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Abstract

Existing off-line schedulability analysis for real-time
systems can only handle periodic or sporadic tasks with
known minimum inter-arrival times. Modeling sporadic
tasks with fixed minimum inter-arrival times is a poor ap-
proximation for systems in which tasks arrive in bursts, but
have longer intervals between the bursts. In such cases,
schedulability analysis based on the existing sporadic task
model is pessimistic and seriously overestimates the task’s
time demand. In this paper, we propose a generalized spo-
radic task model that characterizes arrival times more pre-
cisely than the traditional sporadic task model, and we
develop a corresponding schedulability analysis that com-
putes tighter bounds on worst-case response times. Experi-
mental results show that when arrival time jitter increases,
the new analysis more effectively guarantees schedulability
of sporadic tasks.

1 Introduction

In hard real-time systems, meeting time constraints is
crucial, as missing deadlines can cause disastrous failures.
As a consequence, providing reliable certification to those
systems is essential. Hard real-time applications typically
make use of schedulability analysis to guarantee the schedu-
lability of all hard real-time tasks. The analysis can be
done off-line before the system executes, and the analysis
is based on the knowledge of the release times and the exe-
cution times of all tasks. This approach is useful when the
system is deterministic, meaning that the release times and
the execution times of all tasks are known, and either do not
vary or vary only slightly.

Although off-line schedulability analysis is widely used
in real-time systems, the existing analysis can only han-
dle periodic tasks and sporadic tasks with known minimum

∗Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).

inter-arrival times. The time demand of a sporadic task is
treated as that of a periodic task whose period is the mini-
mum inter-arrival time. This can seriously overestimate the
task’s time demand, especially if it arrives in bursts, and
lead to unnecessarily pessimistic upper bounds on its own
and other tasks’ worst case response times.

We found in practice that instances of a sporadic task
usually have a bounded instantaneous arrival rate and a
slower average arrival rate. For example, an aircraft track-
ing application where a group of aircraft appear on the scene
nearly simultaneously may generate a burst of tracking jobs.
Subsequent track updates for these aircraft also may be
in bursts, but only after some longer interval between the
bursts. Such sporadic tasks are best defined with at least two
constraints. One is the higher instantaneous arrival rate that
bounds the maximum number of arrivals over some small
time interval. The other is the lower average arrival rate that
can also be specified as a maximum number of arrivals over
some longer interval, but with a smaller ratio of arrivals per
unit time. In this paper, we call sporadic tasks defined with
multiple constraints generalized sporadic tasks, and we re-
fer to sporadic tasks with only a minimum inter-arrival time
constraint traditional sporadic tasks.
Research Contributions: In this work, we have (1) de-
fined a generalized sporadic task model, which improves on
the traditional sporadic task model by characterizing arrival
times more precisely; (2) developed a new off-line schedu-
lability analysis that computes tighter bounds on worst-case
response times for applications with generalized sporadic
tasks; (3) extended the release guard synchronization proto-
col to govern the release of end-to-end generalized sporadic
tasks as well as end-to-end periodic tasks; (4) designed sep-
arate end-to-end schedulability analysis algorithms for the
direct synchronization protocol and for the generalized re-
lease guard synchronization protocol; and (5) conducted ex-
periments based on realistic workloads. The results of these
experiments show that our generalized sporadic schedula-
bility analyses significantly tighten the bounds on worst-
case response times and more effectively guarantee schedu-
lability of sporadic tasks when arrival-time jitter increases.



2 Generalized Sporadic Task Model

In this paper, we treat a sporadic task as a stream of spo-
radic jobs. To compute the worst-case response time of
sporadic jobs in a system with a fixed-priority preemptive
scheduling policy, we need to model the constraints on the
arrival pattern of the sporadic jobs. The traditional sporadic
task model imposes the constraint that some minimum time
must elapse between any two arrivals of the task. It admits a
worst-case response time analysis by treating the minimum
inter-arrival time as the task’s period.

Wang et al. [15] adopted the (σ, ρ) leaky bucket filter
model used in communication networks to model sporadic
tasks. ρ is the token input rate and σ is the bucket size. The
filter can hold at most σ tokens at any time and is filled at a
constant rate of ρ tokens per unit time. A sporadic task that
follows the (σ, ρ) leaky bucket model will generate its jobs
as follows. The filter releases a job Jk with execution time
Ck when it has at least Ck tokens. Ck tokens are removed
from the filter after the job Jk is released. No job can be
released when the filter does not have enough tokens for the
job execution time. As a result, the bucket size σ should be
at least the maximum execution time among all jobs of the
task so that they may enter the system. From this definition,
we can see that a periodic task with a period equal to or
larger than σ/ρ and execution time equal to or less than
σ satisfies the (σ, ρ) leaky bucket model. In general, each
task can be modeled by many (σ, ρ) pairs once the workload
from the task in any time interval [t1, t2] is never larger than
σ + ρ ∗ (t2 − t1).

Although the leaky bucket model may model the work-
load entering the system from any task, it is more suitable
for modeling periodic tasks with fixed inter-arrival times.
For sporadic tasks that may arrive in bursts, the leaky bucket
model can not provide precise upper bounds on their work-
loads. This imprecision impairs schedulability analysis of
the system. To model the arrival pattern of sporadic jobs
more precisely, we present a new practical model for spo-
radic tasks when scheduling them on a standard real-time
operating system.

