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ABSTRACT OF THE THESIS 
 
 

Conjoint Audiogram Estimation via Gaussian Process Classification 

by 

James C. DiLorenzo 

Master of Science in Computer Science 

Washington University in St. Louis, 2017 

Research Advisor: Professor Roman Garnett 

 
 
In traditional audiometry, a clinician seeks to estimate her patient’s auditory response through the 

sequential delivery of various individual tests. These tests are treated as independent and correlation 

is assessed after each individual test has been completed, resulting in a diagnosis. Treating tests as 

independent impedes both accuracy and efficiency by ignoring correlations in conditions known to 

influence physiological response, for instance age, genetics, and exposure to noise. This thesis 

advances the existing framework for audiometry via Gaussian Processes by allowing for the 

estimation of audiogram thresholds for both ears simultaneously. The resulting model estimates 

both correlated and uncorrelated right- and left-ear audiograms with higher efficiency than was 

previously achievable. This work lays a foundation for building further estimation between discrete 

psychometric spaces.  
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1. Introduction 
 

1.1. Psychometric Functions 
 
 
Psychometric functions model an individual’s task performance in response to some sensory 

stimulus. Much attention has been given to the estimation of unidimensional psychometric 

functions, or psychometric curves (PCs). One of the first methods for estimating PCs was the 

method of constant stimuli, which continues to see widespread use today and was first described in 

Gustav Fechner’s famous Elemente der Psychophysik in 1860 (Fechner 1860). The method of constant 

stimuli randomly presents a fixed number of equally spaced stimuli with some repetition. While this 

method accurately predicts the target PC, it is time consuming in practice. This inefficiency led to 

the development of adaptive procedures for psychometric estimation. Adaptive procedures use 

subject response to influence the intensity of subsequent stimuli delivery with the goal of achieving 

similar accuracy in fewer observations including transformed up-down methods (Levitt 1971) and 

parameter estimation by sequential testing (PEST) (Taylor and Creelman 1967).  

 

Figure 1: Depiction of 1-Dimensional Psychometric Function as a function of stimulus intensity 
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Inference of the PC falls broadly into two categories: parametric and nonparametric. Parametric 

models assume that the subject’s true psychometric function follows some explicit formula which 

can be identified by its parameters. A typical set of parameters for PC estimation may include the 

threshold 𝜶, the intensity at which more than some fixed fraction of stimuli are observed, and slope 

 𝜷, the rate at which subject response changes as a function of stimulus intensity (Hall 1968). By 

contrast, nonparametric models make no assumptions about the structure of the PC, but rather 

estimate values of the PC from observing data. Examples of nonparametric methods for PC 

estimation include spline estimation (Schoenberg 1946) in which the interpolant is a piecewise 

polynomial that passes through the observed data, and Gaussian Processes, a machine learning 

model in which the posterior distribution of the predicted values is jointly Gaussian, and this 

Gaussian has its mean and covariance matrix defined by the observed data (Williams and Rasmussen 

1996). In both cases, the estimation of the model is derived from the observed data and not a set of 

fixed parameters.  

 

Both adaptive techniques and inference methods leverage observed data to achieve their respective 

goals. In practice, it is often possible to improve performance by leveraging an expert’s domain 

knowledge. For instance, an experienced audiologist may be able to construct an audiogram with 

fewer stimuli deliveries by making use of their knowledge of published reports or subject histories. 

Adaptive techniques and inference methods can both be improved by leveraging domain-specific 

knowledge. This domain-specific knowledge is known as a prior belief in statistical literature. 

Statistical inference on PCs can utilize both subject responses and prior beliefs via Bayes rule in a 

class of inference collectively referred to as Bayesian inference. Bayesian methods can be applied to 

both querying strategies (i.e. towards the improvement of adaptive techniques) or to PC inference 

itself. The earliest use of Bayesian inference and adaptive techniques is the QUEST method (Watson 
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and Pelli 1983). Bayesian methods are particularly promising for estimating PCs and continue to 

receive attention, particularly in the machine learning literature.  

 

1.2. Audiometry 
 

Audiometry presents interesting challenges for many psychometric function estimation techniques 

because the input space is inherently two-dimensional. A subject’s response to stimuli depends not 

only on the intensity of  sound delivered, but also on its frequency. This increase in dimensionality 

makes approaches such as the method of  constant stimuli impractical. In general, the number of  

samples required to maintain a certain sample density increases exponentially with the number of  

dimensions of  the input space. This is one facet of  what is commonly referred to as the “curse of  

dimensionality” in machine learning literature.  

 

The most commonly used method for clinical audiogram estimation is pure -tone audiometry (PTA) 

using a modified Hughson-Westlake (HW) procedure (Hughson and Westlake 1944, Carhart and 

Jerger 1959). Originally developed in response to the drastic increase in noise induced hearing loss 

among veterans after World War I and World War II, the HW procedure proceeds octave by octave 

(or semi-octave), delivering tones in decreasing 5dB increments until locating the threshold as 

measured by some number of  “reversals.”  
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Figure 2: Hughson-Westlake Procedure Example adapted from (Barbour, Song 2015) 

 

The HW procedure was an important first standard in audiometry. However, the HW procedure 

comes with some disadvantages. First, the HW procedure only queries a fixed number of  

frequencies. Practitioners can linearly interpolate between frequencies to obtain inter-octave 

thresholds. However, this approach is prone to missing narrow-banded notches common in noise 

induced hearing loss. A second major drawback of  the HW procedure is that many of  the tones 

delivered are uninformative. In particular, when moving from one frequency to the next, stimuli are 

delivered well above threshold. Third, predictable stimulus presentation sequences allow for 

noncooperative subjects to subvert the test. Finally, left- ear and right- ear audiograms are treated as 

independent. This assumption ignores important nonphysioloigical factors that contribute to both a 

subject’s left- and right-ear audiograms. These factors include genetics, age, and environmental 

exposure and are major drivers of  both noise-induced and age-related hearing loss. 

