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Abstract—Wireless sensor networks (WSNs) have become an
increasingly compelling platform for Structural Health Monitor-
ing (SHM) applications, since they can be installed relatively
inexpensively onto existing infrastructure. Existing approaches
to SHM in WSNs typically address computing system issues or
structural engineering techniques, but not both in conjunction.
In this paper, we propose a holistic approach to SHM that
integrates a decentralized computing architecture with the Dam-
age Localization Assurance Criterion algorithm. In contrast to
centralized approaches that require transporting large amounts
of sensor data to a base station, our system pushes the execution
of portions of the damage localization algorithm onto the sensor
nodes, reducing communication costs by two orders of magnitude
in exchange for moderate additional processing on each sensor.
We present a prototype implementation of this system built
using the TinyOS operating system running on the Intel Imote2
sensor network platform. Experiments conducted using two
different physical structures demonstrate our system’s ability
to accurately localize structural damage. We also demonstrate
that our decentralized approach reduces latency by 65.5% and
energy consumption by 70.4% compared to a typical centralized
solution, achieving a projected lifetime of 193 days using three
standard AAA batteries. Our work demonstrates the advantages
of a holistic approach to cyber-physical systems that closely inte-
grates the design of computing systems and physical engineering
techniques.

I. INTRODUCTION

Structural Health Monitoring (SHM) is a promising tech-
nique to determine the condition of a civil structure, pro-
vide spatial and quantitative information regarding structural
damage, or predict the performance of the structure during
its lifecycle. Recent years have seen growing interest in
SHM based on wireless sensor networks (WSNs) due to their
potential to monitor a structure at unprecedented temporal and
spatial granularity. However, there remain significant research
challenges in SHM. Specifically, a SHM system must (1)
detect and localize damages in complex structures; (2) provide
both long-term monitoring and rapid analysis in response to
severe events (e.g., earthquakes and hurricanes); and (3) meet
the stringent resource and energy constraints of WSNs.

SHM applications are characteristic examples of complex
cyber-physical systems where neither the “cyber” aspects
nor the “physical” aspects can adequately be considered in
isolation. Previous work in the WSN field primarily addresses
system issues like data acquisition and communication, while

previous work in the structural engineering field has primarily
focused on developing algorithms for damage detection and
localization. The separation of computing system design and
SHM techniques may result in suboptimal system solutions.
For example, existing systems developed in the WSN field
usually assume a centralized approach that transports large
amounts of data from sensors to a base station. Despite con-
siderable research on network protocols optimized for SHM
applications, centralized architectures inherently entail signif-
icant communication and energy overhead for data collection.
For example, a state-of-art system deployed at the Golden
Gate Bridge required 9 hours to collect a single round of data
from 64 sensors, resulting in a system lifetime of 10 weeks
when using four 6V lantern batteries as a power source [1].
On the other hand, while the structural engineering field has
proposed damage detection and localization algorithms that are
potentially suitable for decentralized processing, prior research
in the field usually does not focus on the design of computing
system architectures for implementing such algorithms on
WSNs.

We therefore propose a holistic approach to SHM system
design based on WSNs. Specifically, we make the following
contributions in this paper. (1) We present the design of a
damage localization system that integrates a decentralized
computing architecture optimized for the Damage Localization
Assurance Criterion (DLAC) algorithm [2], [3]. In contrast to
centralized approaches that require transporting large amounts
of sensor data to a base station, our decentralized architecture
pushes the execution of portions of the damage localization
algorithm onto each sensor. This in-situ processing results
in significant reductions in communication overhead and en-
ergy consumption. (2) We also present a proof-of-concept
implementation of this design using the TinyOS operating
system [4]. In contrast to earlier WSN systems that focus on
data collection, our system can detect and localize damages
while consuming only a small faction of resources available on
the Intel Imote2 [5], an off-the-shelf sensor platform. (3) We
provide empirical results and analysis that demonstrate that
DLAC can accurately detect and localize damage on a simple
beam structure and on a complex truss structure, and that our
decentralized approach significantly outperforms a centralized
approach in terms of latency, energy efficiency, and system



lifetime. Our work provides an example of the key advantages
of a holistic approach to cyber-physical systems.

We begin by discussing related SHM and WSN systems in
Section II. Section III presents the design and implementation
of our damage localization system. In Section IV, we demon-
strate that this system can effectively locate damage to two
different physical structures. Section V provides an empirical
analysis of the advantages and efficiency of our system on the
Imote2 platform. Finally, we conclude in Section VI.

II. RELATED WORK

During the last several years, the structural engineering
community has pursued the development of analytical methods
to detect and quantify structural damage as well as reliable
sensing technologies [6]–[9]. WSNs are gaining the attention
of structural engineers as an attractive tool due to their on-
board processing and relatively low capital and maintenance
costs [10]–[12]. A survey of academic and commercial wire-
less sensor platforms can be found in [13].

Extensive research in the structural engineering field has
focused on developing sophisticated and fault tolerant algo-
rithms for damage detection [13], [14]. These techniques are
generally centralized, requiring computations involving global
information (usually acceleration data) collected at a single
location, e.g., at the base station. With potentially hundreds
of nodes and sampling frequencies of hundreds of Hz, these
centralized approaches exhibit high energy costs and long
delays due to communication overhead.

A schematic paradigm for distributed wireless monitoring
system is discussed in [15], [16]. SHM approaches using a
distributed computing strategy have been validated on a scale
three-dimensional truss model [15], [17] using algorithms de-
scribed in [18], [19]. These works address the problem primar-
ily from a structural engineering and algorithmic perspective.
In contrast, we propose a holistic approach to designing and
optimizing a decentralized computing architecture based on
the characteristics of a practical damage localization algorithm.
Moreover, our paper presents an in-depth analysis of the
feasibility and advantages of our decentralized computing
architecture in terms of latency, energy consumption, and
system lifetime.