The traditional sporadic task model can be interpreted in
a different way. The minimum inter-arrival time constraint
can be understood as a sliding time window of the same
fixed length, each instance of which can have at most one
arrival of the task. This constraint can be generalized in
two ways: (1) by introducing a limit greater than one on
the number of arrivals allowed in a time window or (2) by
allowing multiple pairs of windows and limits on the num-
ber of arrivals. Thus a generalized sporadic task Ti may be
characterized by a set of K(i) arrival time constraints

{(zi,k, wi,k)1 ≤ k ≤ K(i)}

where at most zi,k arrivals of Ti occur in any window of
length wi,k, both zi,k and wi,k are strictly increasing as k

increases, and zi,k is a natural number.
For example, a generalized sporadic task Ti with three

arrival constraints K(i) = 3 {(zi,1 = 1, wi,1 = 2), (zi,2 =
3, wi,2 = 10), (zi,3 = 5, wi,3 = 18)} could have arrivals at
times 0, 2, 4, 10, 12, 18, 20, 22, 28, 30, 36, 38, 40, 46, 48,
54, 56, 58, 64, ...
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Figure 1. Leaky bucket vs. generalized spo-
radic task

Assuming the execution time of Ti is one unit, we plot-
ted in Figure 1 the workload entering the system from Ti

modeled by a leaky bucket model with σ = 1, ρ = 0.5
and treated as a generalized sporadic task with all 3 of its
constraints. There is a big gap between the leaky bucket
workload and the generalized sporadic task workload. The
greatly overestimated workload can adversely affect anal-
ysis of the schedulability of Ti and any other tasks in the
same system.

3 Schedulability Analysis for Generalized
Sporadic Tasks

3.1 Time-Demand Analysis for General-
ized Sporadic Tasks

The definition of a level-i busy period [6] is: a time in-
terval (t0, t0 + t] within which jobs with priority i or higher
are processed through (t0, t0 + t], but no jobs of level i or
higher are processed in (t0 − ε, t0] or (t0 + t, t0 + t+ ε) for
sufficiently small ε > 0.

Suppose Ti is a generalized sporadic task of priority i.
All response times of the jobs of task Ti are a part of some
level-i busy period. The longest response time for a job oc-
curs during a level-i busy period (t0, t0 + t] if the arrivals of
all tasks with equal or higher priority satisfy the maximum
number of arrivals in that level-i busy interval.

We want to determine the maximum number of arrivals
that a task can generate over any interval (t0, t0 + t]. If
the task is periodic or traditional sporadic, the number is
greatest when one instance of the task is released at t0 and



subsequent instances are released after every integer multi-
ple of the period (or minimum inter-arrival time). However,
if the task is generalized sporadic, the maximum number of
arrivals accumulates when each new release occurs as early
as the set of constraints {(zi,k, wi,k)1 ≤ k ≤ K(i)} allows.
The maximum number of arrivals function of the general-
ized sporadic task Ti, MNAi(t), for any interval (t0, t0+t]
can be expressed by the following recursive definition:

MNAi(t) =

{

0 if t ≤ 0
min{MNAi(t − wi,k) + zi,k} if t > 0

,

where 1 ≤ k ≤ K(i).
Proof: For any time interval t, then for every k, 1 ≤ k ≤
K(i), the time interval can be divided into two separate
parts; the length of the first part is wi,k , and the length of
the second part is t − wi,k . The maximum number of ar-
rivals in interval t should be no more than the sum of the
maximum numbers of arrivals in those two parts, since nei-
ther part can accept any extra arrivals. So MNAi(t) ≤
MNAi(wi,k)+MNAi(t−wi,k) = zi,k+MNAi(t−wi,k).

If t < wi,k , the length of the first part is t, and the length
of the second part is 0. Then MNAi(t) ≤ zi,k, so the above
inequality still holds. Taking the minimum of the right hand
side for all k,
MNAi(t) ≤ min{MNAi(t−wi,k)+zi,k|1 ≤ k ≤ K(i)}
Let τi be the maximum execution time of all instances of
task Ti. The maximum time demand function of the gener-
alized sporadic task Ti, TDi(t), for any interval (t0, t0 + t],
is computed from the maximum number of arrivals function
MNAi(t) and is given by

TDi(t) = MNAi(t) ∗ τi.
The earliest arrival time function of the nth job of the gen-
eralized sporadic task Ti, EATi(n), for time t in any inter-
val (t0, t0 + t] can be expressed by the following recursive
definition:

EATi(n) =







−∞ if n ≤ 0
0 if n > 0 and n ≤ zi,1

max{EATi(n − zi,k) + wi,k} if n > zi,1

,

where 1 ≤ k ≤ K(i).