 



5 
 

A number of  approaches have been developed in response to the shortcomings of  the HW 

procedure. A 2013 review of  techniques for pure-tone audiometry found that automated 

audiograms produced similar results to manual audiograms, with an average absolute difference of  

4.2 dB HL (Mahomed, Eikelboom et al.). PEST (Taylor and Creelman), maximum likelihood 

estimation (Watson and Pelli), and numerous Bayesian methods attempt to address sampling 

inefficiencies (King-Smith, Grigsby et al. 1994, Guan 2011). Békésy audiometry and Audioscan® 

deliver continuous audiogram threshold estimates at the cost of  slower testing (Meyer-Bisch 1996, 

Ishak, Zhao et al. 2011). Of  note is the use of  Gaussian Processes for audiometry. Gaussian 

Processes deliver accurate, continuous threshold estimates with a sampling schema that is difficult to 

subvert (Song, Garnett et al. 2017). However, none of  the described methods are able to leverage 

test information between ears. In this paper, we extend the existing Gaussian Process model for 

continuous audiogram estimation to allow for querying and estimation in both the ipsilateral and 

contralateral ear. The resulting audiogram estimation technique is more efficient than the single-ear 

GP model without sacrificing accuracy. Additionally, the new model takes an important first step 

towards the goal of  sharing information between disjoint tests in any testing battery. 
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2. Machine Learning Background 
 

2.1. Introduction to Machine Learning 
 
The goal in supervised machine learning is to train a model to estimate some underlying function 

𝒚(𝒙) from a set of labeled data 𝑫 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏
𝒏 , where 𝒙𝒊 is the feature vector for observation 𝒊 

and 𝒚𝒊 is the value of observation 𝒊. 𝑫 may be noisy (Mohri, Rostamizadeh et al. 2012). Namely, if 

there is some true underlying function 𝒇(𝒙), then observations 𝒚𝒊 =  𝒇(𝒙𝒊) + 𝝐. If one wants to 

improve the estimation of their model, a common approach is to simply train the model on 

additional data. This approach works particularly well for tasks such as image and speech 

recognition, where access to additional data is relatively inexpensive. Querying data is much more 

difficult in perceptual studies. Collecting additional data involves querying a subject and recording 

their response. Subject fatigue can lead to non-stationarity in subject responses, making it imperative 

that any predictive model is efficient in its sampling. 

 

2.2. Motivation for the Use of Gaussian Processes 
 
The need for sampling efficiency led to the choice of the Gaussian Process (GP) model.  Also 

known as kriging, GPs were designed to estimate an unknown underlying function where access to 

data is expensive (Rasmussen and Williams 2006). Unlike other machine learning models that only 

give a point estimate of the underlying function value for a given input, GPs provide a posterior 

distribution of the model’s belief of the underlying function value for a given test point. This 

distribution can be thought of as the model’s uncertainty about its prediction and gives rise to 

techniques collectively known as active sampling. In this work, the GP model uses active sampling 
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to select a sequence of points 𝑿 = {𝒙𝟏, … , 𝒙𝒏} to query to maximize the rate at which it gains 

information about the subject’s audiogram. 

 

2.3. Gaussian Process Models 

 

2.3.1. Introduction to Gaussian Processes 
 

Gaussian Processes are a model for probabilistic inference about some function of interest  𝒇. That 

is, instead of simply producing pointwise estimates  �̂�(𝒙), a GP returns a probability distribution 

 𝒑 (𝒇(𝒙)). A practitioner may encode domain-specific knowledge of  𝒇 through a prior distribution. 

The GP is typically then conditioned on observed data 𝑫 to form a posterior distribution 

 𝒑(𝒇|𝑫). Formally, a GP is a collection of random variables such that the joint distribution of any 

finite subset of these random variables is a multivariate Gaussian distribution. (Rasmussen and 

Williams 2006) It is easier however to think of GPs as distributions over functions. Just as a variable 

drawn from a Gaussian distribution is specified by the distribution’s mean and covariance, i.e. 

𝒑(𝒙) ~ 𝑵(𝝁, 𝝈), a function drawn from the prior distribution of a GP is specified by its mean and 

Kernel functions, i.e. 𝒑(𝒇)~ 𝑮𝑷(𝝁(𝒙), 𝑲(𝒙, 𝒙′)). The mean function encodes the central tendency 

of functions drawn from the GP. The Kernel function encodes information about the shape these 

functions may take. Kernel functions can vary widely in construction and have a large impact on the 

posterior distribution of the GP. In general, Kernel functions are designed to express the belief that 

“similar inputs should produce similar outputs” (Duvenaud 2014). The GP model can be used in 

both classification and regression settings and allows us to condition our prior beliefs after observing 

data to produce a new posterior belief about function values via Bayes’ rule: 
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𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 =  

𝐩𝐫𝐢𝐨𝐫 × 𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝

𝐦𝐚𝐫𝐠𝐢𝐧𝐚𝐥 𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝
 (2.1) 

 

2.3.2. Gaussian Process Regression 
 
The GP model for audiogram estimation gives probabilistic estimates for the likelihood of tone 

detection. However, to properly build up a framework for GP classification it is important to first 

examine GP regression.  

In a typical regression problem, inputs 𝑿 and outputs Y take on real values and are related through 

some function 𝒇 of which we have access to only noisy observations. For convenience, this example 

assumes that noise is drawn independently and identically from a Gaussian distribution with mean 0 

and standard deviation 𝒔: 

 

 𝒙𝒊 ∈ ℝ𝒅, 𝒚𝒊 ∈ ℝ (2.2) 

 𝒚(𝒙𝒊) = 𝒇(𝒙𝒊) + 𝝐, 𝒆 ~ 𝑵(𝟎, 𝒔𝟐) (2.3) 

 

Before observing any data, the GP by definition implies a joint distribution on the function values of 

any set of input points: 

 
 𝒑(𝒇(𝑿) |𝑿) = 𝑵 (𝝁(𝑿), 𝑲(𝑿, 𝑿)) (2.4) 

 

More importantly, GPs allow us to condition the predictive distribution over unseen points  𝑿∗ on 

(possibly noisy) observations of 𝒇. Let 𝒀 = 𝒇(𝑿) be noisy observations of 𝒇 at training inputs  𝑿, 

and let 𝒇∗ = 𝒇(𝑿∗) be the test outputs of interest. Then the joint distribution implied by the GP is: 
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𝒑 (
𝒀
𝒇∗

) = 𝑵 ([
𝝁(𝑿)

𝝁(𝑿∗)
] , [

𝑲(𝑿, 𝑿) + 𝒔𝟐𝑰 𝑲(𝑿, 𝑿∗)

𝑲(𝑿∗, 𝑿) 𝑲(𝑿∗, 𝑿∗)
]) 

An application of Bayes’ rule yields: 

𝒑(𝒇∗|𝑿∗, 𝑫) = 𝑵 (𝝁𝒇|𝑫(𝑿∗), 𝑲𝒇|𝑫(𝑿∗, 𝑿∗)) 

where 

𝝁𝒇|𝑫
(𝒙) =  𝝁(𝒙) + 𝑲(𝒙, 𝑿)(𝑲(𝑿, 𝑿) + 𝒔𝟐𝑰)

−𝟏
(𝒀 −  𝝁(𝑿)) 

𝑲𝒇|𝑫(𝒙, 𝒙′) = 𝑲(𝒙, 𝒙′) − 𝑲(𝒙, 𝑿)(𝑲(𝑿, 𝑿) + 𝒔𝟐𝑰)
−𝟏

𝑲(𝑿, 𝒙′) 

(Rasmussen and Williams 2006). 

