
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2008-24

2008-01-01

Flexible Service Provisioning for Heterogeneous Sensor Networks Flexible Service Provisioning for Heterogeneous Sensor Networks

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

This paper presents Servilla, a highly flexible service provisioning framework for heterogeneous

wireless sensor networks. Its service-oriented programming model and middleware enable

developers to construct platform-independent applications over a dynamic set of devices with

diverse computational resources and sensors. A salient feature of Servilla is its support for

dynamic discovery and binding to local and remote services, which enables flexible and energy-

efficient in-network collaboration among heterogeneous devices. Furthermore, Servilla provides

a modular middleware architecture that can be easily tailored for devices with a wide range of

resources, allowing even resource-limited devices to provide services and leverage resource-rich

devices for... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Fok, Chien-Liang; Roman, Gruia-Catalin; and Lu, Chenyang, "Flexible Service Provisioning for
Heterogeneous Sensor Networks" Report Number: WUCSE-2008-24 (2008). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/232

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/232?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/232

Flexible Service Provisioning for Heterogeneous Sensor Networks Flexible Service Provisioning for Heterogeneous Sensor Networks

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Complete Abstract: Complete Abstract:

This paper presents Servilla, a highly flexible service provisioning framework for heterogeneous wireless
sensor networks. Its service-oriented programming model and middleware enable developers to
construct platform-independent applications over a dynamic set of devices with diverse computational
resources and sensors. A salient feature of Servilla is its support for dynamic discovery and binding to
local and remote services, which enables flexible and energy-efficient in-network collaboration among
heterogeneous devices. Furthermore, Servilla provides a modular middleware architecture that can be
easily tailored for devices with a wide range of resources, allowing even resource-limited devices to
provide services and leverage resource-rich devices for in-network processing. Microbenchmarks
demonstrate the efficiency of Servilla's middleware, and an application case study for structural health
monitoring on a heterogeneous testbed consisting of TelosB and Imote2 nodes demonstrates the
efficacy of its programming model.This paper is replaced by tech report WUCSE-2009-2.

https://openscholarship.wustl.edu/cse_research/232?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/232?utm_source=openscholarship.wustl.edu%2Fcse_research%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2008-24

Flexible Service Provisioning for Heterogeneous Sensor Networks

Authors: Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

Corresponding Author: liangfok@wustl.edu

Web Page: http://www.cse.wustl.edu/wsn/index.php?title=Servilla

Abstract: This paper presents Servilla, a highly flexible service provisioning framework for heterogeneous
wireless sensor networks. Its service-oriented programming model and middleware enable developers to
construct platform-independent applications over a dynamic set of devices with diverse computational resources
and sensors. A salient feature of Servilla is its support for dynamic discovery and binding to local and remote
services, which enables flexible and energy-efficient in-network collaboration among heterogeneous devices.
Furthermore, Servilla provides a modular middleware architecture that can be easily tailored for devices with a
wide range of resources, allowing even resource-limited devices to provide services and leverage resource-rich
devices for in-network processing. Microbenchmarks demonstrate the efficiency of Servilla's middleware, and an
application case study for structural health monitoring on a heterogeneous testbed consisting of TelosB and
Imote2 nodes demonstrates the efficacy of its programming model.

Notes:
This paper is replaced by tech report WUCSE-2009-2.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Flexible Service Provisioning for Heterogeneous Sensor
Networks

Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu
Dept. of Computer Science and Engineering

Washington University in St. Louis
Saint Louis, MO, 63105, USA

[liang, roman, lu]@cse.wustl.edu

ABSTRACT
This paper presents Servilla, a highly flexible service pro-
visioning framework for heterogeneous wireless sensor net-
works. Its service-oriented programming model and mid-
dleware enable developers to construct platform-independent
applications over a dynamic set of devices with diverse com-
putational resources and sensors. A salient feature of Servilla
is its support for dynamic discovery and binding to local and
remote services, which enables flexible and energy-efficient
in-network collaboration among heterogeneous devices. Fur-
thermore, Servilla provides a modular middleware architec-
ture that can be easily tailored for devices with a wide range
of resources, allowing even resource-limited devices to pro-
vide services and leverage resource-rich devices for in-network
processing. Microbenchmarks demonstrate the efficiency of
Servilla’s middleware, and an application case study for struc-
tural health monitoring on a heterogeneous testbed consist-
ing of TelosB and Imote2 nodes demonstrates the efficacy of
its programming model.

1. INTRODUCTION
Wireless sensor networks (WSNs) [7] are becoming in-

creasingly heterogeneous with nodes that span a wide range
of memory, processing, and sensing capabilities [15]. Fur-
thermore, WSNs tend to be highly dynamic, existing nodes
fail and new nodes are continuously developed and deployed.
Network heterogeneity and dynamics give rise to many chal-
lenges like having to create multiple versions of an applica-
tion tailored to each hardware platform, and re-designing the
implementation each time a new platform is introduced into
the network. Solving these challenges is critical to enable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

WSNs to evolve into a ubiquitous, permanent, and continu-
ously evolving sensing infrastructure [13]. The creation of
such a WSN is important because it makes new types of in-
tegrated sensing systems such as urban sensing [30, 37] and
building automation. New programming models and frame-
works are needed to allow applications to make use of what-
ever resources are available at a certain point in time, and
adapt to changing hardware resources due to the evolving
WSN infrastructure.

Service-oriented computing (SOC) [33] is a promising
programming model for handling node heterogeneity in the
Internet. Recently SOC has been explored in the context
of WSNs. For example, two systems that use SOC with
WSNs are Tiny Web Services (TWS) [35] and PhyNetTM [2].
TWS provides an HTTP server on each WSN node and en-
ables applications to access services using HTTP requests.
PhyNetTMprovides a gateway that exposes WSN capabili-
ties as web services. Both systems treat WSNs mainly as
data sources for applications rather than as a computing in-
frastructure for executing the application. While these sys-
tems effectively enhance the interoperability among hetero-
geneous nodes, in both systems applications execute outside
of the WSN and are bound to services at a central base sta-
tion, limiting their ability to support in-network collabora-
tion among heterogeneous nodes.

