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Abstract of the Dissertation

Polypyrimidine tract binding protein (PTB) is a highly conserved RNA binding
protein comprised of four RRMs (RNA recognition motifs). RRMs are extremely
prevalent in all kingdoms of life, and have been very well characterized in terms of
structure and RNA binding properties. However, all four RRMs of PTB exhibit unique
features that can be exploited to learn more about the RNA selection and binding strategy
of PTB, as well more general features involving structure/function relationships and

protein unfolding mechanisms.

PTB participates in a variety of functions in eukaryotic cells, including alternative
splicing, mRNA stabilization, and internal ribosomal entry site (IRES) mediated
translation initiation. Its mechanism of RNA recognition is determined in part by the
novel geometry of its two C-terminal RNA Recognition Motifs (RRM3 and RRM4),
which interact with each other to form a stable complex (PTB1:34). This complex itself is
unusual among RRMs, suggesting that it performs a specific function for the protein. In
order to understand the advantage it provides to PTB, the fundamental properties of
PTB1:34 are examined here as a comparative study of the complex and its two
constituent RRMs. Both RRM3 and RRM4 adopt folded, and reasonably stable
structures, yet the RNA binding properties of the domains differ dramatically. RRM4
does not bind to RNA, and although RRM3 binds to polypyrimidine tracts, its affinity is
significantly weaker than that of PTB1:34. "’N-NMR relaxation experiments show that
the interaction between RRM3 and RRM4 induces microsecond motions throughout

PTB1:34 and forms a unique RNA binding platform. The motions could be important for
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RNA selection based on secondary structure, part of an RNA binding mechanism,
entropic compensation for formation of PTB1:34, or a mechanism of allosteric
communication between binding sites of the RRMs. A mutant protein was designed to

address the contribution of the motions to protein function.

PTB RRM2 and RRM3 are structurally unique in that they both have a C-terminal
extension that adds a fifth B-strand to the canonical four stranded B-sheet, connected to -
strand four by a flexible linker. This extension both extends and occludes the putative
RNA binding surface. Other RRM extensions have been reported, and appear to
influence protein function through a variety of mechanisms including direct interactions
with RNA, participation in protein-protein interactions, or stabilization of the RRM core
domain. Studies using a truncated form of RRM3 that lacks the extension show that, in

this case, the contribution to protein function is likely due to direct RNA contacts.

Finally, PTB RRM4 has a unique chemical melting profile that may be useful for
investigating protein unfolding transitions. A tryptophan mutant was engineered to
facilitate fluorescence studies, and the protein was found to be a natural 'missing link'

between two-state and downhill folders.
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Chapter 1

Introduction to the Dissertation

Today, centuries of research and development of technology culminate to allow
medical science to function at the molecular level. We now understand that most
biological processes depend on the interaction between specific molecules within the cell.
Proteins have long been known as the 'workhorses' of the cell, and are responsible for
vast and very different biological jobs including catalysis, providing scaffolding, and
myriad interactions with other cellular components. Yet, a predictive understanding of

how these tiny machines work is still lacking.

Traditional molecular biology dogma asserts that the primary sequence of a
protein determines its three-dimensional structure, and that a protein's three-dimensional
structure determines its function. These basic premises are limiting and outdated in terms
of understanding molecular mechanisms, and should be challenged. I am most interested
in exploring biological systems where the above assertions are not necessarily true. In
addition, it is my opinion that inherent motions of biological molecules are under-
appreciated and that this hinders progress towards a predictive understanding of protein
function. Although much work has been poured into learning the mechanisms of protein
function, the understanding of protein motions in these processes remains limited. It is
merely common sense to surmise that any machine, including protein machines, require
moving parts, and recent scientific advances have shown that motions are important for
biological molecules. I have spent the last several years exploring a system that can be

used to address the above issues in the hopes that the work described herein may



contribute to freeing the problem of delineating molecular mechanisms from the above

constraints, and may provide fresh avenues for original thought on protein function.

When I discuss my work with non-scientists, I frequently use the following
analogy. Suppose you had never seen a bicycle, and someone gave you a photograph of a
bicycle and told you to figure out how it works, so you could build another one. This
task would be difficult to impossible. Now imagine you had access to a movie of the
bicycle working, with moving parts in motion. The mechanism of the bicycle in this case
is obvious. Understanding molecular mechanisms is more complicated, and as such, only
stands to gain more benefit from developing 'movies' of the molecules. This illustrates
why, even after decades of research, and huge advances in structural biology, the field is
still hard pressed to define structure-function relationships from static three dimensional
structures. Yet many trained scientists reject the importance of molecular motions. With
this work, I hope to provide one more piece to the puzzle of understanding how proteins
function, and show, in the system described here, that motions are an important aspect of

a protein's inherent nature.

Polypyrimidine tract binding protein

The polypyrimidine tract binding protein (PTB) was chosen for these studies for a
number of reasons. First, PTB is found in all eukaryotic tissues and developmental
stages, and has been found to be important for a wide range of processes that take place
in both the nucleus and cytoplasm including alternative spicing, mRNA stabilization,

polyadenylation and non-traditional translation initiation. In order to participate in such



far-reaching processes, PTB must be able to interact with specific RNAs as well as other
proteins in a tightly controlled manner. Thus, understanding how this versatile protein
accomplishes such a wide range of tasks is not only requisite for understanding the

processes themselves, but may provide a therapeutic target or strategy.

Moreover, PTB has already been studied in great detail. The structure has been
solved (Conte et al., 2000; Simpson et al, 2004; Oberstrass et al., 2005), and extensive
binding studies have been completed and binding specificities reported for both protein
(Clerte and Hall, 2006; Clerte and Hall, 2009; Yuan et al., 2002; Simpson et al., 2004;
Oberstrass et al., 2005) and RNA (Perez et al. 1997), allowing further research to focus
on some of the finer details of the system. Finally, PTB is comprised entirely of four
RNA recognition motifs (RRMs) separated by conserved linkers. RRMs are the most
common eukaryotic RNA binding domain, and the structure and function of many RRMs
are well established. Thus, the known structure and binding characteristics provide a
context for interpretation of detailed thermodynamic and motional analyses, and the fact
that the protein is comprised of RRMs allows comparison to a well studied family of
proteins enabling broader questions pertaining to protein structure and function to be

addressed.

PTB is involved in a wide range of cell processes
PTB has been found to be important for a multitude of cellular processes both in
the nucleus and cytoplasm. Participation in these regulatory events can occur through

localization, binding competition or post-transcriptional modifications. PTB is most well



known for its role in alternative splicing, and is usually inhibitory (Valcarcel and
Gebauer, 1997), but has also been found to enhance some alternative splicing events (Lou
et al. 1999, Shen et al. 2004). Interestingly, PTB is able to control its own expression
levels by binding to its mRNA through an alternative splicing mechanism that results in
nonsense mediated decay of the resulting frame shifted mRNA (Wollerton et al., 2004).
Other alterative splicing events are capable of producing three isoforms, PTB1, PTB2 and
PTB4, which differ only in the length of the linker between RRM2 and RRM3 (Ghetti, et

al., 1992). PTBI1 is by far the best characterized, and is the form used here.

PTB also participates in other cellular regulation events including RNA 3'-end
processing, especially mRNA polyadenylation (Castelo-Branco et al. 2004) and typically
appears to promote polyadenylation in concert with splicing repression (Lou et al., 1999;
LeSommer et al., 2005), suggesting a dual role for PTB in some systems. PTB has also
been reported to stabilize mRNA by binding to UTRs (either 3' or 5') for insulin (Tillmar
et al., 2002), vascular endothelial growth factor (Coles et al., 2004), CD154 (Hamilton et
al., 2003), inducible nitric oxide sythase (Pautz et al., 2006), and phosphoglycerate kinase

2 (Xu and Hecht, 2007).

PTB contains both an NLS (nuclear localization signal) and an NES (nuclear
export signal), allowing it to shuttle efficiently between the nucleus and cytoplasm
(Ghetti et al., 1992; Li and Yen, 2002). Translocation to the cytoplasm is usually
triggered by cell stress, such as viral infection, apoptosis, and exposure to genotoxic

substances. In addition, PTB has been implicated in RNA localization processes (Cote et



al., 1999). PTB interacts with ai-actin mRNA, where it localizes at neurite growth
terminals, important for cell motility and neuronal axon growth (Ma et al., 2007), and
also has been found to be a nuclear export factor for hepatitis B virus (HBV) RNA (Zang

etal., 2001).

The participation of PTB in internal ribosome entry site (IRES) translation
initiation has also been well documented. Under conditions of cell stress, when cap-
dependent translation is inhibited (Bushell et al., 2006), or for some viruses, such as
picornaviruses, that lack a 5'-mRNA cap structure, this is an important process for protein
production. In many systems, including many picornaviral and flaviviral entry sites, PTB
is required for translation initiation (Hellen et al., 1993; Pilipenko et al., 2000; Gosert et
al., 2000), but has also been found to repress IRES translation (Cornelis et al., 2005). In
some cases, PTB appears to function as an RNA chaperone, but has also been shown to
have a role in ribosome recruitment (Song et al., 2005). Furthermore, PTB binds to
hepatitis C virus IRESs (Gontarek et al., 1999), and co-localizes with the HCV

replication complex, but is not required for IRES activity (Mitchell, et al., 2005).

Finally, truncated versions of PTB have been found to be biologically significant
units. An alternative splicing event that produces a protein containing only the two C-
terminal RRMs of PTB (PTB1:34) was identified in activated T lymphocytes (Hamilton
et al., 2003). This protein binds to the CD154 3'-UTR and modulates protein expression.
Furthermore, both poliovirus (PV) and hepatitis A virus (HAV) proteinase 3C cleaves

PTB between RRM2 and RRM3 producing PTB1:34 (Back et al., 2002; Kanda et al.,



2009). Thus, investigation of both full length PTB and PTB1:34 is of significant

biological interest.

PTB has some unique features

Although composed of four RRMs, PTB has some noteworthy features. First, the
traditional definition of an RRM includes the presence of two ribonucleoprotein (RNP)
sequences. These RNP sequences, conserved throughout the protein family, are located
centrally on the B-sheet and contain a number of aromatic amino acids generally thought
to be important for stacking with RNA bases upon binding. In addition, most RRMs also
have a highly conserved glycine at the end of B-strand three. In PTB, however, all four
RRMs deviate significantly from this sequence, lacking the aromatic side chains in the
RNPs as well as the aformentioned glycine. Yet, all four RRMs have been shown to bind
RNA (Oberstrass, et al., 2005). This suggests that the binding mechanism of these RRMs
is unique to the family. Understanding the RNA selection and binding mechanism is

requisite information for understanding how this very versatile protein functions.

Protein structure

The structures of all four RRMs of PTB have been solved (Conte et al., 2000;
Simpson et al., 2004) both alone, and bound to RNA (Oberstrass et al., 2005; Vitali et al.,
2006). The protein consists of four RRMs connected by linkers, but also contains some
interesting features. RRM1 and RRM4 have the canonical RRM three-dimensional
structure, with a four stranded B-sheet packed against two a-helices. However, RRM2

and RRM3 have a C-terminal extension: a B-fifth strand that packs against 3-strand two



and is attached to B-strand four with a long, flexible linker that extends across the B-sheet
surface. This structural addition not only extends the putative RNA binding surface, but

also occludes it, again suggesting that the RNA binding mode for these RRMs is novel.

PTB also exhibits a unique protein-protein interaction between RRM3 and
RRM4. While RRM1 and RRM2 appear to exist as structurally individual units, RRM3
and RRM4 interact extensively via a large hydrophobic interface involving both helices
of RRM3, large sections of the interdomain linker, and one helix as well as the fourth -
strand of RRM4 (Oberstrass et al., 2005; Vitali et al., 2006). This interaction is present in
both the free and RNA bound states, and although the RRMs can be produced as
individual units, the interaction does not form when the two individual domains are

mixed.

It is common for RRMs to occur in proteins as tandem pairs, although most
RRMs exist as structurally independent motifs. Some RRMs, such as sex-lethal (Handa et
al., 1999), nucleolin (Allain et al., 2000) and poly-A binding protein, PABP (Deo et al.,
1999) are known to associate with other RRMs in the RNA bound state, but not in the
unbound state. However, the interaction between PTB RRM3 and RRM4 is unique in
terms of its extensive interface, the orientation of the two domains, and its persistence in

both free and bound forms.



PTB-RNA interactions

Determination of a binding mechanism for PTB remains elusive, yet much is
known about PTB-RNA interactions. The situation is complicated by the fact that this
protein is involved in so many different cell processes, and thus, many different RNAs. A
good deal of the work that has been done has used one of the many natural targets of
PTB, the GABA y2 pre-mRNA, as well as synthetic oligomers. As early as 1997, Perez
et al. determined that PTB binds to UCUU motifs, but specificity was observed only in
the context of longer pyrimidine tracts. More recent structural studies using tetramer to
hexamer polypyrimidines reveal that these short RNAs bind in multiple registers to the
RRMs (Oberstrass et al., 2005) underscoring the idea that longer RNA constructs are

necessary to obtain consistent binding information.

We now know that the system is even more complicated. Extensive binding
studies have shown that the RRMs of PTB have different contributions to binding
specificity and affinity (Perez et al., 1997; Clerte and Hall, 2006). Furthermore, RRMs
appear to have distinct RNA structural preferences (Clerte and Hall 2009). Of particular
interest to the work described here, PTB1:34 prefers unstructured to structured RNA. In
addition, Oberstrass et al. (2005) discovered that PTB1:34 binding is optimized when
polypyrimidine tracts of the target RNA are separated by 15 nucleotides. Binding
stoichiometries also vary widely depending on the RRMs present as well as the RNA

used for the binding studies (Clerte and Hall, 2006).



What can be learned from this system?

The fact that this system is made up of well characterized domains, yet has unique
features provides an opportunity to ask some fundamental as well as more applied
questions pertaining to PTB RNA binding mechanisms; consequences of protein-protein
interactions in terms of binding specificity, thermodynamics, and inherent protein
properties; and communication between binding sites. In addition, we can exploit the C-
terminal extensions, unique RNP sequences and the protein-protein interaction between

RRM3 and RRM4 to explore, and hopefully extend, the traditional definition of an RRM.

The ability to address these questions requires engineering and production of
appropriate protein constructs as well as thorough biochemical characterization of the
constructs. This preliminary work is described in Chapter two. Several NMR techniques
are used for more detailed description of the protein properties, including some that are
not commonly used. Accurate interpretation of these results requires some background
information of the specific experiments used. This background is provided in Chapter
three. As will be seen, the way a molecule tumbles in solution is an important component
of data analysis and interpretation. Because of this, several methods were used to
determine tumbling times of the protein constructs, and these experiments are described
in Chapter four. The interaction between PTB RRM3 and RRM4 induces microsecond
motions throughout both domains and is required for efficient RNA binding. This work

is presented in Chapter five.

A protein construct was prepared in order to address the functional importance of



the RRM3 extension. This protein does not bind RNA, although the structure is not
significantly perturbed. These experiments are described in Chapter six. Chemical
denaturation experiments revealed that RRM4 has a linear unfolding curve, a property
that can be exploited learn more about protein unfolding processes. This protein also
turns out to be the largest and first naturally occurring protein to exhibit downhill folding
characteristics. These projects are described in Chapter seven. Finally, a mutant
predicted to decouple RRM3 and RRM4 without physically separating the domains was
engineered. This mutant will be useful for learning more about how the interaction
contributes to RNA binding, the nature of the RNA binding site (in the context of
PTB1:34 should we think about the RNA binding site as a single site, or two binding
sites), as well as addressing questions of allostery and communication paths. The

preliminary work done for this project is discussed in Chapter eight.

10
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Chapter 2

Design, production, and biochemical characterization of protein constructs.

Investigation of the functional importance of the unique interaction between the
two C-terminal RRMs of PTB depends on the ability to study the RRMs both
individually and in concert. Disruption of the hydrophobic core between the two
domains required mutation of 6 of the 27 amino acids involved in the interface, replacing
hydrophobic with charged side chains: 133K, F123E, 1126K, E179K, V182E, and 186K
(Vitali et al., 2006). To avoid such drastic mutagenesis, which may impact the nature of
the protein structure, properties and function in addition to disruption of the interface, the

individual RRMs were prepared as separate entities for this work.

Protein constructs were prepared to facilitate comparison of the properties of the
individual domains, RRM3 and RRM4, to the interacting domains, PTB1:34.
Truncations of PTB1:34 were designed as follows. Numbering of residues uses the
numbering scheme adopted in PDB ID:2EVZ throughout (Figure 1). The entire PTB1:34
sequence contains 198 amino acids, numbered 10-208. RRM3 consists of residues 10-
116, and RRM4 is made up of residues 114-208. The absence of three residues when the
individual domains are mixed is not ideal, however, two other constructs truncated in a

manner to avoid such a gap did not express in the system used.

Truncated protein constructs were prepared by subcloning of the PTB1:34

sequence. RRM3 was designed and cloned prior to my arrival in the lab. Initial attempts
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to obtain RRM4 by cutting before G108 and F115 were unsuccessful. A third attempt to
truncate the protein prior to S120 was successful, using top primer 5'-
CATGCCATGGGATCCAAGAACTTCCAGAACATATTCCCG-3' and PTB1:34 bottom
primer 5'- (As far as I can tell, Pat Jett originally designed this primer, but I can find no
mention of this primer in her records.) Plasmids were transformed into BL21-DE3 gold
E. Coli for protein expression induced with ImM IPTG at optical density of 0.75, and
grown for 4 hours at 37°C in appropriate media. Unlabeled proteins were grown in LB,
and labeled proteins were grown in M9 minimal media using '’N-ammonium chloride
and "*C-glucose as the sole nitrogen and carbon sources as needed. Cells were harvested
by centrifugation at 6500 rpm in a Sorvall GSA rotor (6876 g), washed in GI buffer (20
mM Tris, pH 7.5, 20 mM NaCl and 2 mM EDTA), repelleted and stored at -80°C
overnight. Pellets were thawed and re-suspended in 25 mL of buffer B (20 mM NaOAc,
pH 5.3, 200 mM NaCl, with the exception of RRM4, where 50 mM NaCl was used
instead, and 2 mM EDTA), with 120 pL of 20 mg/mL PMSF in isopropanol, ImL 10X
Sigma protease inhibitor cocktail and 250 pL 2U/uL. DNase II. Cell lysate was
centrifuged at 15,000 rpm in a Sorvall SS34 rotor for 20 minutes and the supernatant was
dialyzed against 1L of buffer B for 2-4 hours at room temperature. Dialysis product was
cleared by centrifugation and purified using a single CM-sepharose ion exchange column
with a NaCl gradient (100-500 mM for PTB1:34, 50-100 mM for RRM3 and 10-500 mM
for RRM4). Proteins were concentrated using Vivaspin centrifugal concentrators (10K
MWCO for PTB1:34, 5K MWCO for RRM3 and 3K MWCO for RRM4), and purity
assessed using SDS-PAGE. Protein concentration was quantified by absorption at 280

nm for PTB1:34 and RRM3 (Extinction coefficient of 2560 M cm™), and absorption at
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250 nm for RRM4 (Extinction coefficient of 1200 M cm™).

Secondary structure analysis of the protein constructs

Circular dichroism was used to monitor secondary structure as an initial check
that the prepared protein constructs were folded. Spectra consistent with folded proteins
were obtained for all constructs, although the magnitude of the signal for PTB1:34,
adjusted for number of residues, was less than expected (Figure 2). Importantly, the
signal for mixed RRM3 and RRM4 was much greater than that for PTB1:34, and
consistent with the signal for the individual domains alone. The CD data are presented
in units of molar ellipticity per residue. Data from the polarimeter are given as ellipticity,
0, in mdeg cm” per dmol. The molar ellipticity, Or, which takes into account protein
concentration as well as number of residues is:

Or = (100 6) / (CIn)

where C is the molar protein concentration, n is the number of residues, and | is the path

length in cm. The factor of 100 is included for historical reasons.

The discrepancy between the apparent amount of secondary structure in PTB1:34
and the mixed individual domains suggests a fundamental change in the inherent protein
properties that takes place when RRM3 and RRM4 interact, and that this interaction does
not occur when the individual domains are mixed. These data imply that transient
secondary structure formation, reminiscent of a molten globule, is a property of PTB1:34

that is lost upon separation of the domains, with no accompanying change in overall fold.
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In an attempt to compare the thermodynamics of the protein constructs, the
secondary structure was monitored using a spectropolarimeter at 222 nm during thermal
unfolding. Unfortunately, PTB1:34 and RRM3 melts were irreversible, and RRM4 did
not melt, even at temperatures greater than 90°C. Constrained by the system, chemical
denaturation was employed instead. Urea was not an effective denaturant and PTB1:34
remained folded even at 7M Urea. Guandine HCI thus became the denaturant of choice
since it was able to denature all protein constructs (Figure 2), although the curves
generated were not amenable to quantitative comparison. While RRM3 denaturation
generated a curve that could easily be fit by a 2-state model, RRM4 and PTB1:34 did not.
The curve for PTB1:34 had non-linear baselines in different directions, and RRM4 was
mostly linear throughout. The linear denaturation profile of RRM4 is discussed in detail

in Chapter 7.

Despite the inability to obtain quantitative thermodynamic information, these data
bring to light interesting properties of the protein constructs. Namely, the multi-state
unfolding curve for PTB1:34 could be due to an initial separation of the domains
followed by unfolding of the individual domains. Furthermore, the linear denaturation
curve of RRM4 implies a series of incremental energy barriers along the unfolding
pathway, suggestive of a protein that could be described as a downhill folder. Gdn HCI
denaturation was, for the most part, reversible, with most of the signal for all protein
constructs recovered after dialyzing 6 M Gdn against 0 M Gdn (1:10,000) overnight

(Figure 3).
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Comparison of RNA binding efficiency
Electrophoretic mobility shift assay was used to determine the relative binding
efficiencies of the interacting versus individual RRMs. The RNA used for these studies is
from the GABA intron mRNA and contains two polypyrmidine tracts separated by a
series of 15 adenosines (Figure 4). This RNA is predicted by m-fold (Zucker, 2003) to
be mostly unstructured, and the 15 nucleotide spacer between the polypyrimidine tracts
has been shown to be optimal for RNA binding (Oberstrass, et al. 2005). Previous work
in the lab has shown that the stoichiometry of binding this RNA to PTB1:34 is 1:8 (Clerte
and Hall, 2006) precluding isothermal titration calorimetry as an alternative method for
measuring binding affinities. Although quantitative comparisons are not possible, it is
useful to consider the possible outcomes in terms of an equilibrium association constant,
K,. For a single binding site, the binding reaction can be written as:
P+L < PL
Where P indicates the protein, and L the ligand, in this case the RNA, with an equilibrium
association constant K,. Comparison of single site binding reactions is straightforward.
However, for a macromolecule with two completely independent and identical binding
sites:
P+2L & PL,
Mass action dictates that the overall binding association constant, K;, contains the
product of the equilibrium constants for each site:
K =K.Ky
where K, is the binding association constant for the first site, and Ky, is the binding

association constant for the second site. Thus, if both sites bind a ligand, even if one of
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the sites binds with a very low affinity, physical separation of the domains, so that each
molecule has only a single binding site, may significantly reduce the apparent binding
association constant without actually lowering the binding affinity of either site. In
other words, one expects the equilibrium binding association constant for a two site
molecule to be significantly larger than the sum of two single site binding constants since

the stepwise binding constant contains the product of each independent binding constant.

