
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2008-7 

2008-01-01 

Deciding Joinability Modulo Ground Equations In Operational Deciding Joinability Modulo Ground Equations In Operational 

Type Theory Type Theory 

Adam Petcher and Aaron Stump 

Operational Type Theory (OpTT) can be used to construct and check proofs related to programs, 

but the development of these proofs can be somewhat tedious. An algorithm is presented that 

can be used to automatically generate proofs of equality in OpTT. The algorithm takes as input a 

set of ground equations and two terms that should be tested for joinability modulo the supplied 

ground equations. The algorithm will equate the terms if and only if there exists an OpTT proof 

that can equate the two terms using only the proof rules related to evaluation under the 

operational semantics, symmetry,... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Petcher, Adam and Stump, Aaron, "Deciding Joinability Modulo Ground Equations In Operational Type 
Theory" Report Number: WUCSE-2008-7 (2008). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/238 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/238?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/238 

Deciding Joinability Modulo Ground Equations In Operational Type Theory Deciding Joinability Modulo Ground Equations In Operational Type Theory 

Adam Petcher and Aaron Stump 

Complete Abstract: Complete Abstract: 

Operational Type Theory (OpTT) can be used to construct and check proofs related to programs, but the 
development of these proofs can be somewhat tedious. An algorithm is presented that can be used to 
automatically generate proofs of equality in OpTT. The algorithm takes as input a set of ground equations 
and two terms that should be tested for joinability modulo the supplied ground equations. The algorithm 
will equate the terms if and only if there exists an OpTT proof that can equate the two terms using only 
the proof rules related to evaluation under the operational semantics, symmetry, transitivity, and 
congruence with respect to the supplied ground equations. The description of this algorithm is 
accompanied by a proof that the algorithm is partially correct. 

https://openscholarship.wustl.edu/cse_research/238?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/238?utm_source=openscholarship.wustl.edu%2Fcse_research%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2008-7

Deciding Joinability Modulo Ground Equations In Operational Type Theory

Authors: Adam Petcher, Aaron Stump

Abstract: Operational Type Theory (OpTT) can be used to construct and check proofs related to programs, but
the development of these proofs can be somewhat tedious. An algorithm is presented that can be used to
automatically generate proofs of equality in OpTT. The algorithm takes as input a set of ground equations and
two terms that should be tested for joinability modulo the supplied ground equations. The algorithm will equate
the terms if and only if there exists an OpTT proof that can equate the two terms using only the proof rules
related to evaluation under the operational semantics, symmetry, transitivity, and congruence with respect to the
supplied ground equations. The description of this algorithm is accompanied by a proof that the algorithm is
partially correct.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



WASHINGTON UNIVERSITY 

SCHOOL OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 

DECIDING JOINABILITY MODULO GROUND EQUATIONS IN 

OPERATIONAL TYPE THEORY 

by 

Adam Petcher 

Prepared under the direction of Professor Aaron Stump 

 

A thesis presented to the School of Engineering of 

Washington University in partial fulfillment of the 

requirements for the degree of 

MASTER OF SCIENCE 

 

May 2008 

Saint Louis, Missouri 

 



WASHINGTON UNIVERSITY 

SCHOOL OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE AND  ENGINEERING 
 

ABSTRACT 

 

DECIDING JOINABILITY MODULO GROUND EQUATIONS IN 

OPERATIONAL TYPE THEORY 

by 

Adam Petcher 

ADVISOR: Professor Aaron Stump 

May 2008 

St. Louis, Missouri 

 
Operational Type Theory (OpTT) can be used to construct and check proofs related 

to programs, but the development of these proofs can be somewhat tedious.  An 

algorithm is presented that can be used to automatically generate proofs of equality 

in OpTT.  The algorithm takes as input a set of ground equations and two terms that 

should be tested for joinability modulo the supplied ground equations.  The 

algorithm will equate the terms if and only if there exists an OpTT proof that can 

equate the two terms using only the proof rules related to evaluation under the 

operational semantics, symmetry, transitivity, and congruence with respect to the 

supplied ground equations.  The description of this algorithm is accompanied by a 

proof that the algorithm is partially correct.  

 



 

 ii 

Table of Contents  

 

List of Figures............................................................................................................ iii 

1 Introduction ........................................................................................................... 1 
1.1 Operational Type Theory.............................................................................................1 
1.2 Proof Complexity in OpTT.........................................................................................2 
1.3 Related Work .................................................................................................................4 

2 Problem Description..............................................................................................6 
2.1 Problem Definition.......................................................................................................6 
2.2 Inherent Difficulties....................................................................................................11 
2.3 Desired Algorithm Qualities......................................................................................12 
2.4 Additional Notation....................................................................................................13 
2.5 Example Input.............................................................................................................14 

3 Algorithm Description ......................................................................................... 21 
3.1 Algorithm Overview...................................................................................................21 
3.2 Algorithm Design Considerations ............................................................................21 
3.3 Algorithm Definition..................................................................................................22 

3.3.1 Evaluation Modulo U ...................................................................................22 
3.3.2 Consistency.....................................................................................................24 
3.3.3 Normalization of U.......................................................................................25 
3.3.4 The Hypjoin Algorithm................................................................................25 

3.4 Algorithm Implementation Notes ............................................................................26 
3.4.1 Equivalence Relations...................................................................................26 
3.4.2 Deciding Equivalence ...................................................................................26 
3.4.3 Deciding Consistency ...................................................................................26 
3.4.4 Evaluation Modulo U ...................................................................................27 

4 Proof of Correctness.............................................................................................28 
4.1 Soundness of Hypjoin Algorithm.............................................................................28 
4.2 Completeness of Hypjoin Algorithm.......................................................................37 

5 Conclusion and Future Work...............................................................................76 
5.1 Termination..................................................................................................................76 
5.2 Clash/Contra ...............................................................................................................76 
5.3 Injectivity......................................................................................................................76 

References..................................................................................................................78 

Vita.............................................................................................................................79 
 



 

 iii

List of  Figures 
 

Figure 1-1. Example Definitions...........................................................................2 

Figure 1-2. Standard Proof of Reflexivity of ge.....................................................3 

Figure 1-3. Proof of Reflexivity of ge using hypjoin.............................................4 

Figure 2-1. Definitions of Contexts ......................................................................7 

Figure 2-2. Definition of Bound ...........................................................................7 

Figure 2-3. Recursive Definition of Bound ..........................................................8 

Figure 2-4. Inductive Definition of Operational Semantics of OpTT .................8 

Figure 2-5. Inductive Definition of Capture-Avoiding Substitution....................9 

Figure 2-6. Bound Variable-Preserving Evaluation .............................................9 

Figure 2-7. Equality Modulo Ground Equations ............................................... 10 

Figure 2-8. Inductive Definition of Single Step Joinability Modulo Ground 
Equations ......................................................................................... 10 

Figure 2-9. Inductive Definition of n-step Joinability Modulo Ground 
Equations ......................................................................................... 10 

Figure 2-10. Simple hypjoin Input ...................................................................... 14 

Figure 2-11. Definition of geZ............................................................................. 15 

Figure 2-12. Standard Definition of geTrans...................................................... 17 

Figure 2-13. Hypjoin Definition of geTrans....................................................... 18 

Figure 2-14. Standard Definition of plus_assoc.................................................. 19 

Figure 2-15. Hypjoin Definition of plus_assoc...................................................20 

Figure 2-16 Hypjoin of Fun Terms.....................................................................20 

Figure 3-1. Restrictive Equality Modulo Ground Equations .............................23 

Figure 3-2. Evaluation Modulo U.......................................................................23 

Figure 3-3. Consistency Rules ............................................................................24 



 

 iv 

Figure 3-4. Evaluation of U ................................................................................25 

Figure 3-5. The Hypjoin Algorithm ...................................................................25 

Figure 4-1. Structure of Soundness Proof ...........................................................29 

Figure 4-2. Structure of Completeness Proof .....................................................39 

 

 

 



 
 
 
 

 

1 

1       Introduction 
 

Operational Type Theory(OpTT)[8] is a powerful and convenient system for developing 

programs and proofs related to those programs.  In some cases, however, the development 

of proofs in OpTT can be excessively tedious.  This paper describes a class of proofs that 

could be automatically generated by an algorithm that is capable of deciding the “joinability 

modulo ground equations” problem.  Such an algorithm would significantly reduce the 

amount of effort required to develop proofs in OpTT.   

 

The primary contribution of this paper is an algorithm which attempts to decide the 

joinability modulo ground equations problem.  Also included is a proof that the algorithm is 

correct when it terminates and certain “consistency” conditions are satisfied.  An analysis of 

the termination properties of the algorithm is not included, but it is conjectured that the 

algorithm will terminate if recursion is finite in the supplied program terms and in all terms 

that are derived by the algorithm.     

 

This chapter describes OpTT and introduces the joinability modulo ground equations 

problem. 

 

1.1       Operational Type Theory 
 

Operational Type Theory is a system in which programs and proofs have distinct type 

systems, but can nevertheless be combined such that a program can contain a proof, and a 

proof related to a program can be documented and checked.  The primary motivation for 

this distinction is to allow for the independence of the semantics of program evaluation, 

proof normalization, and definitional equality.  As a result of this independence, proof 

complexity is not dependent on program complexity, and it is possible to develop simple 

proofs related to complex programs.   

 



 
 
 
 

 

2 

1.2       Proof Complexity in OpTT 

 

In many practical cases, proofs in OpTT tend to be mostly composed of tedious sub-proofs 

that could easily be generated using simple automated reasoning.  These proofs are usually 

composed of instances of a handful of common patterns, and they tend to have relatively 

large amounts of redundant information.  If the need to manually develop such trivial proofs 

was removed, then proof development in OpTT would be significantly less time consuming.   

 

A simple example will be used to further describe the problem.  Additional examples are 

used to provide more detail in chapter 2.  Several examples in this paper assume the 

definitions in figure 1-1 which define natural numbers, Booleans, and ≥  for natural 

numbers, respectively. 

 

Inductive nat : type := 

  Z : nat 

| S : Fun(x:nat).nat. 

 

Inductive bool : type := 

  T : bool 

| F : bool. 

 

Define ge : Fun(n m : nat). bool := 

    fun (n m : nat):bool. 

    match m by x y return bool with 

      Z => T 

    | S m' => match n by x1 y1 return bool with 

        Z => F 

      | S n' => (ge n' m')  

      end 

    end. 

Figure 1-1. Example Definitions 



 
 
 
 

 

3 

 

One might prove that ge is reflexive, that is, for all n, (ge n n) = T, as follows.  Proof by 

induction on n:  In the base case, n = Z.  Because n=Z and congruence of terms w.r.t. 

equality of subterms, (ge n n) = (ge Z Z).  Due to the definition of ge, (ge Z Z) = T.  From 

transitivity of equality, (ge n n) = T.  In the step case, n = (S n’) and there is an induction 

hypothesis that says (ge n’ n’) = T.  Because n = (S n’) and congruence of terms, (ge n n) = 

(ge (S n’) (S n’)).  Due to the definition of ge, (ge (S n’) (S n’)) = (ge n’ n’).  Due to the 

induction hypothesis and transitivity of equality, (ge n n) = T.  This proof in OpTT syntax is 

shown in figure 1-2.  Note that trans, cong, and join are the proof rules for transitivity of 

equality, congruence of terms, and evaluation under the operational semantics, respectively.   

 

Define geRefl : Forall(n:nat). { (ge n n) = T } := 

 induction(n:nat) by x1 x2 IH return { (ge n n) = T} with 

  Z => trans  

      cong (ge * *) x1  

      join (ge Z Z) T 

 | S n' => trans  

       trans  

      cong (ge * *) x1  

      join (ge (S n') (S n')) (ge n' n') 

       [IH n']  

 end. 

Figure 1-2. Standard Proof of Reflexivity of ge 
 

Each case of the induction is little more than a series of cong and join rules linked together 

by trans rules.  It is common for proofs in OpTT to be composed of such large sub-proofs 

that contain only cong, join, symm, and trans rules.  The cong proof rule also includes a 

ground equation as an argument, so this class of OpTT proof will be referred to as a 

joinability modulo ground equations proof, and the problem of determining the existence of  

such proofs is called the joinability modulo ground equations problem.  Because the need for 

this sort of proof is so common, an algorithm which can decide the joinability modulo 



 
 
 
 

 

4 

ground equations problem would greatly simplify proofs in many cases.  For example, it 

would be desirable to simply write the proof from figure 1-2 as shown in figure 1-3.   
 

Define geRefl : Forall(n:nat). { (ge n n) = T } := 

 induction(n:nat) by x1 x2 IH return { (ge n n) = T} with 

  Z => hypjoin (ge n n) T by x1 end 

          | S n' => hypjoin (ge n n) T by x1 [IH n'] end         

 end. 

Figure 1-3. Proof of Reflexivity of ge using hypjoin 
 

Note that hypjoin is the name given to the new proof rule in OpTT that can algorithmically 

decide the joinability modulo ground equations problem.  The “hyp” in hypjoin stands for 

hypothesis, and the name “hypjoin” represents the fact that we are attempting to join two 

terms given a set of user-provided hypotheses.  This problem is described in greater detail in 

chapter 2.     

 

Though the example in figure 1-2 was very simple, the purpose of hypjoin is to take large, 

complicated proofs and collapse them into a single hypjoin statement.  More complex 

examples are provided in section 2.5.  The goal of this paper is to define an algorithm that 

implements hypjoin and to prove that the algorithm is correct to the extent that it can be 

used in practical cases.  The algorithm is defined in chapter 3, and the proof of correctness is 

provided in chapter 4.    

 

1.3       Related Work 

 

Congruence closure[2] is a decision procedure that can be used to decide the equivalence of 

two terms given a finite set of ground equations E that defines a set of allowed substitutions.  

This problem is known as the ground word problem for E[1].  Congruence closure is a 

significant part of the hypjoin algorithm, but using it to solve the entire problem is 



 
 
 
 

 

5 

challenging because it is difficult to effectively represent the operational semantics as a finite 

set of ground equations. 

 

The Calculus of Congruent Inductive Constructions(CCIC)[3][4] is an extension to the 

Calculus of Inductive Constructions(CIC) that incorporates decision procedures for  first-

order theories into the CIC conversion rule.  This system is very powerful in that the user-

supplied hypotheses can be equations containing quantified variables, and as such it can 

simplify many types of complex proofs.  Though hypjoin is less general than CCIC, the fact 

that it is limited to reasoning on ground equations provides some significant benefits when 

compared to CCIC.  The primary benefit is that the computational nature of the hypjoin 

algorithm will probably make it more understandable to the programmer.  If hypjoin fails, an 

error message will be presented that can help the programmer understand why the failure 

occurred.  If conversion fails, however, it may not be possible to generate such an error 

message.  Another benefit of hypjoin is that it can be seen as an optional extension to 

OpTT, whereas the modified conversion rule is a core part CCIC.  Due to this structure, the 

theoretical properties of OpTT (cut elimination, type soundness) are not affected by hypjoin.   



 
 
 
 

 

6 

2       Problem Description 
 

This section contains a discussion of the issues surrounding the joinability modulo ground 

equations problem.  Section 2.1 contains a definition of the problem, and a description of 

the difficulties inherent to solving the problem is presented in section 2.2.  Section 2.3 

presents a set of achievable goals that would allow an algorithm that partially decides the 

joinability modulo ground equations problem to be useful in practical cases. 

 

2.1       Problem Definition 
 

The joinability modulo ground equations problem can be described informally as follows.  

Given two terms, s and t, and a set of ground equations U, is there a path from s to t using 

evaluation under the operational semantics and substitutions from U?  This paper is 

concerned with solving this problem using the operational semantics and constraints of 

OpTT.  The operational semantics of OpTT can be defined as follows. 

 

The definitions of contexts E  and E+ are found in [8] and reproduced in figure 2-1 for 

convenience.  The definition of E+  excludes contexts that are types since it is assumed that 

all type annotations have been dropped in the terms and equations that are provided to 

hypjoin.  It is often helpful to consider contexts that are exactly one level deep.  These 

contexts are described by the symbols 1E  and 1E
+  which are identical to E  and E+ , 

respectively, except the first set of contexts are one level deep.  For example, 1 [ ]E a
+  could 

describe (a b), but not ((a b) c).  Another difference is that the one-level-deep contexts could 

have an empty set of holes, as opposed to traditional contexts that must have at least one 

hole, but the context itself could be empty.  The context *

1E  is identical to 1E
+  except it has 

an arbitrary number of (zero or more) holes.  Notation such as *

1 [ ]E a  refers to a context 

and the list of terms ( )a , in the holes of that context.  Any time this notation is used, there 

is an element in a  for every possible hole in *

1E  based on the form of the term.  For 

example, if *

1 [ ]E a  refers to a let term, then there must be exactly two elements in a .   

  



 
 
 
 

 

7 

 E ::= * || (E X) || (I E) || 

  let x = E by y in y || 

  match E by x y return T with  

     1 1 1 | ... |
n n n

c x t c x t=> =>  end 

 

E+  ::= * || X || ( E+ E+ ) || 

  fun r( x : E + ) : E+ . E+  || 

  let x = E+  by y in E+  || 

  match E+  by x y return E+  with 

     1 1 | ... |
n n

c x E c x E
+ +=> =>  end  

Figure 2-1. Definitions of Contexts 
 

When using one-level-deep contexts, one can easily extract the bound variables defined in 

that context.  Later definitions will refer to a function called Bound that is used to produce a 

set of bound variables for a given one-level deep context.  Bound is defined in figure 2-2. 
 

Bound((a1 a2), 1) = ∅  

Bound((a1 a2), 2) = ∅  

Bound(fun r(x:!):!.a, 1) = {x} 

Bound(let x = a1 in a2, 1) = ∅  

Bound(let x = a1 in a2, 2) = {x} 

Bound(match s return ! with 11xc => 1a |…| nn xc => na |…end, 1) = ∅  

Bound(match s return ! with 11xc => 1a |…| nn xc => na |…end, m) = { 1−mx } 

Figure 2-2. Definition of Bound 

 

 

For any context E with only one hole, Bound(E) is shorthand for Bound(E, k) where k is the 

position of the only hole in E.  We can also apply Bound to an evaluation context with only 

one hole but arbitrary depth.  In which case the function is defined recursively as shown in 

figure 2-3. 
 

 



 
 
 
 

 

8 

Bound(*) = ∅  

Bound( ][ 1

++ EE ) = Bound(E+)∪ Bound( +
1E ) 

Figure 2-3. Recursive Definition of Bound 

 

 

The definition of the evaluation relation is provided in figures 2-4, 2-5, and 2-6.  The 

definition provided uses the one level deep context defined earlier, but is nevertheless 

equivalent to the operational semantics defined in [8].  Note that →  is the symbol used to 

represent a single step of evaluation.   

 

The relation is defined using a set of rules which combine to form an inductive definition.  

That is, any time two terms are related by → , there must exist a derivation composed of 

these rules which relate the terms.  The notation k:aRb is used to represent the fact that a is 

related to b in inductively-defined relation R by a derivation of depth k.  This convention is 

used any time a relation is defined inductively in this paper.        

 

( :!) :!.