This paper presents Servilla, a highly flexible service
provisioning framework for heterogeneous wireless sensor
networks. Using Servilla, an application can dynamically
discover and bind to local and remote services, facilitat-
ing in-network collaboration between heterogeneous WSN
nodes and achieving higher levels of efficiency and flexi-
bility. Servilla structures applications in terms of platform-
independent tasks and expose platform-specific capabilities
as services. Tasks search for services that match their re-
quirements, and dynamically bind to them when they are
available. A specialized service description language is in-
troduced that enables tasks to selectively bind to services that
exploit the capabilities of whatever hardware is available at
a particular time and place. Criteria such as distance and en-
ergy efficiency level can be used in making service binding

decisions.
Unlike prior work on SOC for sensor networks [35, 2],

Servilla takes the SOC programming model inside a WSN
to address challenges that stem from network heterogene-
ity and dynamics. The loose coupling between service con-
sumers and providers can be used to separate application-
level platform-independent logic from the low-level software
components that perform platform-specific capabilities. Fur-
thermore, by allowing application logic to execute inside
a WSN, higher levels of efficiency are obtainable via in-
network collaboration. For example, in a structural health
monitoring application, a low-power node may detect po-
tentially damage-inducing shocks and activate more power-
ful nodes that collaborate to localize the damage. Or, in a
surveillance application, low-power nodes may sense vibra-
tions from an intruder and activate more powerful nodes with
cameras to take pictures of the intruder [19]. The ability to
support collaboration among heterogeneous devices is a key
distinguishing feature that separates this work from existing
SOC frameworks for WSN.

This paper makes the following primary contributions.

• We propose a specialized service-oriented program-
ming model that enables flexible and energy-efficient
collaboration among heterogeneous nodes via dynamic
binding to local or remote services;

• We design and implement a modular middleware ar-
chitecture that can be easily tailored for devices with
a wide range of resources, which allows extremely
resource-constrained devices to provide services and
leverage resource-rich devices for in-network process-
ing;

• We present microbenchmarks that demonstrate the fea-
sibility and efficiency of Servilla on two representative
hardware platforms (TelosB and Imote2) with signifi-
cantly different resources;

• We provide an application case study on structural
health monitoring that demonstrates the efficacy of the
Servilla programming model.

The remainder of the paper is organized as follows.
Section 2 presents Servilla’s programming model. Sec-
tion 3 presents Servilla’s programming languages. Sec-
tion 4 presents Servilla’s middleware architecture. Section 5
presents a prototype implementation. Section 6 presents an
evaluation on a heterogeneous WSN. Section 7 presents a
structural health monitoring application that is implemented
using Servilla. Section 8 presents related work. The paper
ends with conclusions in section 9.

2. PROGRAMMING MODEL
An overview of a heterogeneous sensor network running

the Servilla middleware is shown in Figure 1. It consists

WSN Node (MicaZ)

Task

service service

WSN Node (Stargate)

Task

service service

WSN Node (Imote2)

Task

service service

WSN Node (TelosB)

Task

service service

WSN Node (Imote2)

Task

service service

Remote
Invoke

Local
Invoke

bind

bind

Figure 1: Servilla targets heterogeneous and dy-
namic WSNs in which nodes provide services that
expose platform-specific capabilities, while platform-
independent application tasks use these services either
locally or remotely.

of a heterogeneous mix of WSN nodes, services that ex-
pose platform-specific functionality, and tasks that perform
application-specific operations in a platform-independent
fashion. Note that Servilla is meant for heterogeneous net-
works that integrate fine-grained and low-power sensing of
resource-constrained nodes (like the TelosB [34]) and the
computational resources of resource-rich nodes (like the
Imote2 [6]). It is not meant for flat WSNs composed entirely
of resource-poor nodes.

When a task needs to perform a platform-specific opera-
tion, it searches for a service that is able to carry out the op-
eration. The service may be provided by the node on which
the task resides or on a remote node. A key feature and nov-
elty of Servilla lies in its support for service provisioning
inside the network, including local and neighborhood ser-
vice discovery, matching, and dynamic binding. This ser-
vice provisioning model enhances the system flexibility and
enables applications to effectively exploit services inside the
network.

2.1 Tasks
A task contains an application’s code, execution state, and

list of service specifications, as shown in Figure 2. Note that
tasks are platform-independent while the service specifica-
tions allow the SOC framework to handle platform hetero-
geneity and changes transparently from applications. The
service specifications describe the services that are needed
by the task. In addition to describing the service’s interface,
the specification also includes desired properties of the ser-
vice, like the maximum amount of power that the service
may consume. This enables tasks to better distinguish be-
tween similar services by, for example, binding to the ones
that are the most energy efficient.

2.2 Services
Services expose platform-specific capabilities and are dy-

Service
Specs

State

Code

Task

Figure 2: A task consists of code, service specifications,
and execution state.

namically discovered and bound to tasks. Since they are
platform-specific, they can be fine-tuned for maximum ef-
ficiency. Servilla services are able to maintain state, provide
multiple methods, and have their own thread of control. This
enables more powerful services that can, for example, pro-
vide access to large memory spaces that are only available
on certain hardware platforms. It also enables services to
run concurrently with tasks, like continuously monitoring a
sensor in the background.

A task can discover and bind to both local services and
remote services in its neighborhood that match its service
specifications. Remote services are accessed wirelessly from
another node. They increase flexibility by allowing a task to
run on nodes that do not have all of the services it requires,
by exploiting services available on neighboring nodes. This
has benefits beyond increasing the number of nodes that a
task can execute on. For example, remote binding may in-
crease energy efficiency by exploiting low-power nodes in
the neighborhood, or enable tasks to perform in-network data
fusion of sensor data collected from the neighborhood.

2.3 Service Binding
Service binding consists of a three-step process: service

discovery, matching, and informing the task of the chosen
service. Service discovery consists of finding services that
are available to a given task. In many traditional SOC frame-
works, it involves querying a service directory located at the
base station. While this is sufficient when applications re-
side outside of the WSN and must access the WSN via the
base station anyway, it is not appropriate for Servilla because
(1) any WSN node may initiate the discovery process and
forcing nodes to access a potentially distant directory is not
efficient, and (2) keeping a centralized directory up to date
is difficult in a dynamic environment. Instead, Servilla as-
sumes that tasks prefer a nearby service over one that is fur-
ther away to save energy. For this reason, Servilla distributes
the service directory. Specifically, every node that provides
services maintains a service registry that contains the speci-
fications of the services that it provides. This registry serves

as a directory that is searchable locally and remotely among
neighbors, enabling tasks to dynamically discover services
that are available.

Service matching involves finding a service that fulfills a
task’s requirements. Recall that the service directories are
distributed across WSN nodes, making the location of the
service explicit. Servilla’s service matching process exploits
this fact by first querying the local service directory before
searching neighboring ones, ensuring that a task is always
bound to a local service whenever possible, reducing net-
work overhead.

Once a satisfactory service is found, the binding process
is completed by informing the task of the chosen service.
This is done by giving the address of the node that provides
the service to the task. Using this address, the task is able
to invoke the service. Note that this address is hidden from
the application developer, who is able to invoke the service
based on its name, a process that is described next.

