties:

• Spread and Spreadeq: For each scenario with a CDA, the market bid and ask prices

bM(t) and aM(t) at the end of each trading episode are the highest bid bmax and the lowest

ask amin on the books respectively (set to 0 and 1 if the corresponding book is empty).

For the pure dealer setting, we assume that the market maker knows the average order

size λ of the trading population, so for a current market state of qmm, the effective market

quotes are taken to be aM = C(qmm;λ)
λ

and bM = −C(qmm;−λ)
λ

which are the prices per share

of buying and selling λ shares from and to LMSR at the current state respectively. In

our notation, “Spread” denotes the bid-ask spread (aM(t)− bM(t)) averaged over all ntrades

episodes, while “Spreadeq” is the average taken over the equilibrium period only, as above.

The bid-ask spread is widely used as a proxy for market liquidity and smaller values are

better, since they imply lower trading costs.

• (Idiosyncratic) TraderSurplus: If a trader with idiosyncratic valuation v places a buy

order of which a quantity q goes through at an execution price pexec, then the trader’s

surplus is defined as q(v−pexec) (similarly, a seller’s surplus is q(pexec−v)). TraderSurplus

22If the market price does not enter this band over the duration of the simulation, ConvT ime is set to
ntrades = 500; in our simulations, this is rarely observed.
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denotes the sum of individual surpluses of all background traders. Also note that (v−pexec)

and (pexec − v) correspond loosely to the notion of price improvement, when weighted by

the probability of execution at that difference. So, even in settings where the private or

idiosyncratic value assumption is untenable, the surplus is still a useful measurement of

how much value participants are getting from being in one particular microstructure over

another. Since every order executes at a price at least as desirable as its limit price, all

trader price improvements (surpluses) are positive.

• MMloss: This is the loss incurred by the market making mechanism, computed just

like (the negative of) a trader surplus, with the private valuation replaced with the true

expected asset value ptrue. Obviously, this does not apply to pureCDA. Since the market

is an ex post zero-sum game between the market maker and the trading population,

this measure is also numerically equal to the true expectation of the traders’ collective

net payoff. This measure is particularly important when the market institution itself

subsidizes the market maker.

5.3.1 Results

We ran three sets of 1000 simulations each. In each set, we used a different value of the

parameter Ntrials (20, 40, 100) controlling the precision of trader beliefs. In each simulation,

we made the same random sequence of ntrades = 500 traders interact with each of our four

microstructures. The LMSR parameter B is fixed at 100 for all simulations. We computed all

of the above measures for each simulation, and then averaged them over all 1000 simulations.

The results are presented in Figure 5.2, and the analysis follows. Note that, the values (rmsd

of prices, spreads) depicted in Figures 1(c)-(f) are in cents while those in the last two figures

(surplus, losses) are in dollars, for clarity.

Information aggregation: ConvTime (a) follows the pattern: pureLMSR << pureCDA

< INT < PAR. However, in terms of stability (RMSD, overall (b) and in equilibrium (c)),

pureCDA fares the best and the two hybrid mechanisms are very close to each other. The

quick convergence and high volatility of LMSR are well-known; surprisingly, coupling it with

a CDA delays convergence drastically, but it does ensure more stable prices (lower RMSDeq)

once the price converges. While it seems that the market maker-CDA combination might
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impede the market’s learning abilities, it is likely in this case to be an artifact of the fixed

beliefs held by ZI traders, who stick to their beliefs no matter what happens to the price –

it’s not clear that any scoring rule style of market maker would be able to learn quickly when

the signals have high variance and the traders don’t update their signals. This hypothesis is

borne out by the fact that the effect diminishes as the variance in traders’ beliefs decreases.

Liquidity / Trading activity: Perhaps the biggest reason to deploy a market-maker is to

reduce spreads. Figures 1 (d) and (e) show that INT serves this purpose more effectively

than pureCDA. The behavior of PAR, which seems to induce very high spreads, is surprising.

This behavior is because we measure the market bid and ask only after the extraneous LMSR

agent has intervened and perhaps cleared some orders which would still be waiting in the

books in the absence of a market maker, so the spread looks artficially large, compared

with pureCDA. In addition, PAR doesn’t actually place any new orders on the books, since

it waits for orders to arrive before acting, as opposed to INT, which proactively improves

spreads by adding to the order book. This finding, which casts doubt on the meaningfulness

of spread measurement for PAR, is problematic since many real-life traders use the spread

to gauge market quality and make decisions.

To get a better idea of the market maker’s role in improving trading activity, we also com-

puted the actual volume of trade executed. We did this in two ways: for each simulation,

we maintained a ledger where each entry recorded the buyer, seller, execution price, and

quantity of every market trade; after ntrades episodes, we added all these traded quantities

together to obtain Vol=quantity absorbed by buyers and market maker (if present)=quantity

supplied by sellers and market maker. PAR beats both pureCDA and INT with respect to

this measure.

We also calculated an alternative measure of trading volume by subtracting the total residual

quantity on the order books at the end of each simulation from the total quantity ordered by

all traders: Vol∗ = quantity absorbed by buyers (from sellers and market maker) + quantity

supplied by sellers (to buyers and market maker). It double-counts, perhaps appropriately,

every quantity traded between background traders, and thus reflects the overall “satisfaction”

of the entire background trader population in a way that the previous measure does not.
23 Strangely, for higher variability in trader beliefs, PAR gives the worst Vol∗ bettered

23Of course, for pureLMSR, Vol∗ =Vol since the market maker takes one side of every trade.
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by INT and pureCDA, but there is a complete reversal in this behavior as the variability

decreases. Based on observations of some sample trade ledgers and order book residuals,

we believe that the reason is this: in any CDA with a market maker, the market maker

gets the advantage of immediacy due to its continuous presence and itself undercuts some of

the background traders, thereby reducing the (double-counted) quantity that changes hands

between these traders. Hence pureCDA, where every trade must occur between background

traders, has a higher Vol∗. But with increasing Ntrials as trader beliefs get closer to each other,

relatively more traders trade with other background traders, who now offer competitive prices

themselves. This is an interesting example of how the presence of the market maker can affect

the dynamics of trade in surprising ways.

Also note that regardless of the microstructure, both Vol and Vol∗ decrease as the knowledge

of the trading crowd gets more and more precise, which is consistent with the idea that as the

noise in the beliefs of traders with a common knowledge structure reduces, trading becomes

less profitable, hence less likely (an extreme case is captured by the no-trade theorems).

Welfare: Trader surplus or (weighted) price improvement decreases with increasing precision

in beliefs but the presence of a market maker consistently improves the surplus as opposed

to having only a CDA, PAR more so than INT. It is also noteworthy that the combination

of CDA and market making performs better in this respect than each of them individually.

Moreover, we consistently observe INT loss < PAR loss ≈ pureLMSR loss, and these losses

respect the known LMSR loss bound. This empirical observation supports the notion that

Proposition 1 (which shows that myopic costs faced by the market maker are lower for INT

than for PAR when they start from the same state in terms of q and the order books)

might generalize to expected losses over sequences of trades from a particular starting point,

an interesting direction for theoretical work on the topic (in a handful of our individual

simulations, INT made slightly more loss than PAR, which shows that the sequence result

cannot hold deterministically).

5.4 Discussion

In this chapter, we introduced a new LMSR-based market making algorithm that handles

limit orders, and also presented one of the first contributions to the academic literature on
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the experimental evaluation of algorithmic market making in a CDA setting (for another

example, see Wah and Wellman (2015)). Note that we kept our agent model simple since

our aim was to focus on the role of the marker making entity in price discovery / information

aggregation.

A natural next step in this vein would be to analyze these market settings with more so-

phisticated trader models, particularly (extensions of) those used by Brahma et al. (2012).

To give a brief overview, these traders are of two broad types: (1) fundamentals traders who

base their trading decisions (orders sizes and limit prices) primarily on their private informa-

tion and may incorporate the observed history of market prices into their decision making,

(2) technical traders who have no “insider” knowledge of the asset value and strategize on

the basis of market price movements, serving mainly as noise traders. Among other things,

it will be interesting to study how varying the proportions of these different types of trading

agents affects price discovery in the market.
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Chapter 6

Conclusion

To summarize this dissertation, I am have studied the topic of subjective input aggregation

from novel theoretical and experimental points of view, and, along the way, brought out both

the similarities and differences among aggregation methods developed in diverse disciplines.

In particular, I have explicated the aggregational characteristics of the price process induced

by a popular prediction market making algorithm, and discussed the extent to which such

mechanisms can be derailed when the potential for manipulative behavior is present. I have

put forward an algorithm that can learn a fixed unknown value by only being told whether

or not a Gaussian sample centered around that value is above or below a threshold in every

discrete time-step, in a number of time-steps that is (asymptotically) near-optimal in certain

problem parameters. I have also presented the design of a new market maker that operates

in a realistic financial exchange with booked orders, and described an experimental set-up

with simulated trading agents for measuring its performance. Finally, I have identified open

questions that I believe still need to be addressed in the investigation of the above problem

domains.
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Appendix A

Proofs of theorems in Chapter 2

A.1 A general well-behaved MSR as an Opinion Pool

for a general risk-averse utility

First, we shall recapitulate the mathematical properties of a well-behaved market scoring

rule (Definition 2 in Chapter 2): The underlying (strictly proper and regular) scoring rule

for such an MSR can be written as

sj(p) =

G(p) +G′(p)(j − p), j ∈ {0, 1}, p ∈ [0, 1], p 6= j,

G(p), p = j ∈ {0, 1}
(A.1)

from (2.1) in Chapter 2, where

1. G : [0, 1]→ R is a continuous function.

2. G′(·) is real-valued in [0, 1] except possibly that G′(0) = −∞ or G′(1) =∞.

3. G′′(·) exists and is positive in [0, 1], 0 < G′′(p) <∞ for 0 < p < 1.

4. G′′′(·) exists, and |G′′′(p)| <∞ for 0 < p < 1.

Notice that the positivity of G′′(·) implies the strict convexity of G(·) and the increasing

monotonicity of G′(·). Property 2 ensures that sj(·) is real-valued except possibly that

s0(1) = ∞ or s1(0) = ∞. G(p) = ps1(p) + (1 − p)s0(1 − p) is the expected score function
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sometimes called the information measure or generalized entropy function associated with

the scoring rule sx(·) (Gneiting and Raftery (2007)).

For x ∈ {0, 1}, the first derivative of sx(p), ∀p ∈ (0, 1), is

s′x(p) = G′′(p)(x− p) =⇒ s′1(p) = G′′(p)(1− p) > 0, s′0(p) = −G′′(p)p < 0,

since G′′(p) > 0. Hence, s1(p) and s0(p) are strictly increasing and decreasing functions of p

respectively, which is quite intuitive since the reward for predicting a higher probability for

the outcome that actually materialized should be higher.

Moreover, if pi−1 and pi denote respectively the instantaneous price of an MSR immediately

before and after agent i interacts with it, then by the design of an MSR, the agent’s ex post

compensation from the market for any outcome x ∈ {0, 1} is given by

cx(pi, pi−1) = sx(pi)− sx(pi−1).

We can readily obtain the following properties of cx:

c1(p, pi−1)− c0(p, pi−1) = G′(p)−G′(pi−1); (A.2)

∂

∂p
cx(p, pi−1) = s′x(p) = G′′(p)(x− p), ∀pi−1 ∈ (0, 1), x ∈ {0, 1}. (A.3)

Hence, c1(p, pi−1) and c0(p, pi−1) are also strictly increasing and decreasing in p respectively,

regardless of pi−1, as expected.

Next, we shall enumerate, from Section 2.4 in Chapter 2, the criteria that an agent utility

function ui(·) must meet in our setting:

1. Continuity: ui(·) is continuous over [cmin
i ,∞] where cmin

i can attain any value in

[−∞, 0].

2. Increasing monotonicity (Non-satiation): u′i(·) is continuous and positive real-

valued over [cmin
i ,∞] except possibly that u′i(cmin) =∞ or u′i(∞) = 0.

3. Strict concavity (Risk aversion): u′′i (·) is continuous and negative real-valued

over [cmin
i ,∞] except possibly that u′′i (cmin) = −∞ or u′′i (∞) = 0.
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We shall now provide a detailed, joint proof of Lemmas 3 and 4, for completing the proof of

Theorem 1 in Section 2.4 of Chapter 2.

Restatement of Lemma 3. If a myopic agent with subjective probability πi and a risk-

averse utility function of wealth ui(·), possessing properties 1, 2, and 3 above, trades with a

well-behaved market scoring rule for a single Arrow-Debreu security, and updates the market’s

instantaneous price from pi−1 ∈ (0, 1) to pi in the process, then pi is the unique solution in

(0, 1) to the following fixed-point equation:

pi =
πiu
′
i(c1(pi, pi−1))

πiu′i(c1(pi, pi−1)) + (1− πi)u′i(c0(pi, pi−1))
. (A.4)

Restatement of Lemma 4. The implicit function pi(pi−1, πi) described by (A.4) has the

following properties:

1. pi = πi if and only if πi = pi−1.

2. 0 < min{pi−1, πi} < pi < max{pi−1, πi} < 1 whenever πi 6= pi−1, 0 < πi, 6= pi−1 < 1.

3. For any given pi−1 (resp. πi), pi is a strictly increasing function of πi (resp. pi−1).

Proof. If agent i’s subjective probability of {X = 1} is πi ∈ (0, 1) and her utility function is

ui(·), her expected myopic utility for taking a trading action that updates the market price

pi−1 to any p ∈ [0, 1] is given by

ũ(p; pi−1, πi) = πiui(c1(p, pi−1)) + (1− πi)ui(c0(p, pi−1)).