( ) [ / ][ / ]

f fun r x b

f I b I x f r

=

→
   

1 1 1( ) ! | ... | [ / ]
i n n n i i

match c I return with c x s c x s end s I x=> => →
 

[ / ]let x I in t t I x= →
 

1[ !] !E abort abort→
 

1 1

'

[ ] [ ']

t t

E t E t

→

→
 

Figure 2-4. Inductive Definition of Operational Semantics of OpTT 

 

Note that Γ is a set of bound variables and, in general, aRbΓ ⊳  means that a and b are 

related in R and no bound variables, as defined by Γ, are introduced or eliminated when a is 

replaced with b. 

 

 



 
 
 
 

 

9 

( ( ) ( ))

[ / ]

n n

n n

Vars s Vars t

t s t s

Γ ∩ ∪ = ∅

Γ =⊳

 
CAS-BASE 

*

1

* *

1 1

, ( , ) [ / ]

( [ ])[ / ] [ ]

n n
n Bound E n a t s b

E a t s E b

∀ Γ =

Γ =

⊳

⊳

 
CAS-IND 

Figure 2-5. Inductive Definition of Capture-Avoiding Substitution 

 

( ( ) ( ))Vars s Vars t s t

s t

∪ ∩ Γ = ∅ →

Γ →⊳

 

Figure 2-6. Bound Variable-Preserving Evaluation 
 

The set of ground equations will be referred to as U and has the following form: 

1 1 2 2{ ', ', ..., '}
n n

u u u u u u= = = .  Two terms, s and t, are equal modulo a set of ground 

equations U if there exists a sequence of substitutions defined by U that can be applied to s 

and t to produce two definitionally equal terms.  This equality is defined in figure 2-7.   

 

It is assumed that the variables in U only refer to free variables in s and t.  If there happens 

to be a bound variable in s or t with the same name as a variable in U, then these should be 

treated as different variables.  Techniques such as de Bruijn indices[5] can be utilized to 

prevent inadvertent variable name collisions.  As a result of this assumption, equality modulo 

U is not constrained by any context. 

 

Note that in the EQ-REFL case, two terms are considered to be the same term if they are 

definitionally equal.  It should be apparent that U
≈  is essentially the ground word problem 

for U[1]. 

 

The symbol 
*

U
s t⇔  is used to represent the notion that s and t are joinable modulo U.  This 

relation is defined in figures 2-8 and 2-9.   

 

 

 

 



 
 
 
 

 

10 

U
s s≈

     
EQ-REFL 

{ }

U

s t U

s t

= ∈

≈
 

EQ-SUBS 

U

U

t s

s t

≈

≈
 

EQ-SYMM 

' '
U U

U

s s s t

s t

≈ ≈

≈
 

EQ-TRAN 

1 1[ ] [ ]

U

U

s t

E s E t
+ +

≈

≈
 

EQ-CTXT 

  Figure 2-7. Equality Modulo Ground Equations 

 

 

U

U

s t

s t

≈

Γ ⇒⊳

 
JMU-EQU 

U

s t

s t

Γ →

Γ ⇒

⊳

⊳

 
JMU-EVAL 

1

1 1

, ( )

[ ] [ ]

U

U

Bound E s t

E s E t

+

+ +

Γ ⇒

Γ ⇒

⊳

⊳

 
JMU-CTXT 

Figure 2-8. Inductive Definition of Single Step Joinability Modulo Ground Equations 

 

0

Ut tΓ ⇔⊳
 

1

' '
n

U U

n

U

s s s t

s t
+

Γ ⇔ Γ ⇔

Γ ⇔

⊳ ⊳

⊳

 

Figure 2-9. Inductive Definition of n-step Joinability Modulo Ground Equations 

 

The symbol ⇔  represents the symmetric closure of ⇒ .  Using the definitions above, 
*

U
s tΓ ⇔⊳  iff ,

k

Uk s t∃ Γ ⇔⊳ .  This convention is used for all transitive relations in this 



 
 
 
 

 

11 

paper.  The joinability modulo ground equations problem can now be defined as follows.  

Given s, t, and U, is it the case that 
*

U
s t∅ ⇔⊳ ?  Note that ∅  refers to the empty context. 

 

In terms of OpTT, 
*

U
s t∅ ⇔⊳  means that there exists a proof P of {s=t} where P only 

uses the symm, trans, cong, and join proof rules.  Furthermore, the cong proofs in P only 

reference the equations in U.  So an algorithm that can solve this problem would be able to 

determine the existence of such a proof in OpTT. 

 

2.2       Inherent Difficulties 
 

Unfortunately, there are some issues which will make it difficult to develop an algorithm 

which solves the joinability modulo ground equations problem.  These difficulties are 

described in this section. 

 

The first issue is that the problem, as described in the previous section, is undecidable.  A 

special case of this problem is the one in which U = ∅  and one of the terms does not 

terminate with respect to the operational semantics.  In this case, the problem is equivalent 

to the problem of determining whether the other term terminates.  Since termination is 

undecidable, joinability modulo ground equations must also be undecidable.   

 

However, if it is possible to design an algorithm that terminates in practical cases and is 

guaranteed to be correct when it terminates, then that algorithm could still be immensely 

useful.  In the spirit of this practicality, the theorems in this paper will often assume the 

termination of various algorithms.  Likewise, a proof of termination of the parts of the 

algorithm that are unrelated to evaluation under the operational semantics is beyond the 

scope of this paper. 

 

 

 



 
 
 
 

 

12 

2.3       Desired Algorithm Qualities 
 

With the issues described in the previous section in mind, this section attempts to define 

qualities that the algorithm must possess in order to be practically useful. 

 

First and foremost, the algorithm should terminate in most practical cases, and it should be 

correct when it terminates.  The algorithm presented in this paper is sound and complete 

with respect to joinability modulo ground equations when it terminates and certain 

“consistency” requirements for U are met.  The algorithm is also conjectured to terminate 

when all of the terms encountered by the algorithm terminate with respect to evaluation 

under the operational semantics, but a proof of this conjecture is beyond the scope of this 

paper.     

 

Next, the algorithm should be efficient.  Efficiency is not explicitly defined, and an analysis 

of the computational complexity of the algorithm is not presented in this paper.  However, 

the algorithm is designed in such a way that searching is minimized or eliminated.  The 

definition of the algorithm allows for a large amount of flexibility in implementation, and 

efficient implementation suggestions will be provided where appropriate. 

 

Additionally, the algorithm should support the creation of an OpTT proof that equates the 

supplied terms using the join, symm, trans, and cong proof rules.  This means that any 

hypjoin proof can be replaced with the generated proof of equality, and that proof can then 

be checked.  As a result of this requirement, there is no need to trust the implementation of 

hypjoin, and hypjoin has no affect on the theoretical properties of OpTT.  This goal is 

accomplished by breaking up the hypjoin algorithm into small steps, each of which results in 

an equality that can be obtained from symm, join, or cong.  These steps are then combined 

into a single proof using the trans rule.    

 

Finally, in the event that hypjoin fails, an implementation of the algorithm should be able to 

present some information to the programmer in order to help him determine why hypjoin 

failed and what must be changed in order for hypjoin to succeed.  An algorithm that is based 



 
 
 
 

 

13 

on searching would probably not satisfy this requirement since the only information that the 

algorithm could provide is that the search space was exhausted and no suitable match was 

found.  The algorithm presented in this paper is based on normalizing all forms and then 

testing the normal forms for equality.  These normalized terms can then be presented to the 

programmer, who will use the output to determine why the requested hypjoin operation was 

not successful.  

 

The qualities in this section describe a sort of loose specification for an algorithm.  This 

specification is referred to as hypjoin.  The actual algorithm that is defined in this paper 

which satisfies this specification will be referred to as the “hypjoin algorithm.”   

 

2.4       Additional Notation 
 

This section describes some additional notation that is used in this paper and not explained 

elsewhere.   

 

Notation such as a  is used to denote a (possibly empty) list of items 1 2, , ,
n

a a a…  where n is 

the number of items in a .  A relation on list of items will be used to denote relations on the 

individual items: aRb  means n n
n a Rb∀ .   

 

The notation a RΓ ⊳  indicates that a is normal with respect to relation R in context Γ.  The 

notation ( , )T a RΓ ⊳ indicates that a terminates with respect to relation R in context Γ.  For 

these notational conventions,  Γ is omitted if the relation is not constrained by the context.  

 

The naming conventions of [8] are followed, where possible.  For example, s and t usually 

refer to terms, I refers to an inactive term, and x refers to a variable.   

 

 

 

 



 
 
 
 

 

14 

2.5       Example Input 
 

This section contains some example input and the expected results of hypjoin.  The purpose 

of these examples is to explain the expectations of the algorithm and the motivation behind 

the design of the algorithm. 

 

The example from chapter 1 is a very simple example input set that will be discussed first.  

The proof using hypjoin is duplicated in figure 2-10 for convenience.   
 

The most complicated hypjoin occurs in the S n’ case of the induction.  In order to 

determine that (ge n n) is equivalent to T in this case, hypjoin could begin by realizing that n 

= (S n’) as given by x1, and then determining that (ge n n) = (ge (S n’) (S n’)).  Then hypjoin 

would determine that (ge (S n’) (S n’)) = (ge n’ n’) due to the operational semantics and the 

definition of ge.  Then by transitivity, (ge n n) = (ge n’ n’).  In these steps, hypjoin simply 

found substitutions in U that allow the terms to take a step of evaluation in the operational 

semantics.  This “evaluation modulo U” is the basis of the hypjoin algorithm.  The term (ge 

n’ n’) is considered to be normal because there are no substitutions that would allow it to 

take a step of evaluation.  The same can be said for the term T.  From here, hypjoin can 

simply test the terms (ge n’ n’) and T for equivalence given substitutions from U.  In this 

case, one of the user-provided equations is {(ge n’ n’) = T} so the normalized terms are 

equivalent and hypjoin succeeds.   

 

Define geRefl : Forall(n:nat). { (ge n n) = T } := 

 induction(n:nat) by x1 x2 IH return { (ge n n) = T} with 

  Z => hypjoin (ge n n) T by x1 end 

          | S n' => hypjoin (ge n n) T by x1 [IH n'] end         

 end. 

Figure 2-10. Simple hypjoin Input 

 

Actually, (ge n’ n’) is not normal w.r.t. the operational semantics – that term will take a step 

and be replaced with the definition of that function.  So the user-provided equations must 



 
 
 
 

 

15 

also be normalized in order to successfully make the final comparison in the previous 

example.  In fact, each user-provided equation must be evaluated modulo the other 

equations.  The following example describes a case in which this additional evaluation is 

necessary.  This example uses a lemma called geZ which is described in figure 2-11. 

 

The example is a proof of transitivity of ge called geTrans.  Two versions of the proof are 

given: the first version, in figure 2-12, does not use hypjoin.  The version in figure 2-13 uses 

hypjoin in order to simplify the proof. 

 

Define geZ : Forall(n : nat)(a1 : {(ge Z n) = T}). {n = Z} := 

         induction(n:nat) by x1 x2 IH return Forall(a1:{(ge Z n) = T}). {n = Z} with 

      Z => foralli(a1 : {(ge Z n) = T}).x1 

            | S n' => foralli(a1 : {(ge Z n) = T}). 

                contra trans trans symm a1  

        trans cong (ge Z *) x1  

                  join (ge Z (S n')) F 

                                                         clash F T 

                                                {n = Z}  

   end. 

Figure 2-11. Definition of geZ 

 

The definition of geTrans that uses hypjoin illustrates an additional part of this problem that 

must be addressed.  The last use of hypjoin in figure 2-13 attempts to equate (ge b’ c’) with 

T, both of which are already normal, and the user-provided equations do not allow any 

substitutions that can equate these terms.  In the standard version of this proof, the term (ge 

b c) is used to bridge the gap from (ge b’ c’) to T.  In order to do so, it must be determined 

that (ge b c) = (ge (S b’) (S c’)), and then (ge (S b’) (S c’)) can evaluate under the operational 

semantics to (ge b’ c’).  The hypjoin algorithm will solve this problem by attempting to 

normalize each term in the user-provided equations given substitutions allowed by all other 

equations.  By doing so, hypjoin will conclude that (ge b c) can evaluate to (ge b’ c’).  At this 



 
 
 
 

 

16 

point, the equation {(ge b c) = T} in U can be replaced with {(ge b’ c’} = T} and hypjoin 

will succeed.   

 

Define geTrans : Forall(a b c : nat) 

(a1 : { (ge a b) = T}) 

(a2 : { (ge b c) = T}). {(ge a c) = T} := 

   induction(a:nat) by x1 x2 IH return Forall(b c : nat) 

       (a1 : { (ge a b) = T}) 

       (a2 : { (ge b c) = T}).  

       {(ge a c) = T}  with 

       Z => foralli(b c : nat) 

  (a1 : { (ge a b) = T}) 

  (a2 : { (ge b c) = T}).  

     trans cong (ge a *) [geZ c trans cong (ge * c) symm  

                                               geZ b trans cong (ge * b) symm x1 a1] 

                                                  a2] 

                      join (ge a Z) T 

     | S a' => induction(b:nat) by ix1 ix2 IIH return Forall(c : nat) 

     (a1 : { (ge a b) = T}) 

     (a2 : { (ge b c) = T}).  

     {(ge a c) = T}  with 

       Z => foralli(c : nat)(a1 : { (ge a b) = T}) 

      (a2 : { (ge b c) = T}). 

               trans cong (ge a *) [geZ c trans cong (ge * c) symm ix1 a2] 

                   join (ge a Z) T    

        | S b' => induction(c:nat) by iix1 iix2 IIIH return Forall(a1 : { (ge a b) = T}) 

(a2 : { (ge b c) = T}). 

{(ge a c) = T}  with 

              Z => foralli(a1 : { (ge a b) = T}) 

                                              (a2 : { (ge b c) = T}). 

             trans cong (ge a *) iix1  



 
 
 
 

 

17 

                            join (ge a Z) T 

          | S c' => foralli(a1 : { (ge a b) = T}) 

(a2 : { (ge b c) = T}). 

            trans trans trans cong (ge * c) x1  

                                             cong (ge (S a') *) iix1 

                                          join (ge (S a') (S c')) (ge a' c') 

                            [IH a' b' c' trans symm trans trans cong (ge * b) x1 

                                                 cong (ge (S a') *) ix1 

                                               join (ge (S a') (S b')) (ge a' b') 

                             a1 

                          trans symm trans trans cong (ge * c) ix1 

                                                   cong (ge (S b') *) iix1 

                                                join (ge (S b') (S c')) (ge b' c') 

                             a2]  

        end 

    end    

end. 

Figure 2-12. Standard Definition of geTrans 
 

Define geTrans : Forall(a b c : nat) 

                                    (a1 : { (ge a b) = T}) 

                                    (a2 : { (ge b c) = T}).  

                                   {(ge a c) = T} := 

   induction(a:nat) by x1 x2 IH return Forall(b c : nat) 

                                                                    (a1 : { (ge a b) = T}) 

                                                                    (a2 : { (ge b c) = T}).  

                                                                    {(ge a c) = T}  with 

       Z => foralli(b c : nat)(a1 : { (ge a b) = T}) 

                                                    (a2 : { (ge b c) = T}).  

     hypjoin (ge a c) T by  

   [geZ c hypjoin (ge Z c) T by a2 



 
 
 
 

 

18 

               [geZ b hypjoin (ge Z b) T by x1 a1 end]  

               end] 

     end 

     | S a' => induction(b:nat) by ix1 ix2 IIH return Forall(c : nat) 

                                                                                         (a1 : { (ge a b) = T}) 

                                                                                         (a2 : { (ge b c) = T}).  

                                                                                         {(ge a c) = T}  with 

             Z => foralli(c : nat)(a1 : { (ge a b) = T}) 

                                            (a2 : { (ge b c) = T}). 

                 hypjoin (ge a c) T by 

                    [geZ c hypjoin (ge Z c) T by a2 ix1 end] 

                 end 

        | S b' => induction(c:nat) by iix1 iix2 IIIH return Forall(a1 : { (ge a b) = T}) 

                                                                                                (a2 : { (ge b c) = T}).  

                                                                                                {(ge a c) = T}  with 

                Z => foralli(a1 : { (ge a b) = T}) 

                                    (a2 : { (ge b c) = T}). 

                       hypjoin (ge a c) T by iix1 end 

             | S c' => foralli(a1 : { (ge a b) = T}) 

                                      (a2 : { (ge b c) = T}). 

                     hypjoin (ge a c) T by x1 iix1 

                           [IH a' b' c' 

                            hypjoin (ge a' b') T by x1 ix1 a1 end 

                            hypjoin (ge b' c') T by ix1 iix1 a2 end ]   

                                     end 

        end 

    end    

end. 

Figure 2-13. Hypjoin Definition of geTrans 
 



 
 
 
 

 

19 

The next example shows some of the practical benefit of hypjoin.  This example is a proof 

that addition is associative.  The definition of plus is not provided.  The standard proof in 

figure 2-14 is fairly complicated, but each case of the induction uses only trans, symm, cong, 

and join proof rules.   This proof becomes trivial when hypjoin is employed as shown in 

figure 2-15.  
 

Define plus_assoc : Forall(x y z:nat). { (plus (plus x y) z) = (plus x (plus y z)) } := 

  induction(x:nat) by x1 x2 IH return 

                   Forall(y z : nat). 

                     { (plus (plus x y) z) = (plus x (plus y z)) } 

  with 

    Z => foralli(y z : nat). 

         trans cong (plus (plus * y) z) x1 

         trans join (plus (plus Z y) z) (plus y z) 

         trans symm join (plus Z (plus y z)) (plus y z) 

               cong (plus * (plus y z)) symm x1 

  | S x' => foralli(y z : nat). 

            trans cong (plus (plus * y) z) x1 

            trans join (plus (plus (S x') y) z) (S (plus (plus x' y) z)) 

            trans cong (S *) [IH x' y z] 

            trans symm join (plus (S x') (plus y z)) (S (plus x' (plus y z))) 

                  cong (plus * (plus y z)) symm x1 

end.        

Figure 2-14. Standard Definition of plus_assoc 
 

The final example illustrates an unusual case that hypjoin is expected to handle correctly.  

Consider the case in which the programmer would like to hypjoin two terms that will not 

take a step of evaluation in the operational semantics.  For example, the two terms could be 

fun terms with bodies that can be equated by hypjoin.  In this example, ident is the identity 

function for natural numbers.  A proof fragment illustrating this problem is provided in 

figure 2-16. 



 
 
 
 

 

20 

Define plus_assoc : Forall(x y z:nat). { (plus (plus x y) z) = (plus x (plus y z)) } := 

  induction(x:nat) by x1 x2 IH return 

                   Forall(y z : nat). 

                     { (plus (plus x y) z) = (plus x (plus y z)) } 

  with 

    Z => foralli(y z : nat). 

         hypjoin (plus (plus x y) z) (plus x (plus y z)) by x1 end 

  | S x' => foralli(y z : nat). 

            hypjoin (plus (plus x y) z) (plus x (plus y z)) by x1 [IH x' y z] end 

end. 

Figure 2-15. Hypjoin Definition of plus_assoc 
 

hypjoin fun r(a: nat):nat.(a n) fun r(b: nat):nat.(b (ident n)) by end  
Figure 2-16 Hypjoin of Fun Terms 

 

In order to join the terms in this example, hypjoin must evaluate within the bodies of these 

fun terms.  If the bodies can be equated by hypjoin and the argument types and return type 

are equal, then the fun terms will be equated by hypjoin.  The challenge presented by this 

example is that hypjoin must preserve the bound variables when evaluating the bodies of 

these terms.  Since (ident n) hypjoins with n and these terms contain no bound variables, 

hypjoin should succeed.      