Alternatively, it is important to consider the possibility that the binding surface of
PTB1:34 may be better described as a single binding site, allowing a direct comparison of
the individual RRMs versus PTB1:34 binding affinities. Lamichhane et al. (2010) have
shown that the PTB1:34 RNA binding site is physically continuous throughout RRM3,
RRM4 and the interdomain linker. In addition, the interaction between the two RRMs
appears to alter the RNA binding affinity even though none of the residues involved in
the RRM3/RRM4 interaction are located in the RNA binding site, suggesting that the
interaction between the RRMs is an allosteric effector of protein properties that
contributes to binding. It is clear that the interaction between RRM3 and RRM4
influences the RNA binding properties of the molecule although the mechanism of this
alteration is not known. Because it is not understood how the interaction influences the
properties of the molecule that contribute to RNA binding, we must consider the
possibility that the RNA binding surfaces of RRM3 and RRM4 combine in PTB1:34 to
form a single, albeit larger, RNA binding site. Thus, the idea that the two RRMs come
together to form a single, unique RNA binding site should be considered a viable

alternative to the interpretation of binding experiments.
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EMSA data for each protein construct as well as a mixture of the individual
domains is shown in figure 4. While PTB1:34 binds even at the lowest protein
concentration tested, 100 nM, RRM4 does not bind at all, even at the highest protein
concentration tested (10uM). RRM3 binds with about a 50-fold lower affinity than
PTB1:34, with the first shift observed at around 500 nM. The actual binding affinities
cannot be determined using these experiments due to smeared bands and complicated
stoichiometries. Nonetheless, consideration of a couple of scenarios is useful for
qualitative interpretation of the results. In terms of binding constants, if RRM4 does bind
at all, even at very high concentrations, the overall binding constant for two independent
binding sites would indicate significantly weaker binding than that observed for
PTB1:34, due simply to the separation of the domains without any inherent loss of
affinity. In other words, combining two independent binding sites in a single molecule,
even if one of them binds very weakly, is expected to result in an entity that binds RNA
with apparent greater efficiency proportional to the product of each site's binding
association constant. Thus, the fact that the mixture of RRM3 and RRM4 binds similarly
to RRM3 alone should not be surprising, but does make clear that the interaction between
RRM3 and RRM4 that confers enhanced binding efficiency does not occur simply by
mixing the domains. However, we also need to consider the possibility that PTB1:34 is
better described as a molecule with a single RNA binding site. In this case, a direct
comparison between the binding abilities of the individual RRMs and PTB1:34 can be
made, showing a drastic increase in RNA binding efficiency due to the RRM3/RRM4

interaction.
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Analysis of surface electrostatic potential

To gain a more detailed understanding of how these charged molecules interact, it
is important to consider the potential electrostatic component of PTB1:34 binding to
RNA. To this end, the electrostatic potential was calculated and mapped onto the solvent
accessible surface area (SASA) of RRM3, RRM4, and PTB1:34 using the Adaptive
Poisson Boltzman Solver (APBS) (Baker, et al. 2001) and Pymol (Figure 5). These
results show that the overall charge distribution is slightly rearranged when RRM3 and
RRM4 interact, which may contribute to RNA binding by providing a positively charged
path that wraps around PTB1:34. In addition, a large negative patch on RRM4 remains,
and is even possibly concentrated in the context of PTB1:34, suggesting a possible

protein-protein interaction site.

Structural characterization of protein constructs

The above data provide evidence that the interaction between the individual
domains that comprise PTB1:34 generates changes in protein properties that appear to be
important for RNA binding efficiency. However, the denaturation studies make clear that
the interaction does not significantly impact the thermodynamic stability or the ability of
the RRMs to fold. Taken together, these results raise a few questions. First, if the
changes in binding ability cannot be explained in terms of thermodynamic stability,
folding propensity, or pure electrostatic potential distribution, what exactly are the
properties that change upon interaction of RRM3 and RRM4? Also, does RRM4
contribute to binding in the context of PTB1:34? In addition, the RNA binding sites lie

on opposing faces of PTB1:34, distal from the RRM3/RRM4 interface, implying
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allostery. What is the mechanism of communication from the interface to the RNA
binding site? The first questions were addressed in a detailed, residue specific manner,
using "N-NMR to probe the structural and dynamic properties of each protein construct.

The question of allostery will be addressed in chapter 8.

NMR studies of RRM3, RRM4 and PTB1:34 commenced with comparisons of
the ""N-HSQC spectra (figure 6). Further exploration requires that most amides in the
protein backbones give rise to single, well resolved peaks, and that the spectra have
adequate chemical shift dispersion consistent with folded, stable proteins. For the most
part, this was found to be the case, although a few more peaks than expected were
observed in RRM3, suggesting exchange that is slow on the NMR timescale, resulting in
multiple resonances for some of the amides. The degree of chemical shift dispersion was

consistent with that expected for folded proteins.

'"H/"*N-HSQC spectra were overlaid to compare PTB1:34 to the individual
domains and reveal differences in many of the chemical shifts. However, because
separation of the domains is expected to change the nuclear shielding of amides involved
in the extensive interface, the difference in chemical shifts does not necessarily imply
structural changes. In order to determine the magnitude of the chemical shift changes,
and thus the possibility of significant structural changes, assignment of the peaks in each

PN-HSQC spectrum is necessary.
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The structure of PTB1:34 has been solved (Conte, et al., 2000; Oberstrass, et al.
2005), but under different solution conditions than were deemed appropriate for our RNA
binding experiments. Nonetheless, attempts to use these previously determined
resonance assignments were made by extrapolating chemical shifts from published to our
solution conditions. The chemical shifts of PTB1:34 were mapped from pH 5.2 to 6.8,
and from salt concentrations from 0-150 mM KCI. Unfortunately, this approach did not
map to the assigned resonances in PTB1:34, so we had to repeat the assignment process.
The structures of RRM3 and RRM4 have not been solved, so we assigned the amide
resonances of those constructs as well. ?C/"°N labeled proteins were prepared, and
standard CBCA(CO)NH/HNCACB and HNCO/HNCACO experiments were run and
then processed and analyzed using Felix (Accelyrs). Multiple resonances observed for
some loop regions of PTB1:34 and RRM4, and several loop regions of RRM3 did not
allow full assignments to be made. Assignments were identified for over 85% of

PTB1:34 and RRM4 residues, and over 65% of RRM3.

Once the backbone amides for RRM3, RRM4 and PTB1:34 were assigned,
chemical shift differences between the individual and interacting RRMs, AS were
calculated for each residue in terms of the proton chemical shift:

A8 = [(811a — 81p)” + ((Bna - Snp)/10)7]"?
Where 0y, is the proton chemical shift of the individual domain, &y, is the proton
chemical shift of the interacting domains, Ox, is the chemical shift in the nitrogen
dimension for the individual domain and dnp 1s the chemical shift in the nitrogen

dimension for the interacting domains. These results were mapped onto the three
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dimensional structure of PTB1:34 (PDB ID:2EVZ) (Figure 7) and clearly show that most
of the observed chemical shift changes are small and concentrated at the RRM3/RRM4
interface, revealing that there are no major structural rearrangements that occur as a result
of the interaction, and the observed differences in chemical shifts are due mainly to

changes in the nuclear environment at the interface.

Assignment of the amide resonances in PTB1:34 also allow residue specific RNA
binding studies, if the system permits. Stoichiometry experiments for PTB1:34 show that
it binds the GABA intron RNA 8:1 (Clerte and Hall, 2006), a system that is not amenable
to NMR experiments. Furthermore, Oberstrass, et al., have solved the structure of
PTB1:34 bound to RNA, but required RNA no longer than tetramer and low salt buffer,
conditions which are not conducive to specific RNA binding, to obtain adequate NMR
spectra. We designed an RNA that mimicked a natural target of PTB1:34 for NMR
binding studies using more appropriate conditions. This RNA consists of 11 nucleotides
(UUCUCUUUUCU) which we hoped to be long enough to span the entire RNA binding
surface of PTB1:34, but still bind specifically and with a 1:1 stoichiometry. Previous
EMSAs using a truncated (38nt) version of the GABA intron RNA did not yield shifts at
protein concentrations up to 10 uM, so this RNA is not expected to bind under the same
conditions. However, we did expect this RNA to bind at the much higher concentrations

used for NMR.

A fresh sample of ""N-PTB1:34 was prepared and titrated with the designed RNA

from 0.5:1 to 2:1 (Figure 8). In the presence of RNA, several resonances are shifted, but

27



more resonances disappear, suggesting that these resonances go into exchange due either
to the RNA coming on and off the protein, or by the creation of a dynamic binding site
(the protein loses rigidity as it binds to flexible RNA). Increasing the RNA concentration
did not cause the invisible resonances to reappear, meaning that, if the observed exchange
is due to transient RNA binding, saturating the protein with RNA does not drive the
binding equilibrium to a completely bound state. Future experiments of this sort may be
more informative with an RNA that contains two short polypyrimidine tracts separated by

15 adenosines.

Qualitatively, the results are consistent with the published structure of PTB1:34
bound to RNA (Oberstrass et al, 2005). That is, the same amides were found to be
involved in RNA binding, despite the different ligands and solution conditions.
Importantly, residues throughout the protein including sections of RRM3, RRM4 and the
interdomain linker are affected by the addition of RNA. Clearly, RRM4 does contribute

to the binding of PTB1:34 to this RNA.

The above structural characterization confirms that all protein constructs are
folded and thermodynamically stable, and that RRM4 does contribute to binding in the
context of PTB1:34. Yet, it remains to be determined exactly what inherent property of
the system changes as a result of the RRM3/RRM4 interaction, and how this information
is propagated from the RRM3/RRM4 interface to the RNA binding sites. The fact that
PTB1:34 binds preferentially to flexible RNA (Clerte and Hall, 2009), and that several

resonances go into exchange with the addition of RNA, accompanied by the observation
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of multiple resonances in the RRM3 "N-HSQC spectrum, lead to the speculation that
protein dynamics play an important role in the function of this molecule. NMR
relaxation experiments provide access to residue specific motions on timescales from
picoseconds to seconds, and is thus the method of choice for further investigation of this

system.
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Figure 1: Sequence of PTB1:34, RRM3 and RRM4. Amino acid sequence using the
numbering scheme adopted in PDB ID:2EVZ. Secondary structure is depicted above the
sequence with beta strands as red arrows and alpha helices as blue cylinders. Individual

domains RRM3 and RRM4 were prepared by truncation as indicated by the black arrows.
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Figure 2: All protein constructs used are folded, yet have significantly different CD

spectra and unfolding profiles. Circular dichroism (CD) spectra of each protein

construct, as well as an equimolar mixture of RRM3 and RRM4 are shown in (a), with

PTB1:34 in blue, RRM3 in green, RRM4 in red, and the RRM3/RRM4 mixture in

yellow, indicating that all species are folded, and confirms that mixing the individual

RRMs does not form PTB1:34. GndHCI denaturations were monitored by CD at 222 nm,

and fit with a 2-state unfolding model (red lines) for PTB1:34 (b), RRM3 (c), and RRM4

(d). While RRM3 can be fit with this model, RRM4 and PTB1:34 cannot, suggesting

that the thermodynamic properties of the constructs change as a consequence of the

RRM3/RRM4 interaction.
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Chemical Renaturation of PTB1:34 Constructs
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Figure 3: Renaturation of chemically denatured protein constructs. Comparison of
CD spectra for native, denatured and renatured RRM3 (green), RRM4 (red) and PTB1:34
(blue). Native proteins were denatured by equilibration in 6 M GndHCI overnight at
room temperature. The same protein samples were dialyzed against 1:10,000 buffer with
0 M GndHCI overnight for renaturation. While RRM4 regained all of its original CD
signal, PTB1:34 and RRM3 did not. However, the losses in signal observed for RRM3
and PTB1:34 are consistent with the decreased signal observed over time typically

experienced when working with these proteins.
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Figure 4: The binding affinity of PTB1:34 is more than the sum of its parts.

of the GABA, y2 pre-mRNA intron (a) to the PTB1:34 protein constructs. PTB1:34

even at the highest concentration tested, 5

as the first significant band shift does not occur at protein concentrations less than 500

Electrophoretic mobility shift assays were used to compare the relative binding affinities
binds at the lowest protein concentration tested, 10 nM, while RRM4 does not bind at all,
uM (b). A similar comparison in (C) shows

that RRM3 does bind to this RNA, but with around 50-fold lower affinity than PTB1:34,

nM. Mixing RRM3 and RRM4 does not rescue the RNA binding (d), since an equimolar

mixture of the two domains binds with affinity similar to that of RRM3 alone. All

lane with 800 nM full-length PTB, which is

EMSAs were run at 4° C, and included a lane with RNA only as a negative control, and a

known to bind to this RNA with high affinity,

as a positive control.
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Figure 5: Electrostatic potentials of PTB1:34 and the individual domains may
contribute to their functional differences. Electrostatic potential mapped onto the
solvent accessible surface area of PTB1:34 (a), RRM3 (b), and RRM4 (c), with positive
patches shown in blue, and negative patches in red, shows that the interaction between
RRM3 and RRM4 organizes the charge distribution of the protein, and may be important

to protein function.

34



(RR

(RET]

iFan

1150

HLE

(Ea]

(ES ]

35

a®




Figure 6: "H/™N-HSQC spectra comparisons show that all protein constructs are
folded, but have different structural properties. A comparison of RRM3 and PTB1:34
(a), shows that almost none of the RRM3 peaks (green) are superimposable with the
peaks from PTB1:34 (black), indicating global differences in environment, though not
necessarily structure. In addition, many of the RRM3 peaks are broadened, and several
residues have multiple resonances (circles), indicating structural heterogeneity on the
chemical shift time scale. Conversely, RRM4 (blue) has a single resonance for every
amide (b), and the peaks are uniformly narrow. Most of the RRM4 peaks are
superimposable onto the spectrum of PTB1:34, though many are shifted. PTB1:34
displays neither the narrow line-widths of RRM4 nor the multiple resonances of RRM3,

but rather behaves as a unique entity.
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Figure 7: Changes in chemical shifts between the individual and interacting RRMs
indicate only minor structural changes when the domains are separated. The change
in chemical shift, Aj, in terms of proton ppm, show that the majority of differences are
concentrated at the RRM3/RRM4 interface. Ad is shown as bars with the protein
secondary structure indicated by bars (a-helix) and arrows (B-strand) along the top of the
plot. For visual clarity, these changes are mapped onto the structure of PTB1:34 (inset),
where white shows the areas of the protein were no data were available, grey indicates no
significant Ad (< 0.25 ppm), blue indicates Ad between 0.25 and 0.50 ppm, violet, AS
between 0.50 and 0.75 ppm, purple between 0.75 and 1.00 ppm, and magenta shows the
most significant Ad of greater than 1.00 ppm. Many residues in the interdomain linker
are expected to have significant chemical shift changes due to altered environment but
could not be calculated since the linker region was largely unassignable for the individual

domains.
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Figure 8: Binding of 11mer RNA to PTB1:34 involves residues in RRM3, RRM4
and the interdomain linker. Overlay of "H/'°N-HSQC spectra collected for protein
alone (black), and with increasing amounts of RNA. Molar ratios of RNA to:protein are
shown in blue (0.5:1), green (1:1) and red (2:1). Most residues that are affected by the
binding disappear rather than shift, making characterization of the bound PTB1:34
impossible. No significant changes are observed as the amount of RNA is increased,
suggesting that even at the lowest amount of RNA used (0.5:1) binding sites in both

RRM3 and RRM4 are saturated.
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Chapter 3

NMR techniques used to measure protein motions

Traditional methods to measure fast motions (ps-ns)

Early spin relaxation methods focused on the determination of fast (ps-ns)
timescale motions. Characterization of the SH2 protein domain fast timescale dynamics
(Kay et al., 1998) was the first application of these methods to a biologically significant
system, and typifies a standard protein relaxation analysis. Current renditions of these
methods have been developed and optimized, and remain the standard starting point for

complete protein dynamics analysis.

Briefly, data are collected that describe the extent of energy transfer of a nucleus
with neighboring nuclei as well as its surrounding environment. Three measurements
typically comprise this analysis: Longitudinal relaxation (R;), transverse relaxation (R;),
and heteronuclear NOE enhancement. These data are then fit to a model that allows
extraction of a generalized order parameter, S°, that gives a measure of motion of each
nucleus. S* ranges from zero, where motion is completely unrestricted, to one, where
motion is completely restricted. Depending on the model selected, other information may
be obtained as well, including an term that accounts for additional contributions to the
transverse relaxation rate not fit to the model, or R.x. However, even without further
analysis, the raw R, R, and NOE data can provide insight into the dynamic nature of the

molecule, and are thus worth discussing in more detail.
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Molecular motions

Molecules are not rigid, yet the connection between molecular motions and
function is largely unclear. NMR experiments are particularly well suited to study
motions since they can detect the motion itself, allowing access to dynamics information
for systems in equilibrium. Timescales of motions in molecules range from picoseconds
(bond vibrations) to several seconds and longer (large scale structural rearrangements,
catalysis), all of which can be probed using NMR spectroscopy (Figure 1). This wide
range of accessible timescales, coupled with the atomic resolution possible using NMR

methods, make NMR spectroscopy a powerful method for studying protein motions.

Basic spin dynamics background

For any spin 2 system, application of a static magnetic field generates one ground
and one excited state, whose populations are described by the Boltzmann distribution.
The z-axis is defined by the static magnetic field which aligns the nuclear dipoles, either
parallel or antiparallel to the applied field. A radio-frequency pulse at the Larmour
frequency, equal to the energy difference between the ground and excited states (on
resonance), M :

oL =YvB

disrupts the thermal equilibrium distribution. The gyromagnetic ratio for a particular
nucleus is denoted v, and B is the strength of the static magnetic field. The direction and
duration of the pulse dictate how the net magnetization is affected. The rates at which a
perturbed system returns to an equilibrium state are termed the relaxation rates and are

the basis for most NMR dynamics experiments.
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Consider a system defined with cartesian coordinates, in the presence of a static
magnetic field, and the absence of an on-resonance pulse. Each spin precesses at its
Larmour frequecy and the net magnetization is aligned along the z-axis. When an on-
resonance pulse is applied, the net magnetization is shifted either into the x-y plane (if the
pulse is 90° or 7/2) or inverted along the z-axis (for a 180° or & pulse). After the pulse is
turned off, two things happen: the magnetization dephases in the x-y plane and returns to
the z-axis, and the equilibrium state is eventually achieved. For a heteronuclear AX
system, simple experiments can be used to measure the rates of each of these processes

separately.

For '°N-'H and "*C-'H systems, the rate of return of the net magnetization to the
z-axis is termed longitudinal, or spin-lattice relaxation, and is dominated by dipole-dipole
and chemical shift anisotropy (CSA) relaxation mechanisms:

R, =R,”" + R,
A simple 1D inversion recovery pulse sequence illustrates how this rate may be measured
(Figure 2). Typically, two-dimensional adaptations of this, using INEPT or similar tools
to transfer the magnetization from the proton to the nucleus of interest, in this case °N,
and a reverse INEPT to transfer the magnetization back in order to detect in the proton
dimension after the delay, are used to obtain per residue longitudinal relaxation rate

information for proteins.

The rate of dephasing of spins in the x-y plane is termed transverse or spin-spin

relaxation and is also dominated by dipole-dipole interactions, but also includes a
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contribution from exchange processes.

R,=R,"° + R, ©A + R,
A simple Hahn echo one dimensional experiment illustrates how the transverse relaxation
rate can be measured (Figure 3). Similar two-dimensional modifications are employed to
obtain residue specific information for proteins. In practice, a similar sequence
developed by Carr, Purcell, Meiboom and Gill (CPMG) is generally used. This version
not only removes imperfections in the 180° pulse, but also introduces the so called CPMG
pulse train, that is, multiple pulses at variable frequencies (centered at the same
frequency) so that the delay between pulses can be varied while maintaining constant
magnetization. This allows direct measurement of the loss of coherence, and ensures that

other processes to not contribute to the decay.

Dipole-dipole interactions are an important relaxation pathway, so it should come
as no surprise that dipolar coupled spins can 'sense' each other. In a dipolar coupled
system, saturation of one spin will affect the equilibrium populations of the other spin.
This effect is called NOE enhancement, and is measured using simple paired
experiments, one with protons saturated during the evolution time, and the other without.
In a covalently coupled spin system, the ratio of peak intensities gives a measure of the
extent of communication between the coupled spins, where values close to unity (very
little difference in the saturated and unsaturated peak intensities) imply rigidity of the
bond vector, and more flexible residues give rise to NOE ratios of lower value. For a
homonuclear system, NOE values range from 1 to -1. However, for a heteronuclear

system, the difference in gyromagnetic ratios must be accounted for, so the while the
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upper limit remains 1, very flexible residues may give rise to much lower NOE values.

Relaxation data analysis: The ModelFree approach

We can recast the information from the above measurements in a more intuitive
format by fitting the data to a model and calculating parameters that describe the motions.
This is most commonly done using Art Palmer's ModelFree Program, which is based on
the theory developed by Lipari and Szabo (Lipari & Szabo, 1982, a,b). Assuming that
relaxation is dominated by dipole-dipole and CSA effects, the relaxation parameters
depend on the value of the spectral density function, J(®), at five characteristic
frequencies. Because it is difficult, if not impossible to explicitly determine the spectral
densities at all five frequencies, a simpler model is employed that describes the relaxation
using a small number of physically meaningful parameters (Palmer, et al 1991). For an

isotropically tumbling molecule, the model is:

2 Q2
a2 S (=8

5| 1+(wr,)  1+(wr)

and can be extended to account for axially symmetric tumbling. This is the Model-Free
approach originally proposed by Lipari and Szabo in 1982, and contains a generalized
order parameter S, which provides a measure of spatial restriction of the bond vector
from zero, for isotropic motion, to unity for no motion in a fixed frame of reference. t is
an effective correlation time, where

S

Ty is the overall tumbling time for the molecule, or the time it takes the molecule to

rotate by one radian, and . is the local correlation time of the individual bond vector.
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The Model-Free nomenclature arises from the fact that Ty and S* are model-independent
parameters. Once these values have been determined, the results are interpreted within
the framework of a model. Because fitting to extract the parameters that describe internal
motion is influenced by the overall tumbling of the molecule, it is important to choose a
model that accurately describes the way the molecule tumbles in solution. Inaccurate
modeling of molecular tumbling commonly results in low magnitude Rex terms
throughout the protein as the program is unable to fit accurately to fast timescale

dynamics.

Descriptions of the R;, R, and NOE relaxation for a heteronuclear system were
derived by Abragam in 1961, considering only the dipole-dipole and CSA contributions
to relaxation. These expressions form the basis of the ModelFree analysis, and are given
below:

R, = (d*/4)[J(or-mx) + 3J(0x) + 6J(oxtox)] + c2J(ox)

R, = (d/8)[4J(0) + J(wp-wx) + 3J(wx) + 6J(on) + 6J(ontox)] + (¢2/6)[4J(0) + 3J(ox)] +

Rex

NOE = 1 + (d/4R))(yx/yn)[6J (0t ox) — J(or-ox)]

where d = pohyxyu(rxi)/(87%), ¢ = oxAc/(37?), po is the permeativity of free space, h is
Plank's constant, oy and wx are the Larmour frequencies of the "Hand X (either BCor

>N) spins, respectively, rxy is the X-H bond length, and Ac is the chemical shift
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anisotropy of the X spin, assumed to be axially symmetric with an axis collinear with the
X-H bond vector. The Rex term in the expression for R, is purely phenomenological,
included to account for exchange processes that contribute to the transverse relaxation
rate. Using the above expressions along with an appropriate form of the spectral density
function (as determined by the model selection procedure discussed below), parameters
that describe residue specific motion on a fast (ps-ns) time scale can be extracted. In

addition, an R, term may be added to account for slow (us-ms) motions if needed.

ModelFree analysis typically involves reiteration of three steps: initial estimation
of the tumbling time of the molecule, model selection, and final optimization. Depending
on the structural information available, there are several adequate methods to estimate the
tumbling time of the molecule. For this work, experimental R; and R, data were used
according to the method of Tjandra et al. (1995) using the R2R1_diffusion software
available on the Palmer group website. This software estimates diffusion tensors for
spherical or axially symmetric molecules and is designed to be compatible with the

ModelFree spectral density functions.