2.4 Service Invocation
Service invocations are analogous to remote procedure

calls (RPCs) [8]. The invocation must include the name of
the service, the method within the service to execute, and the
input parameters needed by the method. A service may pro-
vide multiple methods because it can maintain state. For ex-
ample, a service that provides access to a storage space may
provide methods “read” and “write”, and a service that con-
tinuously monitors ambient vibrations may provide methods
“start” and “stop”. As with all RPCs, the process is prone
to failure. To account for this, Servilla provides an error
flag indicating why the invocation failed. This is essential
because service invocations may fail in many ways depend-
ing on whether the service is local or remote, and tasks may
want to handle various error conditions differently. For ex-
ample, local invocations may fail because the service is busy,
in which case the task may wait and try again later, while
remote invocations may fail due to disconnection, in which
case the task may want to abort.

3. PROGRAMMING LANGUAGE
Servilla provides two specialized programming languages.

The first, called ServillaSpec, is used to create service spec-
ifications that enable flexible matching between applications
and services. The second, called ServillaScript, is used to
create application tasks. Servilla services are implemented
in NesC [14] and compiled into efficient TinyOS [20] byte-
code. Each of Servilla’s specialized languages are now de-
scribed.

3.1 ServillaSpec
The purpose of ServillaSpec is to enable the specifica-

tion of a service used to match services needed by tasks
with services provided by the nodes. To support resource-
constrained nodes, the service specification language must

NAME = fft
METHOD = fft-real
INPUT = {int dir, int numSamples, float[] data}
OUTPUT = float[]
ATTRIBUTE Version = 5.0
ATTRIBUTE MaxSamples = 5000
ATTRIBUTE Power = 10

Figure 3: A specification describing a FFT service

1. uses Temperature; // declare required service
2.
3. void main() {
4. int count = 0; float temp;
5. bind(Temperature, 2); // bind service within 2 hops
6. while(count++ < 10) {
7. temp = invoke(Temperature, “get”); // invoke service
8. send(temp);
9. }
10. unbind(Temperature);
11. }

Figure 4: A task that invokes a temperature sensing ser-
vice 10 times

be compact and should not require an overly complex match-
ing algorithm. As such, we avoid standard specification lan-
guages like WSDL [38] and provide ServillaSpec instead.
ServillaSpec avoids verbose syntax and limits the types of
properties in a service specification. An example is shown
in Figure 3. The first line specifies the name of the ser-
vice. It is followed by three-line segments each specifying
the name, input parameters, and output results of a method
provided by the service. The remainder of the specification
is a list of attributes. These properties enable flexibility in
matching by defining a name, relation, and value. Using at-
tributes, an application developer can, for example, select
a floating point FFT service that consumes at most 50mW,
which would match a service whose specification is shown
in Figure 3.

By limiting the property types to be the five shown in
Figure 3 (i.e., NAME, METHOD, INPUT, OUTPUT, and AT-
TRIBUTE), and arranging them to always be in the same or-
der, the size of the specification can be greatly compressed.
For example, since the service’s NAME property always ap-
pears first, the property’s identifier, NAME, can be ommitted.
Thus, the NAME property in the specification shown in Fig-
ure 3 can be compressed to just 4 bytes, “fft” followed by
a null terminator. This compression saves memory and en-
ables greater matching efficiency.

3.2 ServillaScript
ServillaScript is used to create application tasks. Its syntax

is similar to other high level languages like JavaScript [11],
but with key extensions for service provisioning. An exam-
ple, shown Figure 4, implements an application that periodi-
cally takes the temperature and sends the reading to the base
station. It declares the name of the file that contains the spec-
ification of the service that it needs on line 1. In this case,
this file contains a specification of a temperature sensing ser-

Servilla Middleware

Virtual
Machine

Service Provisioning Framework

Consumer Provider

Figure 5: Servilla’s middleware consists of a virtual ma-
chine and a service provisioning framework (SPF). The
SPF consists of a consumer and provider.

vice. The specification is located in a separate file to increase
the modularity of the code. The task initiates the process of
finding a service within two hops on line 5. The task then
loops ten times, each time invoking the service on line 7 and
sending the temperature to the base station on line 9. The
task ends by disconnecting from the service on line 10.

The example above illustrates how ServillaScript enables
tasks to 1) indicate which services are needed, 2) initiate the
service discovery process, 3) invoke services, and 4) discon-
nect from services. Aspects not shown for brevity include a
way to enable a task to determine whether a service is bound,
and, if so, how many hops away the service is located. This
will allow the task to throttle how often it invokes the ser-
vice based on its distance. Another aspect not shown is error
handling code. If an error occurs due to a service becoming
unavailable, the invocation will return an error indicating the
cause, as discussed in Section 2.

4. MIDDLEWARE
An overview of Servilla’s middleware architecture is

shown in Figure 5. It consists of a virtual machine (VM)
and a service provisioning framework (SPF). The VM is re-
sponsible for executing application tasks. The SPF consists
of a consumer (SPF-Consumer) that discovers and accesses
services, and provider (SPF-Provider) that advertises and ex-
ecutes services.

A virtual machine (VM) is used because current WSN
nodes span a wide range of processors with different in-
struction sets, and it is not known whether any one of
these will prevail. Application tasks are compiled into a
static instruction set provided by the VM, which is uniform
across all hardware platforms, enabling tasks to be platform-
independent. Furthermore, the VM provides the dynamic
deployment of application tasks, justifying the need for dy-
namic service binding. The VM is based on the one provided
by Agilla [12] though with major extensions to support ser-
vice specifications and an interface with the SPF. Specifi-
cally, whenever a task performs an operation involving a ser-
vice, the VM passes the task to the SPF-Consumer, which is
described next.

4.1 SPF-Consumer

Service Provisioning Framework

Service Registry
Service
Finder

Matchmaker

Service
Scheduler

Remote
Invocator

Services

Network Stack

Operating
System

Sensor
Drivers

Storage
Drivers

Platform-Specific
Services

Service
Discovery

Binding Table

SPF-Provider

SPF-
Consumer

Figure 6: The detailed architecture of the Service Provi-
sioning Framework.

The SPF-Consumer is responsible for discovering, match-
ing, and invoking services. Its architecture, shown in Fig-
ure 6, consists of a Service Scheduler, Binding Table, and
Service Finder. When a task executes a bind operation, the
SPF-Consumer saves the specification and range for service
discovery (number of hops) in the Binding Table and noti-
fies the Service Finder to start searching for a match. To
save energy, local services are preferred over remote ones,
and closer ones are preferred over those farther away — all
things being equal. More often the application can specify
explicitly the energy usage it expects from a service with the
service meeting the criteria being selected. Once a match
is found, the address of the node providing the service is
recorded in the Binding Table, enabling the task to access
the service.

To maximize concurrency, the Service Finder runs in the
background allowing tasks to continue executing while a
service is being discovered. It starts by searching the lo-
cal node followed by each neighbor with increasing dis-
tance until either a match is found or all candidate neigh-
bors are checked without finding a match. Although the Ser-
vice Finder runs asynchronously with the task, invocations
are performed synchronously. That is, if a task attempts to
invoke a service before the Service Finder finishes, the task
is blocked until either a match is found, or the Service Finder
fails to find a match. Synchronous invocations simplify ap-
plication code by avoiding call-back functions and possible
race conditions.