 

Figure 3: GP prior mean and variance 

 

Figure 4: GP posterior mean and variance after 5 observation 

 

2.3.3. Gaussian Process Classification 
 

In classification problems, the target function shifts from producing real valued outputs, i.e. 𝒚 ∈

ℝ, 𝒚(𝒙𝒊) = 𝒇(𝒙𝒊) + 𝝐, to a discrete space, where  𝒚𝒊 can take on a fixed nmber of classes 

 𝑪𝟏, … , 𝑪𝒎. Of particular interest in this thesis is the special case of binary classification, where 

outputs can take on one of two classes:  𝒚𝒊 ∈ {𝟎, 𝟏}. Linear classification methods instead assume 

that the class-conditional probability of belonging to the “positive” class is a nonlinear 
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transformation of an underlying function known as the latent function.  This applies the following 

transformation to equation the likelihood: 

 𝒑(𝒚(𝒙𝒊) = 𝟏) = 𝚽(𝒇(𝒙𝒊)) (2.5) 

 

 𝝓 can be any “sigmoid” (s-shaped) function. Common choices of sigmoidal functions include the 

logistic function 𝝓(𝒙) =  
𝐞𝐱𝐩 (𝒙)

𝟏+𝐞𝐱𝐩 (𝒙)
 and the cumulative Gaussian 𝝈(𝒙) = ∫

𝒆−𝒛𝟐

√𝟐𝝅

𝒙

−∞
𝒅𝒛  

There is one further complication to the GP Classification problem. From Bayes’ rule, the posterior 

distribution can be written as: 

 𝒑(𝒇 |𝑫) =  
𝟏

𝒁
 𝒑( 𝒇 |𝑿) 𝒑(𝒚 |𝒇) = 𝑵(𝑿, 𝑿)) ∏ 𝒑(𝒚𝒊|𝒇𝒊)

𝒊

 (2.6) 

 

Where 𝒁 is a normalization factor that is approximated in the schemes discussed below. In the 

regression setting, the posterior distribution is easy to work with directly because it is the product of 

a Gaussian prior and a Gaussian likelihood. However, likelihood is sigmoidal in the classification 

setting. Unfortunately, the product of a Gaussian distribution with a sigmoidal function does not 

produce a tractable posterior distribution. The model must instead approximate the posterior. 

Common approximation schemes include expectation propagation and Laplace approximation 

(Rasmussen and Williams 2006). Laplace approximation attempts to approximate the posterior 

distribution by fitting a Gaussian distribution to a 2nd order Taylor expansion of the posterior 

around its mean. Expectation propagation attempts to approximate the posterior distribution by 

matching the first and second moments, the mean and variance, of the posterior distribution.  
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2.3.4. Hyperparameter Selection 
 
It was previously mentioned that Kernel functions encode information about the shape and 

smoothness of the functions drawn from a GP. While the GP itself is a nonparametric model, many 

Kernel functions themselves have parameters known as hyperparameters  𝜽. The setting of 

hyperparameters exerts great influence over the predictive distribution of the GP. For instance, the 

popular squared exponential kernel is parameterized by its length scale 𝓵 and output variance 𝝈 

(Duvenaud 2014) 

 𝑲(𝒙, 𝒙′) = 𝝈𝟐𝐞𝐱𝐩 (−
(𝒙 − 𝒙′)𝟐

𝟐 𝓵
) (2.7) 

 

The model belief about the hyperparameters can be computed again via Bayes rule: 

 𝒑(𝜽|𝑫, 𝑯) = 𝒑(𝒀 | 𝑿, 𝜽) 𝒑(𝜽|𝑯)  (2.8) 

 

where 𝒑(𝜽|𝑯) is the hyperparameter prior, which can be used to encode domain knowledge about 

the settings of hyperparameters or may be left uninformative (Rasmussen and Williams 2006). This 

posterior distribution is often computationally intractable, and thus settings of the hyperparameters 

may be chosen through optimization algorithms such as gradient descent. 

 

2.3.5. Active Learning 
 

One notable advantage of the GP model is that its probabilistic predictions give rise to a set of 

techniques collectively known as “active learning.” Active learning, sometimes called “optimal 
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experimental design,” allows a machine learning model to choose the data it samples to perform 

better with less training (Settles 2011). To contrast with adaptive techniques, queries in active 

learning are chosen in such a way as to minimize some utility function. For example, an active 

learning query may select a point designed to minimize the expected error of the model against the 

latent function. In general, the application of active learning proceeds as follows: first, use the 

existing model to classify unseen data; next, find the “best” next point to query based on some 

objective function and query the data via an oracle (for instance, a human expert); finally, retrain the 

classifier and repeat these steps until satisfied.  

 

Figure 5: GP Audiogram posterior mean  
with next point 

 

Figure 6: GP Audiogram posterior variance  
with next point 

 

 

 

The most common form of  active learning is uncertainty sampling (Lewis and Gale 1994, Settles 

2011). Models employing uncertainty sampling will query areas about which the model is most 

uncertain. In the case of  probabilistic classification, including GP classification, uncertainty sampling 

corresponds to querying the instance whose probability of  being positive is closest to 0.5. This 

model can rapidly identify a class boundary for a target function of  interest. The performance of  
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this method in estimating an underlying function degrades if  the function is itself  probabilistic 

instead of  binary, for instance if  the target function models some probability of  stimulus detection. 