Alternately, a trimmed mean of the R,/R; ratio can be used to estimate the
tumbling time of a molecule, excluding the residues which are suspected to have
exchange contributions to relaxation. However, for very flexible proteins, such as the
proteins studied here, this method is not appropriate since most amides will have a
transverse relaxation rate that includes contributions from exchange processes. Also,

because Rey terms can arise as a result of a poorly defined diffusion tensor, it is prudent to
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obtain the most accurate description possible.

Once a diffusion tensor is estimated, one may proceed to the model selection step.
Each model uses different parameters to describe the molecular motions, increasing in

complexity as necessary to fit the data. The available models are:

Model 1: §?

Model 2: S* and .
Model 3: S? and Rex
Model 4: Sz, Te and Rex

Model 5: sz, S¢? and 7.

In model 5, the ModelFree formalism has been extended to contain both fast (S£) and
slow (S,?) generalized order parameters (Clore et al, 1990). Importantly, data must be
collected at multiple static magnetic field strengths if more than two modelfree
parameters (the tumbling time, Ty is also included in the fit) are to be used in the fitting.
The algorithm for model selection proceeds as described in Mandel et al (1995), and is
summarized in figure 4. Briefly, attempts are made to fit the data to each model, in order
of increasing complexity, until an adequate fit has been obtained. Implementation of
more complex models is justified in ModelFree via a F-statistic test (see Mandel et al

(1995)).
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The final step in the ModelFree analysis is the simultaneous optimization of the
overall rotational diffusion model and the internal motional parameters for each spin.
Generally, several iterations of the three steps are necessary until a self-convergent model

of the system is obtained.

Interpretation of ModelFree results

The results of the ModelFree analysis provide residue specific motional
information about a given system. An accurate interpretation of the results, however,
requires revisitation of some of the limits of the method. First of all, the analysis is based
on theoretical expressions that take into account only dipole-dipole and CSA relaxation
mechanisms. Autorelaxation (Ry) effects are not taken into account at all, and Rex terms
provide some indication of slow time scale chemical exchange, but are not measured

directly.

Experience shows that an inability to converge is not the only way this method
can fail. Theoretically, the generalized order parameter, S*, has an upper limit of 0.95,
nonetheless, the program will sometimes return values up to 1.0. This is clearly a
nonsensical result, and is usually, but not always, avoided by properly selecting the initial
diffusion tensor estimation. Suggestions have been made to expand to possible range of
values to 1.2 so that the fits don't get stuck at 1.0, but this strategy failed to fix the
problem for the proteins studied here. Spins which consistently yield order parameters

which are too high are unable to be adequately fit, and are thus discarded.
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It is well known that a poorly described diffusion tensor can lead to artefactual Rex
terms. In this case, it is important to make sure that the tumbling time obtained does not
indicate dimer, or other oligomer formation, or non-specific associations, that may
erroneously lead to Rex terms. In addition, it is imperative to use at least two data sets,
collected at different static magnetic field strengths, to ensure that the Rex terms do not
arise from underfitting (ie: there are more input paramters than output parameters).
However, even if the Rex terms do not arise from some error, ModelFree scales the
magnitude of the terms quadratically with static magnetic field strength. This
approximation, however, only holds for rigid molecules with a two-state exchange, where
one state is much more highly populated than the other state, and the exchange is fast on
the chemical shift timescale (Millet et al. 2000). None of these criteria are expected to
hold a priori for the systems studied here, thus, for the work described herein, ModelFree
can identify residues which undergo slow exchange, but will not yield accurate

magnitudes of the exchange terms.

Since the tumbling time of the molecule is an integral component of the
ModelFree analysis, it is a good idea to verify that this result is of an acceptable value.
To this end, several methods were employed to independently measure the tumbling time
of the protein constructs used in this study. The Stokes-Einstein relationship was used to
calculate the tumbling times, assuming spherical molecules. The tumbling time was also
calculated considering the structures of the constructs using HYDRONMR. Finally,
TRACT NMR experiments were performed to experimentally measure the tumbling

times. These techniques will be discussed in detail in the next chapter.
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Direct Measurement of slow exchange

The most satisfying way to confirm the presence of slow motions, however, is to
measure the motions directly. NMR methods have been developed that allow direct
detection of microsecond to millisecond motion. It helps to have an idea of the timescale
of the motions of interest in order to choose an appropriate experiment, but is not
necessary. CPMG based dispersion experiments access millisecond timescales, and are
the least time-consuming of the methods discussed here. R;, dispersion experiments
access microsecond timescales, but have significantly more technical difficulty and
require much longer acquisition times. Finally, relaxation interference experiments offer
an alternative approach that enables confirmation of residues that have slow exchange

contributions to relaxation, but lack the quantitative power of the former techniques.

Measurement of millisecond motions: CPMG dispersion

The exchange contribution to transverse relaxation was first formally accounted
for by modification of the phenomenological equations for bulk magnetization known as
the Bloch equations by Hahn and Maxwell (1952) and McConnell (1958). These ideas
were expanded and applied to a practical system in the classic paper by Carver and
Richards (1972), where a general solution for two-site chemical exchange was described
from the dependence of the transverse relaxation rate on the CPMG pulse separation, Tp.
Briefly, for a two-state system:

A~ B

with forward reaction rate ks and reverse reaction rate kg, the rate of exchange between

states A and B is given as kex = ka + kg. The populations of each state are given as pa
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and pg, and the frequency difference between the two states is denoted A®w = ma — ©g.

During the experiment, the CPMG pulse train (a series of 180° pulses separated
by time t.,) focuses spins that are not involved in exchange processes. Spins which
exchange on the timescale of the pulsing, spend time in more than a single state, and thus
are not refocused, so the peak intensity recovered from exchanging spins is less than that
for non-exchanging spins. As the time between 180° pulses, 1, increases, the chance that
a spin will sample more than a single environment increases, and the effective decrease in
peak intensity is enhanced. For spins undergoing exchange on the timescale of the
CPMG pulse separation, a plot of the effective transverse relaxation rate, R,
dependence on 1., termed the dispersion profile, yields a curve that can be fit by the

following expression (Downing 2004):

R*(r,,) = %( R;,+Ryg +k,, — 7, cosh™ [D, cosh(7,)— D_ cos(nf)])

where:

1 v +2A0°
D, :E{i“- 2 2 1/2}
(" +<&9)

Tcp

n.= I:i',V -i-(w2 + 52)1/2}1/2

5

2
ex

V= (RSA - Rzoa — Pak + kaex)z Ao’ +4p, Pk

ég = 2Aa)(R20A - R;)B - pAkex + kaex)
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Depending on the system, certain assumptions can be made in order to simplify the above
expression. As long as pa >> pg, exchange on any timescale can be described as

(Downing 2004):

pA pBAa)zkex
k2 +(prAw’ +1447.H)"°

p

R, (TgPI) =R, (sz1 — 00)+

Where Rz(rcp'l)—mo can be approximated by the measured R,. Ifit is not practical to
assume pa >> pg, then the following expression may be used as long as the system is in

fast exchange (Downing 2004).

k.7

ex ' cp

. i ) 2 tanh(k,, 7., /2)
RZ(Z’Cp )= Rz(rCp — o)+ (pyPgA” /K, )| 1-

Regardless of the expression used, the primary goal is to extract kinetic
information, ke, as well as thermodynamic information, pa, pg, and structural
information, A®w. One of the main limitations of this method, however, is that the theory
has only been worked out for a simple two-state system. If the system is suspected to
have more than two states, as is likely for the system described herein, it is not yet
possible to extract such information. Even if fitting is not appropriate, the strategy still
has some value, in that it can be used to identify residues that undergo exchange on a

millisecond timescale.
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Using this method, no amides in PTB1:34 were found to exchange on a
millisecond timescale. However, some amides had elevated R, values that did not
decay, suggesting that these residues are in motion just slightly faster than can be
detected using this method. Decreasing the temperature to 10°C did not lead to detectable
dispersion for these residues, but did provide a clue that at least some amides in the

protein are in exchange in a slightly faster regime.

Measurement of microsecond motions: R;, dispersion

R, experiments allow access to microsecond motions using methods analogous
to CPMG dispersion experiments. In both cases, the contribution of exchange to the
transverse relaxation rate is varied as a function of applied field strength while the
magnetization is in the x-y plane (for CPMGQ) or in the tilted plane (for R;,). For CPMG
experiments, the applied field strength is defined as the spacing between 180° pulses in
the CPMG pulse train. For R, experiments, the applied field is continuous, increasing in
strength through either increased power or position in the rotating frame. Higher field
strengths are able to detect faster exchange. Thus, practical limitations, ie: not frying the

sample or probe, determine the fastest motions that can be determined using this method.

The ability to measure fast exchange rates in the rotating frame was first noted by
Deverell, et al. (1970) using cyclohexane chair to chair isomerization as an example.
This method could be used to extract exchange rates, but was limited to the case where pa
=ps. The theory was expanded by Davis et al. (1994), based on the Carver-Richards

equations to obtain a general solution for a two state system that allowed extraction of the
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same kinetic and thermodynamic parameters as a CPMG dispersion analysis. Assuming

fast exchange, the transverse relaxation rate in the rotating frame can be expressed as:

. k ,
R,=R cos’ @+ R, sin’ 6+ p, Py (Aw’ ) ——2—sin’ 0

ex e

Here, 6 describes the angle between the effective magnetic field and the z-axis:

where do is the frequency difference between the applied field and the resonance
frequency of the spin of interest. For an off-resonance experiment, the effective spin-

locking field, w., is described by the vector sum of of the spin lock field, ®; and dw:

w, =@ + 6w’

In the case where dw = 0, that is, the applied field is on-resonance, the above expression

simplifies to:

keX
Rlp =R, + P4 pB(Aa)z) IC + 0
ex 1

R, relaxation rates can be measured either off-resonance, where the applied field
is varied by moving the frequency away from the resonance frequency of the spin of
interest, or on-resonance, where the applied field is varied by increasing the RF power of
the pulse. Off-resonance methods can access a larger range of motions since the field is

increased by positioning rather than increased power, so that sample and probe heating is
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not as much of a problem. However, the implementation and analysis of off-resonance
methods is much more complicated than that of on-resonance methods, requiring not only
a separate experiment to calibrate the effective spin-lock field strength, w., but also a
more complicated fitting function. In addition, the latest versions of these pulse
sequences were written for Briiker spectrometers, and have not been adapted for the

Varian spectrometers that are available here.

On-resonance R;, experiments offer much simpler analysis and a straightforward
determination of applied field strength. In addition, the standard Varian biopack R,
experiment could be modified to allow user control of the RF field strength. However,
near-resonance may be a better description of these experiments since it is not practical to
run a separate dispersion profile for each amide resonance. Instead, strips of 5 ppm in the
nitrogen dimension were used to approximate the resonance frequency of all amides in
that region. The transverse relaxation rate in the rotating frame for amides in exchange
on a microsecond timescale is dependent on the spin lock field strength. Measurement of
this rate at varying field strength is expected to generate a dispersion profile that can be
fit as a decay curve with the simplified R;, dispersion expression, and the same kinetic

and thermodynamic parameters as in the CPMG dispersion analysis can be extracted.

This method, however, also suffers from the same limitations as the CPMG
dispersion analysis in that the dispersion curve can only be fit by a simple two-state
model. For this system, which is not two-state, quantitative descriptions of the motion

are not possible. Since every point on the dispersion curve requires five data sets
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(corresponding to 5 strips of 5 ppm each), the analysis was simplified by definition of
AR, the difference in R, values at two different spin lock field strengths. Since our
modified pulse sequences had never been used before, the powers of the two spin lock
field strengths were chosen conservatively in order to maximize the difference of Ry,

rates, yet to stay well within the safe power range of the instrument.

A simple scheme of this method is depicted in figure 5, and illustrates how, since
a fit is not used to extrapolate to the slow pulsing limit of the experiment, the overall
magnitude of the exchange contribution to the transverse relaxation rate will be
underestimated. Nonetheless, this method directly monitors microsecond motions, and
will thus robustly identify any residues that have exchange on this timescale. While some
residues may be missed, the method has the advantage of minimizing the possibility of
false positives, making it a good complement to the other methods used. The major
advantage of this method is that is does not depend on fitting or assumptions about the
system. Microsecond dynamics are the only processes that will give rise to a positive

result with this experiment.

Identification of exchanging residues: Relaxation interference experiments

The phenomenon of interference between N-H dipolar coupling and CSA
relaxation mechanisms and its contribution to transverse relaxation has been
acknowledged since the 1950's. More than three decades later a formalism for describing
a scalar coupled heteronuclear system, with both nuclei spin 2, that relaxes via

internuclear dipolar and anisotropic chemical shift interactions was described by
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Goldman (1984). The value of this relaxation interference effect is that it allows for the
measurement of transverse relaxation independent of exchange, or the so-called
exchange-free transverse relaxation rate, 1yy.

Ty = RoPP + RS54
Comparison of this rate with the traditional transverse relaxation rate, R, (which includes
contributions from exchange), facilitates a robust identification of residues involved in

exchange.

The observation that the two peaks of ’N-amide proton doublets have different
line widths arises from the different relaxation rates of each state. The relaxation rates
for each the o and B spin states, respectively, are given as:

Reo=A+n

Rg=A-m
Where A represents the auto-correlated relaxation processes and m represents the cross-
correlated relaxation processes that contribute to transverse relaxation. Thus, the
difference of the two rates,

Ro—Rp=mnyy
yields the exchange-free transverse relaxation rate. Residues which have significant
exchange contribution to the transverse relaxation rate are identified as those residues that
have R¢x greater than zero, where:
Rex = Ro — KMy

In this case, R; is the traditional transverse relaxation rate measured initially, and « is a

constant that accounts for autorelaxation effects. Determination of k is not trivial and
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will be discussed in the next section.

In 1996, a pair of pulse sequences to measure the transverse relaxation rates of
each of the doublet components of '°N-labeled protein backbone amides was reported
(Tjandra et al, 1996). In 1998 the method was expanded to include a similar method for
analyzing longitudinal relaxation rates. A major limitation of these methods was that the
scaling between the two measurements was difficult, yet critical for an accurate analysis.
Liu and Prestegard (Liu & Prestegard, 2008) addressed this problem by further improving
the method so that both rates could be measured in a single experiment, eliminating the
scaling problem.

Other potential sources of error involve the assumption that the principle axes of
the dipole-dipole interaction and the '’N CSA are co-linear. Also, the nitrogen CSA is
assumed to be axially symmetric. However, deviations from these assumptions have
been found to impact the measured rates by less than 10% (Tjandra, et al. 1996). In
addition, cross-correlation between '’N CSA and the dipole-dipole interactions with
distant protons may lead to some degree of error. However, the pulse sequence design of
Liu and Prestegard limits this effect to an approximate underestimation of 0.75%. If
greater accuracy is desired, perdeuterating the protein would further diminish this effect,
however, the degree of uncertainty from the assumptions discussed above render this

amount of error negligible.

Determination of x

As mentioned above, accurate determination of Re, using relaxation interference
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experiments requires that autorelaxation effects be taken into account. In general, K is a
constant over all residues, under the assumption that the 'H-""N dipolar and the "N CSA
axes are co-linear. The traditionally recommended method for determination of k is to
take a trimmed mean of Ro/n,for all residues not involved in exchange processes (Wang
et al., 2003). This method seems appropriate for proteins that are thought to be mostly
rigid, with only a few residues undergoing exchange and thus was used to determine « for
RRM4. The RRM4 measured Ry/1, (at 700MHz) for residues not undergoing exchange

was found to be 1.35.

K is independent of any assumptions involving local or overall motions, and so
can also be calculated as a theoretical ratio of dipolar and CSA relaxation effects. This
method is preferred for systems that are thought to have most residues involved in
exchange. Since PTB1:34 is larger, and does not have a clear baseline of residues which
do not undergo exchange, its k was calculated as the theoretical ratio of Ro/nyy, for dipolar

and CSA relaxation pathways (Fushman et al., 1998):

2 2
K:cS +p
20p

Where § is the chemical shift anisotropy of the °N nucleus,

_n B,Ady

5 SN7O7 7N
32
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And p is the 'H/"N dipole-dipole coupling:

p= LoV Vh
167[2\/§rH3N

Where yx and vy are the 'H and °N gyromagnetic ratios, By is the static magnetic field
strength, Ady is the span of the principal components of the "N chemical shift tensor, po
is the permeativity of free space, h is Planck’s constant, and ryy is the 'H/"°N internuclear

distance (1.02 Angstroms). At 700MHz, this value was determined to be 1.06.
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Figure 1: Motions are important for biological molecules on many different
timescales. Fast motions such as bond vibrations, molecular tumbling and internal
motions usually occur in the range of picoseconds to nanoseconds. Loop motions,
molecular diffusion, as well as chemical and conformational exchange generally are

much slower, in the realm of microsecond to millisecond, and even seconds. NMR

methods are particularly well suited for studying protein motions since they can access

motions over this entire range of timescales.
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Figure 2: Simple schematic diagram of a one dimensional inversion recovery NMR
experiment used to measure longitudinal relaxation rates. The top panel shows the
pulse sequence, and the bottom panel depicts the net magnetization in cartesian
coordinates at specified points of the pulse sequence. At point a, prior to pulsing, the net
magnetization is aligned with the By field along the z-axis. At point b, a 180° radio
frequency pulse is applied at the Larmour frequency that flips the net magnetization to
the -z-axis. During the delay time, 1, the system relaxes, and the net magnetization shifts
back to its equilibrium state, aligned with the z-axis. Points ¢ and d indicate the return to
the equilibrium state as the relaxation time, t, progresses. Immediately following 1, a 90°
pulse (-y) is applied that flips any magnetization that has returned to the z-axis to the x-
axis for detection (point ), and the FID is collected. Typically, peak intensities are
recorded at several values of 1, and an exponential decay of signal intensity as a function

of T describes the longitudinal relaxation rate.
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Figure 3: Simple schematic diagram of a one dimensional Hahn-echo NMR
experiment used to measure transverse relaxation rates. The top panel shows the
pulse sequence, and the bottom panel depicts the net magnetization in cartesian
coordinates at specified points in the pulse sequence. At point a, prior to pulsing, the net
magnetization is aligned with By along the z-axis. At point b a 90° pulse has been applied
that flips the magnetization to the x-axis. During the first t/2 delay, the magnetization
dephases in the x-y plane. For simplicity, only two spins are shown with red and blue
arrows at point ¢, however in reality, all spins fan out in the x-y plane during this delay.
At point d, a 180° pulse along the y-axis reverses the position of each spin in the x-y
plane. After an identical delay time, /2, the spins, now moving in the opposite direction
as a result of the 180° pulse, reconvene at the x-axis, and the FID is collected. As t
increases, the amount of magnetization that is refocused is reduced, and peak intensities
diminish. Peak intensities are recorded for several values of 1, and the decay is fit to an

exponential function to extract the transverse relaxation rate.
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Figure 4: Flowchart of the model selection strategy used by ModelFree. The
use of additional parameters for fitting is justified by comparison of simulated

distributions of I" and F for each spin, i. Adapted from Mandel et al. (1995).
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Figure 5: A schematic representation of the determination of ARi, Examples are
shown for dispersion curves for a residue with microsecond exchange (blue curve) and a
residue with no microsecond exchange (grey curve). Importantly, this figure shows the

propensity of the method to underestimate the exchange contribution to R, as the Ry,
rates for the lowest spin lock strength values are not accessible since a fit is not used to

extrapolate to a spin lock field strength of 0 Hz.
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Chapter 4

Methods for molecular tumbling time measurement

Knowledge of the tumbling behavior of molecules in solution is requisite to the
interpretation of the types of analysis used in the studies described herein. Protein
oligomerization as well as non-specific or transient protein associations may influence
the outcome of NMR relaxation experiments, and may also interfere with RNA binding
studies. The ability to accurately analyze protein motions using ModelFree also depends
on an accurate description of how the molecule tumbles in solution. For the types of
methods used here, this is typically done using the metric of tumbling time, 7., the time it
takes the molecule to tumble one radian in solution. This value is included in the spectral
density function, so any NMR method that relies on spectral densities to describe motions
is only as accurate as the estimation of tumbling time. As discussed in the previous
chapter, the ModelFree program uses an initial estimate of the tumbling time, usually
based on a trimmed mean of the relaxation data, and then uses this estimate as a starting
point for fitting, where the tumbling time is further refined. The rate at which the
molecule tumbles in solution is reflected in NMR relaxation rates, so protein-protein
interactions in solution, even if transient and non-specific, may lead to artificially long

tumbling times.

The shape of the molecule is also important for determining its tumbling time.
Spectral densities for molecules that are rigid, and spherical or axially symmetric are
established and included in the ModelFree analysis. However, molecules that tumble

anisotropically, or are very flexible, may not be described accurately using this method.
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Thus, it is important to verify that the tumbling times extracted by ModelFree make
sense. Although ModelFree determines the tumbling time based on structural coordinates
(for an axially symmetric system), experimental data, as well as other fitting parameters,
depending on the model that is used, other methods do not use all of the same parameters.
Furthermore, there are no methods that can reliably account for anisotropic tumbling and
molecular flexibility, both of which likely play a role in the system studied here.
However, using multiple methods, keeping in mind the limitations of each method, we
should be able to get a handle on an acceptable range of values where the tumbling time
is likely to be accurate. The methods used here include a simple calculation using the
Debye-Stokes relationship, a calculation which is based on the structure of the molecule
called HYDRONMR, and an experimental NMR method TRACT (Trosy for rotational

correlation times).

Estimation of tumbling time based on molecular mass

For a spherical molecule moving through an aqueous solution, the tumbling time,

1., 1s given by the Debye-Stokes relationship:

. 4rr'n
3kT

where k is Boltzmann's constant, T is the temperature, 1 is the viscosity, and r is the
radius of a sphere estimated from the molecular mass of each protein construct. Clearly
this method does not account for molecular shapes that deviate from a perfect sphere or

molecular flexibility that may impact tumbling time. The advantage of this method,
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however, is that its simplicity ensures that the results are not impacted by experimental
artifacts or theoretical assumptions that could introduce large errors. So, while the results
of this calculation may not be entirely accurate, they will likely not be too far from the

truth. The results obtained for RRM3, RRM4 and PTB1:34 are given in Table 1.

Estimation of tumbling time based on HYDRONMR calculations

Although most proteins are not perfectly spherical, estimating the tumbling time
for non-spherical proteins has been a long-standing challenge. Methods such as
ModelFree are able to account for axially symmetric molecules, however, no generally
useful theory had been developed for determining the tumbling times of fully anisotropic
molecules. This problem was addressed by the introduction of HYDRONMR by Garcia
de al Torre, et al. (2000). This program uses atomic coordinates obtained from a PDB
file. Hydrodynamic beads are packed onto the protein backbone, and from this, the
program builds an appropriate hydrodynamic model of the protein, computes a fully
anisotropic rotational diffusion tensor and determines a tumbling time. In addition,
HYDRONMR uses the PDB coordinates to extract the bond vectors involved in dipolar
relaxation, and uses this information to estimate the NMR relaxation parameters R;, R,

and '"H/'>N-NOE for each backbone amide.

The clear advantage of this method is that tumbling times for any shape of
molecule can be determined, and deviations from spherical or axially symmetric models
do not diminish the accuracy of the prediction. However, this theory was developed for

small, rigid molecules, and though it has been tested successfully on over 800 proteins
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from the PDB (Ryabov et al. 20006), it fails for the flexible molecules studied here. Since
no experimental data are used, and the protein is assumed to be rigid, loops and tails that
extend from the protein core may potentially lead to a significant overestimation of the
tumbling time. The NMR structure of PTB1:34 reports that only about a third of the
protein exists as secondary structure (Vitali et al. 2006). This means that the remaining
two thirds exists as loops and tails that potentially lead to tumbling times that are

erroneously large.