3.2 Schedulability Test for Generalized
Sporadic Tasks on a Single Processor

For tasks on a single processor, our schedulability analy-
sis tests one task at a time starting from the highest priority
task T1 in decreasing order of priority. For the purpose of
determining whether a task Ti is schedulable, we assume,
without loss of generality, that the level-i busy period be-
gins at time 0. Let Hi be the set of higher or equal priority

tasks assigned to the same processor as task Ti but exclud-
ing task Ti. The following steps establish whether or not Ti

is schedulable:
(1) Compute an upper bound Di on the duration of a level-i
busy period

Di = min{t > 0|t =
∑

Tj∈Hi∪Ti

MNAj(t) ∗ τj} (1)

(2) Compute an upper bound Mi on the number of instances
of Ti in a level-i busy period of duration Di

Mi = MNAi(Di).
(3) For m = 1 to Mi, do

(a) Compute an upper bound Ci(m) on the completion
time of mth job of Ti

Ci(m) = min{t > 0|t =
∑

Tj∈Hi
MNAj(t) ∗ τj +

m ∗ τi}.
(b) Since a lower bound for the release time of the mth

job of Ti is EATi(m), compute an upper bound to the re-
sponse time of the mth job of Ti in the busy period

Vi(m) = Ci(m) − EATi(m).
(4) Compute the WCRT for Ti by

Wi = max{Vi(m)}, for 1 ≤ m ≤ Mi.
(5) If Wi is not greater than the task’s deadline, Ti is schedu-
lable. Otherwise, it is unschedulable.

Generalized Sporadic Task Utilization Test: Equation 1
may not have a finite solution if the processor is overloaded
with higher or equal priority tasks. Theorem 1 provides
a sufficient utilization test that the processor is not over-
loaded. The proof of this theorem makes use of the follow-
ing lemma.
Lemma 1: Suppose that for the generalized sporadic task
Ti, the constraint with the smallest limit/length ratio is
zi,kmin/wi,kmin = min{zi,j/wi,j |1 ≤ j ≤ K(i)}. Then
zi,kmin

wi,kmin
∗ t ≤ MNAi(t) ≤

zi,kmin

wi,kmin
∗ t + zi,kmin

Proof:
Induction basis: When 0 < t, by the constraint zi,j ≥ 1
for any j, 1 ≤ j ≤ K(i), thus at least one arrival can oc-
cur in the interval (0, t). When t ≤ wi,kmin/zi,kmin, since
wi,kmin/zi,kmin ≤ wi,kmin, by the definition of the gen-
eralized sporadic constraints, at most zi,kmin arrivals can
occur in the interval (0, wi,kmin/zi,kmin). Combining the
above two conditions, when 0 < t ≤ wi,kmin/zi,kmin,
1 ≤ MNAi(t) ≤ zi,kmin. So the Lemma holds, when
0 < t ≤ wi,kmin/zi,kmin.
Induction hypothesis: Suppose when t ≤ T , the lemma
holds.
Induction Step: When T < t < T +wi,1, we first prove the
lower bound is satisfied.

For every j, 1 ≤ j ≤ K(i), substitution of t − wi,j for t
and transposing gives



zi,kmin

wi,kmin

t ≤ MNAi(t − wi,j) +
zi,kmin

wi,kmin

wi,j

Since zi,kmin

wi,kmin
≤

zi,j

wi,j
,

zi,kmin

wi,kmin

t ≤ MNAi(t − wi,j) + zi,j

Taking the minimum of the right-hand side for all j,

zi,kmin

wi,kmin

t ≤ MNAi(t)

Then we prove the upper bound is also satisfied, when
T < t < T + wi,1. Substitution of t − wi,kmin for t and
simplifying gives

MNAi(t − wi,kmin) ≤
zi,kmin

wi,kmin

t

By the definition of the generalized sporadic constraints,
at most zi,kmin arrivals can occur in the interval [t −
wi,kmin, t). Therefore,

MNAi(t) ≤ MNAi(t − wi,kmin) + zi,kmin

≤
zi,kmin

wi,kmin

t + zi,kmin

A periodic task Ti with period pi is a special case of
a generalized sporadic task with a single arrival time con-
straint (1, pi). By Lemma 1, this also satisfies

1

pi

t ≤ MNAi(t) ≤
1

pi

t + 1

Let a set of fixed-priority generalized sporadic tasks
{Tj} be assigned to a processor. With respect to a specific
task Ti, let PTi be the set of periodic tasks in Hi ∪ Ti, and
let STi be the set of (non- periodic) generalized sporadic
tasks in Hi ∪ Ti. For each Tj in STi, let zj,kj

/wj,kj
be its

smallest limit/length constraint ratio (the minimizing ratio
depends on j). The level-i generalized sporadic task utiliza-
tion is defined as

∑

Tj∈PTi

τj

pj

+
∑

Tj∈STi

τj ∗ zj,kj

wj,kj

Theorem 1: If a processor is assigned a set of fixed-priority
generalized sporadic tasks, and if the level-i generalized
sporadic task utilization is less than 1, then any level-i busy
period on the processor has finite duration.
Proof: By taking Lemma 1 for each task Tj , multiplying
the inequality by τj , and summing,

(
∑

Tj∈PT

τj

Pj

+
∑

Tj∈ST

τj ∗ zj,k

wj,k

) ∗ t ≤
∑

Tj∈Hi∪Ti

MNAj(t) ∗ τj

≤ (
∑

Tj∈PT

τj

Pj

+
∑

Tj∈ST

τj ∗ zj,k

wj,k

) ∗ t

+
∑

Tj∈PT

τj +
∑

Tj∈ST

zj,k ∗ τj

Since the level-i generalized sporadic task utilization <
1, the right side of this inequality grows less rapidly than
t and is less than t for sufficiently large t, (

∑

Tj∈PT

τj

Pj
+

∑

Tj∈ST

τj∗zj,k

wj,k
) ∗ t +

∑

Tj∈PT τj +
∑

Tj∈ST zj,k < t and
For sufficiently small t,

∑

Tj∈Hi∪Ti
MNAj(t) ∗ τj =

∑

Tj∈PT τj +
∑

Tj∈ST zj,k > t

So t =
∑

Tj∈Hi∪Ti
MNAj(t) ∗ τj will have a finite so-

lution.