In the area of sensor networks, Wisden [20], [21] provides
services for reliable multi-hop transmission of raw sensor data,
using run-length encoding to compress the data before trans-
mission. A UC Berkeley project to monitor the Golden Gate
Bridge [22]–[24] is considered to be the largest deployment of
wireless sensor networks for SHM purposes. Vibration data is
collected and aggregated at a base station under a centralized
network architecture, where frequency domain analysis is used
to perform modal content extraction. It takes nearly a full
day to transmit sufficient data for such computations, creating
latencies that would be inadequate for damage detection after
extreme events (e.g., an earthquake). BriMon [25] partially
addresses the communication bottleneck by sampling data at
400 Hz and averaging this data over 40 Hz windows. The
data resolution and network size (a maximum of 12 nodes per

span) supported by BriMon may not be fine-grained enough
for damage detection and localization on complex structures.
All three of these projects focus primarily on data collection
and networking challenges, and rely on a central base station
to perform actual damage detection. In contrast, our system
features a decentralized architecture that exploits processing
on each sensor, achieving significant improvements over a
centralized approach in terms of latency, energy efficiency,
and lifetime. Moreover, we provide empirical results that
demonstrate that our system can effectively localize damages
on physical structures, while none of the above papers present
results on damage detection or localization.

III. DESIGN AND IMPLEMENTATION

In this section, we describe our SHM system designed based
on a holistic approach. We first present a damage localization
algorithm that is particularly suitable for decentralized pro-
cessing on wireless sensors. We then describe a decentralized
architecture specifically optimized for this damage localization
algorithm. A salient feature of our architecture is the partition-
ing of the damage localization algorithm between the wireless
sensors and the base station, which significantly reduces
the sensors’ communication load and energy consumption in
exchange for moderate processing costs on each sensor. We
also discuss an implementation of our system and the system
challenges that we have overcome during this implementation
effort.

!"#$%%&$

!'#$()*+,$-.+/0,12$

!3#$41,5+$%6789$

!:#$;<=4$

;$>80+9+,?$

@+AB0CD$E)F+B$ ;A2A9+F$<)/AG)8$

!3A#$4)+H/6+80$

IJ0,A/G)8$

!3K#$IL1AG)8$

-)B5689$

MN($%B)A0?$

;$%B)A0?$

;O'$%B)A0?$

($%B)A0?$

;P$$Q$)R$?A2.B+?$

(P$$Q$)R$8A01,AB$R,+LS$

!;$TT$(#$

Fig. 1. The online phase of damage localization

A. Damage Localization Algorithm

Our system is based on the Damage Localization Assurance
Criterion (DLAC) technique [2], [3], which analyzes data col-
lected at each sensor to detect and localize structural damage.
The DLAC algorithm is especially well-suited for a decen-
tralized WSN system [26], [27], because it performs damage
localization based on post-processed natural frequency data
rather than raw vibration data. As discussed below, this natural
frequency data is computed from each node’s raw vibration
data (i.e., accelerometer readings). In Section III-B, we discuss
how this computation can be appropriately partitioned between



the base station and sensor nodes, significantly reducing the
communication and energy burden in exchange for moderate
in-situ processing. Moreover, nodes do not need to correlate
individual sensor readings to compute this natural frequency
data. Existing systems based on time-domain analysis require
precise time synchronization across nodes, incurring additional
communication and energy overhead [20], [24].

In the rest of this subsection, we will summarize the dam-
age localization procedure. The damage localization process
includes an offline phase and an online phase. In the offline
phase, the system identifies the natural frequencies of the
healthy structure, using observed vibration (acceleration) data
and a series of transformations described below. Because these
natural frequencies change in response to structural damage,
they are an effective “signature” of the structure’s health. (We
note that the natural frequencies are uniform throughout the
entire structure, and so even localized damage will produce
a global change in the frequency content.) Additionally, as
required by the DLAC technique, an analytical model of the
structure and the estimation of its natural frequencies using
purely numerical techniques are performed1.
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Fig. 2. Raw vibration readings taken after exciting a steel beam with a
hammer

In the system’s online phase, we periodically sample new
vibration data. An example of a raw sensor reading, taken
during the experiment described in Section IV-A, is shown in
Figure 2. We then repeat the natural frequency identification
techniques on this newly-collected data. In the final stage of
the algorithm, this new frequency data and the structure’s
analytical model enable the DLAC algorithm to localize the
damage to discrete locations on the structure.

The online phase of our system can be decomposed into four
stages, which are summarized in Figure 1. Steps (1)-(3) are
used to compute the current natural frequencies of the structure
based on collected vibration data, which are then input into
the DLAC algorithm in Step (4).

1The details of the model’s creation, as well as these numerical techniques,
are well-established in the structural engineering field and are beyond the
scope of this paper.

(1) The raw sensor readings are converted from time domain
data to frequency domain data using a Fast Fourier Trans-
form (FFT). This produces a series of complex numbers as
output, represented as an array of floating point numbers twice
the length of the original input (one real and one imaginary
part per input). A property of the FFT output data is that its
magnitudes are symmetric. To save memory and computation
in later stages, we discard the redundant half of this frequency
domain data, resuting in a final output the same length as the
input.
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Fig. 3. Power spectrum analysis results of raw vibration data, with the
redundant upper half already removed

(2) The FFT’s output is fed into a power spectrum anal-
ysis routine, which calculates the squared magnitude of each
complex value in the FFT output data. Figure 3 demonstrates
the output of power spectrum analysis over the previous raw
sensor data trace.
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Fig. 4. Polynomial curve fit to the power spectrum analysis data

(3) We can then identify the natural frequencies in this
power spectrum data by performing polynomial curve fitting.
The goal of this process is to identify the frequencie values
associated with the peaks in the power spectrum curve for



each mode. Empirical study has shown that the Fractional
Polynomial Curve-Fitting (FPCF) technique is reliable for
identifying a structure’s modal frequencies in an automated
manner. FPCF fits the power spectrum data to a polynomial
function in the form of Equation 1, with the order of its
denominator proportional to the number of frequencies we
wish to locate. This function was identified in [28] to extract
features from system transfer functions, and represents both
a smoothing and an interpolation of the raw power spectrum
data.