The first and second derivatives of the above with respect to p respectively simplify to

ũ′(p; pi−1, πi) = G′′(p)f(p; pi−1, πi);

ũ′′(p; pi−1, πi) = G′′′(p)f(p; pi−1, πi) +G′′(p)f ′(p; pi−1, πi),
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where

f(p; pi−1, πi) = πi(1− p)u′i(c1(p, pi−1))− (1− πi)pu′i(c0(p, pi−1)) so that

f ′(p; pi−1, πi) = − [πiu
′
i(c1(p, pi−1)) + (1− πi)u′i(c0(p, pi−1))]

+G′′(p)
[
πiu
′′
i (c1(p, pi−1))(1− p)2 + (1− πi)u′′i (c0(p, pi−1))p2

]
< 0, ∀p ∈ (0, 1), given any πi, pi−1 ∈ (0, 1),

since G′′(·) > 0, u′i(·) > 0, and u′′i (·) < 0 everywhere. Hence, f(·) is strictly decreasing

everywhere, its values at pi−1 and πi being given by

f(pi−1; pi−1, πi) = (πi − pi−1)u′i(0); (A.5)

f(πi; pi−1, πi) = πi(1− πi) [u′i(c1(πi, pi−1))− u′i(c0(πi, pi−1))] . (A.6)

Case I pi−1 < πi: From (A.2),

c1(πi, pi−1)− c0(πi, pi−1) = G′(πi)−G′(pi−1) > 0

due to the increasing monotonicity of G′(·). But

c1(πi, pi−1) > c0(πi, pi−1) =⇒ u′i(c1(πi, pi−1)) < u′i(c0(πi, pi−1))

due to the decreasing monotonicity of u′i(·). Hence, from (A.6), f(πi; pi−1, πi) < 0.

Also, from (A.5), since u′i(0) > 0, f(pi−1; pi−1, πi) > 0.

These values, along with the decreasing monotonicity of f(·), imply that f(p; pi−1, πi)

has a unique zero in (pi−1, πi).

Case II pi−1 = πi: From (A.5) or (A.6),

f(πi; pi−1, πi) = f(pi−1; pi−1, πi) = 0,

and πi = pi−1 is the unique zero of f(p; pi−1, πi) due to its monotonic nature.

Case III pi−1 > πi: By symmetry, we can argue exactly as for Case I that f(p; pi−1, πi) has a

unique zero in (πi, pi−1).
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Thus for any πi, pi−1, there exists a unique solution in (0, 1), say p∗, to the equation

f(p; pi−1, πi) = 0. Since |G′′(p∗)|, |G′′′(p∗)| <∞, we must have

ũ′(p∗; pi−1, πi) = 0;

ũ′′(p∗; pi−1, πi) = G′′(p∗)f ′(p∗; pi−1, πi) < 0,

since G′′(p∗) > 0 and f ′(p∗; pi−1, πi) < 0. In other words, rational risk-averse agent i’s

price-update pi = arg maxp∈[0,1] ũ(p; pi−1, πi) is given by pi = p∗ so that

f(pi; pi−1, πi) = 0

⇒ πi(1− pi)u′i(c1(pi, pi−1)) = (1− πi)piu′i(c0(pi, pi−1)), from definition

⇒ pi
1− pi

=
πi

1− πi
· u
′
i(c1(pi, pi−1))

u′i(c0(pi, pi−1))
(A.7)

⇒ pi =
πiu
′
i(c1(pi, pi−1))

πiu′i(c1(pi, pi−1)) + (1− πi)u′i(c0(pi, pi−1))

The last step facilitates the interpretation of pi as a risk-neutral probability. However, for

most subsequent proofs, we shall recall the more convenient odds ratio formulation provided

in (A.7).

Moreover, it is easy to see that the findings in Case I, Case II, and Case III above jointly

imply properties 1 and 2 in the theorem statement. To prove property 3, first note that, for

x ∈ {0, 1},

∂

∂πi
cx(pi(pi−1, πi), pi−1) = s′x(pi)

∂pi
∂πi

= G′′(pi)(x− pi)
∂pi
∂πi

,

∂

∂pi−1

cx(pi(pi−1, πi), pi−1) = s′x(pi)
∂pi
∂pi−1

− s′x(pi−1)

= G′′(pi)(x− pi)
∂pi
∂πi
−G′′(pi−1)(x− pi−1)
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Now, taking the partial derivative with respect to πi of both sides of (A.7),

1

(1− pi)2

∂pi
∂πi

=
1

(1− πi)2

u′i(c1)

u′i(c0)
+

(
πi

1− πi

)
u′′i (c1)∂c1

∂πi
u′i(c0)− u′i(c1)u′′i (c0)∂c0

∂πi

(u′i(c0))2

⇒ v1
∂pi
∂πi

= v2 + u′′i (c1)u′i(c0)G′′(pi)(1− pi)
∂pi
∂πi

+ u′i(c1)u′′i (c0)G′′(pi)pi
∂pi
∂πi

where v1 =

(
1− πi
πi

)(
u′i(c0)

1− pi

)2

, v2 =
u′i(c0)u′i(c1)

πi(1− πi)
,

⇒ ∂pi
∂πi

=
v2

v1 −G′′(pi) [u′′i (c1)u′i(c0)(1− pi) + u′i(c1)u′′i (c0)pi]

> 0.

This is because 0 < πi, pi < 1, u′i(c1), u′i(c0), G′′(pi) > 0, and u′′i (c1), u′′i (c0) < 0 in our model

so that v1, v2 > 0, hence both the numerator and denominator are positive.

Similarly, taking the partial derivative with respect to pi−1 of both sides of (A.7),

1

(1− pi)2

∂pi
∂pi−1

=

(
πi

1− πi

)
u′′i (c1) ∂c1

∂pi−1
u′i(c0)− u′i(c1)u′′i (c0) ∂c0

∂pi−1

(u′i(c0))2

⇒ v1
∂pi
∂pi−1

= u′′i (c1)u′i(c0)

[
G′′(pi)(1− pi)

∂pi
∂πi
−G′′(pi−1)(1− pi−1)

]
+ u′i(c1)u′′i (c0)

[
G′′(pi)pi

∂pi
∂πi
−G′′(pi−1)pi−1

]
⇒ ∂pi

∂pi−1

=
−G′′(pi−1) [u′′i (c1)u′i(c0)(1− pi−1) + u′i(c1)u′′i (c0)pi−1]

v1 −G′′(pi) [u′′i (c1)u′i(c0)(1− pi) + u′i(c1)u′′i (c0)pi]

> 0

for the same reasons as ∂pi
∂πi

.

Hence pi(pi−1, πi) is increasing in each of pi−1 and πi, the other remaining constant.

Corollary 4. If πi > pi−1 (resp. πi < pi−1), then pi−1 < pi < πi (resp. πi < pi < pi−1), i.e.

a myopic risk-averse agent moves the market price in the direction of her belief but not all

the way.

This intuitive result follows from the analysis in Case I and Case III of the above proof.
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Corollary 5. The agents’ beliefs as well as the market’s initial price put bounds on the

instantaneous price at the end of every episode:

min{p0, π1, π2, . . . , πi} ≤ pi ≤ max{p0, π1, π2, . . . , πi}, ∀i = 1, 2, . . . .

A.1.1 LMSR as LogOP for CARA utility agents

The following is the proof of Theorem 2 from Section 2.4.1 of Chapter 2.

Restatement of Theorem 2. The only risk-averse utility function for which myopic agent

i, having a subjective belief πi ∈ (0, 1), and trading with an LMSR market with parameter b

and current instantaneous price pi−1, results in the market’s updated price pi being identical

to a logarithmic opinion pool between the current price and the agent’s subjective belief, i.e.

pi = παii p
1−αi
i−1

/ [
παii p

1−αi
i−1 + (1− πi)αi(1− pi−1)1−αi

]
, αi ∈ (0, 1), (A.8)

is given by

ui(c) = τi (1− exp (−c/τi)) , c ∈ R ∪ {−∞,∞}, constant τi ∈ (0,∞), (A.9)

the aggregation weight is αi = τi/b
1+τi/b

.

Proof. Sufficiency: If agent i’s utility is of the form specified in the theorem, then the

first and second derivatives of the utility function are respectively

u′i(c) = exp (−c/τi) > 0, and

u′′i (c) = − exp (−c/τi) /τi < 0 ∀c ∈ [−∞,∞].

Hence, Lemma 3 is applicable. Making appropriate substitutions in (2.5),

pi
1− pi

=
πi

1− πi
·

exp
(
− b
τi

ln
(

pi
pi−1

))
exp

(
− b
τi

ln
(

1−pi
1−pi−1

)) =

(
πi

1− πi

)(
pi
pi−1

)−b/τi ( 1− pi
1− pi−1

)b/τi
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Thus,

(
pi

1− pi

)1+b/τi

=

(
πi

1− πi

)(
pi−1

1− pi−1

)b/τi
Exponentiating both sides by 1

1+b/τi
,

pi
1− pi

=

(
πi

1− πi

) 1
1+b/τi

(
pi−1

1− pi−1

) b/τi
1+b/τi

=

(
πi

1− πi

)αi ( pi−1

1− pi−1

)1−αi
,

where αi = 1
1+b/τi

= τi/b
1+τi/b

. Simplifying, we get the required LogOP formulation in the

theorem statement; alternatively, by taking the logarithm on both sides, we obtain the

equivalent additive log-odds ratio formulation.

Necessity: Since we have restricted ourselves to the class of utility functions satisfying

criteria 1, 2, and 3, a utility function that results in a logarithmic opinion pool on interacting

with LMSR must satisfy Lemma 3 with

pi = παii p
1−αi
i−1

/ [
παii p

1−αi
i−1 + (1− πi)αi(1− pi−1)1−αi

]
for some constant αi ∈ (0, 1),

or, equivalently, with

πi
1− πi

=

(
pi

1− pi

) 1
αi

(
1− pi−1

pi−1

) 1−αi
αi

.

Making the requisite substitutions in (2.5) and simplifying, we see that u′i(·) must satisfy

(
pi
pi−1

) 1−αi
αi

u′i

(
b ln

(
pi
pi−1

))
=

(
1− pi

1− pi−1

) 1−αi
αi

u′i

(
b ln

(
1− pi

1− pi−1

))
∀pi, pi−1 ∈ (0, 1) (A.10)

since, owing to the fact that each of πi and pi−1 is allowed to attain any value in (0, 1), pi

defined as the LogOP above can lie anywhere in (0, 1) as well.

Since 0 < pi−1

πi
, 1−pi−1

1−πi <∞, we claim that relation (A.10) is true if and only if u′i(·) satisfies

y
1−αi
αi u′i(b ln(y)) = Mi, ∀y ∈ (0,∞), where constant Mi = u′i(0). (A.11)

The sufficiency is obvious. To establish the necessity, suppose there exists a risk-averse utility

function satisfying (A.10) but not (A.11). Then, there must exist y1, y2 ∈ (0,∞), such that
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y1 > y2 without loss of generality, and

h(y1) 6= h(y2), where h(y) = y
1−αi
αi u′i(b ln(y)) ∀y ∈ (0,∞).

But, if 0 < y2 < 1 < y1 < ∞, we can obtain π̃ = y2(y1 − 1)/(y1 − y2) ∈ (0, 1) and

p̃ = (y1 − 1)/(y1 − y2) ∈ (0, 1) for which (A.10) is violated, giving us a contradiction. Thus,

any ui(·) satisfying (A.10) must also obey

h(y1) = h(y2) ∀y1, y2 : 0 < y2 < 1 < y1 <∞.

This also means that for any two values y1, y3 ∈ (1,∞), and any given y2 ∈ (0, 1), we must

have h(y1) = h(y2) as well as h(y3) = h(y2), implying that h(y1) = h(y3) ∀y1, y3 ∈ (1,∞).

By similar reasoning, we can deduce that h(y2) = h(y4) ∀y2, y4 ∈ (0, 1). Finally, by the

continuity of h(y) at y = 1, which in turn follows from the continuity of u′i(c) at c = 0 in our

model and the obvious continuity of y
1−αi
αi at y = 1, we arrive at (A.11).

Now, applying the transformation c = b ln(y), we obtain the first-order ordinary differential

equation

u′i(c) = Mi exp

(
−1− αi

αib
c

)
, −∞ ≤ c ≤ ∞

where the extreme values of c have been included for continuity. Solving the above, we get

ui(c) = −Miαib

1− αi
exp

(
−1− αi

αib
c

)
+ Ci, Ci being the constant of integration

= −Miτi exp(−c/τi) + Ci, where τi =
αib

1− αi
=⇒ αi =

τi/b

1 + τi/b

≡ τi (1− exp(−c/τi))

since a utility function is strategically equivalent to any positive-affine transformation of

itself.
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A.1.2 LMSR as LinOP for an atypical utility with decreasing ab-

solute risk aversion

Here, we present the proof of Theorem 3 from Section 2.4.2 of Chapter 2.

Restatement of Theorem 3. If myopic rational agent i, having a subjective belief πi ∈
(0, 1) and a risk-averse utility function satisfying criteria 1, 2, and 3 in Section A.1 above,

trades with a LMSR market with parameter b and current instantaneous price pi−1, then the

market’s updated price pi is identical to a linear opinion pool between the current price and

the agent’s subjective belief, i.e.

pi = βiπi + (1− βi)pi−1, for some constant βi ∈ (0, 1) (A.12)

if and only if agent i’s utility function is of the form

ui(c) = ln(exp((c+Bi)/b)− 1), c ≥ −Bi, (A.13)

where Bi > 0 represents agent i’s budget, with the aggregation weight being given by βi =

1− exp(−Bi/b).

Proof. If agent i’s utility is of the form specified in the theorem, then by Lemma 2, we can

obtain the lower and upper bounds on the feasible values of pi as follows:

s1(pmin
i ) = cmin

i + s1(pi−1)

⇒ b ln(pmin
i ) = −Bi + b ln(pi−1)

= b ln(pi−1 exp(−Bi/b))

= b ln(pi−1(1− βi)), since βi = 1− exp(−Bi/b)

⇒ pmin
i = pi−1(1− βi), from the monotonicity of ln(·); (A.14)

s0(pmin
i ) = cmin

i + s0(pi−1)

⇒ b ln(1− pmax
i ) = −Bi + b ln(1− pi−1) = b ln((1− pi−1) exp(−Bi/b))

⇒ 1− pmax
i = (1− pi−1) exp(−Bi/b) = (1− pi−1)(1− βi)

⇒ pmax
i = 1− (1− pi−1)(1− βi) = βi + (1− βi)pi−1 (A.15)
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Sufficiency: For −Bi ≤ c <∞,

u′i(c) =
exp((c+Bi)/b)

b (exp((c+Bi)/b)− 1)
> 0, and

u′′i (c) = − exp((c+Bi)/b)

b2 (exp((c+Bi)/b)− 1)2 < 0.

Hence we can invoke Lemma 3. Now,

exp

(
c1(pi, pi−1) +Bi

b

)
= exp

(
ln

(
pi
pi−1

)
+
Bi

b

)
= exp

(
ln

(
pi

pi−1 exp(−Bi/b)

))
=

pi
pi−1(1− βi)

⇒ exp

(
c1(pi, pi−1) +Bi

b

)
=

pi
pmin
i

from (A.14).

Similarly, exp

(
c0(pi, pi−1) +Bi

b

)
=

1− pi
1− pmax

i

from (A.15).