 



 
 
 
 

 

21 

3       Algorithm Description 
 

This chapter contains a description of an algorithm that solves the problem described in 

chapter 2.  The chapter begins with an overview of the elements of the algorithm and 

continues with some characteristics that are designed into the algorithm in order to make 

correctness easier to prove.  The next section contains a formal definition of the algorithm, 

and implementation notes are provided in the final section.   
 

3.1       Algorithm Overview 
 

The algorithm is built around an operation referred to evaluation modulo U, which is 

represented as U
→  where U is a set of ground equations.  This operation will, in essence, try 

to find a substitution in U that allows the term to take a step of evaluation with respect to 

the operational semantics.  In the first phase of the algorithm, all of the terms in the 

equations in U are put into normal form with respect to U
→ .  Any time U

→  is used, it is 

important that the equations in U are consistent - that is, substitutions in U cannot allow 

some sort of contradiction.  So this normalization of U is structured in such a way that all 

U
→  operations make use of normal, consistent U.  In the next phase, the two supplied 

terms are put into normal form with respect to U
→  using the normal, consistent U that was 

calculated in the first phase.  Finally, the algorithm results in a value of true if the normal 

forms of the supplied terms are related in U
≈ .   

 

3.2       Algorithm Design Considerations 
 

There are a few properties that are very valuable when attempting to prove that the 

algorithm is correct.  The properties described in this section were designed in to the 

algorithm in order to make the proof of correctness simpler.   

 

First, U
≈

 should be preserved by U
→ .  That is, if 

U
s t≈ ,  '

U
s s→ , and '

U
t t→ , then 

' '
U

s t≈ .  Another way to view this property is to say that U
→  is deterministic if the notion 



 
 
 
 

 

22 

of equality used is U
≈ .  In order to achieve this determinism, it is necessary to evaluate the 

subterms of s and t in a specific order.  The value of this determinism is that the proof that 

terms are joined by U
→  can be a simple inductive proof that appeals to this preservation of 

U
≈  in each step of evaluation.  Without this property, it would be necessary to show that 

U
→  is confluent[1], which would be more difficult.  

 

It is also necessary to ensure that the ground equations are consistent in order to prevent a 

scenario in which the scrutinee of a match term is equivalent to the patterns of multiple 

cases in the term.  For example, if the equations contain {Z = (S n)}, then a match on type 

Nat could take a step in U
→  to the bodies of both cases.  Because these bodies are not 

necessarily related by U
≈ , the determinism property described previously would be violated 

in this scenario. 

 

Next, it is necessary for two terms to be related by 
U

↓  if the terms differ only in their strict 

subterms and those subterms are related by 
U

↓ .  In othe words, 
U

a b↓  implies 

* *

1 1[ ] [ ]
U

E a E b↓ .  This property is necessary for the completeness of the algorithm.  In order 

to make this property easier to prove, 
U

t →  will normalize all of the strict subterms of t with 

respect to U
→  before looking for a substitution in U that allows t to take a step in the 

operational semantics.   

 

3.3       Algorithm Definition 
 

This section provides a formal definition of the hypjoin algorithm. 

 

3.3.1       Evaluation Modulo U 
 

The evaluation modulo U operation ( U
→ ) defined in figure 3-1 is used in several places in 

the algorithm.  The equivalence relation used in U
→  is more restrictive than U

≈  as it only 

allows substitutions in evaluation contexts.  This relation is denoted U
=  and is defined in 

fiture 3-2.  It is important to note that  U U
= ⊂ ≈ . 



 
 
 
 

 

23 

 

U
s s=

     
REQ-REFL 

{ }

U

s t U

s t

= ∈

=
 

REQ-SUBS 

U

U

t s

s t

=

=
 

REQ-SYMM 

' '
U U

U

s s s t

s t

= =

=
 

REQ-TRAN 

1 1[ ] [ ]

U

U

s t

E s E t

=

=
 

REQ-CTXT 

Figure 3-1. Restrictive Equality Modulo Ground Equations 

 

*

1, ( , )
m U

m n Bound E m a∀ < Γ →⊳

*
1

*

1

* *

1 1 1... 1 1... ( )

, ( , ) '

[ ] [ , ', ]

n U n

U n n n Holes E

Bound E n a a

E a E a a a− +

Γ →

Γ →

⊳

⊳

 
EMU-

IND 

*

1, ( , )
n U

n Bound E n a∀ Γ →⊳
*

1

*

1

[ ] ' '

[ ]

U

U

E a t t t

E a t

= Γ →

Γ →

⊳

⊳

 
EMU-

BASE 

Figure 3-2. Evaluation Modulo U 

 

The definition of U
→  references a function called Holes which takes a one-level-deep 

extended context and returns the number of holes in that context. 

 

Note that U
→  is considered to be a family of unary relations (that is, sets) indexed by the 

starting term.  So U
t →  is a set of terms that can be reached in one step of U

→  starting at t.  

The definitions include a test that some term does not take a step in U
→  denoted U

a → .  

In terms of unary relations, U
a →  is defined as U

a → = ∅ .  

 

The relation U
→  is not considered to be a binary relation because that would result in 

impredicativity[6].  When considering whether U
s t→ , it is necessary to test whether the 



 
 
 
 

 

24 

subterms of s are related to any other terms in U
→ .  This test would be impredicative if U

→  

was a binary relation, because the definition would appeal to the entire relation U
→  as it is 

being constructed.  Because  U
→  is a family of unary relations, and because the definition of 

U
t →  only appeals to the U

→  of strict subterms of t, U
t →  is predicative for all t.   

 

3.3.2       Consistency 
 

The correctness of the algorithm depends on the consistency of U.  That is, U must not 

allow some sort of contradiction.  The rules for consistency are provided in figure 3-3.  All 

of the consistency rules must hold in order for a given U to be consistent.  The abbreviation 

C(U) is used to describe the property that U is consistent.   

   

( :!). ( :!).

[ / ]

U

U

fun x i fun y j

i j x y

≈

≈
 

U
C D

C D

≈

=
(C and D are term constructors) 

U
C ≈ F

(C is a term constructor, F is a fun term) 

( ) ( )
U

C a D b

C D

≈

=
(C and D are term constructors, a and b are inactive terms) 

( )
U

C a ≈ D
(C and D are term constructors, a is an inactive term) 

Figure 3-3. Consistency Rules 

 

The first consistency rule related to fun term equivalence is very restrictive and essentially 

removes any benefit to including fun terms in U.  In practice, this restriction is not very 

severe since the programmer can simply prove the equality of the bodies of the fun terms 

and place that equation in U. 

 

 



 
 
 
 

 

25 

3.3.3       Normalization of U 
 

The first phase of the algorithm is the attempted normalization of the terms in the equations 

in U with respect to U
→ .  So it is necessary to define U

→  for sets of equations.  This 

relation is defined inductively on the cardinality of U as shown in figure 3-4.   

 

0 : ∅ → ∅
 

! !

* *

: ' ( ') 1 1'

: { 1 2} ' { 1' 2}

U
m U U C U u u

m U u u U u u

→ ∅ →

∪ = → ∪ =

⊳
 

!

* *

: ' ( ')

1: { 1 2} ' { 1 2}

m U U C U

m U u u U u u

→ ¬

+ ∪ = → ∪ =
  

Figure 3-4. Evaluation of U 

 

In the definition of evaluation of U, a disjoint union ( *∪ ) is used to ensure that the size of U 

is predictable.  In practice, duplicate equations can be removed at any time as they will have 

no impact on the outcome.  Because m is always the size of U, m will often be omitted from 

the notation.  Note that the →  symbol is overloaded.  When applied to terms it refers to 

evaluation under the operational semantics.  When it is applied to sets of ground equations, 

it refers to the “U evaluation” defined in this section. 

 

3.3.4       The Hypjoin Algorithm 
 

The algorithm which implements hypjoin is represented by the symbol U
↓ .  The definition 

of  U
↓  is provided in figure 3-5.   

 
! ! !

' ' '' ( ') ' ' ' '
U U U

U

U U C U s s t t s t

s t

→ Γ → Γ → ≈

Γ ↓

⊳ ⊳

⊳

 

Figure 3-5. The Hypjoin Algorithm 

 



 
 
 
 

 

26 

3.4       Algorithm Implementation Notes 
 

The description of the hypjoin algorithm is intentionally vague in order to allow some 

amount of freedom when implementing it.  This section provides some information that 

may be helpful when implementing the algorithm. 

 

3.4.1       Equivalence Relations 
 

The equivalence relation U=  is used in the relation U
→ .  This relation might be preferable to 

the more permissive equivalence relation U≈  because it reduces the size of the search space 

when trying to find equivalent terms that will take a step of evaluation.  However, it would 

be equally correct to use U≈  in U
→ .  This is because for all s and t  

U U
s t s≈ = t t

s t

→

=  .  In 

order to change a stuck term into a term that will take a step of evaluation, it is necessary to 

either replace the entire term or change something in an evaluation context.   

 

3.4.2       Deciding Equivalence 
 

It was noted earlier that U≈  is essentially the ground word problem for U.  As a result, one 

could determine whether two terms are equivalent using congruence closure.  It may also be 

possible to solve this problem using Knuth-Bendix completion[7] using a lexicographic path 

order[1] on the terms.  The primary benefit derived from using completion to solve this 

problem is that it sets up a framework in which other implementation problems can be 

solved efficiently.  These other problems are described in the next sections.  

 

3.4.3       Deciding Consistency 
 

The task of detecting inconsistency may seem daunting at first because it is necessary to 

consider all the terms that are equivalent to a given term.  However, due to the nature of 

terms that can be related by U≈ , it is only necessary to check for incompatible terms that are 

related by transitivity.  This can be accomplished by iterating over all combinations of 

incompatible terms in the equations in U and testing them for equivalence. 



 
 
 
 

 

27 

 

It may be possible to determine whether U is consistent much more efficiently using Knuth-

Bendix completion.  Using completion, it is possible to orient the rewrite rules in such a way 

that all terms rewrite to inactive terms, if possible.  Then it is possible to decide consistency 

simply by completing U and examining the resulting rewrite rules.  If U is inconsistent, then 

there will be a rule that rewrites some term to an incompatible term. 

 

3.4.4       Evaluation Modulo U 
 

In order to determine if a term can take a step in U
→ , one might attempt to search through 

the entire substitution space until a redex is found.  Unfortunately, this space may be infinite, 

so this approach will not work in general.  In order to work around this problem, a limit 

could be specified in the implementation that will stop searching after a set amount of 

comparisons.  Such a limit would still allow hypjoin to be sound, but it will no longer be 

complete.  Also, this searching can be very inefficient, and it should be avoided if possible. 

 

It may be possible to use Knuth-Bendix completion to solve this problem as well.  The 

rewrite rules can be oriented in such a way that a term will rewrite to a redex, if possible.  

Then it is possible to find a redex that is equivalent to a given term, if one exists, by 

normalizing that term with respect to the rewrite system obtained by completing U.  Note 

that this approach is compatible with the consistency test and the same order can be used in 

both. 



 
 
 
 

 

28 

4       Proof  of  Correctness 
 

This chapter contains a proof that the algorithm described in the previous chapter is partially 

correct under certain stated assumptions.  In essence, this chapter will show that the 

relations 
*

U
⇔  and 

U
↓  are equal if U is consistent.  This proof is divided into two theorems.  

Section 4.1 contains a theorem that states that 
U

↓  is sound with respect to 
*

U
⇔ -- that is, 

*

U U
↓ ⊆ ⇔ .  Section 4.2 contains a theorem that states that 

U
↓  is complete with respect to 

*

U
⇔ -- that is, 

*

U U
↓ ⊇ ⇔ -- if the algorithm deciding 

U
↓  terminates and U is consistent. 

 

4.1       Soundness of Hypjoin Algorithm 
 

This section contains a proof that the algorithm is sound as specified in theorem 4.1.  The 

proof is structured as shown in the dependency graph in figure 4-1.   

 

The most significant portion of this proof is lemma 4.1.2, which shows that if 'U U→  and 
*

'U
s t⇔ , then  

*

U
s t⇔ .  That is, the algorithm does not gain any additional ability to join 

terms by putting U in normal form.   

 

Theorem 4.1:  

*

1 2
1, 2, ,

1 2

U

U

t t
t t U

t t

Γ ↓
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

That is, 

! ! !

' ' '

*

1, 2, , ' ( ') 1 1' 2 2 ' 1' 2 '

', 1', 2 '
1 2

U U U

U

t t U U U C U t t t t t t

U t t
t t

∀ ∀ ∀ ∀Γ → Γ → Γ → ≈

∀ ∀ ∀ Γ ⇔

⊳ ⊳

⊳

 

Choose arbitrary t1, t2, U, Γ, U’, t1’, and t2’ 

Assume: 
! ! !

' ' '' ( ') 1 1' 2 2 ' 1' 2 '
U U U

U U C U t t t t t t→ Γ → Γ → ≈⊳ ⊳  

Derive: 
*

1 2
U

t tΓ ⇔⊳  

 

From lemma 4.1.1, 
*

'1 1'
U

t tΓ ⇔⊳  and 
*

'2 2 '
U

t tΓ ⇔⊳  

Because '1' 2 '
U

t t≈  and JMU-EQU, 
*

'1' 2 '
U

t tΓ ⇔⊳  



 
 
 
 

 

29 

From transitivity, 
*

'1 2
U

t tΓ ⇔⊳  

From lemma 4.1.2, 
*

1 2Ut tΓ ⇔⊳  

 

 

Figure 4-1. Structure of Soundness Proof 

 

 

Lemma 4.1.1: 
*

*

1 2
1, 2, ,

1 2

U

U

t t
t t U

t t

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

That is: 
*

1 2
, 1, 2, ,

1 2

k

U

U

t t
k t t U

t t

Γ →
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Proof by induction on k: 



 
 
 
 

 

30 

• Base case(4.1.1.1): 

0

*

1 2
1, 2, ,

1 2

U

U

t t
t t U

t t

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

• Step case(4.1.1.2): 

*

1

*

1 2
1, 2, ,

1 2

1 2
1, 2, ,

1 2

k

U

U

k

U

U

t t
t t U

t t
k

t t
t t U

t t

+

 Γ → ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 Γ → ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Lemma 4.1.1.1: 
0

*

1 2
1, 2, ,

1 2

U

U

t t
t t U

t t

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Choose arbitrary t1, t2, U, and Γ. 

Assume: 
0

1 2
U

t tΓ →⊳  

Derive: 
*

1 2
U

t tΓ ⇔⊳  

 

Because 
0

1 2
U

t tΓ →⊳ , t1=t2. 

From EQ-REFL and JMU-EQU, 
*

1 2
U

t tΓ ⇔⊳  

 

Lemma 4.1.1.2: 

*

1

*

1 2
1, 2, ,

1 2

1 2
1, 2, ,

1 2

k

U

U

k

U

U

t t
t t U

t t
k

t t
t t U

t t

+

 Γ → ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 Γ → ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Choose arbitrary k. 

Assume(A): 
*

1 2
1, 2, ,

1 2

k

U

U

t t
t t U

t t

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive: 

1

*

1 2
1, 2, ,

1 2

k

U

U

t t
t t U

t t

+

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Choose arbitrary t1, t2, U, and Γ. 



 
 
 
 

 

31 

Assume: 
1

1 2
k

U
t t

+

Γ →⊳  

Derive: 
*

1 2
U

t tΓ ⇔⊳  

 

Because, 
1

1 2
k

U
t t

+

Γ →⊳ , there exists s such that 1
k

U
t sΓ →⊳  and 2

U
s tΓ →⊳  

From A, 
*

1
U

t sΓ ⇔⊳  

From lemma 4.1.1.3, 
*

2
U

s tΓ ⇔⊳  

From transitivity, 
*

1 2
U

t tΓ ⇔⊳  

 

Lemma 4.1.1.3:  

*

1 2
1, 2, ,

1 2

U

U

t t
t t U

t t

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

That is: 
*

: 1 2
, 1, 2, ,

1 2

U

U

k t t
k t t U

t t

Γ →
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Proof by induction on k: 

• Base case: * *

1 11 [ ] , ( , )
n U

t E a n Bound E n a= ∀ Γ →⊳ 1 3 3 2
U

t t t t= Γ →⊳  

o From JMU-EQU, 1 3
U

t tΓ ⇒⊳  and from JMU-EVAL, 3 2
U

t tΓ ⇒⊳  

o From transitivity, 
*

1 2
U

t tΓ ⇔⊳  

• Step case: 
* *

1 11 [ ] , ( , )
n U

t E a n m Bound E n a= ∀ < Γ →⊳
*

1, ( , ) : '
m U m

Bound E m k a aΓ →⊳  

o Where the induction hypothesis (I.H.) is: 

*

: 1 2
1, 2, ,

1 2

U

U

k t t
t t U

t t

Γ →
∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

o From EMU-IND, t2 = ],',[
)(...1...1

*

1 *
1EHolesmmn aaaE

+
 

o From I.H. 
*

*

1, ( , ) '
m U m

Bound E m a aΓ ⇔⊳  

o From JMU_CTXT,  

* *
1 1

*
* *

1 1... 1 1...1... ( ) 1... ( )
[ , , ] [ , ', ]

n m U n mm Holes E m Holes E
E a a a E a a a

+ +
Γ ⇔ Γ⊳ ⊳  

o That is, 
*

1 2
U

t tΓ ⇔⊳  

 

 

 



 
 
 
 

 

32 

Lemma 4.1.2:  
! *

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

That is: 

!

'

*

' ( ') 1 2
, 1, 2, , ',

1 2

j

U

U

U U C U t t
j t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Proof by induction on j. 

• Base case: (4.1.2.1) 

! 0

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

• Step case: (4.1.2.2) 
!

'

*

1!

'

*

' ( ') 1 2
1, 2, , ',

1 2

' ( ') 1 2
1, 2, , ',

1 2

j

U

U

j

U

U

U U C U t t
t t U U

t t
j

U U C U t t
t t U U

t t

+

 
→ Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ

 Γ ⇔ ∀
 

→ Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Lemma 4.1.2.1:   
! 0

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

So t1=t2 

Then 21
*

tt U⇔  

 

Lemma 4.1.2.2:   
!

'

*

1!

'

*

' ( ') 1 2
1, 2, , ',

1 2

' ( ') 1 2
1, 2, , ',

1 2

j

U

U

j

U

U

U U C U t t
t t U U

t t
j

U U C U t t
t t U U

t t

+

 
→ Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ

 Γ ⇔ ∀
 

→ Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

Choose arbitrary j. 

Assume: (A) 

!

'

*

' ( ') 1 2
1, 2, , ',

1 2

j

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive: 

1!

'

*

' ( ') 1 2
1, 2, , ',

1 2

j

U

U

U U C U t t
t t U U

t t

+

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 



 
 
 
 

 

33 

 

Because 
1

'1 2
j

U
t t

+

Γ ⇔⊳ , there exists a t3 such that '1 3
j

U
t tΓ ⇔⊳  and '3 2

U
t tΓ ⇔⊳  

From A, 
*

1 3
U

t tΓ ⇔⊳  

From lemma 4.1.2.3, 
*

3 2
U

t tΓ ⇔⊳  

From transitivity, 
*

1 2
U

t tΓ ⇔⊳  

 

Lemma 4.1.2.3:  
!

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

That is: 

!