H(s) =
B(s)
A(s)

=
b1s

m + b2s
m−1 + . . .+ bm+1

a1sn + a2sn−1 + . . .+ an+1
(1)

Figure 4 illustrates the results of fitting a 2nd-order curve
near each seperate peak in the power spectrum data discussed
above. We note that, as in Figure 4, the fitted curve does
not necessarily match the amplitude (Y-axis) of the power
spectrum data at all of the peaks. The goal of this step
is to obtain the imaginary parts of the roots of Equation
1’s denominator, which correspond to the frequencies of the
structure; the amplitude of the fit is therefore irrelevant.

For the purposes of implementation and analysis, we sub-
divide the identification of natural frequencies into two steps:
(3a) coefficient extraction, which represents the curve-fitting
problem as a series of matrices; and (3b) equation solving,
which applies the matrix operations necessary to determine
the roots of the denominator polynomial.
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(4) Finally, once the structure’s natural frequencies have
been identified, they are used as input into the DLAC algo-
rithm, which ultimately detects and localizes damage to the
structure. Based on these inputs, DLAC yields a vector of
numbers in the range [0, 1], representing the correlation factors
to damage at various discrete locations along the structure.
A concentration of relatively high values indicates strong
correlation and therefore a potential damage location.

The DLAC algorithm is performed as follows. Offline, steps
(1) through (4) are executed when the structure is known
to be healthy. Using the coefficients of A(s) in Equation 1,
we identify the vector ωhealthy that represents the structure’s
natural frequencies in its healthy state. Using the structure’s
numerical model, we also estimate the structure’s natural
frequency vector ω′healthy using purely numerical techniques.

This numerical model is also used offline to simulate
damage at discrete locations along the structure, providing
an estimate of what the natural frequencies would be if the
structure were damaged at each of these locations. We say that
the vector ωj predicts the structure’s natural frequencies when
damage is simulated at location j. For each ωj , we calculate
a frequency change vector δωj , where

δωj =
ω′healthy − ωj

ω′healthy

(2)

We note that δωj is normalized with respect to ω′healthy; this
normalization gives equal weight to all vectors and reduces
any bias induced by higher modes. It is also worth empha-
sizing that, because δωj is calculated relative to the predicted
ω′healthy rather than the observed ωhealthy, the final results will
be relatively robust to imperfections in the numerical model.

Steps (1) through (4) are then repeated online, giving a new
frequency vector ωdamage. We likewise compute a frequency
change vector ∆ω for this data, i.e.,

∆ω =
ωhealthy − ωdamage

ωhealthy
(3)

Finally, we compute the correlation between the actual change
in frequency, ∆ω, and each predicted change in frequency,
δωj , as

DLACj =
(∆ω • δωj)2

|∆ω|2 · |δωj |2
(4)

In Figure 5, we plot DLAC for a steel beam that has been
subdivided into 20 discrete regions; relatively high DLAC val-
ues concentrated around X = 5 indicate a strong correlation
with damage at the fifth region.

A salient feature of DLAC is that it ultimately represents
hundreds or thousands of raw sensor readings as a single
vector ωdamage. As we discuss in Section V, this represen-
tation effectively compresses the data by up to 99.8% in
a typical SHM setup, significantly reducing the network’s
communication burden. This is an especially attractive feature
for wireless sensor networks, where wireless bandwidth is
often limited and sensors typically have a low energy budget.
However, we note that DLAC is designed to detect damage
at only one location; other techniques are needed to detect
multiple damage locations [29], which we plan to explore as
future work.

B. Decentralized Architecture

We have developed a decentralized computing architecture
specifically optimized for the damage localization procedure



presented in Section III-A. Our structural health monitoring
system consists of low-power sensors (also called motes) and a
base station connected by a wireless network. Motes typically
have limited resources (e.g., processing capabilities and mem-
ory) and run on batteries. Due to the difficulty of replacing
batteries for sensors embedded in a structure, the sensors’
energy efficiency is a critical concern for SHM systems. In
contrast, the base station (typically a PC) is connected to
a wired power source and has significantly more resources
than the sensors. Each mote collects raw vibration data from
an attached accelerometer and performs parts of the damage
localization procedure. The motes transmit their partial results
wirelessly to the base station, which completes the damage
localization procedure.

With the advance of sensor hardware, commercial sensor
platforms such as the Imote2 are capable of moderate amounts
of in-network processing. Our decentralized architecture ex-
ploits these processing capabilities to reduce the commu-
nication and energy costs of damage localization. Because
portions of the damage localization procedure described in
Section III-A (e.g., the DLAC algorithm) involve complicated
optimization routines, it is impractical to perform damage lo-
calization entirely on the motes. However, offloading too much
computation onto the base station would require transmitting
large amounts of data, on the order of thousands of floating-
point numbers. An important design goal of our system was
therefore to find the proper balance between the time and
energy spent on computations on the motes, and the time and
energy spent sending partial results to the base station.

To identify the optimal partitioning between the motes and
the base station, we analyze here the data flow between stages
of the damage localization procedure. We validate our analysis
through a comprehensive empirical measurement of different
partitioning strategies in Section V. As shown in Figure 1,
we parameterize this analysis by the number of samples
being collected, D, and the number of frequencies to identify,
P (D � P ). The FFT stage consumes D integer sensor
readings as input, and produces D floating-point values as
output. Power spectrum analysis transforms these D floating-
point values into D

2 floating-point magnitudes. The coefficient
extraction portion of the curve-fitting routine represents the
power spectrum data as 5P floating-point coefficients; apply-
ing the equation solver reduces this to P floating-point values.