The Service Scheduler carries out the actual invocation. It
takes the input parameters provided by the task, sends them
to the node hosting the service, and waits for the results to
arrive. Once the results arrive, it passes them to the task
which can then resume executing. If the results do not arrive
within a certain timeframe, the Service Scheduler aborts the
operation and notifies the task of the error.

4.2 SPF-Provider

The SPF-Provider advertises and executes services. Its ar-
chitecture, shown in Figure 6, contains a main component
called the Service Registry which records the specifications
of local services. When the SPF-Consumer tries to find a ser-
vice, the SPF-Provider consults its Service Registry, which
uses the Matchmaker to determine whether a match exists.
The results are sent back to the SPF-Consumer, which saves
the information in the Binding Table.

In the current Servilla Middleware, the SPF-Provider is
responsible for determining whether a match exists, mean-
ing the task’s specification must be sent to the SPF-Provider.
Alternatively, the SPF-Consumer could perform the match.
This would reduce the footprint of the SPF-Provider, thereby
decreasing the minimum system requirements, but requires
that the SPF-Provider send the SPF-Consumer all of its spec-
ifications, which may incur higher communication cost.

4.3 Middleware Modularity
WSNs are becoming extremely diverse with resources that

differ by several orders of magnitude [34, 6]. Even as hard-
ware improves, cost considerations ensure that there will al-
ways be nodes that do not have enough resources to im-
plement the entire Servilla middleware. The modularity of
Servilla’s middleware enables these nodes to participate. Re-
call that it is modularized into three basic components: a
VM, SPF-Consumer, and SPF-Provider. By exploiting the
decoupled nature of SOC, the Servilla middleware may be
configured to include a subset of components, while allowing
nodes with different configurations to collaborate through
service provisioning. Specifically, the Servilla middleware
supports the following configurations:

• VM + SPF: The full Servilla framework.

• VM + SPF-Consumer: Executes tasks and provides
access to remote services only.

• SPF-Provider: Provides services for neighboring
tasks to use.

• VM: Can serve as a forwarder of application tasks.

A detailed analysis of the memory consumed by each of
these configurations is given in Section 6.1. The configu-
ration containing only the SPF-Provider is particularly inter-
esting because it allows resource-weak but energy efficient
nodes to provide services to more powerful nodes. This can
result in greater overall energy efficiency and, assuming the
weak nodes are less costly and more prevalent, decrease the
cost of achieving dense sensing and sensing coverage among
the more powerful nodes by allowing them to exploit the
sensing capabilities of the weak nodes surrounding them.

5. IMPLEMENTATION

MicaZ TelosB Imote2
Release Date 2004 2005 2007
Processor 7.4MHz 8-bit Atmel ATmega128L 8MHz 16-bit TI MSP430 13-416MHz 32-bit Intel PXA271 XScale
Radio IEEE 802.15.4 IEEE 802.15.4 IEEE 802.15.4
Memory 128KB Code, 4KB Data 48KB Code, 10KB Data 32MB Shared
Flash 512KB 1MB 32MB
Price $99 $69 $299

Table 1: WSN nodes vary widely in computational resources.

Service
Scheduler

Service
Registry

Binding Table

Service
Finder

Service
Matchmaker

Services

Code
Manager

Stack
Manager

Error Manager

Gateway
Manager

Neighbor List

Script
Manager

Receiver Sender

Script Migration

Script Execution

Script
Scheduler

Context
Discovery

VM

SPF-Consumer SPF-Provider

SPF

Shared Components
Dynamic Memory Manager

Specification
Table

Services

Figure 7: Servilla’s middleware components.

An implementation of Servilla is available on Servilla’s
website [36]. It is built on TinyOS 1.x 1 which supports nu-
merous WSN platforms including those shown in Table 1.
While these platforms are different, they all communicate
over IEEE 802.15.4 [21], an industry-standard wireless in-
terface.

Servilla’s implementation is divided into two levels as
shown in Figure 7: a lower level that provides essential
shared services, and a higher level consisting of Servilla’s
VM and SPF. This section first discusses the lower level fol-
lowed by the SPF in the upper level (the VM’s implemen-
tation was already discussed in Section 4). It ends with a
discussion of the implementation of Servilla’s programming
languages.

5.1 Shared Components
The shared components reflect the particular properties of

the platform on which Servilla is implemented, in this case
TinyOS. They include a dynamic memory manager, error
manager, and reliable network interface.

Servilla provides a dynamic memory manager to make ef-
ficient use of memory on a WSN node. This is important
because Servilla has many components that require varying
amounts of memory over time. The dynamic memory is di-
vided into 10-byte blocks that are arranged as a linked list
within the dynamic memory manager. The dynamic memory
manager is shared by most components in Servilla’s middle-

1TinyOS has a two-tiered concurrancy model one of which con-
sists of tasks. TinyOS tasks, which are low-priority background
processes, should not be confused with Servilla tasks, which are
platform-independent application processes.

ware, maximizing the flexibility of memory allocation.
To aid in debugging, Servilla provides an error manager

that detects errors and sends a summary of the problem to
the base station. The error manager is shared by all other
components in Servilla’s middleware.

5.2 SPF Implementation
The SPF is implemented from scratch in NesC. It is

divided into two modules, the SPF-Consumer and SPF-
Provider, as shown in Figure 7. The Service Scheduler
within the SPF-Provider serializes service invocations per-
formed by different tasks to simplify the implementation and
prevent saturating the wireless channel. The Service Reg-
istry in the SPF-Provider implements an 8-bit parameterized
interface for attaching services, meaning it can support up to
256 local services.

5.3 Servilla Compiler
We developed the Servilla compiler that can compile ap-

plication tasks (written in ServillaScript) and service speci-
fications (written in ServillaSpec) into a compact binary for-
mat. For example, the task shown in Figure 4 is compiled
into 181 bytes of code and 30 bytes of specifications, and
the specification shown in Figure 3 is compiled into just 64
bytes.

6. EVALUATION
Evaluating Servilla requires a heterogeneous WSN con-

sisting of nodes with a wide range of resources. To achieve
this, a WSN consisting of TelosB [34] and Imote2 [6] nodes
is used. The computational resources vary widely between
these two platforms, as shown in Table 1. The evaluation
consists of two parts. First, the memory footprint of differ-
ent middleware configurations is measured. This determines
how flexible the framework is in terms of accommodating
nodes with different amounts of memory. Second, the run-
time efficiency of service discovery and invocation across
heterogeneous WSNs is evaluated.

6.1 Memory Footprint
Each Imote2 node has 32MB of code and data memory,

which is sufficient to hold the entire Servilla middleware plus
many services. The combined size of the entire Servilla mid-
dleware without services is a mere 318KB on the Imote2, or
only about 1% of the total, leaving plenty for services.