'

*

' ( ') 1 2
, 1, 2, , ',

1 2

k

U

U

U U C U t t
k t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

The notation 
!

'
k

U U→  means U normalizes to U’ in k steps. 

 

Proof by induction on k: 

• Base case: (4.1.2.4) 

!0

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

• Step case: (4.1.2.5) 
!

'

*

! 1

'

*

' ( ') 1 2
1, 2, , ',

1 2

' ( ') 1 2
1, 2, , ',

1 2

k

U

U

k

U

U

U U C U t t
t t U U

t t
k

U U C U t t
t t U U

t t

+

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Lemma 4.1.2.4:  
!0

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

So U = U’ 

Then 
*

1 2
U

t tΓ ⇔⊳  because 
*

'1 2
U

t tΓ ⇔⊳  

 



 
 
 
 

 

34 

Lemma 4.1.2.5:  
!

'

*

! 1

'

*

' ( ') 1 2
1, 2, , ',

1 2

' ( ') 1 2
1, 2, , ',

1 2

k

U

U

k

U

U

U U C U t t
t t U U

t t
k

U U C U t t
t t U U

t t

+

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Choose arbitrary k. 

Assume(A): 

!

'

*

' ( ') 1 2
1, 2, , ',

1 2

k

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive:  

! 1

'

*

' ( ') 1 2
1, 2, , ',

1 2

k

U

U

U U C U t t
t t U U

t t

+

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Because '
1!

UU
k +

→ , there exists a U’’ such that ''UU →  and '''
!

UU
k

→  

From lemma 4.1.2.6, 
*

''1 2
U

t tΓ ⇔⊳  

From A, 
*

1 2
U

t tΓ ⇔⊳  

 

Lemma 4.1.2.6:  

'

*

' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

That is: '

*

: ' ( ') 1 2
, 1, 2, , ',

1 2

U

U

m U U C U t t
m t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Proof by induction on m: 

• Base case: (4.1.2.7)    

'

*

0 : ' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

• Step case: (4.1.2.8) 

'

*

'

*

: ' ( ') 1 2
1, 2, , ',

1 2

1: ' ( ') 1 2
1, 2, , ',

1 2

U

U

U

U

m U U C U t t
t t U U

t t
m

m U U C U t t
t t U U

t t

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀

 + → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 



 
 
 
 

 

35 

Lemma 4.1.2.7:  

'

*

0 : ' ( ') 1 2
1, 2, , ',

1 2

U

U

U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Because 0 : 'U U→ , U=U’= ∅  

So 
*

1 2
U

t tΓ ⇔⊳ , because 
*

'1 2
U

t tΓ ⇔⊳  

 

Lemma 4.1.2.8: 

'

*

'

*

: ' ( ') 1 2
1, 2, , ',

1 2

1: ' ( ') 1 2
1, 2, , ',

1 2

U

U

U

U

m U U C U t t
t t U U

t t
m

m U U C U t t
t t U U

t t

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀

 + → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Choose arbitrary m. 

Assume(A): '

*

: ' ( ') 1 2
1, 2, , ',

1 2

U

U

m U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive: '

*

1: ' ( ') 1 2
1, 2, , ',

1 2

U

U

m U U C U t t
t t U U

t t

+ → Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Only the case where '1 2
U

t tΓ ⇒⊳  will be considered, the proof of the symmetric case is 

similar and omitted. 

Derive: '

*

1: ' ( ') 1 2
1, 2, , ',

1 2

U

U

m U U C U t t
t t U U

t t

+ → Γ ⇒
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

That is: '

*

1: ' ( ') : 1 2
, 1, 2, , ',

1 2

U

U

m U U C U k t t
k t t U U

t t

+ → Γ ⇒
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Proof by induction on k: 

• Base case: '1 2
U

t t≈  

o From lemma 4.1.2.9, 
*

1 2
U

t tΓ ⇔⊳  

• Base case: 1 2t tΓ →⊳  

o From JMU-EVAL 
*

1 2
U

t tΓ ⇔⊳  

• Step case: 1 1 1 '1 [ 1] 2 [ 2] , ( ) : 1 2
U

t E a t E a Bound E k a a
+ + += = Γ ⇒⊳  

o I.H. is '

*

1: ' ( ') : 1 2
1, 2, , ',

1 2

U

U

m U U C U k t t
t t U U

t t

+ → Γ ⇒
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 



 
 
 
 

 

36 

o From I.H. 
*

1, ( ) 1 2
U

Bound E a a
+Γ ⇔⊳  

o From JMU-CTXT, 
*

1 2
U

t tΓ ⇔⊳  

 

Lemma 4.1.2.9: 

'

*

'

*

: ' ( ') 1 2
1, 2, , ',

1 2

1: ' ( ') 1 2
1, 2, , ',

1 2

U

U

U

U

m U U C U t t
t t U U

t t

m U U C U t t
t t U U

t t

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 
 + → ≈ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

 

Assume (A): '

*

: ' ( ') 1 2
1, 2, , ',

1 2

U

U

m U U C U t t
t t U U

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive: '

*

1: ' ( ') 1 2
1, 2, , ',

1 2

U

U

m U U C U t t
t t U U

t t

+ → ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

That is: '

*

1: ' ( ') : 1 2
, 1, 2, , ',

1 2

U

U

m U U C U k t t
k t t U U

t t

+ → ≈
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

 

Because 1: 'm U U+ → , there exist mU , 'mU , u1, u1’, and u2 such that 

}21{ uuUU m =∪= ,  '11 ' uu
mU→ , }2'1{'' uuUU m =∪=  

 

Proof by induction on k: 

• Base case: t1=t2 

o From JMU-EQU, 
*

1 2
U

t tΓ ⇔⊳  

• Base case: '}21{ Utt ∈=   

o Case '}21{ mUtt ∈=  

� From A, 
*

1 2
mUt tΓ ⇔⊳  

� So 
*

1 2
U

t tΓ ⇔⊳  

o Case t1 = u1’ and t2 = u2 

� From lemma 4.1.1, 
*

'1 1'
mUu uΓ ⇔⊳  

� From A, 
*

1 1'
mUu uΓ ⇔⊳  

� So 
*

1 1'
U

u uΓ ⇔⊳  

� Because Uuu ∈= }21{ , 
*

1 2
U

u uΓ ⇔⊳ (EQ-SUBS, JMU-EQU)  



 
 
 
 

 

37 

� From transitivity, 
*

1' 2
U

u uΓ ⇔⊳  

� That is, 
*

1 2
U

t tΓ ⇔⊳  

• Step case: ': 2 1
U

k t t≈  

o I.H. (in all step cases) is 

'

*

1: ' ( ') : 1 2
1, 2, , ',

1 2

U

U

m U U C U k t t
t t U U

t t

+ → ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

o From I.H. 
*

2 1
U

t tΓ ⇔⊳  

o From symmetry, 
*

1 2
U

t tΓ ⇔⊳  

• Step case: ': 1 3
U

k t t≈  and ': 3 2
U

k t t≈  

o From I.H. 
*

1 3
U

t tΓ ⇔⊳  

o From I.H. 
*

3 2
U

t tΓ ⇔⊳  

o From transitivity, 
*

1 2
U

t tΓ ⇔⊳  

• Step case: 1 1 '1 [ 1] 2 [ 2] : 1 2
U

t E a t E a k a a
+ += = ≈  

o From I.H. 
*

1, ( ) 1 2
U

Bound E a a
+Γ ⇔⊳  

o From JMU-CTXT, 
*

1 2
U

t tΓ ⇔⊳  

 

4.2       Completeness of Hypjoin Algorithm 
 

This section contains a proof that the algorithm is complete, that is 
*

U
s t⇔  implies 

U
s t↓ ,  

if the algorithm terminates and U does not allow inconsistency.  This property is specified 

and proven in theorem 4.2.  The structure of the proof is shown in figure 4-2.   

 

Lemma 4.2.1 shows that if 'U U→  and 
*

U
s t⇔ , then  

*

'U
s t⇔ .  That is, joinability modulo 

U is preserved by putting U in normal form.  With this lemma in place, the remainder of the 

proof can assume that U is normal.   

 

Lemma 4.2.3 shows that 
U

s t≈  implies 
U

s t↓  for normal, consistent U.  This lemma is 

convenient and is therefore used frequently in the proof.  Any time it is necessary to prove 



 
 
 
 

 

38 

that two terms are related in 
U

↓ , the proof can show that those two terms are related in 

U
s t≈ .  

 

The property that 
U

≈  is preserved by 
U

→ , which was designed into the hypjoin algorithm, 

is proven in lemma 4.2.5.  This lemma is used in the proof of lemma 4.2.3.   

 

Because s t→  implies 
U

s t⇒ , it is necessary to show that s t→  implies 
U

s t↓ .  This 

property is proven in lemma 4.2.7.   

 

Lemma 4.2.2.6 shows that 
U

a b↓  implies * *

1 1[ ] [ ]
U

E a E b↓ .  That is, two terms are related 

in 
U

↓  if they are the same term at the top level and all of the subterms are related in 
U

↓ .  

This lemma is necessary because 
U

a b⇒  implies * *

1 1[ ] [ ]
U

E a E b⇒  in the definition of 

U
⇒ . 

 

Theorem 4.2: 

' '

* !

( 1, ) ( 2, )
1, 2, , ',

1 2 ' ( ')

1 2

U U

U

U

T t T t
t t U U

t t U U C U

t t

Γ → Γ →
∀ ∀ ∀ ∀ ∀Γ

 Γ ⇔ → 
 Γ ↓
 

⊳ ⊳

⊳

⊳

 

Choose arbitrary t1, t2, U, U’, and  Γ. 

Assume: ' '( 1, ) ( 2, )
U U

T t T tΓ → Γ →⊳ ⊳  

Assume: 
* !

1 2 ' ( ')
U

t t U U C UΓ ⇔ →⊳  

Derive: 1 2
U

t tΓ ↓⊳  

Lemma 4.2.1 states:

! *

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

  

From Lemma 4.2.1, 
*

'1 2
U

t tΓ ⇔⊳ . 

Lemma 4.2.2 states: 
*

1 2
1, 2, , Ut t U
t t U

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

Because '
!

UU → , and U →  

From Lemma 4.2.2, '1 2
U

t tΓ ↓⊳  

So 21 tt U↓  because 21 ' tt U↓  and '
!

UU →  



 
 
 
 

 

39 

 

Figure 4-2. Structure of Completeness Proof 

 



 
 
 
 

 

40 

 

Lemma 4.2.1: 
! *

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

That is: 

! *

*

'

' ( ') 1 2
, , ', 1, 2,

1 2

n

U

U

U U C U t t
n U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Proof by induction on n: 

• Base case: (4.2.1.1) 

!0 *

*

'

' ( ') 1 2
, , ', 1, 2,

1 2

U

U

U U C U t t
n U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

• Step case: (4.2.1.2) 
! *

*

'

! 1 *

*

'

' ( ') 1 2
, ', 1, 2,

1 2

' ( ') 1 2
, ', 1, 2,

1 2

n

U

U

n

U

U

U U C U t t
U U t t

t t
n

U U C U t t
U U t t

t t

+

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 

Lemma 4.2.1.1: 
!0 *

*

'

' ( ') 1 2
, , ', 1, 2,

1 2

U

U

U U C U t t
n U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Choose arbitrary n, U, U’, t1, t2, and  Γ, 

Assume: 
!0 *

' ( ') 1 2
U

U U C U t t→ Γ ⇔⊳  

Derive: 
*

'1 2
U

t tΓ ⇔⊳  

 

Because 
!0

'U U→ , U=U’ 

So 
*

'1 2
U

t tΓ ⇔⊳  because 
*

1 2
U

t tΓ ⇔⊳  

 

Lemma 4.2.1.2: 
! *

*

'

! 1 *

*

'

' ( ') 1 2
, ', 1, 2,

1 2

' ( ') 1 2
, ', 1, 2,

1 2

n

U

U

n

U

U

U U C U t t
U U t t

t t
n

U U C U t t
U U t t

t t

+

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 



 
 
 
 

 

41 

Choose arbitrary n. 

Assume(A): 

! *

*

'

' ( ') 1 2
, ', 1, 2,

1 2

n

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive: 

! 1 *

*

'

' ( ') 1 2
, ', 1, 2,

1 2

n

U

U

U U C U t t
U U t t

t t

+

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Choose arbitrary U, U’, t1, t2, and Γ. 

Assume: 
! 1 *

' ( ') 1 2
n

U
U U C U t t

+

→ Γ ⇔⊳  

Derive: 
*

'1 2
U

t tΓ ⇔⊳  

 

Because 
! 1

'
n

U U
+

→  and C(U’), there exists U’’ such that ''U U→  and 
!

'' '
n

U U→  and 

C(U’’)   

From lemma 4.2.1.3, 
*

''1 2
U

t tΓ ⇔⊳  

From A, 
*

'1 2
U

t tΓ ⇔⊳  

 

Lemma 4.2.1.3: 
*

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

That is: 
*

'

' ( ') 1 2
, , ', 1, 2,

1 2

k

U

U

U U C U t t
k U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Proof by induction on k 

• Base case: (4.2.1.4) 

0

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

• Step case: (4.2.1.5) 

*

'

1

*

'

' ( ') 1 2
, ', 1, 2,

1 2

' ( ') 1 2
, ', 1, 2,

1 2

k

U

U

k

U

U

U U C U t t
U U t t

t t
k

U U C U t t
U U t t

t t

+

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

 



 
 
 
 

 

42 

Lemma 4.2.1.4: 
0

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Choose arbitrary U, U’, t1, t2, and Γ. 

Assume: 
0

' ( ') 1 2
U

U U C U t t→ Γ ⇔⊳  

Derive: 
*

'1 2
U

t tΓ ⇔⊳  

 

Because 
0

1 2
U

t tΓ ⇔⊳ , t1=t2 

From EQ-REFL and JMU-EQU,  
*

'1 2
U

t tΓ ⇔⊳   

 

Lemma 4.2.1.5: 

*

'

1

*

'

' ( ') 1 2
, ', 1, 2,

1 2

' ( ') 1 2
, ', 1, 2,

1 2

k

U

U

k

U

U

U U C U t t
U U t t

t t
k

U U C U t t
U U t t

t t

+

 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀
 → Γ ⇔ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

⊳

⊳

 

Choose arbitrary k. 

Assume(A): 
*

'

' ( ') 1 2
, ', 1, 2,

1 2

k

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

Derive: 

1

*

'

' ( ') 1 2
, ', 1, 2,

1 2

k

U

U

U U C U t t
U U t t

t t

+

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

 

Choose arbitrary U, U’, t1, t2, and  Γ. 

Assume: 
1

' ( ') 1 2
k

U
U U C U t t

+

→ Γ ⇔⊳  

Derive: 
*

'1 2
U

t tΓ ⇔⊳  

 

Because 
1

1 2
k

U
t t

+

Γ ⇔⊳ , there exists t3 such that 1 3
k

U
t tΓ ⇔⊳  and 3 2

U
t tΓ ⇔⊳  

From A, 
*

'1 3
U

t tΓ ⇔⊳  

From Lemma 4.2.1.6, 
*

'3 2
U

t tΓ ⇔⊳  

From transitivity, 
*

'1 2
U

t tΓ ⇔⊳  



 
 
 
 

 

43 

 

Lemma 4.2.1.6: 

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ Γ ⇔
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

This proposition will be proven for 1 2
U

t tΓ ⇒⊳ , the proof of 1 2
U

t tΓ ⇐⊳  similar and 

omitted. 

 

Proof by induction on the structure of 1 2
U

t tΓ ⇒⊳   

• Case 1 2
U

t t≈  

o From lemma 4.2.1.7, 
*

'1 2
U

t tΓ ⇔⊳  

• Case 1 2t tΓ →⊳  

o From JMU-EVAL 
*

'1 2
U

t tΓ ⇔⊳  

• Case 1 1 11 [ 1] 2 [ 2] , ( ) : 1 2
U

t E a t E a Bound E k a a
+ + += = Γ ⇒⊳  

o I.H. is 
*

'

' ( ') : 1 2
, ', 1, 2,

1 2

U

U

U U C U k t t
U U t t

t t

→ Γ ⇒
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔

⊳

⊳

 

o From I.H. 
*

1 ', ( ) 1 2
U

Bound E a a
+Γ ⇔⊳  

o From JMU-CTXT 
*

'1 2
U

t tΓ ⇔⊳  

 

Lemma 4.2.1.7: 

*

'

' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

That is, 
*

'

: ' ( ') 1 2
, , ', 1, 2,

1 2

U

U

m U U C U t t
m U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

Proof by induction on m: 

• Base case(4.2.1.8) 
*

'

0 : ' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

• Step case(4.2.1.9) 

*

'

*

'

: ' ( ') 1 2
, ', 1, 2,

1 2

1: ' ( ') 1 2
, ', 1, 2,

1 2

U

U

U

U

m U U C U t t
U U t t

t t
m

m U U C U t t
U U t t

t t

 → ≈ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀

 + → ≈ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

 

 



 
 
 
 

 

44 

Lemma 4.2.1.8: 

*

'

0 : ' ( ') 1 2
, ', 1, 2,

1 2

U

U

U U C U t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

 

Choose arbitrary U, U’, t1, t2, and Γ. 

Assume: 0 : ' ( ') 1 2
U

U U C U t t→ ≈  

Derive: 
*

'1 2
U

t tΓ ⇔⊳  

 

Because 0 : 'U U→ , 'U U= = ∅  

Because U=U’ and 1 2
U

t t≈ , '1 2
U

t t≈  

From JMU-EQU, 
*

'1 2
U

t tΓ ⇔⊳  

 

Lemma 4.2.1.9: 

*

'

*

'

: ' ( ') 1 2
, ', 1, 2,

1 2

1: ' ( ') 1 2
, ', 1, 2,

1 2

U

U

U

U

m U U C U t t
U U t t

t t
m

m U U C U t t
U U t t

t t

 → ≈ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ ∀

 + → ≈ ∀ ∀ ∀ ∀ ∀Γ
 Γ ⇔ 

⊳

⊳

 

 

Choose arbitrary m. 

Assume(A): 
*

'

: ' ( ') 1 2
, ', 1, 2,

1 2

U

U

m U U C U t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

Derive: 
*

'

1: ' ( ') 1 2
, ', 1, 2,

1 2

U

U

m U U C U t t
U U t t

t t

+ → ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

Choose arbitrary U, U’, t1, t2, and  Γ. 