As shown by the detailed empirical evaluation in Section V,
partitioning between the curve fitting and DLAC stages results
in an optimal energy efficiency and latency. The curve fitting
routine results in significant reduction in the amount of data
that must be transferred to the next stages, from the hundreds
or thousands of collected vibration samples to a single vector
of size P . For a typical setup of D = 2048, P = 5, 16-bit
accelerometer readings, and single precision (32-bit) float
types, the stages before curve fitting generate from 4 KB
to 16 KB of data; in comparison, curve fitting outputs only
20 B. In practice, the relatively complex equation solving
substage of the curve fitting routine may be impractical to
implement on some sensor network platforms. The system may

Fig. 6. The damage localization user interface

alternatively be partitioned between the coefficient extraction
and equation solving substages of the curve fitting routine,
which outputs 5P matrix coefficients (100 B of data under the
setup described above). Based our detailed empirical analysis
described in Section V, the in-situ processing performed before
either partitioning point reduces the communication latency so
that the raw data collection stage dominates the algorithm’s
running time. Similarly, the radio’s energy consumption is then
dwarfed by the cost of idle sleeping when either partitioning
point is selected, and represents 0.98% or less of the sys-
tem’s total energy budget. This partitioning of the damage
localization procedure between the motes and the central
base station highlights the importance of an integrated design
for the computing architecture and the damage localization
techniques.

C. Implementation

Our architecture is implemented as a proof-of-concept SHM
system containing two major software packages, which are
available as open-source software at [30]. The first package is
implemented on top of the TinyOS 1.1 operating system, and is
deployed on the Imote2 hardware platform. The Imote2 motes
are equipped with 32 MB of RAM, XScale CPUs capable of
running at speeds up to 614 MHz, and add-on sensor boards
with integrated accelerometers [31].

Our current implementation assumes that sensors are within
a single hop from the base station, as the focus of this work
is on decentralized processing rather than network protocols.
However, our system can easily be extended to support multi-
hop networks by incorporating existing multi-hop data collec-
tion protocols [24], [32]. We discuss the implications of multi-
hop networking on our system’s lifetime in Section V-D.

The second software package consists of a Java application
and MATLAB scripts running on the base station PC. A GUI
(shown in Figure 6) allows users to set the algorithm’s pa-
rameters, initiate data collection and aggregation on individual
motes, and collect the partial curve fitting results computed by
the motes. Once the application receives partial results from a
mote, it completes the curve fitting procedure using an equa-
tion solver written in Java. The results of this equation solver
are then processed using a MATLAB script that implements
the DLAC algorithm. For debugging purposes, our system can
also retrieve the last set of raw sensor readings from individual
motes; this feature is not used under normal operations.



To simplify the implementation, the SHM algorithm is
currently invoked only when requested by the PC-side GUI.
The motes currently keep their radio on to listen for these
control messages, which can rapidly deplete their batteries. We
emphasize that there is nothing inherent in our decentralized
approach that prohibits performing autonomous readings at
prescheduled intervals and/or managing the radio power, e.g.,
by using existing power-efficient MAC protocols. We discuss
these options in greater detail in Section V-D.

D. Implementation Challenges

Sampling Jitter: One important lesson that we encountered
early in our project is the significant impact of jitter in
sensor sampling intervals on damage localization. We initially
targeted the Imote1 platform for our system but observed poor
experimental results. We traced the poor results back to the
Imote1’s sensor board, which sampled the accelerometer at
highly variable intervals. The significant jitter in the sampling
interval resulted in poor damage localization results, even
though the damage localization procedure itself was imple-
mented properly. We attempted to debug the Imote1’s sensor
drivers but were hindered by the fact that they are partially
closed-source.

After switching to the Imote2 platform, we discovered
other, smaller inaccuracies our experimental results. The ac-
celerometer chip on the Imote2’s ITS400 sensor board can be
programmed to collect samples at discrete frequencies of 280
Hz, 560 Hz, 1120 Hz, or 4480 Hz. Using an oscilloscope,
we determined that their sensor chips deviated within ±10%
of their programmed frequencies. While the “actual” sensing
frequencies varied from board to board, we did not observe
variations in frequency over time for individual boards within
our controlled lab environment; e.g., a board programmed to
sample its accelerometer at 560 Hz might actually operate at
550 Hz, but it would consistently operate at 550 Hz. For the
purposes of our proof-of-concept implementation, we therefore
simply measured the real sampling frequency of each board
offline using an oscilloscope and used this calibration data as
input to the power spectrum analysis routine. An autonomous
or semi-autonomous system could perform this calibration
online using the motes’ onboard microsecond clock.

Sensing Noise: After performing initial experiments on the
truss structure, we discovered that our results were not as high-
quality as on the simpler beam structure. We determined that
the truss’s more complex geometry introduced noise into the
sensor readings that degraded the DLAC results. Additionally,
a 280 Hz sampling rate was insufficient to identify the higher
frequencies in this structure. As a result, we increased the
frequency of data collection from 280 Hz to 560 Hz and
performed averaging over five consecutive sets of readings.

IV. EVALUATION: DAMAGE LOCALIZATION

In this section, we present an evaluation of our SHM
system’s physical performance, discussing our system’s ability
to localize damage on two sample structures. The two struc-
tures’ different physical properties serve as good indicators

Mode 1 2 3 4 5
Measured 0.5381 4.0240 11.4705 22.5506 37.4316
Analytical 0.6564 4.1133 11.5180 22.5710 37.3160

TABLE I
MEASURED AND ANALYTICAL NATURAL FREQUENCIES FOR THE

HEALTHY BEAM
Mode 1 2 3 4 5

Analytical 0.6555 4.0105 10.6192 20.8768 36.1469
Sensor 1 0.5506 3.9043 10.2473 20.7641 36.6415
Sensor 2 0.5374 3.8902 10.2779 20.8069 36.6396
Sensor 3 0.5402 3.8977 10.2714 20.7964 36.6048
Sensor 4 0.5316 3.8564 10.2744 20.8470 36.6785
Sensor 5 0.5371 3.7678 10.0707 20.4038 36.9797
Sensor 6 0.5427 3.8488 10.3217 20.7546 36.5919
Sensor 7 0.5392 3.9012 10.2533 20.7751 36.6570

TABLE II
ANALYTICAL AND IDENTIFIED NATURAL FREQUENCIES FOR THE

DAMAGED BEAM

of DLAC’s performance under ideal and complex conditions,
respectively.