(A.16)

Hence,
u′i(c1(pi, pi−1))

u′i(c0(pi, pi−1))
=

1
b
· pi/p

min
i

pi/pmin
i −1

1
b
· (1−pi)/(1−pmax

i )

(1−pi)/(1−pmax
i )−1

=
pi

1− pi
· p

max
i − pi
pi − pmin

i

.

It is precisely for obtaining the above ratio that we require the scaling factor of 1/b, dependent

on the market maker parameter, in the exponential in the utility function. Substituting in

(2.5), and noting that pi/(1− pi) 6= 0 for 0 < pi−1 < 1, we get

1 =
πi

1− πi
· p

max
i − pi
pi − pmin

i

⇐⇒ pi = (1− πi)pmin
i + πip

max
i

⇐⇒ pi = βiπi + (1− βi)pi−1,

on plugging in the expressions for pmin
i and pmax

i from (A.14) and (A.15), and simplifying.

Necessity: Since we have restricted ourselves to the class of utility functions satisfying

criteria 1, 2, and 3, a utility function that results in a linear opinion pool on interacting with

127



LMSR must satisfy Lemma 3 with pi = βiπi + (1 − βi)pi−1 for some constant βi ∈ (0, 1).

Making the requisite substitutions in (2.5) and simplifying, we see that u′i(·) must satisfy

u′i

(
b ln
(
βi

(
πi
pi−1

)
+ 1− βi

))
βi + (1− βi)pi−1

πi

=
u′i

(
b ln
(
βi

(
1−πi

1−pi−1

)
+ 1− βi

))
βi + (1− βi)

(1−pi−1

1−πi

)
∀pi−1, πi ∈ (0, 1). (A.17)

Since 0 < pi−1

πi
, 1−pi−1

1−πi <∞, we claim that relation (A.17) is true if and only if u′i(·) satisfies

u′i(b ln(βiy + 1− βi)) = Ki

(
βi +

1− βi
y

)
, ∀y ∈ (0,∞), (A.18)

where constant Ki = u′i(0), and the (negative) lower bound on the domain of ui(·) is given

by −Bi = b ln(1− βi) with u′i(−Bi) =∞24.

The sufficiency is obvious. To establish the necessity, suppose there exists a risk-averse utility

function satisfying (A.17) but not (A.18). Then, there must exist y1, y2 ∈ (0,∞), such that

y1 > y2 without loss of generality, and

g(y1) 6= g(y2), where g(y) =
u′i(b ln(βiy + 1− βi))

βi + 1−βi
y

∀y ∈ (0,∞).

But, if 0 < y2 < 1 < y1 < ∞, we can obtain π̃ = y2(y1 − 1)/(y1 − y2) ∈ (0, 1) and

p̃ = (y1 − 1)/(y1 − y2) ∈ (0, 1) for which (A.17) is violated, giving us a contradiction. Thus,

any ui(·) satisfying (A.17) must also obey

g(y1) = g(y2) ∀y1, y2 : 0 < y2 < 1 < y1 <∞.

This also means that for any two values y1, y3 ∈ (1,∞), and any given y2 ∈ (0, 1), we must

have g(y1) = g(y2) as well as g(y3) = g(y2), implying that g(y1) = g(y3) ∀y1, y3 ∈ (1,∞).

By similar reasoning, we can deduce that g(y2) = g(y4) ∀y2, y4 ∈ (0, 1). Finally, by the

continuity of g(y) at y = 1, which in turn follows from the continuity of u′i(c) at c = 0 in our

model and the obvious continuity of (βi + (1− βi)/y) at y = 1, we arrive at (A.18).

24This constraint is necessary since limy→0+ Ki

(
βi + 1−βi

y

)
=∞; also note that Ki is positive real-valued

since u′i(c) ∈ (0,∞) for c ∈ (−Bi,∞).
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Now, applying the transformation c = b ln(βiy + 1 − βi), we obtain the first-order ordinary

differential equation

u′i(c) =
Kiβi exp(c/b)

exp(c/b)− (1− βi)
, b ln(1− βi) ≤ c ≤ ∞

where the extreme values of c have been included for continuity. Solving the above, we get

ui(c) = Kiβi(b ln(exp(c/b)− (1− βi)) + Ci), Ci being the constant of integration

= Kiβi(b ln(exp(c/b)− exp(−Bi/b)) + Ci), since −Bi = b ln(1− βi)

= Kiβib ln(exp((c+Bi)/b)− 1) +Kiβi(Ci −Bi)

≡ ln(exp((c+Bi)/b)− 1)

since a utility function is strategically equivalent to any positive-affine transformation of

itself.

Comment on the linear price update rule: This linear price update induced in a

LMSR market by a myopic agent with a static belief πi and risk-averse utility (A.13) is

indistinguishable from that due to a myopic risk-neutral non-Bayesian agent who uses a

simple convex combination-based heuristic to learn from the latest market price (taking it

as a proxy for the accumulated information of her partially informed peers made public

till that point in time), and hence update her point estimate of Pr(X = 1) from π to

π′i = βiπi + (1 − βi)pi−1, βi ∈ (0, 1) being a measure of her confidence in her own private

signal; in this non-Bayesian interpretation, too, the agent’s budget Bi = −b ln(1− βi) turns

out to be directly related to her confidence or certainty. This non-Bayesian learning rule can

be seen as an example of “adjustment from an anchor”, a well-known heuristic in prospect

theory (Tversky and Kahneman, 1974), where an agent uses her private signal πi as an

anchor and, on encountering the market as an additional information source, adjusts her

belief away from her anchor by the additive term (1 − βi)(pi − πi) for making a trading

decision.
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A.2 LMSR with logarithmic utility agents

Here, we present the proof of Proposition 1 from Section 2.4.3 of Chapter 2.

Proof. Proceeding exactly as in the proof of Theorem 3 in Section 2.4.2, we can deduce the

bounds pmin
i = pi−1 exp(−w̃i) and pmax

i = 1− (1− pi−1) exp(−w̃i), w̃i = wi/b, on the feasible

market price at the end of trading episode i, and hence rewrite

p̂i = (1− πi)pmin
i + πip

max
i .

For the logarithmic utility, u′i(c) = 1/(c + wi) > 0 and u′′i (c) = −1/(c + wi)
2 < 0 for

−wi ≤ c <∞ so that we can invoke Lemma 3, and, using (2.5), show that

(1− πi)pi ln
(

pi
pmin
i

)
= πi(1− pi) ln

(
1− pi

1− pmax
i

)
. (A.19)

Since 0 <
pi−pmin

i

pi
,
pmax
i −pi
1−pi < 1, we can use the well-known Maclaurin series expansion of the

logarithmic function

ln(1 + x) =
∞∑
j=1

(−1)j+1xj

j
, −1 < x ≤ 1

to obtain the following:

ln

(
pi
pmini

)
= − ln

(
1− pi − pmini

pi

)
=
pi − pmini

pi
+ δi;

ln

(
1− pi

1− pmaxi

)
= − ln

(
1− pmax

i − pi
1− pi

)
=
pmaxi − pi

1− pi
+ δi,

where δi =
∑∞

j=2
1
j

(
pi−pmini

pi

)j
, and δi =

∑∞
j=2

1
j

(
pmaxi −pi

1−pi

)j
.

Substituting in Equation (A.19) and simplifying,

pi = p̂i + ∆i,

where p̂i = (1− πi)pmin
i + πip

max
i , and ∆i = πi(1− pi)δi − (1− πi)piδi.
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Appendix B

Proofs of theorems in Chapter 3

B.1 Proof of Proposition 2 from Section 3.4

Restatement of Lemma 2 For a symmetric well-behaved market scoring rule, the lower

and upper thresholds pL, pH defined in (3.5) and (3.6) satisfy the equalities

f ′(pL) + f ′(pH) = 2f ′(1
2
); (B.1)

pL + pH = 1; (B.2)

f(pH)− f(pL) = (2pH − 1)f ′(1
2
) = (1− 2pL)f ′(1

2
). (B.3)

Proof. To prove (B.1): f ′(pL) + f ′(pH) = 2f ′(1
2
).

From the equations (3.5) and (3.6) that define pL and pH respectively, we get

f ′(pL) + f ′(pH) = 2
(
f(1

2
)− f(0)

)
+ 2

(
f(1)− f(1

2
)
)

= 2 (f(1)− f(0))

= 2f ′(1
2
),

putting y = 1 in the symmetry condition (3.3).

To prove (B.2): pL + pH = 1.
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For this result, we first establish the more general result that for any symmetric well-behaved

MSR,

f ′(x) + f ′(z) = 2f ′(1
2
), x, z ∈ (0, 1) if and only if x+ z = 1. (B.4)

Proof of sufficiency Setting 1+y
2

= x in the symmetry condition (3.3), we obtain

f(x) = f(1− x) + (2x− 1)f ′(1
2
) ∀x ∈ (1

2
, 1)

Thus, f ′(x) = lim
∆x→0

f(x+∆x)−f(x)
∆x

= lim
∆x→0

f(1−x−∆x)+(2x+2∆x−1)f ′(
1
2

)−f(1−x)−(2x−1)f ′(
1
2

)

∆x

= lim
∆x→0

f(1−x−∆x)−f(1−x)+2∆xf ′(
1
2

)

∆x

= − lim
δ→0

f(1−x+δ)−f(1−x)
δ

+ lim
∆x→0

2f ′(1
2
)

= −f ′(1− x) + 2f ′(1
2
)

Hence, f ′(x) + f ′(1 − x) = 2f ′(1
2
) for any x ∈ (1

2
, 1). Setting z = 1 − x, we see that

f ′(z) + f ′(1− z) = 2f ′(1
2
) holds for any z ∈ (0, 1

2
) as well; it is trivially true for x = z = 1

2
.

�

Proof of necessity Since f ′(·) is monotonic on (0, 1),

f ′(x) + f ′(z) 6= f ′(x) + f ′(1− x) for any z 6= 1− x. �

Since, from result (3.8), we know that f ′(pL) + f ′(pH) = 2f ′(1
2
), we can conclude from (B.4)

that pL + pH = 1.

To prove (B.3): f(pH)−f(pL) = (2pH −1)f ′(1
2
) = (1−2pL)f ′(1

2
). If we set pH = 1+y

2
, then

y = 2pH − 1. From (3.9), y = 2(1− pL)− 1 = 1− 2pL and pL = 1−y
2

. Hence, we can invoke

the symmetry condition (3.3) to get the desired result.
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B.2 Equilibrium of the game in Section 3.4.3

We shall now proceed to determine Alice’s choice of pA = pPBEA in a perfect Bayesian

equilibrium, as stated in Theorem 4 and Tables 3.3, 3.4, and 3.5 in Section 3.4.3. Although

the theorem applies to the special case p0 = 1
2
, we will begin by proving results (up to and

including Lemma 7) for the more general scenario p0 ∈ (pL, pH) which subsumes this special

case, and then restrict ourselves to p0 = 1
2
.

Propositions 5 and 6 imply that

pPBEA = arg max
p
R̂A(p; p0),

where R̂A(p; p0) = EA
[
RA(pA, p0, vA, vB)|pA = p

]
, ∀p ∈ [0, 1],

EA[·|pA = p] denoting the expectation with respect to Alice’s belief under the assumption

that she will choose the best vA given pA = p (Lemma 5), and will take into account the

impact of her trading choice pA = p on strategic Bob’s choices (Lemma 6).

Proposition 5. For p ∈ [0, 1]\{pL, pH} and p0 ∈ (0, 1),

R̂A(p; p0) = s(p,EA[v|pA = p)− s(p0,EA[v|pA = p]), v = vA+vB
2

,

where EA[v|pA = p], according to our notation, is Alice’s posterior expected average vote

(market outcome) just before Bob has the opportunity to trade. The expressions for EA[v|pA =

p] in terms of Bob’s commonly known non-participation probability π and Alice’s posterior

probability q0 of Bob’s signal being sB = 0, given her own signal sA, for the different sub-

intervals in which p may lie, are presented in Table B.1.

p EA[v|pA = p]

0 ≤ p < pL µ0,1 = 1−πq0
2

pL < p < p0 µ0,0 = π(1−q0)
2

p0 < p < pH µ1,1 = 1− πq0
2

pH < p ≤ 1 µ1,0 = 1+π(1−q0)
2

Table B.1
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Proof. Using Propositions 5 and 6 and recalling that honest Bob votes his true signal sB,

we can easily verify the expressions for EA[v|pA = p] provided in Table B.1. Hence, using

(3.2), we can show that for 0 < pL < p0 < pH < 1, and p ∈ [0, 1]\{pL, pH},

R̂A(p; p0) = EA[s(pA, v)− s(p0, v)|pA = p]

= EA[s(p, v)− s(p0, v)|pA = p]

= s(p,EA[v|pA = p])− s(p0,EA[v|pA = p]),

the key idea being the linearity of the scoring rule function s(r, ω) in ω for r 6= ω.

We shall demonstrate the proof idea for the special the case pA = p ∈ [0, pL) which corre-

sponds to the first row of the Table B.1 (the treatment of the other cases being similar): In

this case, Alice will certainly vote vA = 0 but, from her perspective, Bob’s participation is

still uncertain so that v = vA+vB
2
∈ {0, 1

2
}. However, Alice knows that Bob will vote vB = 1

definitely if is strategic (which happens with probability (1 − π)) or with probability

Pr(sB = 1|sA) = (1 − q0) if he is honest; Bob will vote vB = 0 otherwise. Hence, given

pA = p ∈ [0, pL),

v =

1
2

with probability (1− π) · 1 + π(1− q0) = 1− πq0,

0 otherwise

⇒ EA[v|pA = p ∈ [0, pL)] = 1
2
· (1− πq0) + 0 · (πq0) = 1−πq0

2
= µ0,1.

Now, for the sub-case p ∈ (0, pL), p0 6= 1
2
:

R̂A(p; p0) = (s(p, 0)− s(p0, 0))πq0 + (s(p, 1
2
)− s(p0,

1
2
))(1− πq0)

= (f(p)− f ′(p)p− f(p0) + f ′(p0)p0)πq0

+
(
f(p) + f ′(p)(1

2
− p)− f(p0)− f ′(p0)(1

2
− p0)

)
(1− πq0) from (3.2)

= f(p) + f ′(p)
(

1−πq0
2
− p
)
−
[
f(p0) + f ′(p0)

(
1−πq0

2
− p0

)]
, on rearrangement

= s(p, µ0,1)− s(p0, µ0,1) (Table B.1, first row).
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But for p ∈ (0, pL), p0 = 1
2
,

R̂A(p; 1
2
) =

(
f(p)− f ′(p)p− f(1

2
) + 1

2
f ′(1

2
)
)
πq0

+
(
f(p) + f ′(p)(1

2
− p)− f(1

2
)
)

(1− πq0)

= f(p) + f ′(p)
(

1−πq0
2
− p
)
−
[
f(1

2
) + f ′(1

2
)
(

1−πq0
2
− 1

2

)]
= s(p, µ0,1)− s(1

2
, µ0,1).