Assume: 1: ' ( ') 1 2
U

m U U C U t t+ → ≈  

Derive: 
*

'1 2
U

t tΓ ⇔⊳  

 

Because 1: 'm U U+ →  and )'(UC , there exists mU , 'mU , u1, u2, and u1’ such that 

}21{ uuUU m =∪= , : '
m m

m U U→ , C( 'mU ), and '1 1'
mU

u u∅ →⊳  

So ' ' { 1' 2}
m

U U u u= ∪ =  

 

Proof by induction on 1 2
U

t t≈  

• Case t1=t2 

o From EQ-REFL and JMU_EQU, 
*

'1 2
U

t tΓ ⇔⊳  



 
 
 
 

 

45 

• Case Utt ∈= }21{  

o Case mUtt ∈= }21{  

� From A, 
*

'1 2
mUt tΓ ⇔⊳  

� So 
*

'1 2
U

t tΓ ⇔⊳  

o Case t1=u1 and t2=u2 

� Because '1 1'
mU

u u∅ →⊳ , and theorem 4.1, 
*

'1 1'
mUu u∅ ⇔⊳ , so 

*

'1 1'
U

u u∅ ⇔⊳  

� Because '}2'1{ Uuu ∈= , 1' 2
U

u u≈  so 1' 2
U

u u∅ ⇔⊳  from JMU-

EQU 

� From transitivity, 
*

'1 2
U

u u∅ ⇔⊳ , that is, 
*

'1 2
U

t t∅ ⇔⊳  

� Because 
*

'1 2
U

t t∅ ⇔⊳  and ( ( 1) ( 2))Vars t Vars t∪ ∩ Γ = ∅ , 

*

'1 2
U

t tΓ ⇔⊳  

• Case : 2 1
U

k t t≈  

o I.H. is 
*

'

: ' ( ') : 1 2
, ', 1, 2,

1 2

U

U

m U U C U k t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

o From I.H. 
*

'2 1
U

t tΓ ⇔⊳  

o From symmetry, 
*

'1 2
U

t tΓ ⇔⊳  

• Case : 1 3
U

k t t≈  and : 3 2
U

k t t≈  

o I.H. is 
*

'

: ' ( ') : 1 2
, ', 1, 2,

1 2

U

U

m U U C U k t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

o From I.H. 
*

'1 3
U

t tΓ ⇔⊳  and 
*

'3 2
U

t tΓ ⇔⊳  

o From transitivity, 
*

'1 2
U

t tΓ ⇔⊳  

• Case t1= +
1E  [a1] and t2= +

1E  [a2] where : 1 2
U

k a a≈  

o I.H. is 
*

'

: ' ( ') : 1 2
, ', 1, 2,

1 2

U

U

m U U C U k t t
U U t t

t t

→ ≈
∀ ∀ ∀ ∀ ∀Γ

Γ ⇔⊳

 

o From I.H. 
*

1 ', ( ) 1 2
U

Bound E a a
+Γ ⇔⊳  

o From JMU-CTXT, 
*

'1 2
U

t tΓ ⇔⊳  

 



 
 
 
 

 

46 

Lemma 4.2.2: 
*

1 2
1, 2, , Ut t U
t t U

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

That is: 

1 2
, 1, 2, ,

k

Ut t U
k t t U

Γ ⇔ →
∀ ∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

Proof by induction on k: 

• Base case (4.2.2.1) 
0

1 2
1, 2, , Ut t U
t t U

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

• Step case (4.2.2.2) 

1 2
1, 2, ,

k

Ut t U
t t U

k

Γ ⇔ →
∀ ∀ ∀ ∀Γ

∀

⊳

1

( ) ( 1, ) ( 2, )

1 2

1 2
1, 2, ,

U U

U

k

U

C U T t T t

t t

t t U
t t U

+

 Γ → Γ → 
 Γ ↓
 

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ⊳

⊳

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

 Γ → Γ → 
 Γ ↓
 

⊳ ⊳

⊳

 

Lemma 4.2.2.1: 
0

1 2
1, 2, , Ut t U
t t U

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

 

Choose arbitrary t1, t2, U, and  Γ. 

Assume: 
0

1 2
U

t t UΓ ⇔ →⊳ ( ) ( 1, ) ( 2, )
U U

C U T t T tΓ → Γ →⊳ ⊳  

Derive: 1 2
U

t tΓ ↓⊳  

 

So t1=t2, so 1 2Ut tΓ ≈⊳  from EQ-REFL 

From lemma 4.2.3, 1 2
U

t tΓ ↓⊳  

 

Lemma 4.2.2.2 

1 2
1, 2, ,

k

Ut t U
t t U

k

Γ ⇔ →
∀ ∀ ∀ ∀Γ

∀

⊳

1

( ) ( 1, ) ( 2, )

1 2

1 2
1, 2, ,

U U

U

k

U

C U T t T t

t t

t t U
t t U

+

 Γ → Γ → 
 Γ ↓
 

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ⊳

⊳

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

 Γ → Γ → 
 Γ ↓
 

⊳ ⊳

⊳

 

Choose arbitrary k. 



 
 
 
 

 

47 

Assume(A): 

1 2
1, 2, ,

k

U
t t U

t t U
Γ ⇔ →

∀ ∀ ∀ ∀Γ
⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

Derive: 

1

1 2
1, 2, ,

k

U
t t U

t t U

+

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

 

Choose arbitrary t1, t2, U, and  Γ. 

Assume: 
1

1 2
k

U
t t U

+

Γ ⇔ →⊳ ( ) ( 1, ) ( 2, )
U U

C U T t T tΓ → Γ →⊳ ⊳  

Derive: 1 2
U

t tΓ ↓⊳  

 

Because 
1

1 2
k

U
t t

+

Γ ⇔⊳ , 3 1 3 3 2
k

U U
t t t t t∃ Γ ⇔ Γ ⇔⊳ ⊳  

It is assumed that ( 3, )
U

T tΓ →⊳   

From A, 1 3
U

t tΓ ↓⊳  

From lemma 4.2.2.3, 3 2
U

t tΓ ↓⊳  

From lemma 4.2.8.7, 1 2
U

t tΓ ↓⊳   

 

Lemma 4.2.2.3: 

1 2
1, 2, , Ut t U
t t U

Γ ⇔ →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

 

Case 1 2
U

t tΓ ⇒⊳  (case 1 2
U

t tΓ ⇐⊳  is omitted because it is similar) 

That is: : 1 2
U

k k t t∃ Γ ⇒⊳  

Proof by induction on k. 

• Base cases:  

o (4.2.3)  

1 2
1, 2, , Ut t U
t t U

≈ →
∀ ∀ ∀ ∀Γ

( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

o (4.2.7) 

1 2
1, 2, ,

t t U
t t U

Γ → →
∀ ∀ ∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

• Step case: (4.2.2.4)  

1, 2, : 1 2

,
U

t t k t t U

U
k

∀ ∀ Γ ⇒ →

∀ ∀Γ
∀

⊳ ( ) ( 1, ) ( 2, )

1 2

1, 2, 1: 1 2

,

U U

U

U

C U T t T t

t t

t t k t t U

U

 Γ → Γ →
 

Γ ↓ 
∀ ∀ Γ + ⇒ →

∀ ∀Γ

⊳ ⊳

⊳

⊳ ( ) ( 1, ) ( 2, )

1 2
U U

U

C U T t T t

t t

 Γ → Γ →
 

Γ ↓ 

⊳ ⊳

⊳

 

 



 
 
 
 

 

48 

Lemma 4.2.2.4: 

1, 2, : 1 2

,

U
t t k t t U

U
k

∀ ∀ Γ ⇒ →

∀ ∀Γ
∀

⊳ ( ) ( 1, ) ( 2, )

1 2

1, 2, 1: 1 2

,

U U

U

U

C U T t T t

t t

t t k t t U

U

 Γ → Γ →
 

Γ ↓ 
∀ ∀ Γ + ⇒ →

∀ ∀Γ

⊳ ⊳

⊳

⊳ ( ) ( 1, ) ( 2, )

1 2
U U

U

C U T t T t

t t

 Γ → Γ →
 

Γ ↓ 

⊳ ⊳

⊳

 

Choose arbitrary k. 

 

Assume(A): 
1, 2, : 1 2

,

U
t t k t t U

U

∀ ∀ Γ ⇒ →

∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

Derive: 
1, 2, 1: 1 2

,

U
t t k t t U

U

∀ ∀ Γ + ⇒ →

∀ ∀Γ

⊳ ( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

 

Choose arbitrary t1, t2, U, and  Γ 

Assume: 1: 1 2Uk t t UΓ + ⇒ →⊳ ( ) ( 1, ) ( 2, )U UC U T t T tΓ → Γ →⊳ ⊳  

Derive: 1 2Ut tΓ ↓⊳  

 

Because 1: 1 2Uk t tΓ + ⇒⊳ , 1 1 11 [ 1] 2 [ 2] , ( ) : 1 2Ut E a t E a Bound E k a a
+ + += = Γ ⇒⊳  

From A, 1, ( ) 1 2UBound E a a
+Γ ↓⊳  

From lemma 4.2.2.6, 1 2Ut tΓ ↓⊳  

 

Lemma 4.2.2.6: 
*

* 1
1

, ( , )
, , , , n U nn Bound E n a b U

a b E U
∀ Γ ↓ →

∀ ∀ ∀Γ ∀ ∀
⊳

* *

1 1

( )

[ ] [ ]U

C U

E a E bΓ ↓⊳

 

Choose arbitrary *

1, , ,a b EΓ , and U 

Assume: *

1, ( , ) n U nn Bound E n a b U∀ Γ ↓ →⊳ ( )C U  

Derive: * *

1 1[ ] [ ]UE a E bΓ ↓⊳  

 

Choose arbitrary 'a  and 'b such that 
!

*

1, ( , ) 'n U nn Bound E n a a∀ Γ →⊳  and 

!
*

1, ( , ) 'n U nn Bound E n b b∀ Γ →⊳  (termination is assumed). 

Because *

1, ( , ) n U nn Bound E n a b∀ Γ ↓⊳ ,  ' 'n U na b≈  

From EQ-CTXT, * *

1 1[ '] [ ']UE a E b≈   

From lemma 4.2.3, * *

1 1[ '] [ ']UE a E bΓ ↓⊳  

From lemma 4.2.2.7, * *

1 1[ ] [ ']UE a E aΓ ↓⊳  and * *

1 1[ ] [ ']UE b E bΓ ↓⊳  

From lemma 4.2.8.7, * *

1 1[ ] [ ]UE a E bΓ ↓⊳  

 



 
 
 
 

 

49 

Lemma 4.2.2.7 
!

*
* 1
1

, ( , )
, , , , n U nn Bound E n a b U

a b E U
∀ Γ → →

∀ ∀ ∀Γ ∀ ∀
⊳

* *

1 1

( )

[ ] [ ]U

C U

E a E bΓ ↓⊳

 

That is: 
!

*

1

*

1

, , , , , ( , )

, , , '

n U n
j a b n Bound E n a b U

E U t t

∀ ∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

⊳

! !
* *

1 1

( )

[ ] [ ] '

'

j

U U

U

C U

E a t E b t

t t

 
Γ → Γ → 
 ≈
 

⊳ ⊳

 

Proof by induction on j 

• Base case:  

!
*

1

*

1

, , , , ( , )

, , , '

n U n
a b n Bound E n a b U

E U t t

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

⊳

!0 !
* *

1 1

( )

[ ] [ ] '

'

U U

U

C U

E a t E b t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

o Choose arbitrary *

1, , , ,a b EΓ  U, t, and t’ 

o Assume 
!

*

1, ( , ) n U nn Bound E n a b U∀ Γ → →⊳ ( )C U  

o Assume 
!0 !

* *

1 1[ ] [ ] 'U UE a t E b tΓ → Γ →⊳ ⊳  

o Derive: 'Ut t≈  

o Because 
!0

*

1 [ ] UE a tΓ →⊳ , *

1, ( , ) n Un Bound E n a∀ Γ →⊳  and therefore 

ba =  

o Then * *

1 1[ ] [ ]E a E b=  

o From EQ-REFL, * *

1 1[ ] [ ]UE a E b≈  

o From lemma 4.2.4, 
!0

*

1 [ ] 'UE b tΓ →⊳  

o Because 
!0

*

1 [ ] UE a tΓ →⊳ , *

1 [ ]E a t=  

o Because 
!0

*

1 [ ] 'UE b tΓ →⊳ , *

1 [ ] 'E b t=  

o Then 'Ut t≈  because * *

1 1[ ] [ ]UE a E b≈  



 
 
 
 

 

50 

• Step case: Prove (4.2.2.8) 

!
*

1

*

1

, , , , ( , )

, , , '

n U n
a b n Bound E n a b U

E U t t

j

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

∀

⊳

! !
* *

1 1

!
*

1

*

1

( )

[ ] [ ] '

'

, , , , ( , )

, , , '

j

U U

U

n U n

C U

E a t E b t

t t

a b n Bound E n a b U

E U t t

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

⊳ ⊳

⊳

! 1 !
* *

1 1

( )

[ ] [ ] '

'

j

U U

U

C U

E a t E b t

t t

+

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

⊳ ⊳

 

 

Lemma 4.2.2.8 

!
*

1

*

1

, , , , ( , )

, , , '

n U n
a b n Bound E n a b U

E U t t

j

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

∀

⊳

! !
* *

1 1

!
*

1

*

1

( )

[ ] [ ] '

'

, , , , ( , )

, , , '

j

U U

U

n U n

C U

E a t E b t

t t

a b n Bound E n a b U

E U t t

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

⊳ ⊳

⊳

! 1 !
* *

1 1

( )

[ ] [ ] '

'

j

U U

U

C U

E a t E b t

t t

+

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

⊳ ⊳

 

 

Choose arbitrary j. 

Assume(A):  
!

*

1

*

1

, , , , ( , )

, , , '

n U n
a b n Bound E n a b U

E U t t

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

⊳

! !
* *

1 1

( )

[ ] [ ] '

'

j

U U

U

C U

E a t E b t

t t

 
Γ → Γ → 
 ≈
 

⊳ ⊳

 

Derive:  
!

*

1

*

1

, , , , ( , )

, , , '

n U n
a b n Bound E n a b U

E U t t

∀ ∀ ∀Γ ∀ Γ → →

∀ ∀ ∀ ∀

⊳

! 1 !
* *

1 1

( )

[ ] [ ] '

'

j

U U

U

C U

E a t E b t

t t

+ 
Γ → Γ → 
 ≈
 

⊳ ⊳

 



 
 
 
 

 

51 

 

Choose arbitrary *

1, , ,a b EΓ , U, t, and t’ 

Assume: 
!

*

1, ( , ) n U nn Bound E n a b U∀ Γ → →⊳ ( )C U  

Assume: 
! 1 !

* *

1 1[ ] [ ] '
j

U UE a t E b t
+

Γ → Γ →⊳ ⊳  

Derive: 'Ut t≈  

 

Because 
! 1

*

1 [ ]
j

UE a t
+

Γ →⊳ , there exists w such that *

1 [ ] UE a wΓ →⊳  and 
! j

Uw tΓ →⊳  

Case split on the form of *

1 [ ] UE a wΓ →⊳  

• Case *

1, ( , ) n Un Bound E n a∀ Γ →⊳  and *

1 [ ] ' 'UE a w w w= Γ →⊳  

o Because *

1, ( , ) n Un Bound E n a∀ Γ →⊳ , ba =  

o Then * *

1 1[ ] [ ]UE a E b≈  

o From lemma 4.2.3, 'Ut t≈  

• Case *

1, ( , ) n Un m Bound E n a∀ < Γ →⊳
*

1, ( , ) 'm U mBound E m a aΓ →⊳  

o Let 'a  be 
)(...1...1 *

1

,',
EHolesmmn aaa

+
 

o So w = ]'[*

1 aE  where 
!

*

1, ( , ) 'n U nn Bound E n a b∀ Γ →⊳  

o From A, 'Ut t≈  

 

Lemma 4.2.3: 

1 2
1, 2, , Ut t U

t t U
≈ →

∀ ∀ ∀ ∀Γ
( ) ( 1, ) ( 2, )

1 2

U U

U

C U T t T t

t t

Γ → Γ →

Γ ↓

⊳ ⊳

⊳

 

That is: 

, , 1, 2, 1 2

1', 2 ', ,

U
j k t t t t U

t t U

∀ ∀ ∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

! !

( ) 1 1' 2 2 '

1' 2 '

j k

U U

U

C U t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 

From Lemma 4.2.3.1, j=k  

 

So it is sufficient to prove:  

, 1, 2, 1 2

1', 2 ', ,

U
k t t t t U

t t U

∀ ∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

! !

( ) 1 1' 2 2 '

1' 2 '

k k

U U

U

C U t t t t

t t

Γ → Γ →

≈

⊳ ⊳
  

Proof by induction on k. 

• Base case (4.2.3.4) 

1, 2, 1 2

1', 2 ', ,

U
t t t t U

t t U

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

!0 !0

( ) 1 1' 2 2 '

1' 2 '

U U

U

C U t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 



 
 
 
 

 

52 

• Step case (4.2.3.5) 

1, 2, 1 2

1', 2 ', ,
U

t t t t U

t t U

k

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ
∀

! !

( ) 1 1' 2 2 '

1' 2 '

1, 2, 1 2

1', 2 ', ,

k k

U U

U

U

C U t t t t

t t

t t t t U

t t U

 Γ → Γ → 
 ≈
 

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

⊳ ⊳

! 1 ! 1

( ) 1 1' 2 2 '

1' 2 '

k k

U U

U

C U t t t t

t t

+ + Γ → Γ → 
 ≈
 

⊳ ⊳

 

 

Lemma 4.2.3.1:  

, , , 1 2

1, 2, 1', 2 '

U
j k U t t U

t t t t

∀ ∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

! !

( ) 1 1' 2 2 '
j k

U UC U t t t t

j k

Γ → Γ →

=

⊳ ⊳
 

 

Proof by induction on j: 

• Base case (4.2.3.2): 

, , 1 2

1, 2, 1', 2 '

U
k U t t U

t t t t

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

!0 !

( ) 1 1' 2 2 '

0

k

U UC U t t t t

k

Γ → Γ →

=

⊳ ⊳
 

• Step case (4.2.3.3): 

, , 1 2

1, 2, 1', 2 '

U
k U t t U

t t t t

j

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀
∀

! !

( ) 1 1' 2 2 '

, , 1 2

1, 2, 1', 2 '

j k

U U

U

C U t t t t

j k

k U t t U

t t t t

 
Γ → Γ → 

 =
 

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

⊳ ⊳

! 1 !

( ) 1 1' 2 2 '

1

j k

U UC U t t t t

j k

+ 
Γ → Γ → 

 + =
 

⊳ ⊳

 

Lemma 4.2.3.2: 

, , 1 2

1, 2, 1', 2 '

U
k U t t U

t t t t

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

!0 !

( ) 1 1' 2 2 '

0

k

U UC U t t t t

k

Γ → Γ →

=

⊳ ⊳
 

 

Choose arbitrary k, U, Γ , t1, t2, t1’, and t2’ 

Assume: 1 2Ut t U≈ →
!0 !

( ) 1 1' 2 2 '
k

U UC U t t t tΓ → Γ →⊳ ⊳  

Derive: k=0 

 

Because 
!0

1 1'Ut tΓ →⊳ , 1 UtΓ →⊳  

From contrapositive of lemma 4.2.4, 1 2Ut t U¬ ≈ →( )( ) 2 '' 2 2 ''UC U t t t∃ Γ →⊳  

Because 1 2Ut t U≈ → ( )C U , ( )2 '' 2 2 ''Ut t t¬ ∃ Γ →⊳  

Therefore 
!0

2 2 'Ut tΓ →⊳  

So k=0 



 
 
 
 

 

53 

 

Lemma 4.2.3.3: 

, , 1 2

1, 2, 1', 2 '

U
k U t t U

t t t t

j

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀
∀

! !

( ) 1 1' 2 2 '

, , 1 2

1, 2, 1', 2 '

j k

U U

U

C U t t t t

j k

k U t t U

t t t t

 
Γ → Γ → 

 =
 

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

⊳ ⊳

! 1 !

( ) 1 1' 2 2 '

1

j k

U UC U t t t t

j k

+ 
Γ → Γ → 

 + =
 

⊳ ⊳

 

 

Choose arbitrary j. 