A. Beam

To validate our damage localization system, we first per-
formed a series of experiments on a steel cantilever beam
in the Structural Control and Earthquake Engineering Lab at
Washington University in St. Louis. The beam, depicted in
Figure 7, is 2.75 m long, 7.6 cm wide, and 0.6 cm thick
and fixed to the ground to approximate a cantilever support.
Damage along the beam can be simulated at three distances
from the beam support by attaching a 1.5 kg steel bar. Because
this beam has relatively simple structural properties, it serves
as a test of our system under ideal conditions.

We collected data about the beam’s healthy state by attach-
ing seven Imote2 wireless sensors at equidistant intervals along
the beam. Each mote was equipped with a Crossbow ITS400
sensor board with embedded 3-axis accelerometers; tests on a
shake table confirmed that these accelerometers are sufficiently
accurate for DLAC purposes within their saturation range of
±2.0g. After exciting the beam with a hammer, we collected
vibration data from each mote. Using this data, we determined
the beam’s healthy natural frequencies offline, as shown in
Table I.

A corresponding 2D Bernoulli beam model was generated in
MATLAB, which subdivided the beam into 20 elements with
42 global degrees of freedom (Figure 8). As shown in Table I,
the first natural frequency predicted by the model is within
22% of the experimental value, while the other predicted
frequencies fall within 2% of the experimental data. These
discrepancies can be explained by simplifying assumptions
in the model; e.g., the Imote2 nodes were not included in
the model. We remind the reader that the DLAC algorithm
uses both measured data and analytical data as inputs, thus
accounting for such discrepancies.

We then tested our system’s ability to detect and localize
damage along the beam structure. Using the procedure de-
scribed in Section III, we collected and analyzed vibration data
at 280 Hz, both in its healthy condition and with the steel bar
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Fig. 7. Diagram of cantilever beam test structure

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Cantilever beam finite element model 

 

Table. 3. Analytical natural frequencies  

 

 

 

 

 

 

 

The first experimental test performed is to experimentally calculate the healthy natural 

frequencies of the beam. A hammer strike is applied along the weaker bending axis of the beam 

to approximate an impulse response and ensure a total modal content excitation. The first five 

healthy natural frequencies, shown in Table 4, are determined by averaging the results from all 

of the sensors. Differences between the analytical and experimental healthy natural frequencies 

can be explained due to some numerical assumptions in the analytical model. Boundary 

conditions, homogeneous distribution for density and constitutive laws, and disregarding 

numerical modeling for the sensor platforms are the most important causes for those 

discrepancies. However, damage detection results will demonstrate that the DLAC algorithm is 

reliable and robust to account for numerical model imperfections even when differences are 

large (Clayton, 2006); here the errors range from 18% in the fundamental mode to 0.3% in 

higher modes. In general, damage detection algorithms are required to show reliable robustness 

to account for numerical model imperfections.  

 

 

Table 4. Experimental healthy natural frequencies  

 

 

                                         

      

     Mass is then attached to the beam to test the DLAC performance under the three different 

scenarios already described. Because the DLAC is used to detect individual events, each 

scenario is tested separately. Impact testing is again selected to perform the validation for each 

Fig. 8. Cantilever beam finite element model

 

damage case by applying a hammer strike along the weaker bending axis. Results reported using 

the entire network are depicted in Figs. 6, 7 and 8 where corresponding identified natural 

frequencies and DLAC measurements are introduced for each damage scenario. DLAC values 

determined at sensors along the length of the beam are provided. Values close to unity indicate 

damage location. The entire network report successful damage detection results for all damage 

scenarios with correlation measurements greater than 90% at the damaged positions. Recall 

experimental damage positions D1, D2 and D3 are associated with elements 5, 10 and 14, 

respectively. Despite consistency in the results, some of the sensors report correlation 

measurements greater than 50% for some of the element positions.  As explained previously, 

results of correlation-based methods may not be unique. Frequency change vectors associated 

with one damage location could be potentially the same as those obtained with several 

combinations of damage location when reduced numbers of modes are used. Therefore, the 

inclusion of more modes is expected to clarify the results by concentrating the correlation 

measurements around one damage location. Note that these results are obtained with a damage 

hypothesis of only 67% of the actual damage. Two additional damage hypotheses are 

implemented to test the DLAC performance off-line using different damage assumptions and 

acceleration records previously obtained for debugging purposes. New sensitivities matrices and 

corresponding frequency change vectors were developed with a prescribed analytical damages 

equivalent to 200% and 33% of the actual damage. Results showed the same tendencies and 

consistency, and were also successful for all damage scenarios with high correlation 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. DLAC results for element position # 5 
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Fig. 9. DLAC results for the beam damaged at element 5

attached at each of the three damage locations shown in Figure
7. We added an arbitrary amount of mass at each position in
our analytical model to develop the matrix of damage cases
for computation of the correlation factors. The amount of mass
that we added to the model intentionally did not match the
steel bar’s actual mass. We included this discrepancy to reflect
the fact that the amount of damage to a structure is not known
ahead-of-time, and to illustrate that DLAC will still adequately
localize damage as long as a reasonable guess is used.

For the sake of brevity, we present here only the results
for the first scenario, which simulates damage at the beam’s
fifth element. As shown in Table II, the natural frequencies
measured by each of the 7 sensor nodes closely match those
predicted by the “damaged” analytical model. Each node
therefore correctly predicts structural damage at the beam’s
fifth element with a correlation of 94% or higher (Figure
9). We observed similar results during the other two damage
scenarios, with the nodes consistently localizing the damage

at the correct element with correlations of 90% or higher.