HYDRONMR analysis was completed for RRM3, RRM4 and PTB1:34 using
coordinates from PDB ID:2EVZ (Vitali et al., 2006). All calculations were performed at
293 K and 0.01 poise, using 3.1 Angstrom radius for atomic elements. While the
tumbling time determined for RRM4, a rigid molecule with few loops and tails extending
from the protein core, were in good agreement with the times obtained from ModelFree
analysis and Debye-Stokes calculation, the values obtained for RRM3 and PTB1:34 were
not (Table 1). For RRM3, the calculated tumbling time of 7.5 ns is slightly larger than
the value obtained from ModelFree or the Debye-Stokes calculation, an expected
outcome considering the greater abundance of loops compared to RRM4. The
nonsensical result of 32.3 ns for the tumbling time of PTB1:34 illustrates that this method
roundly fails for this protein. Not only does PTB1:34 contain many loops and tails
extending from the protein core, but we have found that this protein is highly dynamic.
Both of these characteristics make the system ill-suited to be studied by this method and

are expected to cause a large overestimation of tumbling time.
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In addition to the extraction of tumbling times, HYDRONMR also back calculates
the NMR relaxation parameters Ry, R, and 'H/">’N-NOE. This aspect of the program
allows a useful check on the system, provided reasonable tumbling times are determined.
It is important to note, however, that these calculations assume that the molecule is rigid,
and also only account for dipolar relaxation mechanisms, thus any flexibility of the
molecule (which contributes to Ry), or relaxation contributions from "N CSA (which is
reflected in all three relaxation parameters (though to a lesser extent than dipolar effects
at high field), will cause errors in these predictions as well. Comparison to experimental
Ri, R; and "H/"’N-NOE values measured at S00MHz is a useful indicator of the accuracy

of this method for the proteins studied here.

Ry, Ry and "H/">N-NOE results for the individual domains are shown in Figure 1
with experimental values shown as orange diamonds and HYDRONMR predictions
shown as blue triangles. Although the HYDRONMR predicted 'H/'°N-NOE values
greatly underestimate the flexibility of the molecule, the R; and R, values are in the same
range as the experimentally determined values. As expected, the HYDRONMR results
do not show local regions of flexibility, and variation of relaxation rates throughout the

proteins is masked.

A similar comparison for PTB1:34 is an illustration of what can happen when this
method completely fails (Figure 2). Not only are the most flexible regions of the protein
missed, and local variability underestimated, but the R; and R, rates are drastically

different from those obtained via experiment. As with RRM3 and RRM4, the "H/"°N-
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NOE predictions grossly underestimate the flexibility of the molecule.

While HYDRONMR does not seem well-suited to calculate the tumbling times of
the protein constructs studied here, it does provide some clues pertaining to the nature of
the molecules studied. Specifically, that this method, which is designed for rigid
molecules, fails for PTB1:34, suggests that this molecule is highly dynamic, yet produces
reasonable estimates for RRM3 and RRM4 tumbling times, provides a clue that these

molecules are more rigid than PTB1:34.

Estimation of tumbling time using TRACT experiments

Because of the importance of molecular tumbling time not only in NMR data
analysis, but also to ensure that the molecules are not forming oligomers or non-specific
aggregates, TRACT experiments have been proposed for quick measurement of '°N-
labeled samples in solution (Lee, et al. 2006). This experiment is designed to suppress
relaxation contributions from chemical exchange as well as dipole-dipole interactions
with remote protons and the protein backbone amides. Data is collected as a series of one

dimensional experiments, so data can be collected in a matter of minutes.

This method exploits the phenomenon of relaxation interference, the cross
correlation between dipole-dipole and CSA relaxation mechanisms (Goldman, 1984), and
is a simplified version of the relaxation interference experiments designed to identify
exchanging residues discussed in the previous chapter. The "N nucleus in an amide

generates two peaks corresponding to the o and [ spin states, which have different
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transverse relaxation rates. For a system with an axially symmetric '°N chemical shift
tensor, oriented with angle, 6, between its unique axis and the N-H bond, these rates can
be written as:

R, :/1—77Xy +R, +R,,
and

R,=4+n,+R,+R,
where A is the auto-relaxation rate, 1,y is the transverse cross-correlated relaxation rate,
Rex 1s the exchange contribution to relaxation, and Ry is the contribution to relaxation

from dipolar coupling with remote protons. The difference of the two rates, yields

(Pervushin et al., 1997 and Lee et al., 2006):
R,-R, =2n,=2ps(4J(0)+3J(®y))3 cos’ 6-1)
where p describes the 'H/"°N amide dipolar coupling:

p= LoV 7 h
167[2\/§rH3N

where 1 is the permeativity of free space, yy and yy are the gyromagnetic ratios for 'H
and "N, respectively, h is Planck's constant, and ryy is the "H-"N internuclear distance

(1.02 Angstroms). 8y describes the CSA of the °N nucleus:
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Where By is the static magnetic field strength (16.4 T) and Ady is the span of the axially

symmetric "°N chemical shift tensor (172 ppm). The spectral density function at

frequency o is:

C

0.4t
MO oy

This spectral density is for a rigid spherical molecule, thus, this analysis may

underestimate the tumbling time for flexible or non-spherical molecules.
The pulse sequence is written so that the transverse relaxation rates of the o and 3

states are collected separately. Each is measured at several delay times, and the

relaxation rates decay exponentially with increasing delay time:

and

A simple fitting program allows extraction of R, and Rg. Taking the difference of

the rates allows straightforward determination of t.. The only trick is that the expression
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for 21,y becomes quadratic in t., with coefficients that render the t.mx term negligible, so
on does not need to be known. Using p =-25.5 x 10° s and oN=-1.8x 104 s"l, T. can

be determined by solving the following equation:

0=14.49 x 10*°t.° —1,y,1.98 x 10'"1. +3.97 x 10’

Because these are one-dimensional experiments, specific residues are not
selected, rather, the area under the entire amide region (from about 6-11 ppm, depending
on the protein) is integrated, so the results represent an average of all amides in the
protein. It is also important to keep in mind that any residues that have broadened
resonances due to intermediate exchange processes will not contribute to the overall

result.

TRACT analyses were completed for RRM3, RRM4 and PTB1:34, and the results
are given in Table 1. Data for RRM4 were collected using 1mM protein and gave a
reasonable tumbling time of 6.4 ns. However, inspection of concentration dependent
linewidths reveals broadening of RRM3 peaks at high concentrations. Therefore, all
NMR data for RRM3 were collected using a 0.3mM sample. The tumbling time of 1.5 ns
for RRM3 is clearly too low, and only proves that this method fails in the case of this

protein.
No significant line broadening is apparent when 0.3mM and ImM PTB1:34 are

compared, however, an increase in the tumbling time determined by TRACT for the high

concentration sample (10.8 ns for ImM PTB1:34 as opposed to 7.0 ns for 300 uM
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PTB1:34) suggests that some non-specific associations may be influencing the tumbling
of the system. This concentration dependence of tumbling times for PTB1:34 is

consistent with the results from ModelFree.

Protein-protein associations that influence the way the molecule tumbles in
solution may give rise to artefactual exchange terms. Thus it is important to make sure
that such associations are not responsible for Rex terms that are interpreted as inherent
molecular dynamics. There are a number of ways this may be done. NMR methods to
resolve these issues have been discussed in the previous chapter. The simplest resolution
exists if the molecule can be shown to tumble in solution as a monomer. Dynamic light
scattering was used to test this, but inability of the data analysis program to fit the data in
all cases except for the positive control (2ng/mL BSA, giving a hydrodynamic radius of
4.5) suggested that multiple species were in solution at all concentrations tested from 10

uM-1 mM for all proteins.

In the case where line broadening, light scattering and other techniques suggest
that protein-protein interactions exist, collection of full relaxation data sets and
ModelFree analysis of proteins at both high and low concentrations will reveal if such
associations are responsible for predicted Rex terms. Relaxation data for both RRM3 and
PTB1:34 were collected at both 0.3mM and 1.0mM protein concentration (Figure 3).
ModelFree analysis for RRM3 showed a decrease in tumbling time for the lower
concentration (6.5 ns at ImM and 5.1 ns at 0.3 mM). At the high concentration, almost

all residues required Re (thought most were very small, ie:less than 3 s), whereas at the
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low concentration, only two residues required Rex terms. This is in contrast to PTB1:34,
where tumbling time was decreased at the low concentration but R.x terms were required

throughout the protein at both concentrations.
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Concentration TMSE TMModelFree TMTRACT TMHYDRONMR
RRM3 0.3mM 5.2ns 5.1ns 1.5ns 7.5ns
RRM4 1.0mM 4.5ns 6.0ns 6.4ns 6.1ns
PTB1:34 0.3mM 9.7ns 7.2ns 7.0ns 32.3ns
PTB1:34 1.0mM 9.7ns 9.7ns 10.8ns 32.3ns

Table 1: Summary of tumbling times for PTB1:34, RRM3 and RRM4. Stokes-

Einstein calculations, ModelFree fits, TRACT experiments and HY DRONMR

calculations were used to evaluate the constructs. RRM3 experiments were performed at

0.3mM since higher concentrations were known to cause NMR linebroadening and

artefactual R, terms in the ModelFree fit. Data for RRM4 were collected using 1mM

protein as no linebroadening effects and few Rex terms were predicted by ModelFree.

Data for PTB1:34 were collected at both high and low concentrations to ensure that the

concentration dependence of the tumbling times was not the cause of the observed

pervasive Rex terms.
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Figure 1: HYDRONMR predicts NMR relaxation values reasonably well for the
individual domains. Comparison of RRM3 and RRM4 NMR R, R, and 'H-""N-NOE
data from experiment (orange diamonds) and hydronmr (blue triangles). Numbering is

from PDB ID:2EVZ, and secondary structure elements are shown at the top with beta

strands as arrows and alpha helices as cylinders.
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Figure 2: HYDRONMR completely fails to predict accurate NMR relaxation values
for PTB1:34. Comparison of PTB1:34 NMR R, R; and 'H-'"N-NOE data from
experiment (orange diamonds) and hydronmr (blue triangles). Numbering is from PDB
ID:2EVZ, and secondary structure elements are shown at the top with beta strands as

arrows and alpha helices as cylinders.
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Figure 3: Concentration effects do not explain the presence of pervasive Rex terms
in PTB1:34. Order parameters (top panel) and Rex terms (bottom panel) from
ModelFree fits of 300uM PTB1:34 at 700MHz (green triangles), ImM PTB1:34 at
700MHz (blue diamonds), and 1mM PTB1:34 at 500 and 600MHz (red squares) are
plotted against residue number (PDB ID: 2EVZ) with secondary structure elements
indicated at the top. While there is little variation, within error, for order parameters and
Rex terms between the two data sets fit at 700MHz, the difference in tumbling times
reflects a degree of protein self-association with = 7.2 + 0.06 ns at 300uM and T = 9.2
+ 0.10 at ImM. There are much more significant differences between the fit at two static
magnetic field strengths verses the fits at a single static magnetic field strength.
Importantly, these data show that while under-fitting (ie: determining Rex from data at a
single static magnetic field strength) appears to be a problem, it is not the source of the
pervasive Rex terms reported. Furthermore, differences between the data sets at 300uM
and ImM at 700MHz, are localized to residues flanking the loops, suggesting that, while
protein self-association may be the source of some exchange terms, it does not explain

the bulk of the slow motions observed in PTB1:34.
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Abstract

Polypyrimidine tract binding protein (PTB) participates in a variety of functions
in eukaryotic cells, including alternative splicing, mRNA stabilization, and internal
ribosomal entry site (IRES) mediated translation initiation. Its mechanism of RNA
recognition is determined in part by the novel geometry of its two C-terminal RNA
Recognition Motifs (RRM3 and RRM4), which interact with each other to form a stable
complex (PTB1:34). This complex itself is unusual among RRMs, suggesting that it
performs a specific function for the protein. In order to understand the advantage it
provides to PTB, the fundamental properties of PTB1:34 are examined here as a
comparative study of the complex and its two constituent RRMs. Both RRM3 and RRM4
adopt folded structures, but RRM3 readily self-associates. The RNA binding properties of
the domains differ dramatically. RRM4 does not bind to RNA, and although RRM3 binds
to polypyrimidine tracts, its affinity is significantly weaker than that of PTB1:34. °’N-
NMR relaxation experiments show that PTB1:34 has slow, microsecond motions
throughout both RRMs including the interdomain linker. This is in contrast to the
individual domains, RRM3 and RRM4, where only a few backbone amides are flexible
on this timescale. The slow backbone dynamics of PTB1:34, induced by packing of
RRM3 and RRM4, could be essential for high affinity binding to a flexible

polypyrimidine tract RNA and also provide entropic compensation for its own formation.
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Introduction

In recent years there have been a significant number of studies that relate
molecular motions to the functions of biological molecules. Examples include such
processes as enzyme catalysis, protein-ligand interactions, and both inter- and intra-
molecular interactions between proteins' ™. Motions on a biologically relevant time-scale
can vary from picoseconds to seconds, and occur both proximal and distal from a given
interaction site. NMR relaxation methods are able to probe residue specific motions
across this wide range of time scales, and thus are ideal techniques for gleaning detailed
information about the importance of motions of biological molecules. The continuing
challenge is to understand which molecular motions are functionally relevant, and for that

assessment, there must be a means to compare and contrast motions with function.

RNA Recognition Motifs (RRMs, also known as RNA Binding Domains or
RBDs) provide an example of how backbone dynamics and function can be linked. The
RRM is the most common eukaryotic RNA binding domain, with over 150 structures
deposited in the PDB to date. A typical RRM has BapBap secondary structure folded into
the o/ sandwich tertiary fold, with a four-stranded antiparallel B-sheet. Very little
variation in three dimensional structure is seen across the family’. In addition, RRMs are
characterized by conserved RNP1 and RNP2 sequences that contain several aromatic side
chains displayed on the surface of the B-sheet (Fig. 1). In general, these amino acids
stack with RNA bases during binding, and thus define the canonical RNA binding
surface. The conservation of sequence and three dimensional structure leads to the

obvious question of how an RRM selects a specific RNA target.
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The most detailed studies of RRM binding have focused on the human U1A
protein, which specifically binds with high affinity to an unstructured seven nucleotide
RNA sequence. The UTA RRM has been shown to undergo rapid correlated motions that
organize its RNA binding surface'®, and mutations that perturb its dynamics have been
shown to weaken its affinity for RNA''"?. The role of backbone dynamics in the RNA
binding of other RRMs has not been investigated, so its generality remains to be
established. However, for RRMs that recognize simple RNA sequences such as poly(A)
binding protein'* or U2AF" that also rely on several tandem RRMs to confer affinity and

specificity, backbone dynamics could have little functional contribution to RNA binding.

The RNA sequences bound by Polypyrimidine tract binding protein (PTB) are
simple: typically uridine-rich, with interspersed cytosines. The lengths of these sequences
can vary enormously, yet PTB is able to bind to (U/C) tracts from tetramers to hundreds
of nucleotides. PTB contains four RRMs, all of which differ significantly from canonical
RRMs in terms of their RNP sequences '®'7 (Fig. 1). Specifically, PTB RRMs have
hydrophobic side chains replacing the solvent accessible aromatic amino acids on the 3-
sheet surface. At the junction of $3 and loop 3, a highly conserved glycine, thought to act
as a hinge for the loop, is replaced with a much larger amino acid'®. The tertiary
structures of RRM2 and RRM3 differ from the canonical RRM as well, for both have a
fifth B-strand that packs against 2 via a long loop that spans the B-sheet surface
connecting B5 to p4. This additional strand extends the canonical RNA binding surface '*
2% at the same time as the connecting loop occludes it, presenting rather a conundrum

regarding -sheet function. These noncanonical RRMs are phylogenetically conserved in
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PTB proteins, suggesting a novel mode of RNA recognition.

The four RRMs of PTB are not equivalent in their contributions to RNA binding,
or in their relative geometry in the protein. RRM1 and RRM2 are separated by a 25
amino acid linker, and are each able to bind RNA as independent domains '*"*'. RRM2
and RRM3 are separated by an 80 — 100 amino acid linker, effectively separating the two
N-terminal RRMs from the two C-terminal RRMs. The variation in this middle linker
results from alternative splicing that produces three PTB isoforms: PTB1, PTB2, and
PTB4, which have conserved RRMs but insertions in the RRM2-RRM3 linker. The C-
terminal RRM3 and RRM4 are separated by a 24 amino acid linker, but in this case, the

two RRMs interact extensively 20,22

and their linker is an intrinsic part of their structure.
The interface between RRM3 and RRM4 involves both helices of RRM3, one helix and
B4 of RRM4, and the linker. The orientation of RRM3 and RRM4 places their B-sheet

surfaces in opposing directions and therefore imposes a length constraint on a single

RNA strand that would bind to both surfaces.

Among characterized proteins with multiple RRMs, only hnRNPA1, Prp24, and
PTB have been shown to exhibit RRM:RRM interactions that lead to stable
intramolecular complexes *”****, PTB RRM3 and RRM4 together form a stable domain
that constitutes the free and bound forms of the protein. RNAs preferentially bound by
the two C-terminal RRMs (PTB1:34) contain unstructured (U/C), tracts from n =11
(GABAA4 72 intron) ton = 120 (HCV 3’ NTR)*. Short (U/C) tracts separated by

poly(rA), spacers of variable length were found to bind with highest affinity to PTB1:34
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with a spacer of n=15 **. The variation in RNA targets implies a plastic binding surface
of PB1:34 that would be necessary to accommodate their sequences, lengths, and
structures, although the details of its interaction with long polypyrimidine tracts are not

known.

To understand the intrinsic properties of PTB1:34, we compare it to its two RRM
constituents using NMR and ’N-NMR relaxation experiments. RNA binding properties
of PTB RRM3 and RRM4 and PTB1:34 are compared using one of the known pre-
mRNA targets of PTB. All data show that PTB1:34 is far more than the sum of its parts,
for it binds with high affinity to the RNA, a property that we propose is due in part to a
complete reconfiguration of the backbone dynamics to create a novel binding platform

for RNA.

Results

Although the two C-terminal RRMs of human PTB interact with each other
through a stable interface, they can be studied as separate RRMs. Constructs of each
RRM including a section of the intervening linker were prepared such that when the
RRMs were mixed, all but two residues of the entire linker sequence were present.
RNA Binding. The relative RNA binding affinities of PTB1:34 and the individual RRMs
were compared using a 120 nucleotide RNA from the rat GABA4 y2 pre-mRNA, a
natural target of PTB*’, which has previously been shown to bind PTB1:34 with high
affinity 2. This RNA is predicted to be single-stranded with no stable secondary

structure, so that its two polypyrimidine tracts are accessible to the protein. Footprinting
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experiments showed that PTB1:34 protects both the 34-nt tract and the 11-nt tract of the

RNA, even at 10 nM proteinzg.

The stoichiometry of PTB binding to this RNA is not 1:1, so Electrophoretic
Mobility Shift Assay (EMSA) was used to assess the relative binding affinities. As
shown in Figure 2, PTB1:34 binds with high affinity to the RNA (binding is observed
here at 10 nM protein), while RRM3 binding is approximately 50-fold weaker. The
stoichiometry of RRM3 binding has not been determined, but as the gels show, several
complexes are observed at higher concentrations of protein. Whether these higher order
complexes result from protein:RNA or protein:protein interactions is not known. In
contrast to RRM3, RRM4 does not bind to this RNA under any conditions tested (50-200
mM NaCl) at concentrations up to 5 pM. In an attempt to restore affinity of RRM3,
equimolar RRM3 and RRM4 constructs were mixed and bound to the RNA. Those data
(Figure 2) show that the presence of RRM4 neither restores nor reduces the affinity of

RRM3 for this RNA, indicating that PTB1:34 has unique RNA binding ability.

The properties of PTB1:34 that allow it to bind with high affinity to this RNA
could include a unique electrostatic potential surface that attracts the RNA strand.
Certainly one feature of a polypyrimidine tract with a high proportion of uridines is its
flexibility, and it could wrap around PTB1:34 to make contacts between its phosphate
backbone and positively charged amino acid sidechains. Indeed, RNA binding is salt
dependent over the range of 50 to 500 mM NaCl (although affinities have not been

quantified) indicating that some electrostatic component does contribute to complex
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formation.

To characterize the surface electrostatics of PTB1:34, RRM3, and RRM4, each
construct was analyzed using the adaptive Poisson-Boltzman solver (APBS) to calculate
the electrostatic potential surface®. The results were mapped onto the solvent accessible
surface area of each protein (Fig. 3), and show that the interaction between RRM3 and
RRM4 creates a distribution of positive potential on PTB1:34 that could be a path for the
RNA backbone, and may contribute to RNA binding. This path includes amino acids in
the linker, and although direct interactions between RNA and linker residues have not
been reported, they cannot be excluded especially when the RNA strand is long enough to
wrap around the domain. Charge polarization of the PTB1:34 domain localizes a negative
potential on one side of RRM4 and positive surfaces on RRM3 and RRM4 that could be
important for organizing and arranging protein:protein interactions in multimeric

28
complexes”™.

Protein structure and stability

The structure of PTB1:34 has been solved by NMR'**'%_ but there are no structures of
the individual RRMs. To compare the secondary structures of the proteins, CD spectra
were measured (Figure S1). Each RRM has a stable secondary structure, suggesting that
each has adopted the predicted tertiary fold. Two features of the constructs are worth
noting, however. The first is that the spectrum of mixed RRM3 + RRM4 does not
reproduce the spectrum of PTB1:34. In particular, the molar ellipticity per residue of

PTB1:34 is lower than that of either RRM alone. The tertiary structure of PTB1:34 is
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rather notable for its low fraction of folded protein; only 35% of the residues are part of
B-strand or o-helix™. A large fraction of PTB1:34 residues is found in the interdomain

linker and loops.

The thermodynamic stability of the proteins was compared using chemical
denaturation and thermal melting. Guanidine hydrochloride denaturation profiles of all
protein constructs were measured by monitoring the CD signal at 222 nm (Figure S1).
RRM3 denaturation can be fit by a two-state model, with an unfolding free energy of -6.3
+ 0.6 kcal/mol. However, RRM4 and PTB1:34 denaturation curves are more complex. In
particular, the denaturation profile of RRM4 did not show a clear transition, but was non-
cooperative from 0 to 7 M GndHCI. This type of denaturation profile has been reported
for proteins that are “downbhill folders™. Such proteins are characterized by a broad
landscape of incremental free energy wells that could allow the structure to be adaptable
over a range of environments. The denaturation curve of PTB1:34 likewise cannot be fit
by a two-state transition. We speculate that the initial increase in negative ellipticity could
arise from separation of the two RRMs within PTB1:34, which then denature with their
characteristic profiles. Thermal denaturation of the proteins did not allow additional
thermodynamic characterization, since RRM3 and PTB1:34 thermal melts are not
reversible at micromolar concentrations. RRM4 is not thermally denatured at 90 °C at pH
6.8, indicating again that RRM4 has distinctive properties that could be critical for

formation of PTB1:34.

The structure of PTB1:34 has been solved by NMR'*?? but under sufficiently
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different solution conditions that the NMR backbone assignments had to be repeated
here. In experimental conditions used for RNA binding (20 mM potassium phosphate,
pH 6.8, and 100 mM KCl), many backbone amide protons in the interdomain linker, the
loop between B2 and B3 of both RRMs, and the loop between RRM3 B4 and 5 were not
observable on the chemical shift time scale. A comparison of the published chemical
shifts'” and our assignments for PTB1:34 indicates that the resonances are sensitive to
solution conditions, but for subsequent experiments, the structure was assumed to be as

reported.

For our experiments, the backbone "H/"°N resonances of RRM3 and RRM4 were
assigned using standard NMR methods, but full structure determinations have not been
done. However, the assigned portions of the constructs indicate that the two RRMs adopt
similar structures alone and in PTB1:34, so the NMR structure?® of PTB1:34 is used as a
template for further comparisons. The structure of the interdomain linker obviously
differs in the two RRMs and in the PTB1:34 domain; in the two RRMs it is disordered

but becomes more ordered in PTB1:34.