3.3 Schedulability Test for End-to-End
Generalized Sporadic Tasks via Gen-
eralized Release Guards

Given a set of generalized sporadic end-to-end tasks,
each task is comprised of a linear chain of subtasks
Ti,1, Ti,2, ..., Ti,n(i) where each subtask Ti,j belonging to
task Ti may be assigned to a different processor Pj .

Although each generalized sporadic task Ti has arrival
time constraints, these constraints apply a priori only to
each initial subtask Ti,1 of an end-to-end task, and the inter-
release times of consecutive jobs in later subtasks may not
satisfy the original time constraints. The clumping effect
in the later subtasks caused by the Direct Synchronization
protocol (DS) can have an undesirable effect on the schedu-
lability of end-to-end tasks in a priority-driven system [14].
Moreover, the upper bounds on end-to-end response times
produced by current algorithms for DS are not tight. How-
ever, if we can govern the releases of the jobs in later sub-
tasks and make them follow the task’s time constraints, the
previously described analysis can be carried out on each
processor to determine a worst-case response time Wi,j for
each subtask Ti,j . This improves the schedulability of end-
to-end tasks greatly.

The generalized sporadic arrival time constraints can
be applied to non-initial subtasks by maintaining a gen-
eralized release guard gi,j for each non-initial subtask
Ti,j , (j > 1). Let ri,j(m) be the release time and let
Ci,j(m) be the completion time of the mth job of Ti,j . The
following rules are used to update gi,j(j > 1).

1. At the initial time, set gi,j=0.

2. When m− 1th job of Ti,j is released at time ri,j(m−
1), update gi,j = ri,j(m−1)+(ri,1(m)−ri,1(m−1)).



3. Update gi,j to the current time if the current time is a
processor idle point on the processor where Ti,j exe-
cutes.

The scheduler releases the mth job of Ti,j either at gi,j ,
or at Ci,j−1(m) when the immediate predecessor Ti,j−1

completes its mth job, whichever is later.
The generalized release guard protocol propagates the

generalized sporadic arrival time constraints obeyed by the
initial subtasks Ti,1 along the subtask chains so that they
are also obeyed by the non-initial subtasks Ti,j for j > 1.
Worst-case response times of all subtasks can be determined
as described above, and they can simply be summed to ob-
tain worst-case response times of the end-to-end tasks. This
is established by the following theorem and lemma.
Theorem 2: An upper bound Wi to the end-to-end response
time of any generalized sporadic task Ti in a fixed-priority
system synchronized according to the generalized release
guard protocol is given by Wi =

∑n(i)
k=1 Wi,k

Here n(i) is the number of subtasks in Ti. Wi,k is the
upper bound on the response time of the subtask Ti,k ob-
tained by considering only subtasks on the same proces-
sor as Ti,k and treating every such subtask as a generalized
sporadic task satisfying its own generalized sporadic arrival
time constraints. The theorem is a direct consequence of the
following lemma.
Lemma 2: When subtasks are synchronized according to
the generalized release guard protocol, every job of ev-
ery subtask Ti,k for k=2,3,...,n(i) is released no later than
∑k−1

l=1 Wi,l units of time after the release time of the corre-
sponding job in its first sibling subtask Ti,1.
Proof: According to the definition of the generalized re-
lease guard protocol, for every k = 2, 3, ..., n(i), the first
job of subtask Ti,k is released when the first job of its imme-
diate predecessor Ti,k−1 completes, and this is surely within
Wi,k−1 units of time after the release of Ti,k−1. Hence,
for any 2 ≤ k ≤ n(i), the first job in Ti,k is released by
∑k−1

l=1 Wi,l units of time after the release of the first job in
Ti,1, that is, the lemma is true for the first jobs of all sub-
tasks of Ti.

The lemma is also true for all the jobs in the second sib-
ling subtask Ti,2. To prove this statement, let us suppose
that the lemma is true for all the jobs of Ti,2 up to and in-
cluding the xth job, for some x ≥ 1. Then for the xth job,
ri,2(x)− ri,1(x) ≤ Wi,1, ri,2(x) + ri,1(x + 1)− ri,1(x) ≤
ri,1(x + 1) + Wi,1. Moreover, Ci,1(x + 1) ≤ ri,1(x + 1) +
Wi,1. So ri,2(x+1) = max(Ci,1(x+1), ri,2(x)+(ri,1(x+
1) − ri,1(x))) ≤ ri,1(x + 1) + Wi,1 satisfies the lemma.