Similar calculations apply to the sub-cases p = 0, p0 6= 1
2

and p = 0, p0 = 1
2
, leading to the

same conclusion.

Note that R̂A(p0; p0) = 0, as expected. Moreover, for any π, q0 ∈ (0, 1),

0 < µ0,0 < µ0,1 <
1
2
< µ1,0 < µ1,1 < 1. (B.5)

For our subsequent analysis, it is convenient to define a family of functions

gu,v(p; p0) , s(p, µu,v)− s(p0, µu,v), u, v ∈ {0, 1}, p ∈ [0, 1]. (B.6)

Corollary 6. From Proposition 5, it follows that for any p0 ∈ (pL, pH), which includes

p0 = 1
2
,

R̂A (p; p0) =



g0,1(p; p0), 0 ≤ p < pL

g0,0(p; p0), pL < p < p0

0, p = p0

g1,1(p; p0), p0 < p < pH

g1,0(p; p0), pH < p ≤ 1

This readily leads to the following properties of R̂A(p; p0), which turn out to be crucial in

determining the global maximum of R̂A(·; p0) over [0, 1]:

Property 1 From the properties of proper scoring rules, it is clear that the unique maximum

of gu,v(·; p0) = s(p, µu,v)− s(p0, µu,v) over [0, 1] for any given p0 and (u, v)-pair

is µu,v; however, depending on the values of pL (determined by the scoring
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function), π, and q0, the value µu,v (as in Table B.1) might not lie in the sub-

interval of [0, 1] over which R̂A(·; p0) coincides with gu,v(·; p0), in which case

we should take into account the supremum of the relevant segment lying at

one of its end-points. For example, if µ0,1 < pL, then supp∈[0,pL) R̂A(p; p0) =

g0,1(µ0,1; p0) so that the maximizer of the segment of R̂A(·; p0) over [0, pL) is

µ0,1, but if µ0,1 > pL, then supp∈[0,pL) R̂A(p; p0) = g0,1(pL; p0) which is achieved

at the extremity p = pL. Symmetric results hold for the other three segments.

Property 2 From definition, gu,v(p0; p0) = 0 for any u, v ∈ {0, 1}. In particular, g0,0(p0; p0) =

g1,1(p0; p0) = 0, hence R̂A(p; p0) is continuous at p = p0. However, as we estab-

lish in Lemma 7 below, R̂A(p; p0) has jump discontinuities at the thresholds

pL and pH .

Lemma 7. For any p0 ∈ (pL, pH),

g0,0(pL; p0) > g0,1(pL; p0), and g1,1(pH ; p0) > g1,0(pH ; p0),

regardless of π, q0 ∈ (0, 1).

Proof. From (B.6), (3.2), and Table B.1,

g0,0(pL; p0)− g0,1(pL; p0) =
(

1−π
2

) (
f ′(p0)− f ′(pL)

)
> 0,

from the increasing monotonicity of f ′(·), since p0 > pL, and π < 1. Similarly,

g1,1(pH ; p0)− g1,0(pH ; p0) =
(

1−π
2

) (
f ′(pH)− f ′(p0)

)
> 0,

from the increasing monotonicity of f ′(·), since pH > p0.

The following lemmas hold for the particular case of p0 = 1
2
∈ (pL, pH), and we shall invoke

them repeatedly through out our equilibrium analysis.
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Lemma 8. For any π, q0 ∈ (0, 1),

g1,1(pH ; 1
2
) R g0,0(pL; 1

2
),

and g1,0(pH ; 1
2
) R g0,1(pL; 1

2
)

⇐⇒ q0 Q 1
2
.

Proof. For i, j, k, l ∈ {0, 1}, from (B.6), (3.2), and Table B.1,

gi,j(p
H ; 1

2
)− gk,l(pL; 1

2
) = [f(pH)− f(pL)] + f ′(pH)(µi,j − pH)− f ′(pL)(µk,l − pL)

− f ′(1
2
)(µi,j − µk,l)

= (pH − pL)f ′(1
2
) + f ′(pH)(µi,j − pH)

−
(
2f ′(1

2
)− f ′(pH)

)
(µk,l − pL)− f ′(1

2
)(µi,j − µk,l)

from symmetry condition (3.3) since pH − 1
2

= 1
2
− pL,

and from the result (3.8),

=
(
f ′(pH)− f ′(1

2
)
)

(µi,j + µk,l − 1) ,

on simplification, using the result pL + pH = 1.

In particular, for {i, j, k, l} = {1, 1, 0, 0} and {i, j, k, l} = {1, 0, 0, 1} respectively,

g1,1(pH ; 1
2
)− g0,0(pL; 1

2
) = g1,0(pH ; 1

2
)− g0,1(pL; 1

2
)

=
(
f ′(pH)− f ′(1

2
)
)
π
(

1
2
− q0

)
Since f ′(pL) > f ′(1

2
) by the increasing monotonicity of f ′(·) and π > 0, the above identity

implies the required result.

Lemma 9. For any π, q0 ∈ (0, 1), and any i, j ∈ {0, 1},

g1,i(µ1,i;
1
2
) R g0,j(µ0,j;

1
2
) ⇐⇒ µ1,i + µ0,j R 1.
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Proof. From (B.6) and (3.2),

g1,i(µ1,i;
1
2
)− g0,j(µ0,j;

1
2
) = f(µ1,i)− f(µ0,j)− f ′(1

2
)(µ1,i − µ0,j)

= [f(1− µ1,i) + f ′(1
2
)(2µ1,i − 1)]− f(µ0,j)

− f ′(1
2
)(µ1,i − µ0,j),

from symmetry condition 3.3 since µ1,i >
1
2

by (B.5),

= [f(1− µ1,i)− f(µ0,j)] + f ′(1
2
)(µ1,i + µ0,j − 1)

> f ′(µ0,j) (1− µ1,i − µ0,j) + f ′(1
2
)(µ1,i + µ0,j − 1)

due to the strict convexity of f(·),

=
(
f ′(1

2
)− f ′(µ0,j)

)
(µ1,i + µ0,j − 1),

where f ′(1
2
)−f ′(µ0,j) > 0 from the increasing monotonicity of f ′(·), since µ0,j <

1
2
∀j ∈ {0, 1}

by (B.5). Hence, the required result follows from the above inequality.

Lemma 10. For any π, q0 ∈ (0, 1),

g1,0(µ1,0; 1
2
) R g1,1(pH ; 1

2
) ⇐⇒ π R π∗H(q0),

where π∗H(q0) is the unique zero in (0, 1) of the function

FH(π; q0, f) , g1,0(µ1,0; 1
2
)− g1,1(pH ; 1

2
), 0 ≤ π ≤ 1. (B.7)

Likewise,

g0,1(µ0,1; 1
2
) R g0,0(pL; 1

2
) ⇐⇒ π R π∗L(q0),

where π∗L(q0) is the unique zero in (0, 1) of the function

FL(π; q0, f) , g0,1(µ0,1; 1
2
)− g0,0(pL; 1

2
), 0 ≤ π ≤ 1. (B.8)

The exact locations of π∗H(q0) and π∗L(q0) in (0, 1), however, depend on the magnitude of q0

relative to pL, pH , and we shall address these issues as and when necessary.

138



Proof. From (B.6), (3.2), and Table B.1,

FH(π; q0, f) = f(1+π(1−q0)
2

)− f(pH)− f ′(pH)
(
1− pH − πq0

2

)
+ f ′(1

2
)
(

1−π
2

)
. (B.9)

Evidently, FH is continuous according to our criteria, and its first derivative of FH with

respect to π is

∂FH
∂π

= f ′(1+π(1−q0)
2

)
(

1−q0
2

)
+ q0

2
f ′(pH)− 1

2
f ′(1

2
)

>
(

1−q0
2

)
f ′(1

2
) + q0

2
f ′(pH)− 1

2
f ′(1

2
)

since 1−q0
2

> 0 and 1+π(1−q0)
2

> 1
2

for π, q0 ∈ (0, 1),

and f ′(·) is strictly increasing in (0, 1).

= q0
2

(
f ′(pH)− f ′(1

2
)
)
> 0 since pH > 1

2
.

Hence, FH(·; q0, f(·)) is a strictly increasing function for π ∈ (0, 1). Moreover, for any

q ∈ (0, 1),

lim
π↗1
FH(π; q0, f) = f(1− q0

2
)− f(pH)− f ′(pH)

(
1− q0

2
− pH

)
> 0, from the strict convexity of f(·);

lim
π↘0
FH(π; q0, f) = f(1

2
)− f(pH)− f ′(pH)

(
1− pH

)
+ 1

2
f ′(1

2
)

< f ′(1
2
)
(

1
2
− pH

)
+ 1

2
f ′(1

2
)− f ′(pH)

(
1− pH

)
from the strict convexity of f(·),

= −
(
1− pH

) (
f ′(pH)− f ′(1

2
)
)

< 0 since 1
2
< pH < 1, f ′(·) is strictly increasing.

From the above analysis, we conclude that FH(π; q0, f) = g1,0(µ1,0; 1
2
) − g1,1(pH ; 1

2
) has a

unique zero at some π = π∗H(q0) ∈ (0, 1), is strictly negative for π < π∗H(q0), and strictly

positive for π > π∗H(q0). This completes the proof.

The proof for the second part involving FL(π; q0, f) is analogous by symmetry, hence omitted.
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All subsequent analysis applies to the particular case of p0 = 1
2
. A perfect Bayesian equi-

librium (PBE) of the two-player two-stage (trade-voting) game under consideration is a

specification of a strategy profile, which in this case is the vector (pPBEA , vPBEA , pPBEB , vPBEB ),

and a consistent (Bayesian) belief system. We have already established in Lemma 6 that all

relevant information about Alice’s strategy that Bob needs in order to make his own decision,

in case he ends up participating in the prediction market, is available directly from pA, and

there is no need for Bob to go through the process of updating his belief about Alice’s signal

sA and hence reasoning about Alice’s voting choice vA. Hence, we can safely abstract away

from explicitly describing Bob’s belief system for our particular game. We can also abstract

away from from specifying how Alice updates her belief about Bob if and after Bob trades

because, regardless of Bob’s behavior in the market, Alice’s voting choice is already fixed by

the decision she makes in the first stage of the game (Lemma 5), based on her belief about

Bob’s actions immediately after obtaining her signal.

This still leaves us with the issue of reasoning about Alice’s equilibrium price-report pPBEA .

Note that, by Lemma 6, Bob is indifferent between vB = 0 and vB = 1 if pA ∈ {pL, pH}
although Bob’s voting choice for these values of pA is crucial for Alice’s decision making due

to the jump discontinuities in R̂A(p; p0) at p = pL and p = pH , as indicated by Lemma 7.

But we cannot have Bob (pA = pL, vB = 1) or (pA = pH , vB = 0) as part of an equilibrium

as in Section 3.4.1: If Alice knew that Bob would respond with vB = 1 to pA ∈ [0, pL] and

vB = 0 to pA ∈ (pL, 1
2
] (resp. vB = 0 to pA ∈ [pH , 1] and vB = 1 to pA ∈ (1

2
, pH)), she

would prefer to set pA to a value greater than (resp. less than) but close enough to pL (resp.

pH) so as to get a higher expected profit. Finally, observe, regardless of which gu,v(p;
1
2
) we

consider at p = 1
2
, Alice’s payoff for pA = 1

2
is always zero. Thus, finding Alice’s equilibrium

price-report pPBEA reduces to the problem of figuring out the local suprema of the segments

of the functions g0,1(p; 1
2
), g0,0(p; 1

2
), g1,1(p; 1

2
), g1,0(p; 1

2
), defined above, over the sub-intervals

[0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1] respectively, and then comparing them to determine the global

maximum of R̂A(p; 1
2
) over 0 ≤ p ≤ 1 for different values of π, q0 ∈ (0, 1).
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B.2.1 Analysis for symmetric well-behaved MSRs with 0 < pL < 1
4,

3
4 < pH < 1, e.g. LMSR

Case 1 0 < q0 < 2pL In this case, q0 <
1
2
< 1−2pL, so that 2pL

1−q0 <
1−2pL

1−q0 < 1 < 2pL

q0
< 1−2pL

q0
.

Moreover, since π < 1,

µ0,1 = 1−πq0
2

> 1
2
− πpL > 1

2
− pL > pL, since pL < 1

4
;

µ1,1 = 1− πq0
2
> 1− πpL > 1− pL = pH .

Hence, regardless of π, the local suprema of R̂A over the intervals [0, pL) and (pH , 1] are

g0,1(pL; 1
2
) and g1,1(pH ; 1

2
) at pL and pH respectively.

Case 1.1 0 < q0 < 2pL and 0 < π ≤ 2pL

1−q0 . In this case,

µ0,0 = π(1−q0)
2
≤ pL, equality holding if and only if π = 2pL

1−q0 ;

µ1,0 = 1+π(1−q0)
2

≤ 1
2

+ pL = 3
2
− pH < pH ,

since pH = 1− pL > 3
4
.

Hence, the local suprema of R̂A over the intervals [pL, 1
2
] and (pH , 1] are

g0,0(pL; 1
2
), and g1,0(pH ; 1

2
) at pL and pH respectively, satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) < g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
)

from Lemmas 7, 8 (since q0 <
1
2
), and 7 respectively. Thus, R̂A has a unique

global maximum at p = pH (HPP).

Case 1.2 0 < q0 < 2pL and 2pL

1−q0 < π ≤ 1−2pL

1−q0 . In this case,

µ0,0 = π(1−q0)
2

> pL;

µ1,0 = 1+π(1−q0)
2

≤ 1+(1−2pL)
2

= 1− pL = pH ,

equality holding if and only if π = 1−2pL

1−q0 .