The '"H/"®N-HSQC spectra of the protein constructs reveal several important
features of their structure and stability (Figure S2). The 'H/"*N-HSQC spectrum of
RRM4 is consistent with that of a folded protein. Most resonances are assigned, with the
exception of the 2-B3 loop. Notably, most resonances in the 'H/"°N-HSQC spectrum of
RRM4 are readily identified in the spectrum of PTB1:34, many of them being

superimposable. The structure of RRM4 has clearly not been significantly perturbed in
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the context of PTB1:34.

The 'H/"°N-HSQC spectrum of RRM3 is complex, and while the proton chemical
shift dispersion is consistent with that of a folded protein, several residues have more
than one resonance. These backbone amides are in slow exchange on the NMR chemical
shift timescale, which indicates conformational heterogeneity of this RRM. The structural
heterogeneity persists from 4 to 37 °C in 100 mM KCI, 20 mM sodium phosphate pH 6.8.
It is worth noting that the conformational sampling is not apparent in its two-state
unfolding curve (Figure S1). Approximately 70% of RRM3 amides are assigned; most
missing residues are those in and around loop3 between 2 and 3, and the loop that
connects 4 with B5, where amides are in exchange with solvent and absent from the
spectrum. In the context of PTB1:34, RRM3 loses its conformational heterogeneity and
shows single amide resonances. It is not surprising that most of its backbone amide

resonances are not superimposable with their PTB1:34 counterparts.

A comparison of the assigned resonances of RRM3 and RRM4 with those of
PTB1:34 shows that the major chemical shift changes are within the extensive interface
(Figure 4). Since the interface involves both helices of RRM3, those amide chemical
shifts are expected to change due to their new environment, and as Figure 4 illustrates,
there are also chemical shift changes in the amides of the one helix and 4 of RRM4. For
RRM4 most chemical shift changes are minor, but for RRM3, more changes are
significant, undoubtedly arising from stabilization of the RRM3 structure. We conclude

that the RRMs free and in the PTB1:34 protein have the same global folds.
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The PTB1:34 interface is composed of both RRMs and the linker. The
contribution of the linker to the physical connection of RRMs is clear from NMR
experiments that mix the two RRMs. At concentrations up to 0.5 mM of each RRM,
PTB1:34 was not spontaneously formed when the individual domains were mixed. In
these solution conditions of 100 mM KCI, 20 mM sodium phosphate, pH 6.8, there was
no evidence of complex formation at temperatures from 10-40 °C, and after eight months
of incubation at room temperature. Conversely, heating PTB1:34 to 45 °C does not
separate the two RRMs. The role of the 24 amino acid linker in stabilizing and orienting

the two RRMs is clearly significant.

Protein backbone dynamics

Formation of the intricate interface between the two RRMs obviously led to the
elimination of the conformational heterogeneity of RRM3 observed in the 'H/'°N-HSQC,
but could also have resulted in less apparent changes in the dynamics of the two RRMs.
Since the dynamics of UIA RRMs have been implicated in their RNA binding

11-13, 22, 31, 32,

mechanism , the PTB constructs were compared to determine if their

backbone dynamics differed.

Fast motions and global tumbling

Standard Ry, R, and "H/">N heteronuclear NOE experimen‘[s33 were used to
measure fast (ps-ns) backbone dynamics of RRM3, RRM4 and PTB1:34 at 25°C (Figure
S3). The measured R,/R; ratios were used to calculate the rotational correlation times of

each molecule using ModelFree. Individual domains were best fit by an isotropic
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diffusion tensor to yield tumbling times (1) of 5.12 = 0.05 ns for RRM3 and 5.98 + 0.02
ns for RRM4. Each RRM retains a portion of the interdomain linker, which probably
increases their global tumbling times, but fitting to an axially symmetric model did not
converge. PTB1:34 was best fit with an axially symmetric tensor (D|/D.=1.6 £0.2) to

give Ty = 9.6 £ 0.1 ns.

The overall correlation time (t,,) is a critical parameter for fitting the relaxation
data, as is the description of the diffusion tensor. To supplement the calculations from
ModelFree, HYDRONMR™ calculations and TRACT> experiments were used for all
three proteins. Although neither of these analyses was able to successfully determine
tumbling times to compare to the ModelFree fits, they do report on the consistency of the
underlying assumptions of domain rigidity and the concentration dependence of the

tumbling time.

HydroNMR is a software package which estimates the tumbling time of a
molecule in solution based on beads packed around a rigid structure®®. We used the
smallest minibeads to model the domains: bead diameters of 1-2 A were used for RRM3
and RRM4 and 1.5-3.0 A for PTB1:34. This analysis yields a tumbling time of 6.1 ns for
RRM4, in good agreement with the ModelFree fit. The tumbling time estimated for
RRM3 was 7.5 ns, which is slightly more than the tumbling time extracted from
ModelFree, but does make sense when the differences in the methods (i.e.: peripheral
flexible loops in RRM3 would cause an overestimation of tumbling time for

HydroNMR), as well as the slightly higher molecular weight of RRM3 is taken into
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account. This method roundly fails when applied to PTB1:34, giving a tumbling time of
32.3 ns. Clearly this is a nonsensical result, and indicates that PTB1:34 is a more flexible
molecule than RRM3 or RRM4. HydroNMR also is able to back-calculate R;, R, and
heteronuclear NOE values. Here again, it is evident that the HydroNMR estimates agree
reasonably well with experimental values for the individual RRMs, but not for PTB1:34

(data not shown).

Experimentally, NMR TRACT experiments can be used to measure overall
correlation times®>. This method also assumes a rigid molecule, but gives a lower bound.
Tumbling times obtained from this method give 6.4 ns for | mM RRM4, again in good
agreement with other methods and supporting the picture of RRM4 as a packed globular
domain. However, tumbling times of 1.5 ns and 7.0 ns for 300 uyM RRM3 and 1 mM
PTB1:34, respectively, were much lower than expected, indicating that for these

constructs the rigid molecule assumption fails.

As another metric of the assumption of noninteracting domains in the NMR
samples, inspection of NMR linewidths in "H/"°N-HSQC experiments for protein
concentrations from 100 pM to 1 mM shows that only RRM3 has a concentration-
dependence. This construct appears to self-associate at the lowest concentrations
measurable, as demonstrated by the average R,/R; ratio for RRM3, which at 1 mM is
approximately double that of the ratio at 300 uM. RRM3 self-association must be
considered in analysis of all relaxation measurements, even though data were collected at

300 uM protein.
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A comparison of linewidths for RRM4 and PTB1:34 failed to show a
concentration dependence, suggesting that these two proteins behave as monomers in
solution. Using dynamic light scattering (DLS) to assess the homogeneity/heterogeneity
of the proteins in solution strongly indicates that PTB1:34 is polydisperse in solution at
concentrations from 10 uM to 1 mM. Its scattering profile cannot be fit to a single
species, and although we could not fit the data to multiple species to estimate their
populations, it is clear that this protein has a propensity to self-associate. It is worth
noting that PTB1:34 solution structure was solved in conditions of 20 mM phosphate
buffer, pH 6.8 and 100 mM KCI at a concentration of 1 mM. As expected, RRM3 also
shows a complex DLS profile consistent with self-association. Rather surprisingly,
RRM4 profiles also indicate the presence of larger species, even though its solution
properties are otherwise those of a single species. Unfortunately, DLS data cannot be
interpreted in terms of a proportion of different species in solution. The control BSA
sample consistently gave a scattering profile of a monomer, so we must conclude that all

constructs have a propensity to self-associate in this buffer.

Slow backbone motions
To describe the domains, the NMR data were fit using the Lipari-Szabo

3637 to give the order parameter, S*, and the exchange term, Re,. These

formalism
parameters describe the local reorientation and slow motions, respectively, of each amide
N-H vector. Order parameters range from 0 < S* < 1, with S* = 0 indicating isotropic free

rotation and S* = 1 indicating a rigid vector within the molecular frame. Whereas order

parameters report on fast motions (ps-ns), exchange terms indicate pus-ms (slow) motions.
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Here we use S° values to compare backbone amide mobility and R., terms to indicate the

presence of slow motions.

Fits of the relaxation data (Figure 5) make it clear that each protein has unique
backbone dynamics. Of the two RRMs, the body of RRM4 has uniformly high order
parameters (S%, = 0.85), indicating an overall rigid backbone. Only residues flanking the
loop between B2 and B3 require Rey terms for fitting, indicating the presence of slower
motions (us — ms). Order parameters for RRM3 also indicate a rigid protein, however,
several residues have order parameters greater than the theoretical limit (0.95), indicating
that the fit is unreliable. In addition to the residues that are not assignable under these
conditions, several residues were not able to be fit at all by ModelFree. Given the
conformational fluctuations of RRM3 that are apparent in its amide 'H/'’N-HSQC
spectrum, and the fact that this construct appears to self-associate, even at concentrations
as low as 10 uM, only a subset (about 40%) of all amide resonances yield reliable data

for this protein construct.

The same analysis of PTB1:34 shows an overall change in the dynamics, for here
both RRMs have greatly increased backbone flexibility. PTB1:34 order parameters are
lower, and most of its amides require exchange terms to describe their motions.
Modelfree analysis of the relaxation data indicates that slow motions are uniformly
distributed throughout PTB1:34, including both RRMs and their interdomain linker. This

is an unexpected result and required more extensive experiments for verification.
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Pervasive Rex terms can arise as an artifact of an inappropriate diffusion tensor or
from global motions of the molecule (such as flexing about the interface). In PTB1:34,
we suspect that the diffusion tensor is time-dependent, given the large proportion of long
loops and tails and the small fraction of residues that comprise stable secondary
structures. The uncertainty in the appropriate description of the diffusion tensor led to
direct measurements of the exchange contribution to transverse relaxation using standard

NMR relaxation experiments.

Relaxation interference experiments’® were used to determine the exchange free
transverse relaxation rate of PTB1:34 (Figure 6). Data were collected at the highest static
magnetic field strength available (700 MHz) in order to maximize the CSA effect. The
scaling factor, k, which takes into account autorelaxation effects, was calculated as the
theoretical ratio of Ry/ny, for '"H/"N dipolar and N CSA relaxation pathways.
Assuming that the dipolar and CSA principle axes are co-linear, and that the molecule is
large enough so that only J(0) needs to be considered, k=1.06 at 700 MHz. These
experiments do not allow characterization of the timescales of motions, but the data do
provide a robust identification of residues which undergo exchange rates from ps-ms,
thus confirming the presence of slow motions throughout the protein. A similar approach
to characterizing motions was taken by Pervushin et al.*, where they were able to show
pervasive motions throughout a molten globule-like protein. PTB1:34 is not a molten
globule, but its core tertiary fold is not large in proportion to its loops which have
complex motions on many timescales. The success of the analysis was apparent from

recalculations of ModelFree analysis of PTB1:34 using the exchange free transverse
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relaxation rate, K1y, in place of the standard transverse relaxation rate, (R,). Without the
bias from the Ry terms, the calculations returned similar order parameters and overall
tumbling time (t5,), but only a single residue in RRM4 that suggested motion on a slow
timescale. These data further support the conclusion that the Rex terms from fits to the
data are reporting on slow global motions and are not an artifact of an inappropriate

diffusion tensor.

Relaxation interference experiments were also performed for 1 mM RRM4 at 700
MHz. Using k=1.35 obtained from the trimmed mean* of the ratio of Ry/myy (this domain
has a relatively large and stable core structure), only seven residues with Re greater than
5 Hz (data not shown) were reported. This result is consistent with the ModelFree

predictions.

The Rex term from the Lipari-Szabo formalism cannot provide precise values of
the exchange time; it only indicates that motions on the ps-ms timescales are required to
fit the data. To measure the timescale of the slow motions in PTB1:34, NMR N-CPMG
(to assess millisecond motions), and 15N—R1p (to assess microsecond motions) data were
collected at 700 MHz to maximize exchange contribution to the transverse relaxation
rate. Analysis of CPMG experiments indicated that there were no millisecond motions in
the assignable regions of the protein at 25 °C (data not shown). Preliminary N-R, , data
indicate that microsecond motions are present throughout the protein, in qualitative

agreement with the ModelFree calculations and the relaxation interference experiments.
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N-R;, relaxation experiments can be used to directly measure pis motions, and
are not contingent on a description of the molecular tumbling time. To ensure that the
motions detected in the relaxation interference experiments and the ModelFree fits are
not artifacts of data analysis, transverse relaxation in the rotating frame was used to
directly detect microsecond exchange. R, relaxation rates depend on spin-lock field
strengths in the presence of microsecond exchange, and a dispersion curve can be used to
extract information about populations, exchange rates and chemical shift differences for a
two state system. However, this system is not likely to be two state, and is thus not
amenable to fitting to this type of curve. Here, we define AR}, the difference between
R, relaxation rates at two different spin lock field strengths (Figure 7). This method is
not able to extract quantitative information about the states, and is prone to
underestimating the exchange contribution to the transverse relaxation rate since a fit
cannot be used to extrapolate to a spin lock field strength of 0 Hz, but does robustly
identify residues which experience exchange on a microsecond timescale. AR;, was
determined by measuring transverse relaxation in the rotating frame, on resonance, at two
field strengths, 350 Hz and 1750 Hz. Residues throughout PTB1:34 were found to
experience microsecond exchange, and is in qualitative agreement with the Rey terms

from the ModelFree fits and relaxation interference experiments.

This reorganization of protein backbone dynamics of PTB RRM3 and RRM4
upon formation of PTB1:34 is striking and indicates that the motions are an important
property of the functional complex. A visual comparison of the backbone dynamics of

the RRMs in their free and complex states illustrates the extent of the changes (Figure 8).
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Although the interaction between RRM3 and RRM4 may contribute to protein function
via modest structural reorganization, the biological implications of the motional
reorganization are of particular interest. We propose that the microsecond dynamics of
the PTB1:34 backbone have two functions: one to provide entropic compensation for the
protein:protein association, and the other to prime the protein to select a very flexible

RNA as a binding target.

Discussion

PTB has been implicated in such a wide variety of biological functions*' that
understanding its RNA selection mechanism is critical for predicting its role in a specific
environment. Here, we focus on only the two C-terminal RRMs of PTB, yet this half of
the protein has the capacity to act independently of its N-terminal domains due to the
long, flexible linker that connects RRM3 to RRM22%**. Indeed, there are two reports
that suggest a truly independent function for PTB1:34. The first showed that the polio
protease 3CP™ can cleave the linker between RRM2 and RRM3*. Since PTB has been
shown to be required for translation initiation at the poliovirus IRES*, this cleavage
event is intriguing in its implication of a separation of function. The second report
identified a new alternative splicing event that produces an independent PTB1:34
protein®. The novel PTB1:34 is also curious in that it lacks the nuclear localization
signal of PTB, making it exclusively cytoplasmic. Our studies of PTB1:34 are therefore

quite relevant to its in vivo function.
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PTB1:34 is a unique domain

This complex of RRM3 and RRM4 must be considered as a single protein entity.
While there are no folding data that describe when during protein synthesis the two
RRMs become inextricably one domain, their association must occur early during protein
folding. That speculation is based on the inability of the two separate RRMs to associate
in vitro, and on the durability of the PTB1:34 domain after its formation. Mixed
individual RRMs do not associate, even over a wide variety of solution conditions and
temperatures, and at high protein concentrations, suggesting that the role of the 24 amino
acid linker is not merely to connect the two RRMs, but to assist in formation of the final
domain. Published NMR structures®”** of PTB1:34 reveal that 17 of the 24 amino acids
in the linker are structured (consistent with our assignments). Energetically, tethering
both RRMs decreases the entropy of their association and RRM interactions with linker

residues stabilizes their interaction.

The reorganization of backbone dynamics upon RRM3/RRM4 interaction could
contribute to the energetics of RRM association. Formation of the RRM3/RRM4 complex
restricts RRM3 to a single structure on the chemical shift timescale and anchors large
parts of the linker. At the same time, RRM4 gains intrinsic backbone dynamics. It is
tempting to conclude that its gain of flexibility is possible because RRM4 has low energy
barriers between its conformational states. We hypothesize that part of its role in
PTB1:34 is to reduce the conformational heterogeneity of RRM3 and the linker, which
could be accomplished by either by ‘capturing’ the correct structure or through an

‘induced-fit’ mechanism involving both RRMs. The result is that both RRMs are coupled
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through slow (microsecond) motions that provide the energetic basis for forming

PTB1:34.

Changes in protein motions have been implicated in entropic compensation for
complex formation in a variety of systems. Redistribution of backbone and side-chain
dynamics*® has been observed for protein-protein interactions”* *°, but few have
compared the backbone dynamics of the free proteins to that of their complex. Systems
which report increased dynamics upon interaction of molecules are rare, but include the
signal transduction protein Cdc42hs side chains® when binding to PBD46, and the N-
terminal domain of DnaJ’, where pis-ms motions are increased when the presence of a C-
terminal unstructured region induces interaction between helices III and IV. Here, we
show that formation of PTB1:34 results in a new profile of backbone dynamics that
differs dramatically from that in either RRM alone. All parts of PTB1:34 now move on

similar timescales and with similar amplitudes.

PTB1:34 and RNA binding

A redistribution of backbone dynamics has also been observed for protein-ligand
interactions™ *°, which is likely to occur when PTB1:34 binds to unstructured
polypyrimidine tracts. Certainly the flexible RNA will lose conformational flexibility, but

parts of the RNA could remain free to move®"*°

and even sample bound conformations.
The ubiquitin-SH3 interaction provides an example of the energetics of protein:ligand

association that lead to two distinct bound conformations of both proteins*’. By analogy,

the energetics of PTB1:34-RNA interactions could result in several conformations of both
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RNA and protein, and suggests a possible mechanism for PTB1:34 binding to different
RNA targets. The network of interactions between two RRMs facilitates communication
between the domains and alters the backbone dynamics of each RRM constituent. When
RNA is bound, the same network could facilitate redistribution of backbone dynamics to
compensate for unfavorable binding entropy. We propose that the new range of motions

of PTB1:34 is an intrinsic component of its mechanism of ligand selection.

The extent of motions throughout PTB1:34 suggests that the entire protein could
move in concert. The analysis of protein motions using anisotropic normal modes
(ANM)*' gives another picture of the global dynamics of PTB1:34, and provides a sense
of how the motions might be transferred through the body of the protein. Applying ANM
calculations (www.ccbb.pitt.edu/anm/) to the structure of PTB1:34%° predicts possible
modes, some of which are very local. Of those that encompass the entire domain, several
suggest a flexing about the interface, and a resulting pincer motion of loops from both
RRMs (Fig. 8). If these large scale motions correspond to the measured microsecond
dynamics, perhaps they are part of the RNA binding mechanism to bring the RNA strand

into position on the surface of the domain.

We specifically propose that the changes in the dynamics of each separate RRM
upon formation of PTB1:34 contribute to its RNA binding mechanism by priming the
protein for binding to a flexible RNA. Experiments have shown that PTB1:34 has a
much greater affinity for unstructured polypyrimidine tracts than for short tracts in a loop

or bulge™. Furthermore, both experiment™ and simulation®* have shown that RRM4
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binds RNA in the context of PTB1:34. PTB1:34 should be considered as an extended
RRM with a complex RNA binding site, with coordinated motions that steer the flexible
polypyrimidine tracts onto its surface. Motional coupling of the C-terminal RRMs is a
unique feature of this domain, and intrinsic to its function. The redistribution of protein
motions upon formation of the RRM3/RRM4 domain may explain both the driving force

for the complex formation as well as the RNA selection mechanism of PTB1:34.
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Methods

Protein production and purification: The human PTB1 gene cloned into the pET
28A vector was a generous gift from Professor D. Black (University of California, Los
Angeles). PTB1:34 begins at amino acid [Mets34]G33sAsnssze and ends at Iless;. RRM4
starts at [Met]GlyaszSerass and ends at Iles;;; RRM3 begins at amino acid
[Mets34]G33sAsnsse and ends at Lyssso. Proteins were produced in E. Coli BL-21 DE3
gold cells grown at 37°C in M9 minimal media using "NH4Cl for the sole nitrogen
source for "N labeled proteins, and [*C]¢-glucose as the sole carbon source for the
doubly labeled proteins. At ODgpp=0.9, 1 mM IPTG was used to induce protein

overexpression. Cells were harvested after 4 hours, pelleted by centrifugation at 6500
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rpm, washed with 20 mM Tris, pH 7.5, 20 mM NaCl, and 2 mM EDTA, repelleted and
stored at -80°C overnight. Cells were resuspended in Buffer B (20mM Sodium Acetate,
pH 5.3, 50-200 mM NaCl, 2 mM EDTA) with 20 ug/mL PMSF, 50 units/g DNase II, and
Sigma protease inhibitor cocktail, and lysed using a French press. The lysate was spun
down at 15,000 rpm and dialyzed against 1 L buffer B at 4°C for 3 hours. The dialysis
product was cleared via centrifugation and loaded onto a CM-sepharose column
equilibrated in buffer C (50 mM Tris, pH 7.5 (room temperature), 10-100 mM NacCl).
After flow-through was discarded, the proteins were eluted with a NaCl gradient in buffer
C. Fractions from the column were combined and concentrated using Vivaspin
centrifugal concentrators, and then exchanged into NMR buffer (20 mM potassium

phosphate, pH 6.8, 100 mM KCI, 0.05% NaN3.)

EMSA: Binding was measured using folded [a-*P]RNA in 10 mM KCl and 10
ug/uL yeast tRNA (Boehringer) mixed with the purified protein constructs (10 nM — 5
uM) in 10 mM sodium cacodylate, pH 7.5, 100 mM NaCl, I mM MgCl,, and 20 pg/mL
BSA. All reactions were incubated for 30 minutes at room temperature. Glycerol
loading dye was added and reactions were loaded on 8% polyacrylamide gels (37.5:1
acrylamide:bis) in 50 mM Tris-HCl/Glycine buffer. Gels were run at 7 V/cm at 4°C for

4-5 hours.
Circular Dichroism: CD spectra were collected using a Jasco-J600

spectropolarimeter and a 0.1 cm path length cuvette. Samples were 25 uM protein in 20

mM potassium phosphate, pH 6.8, and 100 mM KCI. Guanidine HCI samples were
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incubated for at least 12 hours and exact GndHCI concentrations were determined using
refractive index. Unfolding curves were collected in duplicate, and fit to a 2-state model

using Origin software.

NMR spectroscopy: NMR spectra were acquired on Varian Unity 500, 600 and
700 spectrometers equipped with Nalorac or Varian 5 mM triple resonance probes.
Protein samples contained 100 uM-1 mM protein in 20 mM potassium phosphate, pH
6.8, 100 mM KCI, 0.005% NaNj3, and 10% D»0O. All data were collected at 25°C,
calibrated against 100% methanol. Data for backbone assignments were collected from
standard 3D CBCA(CO)NH, HNCACB, HNCO, and HNCACO experiments, and
processed using Felix (Accelyrs). Chemical shift comparisons were made using 'H/'°N-
HSQC experiments, and chemical shift differences were calculated as a single, weighted
average. R, Ry, Rj, and "H/">N-NOE data were collected using standard methods?! with
delay times of 17, 34*, 51, 68,85,118,152* and 186 ms for R,, and 11, 112*, 223, 335,
503, 670, 838* and 1005 ms for R;, with starred delays collected in duplicate for error
analysis. ModelFree™ fitting was performed for data collected at 500 MHz for RRM4,
700 MHz for RRM3, and globally fit at 500 and 600 MHz for PTB1:34 (data were also
collected at 700 MHz). Relaxation interference experiments were used to collect the
exchange free transverse relaxation rate, 1y, with delay times of 5, 10, 15, 20, 25, 30, 40
and 50 ms using a single, semi-constant time experiment*’ at 700 MHz. R, was then
calculated as the difference between R, and kmy, where « is a constant over all residues,
under the assumption that the 'H-""N dipolar and the "N CSA axes are co-linear.