Because uncertainty sampling always attempts to query exactly where 𝒑(𝒚 = 𝟏 |𝒙, 𝑫) = 𝟎. 𝟓, the 

model under-explores the input space. In the context of  psychometric functions, the model cannot 

learn effectively about slope because every query under uncertainty will occur at the best current 

estimate of  the threshold. 

Bayesian Active Learning by Disagreement (BALD) attempts to circumvent this problem via an 

information theoretic approach (Houlsby, Huszár et al. 2011). The BALD method assumes the 

existence of  some latent hyperparameters 𝜽 that control the relationship between inputs and 

outputs  𝒑(𝒚 |𝒙, 𝜽). For example, when performing GP regression with a squared exponential 

kernel, 𝜽 would be the length scale and noise parameters. Further, under the Bayesian framework, it 

is possible to infer a posterior distribution over the parameters 𝒑(𝜽|𝑫). Each possible setting of   𝜽 

represents a distinct hypothesis about the relationship between inputs and outputs. The goal of  the 

BALD method is to reduce the number of  viable hypotheses as quickly as possible by minimizing 

the entropy of  the posterior distribution of   𝜽. To that end, BALD queries the point  𝒙 to maximize 

the decrease in expected entropy: 

 𝐚𝐫𝐠𝐦𝐚𝐱
𝒙

𝑯[𝜽 |𝑫] − 𝔼𝒚 ~ 𝒑(𝒚 |𝒙,𝑫)[ 𝑯[𝜽|𝒚, 𝒙, 𝑫]] (2.9) 

Where 𝑯[𝜽|𝑫] is Shannon’s entropy of  𝜽 given 𝑫. This expression can be difficult to compute 

directly because the latent parameters often exist in high dimensional space. However, equation (2.9) 

can be rewritten in terms of entropies in the1-dimensional output space as follows: 

 𝐚𝐫𝐠𝐦𝐚𝐱
𝒙

𝑯[𝒚|𝒙, 𝑫] − 𝔼𝜽~ 𝒑(𝜽|𝑫)[𝑯[𝒚 |𝒙, 𝜽]] (2.10) 
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 This expression can be computed in  𝑶(𝟏) time (Houlsby, Huszár et al. 2011), making it easy to 

work with in practice. In (2.10), BALD selects the 𝒙 for which the entire model is most uncertain 

about  𝒚 (high 𝑯[𝒀|𝑿, 𝒅]), but for which the individual predictions given a setting of the 

hyperparameters are very confident. This can be interpreted as “seeking the 𝒙 for which the 

parameters under the posterior disagree about the outcome the most,” (Houlsby, Huszár et al. 2011)
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3. Methods 
 

3.1. Introduction 
 

GP Classification was used to simultaneously estimate the right-ear and left-ear audiograms of  

simulated subjects. The model produces continuous audiogram estimates across the entire input 

space and tones were actively sampled to reduce the number of  stimuli required to achieve 

acceptable error thresholds. The goals of  this experiment were 1) to achieve error thresholds 

comparable to current state-of-the-art methods for audiogram estimation and 2) to achieve these 

results across both ears faster than would be otherwise possible with disjoint audiogram estimation.  

 

3.2. Simulations 
 
Simulated subjects have separate audiograms for each ear. These audiograms define the probability 

of stimuli detection over a two-dimensional input space consisting of frequency and intensity. 

Audiogram shapes were defined by one of four human audiogram phenotypes: older-normal, 

sensory, metabolic, and metabolic + sensory (Dubno, Eckert et al. 2013).  
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Figure 7: Simulated audiograms for each of the four human phenotypes identified by Dubno 

In the context of this work, threshold is defined as a point 𝒙 such that  𝒑(𝒚 = 𝟏|𝒙) = 𝟎. 𝟓. These 

standard phenotypes provide threshold estimates at octave frequencies, as would be typically 

observed by the HW procedure. Spline interpolation and linear extrapolation were used to generate 

a continuous threshold estimation across frequency space. At each frequency, a cumulative Gaussian 

was used to generate a sigmoidal psychometric curve to generate probability of tone detection 

outside of threshold (Song, Garnett et al. 2017). The cumulative Gaussian was parameterized by the 

intensity and threshold (𝒙, 𝝁) as follows: 

 𝒑(𝒚 = 𝟏 |𝒙, 𝝁) =
𝟏

√𝟐𝝅 
𝒆−

(𝒙−𝝁)𝟐

𝟐   (3.1) 

Subject response is recorded by drawing a random number from the (0, 1) uniform distribution. A 

stimulus is recorded as “observed” if the random number is less than the probability of tone 

detection for that (𝒇, 𝑰) under that ear’s phenotypic model.  
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The four common phenotypes fall into either normal (older-normal) or pathologic categories 

(metabolic, sensory, metabolic+sensory). As such, simulations were run on three pairings of 

audiograms to reflect possible conjoint hearing conditions. These were: normal, in which simulated 

subjects have the older-normal phenotype in both ears; symmetric hearing loss, in which simulated 

subjects have metabolic hearing loss in one ear and metabolic+sensory hearing loss in the other; and 

asymmetric, in which simulated subjects have older-normal hearing in one ear and 

metabolic+sensory hearing loss in the other. Asymmetric hearing was defined by the two 

phenotypes with the greatest difference in threshold to demonstrate the flexibility of this model. 

 

The results of  four models were compared to determine relative sample efficiency and inference 

accuracy. The first model is the existing framework for GP audiogram estimation (Song, Garnett et 

al. 2017). This approach uses two GP models that do not share information, and queries alternate 

between the two input spaces. This functions as a control group to compare with other models. The 

second model uses conjoint audiogram estimation, but artificially constrains the model to alternate 

ears in its sampling. The motivation for this model is to see improvement in accuracy or efficiency 

just through an extension of  the input space and covariance function. This model also provides an 

easy direct comparison to model 1 for explanatory purposes. Sampling in the third model is 

unconstrained. This allows the model to query one ear multiple times in a row if  it deems fit. Finally, 

a fourth model was run using Halton sampling (Halton 1964) to demonstrate the importance of  

active sampling. All tests in all models were run with the same mean, likelihood, and inference 

functions. Models 2 and 3 use the same kernel. Model 1 uses the kernel described in 3.3.3 without 

the multiplicative inter-ear covariance. 
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Simulated subjects representing each of  the three phenotypic pairings were tested 10 times under 

each of  the three models. Each test consisted of  100 observations of  data. 