Now suppose that the lemma is true for the all the jobs
in all the predecessor sibling subtasks of Ti,k for some k in
the range 2 < k ≤ n(i) and it is also true for the xth job
and all the jobs before the xth of Ti,k. To show the lemma
is true for the (x+1)th job of Ti,k as well, we first examine

the release time of the xth job of Ti,k. It satisfies ri,k(x) −

ri,1(x) ≤
∑k−1

l=1 Wi,l. Adding ri,1(x + 1) at both sides,
ri,k(x)+ ri,1(x+1)− ri,1(x) ≤ ri,1(x+1)+

∑k−1
l=1 Wi,l.

Moreover, Ci,k−1(x + 1) ≤ ri,1(x + 1) +
∑k−1

l=1 Wi,l. So
ri,k(x+1) = max(Ci,k−1(x+1), ri,k(x)+(ri,1(x+1)−

ri,1(x))) ≤ ri,1(x + 1) +
∑k−1

l=1 Wi,l satisfies the lemma.

3.4 Schedulability Test for End-to-End
Generalized Sporadic Tasks via Direct
Synchronization Protocol

Although (as our schedulability analysis experiments in
Section 4 show), the release guard synchronization protocol
(RG) improves schedulability when compared to the direct
synchronization protocol (DS), RG is rarely implemented
or used in current systems. Therefore we develop a schedu-
lability analysis algorithm that handles DS for generalized
sporadic tasks.

Our approach follows that of Sun’s SA/DS (Schedula-
bility Analysis for Direct Synchronization Protocol) algo-
rithm [14] for periodic tasks. We first provide an algorithm
that is used iteratively to calculate an upper bound on the in-
termediate end-to-end response time (IEERT) of each sub-
task Ti,j . The IEERT of Ti,j is the maximum time between
the release of a job in Ti,1 and the completion of the corre-
sponding job in Ti,j . The end-to-end response time of the
entire task Ti is the IEERT of its last subtask Ti,n(i). An up-
per bound on the IEERT of the last subtask is thus an upper
bound on the end-to-end response time of the task.

We follow a variation of Sun’s IEERT algorithm that
uses minimum execution times σi,j along with maxi-
mum execution times τi,j to give tighter upper bounds on
IEERTs. Let Si,0 = 0 and Si,j = sum{σi,k|1 ≤ k ≤ j}
for j > 0. If the current upper bound on intermediate end-
to-end response time of Ti,j−1 is Vi,j−1, an upper bound
on the “jitter” in the release time of its successor Ti,j is
Vi,j−1 − Si,j−1. Although the generalized sporadic arrival
time constraints do not apply to every subtask in DS, they
do apply to the initial subtasks. Thus the values MNAi,1(t)
and EATi,1(m) can be calculated. Hi,j is the set of higher
or equal priority subtasks assigned to the same processor as
Ti,j , but excluding Ti,j .
Generalized Sporadic IEERT Algorithm {V

′

=
IEERT (T, V )}

Input:
1. A set {Ti} of end-to-end generalized sporadic tasks
2. A set {Vi,j} of bounds on the IEERT of subtasks
Output: A set {V ′

i,j} of new bounds on the IEERT of sub-
tasks
Algorithm:
For each generalized sporadic subtask Ti,j



1. Compute an upper bound Di,j on the duration of a level-
(i,j) busy period:

Di,j = min{t > 0|t =
∑

Tu,v∈Hi,j∪Ti,j

MNAu,1(t + Vu,v−1

− Su,v−1) ∗ τu,v}

2. Compute an upper bound Mi,j on the number of in-
stances of Ti,j in a level-(i,j) busy period of duration Di,j :
Mi,j = MNAi,j(Di,j) = MNAi,1(Di,j + Vi,j−1 −
Si,j−1)
3. For m = 1 to Mi,j do

(a) Compute an upper bound on the completion time
Ci,j(m) of the mth job of Ti,j

Ci,j(m) = min{t > 0|t = m ∗ τi,j +
∑

Tu,v∈Hi,j

MNAu,1(t

+ Vu,v−1 − Su,v−1) ∗ τu,v}

(b)Since a lower bound for the release time of the mth

job of Ti,1 is EATi,1(m)−Vi,j−1, compute an upper bound
on the IEERT of the mth job of Ti,j in the busy period

Vi,j(m) = Ci,j(m) + Vi,j−1 − EATi,1(m)

4. Compute the new bound V
′

i,j by
V

′

i,j = max{Vi,j(m)} for 1 ≤ m ≤ Mi,j

Our algorithm to calculate the upper bounds of end-to-
end response times iteratively uses our IEERT algorithm.
Its input is a set {V 0

i,j} of initial estimates of IEERTs of all
subtasks in the system. The initial estimated IEERT for the
subtask Ti,j is the sum of the maximum execution times of
Ti,j and all its predecessor subtasks. During each iteration,
say the (x + 1)th, the IEERT algorithm uses the set {V x

i,j}

of estimates produced in the xth iteration as input and pro-
duces as output a new set of estimates {V x+1

i,j }. If the output
estimate for every subtask is equal to the input estimate for
the subtask, then the bound {V x+1

i,j } produced during the
iteration is a correct upper bound on the IEERT of Ti,j , and
an upper bound on the end-to-end response time of the task
Ti is equal to V x+1

i,n(i). If the input and output estimates for
some subtasks are not equal, another iteration is carried out
using as input the output estimates just produced.