Determination of k for RRM4 was taken as a trimmed mean of the ratio of measured
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Ry/myy (at 700MHz) for residues not undergoing exchange, and was found to be 1.35.
Since PTB1:34 is larger, and does not have a clear baseline of residues which do not
undergo exchange, its k was calculated as the theoretical ratio®*’ of Ry/m,y for dipolar

and CSA relaxation pathways:

5+ p?
20p

Where § is the chemical shift anisotropy of the '°N nucleus,

5= 7nByASy

32

And p is the "H/"N dipole-dipole coupling:

o =t yyh
1673212,

Where yx and yy are the 'H and '°N gyromagnetic ratios, By is the static magnetic field
strength, Ady is the difference of the two principal components of the '°N chemical shift
tensor, | is the permeability of free space, h is Planck’s constant, and ryy is the 'H/'°N
internuclear distance.

In TRACT experiments, 1y, was determined from the difference in the transverse
relaxation rates between the a and P spin states of all amides in the range wyn 6-10 ppm.
The tumbling times were calculated assuming a rigid rotor. All relaxation data were
processed using NMRPipe, and rates were calculated using NMRView (Onemoon
Scientific). ModelFree’® analysis was performed using Fast ModelFree™, using both
isotropic and axially symmetric models for calculation of rotational correlation times to

determine the best fit.
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Figure 1: Features of a canonical RRM. A typical RRM has an afp-sandwich fold (a)
that consists of a four stranded antiparallel B-sheet packed against two a-helices. Two
RNP consensus sequences are important for protein function and reside in the center of
the B-sheet, with the hexamer RNP2 sequence on 31, and the octamer RNP1 on 3. All
four RRMs of PTB have RNP sequences which differ significantly from the RRM
consensus (b). Important differences include a lack of aromatic side chains in both
RNPs, which generally stack with RNA bases upon binding, as well as a lack of a glycine
residue at the beginning of RNP1, thought to be important for mobility of the adjacent

loop, a feature important for binding in other RRMs.
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Figure 2: The binding affinity of PTB1:34 is more than the sum of its parts.
Electrophoretic mobility shift assays were used to compare the relative binding affinities
of the GABA, y2 pre-mRNA intron (a) to the PTB1:34 protein constructs. PTB1:34
binds at the lowest protein concentration tested, 10 nM, while RRM4 does not bind at all,
even at the highest concentration tested, 5 uM (b). A similar comparison in (C) shows
that RRM3 does bind to this RNA, but with around 50-fold lower affinity than PTB1:34,
as the first significant band shift does not occur at protein concentrations less than 500
nM. Mixing RRM3 and RRM4 does not rescue the RNA binding (d), since an equimolar
mixture of the two domains binds with affinity similar to that of RRM3 alone. All
EMSASs were run at 4° C, and included a lane with RNA only as a negative control, and a
lane with 800 nM full-length PTB, which is known to bind to this RNA with high affinity,

as a positive control.
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Figure 3: Surface electrostatic potentials are reorganized when PTB1:34 is formed.

Electrostatic potential mapped onto the solvent accessible surface area of PTB1:34 (a),

RRM3 (b), and RRM4 (c), with positive patches shown in blue, and negative patches in
red, shows that the interaction between RRM3 and RRM4 organizes the charge

distribution of the protein, and may be important to protein function.
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Figure 4: Changes in chemical shifts between the individual and interacting
domains indicate only minor changes when the domains are separated. The change
in chemical shift, A9, in terms of proton ppm, show that the majority of differences are
concentrated at the RRM3/RRM4 interface. Ad is shown as bars with the protein
secondary structure indicated by bars (a-helix) and arrows (B-strand) along the top of the
plot. For visual clarity, these changes are mapped onto the structure of PTB1:34 (inset),
where white shows the areas of the protein were no data were available, grey indicates no
significant Ad (< 0.25 ppm), blue indicates Ad between 0.25 and 0.50 ppm, violet, Ad
between 0.50 and 0.75 ppm, purple between 0.75 and 1.00 ppm, and magenta shows the
most significant Ad of greater than 1.00 ppm. Many residues in the interdomain linker
are expected to have significant chemical shift changes due to altered environment but
could not be calculated since the linker region was largely unassignable for the individual

domains.
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Figure 5: Concentration effects do not explain the presence of pervasive Rex terms
in PTB1:34. Order parameters (top panel) and Rex terms (bottom panel) from
ModelFree fits of 300 uM PTB1:34 at 700MHz (green triangles), 1 mM PTB1:34 at
700MHz (blue diamonds), and 1 mM PTB1:34 at 500 and 600MHz (red squares) are
plotted against residue number (PDB ID: 2EVZ) with secondary structure elements
indicated at the top. While there is little variation, within error, for order parameters and
Rex terms between the two data sets fit at 700MHz, the difference in tumbling times
reflects a degree of protein self-association with 1= 7.2 £ 0.06 ns at 300 uM and Ty =
9.2+ 0.10 at 1 mM. There are much more significant differences between the fit at two
static magnetic field strengths verses the fits at a single static magnetic field strength.
Importantly, these data show that while under-fitting (ie: determining Rex from data at a
single static magnetic field strength) appears to be a problem, it is not the source of the
pervasive Rex terms reported. Furthermore, differences between the data sets at 300uM
and ImM at 700MHz, are localized to residues flanking the loops, suggesting that, while
protein self-association may be the source of some exchange terms, it does not explain

the bulk of the slow motions observed in PTB1:34.
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Figure 6: ModelFree analysis suggests that slow protein motions throughout
PTB1:34 occur as a consequence of the RRM3/RRM4 interaction. Lipari-Szabo
order parameters, S°, are given in the top panel for PTB1:34 (o), and the individual

RRMs (m). Both RRM3 and RRM4 are much more rigid alone than in the context of
PTBI1:34, as evident upon comparison of the exchange contribution to transverse

relaxation (Rex) for PTB1:34 (bottom) and RRM3/RRM4 (middle). While PTB1:34 has
uniformly dispersed Rey terms of significant magnitude throughout the protein body, only
a few residues in RRM3 and RRM4 require similar Rex terms. This analysis shows that
the differences in dynamic properties of the protein constructs are slow (ps-ms) motions

that arise as a consequence of the RRM3/RRM4 interaction. Data were collected in 20
mM potassium phosphate buffer, pH 6.8, and 100 mM KCl at 500 MHz for | mM RRM4

and 700 MHz for 300 uM RRM3. Data for 1 mM PTB1:34 were collected at 500, 600,

and 700 MHz; R, plots are shown in Figure S4.
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Figure 7: Relaxation interference experiments confirm the presence of slow motions
throughout the body of PTB1:34. Transverse relaxation rates from standard
experiments, R, (0), are compared to the exchange-free transverse relaxation rate, Knyy
(m), in the top panel, plotted against residue number. The difference between the two
rates, Rex, shown in the bottom panel, confirms the results obtained from ModelFree
analysis of the relaxation data, and verify that slow motions persist throughout the body

of PTB1:34. Data were collected at 700 MHz for 1 mM PTB1:34.
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Figure 8: Residues which undergo microsecond exchange are identified by ARy,
experiments, and are in qualitative agreement with the ModelFree results. A
schematic representation of AR1r is shown in (a) with dispersion curves shown for a
residue with microsecond exchange (blue curve) and a residue with no microsecond
exchange (grey curve). Importantly, this figure shows the propensity of the method to
underestimate the exchange contribution to R, as the R, rates for the lowest spin lock
strength values are not accessible since a fit is not available to extrapolate to a spin lock
field strength of 0 Hz. AR;, results are shown in (b), plotted against residue number, and
mapped onto the 3-dimensional structure in (C) (PDB ID: 2EVZ). These results indicate
that residues throughout PTB1:34 are in microsecond exchange, and confirm that Re,

terms obtained from ModelFree are not fitting artifacts.
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Figure 9: The extensive slow motions throughout PTB1:34 are distinct from
motions of RRM3 or RRM4 alone. Slow motions mapped onto the three dimensional
structures of PTB1:34 (a), RRM3 (b) and RRM4 (c) (PDB ID: 2EVZ) show striking
differences in dynamic properties of the constructs. Here, grey areas depict residues
where no data are available, either because the residue could not be assigned or could not
be fit by ModelFree; black regions show residues were data are available, but no Rex term
was needed to fit the data. Colored regions indicate R, terms increasing in magnitude
from blue (0-2 Hz), violet (2-5 Hz) to red (> 5 Hz). While PTB1:34 has significant Re
terms throughout the protein, RRM3 and RRM4 are much more rigid on this timescale,

giving rise to only a handful of Rex terms indicative of slow motions.
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Figure 10: Normal mode calculation of the fluctuations in PTB1:34. This is mode 7
of the 20 modes calculated for structure PDB ID: 2EVZ. Red colors correspond to large
fluctuations and blue colors to small fluctuations; the vectors indicate the direction of

motion. RRM3 is on the left.
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Figure S1: Secondary structure analysis. Circular dichroism (CD) spectra of each
protein construct, as well as an equimolar mixture of RRM3 and RRM4 are shown in (a),
with PTB1:34 in blue, RRM3 in green, RRM4 in red, and the RRM3/RRM4 mixture in
yellow, indicating that all species are folded, and confirms that mixing the individual
RRMs does not form PTB1:34. GndHCI denaturations were monitored by CD at 222 nm,
and fit with a 2-state unfolding model (red lines) for PTB1:34 (b), RRM3 (c), and RRM4
(d). While RRM3 can be fit with this model, RRM4 and PTB1:34 cannot, indicating that
the thermodynamic properties of the constructs change as a consequence of the

RRM3/RRM4 interaction.
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Figure S2: *H/*®N-HSQC spectra comparisons show that all protein constructs are
folded, but have different structural properties. A comparison of RRM3 and PTB1:34
(a), shows that almost none of the RRM3 peaks (green) are superimposable with the
peaks from PTB1:34 (black), indicating global differences in environment. In addition,
many of the RRM3 peaks are broadened, and several residues have multiple resonances
(circles), indicating structural heterogeneity on the chemical shift time scale. Conversely,
RRM4 (blue) has a single resonance for every amide (b), and the peaks are uniformly
narrow. Most of the RRM4 peaks are superimposable onto the spectrum of PTB1:34.
PTB1:34 displays neither the narrow line-widths of RRM4 nor the multiple resonances of

RRM3, but rather behaves as a unique entity.
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Figure S3: Differences in dynamic properties of PTB1:34, RRM3 and RRM4 are
evident in the *H/*N relaxation data. Backbone dynamics are shown for PTB1:34 (o),
and individual RRMs (m), with protein secondary structure indicated along the top as bars
(a-helix) and arrows (B-strand). The longitudinal relaxation rates, R;, are displayed in the
middle panel, and show a clear difference in dynamic properties between RRM3, RRM4

and PTB1:34. Importantly, PTB1:34 behaves as a single unit, even though RRM3 and

RRM4 have distinctly different relaxation rates. A similar effect is observed for the
transverse relaxation rates (Rz) shown in the bottom panel. Heteronuclear NOEs (top
panel) indicate significant ps-ns mobility for all protein constructs, particularly in the
interdomain linker, and the residues adjacent to loop3 in both RRMs. Data were
collected in 20 mM potassium phosphate bufter, pH 6.8, and 100 mM KCl at 500 MHz
for | mM RRM4, and | mM PTB1:34, and 700 MHz for 300 pM RRM3 and 1 mM

PTB1:34.
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Figure S4. R, data for 1 mM PTB1:34 at 500, 600, and 700 MHz, 25° C. 20 mM
potassium phosphate buffer, pH 6.8, and 100 mM KCI. Data collected at 500 MHz is
shown in blue, 600 MHz in green and 700 MHz in red. Open symbols indicate data

collected for a 300 uM protein sample.
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Concentration TMSE TMModelFree Tutract | TMrryDRONMR
RRM3 0.3mM 5.2ns 5.13ns 1.5ns 7.5ns
RRM4 1.0mM 4.5ns 5.98ns 6.4ns 6.1ns
PTB1:34 0.3mM 9.7ns 7.2ns 7.0ns 32.3ns
PTB1:34 1.0mM 9.7ns 9.67ns 10.8ns 32.3ns

Table 1: Comparison of tumbling times for RRM3, RRM4 and PTB1:34. A variety
of methods, including both theoretical and experimental strategies, was used to determine
the tumbling times. Approximate tumbling times were calculated using the Stokes-
Einstein relationship, tvsg, assuming all proteins were spherical. HYDRONMR, which
calculates tumbling times based on hypothetical beads packed onto a three-dimensional
structure (using coordinates from PDB ID:2EVZ), was expected to overestimate the
tumbling time for flexible proteins, and gives a nonsensical result for PTB1:34. Data for
300 uM RRM3, 1 mM RRM4 as well as PTB1:34 at both 300 tT™ and 1 mM were
collected to experimentally determine Tymodelrree and TmrracT. ModelFree fits R,, Ry and
'"H/""N-heteronuclear NOE data using Lipari-Szabo formalism to extract a tumbling time,
and is able to accommodate both isotropic and axially symmetric models. TRACT
analysis averages a decay signal from all amide protons and assumes a spherical, rigid

protein.
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PTB1:34 500 MHz |
Residue Number R1 R1 error R2 R2 error NOE NOE error

10

11

12

13

14 1.440 0.043 15.800 0.477 0.674 0.020
15 1410 0.042 17.000 0.510 0.766 0.023
16 1.440 0.043 15.800 0477 0.818 0.025
17 1.440 0.043 15.000 0450 0.796 0.024
18 1.350 0.041 15.200 0.456 0.858 0.026
19 1.320 0.040 16.800 0.504 0.809 0.024
20 1.350 0.041 17.000 0510 0.748 0.022
21

22 1.360 0.041 16.200 0486 0.736 0.022
23

24 1.370 0.041 15 600 0.468 0630 0019
25 1.350 0.041 16.100 0.483 0.639 0.019
26 1.380 0.041 14800 0.444 0.748 0.022
27 1.360 0.041 17.800 0534 0.695 0.021
28

29 1.750 0.053 14800 0.444 0515 0.015
a0 1410 0.042 18.200 0546 0.780 0.023
31 1.360 0.041 15.700 0.561 0.811 0.024
32 1.400 0.042 16.300 0.489 0.810 0.024
33 1.460 0.044 17.700 0.531 0.809 0.024
34 1.430 0.043 16.800 0.504 0.769 0.023
35 1.430 0.043 16.100 0483 0.859 0.026
36 1.580 0.047 16.300 0.489 0.815 0.024
a7 1.440 0.043 15.700 0.561 0.824 0.025
a8 1.450 0.044 18.000 0.540 0.730 0.022
39 1.440 0.043 17600 0528 079 0.024
40 1.480 0.044 15500 0.465 0649 0019
41 1.440 0.043 11.200 0.336 0.885 0.027
42 1.480 0.044 14.400 0.432 0778 0.023
43 1.440 0.043 15.200 0 456 0.739 0.022
44 1410 0.042 16.300 0.489 0.756 0.023
45 1.360 0.041 15.100 0453 0.803 0.024
46 1500 0.045 14 700 0.441 0.961 0.029
47 1.380 0.041 10.700 0.321 0.741 0.022
48

49

50

51

52 1.300 0.039 39600 1.188 0.798 0.024
53

54 1.330 0.040 15.300 0.459 0.827 0.025
55 1.400 0.042 16.200 0 486 0823 0.025
56

57 1.490 0.045 16.600 0.493 0818 0.025
58 1410 0.042 15700 0.471 0.851 0.026
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29

60 1.400 0.042 16.100 0.483 0.754 0.023
61 1.440 0.043 9.270 0.278 0.647 0.015
i 1.500 0.045 14.000 0.420 0.791 0.024
63 1.450 0.044 16.300 0.489 0.788 0.024
64 1.410 0.042 17.100 0.513 0.7 0.023
63 1.380 0.041 17.300 0.519 0.827 0.025
b6 1.420 0.043 14.700 0.441 0.767 0.023
67 1.510 0.045 15.100 0.453 0.658 0.020
68 1.410 0.042 18.600 0.558 0.811 0.024
69 1.420 0.043 15.700 0.471 0.819 0.025
70 1.440 0.043 15.500 0.465 0.678 0.020
71

[y 1.420 0.043 16.700 0.501 0.799 0.024
73 1.240 0.037 16.700 0.501 0.793 0.024
74 1.380 0.041 16.800 0.504 0.785 0.024
75

76 1.410 0.042 13.600 0.408 0.681 0.020
7T 1.300 0.039 18.500 0.555 0.858 0.026
78 1.340 0.040 20.300 0.609 0.781 0.023
79 1.420 0.043 16.100 0.483 0.770 0.023
80

B1

B2 1.370 0.041 16.900 0.507 0.823 0.025
B3 1.310 0.039 15.600 0.468 0.842 0.025
B4 1.570 0.047 16.200 0.486 0.646 0.019
B5 1.420 0.043 11.000 0.330 0.590 0.018
B6 1.310 0.039 16.800 0.504 0.723 0.022
BY 1.400 0.042 13.600 0.408 0.718 0.022
(il 1.450 0.044 16.900 0.507 0.909 0.027
B9

30

N

92

93

94

95

96 1.520 0.045 11.000 0.330 0.534 0.016
ar 1.660 0.050 9.880 0.296 0.214 0.006
a8 1.740 0.052 10.500 0.315 0.426 0.013
99 1.680 0.050 9.590 0.288 0.273 0.008
100 1.780 0.053 9.750 0.293 0.365 0.011
101 1.560 0.047 14.300 0.425 0.740 0.022
102 1.750 0.053 12.400 0.372 0.486 0.015
103

104 1.420 0.043 17.700 0.531 0.825 0.025
105 1.440 0.043 14.600 0.438 0.787 0.024
106 1.450 0.044 14.900 0.447 0.729 0.022
107 1.390 0.042 15.500 0.465 0.766 0.023
108 1.410 0.042 15.800 0.474 0.702 0.021
109 1.570 0.047 15.900 0477 0.661 0.020
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110 1.460 0.044 15.600 0.474 0.597 0.018
111
112
113
114
115
116
117
118
119 1.690 0.051 11.500 0.345 0.495 0.015
120 1.290 0.039 22.900 0.687 0.790 0.024
121 1.230 0.037 17.500 0.525 0.798 0.024
122
123 1.830 0.055 13.600 0.408 0.548 0.016
124 1.780 0.053 14.000 0.420 0.553 0.017
125 1.700 0.051 13.300 0.399 0.556 0.017
126 1.560 0.047 12.900 0.387 0.539 0.016
127 1.520 0.046 13.300 0.399 0.589 0.018
128
129
130 1.390 0.042 15.600 0.468 0.746 0.022
131 1.530 0.046 14.300 0.429 0.655 0.020
132 1.420 0.043 15.300 0.459 0.758 0.023
133 1.370 0.041 15.200 0.456 0.819 0.025
134 1.310 0.039 16.500 0.495 0.785 0.024
135 1.310 0.039 17.100 0.513 0.795 0.024
136 1.230 0.037 19.000 0.570 0.826 0.025
137
138
139
140
1141 1.420 0.043 15.200 0.456 0.762 0.023
142 1.400 0.042 15.000 0.450 0.767 0.023
143 1.370 0.041 15.800 0474 0.788 0.024
144 1.290 0.039 16.300 0.567 0.792 0.024
145 1.290 0.039 17.300 0.537 0.779 0.023
146 1.330 0.040 17.800 0.534 0.804 0.024
147 1.260 0.038 17.700 0.531 0.744 0.022
148
149 1.390 0.042 13.200 0.396 0.978 0.02%
150 1.250 0.038 17.400 0.522 0.844 0.025
151 1.210 0.036 19.900 0.597 0.757 0.023
152 1.360 0.041 16.200 0.486 0.645 0.015
153 1.450 0.044 15.500 0.465 0.751 0.023
154 1.550 0.047 15.100 0.453 0.624 0.018
155 1.360 0.041 12.800 0.384 0.498 0.015
156 1.490 0.045 13.600 0.408 0.678 0.020
157 1.280 0.038 14.700 0.441 0.680 0.020
158
159 1.250 0.038 15.300 0.459 0.828 0.025
160 1.090 0.033 16.000 0.480 0.735 0.022
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161 1.220 0.037 16.000 0.480 0.783 0.023
162 1.170 0.035 16.600 0.498 0.881 0.026
163 1.210 0.036 17.300 0.537 0.751 0.023
164 1.410 0.042 17.000 0.510 0.780 0.023
165

166

167

168

169 1.580 0.047 15.300 0.459 0.634 0.019
170 1.380 0.041 15.300 0.477 0.856 0.026
17 1.250 0.038 16.700 0.561 0.850 0.026
172 1.220 0.037 17.600 0.528 0.771 0.023
173 1.310 0.039 16.800 0.564 0.800 0.024
174 1.230 0.037 17.100 0.513 0.820 0.025
175 1.360 0.041 15.000 0.450 0.830 0.025
176 1.350 0.041 14.600 0.438 0.800 0.024
177 1.460 0.044 15.400 0.462 0.812 0.024
178 1.430 0.043 16.900 0.507 0.863 0.026
179 1.370 0.041 17.600 0.528 0.780 0.023
180 1.450 0.044 15.700 0.471 0.751 0.023
181 1.520 0.046 15.700 0.471 0.806 0.024
182 1.410 0.042 16.600 0.498 0.837 0.025
183 1.510 0.045 13.200 0.396 0.985 0.030
184 1.430 0.043 17.800 0.534 0.865 0.026
185 1.440 0.043 16.300 0.489 0.797 0.024
186 1.440 0.043 17.500 0.525 0.844 0.025
187 1.450 0.044 16.100 0.483 0.772 0.023
188 1.400 0.042 17.500 0.525 0.757 0.023
189 1.430 0.043 17.400 0.522 0.846 0.025
190 1.350 0.041 15.300 0.459 0.8086 0.024
191 1.470 0.044 11.000 0.330 0.747 0.022
192 1.450 0.044 15.700 0.471 0713 0.021
193 1.410 0.042 15.500 0.465 0.742 0.022
194 1.240 0.037 16.300 0.489 0.696 0.021
195 1.580 0.047 16.000 0.480 0.661 0.020
196 1.580 0.047 16.000 0.480 0.732 0.022
197 1.540 0.045 14.900 0.447 0779 0.023
198 1.490 0.045 13.300 0.399 0.683 0.020
199 1.420 0.043 15.200 0.456 0.788 0.024
200 1.240 0.037 16.600 0.504 0.790 0.024
201 1.270 0.038 15.200 0.456 0.731 0.022
202 1.240 0.037 17.600 0.528 0.856 0.026
203 1.400 0.042 16.600 0.498 0.700 0.021
204 1.390 0.042 14.400 0.432 0.638 0.01%
205 1.610 0.048 14.100 0423 0.634 0.019
206 1.720 0.052 12.800 0.384 0.334 0.010
207 1.690 0.051 11.000 0.330 0.340 0.010
208 1.310 0.039 11.600 0.348 0.420 0.013
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PTB1:34 600 MHz |