3.3. Gaussian Process Framework 
 

3.3.1. Variable Space 
 

Traditional pure-tone audiometry involves delivering tones in a two-dimensional continuous feature 

space, frequency and intensity. In this study, we augment the feature space to include a third discrete 

“ear” dimension, i.e. 𝒙𝒊 = (𝒇𝒊, 𝑰𝒊, 𝒆𝒊). In querying a simulated subject’s audiogram, the model 

chooses in which ear to deliver the tone in addition to the frequency and intensity of  tone delivered. 

Binary responses were recorded for each simulated tone delivery.  

3.3.2. Mean Function 
 

The model uses a constant mean function,  𝝁(𝒙) = 𝒄 ∀𝒙 ∈ 𝑿. While this mean function is not 

representative of  any of  the phenotypic audiograms, deviation from the mean is captured in the 

posterior distribution of  the GP Classification model. 

 

3.3.3. Kernel Function 
 

The GP Kernel function was derived from prior knowledge about the behavior of  audiograms. 

Knowing that a subject’s psychometric curve for any frequency is sigmoidal allows us to place a 

linear kernel in the intensity dimension: 

 𝑲𝑰(𝒙, 𝒙′) = 𝑰 ⋅ 𝑰′ (3.2) 
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Further, the model leverages the continuity of  audiogram threshold by placing an isotropic squared 

exponential kernel with unit magnitude over the frequency domain 

 𝑲𝒇(𝒙, 𝒙′) =  𝒆−
(𝒇−𝒇′)(𝒇−𝒇′)

𝑻

𝟐𝓵  
(3.3) 

where  𝓵 is the length scale.  

Finally, the model must incorporate some sort of  covariance between ears. For this, the model uses a 

discrete covariance function which directly parameterizes relationships between every pair of  points 

in the discrete space.  

  𝑲𝒆(𝒙, 𝒙′) =  {

      𝒔𝟏𝟏 if 𝒙, 𝒙′ ∈ 𝒆𝟏

𝒔𝟏𝟐 if 𝒆 ≠ 𝒆′
       𝒔𝟐𝟐 if 𝒙, 𝒙′ ∈ 𝒆𝟐

 (3.4) 

This model can explicitly define the covariance between ears without having to relate them via some 

functional form. Computationally, this is done by modeling the discrete covariance as the Cholesky 

decomposition of  a 2×2 matrix,  𝑲 = 𝚲𝚲𝑻. 

Finally, the model combines the covariance functions as follows: 

 𝑲(𝒙, 𝒙′) = 𝑲𝒆(𝒙, 𝒙′)×(𝑲𝒇(𝒙, 𝒙′) + 𝑲𝑰(𝒙, 𝒙′)) (3.5) 

 

3.3.4. Likelihood Function 
 

The model uses the cumulative Gaussian likelihood function for binary classification, which is both 

standard for GP classification and accurately captures the sigmoidal behavior of psychometric 

functions. 
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3.3.5. Inference Function 
 

The exact form of  the posterior requires computing the product of  the likelihood and prior 

distributions. In the case of  GP Classification, the product of  a Gaussian distribution with a 

sigmoidal function does not produce a tractable posterior distribution. The model must instead 

approximate the posterior. This model uses Expectation Propagation (EP) to approximate the 

posterior. Under EP inference, the model approximates each of  the sigmoid likelihoods with 

moment-matching Gaussian distributions to derive a Gaussian posterior distribution (Gelman, 

Vehtari et al. 2014). 

 

3.3.6. Active Sampling 
 

Simulations were run until 100 data points had been collected. Because the model tends to be less 

accurate with very little data (n << 10), traditional active learning procedures would query regions 

that prior knowledge would indicate are very uninformative, for example extremely quiet tones (dB 

< -10). Thus, the first 15 points are delivered via a modification of  Halton sampling. The typical 

Halton sampling method produces “well spaced” draws from the feature space (Halton 1964). In 

this modification, Halton samples were constrained to deliver tones below 60dB to protect the 

subject’s hearing in the event of  clinical application. The remaining 85 observations were delivered 

via BALD. The BALD procedure is described in greater detail in section 2.3.5.  
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3.3.7. Hyperparameter Learning 

 

The GP classification model is fully parameterized by its mean and covariance functions. In the case 

of  this model, the constant mean has one parameter, namely the constant, and the custom kernel 

function has four: one for the length of  the squared exponential kernel, and three for the discrete 

kernel. Because the posterior distribution of  the hyperparameters  𝒑(𝜽|𝑫) may be multimodal, 

standard gradient descent approaches run the risk of  getting stuck in a local maximum. To 

circumvent this issue, the model performs gradient descent on two settings of  hyperparameters after 

each observation. The first setting of  hyperparameters comes from the most recent results of  the 

model (or the hyperparameter prior in absence of  any data). The second setting of  hyperparameters 

is drawn from a multivariate Gaussian distribution whose mean is the hyperparameter prior derived 

in the following section. Gradient descent is performed on both settings of  the hyperparameters, 

and the setting with higher likelihood  𝒑(𝑫 |𝜽) is kept for the next iteration. 

3.3.8. Hyperparameter Prior Selection 

The first iterations of  the model suffered greatly from inefficient early sampling. It was clear that the 

initial settings of  the hyperparameters did not accurately model the types of  audiograms that would 

be seen in a clinical setting. Fixing this issue involved learning reasonable priors on the 

hyperparameters to serve as a strong starting point for the model. 

 

Each of  the four common human phenotypes has at least one optimal setting to its hyperparameters 

to minimize model error. Because the kernel function is symmetric, there are ten unique pairs of  
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audiogram profiles that can be derived from the four phenotypes. Data was collected for each of  the 

ten audiogram profile pairs far in excess of  what would be collected in a clinical setting. First, 400 

stimuli were delivered across both ears using Halton sampling. Then, an additional 100 stimuli were 

queried via BALD to gain additional sampling density around the threshold. Hyperparameters were 

learned using the modified gradient descent method discussed in 3.3.7. The same concept was 

repeated with varying numbers of  Halton and BALD queries, but the final settings of  the 

hyperparameters converged to within 2% of  each after about 300 samples. The final setting of  the 

hyperparameter priors was computed by taking an average of  the hyperparameters in each of  the ten 

pairs, weighted by the prevalence of  those phenotypes in human populations (Dubno, Eckert et al. 