Assume(A): 
, , 1 2

1, 2, 1', 2 '

U
k U t t U

t t t t

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

! !

( ) 1 1' 2 2 '
j k

U UC U t t t t

j k

Γ → Γ →

=

⊳ ⊳
 

Derive:  
, , 1 2

1, 2, 1', 2 '

U
k U t t U

t t t t

∀ ∀ ∀Γ ≈ →

∀ ∀ ∀ ∀

! 1 !

( ) 1 1' 2 2 '

1

j k

U UC U t t t t

j k

+

Γ → Γ →

+ =

⊳ ⊳
 

 

Choose arbitrary k, U, Γ , t1, t2, t1’, and t2’ 

Assume: 1 2Ut t U≈ →
! 1 !

( ) 1 1' 2 2 '
j k

U UC U t t t t
+

Γ → Γ →⊳ ⊳  

Derive: j+1=k 

 

Because 
! 1

1 1'
j

Ut t
+

Γ →⊳ , there exists t1’’ such that 1 1''Ut tΓ →⊳  and 
!

1'' 1'
j

Ut tΓ →⊳  

From lemma 4.2.4, 2 '' 2 2 ''Ut t t∃ Γ →⊳  and 
! 1

2 '' 2 '
k

Ut t
−

Γ →⊳  

From lemma 4.2.5, 1'' 2 ''Ut t≈  

From A, j=k-1 

Then j+1=k 

 

Lemma 4.2.3.4: 

1, 2, 1 2

1', 2 ', ,

U
t t t t U

t t U

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

!0 !0

( ) 1 1' 2 2 '

1' 2 '

U U

U

C U t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 

Choose arbitrary t1, t2, t1’, t2’, U, and  Γ. 

Assume: 1 2Ut t U≈ →
!0 !0

( ) 1 1' 2 2 'U UC U t t t tΓ → Γ →⊳ ⊳  

Derive: 1' 2 'Ut t≈  

 

Because 
!0

1 1'Ut tΓ →⊳ , t1=t1’ 

Because 
!0

2 2 'Ut tΓ →⊳ , t2=t2’ 

Then 1' 2 'Ut t≈  because 1 2Ut t≈  

 



 
 
 
 

 

54 

Lemma 4.2.3.5: 

1, 2, 1 2

1', 2 ', ,
U

t t t t U

t t U

k

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ
∀

! !

( ) 1 1' 2 2 '

1' 2 '

1, 2, 1 2

1', 2 ', ,

k k

U U

U

U

C U t t t t

t t

t t t t U

t t U

 Γ → Γ → 
 ≈
 

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

⊳ ⊳

! 1 ! 1

( ) 1 1' 2 2 '

1' 2 '

k k

U U

U

C U t t t t

t t

+ + Γ → Γ → 
 ≈
 

⊳ ⊳

 

 

Choose arbitrary k. 

Assume(A): 
1, 2, 1 2

1', 2 ', ,

U
t t t t U

t t U

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

! !

( ) 1 1' 2 2 '

1' 2 '

k k

U U

U

C U t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 

Derive:  
1, 2, 1 2

1', 2 ', ,

U
t t t t U

t t U

∀ ∀ ≈ →

∀ ∀ ∀ ∀Γ

! 1 ! 1

( ) 1 1' 2 2 '

1' 2 '

k k

U U

U

C U t t t t

t t

+ +

Γ → Γ →

≈

⊳ ⊳
 

 

Choose arbitrary t1, t2, t1’, t2’, U, and  Γ. 

Assume: 1 2Ut t U≈ →
! 1 ! 1

( ) 1 1' 2 2 '
k k

U UC U t t t t
+ +

Γ → Γ →⊳ ⊳  

Derive: 1' 2 'Ut t≈  

 

Because 
! 1

1 1'
k

Ut t
+

Γ →⊳ , there exists t1’’ such that 1 1''Ut tΓ →⊳  and 
!

1'' 1'
k

Ut tΓ →⊳  

Because 
! 1

2 2 '
k

Ut t
+

Γ →⊳ , there exists t2’’ such that 2 2 ''Ut tΓ →⊳  and 
!

2 '' 2 '
k

Ut tΓ →⊳  

From lemma 4.2.5, 1'' 2 ''Ut t≈  

From A, 1' 2 'Ut t≈  

 

Lemma 4.2.4: 

1 2
1, 2, , U

t t U
t t U

≈ →
∀ ∀ ∀ ∀Γ

( ) 1' 1 1'

2 ' 2 2 '

U

U

C U t t t

t t t

∃ Γ →

∃ Γ →

⊳

⊳

 

 

Choose arbitrary t1, t2, U, and Γ  

Assume: 1 2Ut t U≈ → ( ) 1' 1 1'UC U t t t∃ Γ →⊳  

Choose arbitrary t1’ such that 1 1'Ut tΓ →⊳  

Derive: 2 ' 2 2 'Ut t t∃ Γ →⊳  

 

Proof by induction on the structure of 1 1'Ut tΓ →⊳  

• Case * *

1 11 [ ] , ( , ) n Ut E a n Bound E n a= ∀ Γ →⊳ 1 1'' 1'' 1'Ut t t t= Γ →⊳  

o From lemma 4.2.8.6, 2 '', 2 ''' 2 2 '' 2 '' 2 '''Ut t t t t t∃ = Γ →⊳  

o So 2 ' 2 2 'Ut t t∃ Γ →⊳  



 
 
 
 

 

55 

• Case * *

1 1... 1 1... 11 [ , , ] , ( , ) :n n n n Ut E a a a Bound E n k a d− += Γ →⊳  

o I.H. is 
1 2

1, 2, 1', , U
t t U

t t t U
≈ →

∀ ∀ ∀ ∀ ∀Γ
( ) : 1 1'

2 ' 2 2 '

U

U

C U k t t

t t t

Γ →

∃ Γ →

⊳

⊳

 

o From lemma 4.2.8.5, ]',','[2 ...11...1

*

1 +−= nnn aaaEt  for some 'a  

o Because 1 2Ut t≈ , 'n U nn a a∀ ≈  

o From I.H., *

1, ( , ) ' 'n UBound E n a dΓ →⊳  for some d’ 

o From EMU-IND, 2 ' 2 2 'Ut t t∃ Γ →⊳   

 

Lemma 4.2.5: 

1 2
1, 2, 1', 2 ', , U

t t U
t t t t U

≈ →
∀ ∀ ∀ ∀ ∀ ∀Γ

( ) 1 1' 2 2 '

1' 2 '

U U

U

C U t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 

That is, 

1 2
, 1, 2, 1', 2 ', , U

t t U
j t t t t U

≈ →
∀ ∀ ∀ ∀ ∀ ∀ ∀Γ

( ) : 1 1' 2 2 '

1' 2 '

U U

U

C U j t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 

Proof by induction on j. 

• Base case: (4.2.5.1) 
* *

1 11 [ ] , ( , )1, 2, 1'

2 ', ,

n U
t E a n Bound E n at t t

t U

= ∀ Γ →∀ ∀ ∀

∀ ∀ ∀Γ

⊳ 1 1'' 1'' 1'

1 2

U

U

t t t t

t t U

= Γ →

≈ →

⊳

( ) 2 2 '

1' 2 '

U

U

C U t t

t t

 Γ →
 

≈ 

⊳

 

• Step case: (4.2.5.2) 

1, 2, 1', 1 2

2 ', ,

U
t t t t t U

t U
j

∀ ∀ ∀ ≈ →

∀ ∀ ∀Γ
∀

( ) : 1 1' 2 2 '

1' 2 '

1, 2, 1', 1 2

2 ', ,

U U

U

U

C U j t t t t

t t

t t t t t U

t U

 Γ → Γ →
 

≈ 
∀ ∀ ∀ ≈ →

∀ ∀ ∀Γ

⊳ ⊳

( ) 1: 1 1' 2 2 '

1' 2 '
U U

U

C U j t t t t

t t

 Γ + → Γ →
 

≈ 

⊳ ⊳

 

 

Lemma 4.2.5.1: 
* *

1 11 [ ] , ( , )1, 2, 1'

2 ', ,

n Ut E a n Bound E n at t t

t U

= ∀ Γ →∀ ∀ ∀

∀ ∀ ∀Γ

⊳ 1 1'' 1'' 1'

1 2

U

U

t t t t

t t U

= Γ →

≈ →

⊳

( ) 2 2 '

1' 2 '

U

U

C U t t

t t

 Γ →
 

≈ 

⊳

 

 

Choose arbitrary t1, t2, t1’, t2’, U, and  Γ. 

Assume:  
* *

1 11 [ ] , ( , ) n Ut E a n Bound E n a= ∀ Γ →⊳ 1 1'' 1'' 1'Ut t t t= Γ →⊳  

Assume: 1 2Ut t U≈ → ( ) 2 2 'UC U t tΓ →⊳  

Derive: 1' 2 'Ut t≈  

 

From lemma 4.2.8.5, ][2 *

1 bEt =  for some b  

Because 1 2Ut t≈ , n U nn a b∀ ≈  



 
 
 
 

 

56 

From the contrapositive of lemma 4.2.4, *

1, ( , ) n Un Bound E n b∀ Γ →⊳  

 

From lemma 4.2.8.6, 2 '' 2 2 '' 2 '' 2 '''Ut t t t t∃ = Γ →⊳  

Then 2 2 'Ut tΓ →⊳  by EMU-BASE only and t2’’’=t2’ 

By transitivity, 1'' 2 ''Ut t≈  

From lemma 4.2.8.1, 1' 2 'Ut t≈  

 

Lemma 4.2.5.2: 

1, 2, 1', 1 2

2 ', ,

U
t t t t t U

t U
j

∀ ∀ ∀ ≈ →

∀ ∀ ∀Γ
∀

( ) : 1 1' 2 2 '

1' 2 '

1, 2, 1', 1 2

2 ', ,

U U

U

U

C U j t t t t

t t

t t t t t U

t U

 Γ → Γ →
 

≈ 
∀ ∀ ∀ ≈ →

∀ ∀ ∀Γ

⊳ ⊳

( ) 1: 1 1' 2 2 '

1' 2 '
U U

U

C U j t t t t

t t

 Γ + → Γ →
 

≈ 

⊳ ⊳

 

Choose arbitrary j 

Assume(A): 
1, 2, 1', 1 2

2 ', ,

U
t t t t t U

t U

∀ ∀ ∀ ≈ →

∀ ∀ ∀Γ

( ) : 1 1' 2 2 '

1' 2 '

U U

U

C U j t t t t

t t

Γ → Γ →

≈

⊳ ⊳
 

Derive:  
1, 2, 1', 1 2

2 ', ,

U
t t t t t U

t U

∀ ∀ ∀ ≈ →

∀ ∀ ∀Γ

( ) 1: 1 1' 2 2 '

1' 2 '

U U

U

C U j t t t t

t t

Γ + → Γ →

≈

⊳ ⊳
 

 

Choose arbitrary t1, t2, t1’, t2’, U, and Γ  

Assume: 1 2Ut t U≈ → ( ) : 1 1' 2 2 'U UC U j t t t tΓ → Γ →⊳ ⊳  

Derive: 1' 2 'Ut t≈  

 

Because 1: 1 1'Uj t tΓ + →⊳ , ],,[1 ...11...1

*

1 +−= nnn aaaEt  where 

*

1, ( , ) m Um n Bound E m a∀ < Γ →⊳  and *

1, ( , ) : n UBound E n j a dΓ →⊳  for some d. 

So ],,['1 ...11...1

*

1 +−= nn adaEt  

 

From lemma 4.2.8.5, ]'[2 *

1 aEt =  for some 'a  

Because 1 2Ut t≈ , 'k U kk a a∀ ≈  

From contrapositive of lemma 4.2.4, *

1, ( , ) 'm Um n Bound E m a∀ < Γ →⊳  

From lemma 4.2.4, *

1, ( , ) ' 'n UBound E n a dΓ →⊳  for some d’ 

From A, 'Ud d≈  

 

Because *

1, ( , ) 'm Um n Bound E m a∀ < Γ →⊳  and *

1, ( , ) ' 'n UBound E n a dΓ →⊳ , and 

EMU-IND, *

1 1... 1 1...2 ' [ ', ', ']n nt E a d a− +=  

From EQ-CTXT, 1' 2 'Ut t≈  

 



 
 
 
 

 

57 

 

Lemma 4.2.7: 

1, 1', 2, 1 2

2 ', ,

t t t t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

U U

U

C U

t t t t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

 

Proof by induction on 21 tt →  

• Base case:(4.2.7.0.1)  

1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

U U

U

C U

t t t t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

• Step case:(4.2.7.0.2)  

1, 1', 2, : 1 2

2 ', ,

t t t n t t U

t U

n

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

∀

⊳

! !

( )

1 1' 2 2 '

1' 2 '

1, 1', 2, 1: 1 2

2 ', ,

U U

U

C U

t t t t

t t

t t t n t t U

t U

 
 
 
 
  Γ → Γ →  
  ≈

  

∀ ∀ ∀ Γ + → →

∀ ∀ ∀Γ

⊳ ⊳

⊳

! !

( )

1 1' 2 2 '

1' 2 '
U U

U

C U

t t t t

t t

 
 
 
 
  Γ → Γ →  
  ≈

  

⊳ ⊳

 

 

Lemma 4.2.7.0.1: 

1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

U U

U

C U

t t t t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

 

That is:  

, 1, 1', 2, 1: 1 2

2 ', ,

j t t t t t U

t U

∀ ∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

j

U U

U

C U

t t t t

t t

 
Γ → Γ → 
 ≈
 

⊳ ⊳

 

 



 
 
 
 

 

58 

Proof by induction on j: 

• Base case:   

1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

!0 !

( )

1 1' 2 2 '

1' 2 '

U U

U

C U

t t t t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

o That is 1 UtΓ →⊳  

o The above contradicts 1 2t tΓ →⊳  

o So conclude 1' 2 'Ut t≈  

• Step case (4.2.7.1)  

1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

j

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

∀

⊳

! !

( )

1 1' 2 2 '

1' 2 '

1, 1', 2, 1: 1 2

2 ', ,

j

U U

U

C U

t t t t

t t

t t t t t U

t U

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳ ⊳

⊳

! 1 !

( )

1 1' 2 2 '

1' 2 '

j

U U

U

C U

t t t t

t t

+

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

⊳ ⊳

 

 

Lemma 4.2.7.0.2: 

1, 1', 2, : 1 2

2 ', ,

t t t n t t U

t U

n

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

∀

⊳

! !

( )

1 1' 2 2 '

1' 2 '

1, 1', 2, 1: 1 2

2 ', ,

U U

U

C U

t t t t

t t

t t t n t t U

t U

 
 
 
 
  Γ → Γ →  
  ≈

  

∀ ∀ ∀ Γ + → →

∀ ∀ ∀Γ

⊳ ⊳

⊳

! !

( )

1 1' 2 2 '

1' 2 '
U U

U

C U

t t t t

t t

 
 
 
 
  Γ → Γ →  
  ≈

  

⊳ ⊳

 

 

Choose arbitrary n. 



 
 
 
 

 

59 

Assume (A): 
1, 1', 2, : 1 2

2 ', ,

t t t n t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

U U

U

C U

t t t t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

Derive: 
1, 1', 2, 1: 1 2

2 ', ,

t t t n t t U

t U

∀ ∀ ∀ Γ + → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

U U

U

C U

t t t t

t t

 Γ → Γ → 
 ≈
 

⊳ ⊳

 

 

Choose arbitrary t1, t1’, t2, t2’, U, and  Γ . 

Assume: 1: 1 2n t t UΓ + → →⊳ ( )C U  

Assume: 
! !

1 1' 2 2 'U Ut t t tΓ → Γ →⊳ ⊳  

Derive: 1' 2 'Ut t≈  

 

Because 1: 1 2n t tΓ + →⊳ , ]1[1 1 rEt = , ]2[2 1 rEt = , : : 1 2n r rΓ →⊳  

More generally, ],1,[1 ...11...1

*

1 +−= nn araEt  and ],2,[2 ...11...1

*

1 +−= nn araEt  

Because r1 (which is in position n) is in the evaluation hole of *

1E , *

1( , )Bound E n = ∅  

Consider the term ]',3,'[3 ...11...1

*

1 +−= nn araEt  where 

!
*

1, ( , ) 'm U mm n Bound E m a a∀ ≠ Γ →⊳  and 
!

1 3Ur rΓ →⊳  

Because U→  normalizes all subterms first, 
* !

1 3 1'U Ut t tΓ → →⊳  

Consider the term ]',4,'[4 ...11...1

*

1 +−= nn araEt  where 

!
*

1, ( , ) 'm U mm n Bound E m a a∀ ≠ Γ →⊳  and 
!

2 4Ur rΓ →⊳  

Because U→  normalizes all subterms first, 
* !

2 4 2'U Ut t tΓ → →⊳  

 

From A, 3 4Ur r≈  

From EQ-CTXT, 3 4Ut t≈  

From lemma 4.2.3, 1' 2 'Ut t≈  

 



 
 
 
 

 

60 

Lemma 4.2.7.1: 

1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

j

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

∀

⊳

! !

( )

1 1' 2 2 '

1' 2 '

1, 1', 2, 1: 1 2

2 ', ,

j

U U

U

C U

t t t t

t t

t t t t t U

t U

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳ ⊳

⊳

! 1 !

( )

1 1' 2 2 '

1' 2 '

j

U U

U

C U

t t t t

t t

+

 
 
 
 
  

Γ → Γ →  
  ≈ 

  

⊳ ⊳

 

 

Choose arbitrary j. 

Assume(A): 
1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! !

( )

1 1' 2 2 '

1' 2 '

j

U U

U

C U

t t t t

t t

 
Γ → Γ → 
 ≈
 

⊳ ⊳

 

Derive:  

1, 1', 2, 1: 1 2

2 ', ,

t t t t t U

t U

∀ ∀ ∀ Γ → →

∀ ∀ ∀Γ

⊳

! 1 !

( )

1 1' 2 2 '

1' 2 '

j

U U

U

C U

t t t t

t t

+ 
Γ → Γ → 
 ≈
 

⊳ ⊳

 

 

Choose arbitrary t1, t1’, t2, t2’, U, and  Γ. 

Assume: 1: 1 2t t UΓ → →⊳ ( )C U  

Assume: 
! 1 !

1 1' 2 2 '
j

U U
t t t t

+

Γ → Γ →⊳ ⊳  

Derive: 1' 2 '
U

t t≈  

Because 
! 1

1 1'
j

U
t t

+

Γ →⊳ , there exists t3 such that 1 3
U

t tΓ →⊳  and 
!

3 1'
j

U
t tΓ →⊳  

 

Case split on the form of 1 3
U

t tΓ →⊳  

• EMU-BASE: 1 4
U

t t=  and 4 3t tΓ →⊳  

o From lemma 4.2.8.1, 2 3
U

t t≈  

o From lemma 4.2.3, 2 3
U

t tΓ ↓⊳  

o That is, 
!

2 2 '
U

t tΓ →⊳ , 
!

3 1'
U

t tΓ →⊳ , and 2 ' 1'
U

t t≈  

o From EQ-SYMM, 1' 2 '
U

t t≈  



 
 
 
 

 

61 

• EMU-IND: ]1[1 1 aEt +=  where 1, ( ) 1 3
U

Bound E a a
+Γ →⊳  

o So ]3[3 1 aEt +=  

o Note that if a1 is inactive, then a3 is the same sort of inactive term (from 

lemma 4.2.8.4) 

o So because 1: 1 2t tΓ →⊳ , there exists t3’ such that 1: 3 3't tΓ →⊳  

o Choose arbitrary t3’ such that 1: 3 3't tΓ →⊳  

o Choose arbitrary t3’’ such that 
!