Hence, the local suprema of R̂A over the intervals [pL, 1
2
] and (pH , 1] are

g0,0(µ0,0; 1
2
), and g1,0(pH ; 1

2
) at µ0,0 > pL and pH respectively. But we already
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know that g1,0(pH ; 1
2
) < g1,1(pH ; 1

2
) from Lemma 7, and that g0,0(µ0,0; 1

2
) >

g0,0(pL; 1
2
), µ0,0 being the global maximizer of g0,0(·; 1

2
). This implies that

g0,1(pL; 1
2
) < g0,0(µ0,0; 1

2
) since g0,1(pL; 1

2
) < g0,0(pL; 1

2
) from Lemma 7. We can

thus conclude that the global maximum of R̂A is either g0,0(µ0,0; 1
2
) at µ0,0 > pL

or g1,1(pH ; 1
2
) at pH . Let us define

G(π; q0, f) , g1,1(pH ; 1
2
)− g0,0(µ0,0; 1

2
)

= f(pH)− f(π(1−q0)
2

) + f ′(pH)
(
pL − πq0

2

)
− f ′(1

2
)
(
1− π

2

)
,

plugging in µ0,0 = π(1−q0)
2

, µ1,1 = 1− πq0
2

.

Then, G ′′(π; q0, f) = −f ′′(π(1−q0)
2

)
(

1−q0
2

)2
< 0,

since f ′′(r) > 0, 0 ≤ r ≤ 1;

G(π; q0, f)
∣∣
π=

2pL

1−q0
=
[
f(pH)− f(pL)

]
+ f ′(pH)

(
pL −

(
q0

1−q0

)
pL
)

− f ′(1
2
)
(

1− pL

1−q0

)
=
[
(1− 2pL)f ′(1

2
)
]

+ f ′(pH)pL
(

2− 1
1−q0

)
− f ′(1

2
)
(

1− pL

1−q0

)
,

from symmetry condition 3.3,

= pL
(
f ′(pH)− f ′(1

2
)
) (

2− 1
1−q0

)
> 0,

because 2 > 1
1−q0 for q0 <

1
2
, and f ′(pH) > f ′(1

2
) due to the increasing mono-

tonicity of f ′(·) (since pH > 1
2
). Moreover, since pH = 1− pL,

142



G(π; q0, f)
∣∣
π=

1−2pL

1−q0
= f(1− pL)− f(1

2
− pL)

+ f ′(pH)
(
pL −

(
q0

1−q0

) (
1
2
− pL

))
− f ′(1

2
)

(
1−

1
2
−pL

1−q0

)
= f(1− pL)−

[
f(1

2
+ pL)− 2pLf ′(1

2
)
]

+ f ′(pH)

(
1
2
−

1
2
−pL

1−q0

)
− f ′(1

2
)

(
1−

1
2
−pL

1−q0

)
,

using the symmetry condition (3.3) again,

>
[
f(1− pL)− f(1

2
+ pL)

]
+ f ′(1

2
)

(
1
2
−

1
2
−pL

1−q0

)
− f ′(1

2
)

(
1− 2pL −

1
2
−pL

1−q0

)
,

since 1
2
>

1
2
−pL

1−q0 for q0 < 2pL, f ′(pH) > f ′(1
2
),

>
[
f ′(1

2
+ pL)

(
1
2
− 2pL

)]
− f ′(1

2
)
(

1
2
− 2pL

)
,

from the strict convexity of f(·),

= 2
(

1
4
− pL

) (
f ′(1

2
+ pL)− f ′(1

2
)
)

> 0 for pL < 1
4
,

due to the increasing monotonicity of f ′(·).

Thus, G(π; q0, f) is a continuous, strictly concave function over [0, 1] with pos-

itive values at both π = 2pL

1−q0 and π = 1−2pL

1−q0 , hence for π ∈
(

2pL

1−q0 ,
1−2pL

1−q0

]
,

G(π; q0, f) > 0 =⇒ g1,1(pH ; 1
2
) > g0,0(µ0,0; 1

2
).

Thus finally, we conclude that, for this case too, R̂A has a unique global

maximum at p = pH (HPP).
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Case 1.3 0 < q0 < 2pL and 1−2pL

1−q0 < π < 1. In this case,

µ0,0 = π(1−q0)
2

> 1
2
− pL > pL, since pL < 1

4
;

µ1,0 = 1+π(1−q0)
2

> 1+(1−2pL)
2

= 1− pL = pH .

Hence, the local suprema of R̂A over the intervals [pL, 1
2
] and (pH , 1] are

g0,0(µ0,0; 1
2
), and g1,0(µ1,0; 1

2
) at µ0,0 > pL and µ1,0 > pH respectively. But,

as in Case 1.2 , g0,1(pL; 1
2
) < g0,0(µ0,0; 1

2
); also, since

µ1,0 + µ0,0 = 1
2

+ π(1− q0) = 1 + 2(1
4
− pL) > 1 for pL < 1

4
, π > 1−2pL

1−q0 ,

Lemma 9 tells us that g0,0(µ0,0; 1
2
) < g1,0(µ1,0; 1

2
).

All these inequalities involving the local suprema of R̂A over the four sub-

intervals under consideration indicate tha the global maximum of R̂A over

(0, 1) is either g1,1(pH ; 1
2
) at pH or g1,0(µ1,0; 1

2
) at µ1,0 > pH . By Lemma 10,

g1,1(pH ; 1
2
) R g1,0(µ1,0; 1

2
) ⇐⇒ π Q π∗H(q0),

where π∗H(q0) is the unique zero in (0, 1) of the continuous function FH(π; q0, f),

defined in (B.9). We already know that limπ↗1FH(π; q0, f) > 0; also, note that

FH(π; q0, f)
∣∣
π=

1−2pL

1−q0
= f(1− pL)− f(pH)

− f ′(pH)
(
pL −

(
q0

1−q0

) (
1
2
− pL

))
+ f ′(1

2
)

(
1
2
−

1
2
−pL

1−q0

)
= −

(
1
2
−

1
2
−pL

1−q0

)(
f ′(pH)− f ′(1

2
)
)

since 1− pL = pH ,

< 0

since 1
2
−

1
2
−pL

1−q0 > 0 for 1 < 2pL

q0
, and f ′(pH) > f ′(1

2
) due to the increasing

monotonicity of f ′(·). This implies that 1−2pL

1−q0 < π∗H(q0) < 1. Hence, R̂A

has a unique global maximum at p = pH (HPP) for 1−2pL

1−q0 < π < π∗H(q0), a

144



unique global maximum at p = µ1,0 > pH (LPP) for π∗H(q0) < π < 1, and two

equivalent global maxima at p = pH and p = µ1,0 for π = π∗H(q0).

In particular, in case of LMSR, for which f(r) = r ln r + (1− r) ln(1− r) and

pH = 4/5, (B.9) simplifies to

FH(π; q0, f) = ln(25(1 + x)1+x(1− x)1−x/64)− x
(

q0
1−q0

)
ln 4,

where x = π(1−q0). Hence, for LMSR, π∗H(q0) = x∗L(q0)/(1−q0), where x∗L(q0)

is the unique root of the fixed-point equation x = ln(64/(25(1+x)1+x(1−x)1−x))( q0
1−q0

)
ln 4

;

x∗L(q0) ∈ (1− 2pL, 1− q0) = (3/5, 1− q0) since π∗H(q0) ∈
(

1−2pL

1−q0 , 1
)

.

Case 2 q0 = 2pL In this case, since π < 1 and pL < 1
4
,

µ0,1 = 1−πq0
2

= 1
2
− πpL > 1

2
− pL > pL;

µ1,0 = 1+π(1−q0)
2

= 1
2

+ π
(

1
2
− pL

)
< 1

2
+ 1

2
− pL = 1− pL = pH ;

µ1,1 = 1− πq0
2

= 1− πpL > 1− pL = pH .

Hence, the local suprema of R̂A over the intervals [0, pL), (1
2
, pH ], and (pH , 1] are g0,1(pL; 1

2
),

g1,1(pH ; 1
2
), and g1,0(pH ; 1

2
) respectively, at pL, pH , pH , satisfying

g1,1(pH ; 1
2
) > g1,0(pH ; 1

2
) > g0,1(pL; 1

2
),

from Lemmas 7 and 8 (since q0 <
1
2
) respectively. This makes it impossible for the global

maximum of R̂A to lie in either [0, pL) or (pH , 1].

Now, for π ≤ 2pL

1−2pL
, µ0,0 = π(1−2pL)

2
≤ pL so that the local maximum of R̂A over [pL, 1

2
] is

g0,0(pL; 1
2
) at pL. But, g0,0(pL; 1

2
) < g1,1(pH ; 1

2
) from Lemma 8 (since q0 <

1
2
). For π > 2pL

1−2pL
,

µ0,0 > pL so that the local maximum of R̂A over [pL, 1
2
] is g0,0(µ0,0; 1

2
) at µ0,0 > pL. In that

case, we need to consider the difference
(
g1,1(pH ; 1

2
)− g0,0(µ0,0; 1

2
)
) ∣∣

q0=2pL
= G(π; 2pL, f) (see

Case 1.2 ). We can proceed exactly as in Case 1.2 to show that G(π; 2pL, f) is a continuous,

strictly concave function of π with G ′′(π; 2pL, f)
∣∣
π=

2pL

1−2pL
> 0 and G ′′(π; 2pL, f)

∣∣
π=1

> 0 (note
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that 1−2pL

1−q0 = 1 for q0 = 2pL); hence G(π; 2pL, f) > 0 ∀π
(

2pL

1−2pL
, 1
)

, implying g0,0(pL; 1
2
) <

g1,1(pH ; 1
2
), again.

Thus, for 0 < π < 1, R̂A has a unique global maximum at p = pH (HPP).

Case 3 2pL < q0 <
1
2

In this case, 2pL

1−q0 <
2pL

q0
< 1 < 1−2pL

1−q0 < 1−2pL

q0
.

Case 3.1 2pL < q0 <
1
2

and 0 < π ≤ 2pL

q0
. In this case,

µ0,1 = 1−πq0
2
≥ 1

2
− pL > pL since pL < 1

4
;

µ1,1 = 1− πq0
2
≥ 1− pL = pH .

Hence, the local suprema of R̂A over the intervals [0, pL) and (1
2
, pH ] are

g0,1(pL; 1
2
) and g1,1(pH ; 1

2
) at pL and pH respectively.

Now, for 0 < π ≤ 2pL

1−q0 ,

µ0,0 = π(1−q0)
2
≤ pL;

µ1,0 = 1+π(1−q0)
2

≤ 1
2

+ pL = 3
2
− pH < pH since pH > 3

4
.

Hence, the local suprema of R̂A over the intervals [pL, 1
2
] and (pH , 1] are

g0,1(pL; 1
2
) and g1,0(pH ; 1

2
) at pL and pH respectively, satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) < g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
)

from Lemmas 7, 8 (since q0 <
1
2
), and 7 respectively. Thus, R̂A has a unique

global maximum at p = pH (HPP).

Again, for 2pL

1−q0 < π ≤ 2pL

q0
,

µ0,0 = π(1−q0)
2

> pL;

µ1,0 = 1+π(1−q0)
2

< 1+(1−2pL)
2

= 1− pL = pH since π < 1−2pL

1−q0 .

Hence, the local suprema of R̂A over the intervals [pL, 1
2
] and (pH , 1] are

g0,0(µ0,0; 1
2
) and g1,0(pH ; 1

2
) at µ0,0 > pL and pH respectively. But g1,0(pH ; 1

2
) <
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g1,1(pH ; 1
2
) from , and since µ0,0 is the global maximum of g0,0(·; 1

2
), we also

have g0,0(µ0,0; 1
2
) > g0,0(pL; 1

2
) > g0,1(pL; 1

2
), the last inequality following from

Lemma 7. Thus, the contention for the global maximum of R̂A is between

g0,0(µ0,0; 1
2
) at µ0,0 > pL and g1,1(pH ; 1

2
) at pH .

Again, as in Case 1.2 and Case 2, we have to consider the function G(π; q0, f) =

g1,1(pH ; 1
2
)−g0,0(µ0,0; 1

2
) for q0 ∈ (2pL, 1

2
). We already know that it is a continu-

ous, strictly concave function with a positive value at π = 2pL

1−q0 for 0 < q0 <
1
2
.

Also, proceeding as in Case 2, we can show that

G(π; q0, f)
∣∣
π=

2pL

q0

> 2pL

q0

(
1
2
− q0

) (
f ′(1− µ0,0)− f ′(1

2
)
)
, µ0,0 = pL(1−q0)

q0
,

> 0, since 1− µ0,0 >
1
2
, q0 <

1
2
.

Hence, for 2pL

1−q0 < π ≤ 2pL

q0
, G(π; q0, f) > 0, i.e. g1,1(pH ; 1

2
) > g0,0(µ0,0; 1

2
), so

that in this case, too, R̂A has a unique global maximum at p = pH (HPP).

Case 3.2 2pL < q0 <
1
2

and 2pL

q0
< π < 1. In this case,

µ0,0 = π(1−q0)
2

> pL since π > 2pL

1−q0 ;

µ0,1 > µ0,0 > pL from inequalities (B.5);

µ1,1 = 1− πq0
2
< 1− pL = pH ;

µ1,0 < µ1,1 < pH from inequalities (B.5).

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ] and

(pH , 1] are g0,1(pL; 1
2
), g0,0(µ0,0; 1

2
), g1,1(µ1,1; 1

2
), and g1,0(pH ; 1

2
) at pL, µ0,0 > pL,
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µ1,1 < pH and pH respectively, satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) from Lemma 7,

< g0,0(µ0,0; 1
2
) since µ0,0 is the maximizer of g0,0(·; 1

2
),

< g1,1(µ1,1; 1
2
)

from Lemma 9 since µ1,1 + µ0,0 = 1 + π(1
2
− q0)

for q0 <
1
2
;

g1,0(pH ; 1
2
) < g1,1(pH ; 1

2
) from Lemma 7,

< g1,1(µ1,1; 1
2
) since µ1,1 is the maximizer of g1,1(·; 1

2
).

Thus, R̂A has a unique global maximum at p = µ1,1 (LPP).

Case 4 q0 = 1
2

Here, we just need the following two sub-cases.

Case 4.1 q0 = 1
2

and 0 < π ≤ 4pL.

µ0,0 = π
4
≤ pL;

µ0,1 = 1
2
− π

4
≥ 1

2
− pL > pL since pL < 1

4
;

µ1,0 = 1
2

+ π
4
≤ 1

2
+ pL = 3

2
− pH < pH since pH > 3

4
;

µ1,1 = 1− π
4
≥ 1− pL = pH .