2013). This method assumes that the phenotype for one ear is independent of  the phenotype of  the 

other ear in the same subject. This is not the case, and a possible improvement of  the model would 

involve weighting each setting of  the hyperparameters by the prevalence of  that pair of  phenotypes 

in humans.  

3.3.9 Evaluation 
 

I evaluated the performance of  two variants of  the conjoint audiogram estimation technique 

described above, and compared these results with those of  the existing GP audiogram framework, 

which served as a baseline. All together, the performance of  the following three methods were 

compared for each of  my test cases: 

 Disjoint GP Audiogram Estimation (Disjoint): This method performs inference using two 

separate models of  the existing GP audiogram framework. (Song, Garnett et al. 2017). 

Information in this approach is not shared between ears. Tone delivery alternated between 

left- and right- ears.  
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 Alternating Conjoint GP Audiogram Estimation (Alternating Conjoint): This method performs 

inference using the conjoint audiogram estimation extension of  GPs described above. 

However, this method is artificially constrained to alternate samples between the left- and 

right- ears. This approach was included in hopes of  demonstrating that conjoint audiogram 

estimation outperforms disjoint audiogram estimation even with the same sampling scheme.  

 Unconstrained Conjoint GP Audiogram Estimation (Unconstrained Conjoint): This method also 

performs inference using the conjoint audiogram estimation extension of  GPs described 

above. This method gives the model complete choice over which ear to query, as well as 

which frequency / intensity pair to deliver. This occasionally results in multiple stimuli being 

delivered to the same ear, particularly in cases where the model is more unsure of  the 

audiogram in one ear than the other. 

Each of  the four phenotypes identified by Dubno could be further classified into either “normal” 

hearing or “pathological” hearing. Normal hearing was identified by the older-normal phenotype, 

whereas pathological hearing could be any of  the metabolic, sensory, or metabolic + sensory 

phenotypes. From here, I identified three cases of  interest to demonstrate the flexibility of  the 

conjoint audiogram estimation framework: 

 Case 1 - Older Normal: This case was defined as having the older-normal phenotype in both 

ears 

 Case 2 – Asymmetric Hearing Loss: This case was defined as having the older-normal phenotype 

in one ear, and the metabolic + sensory phenotype in the other ear. This case represents 

more severe asymmetric hearing loss than is typical in human populations (Song, Wallace et 

al. 2015) but was included to demonstrate the flexibility of  the conjoint models. 
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 Case 3 – Symmetric Hearing Loss: This case was defined as having metabolic + sensory hearing 

loss in one ear, and sensory hearing loss in the other. This case is more typical of  hearing 

loss in human subjects. The sensory and metabolic + sensory phenotypes have slightly 

different thresholds. Distinct phenotypes were chosen for this case to more accurately reflect 

presentations of  hearing loss in human subjects, where left- and right- ear audiograms are 

not typically identical.  

I ran ten tests of  each case-model pair, for a total of  90 tests. For each test, 100 tones were 

delivered to the simulated subjects. To avoid unstable hyperparameter learning and 

uninformative early querying, the first 15 tones were delivered via a modified Halton sampling 

algorithm. The modified Halton sampling algorithm constrained tone deliveries to be below 

60dB. This prevents damaging subject hearing if  this approach were to be tested in humans. 

Subsequent tones are sampled via BALD, with constraints for the disjoint and alternating 

conjoint cases as discussed above. Hyperparameters are learned via a modified gradient descent 

algorithm every iteration starting with iteration 16. Hyperparameter learning is off  for the first 

15 iterations of  each test to prevent model instability. For each tone delivery I recorded the 

model posterior distribution across the entire input space. From here, I derived the 𝒙 intercept 

of  the latent function to calculate the 50% threshold, also known as 𝜶 for the model over a fine 

grid of  frequencies from 0.125kHz to 16kHz. I evaluated accuracy for a single test using the 

mean absolute error between the estimated  𝜶 and the true 𝜶 at each frequency in the grid. 

Results were then averaged at each iteration across all 10 tests, to get the average  𝜶 error per 

iteration for each of  the three models in each of  the three cases. In addition to comparing 

average 𝜶 error per iteration, I also examined the average number of  iterations required to have 

less than 5dB 𝜶 error in both ears. This value was chosen as a measure of  “convergence” 
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because it is the minimum step size in the Hughson Westlake procedure. Thus, once the model is 

within 5dB 𝜶 error in both ears, it is within the margin of  error for the Hughson Westlake 

procedure. 
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4. Results 

Figure 8 depicts a representative run of the conjoint audiogram estimation algorithm. The ground 

truth for this figure was the asymmetric hearing loss case identified by older-normal hearing in one 

ear and metabolic + sensory hearing loss in the right ear. The first 15 samples were selected via 

Halton sampling to improve the stability of the GP model. Subsequent tones were sampled using 

BALD. The samples selected via BALD cluster around the predicted threshold, where they are more 

informative about the true audiogram threshold. Note that after 14 tone deliveries, the conjoint GP 

model has not yet identified the microstructure in the older-normal ear and is very unconfident 

about the threshold location in the metabolic + sensory ear. After 98 tone deliveries, the model has 

correctly identified the microstructure in the older-normal ear and confidently and accurately 

identifies the threshold in the metabolic + sensory ear.  

  



27 
 

 

  

  
Figure 8: Example of posterior mean for simulated asymmetric hearing loss as estimated by the alternating conjoint GP audiogram 
estimation model. In all images, the predicted probability in tone detection is shown in grayscale. Blue plusses are heard stimuli and 
red diamonds are unheard stimuli. The true threshold from the simulation is shown in pink. (Top) Posterior mean after 14 samples. 

(Bottom) Posterior mean after 98 samples. 

 

4.1 Case 1: Older Normal Hearing 

 Figure 9 shows the average 𝜶 error per iteration for case 1, which was defined as having the older-

normal phenotype in both ears. Note that both conjoint approaches outperform the disjoint 

approach, particularly in the early iterations. While hyperparameter priors were learned in the same 

fashion, the disjoint approach has an additional multiplicative noise term for its squared exponential 

frequency kernel. It is possible that this additional hyperparameter leads to a degradation in early 

performance. However, as the models progress, they all approach around 1dB mean 𝜶 error.  