To prove that when this algorithm terminates, the out-
puts produced during the last iteration are the correct upper
bounds of the end-to-end response times of all tasks, we
only need to prove the same theorem as that in Sun’s the-
sis [14]. The proof of this theorem makes use of the same
lemma.
Lemma 3: Suppose that a subtask instance Ti,j(m) com-
pletes at time t. If the IEERT of every subtask instance
Tu,v(w) that completes before t is no greater than some
Vu,v > 0, then the IEERT of Ti,j(m) is no greater than
V

′

i,j , where V
′

= IEERT (T, V ).

Proof: The correctness of this Lemma follows from the cal-
culation of the busy period in our IEERT algorithm. Obvi-
ously, the execution of any instance Ti,j(m) of Ti,j must
be contained in a level-(i,j) busy period. Without loss of
generality, we assume that the level-(i,j) busy period within
which Ti,j(m) executes starts from time zero, and Ti,j(m)
is the mth released instance of Ti,j in this busy period. Ac-
cording to the condition of Lemma 3, we know an upper
bound on the time demand that can be generated by Ti,j

and other subtask instances that can delay the completion
of Ti,j(m). In other words, we know a time demand func-
tion TD

′

(x), which is such that TD
′

(x) ≥ TD(x) for
0 < x < t. The IEERT algorithm uses TD

′

(x) in its
first step t

′

= min{x > 0|x = TD
′

(x)}. We can ver-
ify that t

′

≥ t, i.e., t
′ is an upper bound on the completion

time of Ti,j(m). Since we also know a lower bound on the
release time of Ti,j(m) in the IEERT algorithm, the com-
puted bound on IEERT V

′

i,j , which is the maximum bound
on IEERT for all instances of Ti,j in that busy period, is also
an upper bound on the IEERT of Ti,j(m).
Theorem 3: Let V = Vi,j be a set of positive numbers,
where there is a one-to-one mapping between Vi,j and Ti,j .
If V = IEERT (T, V ), then Vi,j is a correct upper bound
on the IEERT time of Ti,j .
Proof: The proof follows the induction proof [14] from
Sun’s thesis.

4 Experimental Evaluation

4.1 Comparison of Different Analyses

In this experiment, we assume four end-to-end periodic
tasks executing on three processors. Their periods, dead-
lines, maximum execution times and priorities are shown
in Table 1. In addition, minimum execution times of sub-
tasks are equal to the maximum execution times in the table.
First, we change task T3 from being a periodic task to be-

Ti,j Pi period deadline exec. prio.
T1,1 P1 312 284 21 4
T1,3 P1 312 284 75 4
T3,1 P1 162 162 30 2
T3,3 P1 162 162 42 2
T2,1 P2 90 90 23 1
T2,3 P2 90 90 30 1
T4,1 P2 203 203 58 3
T1,2 P3 312 284 24 4
T2,2 P3 90 90 13 1
T3,2 P3 162 162 18 2
T4,2 P3 203 203 20 3

Table 1. Task Settings



ing a generalized sporadic task. To make it easier to under-
stand how WCRTs change, we maintain the same subtask
priorities when we convert periodic tasks to sporadic tasks.
In the conversion, we make the sporadic behavior a jittery
variation of the periodic behavior by allowing arrivals a bit
closer together than the period but keeping the same bound
on the number of arrivals over a multi-period window. For
instance, the time constraints for the converted task T3 are
{(1, 113), (2, 324)}. These time constraints allow the spo-
radic task T3 to arrive once in time window 0.7 ∗ period,
but still only twice in time window 2 ∗ period. T3 is al-
lowed 30 percent jitter in this case. T3 will be made in-
creasingly jittery in some later cases. We are interpreting
J percent jitter to mean that T3 has a first constraint set to
(1, (1 − J/100) ∗ period).

We distinguish original and new WCRT analyses. Since
the original analysis treats a sporadic task’s minimum inter-
arrival time like a period, we call it Periodic-Task analysis
(PT). Our new analysis handles generalized sporadic tasks
with multiple time constraints and does not interpret them as
periodic tasks. Therefore we call it Sporadic-Task analysis
(ST). Each of these two analyses has different algorithms
for the DS and the RG synchronization protocols. Thus we
compare the following four distinct analysis algorithms:
PT/DS: original periodic-task analysis with DS
PT/RG: original periodic-task analysis with RG
ST/DS: new generalized sporadic-task analysis with DS
ST/RG: new generalized sporadic-task analysis with RG
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Figure 2. WCRT comparisons for 4 tasks
when T3 is allowed 30 percent jitter

We then converted task T3 into a generalized sporadic
task with time constraints {(1, 113), (2, 324)}. Figure 2
shows that the WCRTs with RG are no worse than the
WCRTs with DS, and they are noticeably better for tasks
T3, T4, and especially T1. The WCRT for T1 in PT/DS
is not shown entirely in Figure 2, because it is larger than
40000, which exceeds the upper bound of our analysis. We
also can see that the ST analysis outperforms PT on both
DS and RG protocols. This is because the PT counts on
many more arrivals than the generalized sporadic tasks are
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Figure 3. WCRT comparisons for 4 tasks
when T3 is allowed 60 percent jitter

actually allowed. To exhibit the benefit of our ST analy-
sis more clearly, we increased the arrival time jitter of T3

by changing its time constraints. Figure 3 shows the result
when the time constrains for T3 are {(1, 65), (2, 324)}. The
PT performed even worse. The WCRTs for T1, T3, and T4

in PT/DS are infinite according to utilization bound in [14],
as well as the WCRTs for T1 and T3 in PT/RG.
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Figure 4. T1’s WCRT bounds as T3 jitter in-
creases