3' 3''
U

t tΓ →⊳  

o From A, 3'' 1'
U

t tΓ ↓⊳  

o From 4.2.7.2, 3'' 2 '
U

t tΓ ↓⊳  

o From lemma 4.2.8.7, 1' 2 '
U

t tΓ ↓⊳  

o Because ( , )N U → , ( 1', )
U

N tΓ →⊳ , and ( 2 ', )
U

N tΓ →⊳ , 1' 2 '
U

t tΓ ↓⊳  

implies 1' 2 '
U

t t≈  

o So 1' 2 '
U

t t≈  

 

Lemma 4.2.7.2: 

1 1
, 1, 1', 1: [ 1] 2

2, 2 ', ,

E a a E a t U

t t U

+ +∀ ∀ ∀ Γ → →

∀ ∀ ∀ ∀Γ

⊳

1 1 1

( )

[ 1] [ 1'] [ 1'] 2 '

2 2 '

U

U

C U

E a E a E a t

t t

+ + + Γ → Γ →
 

Γ ↓ 

⊳ ⊳

⊳

 

 

Choose arbitrary 1 ,E
+ a1, a1’, t2, t2’, U, and Γ. 

Assume: 11: [ 1] 2E a t U
+Γ → →⊳ ( )C U  

Assume: 1 1 1[ 1] [ 1'] [ 1'] 2 '
U

E a E a E a t
+ + +Γ → Γ →⊳ ⊳  

Derive: 2 2 '
U

t tΓ ↓⊳  

 

Case split on the form of 1

1 [ 1] 2E a t
+Γ →⊳  

• Case ]1[1 aE +  = (fun r(x:!):!.b I) 

o So t2 = b[I/x][ fun r(x:!):!.b/r] 

o Case split on the form of ]1[1 aE +  

� Case a1 = fun r(x:!):!.b 

• So a1’ = fun r(x:!):!.b’ where , '
U

x b bΓ →⊳  

• So t2’ = b’[I/x][ fun r(x:!):!.b’/r] 

• From lemma 4.2.7.5, 2 2 '
U

t tΓ ↓⊳  

� Case a1 = I 

• From lemma 4.2.8.4 a1’ = I’ where I’ is an inactive term 

• Then '
U

I IΓ →⊳  

• Then t2’ = b[I’/x][ fun r(x:!):!.b/r] 

• From lemma 4.2.7.4, 2 2 '
U

t tΓ ↓⊳  



 
 
 
 

 

62 

• Case endbxcbxcwithdcmatchaE nnnn ...||...|]1[ 1111 =>=>=+   

o So t2 = ]/[ nn xdb  

o Case split on the form of ]1[1 aE +  

� Case a1 = )( dcn  

• Because nc  has no holes, and from lemma 4.2.8.3 

n U
cΓ →⊳ , then dd n ∈∃ , 

n U n
d eΓ →⊳  

• So let ...11...1 ,, +−= nnn dede  

• So 
U

d eΓ ↓⊳  

• So a1’ = )( ecn   

• Then t2’= ]/[ nn xeb  

• From lemma 4.2.7.4, 2 2 '
U

t tΓ ↓⊳  

� Case a1 = nb  

• So , '
n U n

x b bΓ →⊳  

• So t2’ = ]/[' nn xdb  

• From lemma 4.2.7.5, 2 2 '
U

t tΓ ↓⊳  

� Case a1 = mb  where nm ≠  

• Then t2’ is ]/[ nn xdb  

• Because t2=t2’, 2 2 '
U

t tΓ ↓⊳  from lemma 4.2.3 

• Case binIxletaE ==+ ]1[1   

o So t2 = b[I/x] 

o Case split on the form of ]1[1 aE +  

� Case a1 = I 

• Then '
U

I IΓ →⊳   

• Then t2’=b[I’/x] 

• From lemma 4.2.7.4, 2 2 '
U

t tΓ ↓⊳  

� Case a1 = b 

• Then , '
U

x b bΓ →⊳   

• Then t2’=b’[I/x] 

• From lemma 4.2.7.5, 2 2 '
U

t tΓ ↓⊳  

 

Lemma 4.2.7.3: 

, ( ) 1 2
1, 2, , ,

[ 1] [ 2]

U

U

Bound E a a
a a U E

E a E a

+
+

+ +

Γ ↓
∀ ∀ ∀ ∀Γ ∀

Γ ↓

⊳

⊳

 

 

(Note E+  is the arbitrary depth context) 

 



 
 
 
 

 

63 

Choose arbitrary a1, a2, U, E+ , and  Γ. 

Assume: , ( ) 1 2
U

Bound E a a
+Γ ↓⊳  

Derive: [ 1] [ 2]
U

E a E a
+ +Γ ↓⊳  

 

Proof by induction on the structure of E+  

• Base case: E+  is * 

o Then Bound( E+ ) = {} 

o Then , ( ) 1 2
U

Bound E a a
+Γ ↓⊳  implies [ 1] [ 2]

U
E a E a

+ +Γ ↓⊳  

o So [ 1] [ 2]
U

E a E a
+ +Γ ↓⊳  

• Step case: E+ = 1'[ ]E E
+ +  

o So 1, ( '), ( ) 1 2
U

Bound E Bound E a a
+ +Γ ↓⊳  

o From lemma 4.2.2.6, 1 1, ( ') [ 1] [ 2]
U

Bound E E a E a
+ + +Γ ↓⊳  

o From I.H., 1 1'[ [ 1]] '[ [ 2]]
U

E E a E E a
+ + + +Γ ↓⊳  

o That is, [ 1] [ 2]
U

E a E a
+ +Γ ↓⊳  

 

Lemma 4.2.7.4: 

'
, ', , ,

[ / ] [ '/ ]

U

U

a a
a a b x

b a x b a x

Γ ↓
∀ ∀ ∀ ∀ ∀Γ

Γ ↓

⊳

⊳

 

 

Proof by induction on ]/[ xab : 

• Base case nxb =  and ( ( ) ( ))
n n

Vars x Vars a∪ ∩ Γ = ∅  

o So ]/[ xab  = na  

o Because '
U

a aΓ ↓⊳ , '
n U n

a aΓ ↓⊳  

o Because '
n U n

a aΓ ↓⊳  and ( ( ) ( ))
n n

Vars x Vars a∪ ∩ Γ = ∅ , 

( ( ) ( '))
n n

Vars x Vars a∪ ∩ Γ = ∅  

o So ]/'[ xab = 'na  

o Because '
n U n

a aΓ ↓⊳ , [ / ] [ '/ ]
U

b a x b a xΓ ↓⊳  

• Step case ][*

1 cEb =  and *

1, ( , ) : [ / ]
n n

n Bound E n k c a x d∀ Γ =⊳  

o I.H. is 
'

, ', , ,
: [ / ] [ '/ ]

U

U

a a
a a b x

k b a x b a x

Γ ↓
∀ ∀ ∀ ∀ ∀Γ

Γ ↓

⊳

⊳

 

o So ][]/[ *

1 dExab =   

o Let 'd  = ]/'[ xac  

o Then ]'[]/'[ *

1 dExab =  (Note: even if nxb = , CAS-BASE cannot apply 

because ( ( ) ( ))
n n

Vars x Vars a∪ ∩ Γ ≠ ∅ ) 

o From I.H., *

1, ( , ) '
n U n

n Bound E n d d∀ Γ ↓⊳  



 
 
 
 

 

64 

o From lemma 4.2.2.6, * *

1 1[ ] [ ']
U

E d E dΓ ↓⊳  

o That is, [ / ] [ '/ ]
U

b a x b a xΓ ↓⊳  

 

Lemma 4.2.7.5: 

, '
, , ', ,

[ / ] '[ / ]

U

U

x b b
a b b x

b a x b a x

Γ →
∀ ∀ ∀ ∀ ∀Γ

Γ ↓

⊳

⊳

 

 

Choose arbitrary , , ',a b b x , and  Γ. 

Assume: , '
U

x b bΓ →⊳  

Derive: [ / ] '[ / ]
U

b a x b a xΓ ↓⊳  

 

Then there exists E+ , c, and c’ such that b = E+ [c] and , , ( ) '
U

x Bound E c c
+Γ →⊳  

Note that E+  is the “deepest” possible context that fits the above description. 

So b’ = E+ [c’] 

In terms of E+ [c], ]/[ xab  = ( [ ])[ / ]E c a x+  

Because , , ( ) '
U

x Bound E c c
+Γ →⊳  and E+  is the deepest possible context, none of x  

appear in c or c’ 

So ]/[ xab  = ( [ ])[ / ]E c a x+  = ( [ / ])[ ]E a x c+  

By a similar argument, ]/[' xab  = ( [ '])[ / ]E c a x+  = ( [ / ])[ ']E a x c+  

Substitution cannot affect the “binding” variables in a context, so Bound( E+ ) = 

Bound( [ / ]E a x+ ) 

Then , , ( [ / ]) '
U

x Bound E a x c c
+Γ →⊳  

Then , , ( [ / ]) '
U

x Bound E a x c c
+Γ ↓⊳  

From lemma 4.2.7.3, , ( [ / ])[ ] ( [ / ])[ ']
U

x E a x c E a x c
+ +Γ ↓⊳  

Because neither of the terms above contain any of the variables in x , 

( [ / ])[ ] ( [ / ])[ ']
U

E a x c E a x c
+ +Γ ↓⊳  

That is, [ / ] '[ / ]
U

b a x b a xΓ ↓⊳  

 

Lemma 4.2.8.1 

1, 2, 1', 2 ' 1 2 1 1' 2 2 '

,

U
t t t t t t t t t t U

U

∀ ∀ ∀ ∀ ≈ Γ → Γ → →

∀ ∀Γ

⊳ ⊳ ( )

1' 2 '
U

C U

t t≈
 

 

Proof by induction on 1 1't tΓ →⊳  

• Case t1= ]1[1 aE where : 1 1'k a aΓ →⊳  

o I.H. is 

1, 2, 1', 2 ' 1 2 : 1 1' 2 2 '

,

U
t t t t t t k t t t t U

U

∀ ∀ ∀ ∀ ≈ Γ → Γ → →

∀ ∀Γ

⊳ ⊳ ( )

1' 2 '
U

C U

t t≈
 



 
 
 
 

 

65 

o From lemma 4.2.8.5,  t1 = *
1

*

1 1 1 1... ( )
[ ... , 1, ]

n n Holes E
E b b a b− +

 and t2 = 

*
1

*

1 1 1 1... ( )
[ ... , 2, ]

n n Holes E
E d d a d− +

 for some b  and d  

o Then 1 2
U

a a≈   

o Case split on the form of *

1E  

� Case t1=(a1 g1) and t2=(a2 g2) 

• So t1’ = (a1’ g1) 

• Case split on the form of 2 2 't tΓ →⊳  

o Case 2 2 'a aΓ →⊳  

� From I.H. 1' 2 '
U

a a≈  

� So t2’ = (a2’ g2) 

� From EQ-CTXT 1' 2 '
U

t t≈  

o Case Ia ∈2  and 2 2 'g gΓ →⊳  

� From lemma 4.2.8.3, 

( )1'' 1 1''Ua a aΓ ¬ ∃ = →⊳  

� The previous statement contradicts 

1 1'a aΓ →⊳  

� So conclude 1' 2 '
U

t t≈  

o Case a2=fun x(a:!):!.t and 2g I∈  

� From lemma 4.2.8.3, 

( )1'' 1 1''Ua a aΓ ¬ ∃ = →⊳  

� The previous statement contradicts 

1 1'a aΓ →⊳  

� So conclude 1' 2 '
U

t t≈  

� Case t1=(f1 a1) and t2=(f2 a2) where If ∈1  

• So t1’ = (f1 a1’) 

• Case split on the form of 2 2 't tΓ →⊳  

o Case 2 2 'f fΓ →⊳  

� From lemma 4.2.8.3, 

( )2 '' 2 2 ''Uf f fΓ ¬ ∃ = →⊳  

� The previous statement contradicts 

2 2 'f fΓ →⊳  

� So conclude 1' 2 '
U

t t≈  

o Case If ∈2  and 2 2 'a aΓ →⊳  

� From I.H. 1' 2 '
U

a a≈  

� So t2’ = (f2 a2’) 

� Then 1' 2 '
U

t t≈  

o Case f2=fun x(a:!):!.t and Ia ∈2  



 
 
 
 

 

66 

� From lemma 4.2.8.3, 

( )1'' 1 1''Ua a aΓ ¬ ∃ = →⊳  

� The previous statement contradicts 

1 1'a aΓ →⊳  

� So conclude 1' 2 '
U

t t≈  

� Case t1= match a1 with endsxcsxc nnn =>=> |...|111  

• So t2 = match a2 with endvycvyc nnn =>=> |...|111  

• Then t1’ = match a1’ with endsxcsxc nnn =>=> |...|111  

• Case split on the form of 2 2 't tΓ →⊳  

o Case 2 2 'a aΓ →⊳  

� From I.H. 1' 2 '
U

a a≈  

� So t2’ = match a2’ with 

endvycvyc nnn =>=> |...|111  

� From EQ-CTXT 1' 2 '
U

t t≈  

o Case Ica i(2 = ) 

� From lemma 4.2.8.3, 

( )1'' 1 1''Ua a aΓ ¬ ∃ = →⊳  

� The previous statement contradicts 

1 1'a aΓ →⊳  

� So conclude 1' 2 '
U

t t≈  

� Case t1= let x1 = a1 in b1 

• So t2 = let x2 = a2 in b2 

• Then t1’ = let x1 = a1’ in b1 

• Case split on the form of 2 2 't tΓ →⊳  

o Case 2 2 'a aΓ →⊳  

� From I.H. 1' 2 '
U

a a≈  

� So t2’ = let x2 = a2’ in b2 

� From EQ-CTXT 1' 2 '
U

t t≈  

o Case Ia ∈2  

� From lemma 4.2.8.3, 

( )1'' 1 1''Ua a aΓ ¬ ∃ = →⊳  

� The previous statement contradicts 

1 1'a aΓ →⊳  

� So conclude 1' 2 '
U

t t≈  

• Case t1=(F I) where F= fun x(a:!):!.t 

o So t1’ = t[I / a] [F/x] 

o From lemma 4.2.8.5,  t2=(F’ I’) and '
U

F F≈  and '
U

I I≈   

o From lemma 4.2.8.3,  'FΓ →⊳  and 'IΓ →⊳    



 
 
 
 

 

67 

o Because 2 2 't tΓ →⊳  and all the sub-terms of t2 don’t take a step in → , 

F’ is a fun term 

o Because C(U), and '
U

F F≈ , F’= fun x’(a’:!):!.t’ where ' [ '/ ]
U

t t a a≈   

o So t2’=t’[I’/a’][F’/x’] 

o Because ' [ '/ ]
U

t t a a≈ , 'UI I≈ , and '
U

F F≈ ,  

'[ '/ '][ '/ '] [ / ][ / ]
U

t I a F x t I a F x≈   

o From EQ-SYMM, [ / ][ / ] '[ '/ '][ '/ ']
U

t I a F x t I a F x≈  

o That is, 1' 2 '
U

t t≈  

• Case t1=match ( Ici ) by x y return ! with 

endsxcsxcsxc nnniii =>=>=> |...||...|111  

o So t1’= ]/[ ii xIs  

o From lemma 4.2.8.5, t2= match a by x y return ! with 

endsxcsxcsxc nnniii '|...|'|...|'111 =>=>=>  where ( )
U i

a c I≈  and 

'
n U n

n s s∀ ≈  

o Because C(U) and ( )
U i

a c I≈ , aa U=∀ '  where )(' tfa = , icf = .  From 

lemma 4.2.8.3,  'a∀  where '
U

a a= , 'aΓ →⊳ a' does not take a step, so 

none of t will take a step in → .  Because aa U=' , It U=  

o So t2’ = ]/[' ii xts  

o Because 
U

t I= , and '
i U i

s s≈ , 1' 2 '
U

t t≈  by EQ-CTXT 

• Case t1=let x = I by y in t 

o So t1’ = t[I/x] 

o From lemma 4.2.8.5, t2=let x’ = I’ by y’ in t’ where '
U

I I≈  and  

[ '/ ] '
U

t x x t≈   

o So t2’ = t’[I’/x’] 

o So 1' 2 '
U

t t≈   by EQ-CTXT  

• Case t1=E[abort !] 

o So t1’ = abort ! 

o Then t2 = E[abort !]   

o So t2’ = abort ! 

o So 1' 2 '
U

t t≈  

 

Lemma 4.2.8.2 
*

1

*

1

1 2 1 [ ]
1, 2, , ,

2 [ ]

U

U

t t t E a
t t U a

b t E b

≈ =
∀ ∀ ∀ ∀ ∀Γ

∃ =
 

 

Proof by induction on  1 2
U

t t≈  

• Case t1 = t2 

o Let b a=  



 
 
 
 

 

68 

o Then t2 = ][*

1 aE  

• Case Utt ∈= }21{  

o Let b a=  

o Then *

12 [ ]
U

t E a=  

• Case : 2 1
U

k t t≈  

o I.H. is 
*

1

*

1

: 1 2 1 [ ]
1, 2, , ,

2 [ ]

U

U

k t t t E a
t t U a

b t E b

≈ =
∀ ∀ ∀ ∀ ∀Γ

∃ =
 

o From I.H., *

12 [ ]
U

b t E b∃ =  

• Case 3 : 1 3 : 3 2
U U

t k t t k t t∃ ≈ ≈  

o I.H. is 
*

1

*

1

: 1 2 1 [ ]
1, 2, , ,

2 [ ]

U

U

k t t t E a
t t U a

b t E b

≈ =
∀ ∀ ∀ ∀ ∀Γ

∃ =
 

o From I.H., *

13 [ ]
U

b t E b∃ =  

o Choose arbitrary ][*

1 bE  where *

13 [ ]
U

t E b=  

o From I.H., *

1' 2 [ ']
U

b t E b∃ =  

• Case 1 11 [ 1] 2 [ 2] : 1 2
U

t E a t E a k a a
+ += = ≈  

o So t1 = ],1,[*

1 dacE  and t2 = ],2,[*

1 dacE  

o So let b  be dac ,2,  

o Then *

12 [ ]
U

t E b=  

 

Lemma 4.2.8.2.1 

1 2 1 ( )
1, 2, , ,

2 ( )

U

U

t t t c a
t t U a

b t c b

≈ =
∀ ∀ ∀ ∀ ∀Γ

∃ =
 

 

From lemma 4.2.8.2, ,d d∃  such that 2 ( )Ut d d=  

So 
Ud c≈  

From lemma 4.2.8.2, 
Ud c=  

So 2 ( )Ut c d=  

 

Lemma 4.2.8.2.2 

1 2 1
1, 2, ,

2 ' 2 ' 2

U

U

t t t I
t t U

t I t t

≈ ∈
∀ ∀ ∀ ∀Γ

∃ ∈ =
 

Note I is the set of inactive terms 

 

t1 = ][
*

1 aE  for some a  

From lemma 4.2.8.2, *

12 [ ]
U

b t E b∃ =  

Proof by induction on ][
*

1 aE  

• Case t1 = (C a ) where C is a constant 



 
 