28 
 

  

Figure 9: Mean 𝛼 error per iteration case 1, no hearing loss 

Figure 10 shows the average number of iterations required for each model to achieve 5dB average 

𝜶 error in the normal hearing case. Both the unconstrained and alternating conjoint approaches 

require less than 2/3 the samples required in the disjoint approach. However, the conjoint 

approaches tend to have higher standard deviation than the disjoint approach. This is possibly 

because initial differences in the Halton sampling algorithm reinforce the constant threshold belief 

more in some iterations than others, and this constant threshold belief is stronger with more 

evidence, as would be the case if samples were shared among ears.  It is worth noting that the 2nd ear 

of the older normal phenotype never observes higher than 5dB average 𝜶 error. This is because the 

older-normal phenotype is relatively constant (see Figure 7), and the GP has a constant mean prior. 

This makes the prior belief of the model much better for the older-normal phenotype than it is for 

any of the pathologic phenotypes.  

 Ear 1: Older Normal Ear 2: Older Normal 

Unconstrained Conjoint 11.5 ±4.5 0 ±0* 

Alternating Conjoint 15.3 ±9.7 9.6 ±10.3 

Disjoint 18.1 ±2.6 19.1 ±2.5 
Figure 10: Mean number of iterations required to achieve 5 dB 𝛼 error for each ear, case 1 
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4.2 Case 2: Asymmetric Hearing Loss 

Figure 11 shows the mean 𝜶 error per iteration for case 2, which was defined as having the older-

normal phenotype in one ear and the metabolic + sensory phenotype in the other. Note that both 

conjoint approaches outperform the disjoint approach, particularly in the metabolic + sensory ear. It 

is also worth mentioning that the unconstrained conjoint method chooses to sacrifice some early 

performance in the older-normal ear in exchange for faster convergence in the metabolic + sensory 

ear. The unconstrained approach is able to make this choice because the model uncertainty is higher 

in early iterations on the metabolic + sensory phenotype than it is on the older-normal phenotype 

(Figure 8). 

 

  
Figure 11: Mean 𝛼 error per iteration, asymmetric hearing loss 

Figure 12 shows the average number of iterations required for each model to achieve 5dB average 

𝜶 error in the asymmetric hearing loss case. Both the unconstrained and alternating conjoint 

approaches require less samples than were required in the disjoint approach. As was observed in 

Figure 11, the unconstrained conjoint method sacrifices some early performance in estimating the 

older-normal phenotype in exchange for faster convergence in the metabolic + sensory phenotype. 

Thus, the number of tones required to achieve convergence in both ears is lower for the 

unconstrained conjoint approach than it is for the alternating conjoint approach. The limiting factor 

in all three methods was identifying the metabolic + sensory phenotype, which took an average of 
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27.9 tone deliveries split across both ears in the unconstrained case and 32.9 tone deliveries split 

across both ears in the alternating case. Put another way, unconstrained conjoint only requires 

84.8% of the samples required for alternating conjoint to achieve convergence in both ears in this 

case. 

 

 Ear 1: Older Normal Ear 2: Metabolic Sensory 

Unconstrained Conjoint 10 ±5.2 27.9 ±3.9 

Alternating Conjoint 5.8 ±6.1 32.9 ±5.3 

Disjoint 16.9 ±2.3 46 ±6.1 
Figure 12: Mean number of iterations required to achieve 5 dB α error for each ear, case 2 

 

4.3 Case 3: Symmetric Hearing Loss 
 

Figure 13 shows the average 𝜶 error per iteration for case 3, which was defined as having the 

metabolic + sensory phenotype in one ear and the sensory phenotype in the other. Once again, both 

conjoint approaches outperform the disjoint approach, particularly in the metabolic + sensory ear. 

In this case, the unconstrained conjoint approach can leverage its ability to choose in which ear to 

deliver stimuli and achieves substantially faster convergence than even the alternating conjoint 

approach. Further, all three models continue to have more difficulty identifying pathological 

phenotypes. This suggests that there is room for improvement by using a more informative prior 

mean.  
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Figure 13: Mean 𝛼 error per iteration, symmetric hearing loss 

 
Figure 14 shows the average number of iterations required for each model to achieve 5dB average 

𝜶 error in the symmetric hearing loss case. Both the unconstrained and alternating conjoint 

approaches require less samples than were required in the disjoint approach. Unlike in case 2, the 

unconstrained conjoint model can leverage its knowledge of inter-ear correlation to drastically 

improve the time to convergence in both ears by changing the distribution of ear samples. As a 

result, the unconstrained conjoint method is able to converge in both ears faster than the alternating 

conjoint approach can converge in either. Further, in this case, the unconstrained conjoint approach 

converges in both ears using 55.1% of the samples required in the disjoint approach. 

 

 Ear 1: Metabolic Sensory Ear 2: Sensory 

Unconstrained Conjoint 29.2 ±7.0 27.7 ±4.1 

Alternating Conjoint 31.1 ±6.3 35.5 ±5.0 

Disjoint 41.8 ±8.1 53 ±11.4 
Figure 14: Mean number of iterations required to achieve 5 dB 𝛼error for each ear, case 3 

 

4.4 Summary Results  

Figure 15 shows the average number of  tones required for each of  the models to achieve below 

5dB 𝜶 error in both ears for each case. Numbers here were selected as the last time the average 𝜶 
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error per iteration crossed below 5dB in both ears. This prevents the numbers from being overly 

optimistic. It is possible for the conjoint GP approach to start with a “lucky guess” of  the true 

audiogram and have average 𝜶 error below 5dB for early iterations but have the 𝜶 error go up in 

early iteration, which tend to be more unstable. Presenting an average of  the final cross below 

convergence solves this issue. To summarize the results of  the three presented cases, both conjoint 

methods outperform the disjoint approach for every case. It is also apparent that the constant mean 

assumption performs substantially better on older-normal phenotypes than it does on any of  the 

pathological phenotypes.  
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 Older Normal  Asymmetric  Symmetric  

Unconstrained Conjoint 11.5 ±4.5 27.9 ±3.9 32.1 ±4.7 

Alternating Conjoint 17.3 ±4.9 32.9 ±5.2 36.1 ±4.8 

Disjoint 19.9 ±2.4 46.0 ±6.1 55.0 ±8.2 
Figure 15: Mean number of tones required for each of the three models to achieve better than 5dB average 𝛼 error per iteration 

 

Figure 16 reframes the results of  Figure 15 in relative terms. Regardless of  the phenotype pairings, 

the unconstrained conjoint approach demonstrates approximately a 40% speedup in sampling 

efficiency over the disjoint approach. One interesting observation that is made clear from this 

example is that the performance of  the alternating conjoint method is closest to that of  the 

unconstrained conjoint method in the case of  asymmetric hearing loss. This is because the conjoint 

model learns that there is less correlation between the two ears and, to learn a good audiogram 

estimation, must split its samples more evenly among both ears. This causes the unconstrained 

conjoint and alternating conjoint approaches to exhibit similar querying strategies in the asymmetric 

case, whereas in the older-normal and symmetric cases, their querying strategies are quite different. 