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ] and

(pH , 1] are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), and g1,0(pH ; 1

2
) at pL, pL, pH and

pH respectively, satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) = g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
)

from Lemmas 7, 8 (since q0 = 1
2
), and 7 respectively. Hence, R̂A has two

equivalent global maxima at p = pL and p = pH (HPP).
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Case 4.2 q0 = 1
2

and 4pL < π < 1.

µ0,0 = π
4
> pL;

µ0,1 > µ0,0 > pL;

µ1,1 = 1− π
4
< 1− pL = pH ;

µ1,0 < µ1,1 < pH .

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ] and

(pH , 1] are g0,1(pL; 1
2
), g0,0(µ0,0; 1

2
), g1,1(µ1,1; 1

2
), and g1,0(pH ; 1

2
) at pL, µ0,0 >

pL, µ1,1 < pH and pH respectively. This situation is similar to in Case 3.2

with the only difference that g0,0(µ0,0; 1
2
) = g1,1(µ1,1; 1

2
) from Lemma 9 since

µ1,1 + µ0,0 = 1 for q0 = 1
2
. Hence, R̂A has two equivalent global maxima at

p = µ0,0 and p = µ1,1 (LPP).

Case 5 1
2
< q0 < 1 By symmetry, the analysis is similar to that for 0 < q0 <

1
2

(Cases 1,

2, and 3 combined), and is thus omitted.

B.2.2 Analysis for symmetric well-behaved MSRs with pL = 1
4,

pH = 3
4, e.g. QMSR

Case 1 0 < q0 <
1
2

Note that 0 < 1
2(1−q0)

< 1 for these values of q0. We need to consider

the following sub-cases:

Case 1.1 0 < q0 <
1
2

and 0 < π < 1
2(1−q0)

. In this case,

µ0,1 >
1−1·1

2
2

= 1
4

= pL since π < 1, q0 <
1
2
;

µ0,0 = 1
4
· (2π(1− q0)) < 1

4
= pL;

µ1,1 > 1− 1·1
2

2
= 3

4
= pH ;

µ1,0 = 1
4
· (2 + 2π(1− q0)) < 1

4
· (2 + 1) = 3

4
= pH .
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Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(pH ; 1

2
) respectively at pL, pL, pH , pH ,

satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) < g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 <
1
2
), and 7 respectively. Hence, R̂A has a unique

global maximum at p = pH .

Case 1.2 0 < q0 <
1
2

and π = 1
2(1−q0)

. In this case,

µ0,0 =
1
2
2

= 1
4

= pL;

µ0,1 > µ0,0 = pL from (B.5);

µ1,0 =
1+

1
2

2
= 3

4
= pH ;

µ1,1 > µ1,0 = pH from (B.5).

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(pH ; 1

2
) respectively at pL, pL, pH , pH ,

satisying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) < g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 < 1
2
), and 7 respectively. Hence, R̂A has a

unique global maximum at p = pH = µ1,0, making the two equilibrium domains

indistinguishable.

Case 1.3 0 < q0 <
1
2

and 1
2(1−q0)

< π < 1. In this case,

µ0,0 = 1
4
· (2π(1− q0)) > 1

4
= pL;

µ0,1 > µ0,0 > pL;

µ1,0 = 1
4
· (2 + 2π(1− q0)) > 1

4
· (2 + 1) = 3

4
= pH ;

µ1,1 > µ1,0 > pH .

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(µ0,0; 1

2
), g1,1(pH ; 1

2
), g1,0(µ1,0; 1

2
) respectively at pL, µ0,0, p

H , µ1,0.
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Note that µ0,0 +µ1,0 = 1
2

+π(1− q0) > 1 since π > 1
2(1−q0)

. So, from Lemma 9,

g1,0(µ1,0; 1
2
) > g0,0(µ0,0; 1

2
)

> g0,0(pL; 1
2
) since µ0,0 is the maximizer of g0,0(·; 1

2
),

> g0,1(pL; 1
2
), from Lemma 7.

Thus, neither g0,0(µ0,0; 1
2
) at µ0,0 nor g0,1(pL; 1

2
) at pL can be the global max-

imum – it is either g1,0(µ1,0; 1
2
) at µ1,0 or g1,1(pH ; 1

2
) at pH . Recall, from

Lemma 10 , that

g1,1(pH ; 1
2
) R g1,0(µ1,0; 1

2
) ⇐⇒ π Q π∗H(q0),

where π∗H(q0) is the unique zero in (0, 1) of the continuous function FH(π; q0, f),

defined in (B.9). We already know that limπ↗1FH(π; q0, f) > 0, in general.

Now, for pH = 3
4

and 0 < q0 <
1
2
, we obtain

lim
π↘ 1

2(1−q0)

FH(π; q0, f) = f(3
4
)− f(3

4
)− f ′(3

4
)
(

1
4
− q0

4(1−q0)

)
+ f ′(1

2
)
(

1
2
− 1

4(1−q0)

)
< −f ′(1

2
)
(

1
4
− q0

4(1−q0)

)
+ f ′(1

2
)
(

1
2
− 1

4(1−q0)

)
= 0,

the inequality following from the fact that f ′(3
4
) > f ′(1

2
) due to the increasing

monotonicity of f ′(·), and 1
4
− q0

4(1−q0)
> 0 for q0 <

1
2
.

Thus, R̂A has a unique global maximum at pH for 1
2(1−q0)

< π < π∗H(q0), a

unique global maximum at µ1,0 for π∗H(q0) < π < 1, and two equivalent global

maxima at pH and µ1,0 > pH for π = π∗H(q0).

In particular, for QMSR, we have f(r) = r2, 0 ≤ r ≤ 1 in addition to pH = 3
4
,

so that

FH(π; q0, f) = (1−q0)2

4

[
π2 + q0

(1−q0)2π − 3
4(1−q0)2

]
on simplication,
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which is a quadratic polynomial in π. Using the quadratic formula and dis-

carding the inadmissible negative root of FH(π; q0, f) = 0, we obtain

π∗H(q0) =
− q0

(1−q0)2 +
1

1−q0

√( q0
1−q0

)2
+3

2
=

(
√

3+v2−v)/2
1−q0 ,

where v = q0
1−q0 .

Case 2 q0 = 1
2

In this case, for 0 < π < 1,

µ0,1 = 1
2
− π

4
> 1

2
− 1

4
= 1

4
= pL;

µ0,0 = π
4
< 1

4
= pL;

µ1,1 > 1− 1·1
2

2
= 3

4
= pH ;

µ1,0 = 1
2

+ π
4
< 1

2
+ 1

4
= 3

4
= pH .

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1] are g0,1(pL; 1

2
),

g0,0(pL; 1
2
), g1,1(pH ; 1

2
), g1,0(pH ; 1

2
) respectively at pL, pL, pH , pH , satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) = g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 = 1
2
), and 7 respectively. Hence, for any π ∈ (0, 1), R̂A has

two equivalent global maxima at p = pL and p = pH .

Case 3 1
2
< q0 < 1 By symmetry, the analysis is similar to that for 0 < q0 <

1
2

(Case 1 ),

and is thus omitted.

B.2.3 Analysis for symmetric well-behaved MSRs with 1
4 < pL < 1

2,
1
2 < pH < 3

4, e.g. SMSR

Note that, for such scoring rules, 0 < 1− 2pL < 1
2
< 2pL < 1.
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Case 1 0 < q0 < 1− 2pL In this case, 2pL

q0
> 1−2pL

q0
> 1; also, 0 < 1−2pL

1−q0 < 2pL

1−q0 < 1.

Case 1.1 0 < q0 < 1− 2pL and 0 < π ≤ 1−2pL

1−q0 . Then,

µ0,0 = π(1−q0)
2

< pL since π ≤ 1−2pL

1−q0 < 2pL

1−q0 ;

µ0,1 = 1−πq0
2

> 1−(1−2pL)
2

= pL since π < 1 < 1−2pL

q0
;

µ1,0 = 1+π(1−q0)
2

≤ 1+(1−2pL)
2

= 1− pL = pH ,

equality holding only if π = 1−2pL

1−q0 ;

µ1,1 = 1− πq0
2
> 1− pL since π < 1 < 2pL

q0
,

= pH since pH = 1− pL.

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(pH ; 1

2
) respectively at pL, pL, pH , pH ,

satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) < g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 <
1
2
), and 7 respectively. Hence, R̂A has a unique

global maximum at p = pH .

Case 1.2 0 < q0 < 1− 2pL and 1−2pL

1−q0 < π ≤ 2pL

1−q0 . Then,

µ0,0 = π(1−q0)
2
≤ pL, equality holding only if π = 2pL

1−q0 ;

µ0,1 = 1−πq0
2

> 1−(1−2pL)
2

= pL since π < 1 < 1−2pL

q0
;

µ1,0 = 1+π(1−q0)
2

> 1+(1−2pL)
2

= 1− pL = pH ;

µ1,1 > µ1,0 = pH by (B.5).

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(µ1,0; 1

2
) respectively at pL, pL, pH , µ1,0,

satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) < g1,1(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 <
1
2
), and 7 respectively.
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Hence, the global maximum of R̂A must be either g1,1(pH ; 1
2
) at pH or g1,0(µ1,0; 1

2
)

at µ1,0 > pH . By Lemma 10 ,

g1,1(pH ; 1
2
) R g1,0(µ1,0; 1

2
) ⇐⇒ π Q π∗H(q0),

where π∗H(q0) is the unique zero in (0, 1) of the continuous function FH(π; q0, f),

defined in (B.9). Note that

lim
π↘1−2pL

1−q0

FH(π; q0, f) = f(1+(1−2pL)
2

)− f(pH)

− f ′(pH)
(
pL −

(
q0

1−q0

) (
1
2
− pL

))
+ f ′(1

2
)

(
1
2
−

1
2
−pL

1−q0

)
= −f ′(pH)

(
pL +

(
1− 1

1−q0

) (
1
2
− pL

))
+ f ′(1

2
)

(
1
2
−

1
2
−pL

1−q0

)
,

since 1+1−2pL

2
= 1− pL = pH .

= −
(

1
2
−

1
2
−pL

1−q0

)(
f ′(pH)− f ′(1

2
)
)

< 0

since 1
2
−

1
2
−pL

1−q0 > 0 for 1 < 2pL

q0
, and f ′(pH) > f ′(1

2
) due to the increasing mono-

tonicity of f ′(·). From this, we can conclude that π∗H(q0) > 1−2pL

1−q0 . However,

we have not been able to prove (or disprove) that π∗H(q0) < 2pL

1−q0 for a general

f(·) satisfying pL > 1
4

and for q0 < 1− 2pL. Our conjecture is that the relative

magnitudes of π∗H(q0) and 2pL

1−q0 depend on the form of f(·) and the exact value

of pL, and hence, so does the value of π ∈
(

1−2pL

1−q0 ,
2pL

1−q0

]
beyond which the

global maximizer of R̂A switches from pH to µ1,0 > pH , if it does switch at all.

But the inability to determine the conditions under which π∗H(q0) lies below or

above 2pL

1−q0 does not in any way detract from our analysis, as we shall show in

conjunction with the findings in Case 1.3 below.
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Case 1.3 0 < q0 < 1− 2pL and 2pL

1−q0 < π < 1. Then,

µ0,0 = π(1−q0)
2

> pL since π > 2pL

1−q0 ;

µ0,1 > µ0,0 > pL by (B.5);

µ1,0 = 1+π(1−q0)
2

> 1+(1−2pL)
2

= 1− pL = pH ,

since π > 2pL

1−q0 >
1−2pL

1−q0 ;

µ1,1 > µ1,0 = pH by (B.5).

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(µ0,0; 1

2
), g1,1(pH ; 1

2
) ,g1,0(µ1,0; 1

2
) respectively at pL, µ0,0 , pH ,

µ1,0. Now, for π > 2pL

1−q0 where pL > 1
4
, we have µ1,0 + µ0,0 = 1

2
+ π(1 − q0) >

1
2

+ 2pL > 1. Thus, from Lemma 9,

g1,0(µ1,0; 1
2
) > g0,0(µ0,0; 1

2
)

> g0,0(pL; 1
2
), since µ0,0 is the maximizer of g0,0(·; 1

2
),

> g0,1(pL; 1
2
), from Lemma 7.

Hence, the global maximum of R̂A must be either g1,1(pH ; 1
2
) at pH or g1,0(µ1,0; 1

2
)

at µ1,0 > pH , putting us in a position similar to that in Case 1.2 .

Combining the last two cases, we can conclude that R̂A has a unique global

maximum at pH for 1−2pL

1−q0 < π < π∗H(q0), a unique global maximum at µ1,0 >

pH for 1−2pL

1−q0 < π < π∗H(q0), and two equivalent global maxima at pH and

µ1,0 > pH for π = π∗H(q0).

In particular, for SMSR, for which f(r) =
√
r2 + (1− r)2, 0 ≤ r ≤ 1, and

pH = 1
2

(
1 +

√√
2−1
2

)
, we have

FH(π; q0, f) =

√
1+π2(1−q0)2

2
− 1+γS−γSπq0√

2(1+γ2
S)
, γS =

√√
2−1
2
.

By simple algebra, we can show that the equation FH(π; q0, f) = 0 reduces to

the quadratic equation

π2
(

1−
(

γ2
S

1+γ2
S

)
v2
)

+ 2γS(1+γS)

1+γ2
S
· v

1−q0 · π −
2γS

1+γ2
S
· v

(1−q0)2 = 0,
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where v = q0/(1−q0). Using the quadratic formula, discarding the inadmissible

negative root, and simplifying,

π∗H(q0) =
x∗S(q0)

1−q0 , where

x∗S(q0) =

√
γS(1+γ2

S)(2+γSv2)−γS(1+γS)v

(1+γ2
S)−γ2

Sv
2

=

√
K1+K2v2−K3v

1−K2v2 , where

K1 = 2γS
(1+γ2

S)
= 2
√

2
(√

2− 1
)3/2

≈ 0.7540;

K2 =
γ2
S

1+γ2
S

= 3− 2
√

2 ≈ 0.1716;

K3 = γS(1+γS)

1+γ2
S

= 3− 2
√

2 +
√

2
(√

2− 1
)3/2

≈ 0.5486.

Case 2 q0 = 1− 2pL In this case, since π < 1,

µ0,0 = π(1−q0)
2

= πpL < pL;

µ0,1 = 1−πq0
2

= 1−π(1−2pL)
2

> 1−(1−2pL)
2

= pL;

µ1,0 = 1+π(1−q0)
2

= 1
2

+ πpL;

µ1,1 = 1− πq0
2

= 1
2
− π

(
1−2pL

2

)
.