0

5

10

15

20

25

30

35

40

45

50

VM-Only SPF Consumer Only SPF Provider Only

M
em

o
ry

 U
sa

g
e

(K
B
)

SPF Provider SPF Consumer

VM Shared

TinyOS

Figure 8: The code memory footprint of various Servilla
configurations on the TelosB platform.

In contrast, TelosB nodes have only 48KB of code mem-
ory and 10KB of data memory. This is not even enough to
fit the VM and SPF-User at once, as shown in Figure 8. The
figure shows the amount of code memory consumed by three
different configurations of Servilla. For each configuration,
the memory footprint of each individual component is indi-
cated. Of the three configurations shown, only two are valid.
The valid configurations are the ones labels “VM Only” and
“SPF Provider only.” The third configuration, labeled “SPF
Consumer Only,” is included to illustrate why TelosB nodes
cannot include both the VM and the SPF-Consumer. The fig-
ure shows that the VM consumes about 46KB of code mem-
ory, and the SPF-Consumer consumes 32KB, of which at
least 5KB is unique to the SPF-Consumer. This additional
5KB on top of the 46KB consumed by the VM exceeds the
48KB available on the TelosB node.

The results indicate that resource-poor nodes like the
TelosB may serve one of two functions in a Servilla network.
The first function is to implement just the SPF-Provider and
provide services to other nodes that are able to host a SPF-
Consumer. This may prove highly beneficial if the net-
work integrates low-power resource-constrained nodes like
the TelosB and the computational resources of resource-rich
nodes like the Imote2. In this case, the energy efficiency
of the TelosB can be exploited by the more power-hungry
Imote2 to increase overall energy efficiency. Furthermore,
the lower cost of the TelosB may enable more of them to be
deployed. Allowing the Imote2 nodes to access the sensors
on the TelosB nodes surrounding it may help it achieve dense
sensing or sensing coverage at lower cost. The second func-
tion is to implement just the VM and serve as a forwarder
of application tasks. Either option enables TelosB nodes to
contribute to a WSN application.

Our results clearly show how Servilla’s modular architec-
ture increases the scope of hardware devices that can partic-
ipate in a Servilla network. It reduces the minimum system
requirements by allowing nodes to be integrated into an ap-
plication through the service provisioning framework. This

0

10

20

30

40

50

60

70

80

90

100

15 25 35 45 55 65

L
a
te

n
cy

 (
m

s)

Specification Size (Bytes)

Imote2 13MHz Imote2 104MHz

Imote2 208MHz Imote2 416MHz

TelosB

Figure 9: The latency of comparing a specification vs. its
size.

is made possible by exploiting the decoupled nature of SOC,
and enables Servilla to function across a wider spectrum of
WSN platforms.

6.2 Efficiency of Service Binding
Service binding consists of three parts: 1) service discov-

ery, 2) service matching, and 3) updating the Binding Table.
This study focuses on local service binding because remote
binding is dominated by wireless communication, which is
not the focus of this study. As such, the latency of service
discovery is negligible since it involves accessing the local
Service Registry. Updating the Binding Table is also negli-
gible since it involves writing only five bytes into memory.
Thus, this section focuses on service discovery, specifically
the latency of determining a match.

To evaluate the efficiency of service binding, the Match-
maker is used to compare two copies of specification FFT,
shown in Figure 3. This incurs the worst-case latency since
every property within the specification must be considered.
Each experiment is repeated twenty times on both TelosB
and Imote2 platforms running at all possible CPU speeds and
the average latency is calculated. The latency is measured by
toggling a general I/O pin before and after the comparison
operation, and capturing the time between toggles using an
oscilloscope. The results are shown in Table 2. Since the
experiment runs locally, the measurements exhibit very low
variance and the confidence intervals are omitted.

The results indicate that service binding is highly efficient.
The latencies are small compared to the execution times of
certain VM instructions. The total latency consists of the la-
tencies of comparing the signature and each attribute within
the specification. The column labeled “other” is the overhead
incurred by the Matchmaker between comparing properties.
As expected, the latency of comparing two specifications de-
pends on the speed and architecture of the processor, and is
mostly inversely proportional to the CPU speed reflecting the
CPU-bound nature of the comparison.

To determine how the latency is affected by the specifica-

Node CPU Speed Bus Speed Sig. Attr. 1 Attr. 2 Attr. 3 Other Total Units
TelosB 8MHz 8MHz 18 14 24 29 8 92 ms
Imote2 13MHz 13MHz 1569 1421 2642 3272 784 9688 µs
Imote2 104MHz 104MHz 198 180 330 408 94 1209 µs
Imote2 208MHz 208MHz 99 89 165 204 47 604 µs
Imote2 416MHz 208MHz 71 62 113 136 31 413 µs

Table 2: The latency of service matching when comparing two FFT-real service specifications

Spec. Name # of Properties Size (Bytes)
1 FFT-real 3 64
2 light-tsr 2 46
3 accel-3d 5 85
4 flash_mem 1 34

Table 3: The sizes of the specifications used to evaluate
service invocation

Spec. 1 2 3 4 Units
TelosB 2 13 25 45 ms
13MHz Imote2 206 1571 3251 6785 µs
104MHz Imote2 26 196 406 849 µs
208MHz Imote2 13 98 203 424 µs
416MHz Imote2 9 67 133 265 µs

Table 4: The latency of obtaining the a service’s binding
state

tion’s size, FFT is compared to versions of itself with one,
two, and all three of its attributes removed. The latencies of
comparing these specifications is plotted against their sizes
and the results are shown in Figure 9. The results indicate
that the latency is roughly proportional to its size. It is not
exactly proportional because of the additional overhead in-
curred with the addition of each attribute, as indicated by the
“other” column in Table 2.

6.3 Efficiency of Service Invocation
The efficiency of service invocation depends on the latency

of obtaining the service specification’s binding state. To de-
termine this, the Specification and Binding Tables are loaded
with FFT followed by three specifications whose properties
are summarized in Table 3. The latency of obtaining the
binding information of each specification is measured using
the same technique described in Section 6.2. The results,
shown in Table 4, indicate that the latency depends on the
sizes of the specifications that occur before it in the table.
This makes sense since all these specifications must also be
analyzed in the current implementation. Figure 10 shows the
linear relationship between latency versus the total size of
the specifications that are located before it. In the future, the
implementation can be improved by using a hash function to
achieve constant-time access to the binding state.