Fig. 10. 3D truss test structure

Wireless Sensor
Truss Frontal Panel

Fig. 11. Truss experimental setup; highlighted elements were replaced to
simulate damage

B. Truss

To evaluate our system under more complex structural
configurations, we then performed tests on a 5.6 m steel truss
structure [33] at the Smart Structure Technology Laboratory
(SSTL) at the University of Illinois at Urbana-Champaign
(see Figure 10). 11 Imote2 sensors were deployed on the
frontal panel of the truss, as shown in Figure 11; USB cabling
was deployed to power the motes, but all communication
occurred over their wireless radios. The truss consists of



Mode 1 2 3 4 5
Measured 20.65 41.49 64.59 69.41 95.51
Analytical 19.88 38.31 66.26 67.17 92.25

TABLE III
MEASURED AND ANALYTICAL NATURAL FREQUENCIES FOR THE

HEALTHY TRUSS
Mode 1 2 3 4 5

Analytical 19.19 38.35 63.58 66.30 90.96
Sensor 1 20.27 41.37 63.04 67.79 94.89
Sensor 2 20.28 41.40 63.17 67.89 95.08
Sensor 3 20.20 41.29 63.01 67.67 94.82
Sensor 4 20.17 41.23 63.05 67.68 94.73
Sensor 5 20.31 41.30 63.10 67.73 94.89
Sensor 6 20.23 41.29 63.02 67.68 94.81

TABLE IV
ANALYTICAL AND IDENTIFIED NATURAL FREQUENCIES FOR THE

DAMAGED TRUSS

fourteen bays 0.4 m-long bays and sits on four rigid supports.
Different structural configurations and damage scenarios can
be emulated by removing or replacing the truss’s members and
its supports.

As with the beam, we used collected truth data and a
MATLAB model to compute the natural frequencies in the
truss’s healthy state. We collected the truth data by vertically
exciting the truss structure using a magnetic shaker. (To ensure
a consistent mass distribution with later experiments, the
Imote2 motes were left installed but were not activated.) A
force transducer was used to measure the input force, and six
wired sensors were used to measure the vibrations at different
points on the truss’s frontal panel. A corresponding numerical
finite element model with 160 beam elements and 336 global
degrees of freedom (Figure 12) was generated in MATLAB.
As shown in Table III, the natural frequencies predicted by this
model are within 2–7% of the experimental data. Again, these
discrepancies can be explained by simplifying assumptions in
the model and are accommodated by the DLAC algorithm.

Fig. 12. Truss finite element model

To simulate damage along the truss structure, we replaced
the beam elements of the third bay (highlighted in Figure
11) with smaller elements. Specifically, two diagonal elements
were reduced in area by 52.7%, and two bottom elements were
reduced in area by 63.7%. We simulated damage to the truss’s
numerical model by reducing the model’s corresponding beam
elements.

We then excited the “damaged” truss structure and used
the Imote2 nodes to collect vibration data. Because the truss
has more complex behavior than the beam, we increased the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12. DLAC results for truss bay # 3 

 

6.0 CONCLUSIONS 

 

     In this study a successful demonstration for an in-situ experimental validation of a      

correlation-based decentralized damage detection technique using a wireless sensor network has 

been performed. Structural damage was detected with sufficiently high correlation percentage in 

two experimental structures independently of the damage hypothesis used in the sensitivity 

matrix. On-board processing iMote2 capacities were exploited to reduce communication load 

and make the application scalable within a wireless sensor network.   
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Fig. 13. DLAC results for the damaged truss

sampling frequency to 560 Hz. To reduce noise, we also
averaged the power spectrum results over five consecutive
readings. 6 of the 11 sensors reported enough vibration data2

to compute natural frequencies with a DLAC correlation of
85%. The natural frequency data and DLAC results are shown
in Table IV and Figure 13, respectively. The DLAC results
strongly predict damage in the third bay, which is where the
elements were replaced.

V. EVALUATION: CYBER SYSTEM PERFORMANCE

We now evaluate the cyber aspects of our cyber-physical
SHM system. First, we will validate the optimal partioning
of the decentralized algorithm proposed in Section III-B,
by showing that it outperforms other potentional partitioning
points in terms of latency and energy consumption. Second,
we will demonstrate that our optimally-partitioned system
significantly outperforms a centralized approach in terms of
system lifetime. Based on these findings, we project that
our system would achieve a lifetime of approximately 193
days between battery replacements with appropriate power
management techniques.

Throughout this section, we will consider five different
configurations of our system. Four of these five configurations
represent different partitionings of the decentralized algorithm
discussed in Section III-B: they respectively perform up to
the FFT, power spectrum analysis, coefficient extraction, and
equation solving stages on the mote before transmitting their
partial results to the base station. The fifth configuration
performs no computations and transmits its raw sensor data
back to the base station, representing the behavior of a fully
centralized application.

A. Memory

Figure 14 presents the ROM consumption of five different
configurations of our SHM system. The onboard FFT routine

2The Imote2 vibration sensor will occasionally fail to collect a round of
samples, due to a driver bug that could not be isolated by the time the
experiments were run.
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Fig. 14. The ROM footprint of different SHM system configurations
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Fig. 15. The RAM footprint of different SHM system configurations

has the largest impact on footprint, increasing the size of the
application from 228748 bytes to 247748 bytes (8.3%), while
the other routines add between 264 bytes (1.1%) and 424 bytes
(1.7%) each. We see a larger difference in RAM consumption
as we increase the amount of onboard computation, as shown
in Figure 15. The FFT routine again increases the footprint
the most, from 47460 bytes of RAM to 63844 bytes (34.5%).
The remaining routines require an additional 166 bytes (0.2%)
to 4864 bytes (7.1%).

In absolute terms, this footprint fits well within the hardware
capabilities of the current-generation sensor hardware. Indeed,
on platforms such as the Imote2 (which is equipped with 32
MB each of flash ROM and SDRAM) this application would
significantly underutilize the hardware capabilities. As shown
above, the incremental cost of adding each additional onboard
computation is also small in relative terms. Nevertheless, the
memory consumption of our system could be further reduced
by two straightforward optimizations, which could potentially
expand the number of platforms which our system could be
deployed on.

First, because our application was designed for the rela-
tively resource-rich Imote2 platform, we have not written our
codebase with RAM conservation in mind. Specifically, our
application retains copies in RAM of the raw sensor data
and the output of intermediate computations. This decision
simplifies the implementation and allows us to retrieve these
intermediate values for debugging purposes. On more RAM-
constrained devices, our application could be altered to keep
only a single memory buffer and perform all computations
in-place on this single buffer.