Hence, the local suprema of R̂A over the intervals [0, pL) and [pL, 1
2
] are g0,1(pL; 1

2
) and

g0,0(pL; 1
2
) respectively, both at at pL, satisfying g0,0(pL; 1

2
) > g0,1(pL; 1

2
) due to Lemma 7.

But for determining the local suprema over (1
2
, pH ] and (pH , 1], we need further conditions

on π.

Case 2.1 q0 = 1− 2pL and 0 < π ≤ 1−2pL

2pL
. Since pL > 1

4
, we have

(1− 2pL)2 = 1− 4pL + (2pL)2 < (2pL)2 ⇐⇒ 1−2pL

2pL
< 2pL

1−2pL
.

156



Hence,

µ1,0 = 1
2

+ πpL ≤ 1
2

+ 1−2pL

2
= 1− pL = pH ,

equality holding if and only if π = 1−2pL

2pL
;

µ1,1 = 1
2
− π

(
1−2pL

2

)
> 1− pL = pH , since π < 2pL

1−2pL
.

Hence, the local suprema of R̂A over the intervals (1
2
, pH ] and (pH , 1] are

g1,1(pH ; 1
2
) and g1,0(pH ; 1

2
) respectively, both at at pH , satisfying g1,1(pH ; 1

2
) >

g1,0(pH ; 1
2
) due to . Moreover, since q0 < 1

2
, g1,1(pH ; 1

2
) > g0,0(pL; 1

2
) from

Lemma 8.

Hence, R̂A has a unique global maximum at p = pH .

Case 2.2 q0 = 1− 2pL and 1−2pL

2pL
< π < 1. Then,

µ1,0 = 1
2

+ πpL > 1
2

+ 1−2pL

2
= 1− pL = pH ;

µ1,1 > µ1,0 > pH .

We already know that g1,1(pH ; 1
2
) > g0,0(pL; 1

2
) > g0,1(pL; 1

2
), and from Lemma 10

,

g1,1(pH ; 1
2
) R g1,0(µ1,0; 1

2
) ⇐⇒ π Q π∗H(q0),

where π∗H(q0) is the unique zero in (0, 1) of the continuous function FH(π; q0, f),

defined in (B.9), with limπ↗1FH(π; q0, f) > 0 for any q0 ∈ (0, 1). Now,

lim
π↘1−2pL

2pL

FH(π; 1− 2pL, f) = f(1− pL)− f(pH)− f ′(pH)
(
pL − (1−2pL)2

4pL

)
+ f ′(1

2
)
(

1
2
− 1−2pL

4pL

)
= −

(
pL−1

4
pL

)(
f ′(pH)− f ′(1

2
)
)
,

since 1− pL = pH .

< 0,

since pL > 1
4

and f ′(pH) > f ′(1
2
) from the increasing monotonicity of f ′(·). Thus, we can

conclude that 1−2pL

2pL
< π∗H(q0) < 1.
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Hence, R̂A has a unique global maximum at pH for 1−2pL

2pL
< π < π∗H(q0), a unique global

maximum at µ1,0 for 1−2pL

2pL
< π < π∗H(q0), and two equivalent global maxima at pH and

µ1,0 > pH for π = π∗H(q0). For SMSR, we can proceed as in Case 1.3 to obtain

π∗H(q0)
∣∣
q0=1−2pL

=
x∗S(q0)

∣∣
q0=1−2pL

2pL
, where

x∗S(q0)
∣∣
q0=1−2pL

=

√
γS(1+γ2

S)(2+γSv2)−γS(1+γS)v

(1+γ2
S)−γ2

Sv
2

∣∣∣∣∣
v=2pL/(1−2pL)

= γS, since pL = 1−γS
2

.

⇒ π∗H(q0)
∣∣
q0=1−2pL

= γS
1−γS

≈ 0.8352.

Case 3 1− 2pL < q0 <
1
2

In this case, q0 < 2pL since pL > 1
4
, hence 0 < 1−2pL

1−q0 < 1 < 2pL

1−q0 ;

also, 0 < 1−2pL

q0
< 1 < 2pL

q0
. Moreover, since q0 <

1
2
, we have 1−2pL

1−q0 < 1−2pL

q0
.

Case 3.1 1− 2pL < q0 <
1
2

and 0 < π ≤ 1−2pL

1−q0 . Then,

µ0,0 = π(1−q0)
2

< pL since π < 1 < 2pL

1−q0 ;

µ0,1 = 1−πq0
2

> 1−(1−2pL)
2

= pL since π ≤ 1−2pL

1−q0 < 1−2pL

q0
;

µ1,0 = 1+π(1−q0)
2

≤ 1+(1−2pL)
2

= 1− pL = pH ,

equality holding only if π = 1−2pL

1−q0 ;

µ1,1 = 1− πq0
2
> 1− pL since π < 1 < 2pL

q0
,

= pH since pH = 1− pL.

Hence, arguing exactly as in Case 1.1 , R̂A has a unique global maximum at

p = pH .

Case 3.2 1− 2pL < q0 <
1
2

and 1−2pL

1−q0 < π < 1. Then,

µ0,0 = π(1−q0)
2

< pL since π < 1 < 2pL

1−q0 ;

µ1,0 = 1+π(1−q0)
2

> 1+(1−2pL)
2

= 1− pL = pH ;

µ1,1 > µ1,0 > pH .
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Hence, the local suprema of R̂A over the intervals [pL, 1
2
], (1

2
, pH ], (pH , 1] are

g0,0(pL; 1
2
), g1,1(pH ; 1

2
), g1,0(µ1,0; 1

2
) respectively at pL, pH and µ1,0 > pH , sat-

isfying g1,1(pH ; 1
2
) > g0,0(pL; 1

2
) by Lemma 8 since q0 = 1

2
. Note that if

1−2pL

1−q0 < π ≤ 1−2pL

q0
, then µ0,1 = 1−πq0

2
≥ pL, so that the local supremum

of R̂A over [0, pL) is g0,1(pL; 1
2
) at pL but g0,1(pL; 1

2
) < g0,0(pL; 1

2
) by Lemma 7;

and if 1−2pL

q0
< π < 1, then µ0,1 < pL, so that the local maximum of R̂A

over [0, pL) is g0,1(µ0,1; 1
2
) at µ0,1 but then g0,1(µ0,1; 1

2
) < g1,0(µ1,0; 1

2
) since

µ0,1 + µ1,0 = 1 + π
(

1
2
− q0

)
> 1, by Lemma 9. Thus, as in Case 1.2 , R̂A has a

unique global maximum at pH for 1−2pL

1−q0 < π < π∗H(q0), a unique global maxi-

mum at µ1,0 > pH for 1−2pL

1−q0 < π < π∗H(q0), and two equivalent global maxima

at pH and µ1,0 > pH for π = π∗H(q0), where π∗H(q0) has the same meaning as in

Case 1.2 , and the same expression for SMSR as specified after Case 1.3 .

Case 4 q0 = 1
2

Note that 0 < 2−4pL < 1 for 1
4
< pL < 1

2
, and pL+pH = 1 by Proposition 2.

Case 4.1 q0 = 1
2

and 0 < π ≤ 2− 4pL = 4pH − 2. In this case,

µ0,1 = 1
2
− π

4
≥ 1

2
− 1

2
+ pL = pL,

equality holding if and only if π = 2− 4pL;

µ0,0 = π
4
< 1

4
< pL for π < 1;

µ1,1 = 1− π
4
> 1− 1

4
= 3

4
> pH for π < 1;

µ1,0 = 1
2

+ π
4
≤ 1

2
+ pH − 1

2
= pH ,

equality holding if and only if π = 4pH − 2.

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(pH ; 1

2
) respectively at pL, pL, pH , pH ,

satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) = g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 = 1
2
), and 7 respectively. Hence, R̂A has two

equivalent global maxima at p = pL and p = pH .
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Case 4.2 q0 = 1
2

and π = 2− 4pL = 4pH − 2.

µ0,1 = pL;

µ0,0 < µ0,1 = pL by (B.5);

µ1,0 = pH ;

µ1,1 > µ1,0 = pH by (B.5).

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(pL; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(pH ; 1

2
) respectively at pL, pL, pH , pH ,

satisfying

g0,1(pL; 1
2
) < g0,0(pL; 1

2
) = g1,1(pH ; 1

2
) > g1,0(pH ; 1

2
),

due to Lemmas 7, 8 (since q0 = 1
2
), and 7 respectively. Hence, R̂A has two

equivalent global maxima at p = pL = µ0,1 and p = pH = µ1,0.

Case 4.3 q0 = 1
2

and 2− 4pL = 4pH − 2 < π < 1. In this case,

µ0,1 = 1
2
− π

4
< 1

2
− 1

2
+ pL = pL for π > 2− 4pL;

µ0,0 < µ0,1 < pL by (B.5);

µ1,0 = 1
2

+ π
4
> 1

2
+ pH − 1

2
= pH for π < 4pH − 2;

µ1,1 > µ1,0 > pH .

Hence, the local suprema of R̂A over the intervals [0, pL), [pL, 1
2
], (1

2
, pH ], (pH , 1]

are g0,1(µ0,1; 1
2
), g0,0(pL; 1

2
), g1,1(pH ; 1

2
), g1,0(µ1,0; 1

2
) respectively at µ0,1, p

L, pH , µ1,0,

satisfying

g0,1(µ0,1; 1
2
) = g1,0(µ1,0; 1

2
); g0,0(pL; 1

2
) = g1,1(pH ; 1

2
). (B.10)

due to Lemma 8 since q0 = 1
2
. Again, as in Case 1.3 and Case 2.2 , we now need

to consider the equation FH(π; q0, f)
∣∣
q0=

1
2

= 0; note that limπ↗1FH(π; 1
2
, f) >

0, and

lim
π↘4pH−2

FH(π; 1
2
, f) = −2

(
f ′(pH)− f ′(1

2
)
) (

3
4
− pH

)
< 0,
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since pH < 3
4
, and f ′(pH) > f ′(1

2
) due to the increasing monotonicity of f ′(·).

Hence, the root of this equation π∗ ∈ (2− 4pL, 1), so we can conclude that R̂A

has two equivalent global maxima at pL, pH for π < π∗, two equivalent global

maxima at µ0,1 < pL, µ1,0 > pH for π > π∗, and four equivalent global maxima

at µ0,1, p
L, pH , µ1,0 for π = π∗.

For SMSR, as before,

π∗(1
2
) =

x∗S(q0)

∣∣
q0=

1
2

1
2

, where

x∗S(q0)
∣∣
q0=

1
2

=

√
γS(1+γ2

S)(2+γSv2)−γS(1+γS)v

(1+γ2
S)−γ2

Sv
2

∣∣∣∣∣
v=1

⇒ π∗H(1
2
) = 2

(√
γS(1 + γ2

S)(2 + γS)− γS(1 + γS)

)
≈ 0.9983 , π∗S, since γS =

√√
2−1
2
.

Case 5 1
2
< q0 < 1 By symmetry, the analysis is similar to that for 0 < q0 <

1
2

(Cases 1,

2, and 3 combined), and is thus omitted.
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Appendix C

Proofs of results in Chapter 4

We now provide the proofs of Proposition 3 and Theorem 7 from Chapter 4; please refer to

the chapter for the meanings of all symbols used here.

Throughout this appendix, we assume that σz = 1, µ0, and 0 < ρ0 ≤ 1; the latter implies

that only the update equations (4.2) and (4.3) apply.

Let ηt , |µt+1 − µt| =
ρ2
t

√
2/π√

1+ρ2
t

, the step-size of the mean update. The proofs of both main

results rely on the following lemma which shows that ηt = Θ(1/t).

Lemma 11. For ρ0 ≤ 1, ηt <
c1

t
and

ηt >

c2ρ
2
0 t ≤ b1/ρ2

0c,
c2

t
t ≥ b1/ρ2

0c+ 1,

where c1 =
√

2
π

(
π+(π−2)ρ2

0

2

)
and c2 = 1

2
√
π

.

Proof. To deduce the upper bound on ηt: Note that, from the recursion in (4.3), it is

clear that ρ2
t > 0 ∀t ≥ 1 since ρ2 > 0; also,

ρ2
t+1 = ρ2

t

[
1 + ρ2

t (1− 2/π)

1 + ρ2
t

]
< ρ2

t ∀t ≥ 0,

since 0 < 1− 2/π < 1, ρ2
t > 0. Hence,

0 < ρ2
t < ρ2

0 ≤ 1, ∀t ≥ 1. (C.1)
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Note that ηt =
ρ2
t

√
2/π√

1+ρ2
t

< ρ2
t

√
2
π
∀t, since

√
1 + ρ2

t > 1. Hence, to obtain the required upper

bound c1/t where c1 =
√

2
π

(
π+(π−2)ρ2

0

2

)
, it suffices to show that

ρ2
t <

(
π + (π − 2)ρ2

0

2

)
· 1

t
, ∀t ≥ 1. (induction hypothesis)

The inequality is satisfied for t = 1 since

ρ2
1 =

ρ2
0

1 + ρ2
0

(
π + (π − 2)ρ2

0

π

)
<

(
π + (π − 2)ρ2

0

2

)
· 1

1
, (base case)

since
ρ2

0

1+ρ2
0
< 1, π > 2. Now, assuming that the hypothesis holds for some t ≥ 1, we have,

from (4.3) again,

ρ2
t+1 = ρ2

t

[
1 + ρ2

t (1− 2/π)

1 + ρ2
t (1− 2/π) + (2/π)ρ2

t

]
= ρ2

t

/(
1 +

2/π

1 + ρ2
t (1− 2/π)

· ρ2
t

)
= 1
/( 1

ρ2
t

+
2

π + (π − 2)ρ2
t

)
< 1
/( 1

ρ2
t

+
2

π + (π − 2)ρ2
0

)
from (C.1),

< 1
/(

t · 2

π + (π − 2)ρ2
0

+
2

π + (π − 2)ρ2
0

)
, from the induction hypothesis,

=

(
π + (π − 2)ρ2

0

2

)
· 1

t+ 1
. (inductive step)

To deduce the lower bound on ηt: First note that, by definition,

ηt >

√
2

π
· ρ

2
t√
2

=
ρ2
t√
π
∀t ≥ 1, (C.2)

since ρ2
t < ρ2

0 ≤ 1 ∀t ≥ 1. Next, we will establish that

ρ2
t >

ρ2
0

1 + tρ2
0

∀t ≥ 1. (induction hypothesis)
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The result holds for t = 1 since

ρ2
1 >

ρ2
0

1 + ρ2
0

, since
π + (π − 2)ρ2

0

π
> 0. (base case)

Returning to the recursion (4.3) and assuming the hypothesis to be true for some t ≥ 1, we

see that,

ρ2
t+1 >

ρ2
t

1 + ρ2
t

=
1

1/ρ2
t + 1

>
1

(1 + tρ2
0)/ρ2

0 + 1
=

ρ2
0

1 + tρ2
0 + ρ2

0

=
ρ2

0

1 + (t+ 1)ρ2
0

. (inductive step)

Now, if 1 ≤ t ≤ b1/ρ2
0c ≤ 1/ρ2

0 ∈ [1,∞), then tρ2
0 ≤ 1 so that ρ2

t >
ρ2

0

2
; but, if t ≥ b1/ρ2

0c+1 >

1/ρ2
0 > 1, then ρ2

t >
1

1/ρ2
0+t

> 1
t+t

= 1
2t

. Combining these results with inequality (C.2), we

obtain the desired lower bound.