Residue Number R1 R1 error R2 R2 error NOE NOE error

10

1

12 1.300 0.230 13.000 6.000

13 1.380 0.260 11.000 5.000

14 1.010 0.060 17.000 2.600 0.761 0.090

15 0.967 0.048 17.800 2.400 0932 0127

16 0.970 0.070 17.700 3.300

17 1.000 0.080 16.600 3.300 0.858 0.101

18 0.950 0.140 18.000 8.000 0.787 0.103

19 0.930 0.090 18.700 4 800 0967 0.108

20

21 1.010 0.210 18.000 11.000

22 0.940 0.100 19.000 6.000 0.542 0.163

23

24 1.000 0.060 16.400 2.700 0.694 0.169

25 0.930 0.090 15.300 3.600 0.541 0.094

26 0.930 0.110 17.000 5.000 0.853 0.093

27 1.100 0.120 15.500 4.400 0.830 0.125

28

29 1.230 0.100 14.500 3.000

30 0.980 0.050 17.800 2.700 0.929 0.092

£y | 0.950 0.090 20.000 5.000 0.844 0.091

32 1.020 0.060 18.800 3.100 0.894 0.098

33 1.020 0.090 18.800 4.800 0.893 0.108

34 1.060 0.060 17.300 2.800

35 0.9380 0.090 17.700 4100 1.010 0.183

36 1.090 0.060 18.000 3.200 0.928 0.130

37 1.030 0.070 20.000 4.000 0.928 0.088

38 0.940 0.070 16.800 3.200 0.830 0.088

39 1.020 0.060 17.100 3.000 0.879 0.055

40

41 0.950 0.070 17.800 3.700

42 1.040 0.130 16.000 6.000 0.684 0.038

43 0.990 0.060 16.300 2.400 0.683 0.087

44 1.010 0.060 17.400 2.700 0.808 0.061

45 0.9380 0.080 17.000 3.800 1.040 0.115

46 1.000 0.160 28.000 20.000 0.940 0.208

47 28.000 26.000 0.946 0.222

48

49 0.910 0.220

50

51

52 0.920 0.130 30.000 16.000 0878 0.145

53 1.070 0.210 18.000 11.000 0.688 0.120

54 1.000 0.150 20.000 9.000 0.858 0.105

55 1.011 0.041 17.200 1.900

56 0.8590 0.060 17.500 2.900

57 1.030 0.070 16.400 3.200 1.030 0.131

58 0.940 0.090 16.800 4100 0.831 0.079
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a9

60 0.967 0.041 17.400 2.100 0.969 0.201
61 1.150 0.480 17.000 27.000 0.947 0.065
b2 1.080 0.050 16.200 1.900 0.996 0.156
63 1.000 0.080 17.400 3.800 0.562 0.091
64 0.950 0.080 18.400 3.000 0.903 0.100
63

b6 0.998 0.046 16.000 1.800 0.900 0.128
67 1.016 0.038 18.600 1.900 0.856 0.119
68 0.993 0.046 17.000 2.000 0.573 0.099
69 1.011 0.043 16.900 1.800 0.942 0.104
70

71

72 0.980 0.050 18.400 2.500 0.850 0.052
73 0.920 0.090 16.800 4.400 0.581 0.102
74 1.001 0.049 18.800 2.500 0.569 0.093
75

76

i 0.950 0.140 19.000 9.000 0.781 0.098
78 0.930 0.080 17.900 4.900 0.592 0.064
79

B0

81

B2 0.970 0.080 18.600 4.500 0.981 0.121
B3 0.900 0.080 15.500 3.700 0.945 0.209
B4

B5

BG 0.940 0.070 17.500 3.100 0.785 0.095
BY 1.060 0.080 14.900 3.000 0.726 0.024
(il

ik

a0

9

92

93

94

95

96

a7 1.276 0.049 10.200 1.000 0.315 0.036
98 1.219 0.026 12.400 0.700

99 1.360 0.045 11.100 0.900 0.588 0.030
100 1.156 0.045 11.600 1.100

101

102 1.300 0.080 14.600 2.400 0.667 0.0B6
103

104 0.980 0.060 18.400 2.900

105 1.000 0.070 16.300 3.300 0.815 0.169
106 1.030 0.060 15.000 2.100 0.762 0.061
107 0.970 0.090 15.600 4.000 0.598 0.092
108 0.970 0.050 18.200 2.600 0.546 0.100
109
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110 1.043 0.045 15.800 1.600 0.535 0.145
111

112

113

114

115

116

17

118

119 1.190 0.230 12.000 5.000 0.598 0.027
120 0.900 0.080 27.000 5.000 0.785 0.060
121

122 0.960 0.060 19.500 3.500

123 0.666 0.115
124 1.330 0.060 14.300 1.600 0.656 0.084
125 0.960 0.150 5.000 9.000

126 1.180 0.047 14.100 1.400 0.620 0.063
127 1.110 0.060 13.500 1.800 0.645 0.055
128

129

130 1.010 0.070 17.100 3.200 0.530 0.054
131

132 0.980 0.050 15.800 2.000 0.531 0.081
133 0.960 0.090 16.100 4.400 0.563 0.088
134

135 0.900 0.080 18.300 4.700 0.937 0.151
136 0.860 0.060 17.700 3.100 0.586 0.078
137

138

139

140

141 1.018 0.046 17.200 2.200 0.587 0.084
142 1.004 0.041 16.000 1.600 0.582 0.141
143 0.960 0.070 16.700 3.100 0.568 0.099
144 0.910 0.060 13.700 3.800 0.546 0.009
145

146 0.940 0.050 18.400 2.500 0.565 0.068
147 0.530 0.060 20.000 4.000 0.552 0.102
148

149

150 0.900 0.060 19.500 3.200 0.877 0.029
151 0.580 0.070 19.300 4.100 0.904 0.007
152 1.003 0.049 16.000 1.900 0.561 0.145
153

154 1.136 0.042 16.800 1.700 0.70G 0.094
155 0.978 0.039 15.400 1.500 0.596 0.079
156 1.079 0.041 14.400 1.500 0.520 0.080
157 0.588 0.050 16.400 2.200 0.584 0.160
158

159 0.890 0.090 17.300 4.500

160 0.830 0.050 18.100 2.900 07T 0.018
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161 0.918 0.038 17.400 1.700 0.554 0.074
162 0.570 0.050 18.900 3.200 0.547 0.074
163 0.920 0.050 18.400 2.700 0.509 0.042
164 1.080 0.060 17.400 3.000

165

166

167

168

169 1.210 0.050 14.800 1.500

170

171 0.910 0.060 20.500 3.700 0.563 0.067
172 0.850 0.050 18.200 2.800 0.853 0.110
173 0.910 0.070 20.300 3.900 0.542 0.060
174 0.670 0.070 18.600 4.300 0.530 0.038
175 0.920 0.070 16.600 3.300 0.535 0.063
176 0.970 0.080 16.300 3.600 0.563 0.117
177 1.034 0.043 18.300 2.100 0.931 0.131
178 1.130 0.070 16.800 3.200 0.910 0.123
179 0.990 0.037 18.300 1.800

180 1.070 0.060 17.000 2.700 0.598 0.102
181 1.054 0.046 16.200 1.900 0.539 0.095
182 0.980 0.060 18.000 2.800 0.903 0.135
183 1.020 0.050 17.500 2.400 0.934 0.152
184

185 1.035 0.049 16.900 2.000 0.582 0.154
186

187 1.030 0.060 18.400 2.700 0.5871 0.075
188 1.000 0.070 17.800 3.200 1.020 0.160
189 1.020 0.060 18.100 2.600 0.921 0.152
190 0.980 0.070 17.000 3.100 0.558 0.064
191 0.668 0.239
192 1.026 0.044 14.700 1.600 D.672 0.113
193 0.532 0.144
194 0.584 0.040 17.700 2.000 0.iT 0.093
195 1.180 0.060 16.800 2.300 0.811 0.128
196 1.120 0.050 15.400 1.900 0.780 0.124
197 1.116 0.025 14.000 0.5800

198 1.140 0.080 12.700 1.700 0.790 0.109
199 1.000 0.080 15.900 3.500 0.569 0.135
200 1.070 0.060 15.300 2.100 0.796 0.006
201 0.570 0.110 18.000 5.000 0.941 0.223
202 0.900 0.060 18.500 3.300 0.907 0.140
203

204 1.030 0.060 14.300 2.100 0.752 0.165
205 1.1590 0.090 16.000 3.400 0.692 0.057
206 1.310 0.060 12.600 1.500 0.431 0.053
207 1.342 0.036 11.800 0.800 0.454 0.024
208 1.013 0.035 12.600 1.100
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PTB1:34 700 MHz
Residue Number R1 R1 error R2 R2 error NOE NOE error

10

11

12 1.890 0.140 13.000 1.100 0.361 0.180
13 2160 0.150 11.500 0.900 0.493 0.200
14 1.505 0.033 17.060 0.370 0.716 0.075
15 1.335 0.027 17.460 0.370 0.794 0.060
16 1.180 0.046 18.900 0.700 0.878 0.083
17 1.189 0.040 17.000 0.500 0.731 0.080
18 1.110 0.070 21.300 1.6500 0.601 0.126
19 1.185 0.042 18.600 0.600 0.717 0.082
20

21 1.140 0.110 19.600 1.700 1.113 0.204
22 1.420 0.060 18.600 0.800 0.995 0.120
23

24 1107 0.031 17.890 0.420 0.728 0.076
25 1.110 0.037 16.440 0.460 0.662 0.088
26 1.190 0.050 16.800 0.700 0.847 0.111
27 1.325 0.045 20100 0.800 0.935 0.109
28

29 2.070 0.080 14.900 0.800 0.507 0.098
30 1.377 0.028 19.690 0.460 0.703 0.063
3 1.175 0.035 19.200 0.600 0.723 0.078
32 1.268 0.033 17.800 0.430 0.868 0.074
33 1.258 0.049 20.700 0.700 0.788 0.097
34 2011 0.031 14.690 0.270 0.571 0.060
35 1.130 0.045 19.400 0.700 0.737 0.085
36 1.394 0.036 18.870 0.430 0.731 0.064
37 1.290 0.029 20.220 0.430 0.920 0.067
38 1.217 0.037 18.530 0.430 0.833 0.076
39 1.351 0.036 17.910 0.420 0.755 0.065
40

41 1.280 0.060 18.900 1.000 0.958 0.106
42 1.270 0.070 18.300 0.900 0.928 0.110
43 1.171 0.030 17.010 0.350 0.678 0.061
44 1.122 0.029 16.390 0.350 0.695 0.064
45 1.068 0.042 18.200 0.700 0.990 0.099
46 1.210 0.100 36.000 5.000 0.806 0.175
47 1.040 0.140 41.000 10.000 1.092 0.364
48

49

50

51

he 1.080 0.070 36.500 2.700 0.790 0.144
53 1.040 0.110 18.800 1.600 0.536 0.264
54 1.010 0.080 19.600 1.400 1.192 0.198
55 1.166 0.028 17.610 0.360 0.815 0.066
56 1.048 0.026 17.180 0.380 0.902 0.060
57 1.077 0.038 18.400 0.600 0.814 0.076
h8 1.140 0.047 18.200 0.700 0.904 0.102

146



59

1] 1.219 0.023 17.5860 0.260 0.528 0.051
61 1.770 0.330 16.000 5.000 0.528 0.251
62 1.671 0.032 16.420 0.360 0.734 0.0&6
63 1.144 0.038 17.500 0.470 0.786 0.068
64 1.180 0.032 19.140 0.410 0.939 0.070
65
66 1.134 0.023 17.650 0.310 0.850 0.057
67 1.167 0.022 18.380 0.290 0.852 0.050
68 1.093 0.024 18.720 0.300 0.698 0.047
69 1.138 0.021 16.260 0.250 0.562 0.047
70
71
72 1.047 0.025 18.990 0.360 0.787 0.054
73 0.954 0.044 18.700 0.700 0.655 0.100
74 1.029 0.022 19.160 0.330 0.973 0.060
75
76
77 1.260 0.070 21.400 1.200 0.663 0.116
78 1.154 0.041 19.600 0.500 1.012 0.102
79
g0
81
g2 1.114 0.041 18.000 0.600 0.914 0.094
83 0.973 0.039 17.500 0.600 0.566 0.092
84
83
86 1.215 0.031 17.500 0.450 0.735 0.0&8
87 1.610 0.050 14.300 0.700 0.693 0.089
88
89
a0
91
92
a3
94
95
96
a7 1.946 0.028 10.620 0.200 0.365 0.061
98 1.924 0.018 12.800 0.800 0.488 0.041
99 1.964 0.024 11.100 0.170 0.378 0.044
100 1.983 0.032 11.350 0.230 0.400 0.063
101
102 1.957 0.045 14.720 0.440 0.682 0.093
103
104 1.292 0.031 18.670 0.480 0.697 0.062
105 1.181 0.037 17.000 0.500 0.670 0.100
106 1.261 0.032 14350 0.380 0.791 0.082
107 1.199 0.047 17.500 0.700 0.764 0.087
108 1.369 0.030 18.030 0.370 0.786 0.065
109 1.930 0.050 16.500 0.500 0.964 0.144
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110 1.758 0.025 17.270 0.270 0.613 0.052
111

112

113

114

115

116

117

118

119 1.850 0.220 11.800 1.600 0.363 0.168
120 1.066 0.044 33.000 1.500 0.546 0.100
121

122 1.700 0.080 14.400 0.700 0.659 0.108
123

124 2.056 0.032 14.260 0.270 0.637 0.053
125 1.141 0.021 19.010 0.310 0.610 0.050
126 1.576 0.026 13.840 0.220 0.578 0.051
127 1.315 0.028 14.740 0.260 0.707 0.066
128

129

130 1.235 0.034 17470 0.400 0.794 0.075
131

132 1.261 0.023 16.850 0.290 0.620 0.059
133 1.027 0.050 19.300 0.500 0.515 0.094
134

135 0.965 0.046 19.700 0.900 0.934 0.091
136 1.106 0.030 18.950 0.450 0.827 0.0&6
137

138

139

140

141 1.450 0.026 17.150 0.280 0.542 0.054
142 1.220 0.024 15.880 0.260 0.742 0.054
143 1.199 0.034 17.000 0.500 0.544 0.070
144 1.157 0.033 19.400 0.500 0.838 0.067
145

146

147 20.300 0.600

148

149

150 0.970 0.022 18.390 0.340 0.991 0.065
151 0.559 0.035 20.900 0.600 0.755 0.078
152 1.545 0.026 16.840 0.280 0.779 0.054
153

154 1.644 0.028 15.950 0.300 0.766 0.059
155 1.326 0.021 15.330 0.200 0.667 0.048
156 1.320 0.027 14.920 0.240 0.622 0.053
157 0.989 0.026 15.920 0.340 0.624 0.062
158

159 0.965 0.046 19.300 0.900 0.771 0.0580
160 0.5829 0.025 18.420 0.380 0.942 0.068
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161 1.249 0.024 17.480 0.330 0.789 0.061
162 0.588 0.029 22.100 0.500 0.519 0.065
163 1.089 0.033 20.600 0.500 0.532 0.0&4
164 1.224 0.038 17.700 0.600 0.799 0.082
165

166

167

168

169 1.494 0.022 16.820 0.210 0.783 0.043
170

1 0.984 0.035 20.800 0.600 0.790 0.065
172 0.984 0.028 19.600 0.440 0.839 0.065
173 0.977 0.033 20.700 0.500 0.765 0.078
174 0.969 0.047 20.100 0.900 1.061 0.109
175

176 1.090 0.037 16.750 0.470 0.672 0.079
177 1.283 0.023 17.670 0.260 0.877 0.048
178 1.568 0.042 16.900 0.500 0.632 0.077
179 1.275 0.018 18.490 0.240 0.610 0.036
180 1.347 0.028 17.230 0.330 0.547 0.061
181 1.175 0.025 17.710 0.310 0.604 0.055
182 1.116 0.026 17.530 0.340 1.005 0.0mM
183 1.208 0.029 18.380 0.340 0.796 0.061
184 0.986 0.031 0.754 0.074
185 1.173 0.024 16.840 0.290 0.755 0.055
186

187 1.155 0.025 18.120 0.340 0.547 0.063
188 1.069 0.039 18.400 0.500 0.754 0.078
189 1.144 0.029 18.770 0.400 0.509 0.062
1390 1.161 0.039 16.170 0.500 0.572 0.077
191

192 1.574 0.037 18.900 0.500 0777 0.073
193

194 1.148 0.024 17.340 0.300 0.716 0.054
195 1.621 0.031 18.870 0.420 0.638 0.064
196 1.634 0.029 17.230 0.330 0.813 0.062
197 1.450 0.018 12.010 0.120 0.685 0.039
198 1.595 0.037 13.280 0.290 0.669 0.064
199 1.210 0.044 17.900 0.600 0.852 0.082
200 1.592 0.036 20.300 0.900 0.720 0.07M
201 1.100 0.060 20.300 1.100 0.752 0.140
202 1.118 0.035 18.800 0.500 0.805 0.074
203

204 1.31 0.029 14.930 0.300 0.729 0.068
205 1.849 0.049 17.100 0.600 0.617 0.077
206 2.067 0.037 13.490 0.300 0.529 0.064
207 1.926 0.019 12.130 0.140 0.410 0.039
208 1.140 0.018 13.820 0.200 0.476 0.048

Table S1: Ry, R, and 'H/'N NOE data for PTB1:34 collected at 500, 600 and 700 MHz.

Residue numbering is from PDB entry 2EVZ.
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RRM3 700 MHz |
Residue Number R1 R1 error R2 R2 error NOE NOE error
10
11
12
13 1.750 0.410 5.880 0.440 0.961 0.206
14 1.000 0.800 5.850 0.350 0.768 0.151
15 1.780 0.160 12.100 2.200 0.663 0.062
16 1.300 0.600 3.620 0.260 0.817 0.155
17 1.750 0.290 10.360 0.410 0.750 0.120
18 1.700 0.800 5.800 0.700 0.732 0.405
19 1.620 0.300 11.800 0.600 0.810 0.089
20 1.750 0.420 8.570 0.370 0.911 0.086
21 1.600 1.700 7.900 1.100 0.779 0.079
22 1.560 0.480 5.910 0.440 0777 0.127
23
24
25 1.930 0.400 5.400 0.700 0.820 0.246
26 1.800 0.500 5.020 0.310 0.813 0.156
27 1.680 0.460 7.820 0.420 0.795 0.206
28
29 0.794 0.079
30 1.850 0.120 5.540 0.160 0.815 0.047
31 1.850 0.200 5.800 1.000 0.849 0.065
32 1.500 1.000 5.230 0.350 0.766 0.047
33
34 1.900 1.900 9.800 2.000 0.693 0.077
35 1.800 0.900 11.900 0.700 -0.999 0.105
36 1.840 0.170 7.800 0.500 0.846 0.058
37 1.790 0.130 5.800 0.600 -0.601 0.045
38 1.780 0.130 5.110 0.110 0.869 0.048
39 1.670 0.070 7.490 0.270 0.770 0.033
40 1.610 0.230 5.690 0.130 -0.125 0.105
41 1.620 0.110 7.900 0.800 0.780 0.045
42 1.720 0.290 7.500 0.600 0.789 0.098
43
44
45
46
47
43
49
50
51
52
53
54 1.600 0.700 9.300 1.000 0.804 0.225
55 0.806 0.098
56 1.900 0.700 5.800 0.700 0.837 0.080
57 2.000 0.500 7.400 0.500 0.747 0.082
58 1.770 0.150 7.330 0.440 0.812 0.062
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59 1.750 0.170 7.720 0.170 0.213 0.073
60 1.730 0.260 8.600 0.500 0.819 0.146
61

62 1.940 0.180 7.900 0.210 0.581 0.066
63 1.750 0.170 7.840 0.180 0.585 0.067
64 1.610 0.130 8.560 0.160 0.687 0.052
65 1.790 0.120 8.020 0.220 0.553 0.053
66 1.6840 0.110 5.000 0.080 0.799 0.042
67 1.780 0.090 8.740 0.170 0.766 0.035
68 1.790 0.130 8.530 0.210 -0.767 0.054
69 1.800 0.110 7.610 0.360 0.791 0.041
70 1.6890 0 160 8.080 0.100 0.783 0.067
71 1.730 0.100 7.970 0.220 0.830 0.044
72 1.830 0.310 8.500 0.440 0.710 0.051
73 1.800 0.140 5.050 0.200 0.902 0.061
74

75 1.780 0.130 7.970 0.190 0.791 0.048
76 1.740 0.320 14.400 0.500 0.814 0.117
77 1.960 0.490 10.920 0.260 0.784 0.141
78 1.970 0.210 52580 0.180 0.792 0.080
79 1.860 0.110 7.480 0.220 0.823 0.045
80

81 1.830 0.140 8.130 0.300 0.649 0.058
82 1.820 0.170 5.640 0.380 -0.523 0.068
83 1.760 0.290 8.550 0.340 0.871 0.176
84 1.890 0.300 5.340 0.290 -0.350 0.054
85 1.640 0.130 2150 0.180 0.800 0.103
86 1.900 0.500 8.970 0.330 0.791 0.312
87

88

89

90

91

92

93

94

95 1.910 0.390 2.600 0.700 0.796 0.079
96

97

98

99

100 0.827 0.056
101

102 1.480 0.290 2.500 0.500 0.722 0.201
103 1.140 0.200 3.300 1.900 0.880 0.129
104 0.797 0.143
105 0.807 0.193
106

107 2.000 0.900 9.200 0.800

108

109 1.700 0.230 8.140 0.170 0.812 0.074
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110 1.300 0.800 3.800 1.300 0.736 0.220
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
RRM4 500MHz |
Residue Number R1 R1 error R2 R2 error NOE NOE error
130 2.780 0.221 9.330 2.010 0.793 0.029
131 2.860 0.129 5610 1.270 0.668 0.007
132 2.670 0.142 8.370 1.390 0.686 0.048
133 2770 0.190 7.460 0.377 0.746 0.029
134 2.430 0.173 0.860 1.840 0.656 0.005
135 2.520 0.185 8.710 1.970 0.636 0.008
136 2.660 0.125 9.340 1.240 0.735 0.023
137 2570 0.181 5.290 1.780 0.664 0.030
138 2.400 0.334 5.310 3.320 0.609 0.043
139
140
141 3.480 0.140 7.730 1.190 0.679 0.032
142 2.670 0.115 8.050 1.210 0.733 0.062
143 2.330 0.127 10.300 1.340 0.720 0.016
144 2.490 0.108 7.910 1.070 0.716 0.015
145 2.610 0.088 5.680 0.795 0.702 0.041
146 2.640 0.063 7.710 0.663 0.734 0.008
147 2520 0.121 7.760 1.290 0.728 0.014
148
149 2.420 0.096 9.250 1.030 0.651 0.034
150 2.490 0.108 7.910 1.070 0.780 0.022
151 2.510 0.130 5.390 0.280 0.750 0.051
152 2.690 0117 5.130 0.243 0.790 0.040
153 2.920 0.081 G.760 0.752 0.676 0.028
154 3.650 0.135 7.740 1.160 0.619 0.021
155 2.650 0.127 6.570 0.187 0.538 0.028
156 2.720 0.119 8.030 1.270 0.680 0.009
157 2.330 0.120 7.250 1.230 0.693 0.008
158 2.370 0.123 6.650 1.360 0.794 0.011
159 2.340 0.176 7.930 0.368 0.731 0.005
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160 2.120 0.117 7.590 1.260 0.675 0.020
161 3.180 0.131 8.280 0.251 0.753 0.015
162 2.500 0.133 9.060 1.290 0712 0.016
163 2.390 0.147 10.900 0.436 0.781 0.030
164 2410 0.147 12.800 1.480 0.632 0.021
165

166

167

168

169

170 2.850 0.214 23.400 2.860 0.643 0.077
171 2.530 0.143 11.400 1.420 0774 0.031
172 2.430 0.124 7.150 1.220 0.693 0.044
173 2.510 0.145 10.400 1.600 0.729 0.011
174 2.430 0.162 8.550 0.356 0.742 0.002
175 2470 0.167 8.560 1.590 0.743 0.004
176 2.380 0.142 7.180 0.284 0727 0.049
177 2.720 0.105 8.330 1.090 0.744 0.003
178 2.330 0.120 7.250 1.230 0.775 0.003
179 2.620 0.118 8.6800 1.200 0.856 0.017
180 2770 0.120 8.720 1.170 0.729 0.010
181 2.610 0.114 9.470 1.410 0.632 0.007
182 2.620 0.118 8.600 1.200 0.699 0.077
183 2.540 0.126 9.010 1.390 0.801 0.010
184 2.420 0.096 9.250 1.030 0.770 0.013
185 2.510 0.077 7.930 0.832 0.761 0.055
186 2.270 0.121 8.320 1.400 0.801 0.000
187 2.540 0.148 8.540 1.430 0.764 0.045
188

189

190 2.250 0.217 12.600 0.826 0.357 0.008
191 2.890 0.100 8.610 0.999 0.584 0.035
192 3.360 0.163 8.950 1.360 0.700 0.018
193 2.890 0.186 7410 1.850 0.661 0.002
194 2.620 0.096 7.280 0.957 0.667 0.006
195 3.740 0.205 13.100 1.550 0.750 0.050
196 3.360 0.144 7.730 1.220 0.641 0.025
197 2.950 0.101 7.570 0.994 0.677 0.034
198 3.350 0.165 7.830 0.292

199 2.650 0.149 10.700 1.470 0.653 0.008
200 2710 0.166 9.390 1.650 0.729 0.018
201 2.820 0.408 40.900 9 800 0.693 0.131
202 2.530 0.116 8.240 1.200 0.758 0.022
203 2770 0.155 7.880 0.275 0.734 0.035
204 3.050 0.147 8.030 1.370 0.627 0.026
205 5.640 1.830 7.860 10.800 0.737 0.046
206 2.730 0.138 15.300 1.450 0.495 0.070
207 4.110 0.207 8.030 1.760 0.380 0.005
208 2.190 0.097 6.410 1.140 0429 0.002
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Table S2: R, R, and '"H/"°N NOE data for individual domains. RRM3 data were
collected at 700 MHz and RRM4 data were collected at 500 MHz. Residue numbering is

from PDB entry 2EVZ.
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Chapter 6

Defining an RRM for 2010: Sequence, structure and context.