7. APPLICATION CASE STUDY
This section evaluates the efficacy of the Servilla program-

ming model through a case study on a structural health mon-
itoring application designed to localize damage in structures
(e.g., a bridge). This application enables real-time evaluation

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

L
a
te

n
cy

 (
m

s)

Bytes Searched

13MHz Imote2 104MHz Imote2 208MHz Imote2
416MHz Imote2 TelosB

Figure 10: The latency of obtaining a service’s binding
state vs. number of bytes searched

of a structure’s integrity, thereby reducing manual inspec-
tion costs while increasing safety. WSNs have recently been
used to successfully localize damage to experimental struc-
tures using a homogeneous network of Imote2 nodes [17].
In this case, the algorithm, called Damage Localization As-
surance Criterion (DLAC), was written using NesC specifi-
cally for the Imote2. The Servilla implementation general-
izes and improves upon the original implementation by mak-
ing it platform-independent and increasing its overall energy
efficiency by exploiting network heterogeneity.

The heterogeneous WSN used in this study consists of
TelosB and Imote2 nodes. DLAC can only run on the Imote2
due to insufficient memory on the TelosB. However, Imote2
nodes consume more energy than TelosB nodes. Our new
structural health monitoring application combines the advan-
tages of both platforms by keeping the Imote2 nodes idle
as much as possible, and using the TelosB nodes to moni-
tor the ambient vibration levels. The Imote2 nodes are only
activated when the TelosB nodes detect that the ambient vi-
bration levels exceed a certain threshold, at which time they
perform the DLAC algorithm. The dual-level nature of this
configuration is common to other applications that run over
heterogeneous WSNs like vehicle tracking [18], and is essen-
tial for conserving energy and ensuring network longevity.

The Servilla implementation relies on two services:
AccelTrigger and DLAC. Ambient vibrations are mon-
itored by AccelTrigger, which sets a flag when they ex-
ceed a threshold. Its specification is shown in Figure 11(a).
The service has three methods: start, stop, and check.
Methods start and stop control when the service mon-

NAME = AccelTrigger

METHOD = start

INPUT =

OUTPUT =

METHOD = stop

INPUT =

OUTPUT =

METHOD = check

INPUT =

OUTPUT =

ATTRIBUTE power = ...

Interface

Attributes

Name

(a) The specification of service AccelTrigger provided by
Imote2 and TelosB nodes. The power attribute specifies the amount
of power the service consumes. It is 145mW on the Imote2, and
9mW on the TelosB.

NAME = AccelTrigger

...

ATTRIBUTE power < 50
Interface
Attributes

Name

(b) The specification of a low-power version of service
AccelTrigger, which is provided by the application task.
Its interface is omitted since it is the same as the one in Figure 11(a).
A high-power version has attribute power ≥ 50 mW.

NAME = DLAC

METHOD = find

INPUT =

OUTPUT = float[25]

Interface

Name

(c) The specification of service DLAC provided by Imote2 nodes.

Figure 11: The services used by the damage localization
application

itors the local accelerometer. The status of the flag is ob-
tained by invoking check. Both the Imote2 and TelosB
nodes provide AccelTrigger. They differ in their power
attribute, since the Imote2 consumes more power than the
TelosB (145mW vs. 9mW).

The specification of service DLAC is shown in Fig-
ure 11(c). It contains a single method, find, that takes no
parameters and returns an array of floating-point numbers
that are used to localize damage to the bridge [17].

The application’s task is shown in Figure 12. The
first three lines specify the names of the files contain-
ing the required service specifications. The content of
AccelTriggerLP is shown in Figure 11(b), and the
content of DLAC is shown in Figure 11(c). Notice that
AccelTriggerLP matches the TelosB version of the
AccelTrigger service shown in Figure 11(a) because its
power attribute is less than 50mW. AccelTriggerHP con-
tains the same specification as AccelTriggerLP except
its power attribute is ≥ 50 mW, which matches the service
provided by the Imote2.

The application attempts to reduce energy consumption by
preferentially binding to an Acceltrigger service that
consumes less power. It does this by first attempting to bind
using the specification within AccelTriggerLP on line
6, before using the specification within AccelTriggerHP
on line 13. Once an AccelTrigger service is bound, the

1. uses AccelTiggerHP;
2. uses AccelTiggerLP;
3. uses DLAC;
4.
5. void main() {
6. bind(DLAC, 0); // bind DLAC service
7. if(!isBound(DLAC)) exit(); // failed to bind DLAC
8. bind(AccelTriggerLP, 1); // bind low-power AccelTrigger service
9. if(isBound(AccelTriggerLP)) {
10. invoke(AccelTriggerLP, “start”);
11. waitForTrigger(1);
12. } else {
13. bind(AccelTriggerHP);
14. if(isBound(AccelTriggerHP)) {
15. invoke(AccelTriggerHP, “start”);
16. waitForTrigger(0);
17. }
18. }
19. }
20.
21. void waitForTrigger(int useLowPower) {
22. while(true) {
23. int vibration;
24. if (useLowPower)
25. vibration = invoke(AccelTriggerLP, “check”);
26. else
27. vibration = invoke(AccelTriggerHP, “check”);
28. if (vibration == 1) {
29. if (useLowPower)
30. invoke(AccelTriggerLP, “stop”);
31. else
32. invoke(AccelTriggerHP, “stop”);
33. doDLAC();
34. }
35. sleep(1024*60*5); // sleep for 5 minutes
36. }
37. }
38.
39. void doDLAC() {
40. float[25] dlac_data;
41. dlac_data = invoke(DLAC, “find”);
42. send(dlac_data); // send DLAC data to base station
43. }

Figure 12: The damage localization application task

0 5 10 15 20 25 30 35
30

35

40

45

50

55

Service invocation period (minutes)

P
ow

er
 s

av
in

gs
 (

pe
rc

en
t)

55Hz Sensing
35Hz Sensing
15Hz Sensing

Figure 13: Percent power savings of heterogeneous vs.
homogeneous WSN.

task periodically queries it to determine if the acceleration
readings are above a certain threshold (lines 21-37). If it is,
DLAC is invoked and the results are sent to the base station
(lines 41-42).

To evaluate the benefit of exploiting network heterogeneity
on Servilla, the task shown in Figure 12 is injected into two
WSNs: a homogeneous network consisting of only Imote2
devices, and a heterogeneous network consisting of both
Imote2 and TelosB devices. Since the application is writ-
ten using Servilla, it is able to run on both types of networks
without modification. In both cases, DLAC is executed by
the Imote2, meaning the power consumption of perform-
ing damage localization is constant. However, the power
consumption of AccelTrigger does vary. This is be-
cause Servilla’s service provisioning framework enables an
application to exploit more energy-efficient services when
possible in a platform-independent and declarative fashion.
Specifically, if TelosB nodes are present, the service will be
executed on a TelosB node since its AccelTrigger ser-
vice consumes lower power and hence matches the first ser-
vice specified by the application task. Otherwise it will be
executed on the Imote2. We compare the power consump-
tion of invoking AccelTrigger in different network con-
figurations.