To further show the relationship between arrival time jit-
ter and the WCRTs calculated by the different analyses,
we set the time constraints for T3 as {(1, (1 − x/100) ∗
period), (2, 324)}. The horizontal axis in Figure 4 repre-
sents jitter increasing from 0 percent to 97.5 percent, as the
window size of the first time constraint decreases from the
full period to 2.5 percent of it. Then we used four different
algorithms to calculate the WCRTs for task T1, which ran
at the lowest priority and was affected greatly by the arrival
pattern of T3. In Figure 4, even to tolerate 12.5 percent jitter,
the WCRT calculated by PT/DS is 6450, which is four times
more than the WCRT calculated by ST/DS. When the jitter
percentage further increases to 15, the WCRT by PT/DS ex-
ceeds the upper bound of our analysis. For PT/RG, the cal-
culated WCRTs are much less than PT/DS. However, when
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Figure 5. Miss ratio comparisons for four
tasks when T3 is allowed x percent jitter. The
time constraints for T3 are {(1, (1 − x/100) ∗
162), (2, 324)}

the jitter percentage reaches 37.5, the WCRT for T1 is infi-
nite when PT/RG is used. For ST/RG, the WCRTs for T1

are fairly stable under 600 as the jitter percentage increases
from 0 to 97.5. This is because our ST analysis considers
all the arrival time constraints. Although the first time con-
straint becomes tighter and tighter, the arrival pattern of T3

still needs to satisfy the second time constraint which does
not change. The second constraint bounds the arrival num-
bers of task T3 and reduces its impact on task T1.

Figure 5 depicts the miss ratios of the 4 tasks, i.e., what
fraction of them can miss their deadlines, as the arrival time
jitter of task T3 increases from 0 to 95 percent along the
horizontal axis. We calculated the WCRT bounds using the
4 different algorithms and compared them with the tasks’
deadlines. If the WCRT bound exceeds the deadline, the
task is not proved schedulable and is counted in the miss
ratio. The miss ratios that are calculated by the ST analysis
are fairly stable while the miss ratios that are calculated by
the PT analysis reach 75%.

4.2 Representative Example

Military shipboard computing is moving toward a com-
mon computing and networking infrastructure that hosts the
mission execution, mission support and quality of life sys-
tems required for shipboard operations. One example of a
shipboard computing system model includes 15 end-to-end
periodic tasks. Each task consists of varying number of sub-
tasks between 5 and 15. Altogether there are 150 subtasks
allocated across 50 processors. The aggregate loading of
all the 50 processors is about 50%. We convert task T10 to
be a generalized sporadic task. The original task T10 has
period 200 and, assuming rate monotonic priorities, has the
highest priority along with task T2. Moreover, task T10’s 12
subtasks share processors with all of the other tasks except

for T4 and T6. The time constraints for the converted task
T10 are {(1, (1− x/100) ∗ 200), (2, 400)}.
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Figure 6. WCRT comparisons for 15 tasks
when T10 is allowed 75 percent jitter
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Figure 7. Miss ratio comparisons for 15 tasks
when T10 is allowed x percent jitter. The
time constraints for T10 are {(1, (1 − x/100) ∗
200), (2, 400)}

To show the sharp contrast between the PT analysis and
the ST analysis, we picked 75 percent jitter and calcu-
lated the WCRTs for all 15 tasks using four different al-
gorithms. At that point, the time constraints for T10 are
{(1, 50), (2, 400)}. In Figure 6, the WCRTs for all 15
tasks in PT/DS are infinite, and the WCRTs for six tasks
in PT/RG are infinite, while the WCRTs for all tasks are
bounded when using our generalized sporadic tasks anal-
ysis. In addition, DS performed much worse than RG for
some low priority tasks. As shown in Figure 7, for the
ST analysis with either the DS or the RG synchronization
protocol, the miss ratios are fairly stable when the jitter
percentage increases. In particular, the miss ratios are al-
ways 0 using the ST/RG algorithm. However, when the
jitter percentage reaches 65 and the time constraints are



{(1, 70), (2, 400)}, all tasks are unschedulable using the
PT/DS algorithm. Moreover, the PT/RG algorithm also has
a steep rise in miss ratios when the jitter percentage is larger
than 60.

To consider the influence of different time constraints on
the miss ratios, we changed the time constraints of task T10

in two ways. In the first experiment whose results are shown
in Figure 8, the number of arrivals allowed in the first time
window is greater than one. It increases from 1 to 7 while
the second time constraint ensures only 8 arrivals are al-
lowed in any window of 8 ∗ period length. In the second
experiment whose results are shown in Figure 9, the number
of time constraints for task T10 increases from 2 to 8.
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Figure 8. Miss ratio comparisons for 15 tasks
when T10 is a generalized sporadic task with
time constraints {(x, 200), (8, 1600)}
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Figure 9. Miss ratio comparisons for 15 tasks
when T10 is a generalized sporadic task. The
number of time constraints for T10 increases
from 2 to 8. The initial time constraints are
{(1, 25), (8, 1600)} at x=2 point. One extra time
constraint (3, 3/8 ∗ 3 ∗ 200) is added at x=3
point. At every x point, an extra time con-
straint (x, x/8 ∗ x ∗ 200) is added.