 Older Normal  Asymmetric  Symmetric  

Unconstrained Conjoint 60.65% ±22.6% 58.36% ±8.5% 57.79%±8.5% 

Alternating Conjoint 71.5% ±24.6% 65.63% ±11.3% 86.93%±8.7% 

Disjoint 100% ±12% 100% ±13.3% 100%±14.9% 
Figure 16: Percentage of tones relative to disjoint required for each of the three models to achieve better than 5dB average 𝛼error per 
iteration 
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5. Discussion 
 

Bayesian methods continue to show promise in the estimation of  psychometric functions. Posterior 

distributions allow for active sampling techniques which can produce fast, accurate psychometric 

estimations, even in the three-dimensional space explored here. This, coupled with the ability to 

encode domain specific knowledge in the form of  a prior, gives Bayesian methods the robustness 

and flexibility to see substantial clinical application.  

Gaussian Processes also represent a significant conceptual shift for psychometrics. Psychometric 

function estimation has typically been a parametric task. The Gaussian Process model allows a 

diagnostician to infer directly about a patient’s response to stimuli, hopefully allowing them to make 

clearer diagnoses. A nonparametric model could possibly bring new insights into pathologies that 

were previously unexplored because they were too complex to be modelled effectively by the clinical 

standard psychometric function for that stimulus.  

To my knowledge, this is both the first application of  GP classification to the estimation of  multiple 

psychometric functions simultaneously and the first application of  GP classification to a three-

dimensional psychometric input space. The ability of  GPs to efficiently sample higher dimensional 

input spaces allows them to extend to more complex problems. 

There are several directions for future application in this space. First, these results need to be 

confirmed in a clinical setting. In the simulation space, one notable weakness of  the approach was a 

relative dearth of  ground truth audiograms from which to test. A reasonably straightforward 

extension of  this work would be to assess the same model against a wider distribution of  simulated 

audiograms. It is possible that there are pathologies that this model could not capture. I suspect that 
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this model may perform poorly if  an individual has a very smooth threshold in one ear and a very 

notched threshold in the other, as may be the case for individuals with high levels of  asymmetric 

noise exposure, for instance marksmen.  

There are ways to extend this research beyond more rigorous testing. First, all three models had less 

trouble identifying the older-normal threshold than any of  the pathological thresholds. This is 

because the constant mean assumption, while reasonable for older-normal, does not accurately 

reflect the pathological phenotypes. A more robust GP framework would encode some mean 

function that varies with respect to frequency. In each pathological phenotype, there is a region of  

constant threshold in low frequencies, followed by a decreasing threshold in high frequencies. The 

GP mean function should be able to model this behavior. Implementing this change would likely 

confer further increases in efficiency. 

The conjoint GP model also allows for easy extension to higher dimensional discrete spaces. For 

example, the conjoint GP could also choose whether to deliver a tone via bone conduction or air 

conduction. This would help identify pathologies that are not identified by the current approach to 

conjoint audiogram estimation.  

6. Conclusion 
 

The goal of  this thesis was to develop a framework for extending the input space of  existing GP 

models and performing inference between discrete psychometric functions. A first step in moving 

forward in this line of  research would be validating the simulated results with human studies. 

Another natural progression would be to apply the GP classification framework to other domains, 

for example vision or behavior. On the machine learning front in the audiology space alone, there 

are many directions in which this work could proceed. First, audiologists use both air-conduction 
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and bone-conduction pure tone audiometry to assess the source of  a patient’s hearing loss. It would 

be a nearly identical exercise to extend this framework to also allow for choice between delivering a 

tone via air conduction or bone conduction. A slightly more involved extension of  the GP 

framework could add masking, a third continuous dimension that is delivered in the opposite ear to 

ensure that subject response to stimulus comes from the target ear. One notable challenge for 

masking would be developing ground truth data. Clinical state of  the art involves using adaptive 

techniques to perform a limited grid search of  the masking dimension along a fixed tone frequency 

and intensity. To this author’s knowledge, the masking space has not been explored in as much depth 

as the frequency / intensity space. Finally, it would be particularly interesting to learn some warping 

function to infer between different tasks in the same domain. 

Bayesian methods have taken time to gain traction amid much pushback from frequentist 

statisticians. However, the ability to encode prior information and hold probabilistic beliefs give 

Bayesian methods strength that is hard to deny. While GP classification models have some 

limitations, including poor scaling to large data relative to Neural Networks or SVMs (sparse GPs 

attempt to rectify this and are still an active area of  research), they present a unique opportunity to 

gain inference about an individual subject in ways that were previously infeasible due to time or 

budgetary constraints. It is the hope of  this author that one day Bayesian methods for diagnostics 

will be widely adopted by the medical community and will herald a shift in the way we perceive 

medicine. 

The complexity of  the GP model is a double-edged sword. While it can perform faster, more 

accurate audiogram estimates than current clinical methods, it is also substantially more difficult for 

clinicians to understand. I believe that for GPs to gain widespread clinical adoption, clinicians must 
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either a) receive substantial additional training in the new methods, or b) be willing to treat the 

querying and inference methods of  the GP as a “black box” and simply rely on the results. 

Irrefutable performance increases in the efficiency and accuracy of  the GP audiogram could also 

lead to a significant increase in clinical adoption. The conjoint audiogram approach is an important 

step in this direction. Not only does the conjoint test confer a 40% speedup in sample efficiency 

over the existing GP audiogram approach (which itself  is substantially faster than the Hughson 

Westlake procedure), but estimating both ears simultaneously allows the clinician to only perform 

one experimental setup. Additional tests can be incorporated by extending the model, with the goal 

of  one day being able to perform an entire test battery simultaneously. At this point, the increases in 

efficiency and accuracy would be impossible to ignore and using approaches other than GP 

audiogram would be arcane or irresponsible. 
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