Since invoking AccelTrigger on the TelosB requires a
remote invocation, the amount of energy saved by the hetero-
geneous implementation depends on the invocation and sens-
ing frequencies. If the service is invoked too often, more en-
ergy will be spent on wireless communication than is saved.
Likewise, if the sensor is accessed very infrequently, the ben-
efits of using the TelosB is diminished since the nodes will
remain asleep a larger percentage of the time. To determine
how much energy savings is possible, an oscilloscope is used
to measure the time each platform spends computing, com-
municating wirelessly, and sensing, in both a homogeneous
and heterogeneous network. The sensing frequency is varied

between 15Hz and 55Hz (the maximum sampling frequency
of the TelosB), and the service invocation frequency is var-
ied between 50 seconds to 35 minutes. The percent savings
of using a heterogeneous network relative to a homogeneous
network is then calculated and the results are shown in Fig-
ure 13.

The results show that invoking the service too frequently
will reduce the amount of power saved since doing so in-
curs more network overhead, while increasing the sensing
frequency results in more power savings since the TelosB is
able to sense while consuming less power. The results also
show that there is a limit to the amount of energy that can
be saved as the service invocation period increases. This is
because as the invocation period increases, the energy sav-
ings becomes the difference between the sensing energy con-
sumed by the Imote2 versus the TelosB.

This case study demonstrates how Servilla enables the de-
velopment of platform-independent applications that operate
over a heterogeneous WSN, and how Servilla facilitates in-
network collaboration between different types of nodes that
leads to higher energy efficiency. Moreover, it demonstrates
that Servilla enables an application to bind to a more energy-
efficient service through service specification.

8. RELATED WORK
Servilla is related to various WSN scripting systems in its

use of a VM for interpreting application tasks. Scripting has
been used in WSNs, though for different reasons. Some
scripting systems, including Maté [25], ASVM [26], Swis-
sQM [31], and Agilla [12], enable reprogramming. Other
systems, including Melete [40] and SensorWare [4], enable
multiple applications to share the same WSN. All of these
systems come with different scripting languages including
TinyScript [24], SCript [10], Mottle [26], SNACK [16], and
variants of SQL [28, 39]. Servilla differs from these sys-
tems in that it focuses on how to address challenges that
arise due to network heterogeneity and dynamics, by allow-
ing scripts to dynamically find and access platform-specific
services. Unlike applications written in other scripting sys-
tems, Servilla applications are able to perform platform-
specific operations and adapt to changing hardware capabil-
ities, while remaining platform-independent.

One scripting system, DVM [3], explores the idea of in-
tegrating platform-independent scripts with native services.
This system features a dynamically extensible virtual ma-
chine in which native services can register extensions. While
this enables fine-tuning the boundary between interpreted
code and native code, DVM does not support the SOC model
that enables the flexible integration of heterogeneous nodes.

SOC has long been used in traditional networks to en-
able applications written by different organizations to inter-
operate. There are many SOC systems including SLP [22],
Jini [23], CORBA [32], Salutation [5], and Web Services [1].
They are made possible by numerous technologies that make

language-independent communication possible, which is es-
sential for interoperability. Some of these technologies in-
clude SOAP [9], RPC [8], DCOM [9], and WCF [29].
Servilla differs from these systems by focusing on how
service-provisioning can be made lightweight and yet remain
flexible to allow slightly different specifications to match.
This is necessary due to the limited resources available on
some WSN nodes. Moreover, its modular middleware can
be tailored to nodes with a wide range of computation re-
sources.

There are some efforts to port traditional SOC technolo-
gies into the WSN domain. They include Tiny Web Ser-
vices [35] and Arch Rock’s PhyNetTM [2]. Both systems
heavily optimize traditional Internet protocols to enable them
to function under the severe resource constraints of WSNs.
Unlike Servilla, they do not provide a mechanism for service
discovery or the flexible matching between service users and
consumers within the WSN. Instead, they focus on how to
enable language-independent communication between ser-
vices inside the WSN and applications residing outside of
the WSN. Servilla is complementary to these efforts; Servilla
may be extended to leverage off their communication ser-
vices to expose WSN services to applications external to the
WSN, while these systems may rely on Servilla to bring the
full capabilities of SOC inside the WSN itself.

In addition to scripting and SOC, Servilla also introduces
the idea of a modular and configurable platform in which ex-
tremely resource-poor nodes only implement a fraction of
the entire framework. This enables a hierarchy in which
weak nodes serve more powerful nodes. The idea of having a
hierarchy within a WSN is not new. Tenet [15] promotes this
idea by creating a two-tired WSN in which the lower tier
consists of resource-poor nodes that can accept tasks from
higher-tier nodes. It differs from Servilla in that it does not
support SOC which enables flexible discovery and binding
between different nodes.

SONGS [27] is an architecture for WSNs that allows
users to issue queries that are automatically decomposed
into graphs of services which are mapped onto actual nodes.
SONG does not provide flexible service binding among het-
erogeneous nodes.

9. CONCLUSIONS
The complexity of developing applications for increas-

ingly heterogeneous and dynamic WSNs demands a new
programming and middleware framework. Servilla meets
this demand by enabling platform-independent applications
to be created that can adapt to a dynamic and heterogeneous
hardware platform. This is achieved by adopting a flexi-
ble service-oriented programming model in which applica-
tions access platform-specific services. A specialized ser-
vice description language is introduced that enables flexible
matching between applications and services, which may re-
side on different nodes. Servilla provides a modular middle-

ware architecture to enable resource-poor nodes to contribute
services, facilitating in-network collaboration among a wide
range of devices. The efficiency of Servilla’s implementation
is established via microbenchmarks on two representative
classes of hardware platforms (the TelosB and Imote2). The
benefits and effectiveness of Servilla’s programming model
is demonstrated by a structural health monitoring application
case study.

10. REFERENCES
[1] ALONSO, G., CASATI, F., KUNO, H., AND

MACHIRAJU, V. Web Services. Springer, 2003.
[2] ARCH ROCK. Arch Rock PhyNetTM.

http://www.archrock.com/product/.
[3] BALANI, R., HAN, C.-C., RENGASWAMY, R. K.,

TSIGKOGIANNIS, I., AND SRIVASTAVA, M.
Multi-level software reconfiguration for sensor
networks. In EMSOFT’06 (New York, NY, USA,
2006), ACM Press, pp. 112–121.

[4] BOULIS, A., HAN, C.-C., AND SRIVASTAVA, M.
Design and implementation of a framework for
efficient and programmable sensor networks. In
MobiSys’03 (May 2003), USENIX, pp. 187–200.

[5] CHAKRABORTY, D., AND CHEN, H. Service
discovery in the future for mobile commerce.
Crossroads 7, 2 (2000), 18–24.

[6] CROSSBOW TECHNOLOGIES. Imote2 datasheet.
http://tinyurl.com/5jrw85.

[7] CULLER, D., ESTRIN, D., AND SRIVASTAVA, M.
Overview of sensor networks. IEEE Computer 37, 8
(2004), 41–49.