Second, the beta Imote2 toolchain for TinyOS 1.1 tends to

greatly inflate the footprint of compiled applications compared
to other platforms. The Wasabi GCC compiler used by this
toolchain will crash unless the toolchain is invoked in debug
mode, which disables nesC’s aggressive inlining optimizations
and inserts debugging symbols into the binary. Also, because
binary size is not generally a concern on the Imote2, the
toolchain automatically includes complex subsystems (such as
a USB debugging console) which contribute to the size of the
binary. For comparison, a simple test application included in
TinyOS (CntToRfm) consumes 195052 bytes of ROM and
18532 bytes of RAM on the Imote2 platform compared to
11234 bytes of ROM and 371 bytes of RAM for the TelosB
platform. We anticipate that deploying our application with a
different toolchain (whether a different platform or the more
modern, stripped-down Imote2 toolchain used by TinyOS 2.1)
would therefore achieve a significant footprint reduction.
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Fig. 16. The latency of sensor data collection and processing

B. Latency

To evaluate the latency of a single round of damage
detection, we timed the execution of its constituent steps:
collecting the raw sensor data from the accelerometer, per-
forming onboard computations on the data, and transmitting
the computed results back to the base station. Again, because
the computation and communication latency of our SHM sys-
tem depends greatly on how much computation is performed
onboard, we present this data for the five different system con-
figurations. Where possible, we measured these latencies using
the Imote2’s onboard microsecond timer and took the mean
of 50 rounds. Because the Imote2’s onboard radio interferes
with the hardware microsecond timer, the data transmission
latencies (with the exception of the FFT data latency3) were
collected over 10 rounds using an oscilloscope. We focus
here on the latencies incurred by on-board processing and
communication, excluding processing at the base station. We
note that this decision benefits the fully centralized approach,
which will pay a comparatively higher processing cost at the
base station.

Figure 16 presents the average latency for each of these five
configurations. All five schemes incur a mean cost of 3772 ms

3Our oscilloscope did not have a large enough data buffer to reliably
measure the time spent transmitting the FFT data. We instead measured this
latency by instrumenting the PC base station software, which we expect to
provide results within one packet RTT of the actual time spent transmitting.



(σ = 0.80 ms) to collect raw sensor data. This closely matches
the 2048

560 Hz ≈ 3.7 s needed to collect 2048 samples, with some
additional overhead to copy the sensor data into a local buffer.
The cost of all the onboard computations is relatively small:
the FFT, power spectrum analysis, coefficient extraction, and
equation solving routines consume 566.8 ms (σ = 2.78 ms),
17.1 ms (σ = 2.78 ms), 97.2 ms (σ = 0.01 ms), and 27.1 ms
(σ = 0.26 ms) respectively.

These latter two computations reduce the data to be trans-
mitted by 98.8% and 99.8% respectively, from 2048 data
points to 25 and 5. Therefore, these two configurations take
only 271 ms (σ = 11 ms) and 142 ms (σ = 16 ms) respectively
to transmit their results to the base station, compared to
the 9638 ms (σ = 28 ms) to transmit all raw data in the
fully-centralized case. By performing computation and an
appropriate amount of processing on the nodes, we incur
very little system overhead on our current-generation sensor
hardware. 79.8% to 81.6% of the system’s time is spent
collecting data; only 20.1% or less of the latency represents
reducible overhead. In comparison, the centralized approach
spends 71.9% of its time transmitting data to the base station.
As a result, our decentralized system can achieve latencies
up to 65.5% lower than those of a centralized algorithm. It is
also worth noting that delegating the equation solving substage
to the base station incurs only a 2.2% performance penalty
compared to doing the entire curve-fitting routine onboard,
because both approaches are dominated by the time spent
collecting raw sensor data. Therefore, transmitting the partial
curve-fitting results is an acceptable alternative on systems
where the equation solving routine cannot realistically be
implemented.

Notably, performing the power spectrum analysis onboard
does not reduce latency at all, and performing FFT onboard
is actually counterproductive: it takes 22206 ms (σ = 133
ms) to transmit the FFT results and 9668 ms (σ = 28 ms)
to transmit the power spectrum data to the base station.
This phenomenon validates the data flow analysis in Section
III-A (note that the single-precision floating-point values in
the FFT and power spectrum data are twice the width of
the 16-bit sensor readings). These findings also highlight
the importance of a systematic evaluation for identifying the
optimal configuration of cyber-physical systems through data-
flow analysis and empirical benchmarks.
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Fig. 17. The energy consumption of sensor data collection and aggregation

C. Energy Consumption

The current version of our SHM system performs only
limited power management, since the TinyOS 1.1 drivers for
the Imote2 do not put all of the hardware to sleep when
deactivated. The Imote2 driver subsystem has been rewritten
for TinyOS 2.1, which was released shortly before this writing
and which we expect will fix this shortcoming. Nevertheless,
we can estimate the energy consumption of a fully power-
managing SHM system by combining the latency statistics
given above with current consumption data for the radio,
sensor, and CPU taken from the corresponding datasheets [5],
[34], [35].

Figure 17 shows the energy cost of a single round of SHM
data collection. Performing the entire curve-fitting routine
onboard compared to a fully centralized approach significant
reduces the energy consumption, from 0.222 mAh to 0.066
mAh. This reduction is mainly due to the expense of sending
raw sensor readings to the base station. A configuration which
performs the curve-fitting routing onboard consumes 0.006
mAh (31 mA [5] for 708 ms) to perform its computations.
However, these computations save the node an average of
0.162 mAh during transmission, since it reduces the time
that the radio is active and transmitting by 9.5 s. Again,
offloading the equation solving portion of this routine to the
base station has a minimal effect on energy consumption.
The node would save 0.0002 mAh on computation costs but
would expend an additional 0.0022 mAh on communication,
representing an increase of 3% compared to performing the
equation solving onboard. The energy consumption of either
of these two decentralized approaches is dominated by the cost
of collecting raw sensor data (84.5% and 87% of the total
energy consumption), whereas the fully centralized approach
spends 74.2% of its energy transmitting the sensor readings
back to the base station.