We shall now define symbols used in proofs.

Let ∆µt = µt+1−µt; p̂ , Φ(ε) where ε & 0 is a tolerance parameter, as defined in Chapter 4,

and Φ(·) is the standard normal cumulative distribution function; obviously, p̂ > Φ(0) = 0.5.

Also, denote by p+
t the probability (from the perspective of someone who knows the true

V as well as the distribution of the zt’s) of the binary signal xt received by the learner at

time-step t is positive, given her current (public) threshold µt, i.e.

p+
t = Pr[V + zt ≥ µt|zt ∼ N (0, 1)] = 1− Φ(µt − V ) = Φ(V − µt). (C.3)

Let E[·] denote the expectation (from the perspective of someone who knows the true V

and the learner’s belief updating and threshold-setting heuristics) at time 0 with respect to

the uncertainty in {zi}i<t, and Ext [·] the same with respect to the the uncertainty in the

binary signal xt, given all the relevant available information up to the beginning of epoch t

(including µt).
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Restatement of Proposition 3. There exist absolute positive constants C > 0 and k,

1 ≤ k < π
√

2 ≈ 4.443 such that, if t > C/(ρ2
0ε
k), then |V | − |E[µt]| < ε.

(Heuristic) proof of Proposition 3. We provide the proof for {V > 0}, that for {V < 0}
being analogous.

Evidently,

Ext [∆µt] = p+
t ηt + (1− p+

t )(−ηt) = (2p+
t − 1)ηt ∀t,

where the value of ηt for every t is predetermined and known right from t = 0. If ξt , E [µt],

then

ξt+1 = ξt + 2(E[p+
t − 0.5]).

First note that, as long as µt < V (which is the scenario we are interested in) which implies

that p+
t > 0.5, we have ξt > 0 ∀t ≥ 1 since ξ0 = 0. Moreover, if we wait until (V − µt) is

small enough (with a high probability) to use the following first-order approximation based

on a Maclaurin series expansion

Φ(V − µt) ≈ Φ(0) + Φ′(0)(V − µt) ⇐⇒ Φ(V − µt)− 0.5 ≈ V − µt√
2π

,

then, from (C.3) and using the linearity of expectation,

∆ξt ≈
√

2

π
(V − ξt)ηt∆t, (C.4)

where ∆ξt = ∆ξt+1 −∆ξt, ∆t = 1.

Let tα denote the number of time-steps such that

max
t∈{0,··· ,tα}

µt ≥ V − α

with probability at least (1− δ) where 0 < δ � 1, and α is small enough for the above linear

approximation to be reasonable (but α is still larger than and independent of the tolerance

parameter ε in the theorem statement). From Theorem 7 in Chapter 4, we already know25

25Although we have not proved this theorem yet, the proof (provided at the end of this appendix) does
not assume Proposition 3; hence all our statements are consistent.
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that tα = O(eV/α/ρ2
0) and is obviously independent of ε. Since the process has already

crossed V −α (a value close to V ) within tα and the step-size ηt only becomes progressively

smaller, we can say intuitively that µt is above V −α with a very high probability for t > tα.

Also, for such large values of t, we can use the fact that ηt = Θ(1/t) to get the following

approximate difference equation, from (C.4):

∆ξt =
c
√

2/π

t
(V − ξt)∆t, for some constant c, c2 ≤ c ≤ c1.

Let tε be the time taken by ξt to “hit” (i.e. cross for the first time) V − ε. Since we are

interested in the case ε → 0, we can assume that tε > tα, and the deterministic quantity

ξtα = E[µtα ] is less than V (otherwise, there is nothing to prove). Then, taking a continuous

approximation (a differential equation) to the above difference equation and integrating

between the proper limits, ∫ V−ε

ξtα

dξ

V − ξ
= c
√

2/π

∫ tε

tα

dt

t

=⇒ ln

(
V − ξtα

ε

)
= c
√

2/π ln

(
tε
tα

)
=⇒ tε = tα

(
V − ξtα

ε

)k
where k = 1

c

√
π
2
. Using the value of c2 from Lemma 11, we get the upper bound on k stated

in the theorem; although c1 gives us a (loose) lower bound on k that is smaller than 1, we

recall from Theorem 6 that we cannot have an asymptotic bound on the convergence time

sub-linear in 1/ε, hence we must have k ≥ 1. �

Restatement of Theorem 7. Fix 0 < δ < 1, 0 < ε < V , 0 < ρ0 ≤ 1, and define

∆ = V − ε. There is an absolute constant C > 0 such that if t > T = eC(ln(1/δ)+∆)/ε/ρ2
0, then

with probability at least 1− δ, maxi≤t µi > V − ε.

Proof of Theorem 7. Given the initial belief distribution N (0, ρ0), the value of ρt, and

hence of ηt, for each t ≥ 0 is completely determined. Thus, after t time-steps, the learner

could attain any one of at most 2t pre-defined values of µt each corresponding to a unique
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path of the form
[
(0, 0), (µ(1), 1), ..., (µ(t), t)

]
in the (µ, t)-space, where µ(t) denotes one of the

possible mean beliefs that the learner could have at time t. With this insight, we define a

reinforcement learning setting in which each such path is a state of the learner.

Define S = {s =
[
(0, 0), ..., (µ(t), t)

]
;µ(t) < V − ε}. Obviously, for any s in S, from (C.3),

p+
t > p̂ = Φ (ε) > 0.5.

After a binary signal is received, µt can only move “upward” or “downward” by the amount

ηt, so that any state s ∈ S can only transition to one of two states which we denote by

[s; (µ(t) + ηt, t + 1)] and [s; (µ(t) − ηt, t + 1)] respectively. For a given time-horizon [0, τ ],

let us define π as the policy which assigns to any state s ∈ S the constant probability p̂

of moving upward to the state [s; (µ(t) + ηt, t + 1)], and π′ the policy as that which assigns

the state-contingent probability p+
t to the same upward transition (π′ corresponds to our

approximate inference algorithm) with the following exceptions: If any transtion results in

a state
[
(0, 0), ..., (µ(t), t)

]
where µt > V − ε or t = τ , then under either policy (π or π′) the

process passes into a dead state at the next transtion and remains in that state forever. To

each transtion we assign a reward 1 if the transtion results in a state with the final µt above

V − ε and 0 otherwise; all transtions to the dead state have zero reward. The state value

function Vp
τ (s) for state s ∈ S under policy p ∈ {π, π′} is defined as the the limit, as γ → 1, of

the infinite-horizon geometrically discounted, by a factor γ, sum of expected rewards. From

the definition of states and rewards, it readily follows that Vp
τ (s) is the probability that at

least one of the states in the interval [t, τ ] has its last µ-value exceeding (V − ε), starting

from state s under the policy p:

Vp
τ (s) = Pr

({
max
t≤i≤τ

µ(i) ≥ V − ε
}
|p
)
.

The following lemma formalizes the notion that the policy π′ dominates π.

Lemma 12. For any s =
[
(0, 0), ..., (µ(t), t)

]
∈ S, where t < τ , Vπ′τ (s) ≥ Vπτ (s).

In particular, for the initial state ϕ = [(0, 0)], Vπ′τ (ϕ) ≥ Vπτ (ϕ).
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We will provide the proof of the above lemma after the main proof, but will now focus on

deducing a lower bound on Vπτ (ϕ) for the dominated process.

Vπτ (ϕ) = Pr

({
max
i≤τ

µ(i) ≥ V − ε
}
|π
)

≥ Pr
(
µ(τ) ≥ V − ε|π

)
since {µ(τ) ≥ V − ε} ⊆ {max

i≤τ
µ(i) ≥ V − ε}

= Pr

[
µ(τ) − E

[
µ(τ)

]
≥ −(2p̂− 1)

τ−1∑
t=0

ηt + ∆
∣∣π] , where ∆ = V − ε.

The last equality follows from the observation that, for any s ∈ S under π, E [∆µt] =

(2p̂ − 1)ηt ∀t ≥ 0 so that µ(t) is the sum of i.i.d. random variables {∆µi}t−1
i=0 and has

expectation (2p̂− 1)
∑t−1

i=0 ηi.

Using the lower bound on ηt from Lemma 11 and the inequality (which, in turn, follows from

the strictly decreasing monotonicity of 1/t)

t2∑
t=t1

1

t
>

∫ t2+1

t1

dt

t
= ln( t2+1

t1
), (C.5)

we can show that

(2p̂− 1)
τ−1∑
t=0

ηt −∆ > 0 for τ > τ ′ =

(
b 1

ρ2
0

c+ 1

)
exp

(
2
√
π∆

2p̂− 1

)
. (C.6)

Hence, for τ > τ ′, by Hoeffding inequality (see e.g. Boucheron et al. (2004)), we have

Pr
[
µ(τ) ≥ V − ε|π

]
≥ 1− δ for δ ≥ exp

[
−

2
(
(2p̂− 1)

∑τ−1
t=0 ηt −∆

)2∑τ−1
t=0 (2ηt)2

]
.

Combining this result with Lemma 12, we conclude that the above inequality also holds for

our algorithm, i.e. Pr
[
µ(τ) ≥ V − ε|π′

]
≥ 1− δ.

On rearranging the inequality of interest, we find that, for any given δ, it is sufficient for τ

to satisfy

(2p̂− 1)
τ−1∑
t=0

ηt −∆ ≥

√√√√2 ln(1/δ)
τ−1∑
t=0

η2
t
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Combining the lower bound on ηt from Lemma 11 with the inequality (C.5) as before, and

using result (i) presented below, we can obtain a lower bound on the above L.H.S. that

is linear in ε and logarithmic in τ ; moreover, using result (ii) stated below, we can also

obtain an upper bound on the above R.H.S. that is independent of ε, τ and sub-linear in

ln(1/δ). Further, taking (C.6) into consideration (which accounts for the linear dependence

on 1/ρ2
0 and exponential dependence on ∆), we obtain the desired asymptotic convergence

time bound.

(i) From the strict concavity of Φ(x) for x ≥ 0,

2p̂− 1 = 2[Φ(ε)− 0.5] = 2[Φ(ε)− Φ(0)] > 2N(ε)ε,

where N(x) = Φ′(x) = e−x
2/2/
√

2π is the standard normal probability density function.

Also, since N(x) is strictly decreasing for x ≥ 0 and it is possible to obtain a small

positive constant, say λ, that exceeds all interesting values of ε, we conclude that 2p̂−1

is bounded below by the linear (in ε) expression 2N(λ)ε.

(ii) From Lemma 11, η2
t < c2

1/t
2, and, for any t1 ∈ {1, 2, . . .}, t2 ∈ {t1 + 1, t1 + 2, . . .},

t2∑
t=t1

1

t2
<
∞∑
t=1

1

t2
= ζ(2) =

π2

6
,

where ζ(·) denotes the Riemann zeta function (Riemann, 1859).

�

Proof of Lemma 12. For an arbitrary s ∈ S, define

V+ = Vπτ ([s;
(
X(t) + ηt+1, t+ 1

)
]), V− = Vπτ ([s;

(
X(t) − ηt+1, t+ 1

)
]).

By the definition of policy π,

Vπτ (s) = p̂V+ + (1− p̂)V−.
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Figure C.1: An example demonstrating that, for any µH > µL, if there is a path from µL

that crosses V − ε within a time-horizon then the identical path from µH also crosses V − ε
within that horizon.

Given the nature of the random walk, induced by π, the probability of crossing the barrier

V − ε within a given time horizon starting from µH = µ(t) + ηt+1 is at least as large as that

starting from µL = µ(t) − ηt+1 at the same epoch, i.e. V+ ≥ V−.

To see why this is true, define a path to be a sequence of upward and downward movements

(i.e. a sequence of +1’s and −1’s) over a fixed number of epochs and the length of the path

to be the number of epochs the path spans. Under π, a path of a given length from µH has

the same probability as the corresponding path of the same length from µL since the upward

(resp. downward) probability at a given epoch is fixed at p̂ (resp. 1− p̂).

Let (xt, xt+1, · · · , xT ) ∈ {+1,−1}T−t+1 denote a feasible path starting from µL at time t and

crossing (V − ε) within the horizon [t, T ]. Then the corresponding path from µH also crosses

(V − ε) within the specified horizon since

V − ε ≤ µL +
τ∑
i=t

xiηi < µH +
τ∑
i=t

xiηi.

This implies that there are at least as many paths from µH as from µL that cross the

barrier within a time horizon. This completes the argument since paths represent mutually

exclusive ways of crossing (V − ε), and hence the overall probability of crossing is the sum

of the probabilities of individual paths. Figure C.1 provides an illustration.

Thus, using well-known terminology from the reinforcement learning literature, let us con-

sider a single deviation strategy under which the action in an arbitrarily chosen s in S is

given by π′(s) while the action in every other state s′ ∈ S, s′ 6= s remains π(s′). Then, the
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state-action value for this state s is given by

Qπ (s, π′(s)) = p+
t V+ + (1− p+

t )V−
= p+

t (V+ − V−) + V−
> p̂(V+ − V−) + V−, since p+

t > p̂,V+ − V− ≥ 0,

= p̂V+ + (1− p̂)V−
= Vπτ (s).

Since the state s is arbitrarily chosen, we conclude that that the single deviation strategy

improves the value for every state in S. Hence, by the strong form of the policy improvement

theorem of reinforcement learning (see Sutton and Barto (1998) Sec. 4.2), if the action for

every state s ∈ S is changed to π′(s) from π(s), then Vπ′τ (s) ≥ Vπτ (s) ∀s ∈ S. �
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