[8] DAVE MARSHALL. Remote procedure calls (rpc).
http:
//www.cs.cf.ac.uk/Dave/C/node33.html.

[9] DAVIS, A., AND ZHANG, D. A comparative study of
soap and dcom. J. Syst. Softw. 76, 2 (2005), 157–169.

[10] DUNKELS, A. A low-overhead script language for tiny
networked embedded systems. Tech. Rep. T2006:15,
Swedish Institute of Computer Science, Sept. 2006.

[11] FLANAGAN, D. JavaScript: The Definitive Guide, 4th
Ed. O’REILLY, Inc., 2001.

[12] FOK, C.-L., ROMAN, G.-C., AND LU, C. Rapid
development and flexible deployment of adaptive
wireless sensor network applications. In ICDCS’05
(June 2005), IEEE, pp. 653–662.

[13] FOK, C.-L., ROMAN, G.-C., AND LU, C. Towards a
flexible global sensing infrastructure. SIGBED Rev. 4,
3 (2007), 1–6.

[14] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M.,
BREWER, E., AND CULLER, D. The nesc language:
A holistic approach to networked embedded systems.
In PLDI’03 (New York, NY, USA, 2003), ACM,
pp. 1–11.

http://www.archrock.com/product/
http://tinyurl.com/5jrw85
http://www.cs.cf.ac.uk/Dave/C/node33.html
http://www.cs.cf.ac.uk/Dave/C/node33.html

[15] GNAWALI, O., JANG, K.-Y., PAEK, J., VIEIRA, M.,
GOVINDAN, R., GREENSTEIN, B., JOKI, A.,
ESTRIN, D., AND KOHLER, E. The tenet architecture
for tiered sensor networks. In SenSys’06 (New York,
NY, USA, 2006), ACM Press, pp. 153–166.

[16] GREENSTEIN, B., KOHLER, E., AND ESTRIN, D. A
sensor network application construction kit (snack). In
SenSys’04 (New York, NY, USA, 2004), ACM,
pp. 69–80.

[17] HACKMANN, G., SUN, F., CASTANEDA, N., LU, C.,
AND DYKE, S. A holistic approach to decentralized
structural damage localization using wireless sensor
networks. In RTSS’08 (11 2008), IEEE.

[18] HE, T., KRISHNAMURTHY, S., LUO, L., YAN, T.,
GU, L., STOLERU, R., ZHOU, G., CAO, Q.,
VICAIRE, P., STANKOVIC, J. A., ABDELZAHER,
T. F., HUI, J., AND KROGH, B. Vigilnet: An
integrated sensor network system for energy-efficient
surveillance. ACM Trans. Sen. Netw. 2, 1 (2006), 1–38.

[19] HE, T., KRISHNAMURTHY, S., STANKOVIC, J. A.,
ABDELZAHER, T., LUO, L., STOLERU, R., YAN, T.,
GU, L., ZHOU, G., HUI, J., AND KROGH, B.
Vigilnet:an integrated sensor network system for
energy-efficient surveillance. ACM Transactions on
Sensor Networks (under submission) (2004).

[20] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S.,
CULLER, D., AND PISTER, K. System architecture
directions for networked sensors. In Architectural
Support for Programming Languages and Operating
Systems (2000), pp. 93–104.

[21] IEEE 802.15 WORKING GROUP FOR WPAN. IEEE
802.15.4 website.
http://www.ieee802.org/15/.

[22] KEMPF, J., AND PIERRE, P. S. Service location
protocol for enterprise networks: implementing and
deploying a dynamic service finder. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

[23] KUMARAN, I., AND KUMARAN, S. I. Jini
Technology: An Overview. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[24] LEVIS, P. The TinyScript Manual.
http://tinyurl.com/57kycj, July 2004.

[25] LEVIS, P., AND CULLER, D. Maté: a tiny virtual
machine for sensor networks. In ASPLOS’02 (New
York, NY, USA, 2002), ACM Press, pp. 85–95.

[26] LEVIS, P., GAY, D., AND CULLER, D. Active sensor
networks. In NSDI’05 (May 2005).

[27] LIU, J., AND ZHAO, F. Towards semantic services for
sensor-rich information systems. In 2nd Int. Conf. on
Broadband Networks (2005), pp. 44–51.

[28] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN,
J. M., AND HONG, W. Tag: a tiny aggregation service
for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.

36, SI (2002), 131–146.
[29] MICROSOFT. Windows communication foundation.

http://msdn2.microsoft.com/en-us/
library/ms735119.aspx.

[30] MURTY, R., GOSAIN, A., TIERNEY, M., BRODY, A.,
FAHAD, A., BERS, J., AND WELSH, M. Citysense: A
vision for an urban-scale wireless networking testbed.
Tech. Rep. 13-07, Harvard University, 2007.

[31] MÃIJLLER, R., ALONSO, G., AND KOSSMANN, D.
A virtual machine for sensor networks. In EuroSys
2007 (March 2007).

[32] OBJECT MANAGEMENT GROUP. Corba basics.
http://www.omg.org/gettingstarted/
corbafaq.htm.

[33] PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S.,
AND LEYMANN, F. Service-oriented computing: State
of the art and research challenges. Computer 40, 11
(2007), 38–45.

[34] POLASTRE, J., SZEWCZYK, R., AND CULLER, D.
Telos: enabling ultra-low power wireless research. In
IPSN’05 (Piscataway, NJ, USA, 2005), IEEE Press,
p. 48.

[35] PRIYANTHA, N., KANSAL, A., GORACZKO, M.,
AND ZHAO, F. Design and implementation of an
evolutionary sensor network. In SenSys’08 (New York,
NY, USA, 2008), ACM.

[36] SERVILLA. Website. http://www.cse.wustl.
edu/wsn/index.php?title=Servilla.

[37] STREELINE. Parking management.
http://www.streetlinenetworks.com.

[38] W3C. Web services description language (wsdl).
http://www.w3.org/TR/wsdl.

[39] YAO, Y., AND GEHRKE, J. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec. 31, 3 (2002), 9–18.

[40] YU, Y., RITTLE, L. J., BHANDARI, V., AND
LEBRUN, J. B. Supporting concurrent applications in
wireless sensor networks. In SenSys’06 (New York,
NY, USA, 2006), ACM Press, pp. 139–152.

http://www.ieee802.org/15/
http://msdn2.microsoft.com/en-us/library/ms735119.aspx
http://msdn2.microsoft.com/en-us/library/ms735119.aspx
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.cse.wustl.edu/wsn/index.php?title=Servilla
http://www.cse.wustl.edu/wsn/index.php?title=Servilla
http://www.streetlinenetworks.com
http://www.w3.org/TR/wsdl

	Flexible Service Provisioning for Heterogeneous Sensor Networks
	Recommended Citation
	Flexible Service Provisioning for Heterogeneous Sensor Networks

	tmp.1418338203.pdf.QDjVY