 
 

 

69 

o I.H. is , , ,
' '

n U n

U

a b a I
n b U

b I b b

≈ ∈
∀ ∀ ∀ ∀Γ

∃ ∈ =
 

o From lemma 4.2.8.2.1, 2 ( )
U

b t C b∃ =  

o From I.H. ' '
n n u n

n b I b b∀ ∃ ∈ =  

o So ( ')C b I∈ , let 2 ' ( ')t C b=  

• Case otherwise 

o All other inactive *

1E  will be inactive regardless of their subterms 

o So 2 ' 2 ' 2
U

t I t t∃ ∈ =  from lemma 4.2.8.2 

 

Lemma 4.2.8.3 

1, 2, ,
U

t t U
→

∀ ∀ ∀ ∀Γ
( ) 1 2 1

2 ' 2 2 '

U

U

C U t t t I

t t t

≈ ∈

∀ = Γ →⊳

 

Note I is the set of inactive terms 

 

Choose arbitrary t2’ such that 2'2 tt U=  

(Proof by contradiction) 

Assume 2 'tΓ →⊳  

Because 1'2 tt U≈  and lemma 4.2.8.5, ][1 *

1 aEt =  and ]['2 *

1 bEt =  for some ba ,  

 

Proof by induction on ][
*

1 aE  

• Case t1 = (c1 a1) where c1 is a constant 

o So t2’ = (f2 a2) 

o Case split on the form of 2 'tΓ →⊳  

� Case 2fΓ →⊳  

• From I.H. 2fΓ →⊳  

• Contradiction, conclude 2 'tΓ →⊳  

� Case If ∈2  and →2a  

• From I.H. 2aΓ →⊳  

• Contradiction, conclude 2 'tΓ →⊳  

� Case f2= fun x(y:!):!.d and Ia ∈2  

• Contradicts C(U)  because c1 
U

≈  fun x(y:!):!.d 

• So conclude 2 'tΓ →⊳  

• Case otherwise 

o All other inactive *

1E  will be inactive regardless of their subterms 

o So It ∈'2  

o Therefore 2 'tΓ →⊳  

 

 



 
 
 
 

 

70 

In all cases, we get something that contradicts 2 'tΓ →⊳  

So 2 'tΓ →⊳  

 

Lemma 4.2.8.4: 

1, 2, ,
U

t t U
→

∀ ∀ ∀ ∀Γ
( ) 1 2 1

2

UC U t t t I

t I

Γ → ∈

∈

⊳
 

 

Induction on 1 2
U

t tΓ →⊳  

• Case ]1[1 1 aEt += , 1, ( ) : 1 2
U

Bound E k a a
+Γ →⊳ , ]2[2 1 aEt +=  

o I.H. is 1, 2, ,
U

t t U
→

∀ ∀ ∀ ∀Γ
( ) : 1 2 1

2

UC U k t t t I

t I

Γ → ∈

∈

⊳
 

o Case split on the form of ]1[1 aE +  

� Case )(]1[1 IcaE =+  where c is a constant and I  is a list of 

inactive terms 

• From lemma 4.2.8.3, and because c has no holes, 
U

c →  

• So some II n ∈  is a1 

• From I.H., Ia ∈2  

• So )'(2 Ict =  where 'I  is a list of inactive terms 

• So It ∈2  

� Case otherwise 

• All other +
1E  are inactive regardless of the subterms 

• So It ∈2  

• Case 31 tt U=  and 3 2t tΓ →⊳  

o From lemma 4.2.8.3, this t3 cannot exist 

o This case results in a contradiction, conclude It ∈2  

 

Lemma 4.2.8.5 

1, 2, ,
U

t t U
→

∀ ∀ ∀ ∀Γ
* * *

1 1 1

1 2 1

, , ' 1 [ ] 2 [ ']

U Ut t t

E b b t E b t E b

≈ Γ →

∃ = =

⊳
 

 

Proof by induction on 21 tt U≈ : 

• Case t1 = t2 

o Then trivially, * * *

1 1 1, , ' 1 [ ] 2 [ ']E b b t E b t E b∃ = =  

• Case Utt ∈= }21{  

o Contradicts U →  

o So conclude * * *

1 1 1, , ' 1 [ ] 2 [ ']E b b t E b t E b∃ = =  

• Case : 2 1
U

k t t≈  



 
 
 
 

 

71 

o I.H. is 
* * *

1 1 1

( , ) : 1 2 1
1, 2, ,

, , ' 1 [ ] 2 [ ']

U UN U k t t t
t t U

E b b t E b t E b

→ ≈ Γ →
∀ ∀ ∀ ∀Γ

∃ = =

⊳
 

o From I.H. * * *

1 1 1, , ' 1 [ ] 2 [ ']E b b t E b t E b∃ = =  

• Case 3 : 1 3 : 3 2
U U

t k t t k t t∃ ≈ ≈  

o I.H. is 
* * *

1 1 1

( , ) : 1 2 1
1, 2, ,

, , ' 1 [ ] 2 [ ']

U UN U k t t t
t t U

E b b t E b t E b

→ ≈ Γ →
∀ ∀ ∀ ∀Γ

∃ = =

⊳
 

o From I.H. * * *

1 1 1, , ' 1 [ ] 3 [ ']E b b t E b t E b∃ = =  

o From I.H. * * *

1 1 1', '', ''' 3 '[ ''] 2 '[ ''']E b b t E b t E b∃ = =  

o Because ]'[3 *

1 bEt =  and ]''['3 *

1 bEt = , '*

1

*

1 EE =  

o Let 'b  = '''b  

o So * * *

1 1 1, , ' 1 [ ] 2 [ ']E b b t E b t E b∃ = =   

• Case 21]2[2]1[1 11 aaaEtaEt U≈== ++  

o So t1 = ],1,[*

1 dabE   and t2 = ],2,[*

1 dabE  

o So * * *

1 1 1, , ' 1 [ ] 2 [ ']E b b t E b t E b∃ = =  

 

Lemma 4.2.8.6: 

1, 1', 2, ,
U

t t t U
→

∀ ∀ ∀ ∀ ∀Γ
( ) 1 2 1 1' 1'

2 ' 2 2 '

U U

U

C U t t t t t

t t t

≈ = Γ →

∃ = Γ →

⊳

⊳

 

 

Proof by induction on 21 tt U≈ : 

• Case t1 = t2 

o So 21 tt U=   and from transitivity, 2'1 tt U=  

o Let t2’ = t1’ 

o Then 2 ' 2 2 '
U

t t t∃ = Γ →⊳   

• Case Utt ∈= }21{  

o So 21 tt U=  and from transitivity, 2'1 tt U=  

o Let t2’ = t1’ 

o Then 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

• Case : 2 1
U

k t t≈  

o I.H. is 

1, 1', 2, ,
U

t t t U
→

∀ ∀ ∀ ∀ ∀Γ
( ) : 1 2 1 1' 1'

2 ' 2 2 '

U U

U

C U k t t t t t

t t t

≈ = Γ →

∃ = Γ →

⊳

⊳

 

o From I.H. 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

• Case 3 : 1 3 : 3 2
U U

t k t t k t t∃ ≈ ≈  

o I.H. is 

1, 1', 2, ,
U

t t t U
→

∀ ∀ ∀ ∀ ∀Γ
( ) : 1 2 1 1' 1'

2 ' 2 2 '

U U

U

C U k t t t t t

t t t

≈ = Γ →

∃ = Γ →

⊳

⊳

 



 
 
 
 

 

72 

o From I.H. 3' 3 3'
U

t t t∃ = Γ →⊳  

o Choose arbitrary t3’ such that 3'3 tt U=  and 3'tΓ →⊳  

o From I.H. 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

• Case 1 11 [ 1] 2 [ 2] : 1 2
U

t E a t E a k a a
+ += = ≈  

o I.H. is 

1, 1', 2, ,
U

t t t U
→

∀ ∀ ∀ ∀ ∀Γ
( ) : 1 2 1 1' 1'

2 ' 2 2 '

U U

U

C U k t t t t t

t t t

≈ = Γ →

∃ = Γ →

⊳

⊳

 

o Case split on the form of t1 

� Case t1 = (a1 b) 

• Then t2 = (a2 b) 

• From lemma 4.2.8.5, t1’ = (a1’’ b1’’) 

• Case split on the form of 1'tΓ →⊳  

o Case 1'' 1'a aΓ →⊳  

� From I.H. 2 '' 2 2 ''
U

a a a∃ = Γ →⊳  

� So, )''2(2 bat U=  

� Let t2’ = ( 2 '' )a b  

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case Ia ∈''1 and 1'' 1'b bΓ →⊳  

� From lemma 4.2.8.2.2, 

2 '' 2 '' 2
U

a I a a∃ ∈ =  

� So )''1''2(2 bat U=  

� Let t2’ = ( 2 '' 1'')a b  

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case a1’’=fun r(x:!):!.y and Ib ∈''1  

� From lemma 4.2.8.2, 2 '' 2
U

a a∃ =  where 

a2’’=fun r(x’:!):!.y’ 

� So )''1''2(2 bat U=  

� Let t2’ = ( 2 '' 1'')a b  

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

� Case t1 = (f a1) 

• Then t2 = (f a2) 

• From lemma 4.2.8.5, t1’ = (f1’’ a2’’) 

• Case split on the form of 1'tΓ →⊳  

o Case 1'' 'f fΓ →⊳  

� So )2''1(2 aft U=  

� Let t2’ = ( 1'' 2)f a  

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case If ∈''1 and '1''1 aa →  



 
 
 
 

 

73 

� From I.H. 2 '' 2 2 ''
U

a a a∃ = Γ →⊳  

� So )''2''1(2 aft U=  

� Let t2’ = ( 1'' 2 '')f a  

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case f1’’=fun r(x:!):!.y and Ia ∈''1  

� From lemma 4.2.8.2.2, 

2 '' 2 '' 2
U

a I a a∃ ∈ =   

� So )''2''1(2 aft U=  

� Let t2’ = ( 1'' 2 '')f a  

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

� Case t1 = fun r(x:!):!.a1  

• From lemma 4.2.8.5, t1’ = fun r(x:!):!.a1’’ for some a1’’ 

• Then 1'tΓ →⊳  

• The above conclusion contradicts 1'tΓ →⊳  

• Conclude  2 ' 2 2 '
U

t t t∃ = Γ →⊳  

� Case t1 = let x = a1 by y in b 

• Then t2 = let x = a2 by y in b 

• From lemma 4.2.8.5, t1’ = let x = a1’’ by y in b1’’ for some 

a1’’ and b1’’ 

• Case split on the form of 1'tΓ →⊳  

o Case 1'' 1'a aΓ →⊳  

� From I.H. 2 '' 2 2 ''
U

a a a∃ = Γ →⊳  

� So Ut =2  let x = a2’’ by y in b 

� Let t2’ = let x = a2’’ by y in b 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case Ia ∈''1  

� From lemma 4.2.8.2, 2 '' 2 '' 2
U

a I a a∃ ∈ =  

� So Ut =2  let x = a2’’ by y in b 

� Let t2’ = let x = a2’’ by y in b 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

� Case t1 = let x = v by y in a1 

• Then t2 = let x = v by y in a2 

• From lemma 4.2.8.5, t1’ = let x = v1’’ by y in a1’’ for some 

v1’’ and a1’’ 

• Case split on the form of 1'tΓ →⊳  

o Case 1'' 1'v vΓ →⊳  

� So Ut =2  let x = v1’’ by y in a2 

� Let t2’ = let x = v1’’ by y in a2 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  



 
 
 
 

 

74 

o Case Iv ∈''1  

� So Ut =2  let x = v1’’ by y in a2 

� Let t2’ = let x = v1’’ by y in a2 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

� Case t1 = match a1 by x y return ! with 11xc =>b1|…| nn xc => 

bn|…end 

• Then t2 = match a2 by x y return ! with 

11xc =>b1|…| nn xc => bn|…end 

• From lemma 4.2.8.5, t1’ = match a1’’ by x y return ! with 

11xc =>b1’’|…| nn xc => bn’’|…end for some a1’’ and 

b1’’…bn’’ 

• Case split on the form of 1'tΓ →⊳  

o Case 1'' 1'a aΓ →⊳  

� From I.H. 2 '' 2 2 ''
U

a a a∃ = Γ →⊳  

� So Ut =2  match a2’’ by x y return ! with 

11xc =>b1’’|…| nn xc => bn’’|…end 

� Let t2’ = match a2’’ by x y return ! with 

11xc =>b1’’|…| nn xc => bn’’|…end 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case a1’’ = xci  

� From lemma 4.2.8.2.1, 2''2 aa U=∃  where 

a2’’ = 'xci   

� So Ut =2  match a2’’ by x y return ! with 

11xc =>b1’’|…| nn xc => bn’’|…end 

� Let t2’ = match a2’’ by x y return ! with 

11xc =>b1’’|…| nn xc => bn’’|…end 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

� Case t1 = match s by x y return ! with 

11xc =>b1|…| ii xc =>a1|…| nn xc => bn|…end 

• Then t2 = match s by x y return ! with 

11xc =>b1|…| ii xc =>a2|…| nn xc => bn|…end 

• From lemma 4.2.8.5, t1’ = match s1’’ by x y return ! with 

11xc =>b1’’|…| ii xc =>a2’’|…| nn xc => bn’’|…end    for 

some s1’’, a1’’ and b1’’…bn’’ 

• Case split on the form of 1'tΓ →⊳  

o Case 1'' 1's sΓ →⊳  

� So Ut =2  match s1’’ by x y return ! with 

11xc =>b1|…| ii xc =>a2|…| nn xc => bn|…end 



 
 
 
 

 

75 

� Let t2’ = match s1’’ by x y return ! with 

11xc =>b1|…| ii xc =>a2|…| nn xc => bn|…end 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

o Case s1’’ = xci  

� So Ut =2  match s1’’ by x y return ! with 

11xc =>b1|…| ii xc =>a2|…| nn xc => bn|…end 

� Let t2’ = match s1’’ by x y return ! with 

11xc =>b1|…| ii xc =>a2|…| nn xc => bn|…end 

� So 2 ' 2 2 '
U

t t t∃ = Γ →⊳  

 

Lemma 4.2.8.7 

1 2 2 3
1, 2, 3, , U U

t t t t U
t t t U

Γ ↓ Γ ↓ →
∀ ∀ ∀ ∀ ∀Γ

⊳ ⊳

1 3
U

t tΓ ↓⊳

 

 

Choose arbitrary t1, t2, t3, U, and  Γ. 

Assume: 1 2 2 3
U U

t t t tΓ ↓ Γ ↓⊳ ⊳  

Derive: 1 3
U

t tΓ ↓⊳  

 

Because 1 2
U

t tΓ ↓⊳  and U → , 
! !

1', 2 ' 1 1' 2 2 ' 1' 2 '
U U U

t t t t t t t t∀ ∀ Γ → Γ → ≈⊳ ⊳  

Because 2 3
U

t tΓ ↓⊳  and U → , 
! !

2 '', 3'' 2 2 '' 3 3'' 2 '' 3''
U U U

t t t t t t t t∀ ∀ Γ → Γ → ≈⊳ ⊳  

 

Choose arbitrary t1’, t2’, t2’’, and t3’’ (termination is assumed) 

From lemma 4.2.3, 2 ' 2 ''
U

t t≈  

From transitivity, 1' 3''
U

t t≈  

So 1 3
U

t tΓ ↓⊳  



 
 
 
 

 

76 

5       Conclusion and Future Work 
 

This paper presented an algorithm that can be used to deduce the equality of terms in many 

common cases in OpTT.  This algorithm will significantly reduce the amount of effort 

required to develop most formal proofs in OpTT.  However, there a few areas in which 

additional research would improve the algorithm even further.  These areas are discussed in 

this section. 

 

5.1       Termination 
 

The algorithm in this paper is conjectured to terminate if all terms encountered are 

terminating with respect to the operational semantics of OpTT.  A proof of this conjecture 

and an investigation into the conditions under which the hypjoin algorithm terminates would 

be incredibly useful.  This information would allow the programmer to fully understand and 

predict when the algorithm will terminate.  

 

5.2       Clash/Contra 
 

It would be fairly trivial to extend hypjoin so that it is also complete with respect to the clash 

and contra proof rules which are used to derive conclusions in the presence of 

contradictions.  The algorithm presented in this paper will terminate and fail if inconsistency 

is detected.  It would be just as easy to successfully equate any two terms if the provided 

equations result in some contradiction. 

 

5.3       Injectivity 
 
Another simple extension involves completeness with respect to the inj proof rule which is 

used for reasoning about injectivity.  The algorithm could simply detect equations that lead 

to some conclusion that can be derived via injectivity, then that conclusion could be added 

to the list of equations.  For example, if the user-provided equations contain the equation 



 
 
 
 

 

77 

{(C a) = (C b)} where C is a term constructor, then the algorithm would add {a = b} to the 

list of user equations.   



 
 
 
 

 

78 

References 
 

 

  [1] Franz Baader and Tobias Nipkow.  “Term Rewriting and All That.”  Cambridge 

University Press, Cambridge, 1998 

 

  [2] Leo Bachmair and Ashish Tiwari.  “Abstract Congruence Closure and 

Specializations.” Proceedings of the 17th International Conference on Automated 

Deduction, pages 64-78, 2000. 

 

  [3] Frédéric Blanqui, Jean-Pierre Jouannaud and Pierre-Yves Strub.  “From Formal 

Proofs to Mathematical Proofs: A safe, incremental way for building first-order decision 

procedures.”  http://www.loria.fr/~blanqui/papers/ccic.pdf 

 

  [4] Frédéric Blanqui, Jean-Pierre Jouannaud and Pierre-Yves Strub. “Building Decision 

Procedures in the Calculus of Inductive Constructions.”  Lecture Notes in Computer 

Science, pages 328-342, Volume 4646, 2007 

 

  [5] Nicolaas Govert de Bruijn. “Lambda Calculus Notation with Nameless Dummies: A 

Tool for Automatic Formula Manipulation, with Application to the Church-Rosser 

Theorem.” Indagationes Mathematicae, pages 381-392, Volume 34, 1972. 

 

  [6] Solomon Feferman. “Predicativity.” The Oxford Handbook of Philosophy of 

Mathematics and Logic, pages 590-624, Oxford University Press, Oxford, 2005. 

 

  [7] Donald Knuth and Peter Bendix. “Simple Word Problems in Universal Algebras.”  

Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press, 1970 

 

  [8] Aaron Stump and Edwin Westbrook. “Partial Functions in Operational Type 

Theory.”  http://www.guru-lang.org/guru.pdf 



 
 
 
 

 

79 

Vita 
 

Adam Petcher 

 

Date of Birth  June 2, 1980 
 
Place of Birth  Dallas, Texas 
 
Degrees  B.S. Cum Laude, Computer Science, December 2002 
   Texas Christian University, Fort Worth, Texas 
 
   M.S. Computer Science, May 2008 
   Washington University in Saint Louis, Saint Louis, Missouri 
 
          May 2008 
 
 
 



 
 
 
 

 

80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Short Title:  Joining Mod Gnd Equations in OpTT        Adam Petcher, M.S. 2008 


	Deciding Joinability Modulo Ground Equations In Operational Type Theory
	Recommended Citation
	Deciding Joinability Modulo Ground Equations In Operational Type Theory

	tmp.1418338203.pdf.9e6EK