As is shown in Figure 8, the PT analysis always had a
higher miss ratio than our ST analysis and showed a sharp
rise when the number of arrivals allowed in the first time
window increased. In Figure 9, since the PT analysis only
considers the first time contraint pair in its calculation, extra
time constraints do not affect the miss ratio. However, our
ST analysis considers all time constraints. Any tighter time
constraint added may help reduce the miss ratio.

Besides the influence of different time constraints, we
also considered the effect of the number of generalized spo-
radic tasks in the system. As is shown in Figure 10, when
the number of generalized sporadic tasks in the system in-
creases, the miss ratios under the PT/RG and PT/DS also
increase, while the miss ratios are stable under the ST anal-
ysis and are lower than those under the PT analysis with the
same synchronization protocol.
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Figure 10. Miss ratio comparisons for 15
tasks when more and more periodic tasks are
converted to generalized sporadic tasks with
time constraints {(1, period/2), (2, period ∗ 2)}.
The number of generalized sporadic tasks in-
creases from 1 to 15.

5 Related Work

The problem of scheduling a mixed set of hard periodic
and soft aperiodic tasks in a dynamic environment has been
widely considered when periodic tasks are executed under a
fixed priority scheduling algorithm. Lehoczky et al. investi-
gated bandwidth-preserving server mechanisms (Deferrable
Server [13] and Priority Exchange [7]) to enhance aperi-
odic responsiveness. Sprunt et al. described a better service
mechanism, called Sporadic Server (SS) [11]. Lehoczky
and Ramos-Thuel found an optimal service method, called
Slack Stealer [8], which is based on the idea of “stealing”
all possible processing time from the periodic tasks without
causing their deadlines to be missed. The same algorithm
has been extended in [10] to handle hard aperiodic tasks,
and in [2], to treat a more general class of scheduling prob-



lems. All these aperiodic servers require special schedul-
ing mechanisms and nontrivial engineering effort on top of
standard operating systems, while our analyses are based on
the widely available fixed priority scheduling mechanism.

Although the sporadic task model [9] has been widely
studied for supporting event-driven applications, event oc-
currences often cannot meet the assumption of tasks’ min-
imum inter-arrival time. For example, tasks that are in-
voked in response to events generated by devices such as
network interfaces may not satisfy this assumption. Rate-
based scheduling schemes [3] are more seamlessly able to
cope with jitter. In such schemes, there is no restriction on a
task’s instantaneous rate of execution, but an average rate is
assumed. In multiprocessor systems, rate-based execution
can be ensured by using scheduling algorithms that also en-
sure a property called proportionate fairness (Pfairness) [1].
In research on rate-based uniprocessor scheduling, Jeffay
et al. [3, 5, 4] derived necessary and sufficient conditions
for determining the feasibility of a rate-based task set and
demonstrated that earliest deadline first (EDF) scheduling
is optimal for both preemptive and non-preemptive execu-
tion environments. Baruah et al. [1] showed Pfair sheduling
algorithms can be used to optimally schedule periodic tasks
on multiprocessors. Srinivasan and Anderson [12] extended
this work by showing that sporadic and rate-based tasks can
also be optimally scheduled. Their sporadic task model is
totally different from our generalized sporadic task model
because the deadlines of the jobs of their sporadic tasks are
not predefined, but assigned at the releasing times according
to the tasks’ average rates.

Wang et al. [15] presents a Priority-based Total Band-
width Server (PTBS) to integrate the priority-driven schedu-
ing paradigm with the share-driven scheduling paradigm
for scheduling aperiodic tasks. Within each sliding win-
dow, the fixed priority is used to schedule different ape-
riodic or periodic jobs whose assigned deadlines fall into
the window. Outside of the window, tasks are scheduled
by EDF scheduling policy according to their assigned dead-
lines. The worst-case response time of aperiodic or periodic
jobs had been derived and schedulability conditions pro-
vided when aperiodic tasks can be modeled by the leaky
bucket arrival pattern. However, their schedulability condi-
tion only works in a single processor and cannot be easily
extended to guarantee the schedulability of end-to-end ape-
riodic tasks. Moreover, our generalized sporadic task model
has stronger descriptive capability than the leaky bucket
model.

6 Conclusions

This paper has proposed a generalized sporadic task
model that improves the traditional sporadic task model
by characterizing arrival times more precisely. It also pre-

sented new schedulability analysis algorithms for general-
ized sporadic tasks, both for independent tasks and for end-
to-end tasks synchronized either by direct synchronization
or by a new generalized release guard synchronization pro-
tocol. Empirical results showed that our schedulability anal-
yses, when compared with traditional analyses, (1) tighten
the bounds on worst-case response times and (2) more ef-
fectively guarantee schedulability when sporadic tasks have
greater arrival time jitter.
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