We again find that performing any fewer stages of com-
putation onboard is counter-productive. Performing the FFT
and power spectrum analysis locally incurs a computational
overhead of 0.005 mAh but does not affect the amount of data
being sent back to the base station. As a result, this approach
incurs a 2.5% energy penalty compared to the fully centralized
approach. Computing only the FFT data onboard performs
even worse, since its output is double the size of its input.
This approach therefore increases the energy consumption by
99.0% over the fully centralized case.

The memory, latency, and energy consumption benchmarks
demonstrate that the optimal partitioning point indeed occurs
after the curve-fitting routine, as indicated by the data-flow
analysis in Section III-B. These results also validate that, on
systems where the full curve-fitting routine cannot realistically
be implemented, even implementing a portion of this routine
provides substantially better performance than simply sending
the raw sensor data to the base station for processing. Again,
the performance of the FFT and power spectrum routines high-
light the importance data-flow analysis in decentralized cyber-
physical applications: in terms of RAM, ROM, latency, and



energy consumption, both partially-decentralized approaches
perform worse than a fully centralized approach.

Fig. 18. System lifetime under different usage patterns

D. Projected Lifetime

We can estimate the system’s expected lifetime by noting
that the Imote2 consumes 382 µA in its deep sleep state [5],
plus 15 µA for the accelerometer [35]. Figure 18 presents
the estimated system lifetime when the Imote2 is deployed
with a standard 3x AAA battery pack providing 2400 mAh
of charge. In the interest of reducing clutter, we only present
only the fully-centralized case (i.e., where no processing is
performed onboard) and the most decentralized case (where
all computations prior to the final DLAC stage are performed
onboard). As noted above, performing only the FFT or power
spectrum analysis onboard would in fact reduce the node’s
lifetime, and running only part of the curve-fitting onboard
has similar performance to the fully-decentralized case.

If we assume that the system remains asleep between
periodic readings, then the decentralized approach achieves a
projected lifetime of 213 days, even at a relatively aggressive
hourly schedule. In contrast, the centralized approach achieves
a lifetime of 160 days at an hourly schedule, though it stays
within 0.2% of the decentralized approach’s lifetime at lower
frequencies. The sharp drop in the centralized system’s lifetime
occurs because sleeping dominates the system’s energy cost
at lower frequencies, while the high communications costs
dwarf the sleeping cost at an hourly frequency. As a result,
in-situ processing enables more frequent monitoring than is
realistically possible for a centralized scheme.

In practice, a SHM system may not be able to behave
autonomously: its deployers may want some kind of manual
control (e.g., to perform on-demand readings after a natural
disaster). This can be achieved by having the nodes listen
for radio transmissions between readings. Keeping the CPU
and radio active at 100% duty cycles would reduce the node
lifetime to only 55 hours. However, power-saving MAC layers
like SCP [36] can achieve duty cycles as low as 0.1% with
reasonable responsiveness tradeoffs. As shown in Figure 18,

this would have a fairly low impact on system lifetime (an
8.5%–9.8% reduction in the decentralized case).

Fig. 19. System lifetime with hourly readings and 0.1% radio duty cycle,
under various network configurations

The difference in communication costs between a central-
ized approach and our decentralized approach are amplified
under a multi-hop network configuration. This kind of network
configuration is necessary for monitoring many real-world
structures, since the structure’s length will exceed the motes’
communication range. For example, [24] required a 46-hop
network to span the Golden Gate Bridge, and [25] estimates
that 3–4 hops will be needed to span small bridges. The
nodes closest to the sink suffer the most from communication
overhead, since they must receive and relay packets from all
of the nodes further away from the sink. If we assume that
nodes are configured in an n-hop line, as in [24], then the
node closest to the sink will have to receive n−1 sets of data
and transmit n sets each time damage detection is performed.

As shown in Figure 19, under the centralized approach this
node’s lifetime will drop dramatically as the number of hops
increases. The mote must keep its radio active for an extra
19.3 seconds for each additional hop, transmitting during half
of this time and receiving during the other half. This quickly
depletes the mote’s battery power, decreasing the network’s
lifetime from 191 days in a single-hop configuration to 179
days under a 4-hop network, and to 95 days under a 46-hop
network. In contrast, the decentralized approach transmits a
much smaller amount of data, so that the cost of idle sleeping
still dwarfs the communication cost under any realistic hop
count. A 4-hop network will reduce the decentralized system’s
lifetime by 5 hours, and a 46-hop network will reduce the life-
time from 196 days to 193 days. Our decentralized approach
therefore represents a 9.2% increase in lifetime under a 4-
hop network compared to a centralized scheme, and a 103%
increase with a larger 46-hop network.

As observed in [24], reliably transporting large amounts of
data over lossy links is challenging. The lifetimes of both
approaches will be reduced compared to those projected here,
due to packet retransmissions. However, we note that packet



retransmissions will have a significantly higher impact on a
centralized system’s lifetime, since its communication costs
represent a much higher proportion of the total energy budget.

VI. CONCLUSIONS

We propose a holistic approach to SHM that features a
decentralized computing architecture specifically optimized for
the DLAC damage localization algorithm. We have imple-
mented our prototype SHM system on an off-the-shelf sensor
platform while using less than 1% of its memory capacity.
Our experiments show that, compared to earlier centralized
solutions, our system can reduce the latency and energy
consumption of each damage localization round by 65.5%
and 70.4% respectively, increasing the system’s projected
lifetime by up to 103% under an hourly schedule. We also
demonstrate that our system is able to effectively localize
damage to discrete locations on the structure on two physical
structures. Finally, we identify the importance of selecting
an optimal partitioning point between the onboard processing
and the processing done at the base station, through data-flow
analysis and systematic empirical benchmarks. These results
highlight the advantages of closely integrating the design of
computing systems and physical engineering techniques for
cyber-physical systems.
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