RRMs are ubiquitous proteins found in prokaryotes, viruses and eukaryotes, with
over 6000 identified to date, and are estimated to make up 2% of total gene products in
humans (Maris, et al., 2005). In the last twenty years, over 1350 articles pertaining to
RRMs have been published, yet the definition of an RRM is almost a quarter of a century
old. In light of the information that has recently become available, it is appropriate to
revisit the definition of an RRM, in particular, to extend the definition to account for the

importance of context for these highly versatile proteins.

Origins of the traditional RRM definition

RRMs were first identified in the 1980s as proteins that accompanied mRNA
precursors (pre-mRNA) and heterogeneous nuclear RNAs (nhRNAs). Further
characterization revealed a 90 amino acid consensus RNA binding domain using poly(A)
binding protein (Adam et al., 1986) and hnRNP protein C (Swanson et al., 1987),
associating sequence information with the original functional definition of an RRM.
Within these 90 amino acids, a highly conserved octamer was found consisting of mostly
aromatic and positively charged side chains, and termed the ribonucleoprotein (RNP)
consensus sequence (Adam et al., 1986, Swanson et al., 1987). This octamer was
referred to as RNP1 when a second, less highly conserved consensus sequence, a
hexamer with a singe aromatic side-chain, was coined RNP2. Conservation of these RNP

sequences is illustrated in Figure 1.
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The first three-dimensional structure of an RRM was reported in 1990, when
Nagai, et al. solved the crystal structure of the U1 small nuclear ribonucleoprotein A
(U1A) N-terminal RRM. Since then, a barrage of RRM structures have been solved
using both crystallography and NMR, with over 160 structures pertaining to RRMs
deposited in the protein data bank (PDB). The common structural motif that emerges is a
core structure made up of a four stranded anti-parallel B-sheet packed against two a-

helices. The RNP consensus sequences are located in the center of the B-sheet (Figure 2).

Structural modifications of RRMs

Although this core structure is conserved among RRMs, extensions of many
flavors have been discovered. For example, a-helix 1 of the U2AF*® RRM is three times
longer than that of a typical RRM (Kielkopf et al., 2004). The CsF-64 and the La C-
terminal RRMs have C-terminal extensions that form a third a-helix that lies across the
[-sheet (Jacks et al., 2003; Perez Canadillas and Varani, 2003). Other functionally
important extensions may not be obvious structurally. The Bruno protein has an N-
terminal extension of ten amino acids that is disordered, yet crucial for RNA binding
(Lyon et al., 2009). The U11/U12-65K C-terminal RRM has a structurally canonical core
structure, but requires a 30 amino acid N-terminal extension for RNA binding, even
though the aromatic side-chains in the RNP sequences are necessary for RNA binding
(Netter, et al., 2009). Such extensions may contribute to RNA binding ability through
direct contacts with the RNA, recruitment of other proteins that contribute to binding, or

by structural stabilization of the RRMs themselves.
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In addition, the RNA binding properties of many RRMs depend on the presence
of other RRMs. In some cases, the presence of the auxiliary RRMs is sufficient, where in
other cases, such as that illustrated in chapter five by the interaction of PTB RRM3 and
RRM4, extensive interactions between RRMs may be important for biological function.
Sex-lethal, Hrpl and HuD each have two RRMs that align in parallel when bound to
RNA, increasing the RNA binding surface, and enhancing RNA binding affinity (Perez
Canadillas, 2006; Wang and Tanaka Hall, 2001; Handa et al., 1999). On the other hand,
the first two RRMs of Prp24 and Nup35 RRMs are involved in interactions in their free
forms through their B-sheet surfaces, interfering with RNA binding (Bae et al., 2007;

Handa et al., 2006).

Regardless of whether the structural modification stems from extensions of a
single domain or interactions with other proteins or ligands, it is clear that functionally
significant alterations are common for RRMs. It is important, especially for studies with
truncated or separated RRMs, to consider functional importance of portions of the protein

structure that may not be included in the traditionally defined RRM core structure.

Structural extensions of PTB1:34

The unique properties of PTB1:34 enable experiments aimed to determine the
importance of some specific RRM extensions. The interaction between PTB RRM3 and
RRM4 is required for efficient RNA binding and increases motions throughout both

domains. These results are discussed in detail in chapter five.
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In addition, PTB exhibits intra-domain extensions as well. PTB RRM2 and
RRM3 have C-terminal extensions that extend the RNA binding surface by packing a
fifth B-strand against B2 (Simpson et al., 2004; Vitali et al., 2006). This fifth f—strand is
attached to 4 by a long, flexible linker that extends across the putative RNA binding
surface. We designed a truncated version of PTB RRM3 that lacks the C-terminal
extension and thus resembles a canonical RRM with a four stranded B-sheet:
PTB1:3AB5. For PTB RRM3, the extension appears to be important for RNA binding
directly, and does not appear to significantly impact the three-dimensional structure,

stability, or interactions with RRM4.

The PTB RRM3 extension is required for RNA binding

The truncated RRM3, PTB1:3AB5 was designed to contain residues 10-100 using
numbering from PDB ID:2EVZ (Obertrass et al., 2005). Protein production and
purification were done exactly as for RRM3, which is described in Chapter two.
Electrophoretic mobility shift assays (EMSAs) were employed to assess the relative
binding capabilities to the GABA intron RNA (Figure 3). This RNA was chosen since it
binds more readily to RRM3 than any other RNA tested. Even at the highest protein
concentration tested, 5 uM, PTB1:3AB5 does not bind to this RNA. Significant RNA
degradation was observed at concentrations greater than 5 uM, reminiscent of
contamination of the protein sample with RNases. However, protein preparations
repeatedly yielded a single peak from an ion-exchange column, and were judged to be
pure based on SDS-PAGE. Furthermore, addition of a commercial RNase inhibitor,

SUPERase-In (Ambion) did not significantly improve results.
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Comparison of the three-dimensional structure and surface electrostatic potential
of RRM3 and PTB1:3Ap5 is shown in Figure 4. We did not solve the structure of either
construct used in this comparison, but instead modified the PDB file for PTB1:34, 2EVZ
(Oberstrass et al., 2005) to include only the desired protein sections. NMR data
comparing RRM3 alone and in the context of PTB1:34 justify this comparison for RRM3
(Maynard and Hall, 2009). However, this may not be appropriate for electrostatic
potential calculations for PTB1:3AB5. This is because the loop connecting the fourth and
fifth B-strands is held in place over the -sheet surface by the fifth B-strand. Removal of
5 would free this loop and expose the B-sheet surface. Because of this, electrostatic
potential maps are shown for three protein constructs: RRM3, PTB1:3ABS5, and a further
truncated version that is missing most of this loop that accounts for exposure of the beta
sheet surface, PTB1:3Aloop5. These results show that rearrangement of surface

electrostatics may contribute to the loss of RNA binding ability observed for PTB1:3ABS.

In order to ensure that the inability of PTB1:3AB5 to bind RNA was not due to
structural instability or protein folding problems, the structure was checked using CD and
two-dimensional NMR. The CD spectrum of PTB1:3ABS5 is similar to that of RRM3
(Figure 5). A slight decrease in signal is expected since a small amount of secondary
structure has been lost in the truncation. However, just the opposite is observed, with a
slight increase in secondary structure for PTB1:3ABS5. These data show that the truncated
protein construct is folded, and that a loss of secondary structure (ie: inability to fold)

does not explain the loss of binding ability observed for the truncated version.
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To get a more detailed look at possible structural consequences of the truncation,
"N-labeled proteins were prepared and 'H/'""N-HSQC spectra were collected. A
comparison of the protein backbones as an overlay of the HSQC spectra is shown in
Figure 6. Some changes in chemical shift are observed where expected. Assignments of
RRM3 are not complete, as noted in Chapters two and five, however, the assigned
resonances that are shifted correspond to backbone amides that are likely to come in close
contact with 5 or the loop between B5 and 4 in RRM3. Missing peaks correspond to
the deleted 5, and also loop residues that are no longer observable due to increased
degrees of freedom in the loop when it is no longer anchored by the 5. Thus, the core
RRM structure of PTB1:3AB5 remains intact, and we can tentatively conclude that the

PTB RRM3 extension is not required for protein folding or stability.

The PTB RRM3 extension most likely contributes to RNA binding via direct
contacts with RNA. The structures of PTB RRMs bound to RNA have been solved
(Oberstrass et al., 2006), although the short tetramer RNAs that were needed to obtain
sufficient NMR peak resolution were questionable in terms of binding specificity. Our
attempts to identify residues involved in RNA binding using a longer RNA were not
successful. Nonetheless, we were able to observe the loss of some peaks in the 'H/'"N-
HSQC titration of PTB1:34 with this longer RNA. The disappearing peaks included
residues in RRM4 and RRM3, with many residues that were affected in RRM3 located in
the B5 and the B4/B5 loop. These results were consistent with the structural results from
Oberstrass et al., bolstering the notion that many RNA contacts in RRM3 occur in the C-

terminal extension.
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Taken together, the above results indicate that the role of the PTB RRM3
extension is to enhance RNA binding through direct contacts with the RNA ligand.
However, more work needs to be done to confirm this conclusion. This would require the
discovery of an RNA that binds specifically to RRM3, yet with a stoichiometry that is
amenable to NMR studies. Furthermore, only a single RNA has been tested. More
satisfying conclusions could be drawn if a larger library of RNAs were tested for binding.
Finally, other labeling schemes or fancy NMR methods would need to be used in order to
obtain a full assignment set for RRM3 and PTB1:3ABS5. This is further complicated by
the fact that RRM3 tends to form non-specific aggregates at high concentrations, forcing

NMR experiments to be done at low concentrations.

Despite the fact that the exact mechanism of the PTB RRM3 extension cannot be
determined from these studies, it is important to appreciate the functional importance of
the RRM extension. Even if the structure and sequence reveal a perfectly canonical
RRM, the RNA binding properties may be drastically affected if the context of the RRM
is not properly accounted for. Since this context has been shown to vary widely, a good
deal of caution should be exercised when working with RRMs that have been altered or

removed from their biological unit.
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Figure 1: Conservation of RNP sequences for several RRMs RNP sequences are

highlighted in yellow, with residues thought to be particularly important for RNA binding

indicated. Secondary structure is shown on the bottom with 3-strands as arrows, o-

helices as rectangles and loops as lines. PDB ID codes are in parentheses (adapted from

Maris, et al., 2005).
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Figure 2: Cartoon of a typical RRM. A canonical RRM is made up of about 90 amino
acids arranged as a four stranded anti-parallel B-sheet (arrows) packed against two o.-
helices (cylinders). The RNP sequences are centrally located on the 3-sheet, with RNP1

on 33 and RNP2 on B1, defining the B-sheet as the RNA binding surface.
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Figure 3: The PTB RRM3 extension is required for RNA binding. EMSA
comparison of PTB1:34AB5 and PTB1:3 binding to the GABA intron RNA, which binds
more readily to RRM3 than any other RNA tested, shows that RNA binding ability in the

truncated version is decreased or eliminated. Binding experiments at protein

concentrations greater than 5 uM are not possible due to RNA degradation.
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PTB1:3AB5 PTB1:3Aloopp5

Figure 4: Truncation of the PTB RRM3 extension affects the surface electrostatic
potential. The three-dimensional ribbon diagrams of RRM3, PTB1:3AB5 and
PTB1:3AloopfS5 are shown in the top panel, with their respective calculated electrostatic
potentials mapped onto the solvent accessible surface area below. The surface of
PTB1:3ABS5 contains a small negative patch that may interfere with RNA binding.
However, without 35 to anchor the loop, the negative patch probably does not remain
over the B-sheet, but is more likely to move freely. The PTB1:3Aloopf35 construct may
be a better model of the surface encountered by the RNA in solution, and shows no
negative patches that would interfere with electrostatic contribution to RNA binding.
More detailed structural studies would be necessary to determine the actual location of

the unanchored loop, and thus its influence on RNA binding.
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Figure 5: The PTB RRM3 extension is not necessary for protein folding. A

comparison of the CD spectra for RRM3 (green) and PTB1:3ABS5 (red) shows that the

truncated RRM is folded, and even has more secondary structure than RRM3. The

ellipticity has been adjusted to account for a different number of residues, so we expected

the overall signal for PTB1:3ABS5 to be equivalent to, or slightly less than that for RRM3.

Nonetheless, it is clear that the truncated RRMs inability to bind RNA is not due to the

protein construct being unfolded.
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Figure 6: The overall three-dimensional structure of PTB1:3AB5 is very similar to
that of RRM3. "H/'°N-HSQC overlay of RRM3 (green) and PTB1:3AB5 (red) shows
good chemical shift dispersion, confirming that both proteins are folded, and that there
are no major structural differences between the two. Although many backbone
assignments are missing for RRM3, the overall degree of differences observed, both in
the number and shifting of peaks, are consistent with the changes expected from

truncation of the extension in the absence of structural rearrangements.
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Chapter 7

Unique denaturation profile of PTB RRM4 : A tool to study protein folding

The unique properties of RRM4 provide some opportunities to study protein
unfolding processes. The linear denaturation profile of RRM4 (Chapter 2) allows access
to states along the entire unfolding pathway. This property could be exploited to
investigate several aspects of protein unfolding. Structural changes along the unfolding
pathway could potentially be monitored. It would also be interesting to explore the
thermodynamic changes that occur along the unfolding pathway. Finally, investigating

the contribution of protein motions to the unfolding process could be quite informative.

This protein is very stable, is not sensitive to temperature, and has very well
defined peaks in an NMR spectrum. In addition, we have engineered a tryptophan
mutant (discussed in the paper below) in order to allow fluorescent detection of the
protein. Protein production and purification schemes have already been optimized, RNA
binding and biochemical characterization experiments have been completed, and NMR
backbone assignments obtained. Thus, much of the preliminary work has already been
done, making this system primed for some interesting experiments with a high chance of
success. Too bad I spent so much time on the hard, boring stuff. Now someone else gets

to do the fun part!

In addition, the linear denaturation profile is intriguing as a potential naturally
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occuring downhill folder. A collabortive project addressing the downhill folding
properties of RRM4 was recently published and is described in the remainder of this

chapter.
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We propose protein PTHI :4W as a good candidate for engineering into a downhill Ffolder.
PTBIE:4W has a probe-dependent thermal unfolding curve and sub-millisecond T-jump relaxation
kinetics on more than one time scale. Its refobding rate in denaturant is a non-linear function of
denaturant concentration (curved chevron plot). Yet at high denaturant concentration its
unlolding i probe-independent, and the folding kinetics can be fitted to a single exponential
decay, The domain appears to fold vz 2 mechanism between downhill folding and activated
folding over severnl small barriers. and when denaturant is added, one of these barriers greatly
incresses and simplifies the observed folding to apparent two-state kinetics, We predict the
simplest free energy fanction consistent with the thermal denaturation and kinetics experiments by
ustng the singular value Smoluchowski dynamics (SVSD) model. PTBI :4W is & natural *missing
link" hetween downhill and activated folding. We suggest mutations that ¢ould move the protein

inte the downhill folding limit

Introduction

The experimental detection of the protein folding 'speed limiat®
and of downhill folding'™" has attracted great interest among
simulators, ™ theordsts,™” and the community interested in
trimsition state analysis of protein folding.™* A kev prediction
of energy landscape theory ™ is that downhill folders reach the
mative stale without crossing a significant free encrgy barrier
along the reaction coordinate {(f.e. the barriers are less than
| RT = 2.5 kI mol ™'} 5o far, only a few small proteins have
been discovered that fall into this caegory, as classified in
ref. 11.

Strategies for Ainding downhill folders include: testing small
proteins for probe-dependent thermodynamics;'” designing
maolecyles with low cooperstivity but high sability'’ and
searching for wild type proteins that fold downhill.™ Cur
strategy has been 10 exlensively re-engincer already fasi-folding
proteins, replacing functionally conserved sidechains by those
that increase stability or climinate non-native traps. Using this
approach, several small proteins have been engineered 1o be
incipient downhill folders with barriers less than 3 R7'5"

* Conper foe Baphyaics and Compriational Biolegy, Untrersiiv of
Tttt ar Uriama-Champarer, IE 01801, USA
Eemail; gruvhele(® sca e oo, Fax: (2070 244 3186
Tel: (217) 333 r624

¥ Dpariment of Brochesnsrry ol Mobeoular Biaphysics, Wazkington
Umiverstiy School off Medicine, 51, Lowis, MO 63110, USA.
Eamail: kohieerdhalio gonrileom; Fax: (314} 367 7183
Tol: (214 362 4108

" Department of Chonrizrey, Unfroestte of Wimels ar UrbameClampign,
IL a1a0), SA

‘D('purJ.rmm af J"i|_-|1a|:|. Universiry af fNinoes oo Uirhang-Champanen, [
arsn s

t Electronic supplemsentury  information (ESI available: Fitting

parameters for the genciie algonithm. See DO 10,1039 he2301370

downhill Folders,"™ "™ and even downlill folders at the melting
transition, ™

A good stanting point for such enganeering is a wild type
protein with a broad probe-dependent miclting transition (low
cooperativity), yet fast folding rate (sub-millisecond). Here we
presemt such o protein. PTBI:4W is a potential downhill
folder with more residues and more complex topology than
previously reporied fast folders, It is a 91-residue protein with
an 2/[i fold topology (Fig. 1), comprising the fourth domain of
the polypyrimidine tract banding protein, an RNA binding
protein involved in both pre-mBRNA splicing and transkation
initistion ™" The point mutation FS6W was introduced in the
wild itype sequence so that folding thermodynamics and
kinctics can be detected by tryptophan fluorescence. This
mutation was conservative and led to high protein expression
bevels.

We characterized the equilibrium denaturation as well as the
folding kinetics of this protein. PTBI - 4W has probe-dependent
thermal denaturation curves and two observed T-ump relaxatzon
tiimes of 13-480 us in the absence of denaturant. lts chevron
plot {log of folding rate v, denaturant conceniration) is
curved, On the other hand, a1 high denaturant coneentration
it behoves like o two-state Tolder: different spectroscopic
probes vield the same meliing curve, and relaxation kinetics
are single-exponential and stower than 10 ms. FTB1 :4W is not
quite as fast as previously reported downhill folders."" but it
has smaller barriers than typical millisecond folders.” We
determine the simplest [ree energy function compatible
with the thermal mell and kinetics data, by using & new
Atting approach that combines singular value-decomposed
Smoluchowski dynamics (SVSD) with genetic algorithm
selection of the best free energy function, PTBI:4W wurns
oul 1o be a natural ‘missing link' between activated ancd
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Fig. 1 Protein structure and sequence of PTHI:4. The prodcin
structure plot was prepared with VMDD Pheft shown in purple i
replaced By Trpoin PTBL: AW, Comparison of the "H/Y'N HSQC
NMR specirn (data mot shown) of the two proteins show local
chemical shaft changes, bul no msdkations of significunt siructural
chunges.

downhill folling seenaros, ¢ven withoul sequence re-cngineenng.
We suggest some re-enpinecring of its sequence that may
further speed up s folding.

Results and discussion

Protein sggregation

We found that PTB]:4W has a wery high propensity for
aggregation when heated, like downhill-folding mutants of
the lambda repressor and WW domain.'™" In the thermo-
dynamic measurements, the concentration of the protein was
kept at 2-3 pM 1o avord ageregation up to 98 °C. Circular
dichroizm (CD) spectra before and afler temperitture titraticmns
from 2 1o 98 “C were almost identical, indicating that the
measurement was reversible at low prolein concentration,

Probe-dependence of protein stability

Fig. 2 shows Auorescence and €D spectra spanning the main
thermal unfolding transition from 40 10 60 °C a1 pH 7. The
flusreseence spectrum in Fig. 2B red-shifts from 342 1o 352 am
upon heating, indicating solveni exposure of the tryptephan
residug, The magnitwde of the CD spectrum of PTBI W
coniains a significant contribution from the Trp 86 residue:
native PTHE:4W has a more negative signal than FTHI:4
wild type (dotted Hne in Fig. 2A). even though the 'H/'*N
HSQC spectra of the two proteins reveal no overall structural
rearrangement {data not shown), The CD signal magnitude of
PTEI:4W increases upon thermol denaturation between
40 and 60 “C. This incrense is due to & combination of
changing aromatic sde chain emvironment and residual
structure with extended side chains. (Such “extended structure”
involves short streiches of sheei-like backbone geometry with
extended sude chains, bul no long-range secondary or tertiary
contacts. ™)

200 210 220 230 240 250
Wavelength (nmj)

B

-& 40°C
- G0 *C

Fluorescence Signal (A L)

300 320 340 360 380 400
Wavetenth (nm)

Flg. T (A) Circular dichrotsm spocira of PTEL:4W (5 pM, pH T
spanning the main thermal dematurntion trnsition between 4 and
&0 °C. The CD spectrum of the iryptophan-free PTBI: 4 (dotted line,
20 °Chis dilferent from PTHI : AW, (The 20 °C spectrum of FTHI : 4W
w8 20 smnller bt has the same shape a8 the 40 "C spectrum shown, )
(B) Flusrescence spectra of PTBI AW (2 uM, pH 7) spanning 1he
main thermal denaturation iranstizen botween 40 znd 60 °C

The normabized thermal denaturation curves montored by
CD {ae 222 nm), integrated fuorescence intensity {excited at
280 nm} and Auorescence peak shift are shown in Fig. 3. The
fluorescence intensity curve has o very large negative baseline
below 40 "C. Thus Trp 86 Auorescence depends strongly on
temperature in the native state. A smultancous fit of all three
experimental braces o o two-state model (dotted curves) with
arbitriry linear baselines for each trace does not fit the data
well, Instead we used & free energy function model 1o fit the
data (solid curves, see bebow)

On the other hand, Fig. 4 shows that the protein obeys
two-state behavior at high concentrations of the denaturant
guanidine hydrochloride (GuHCT), A simultancous two-stiate
moddel fits that data micely with a transition midpoint &t
14 M GuHCL

Protein folding kinetics

T-jump expcriments were carried oul at final temperatures
from 56 "C 10 63 °C, where the largest relaxation signals could
be observed. Relaxation kinetics are reported either as the
normalized change in tryptophan lifetime (¢, see Methods), or
as the change in integrated tryptophan flucrescence intensity.
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Fig. 3 Circulur dichrodsm (open squares, 3 ubd, pH Ti and fluorscence
imtensity {open triangles, 2 uM, pH 7) thermal titration curves of
PTHI:4W were measured simulinncomly and mormalized 10 the
010 | renge for comparivon., The fluorescence wavelength shif (open
circles) was measured separately on o fuonmeler. No satisfactory
global two-state it wos achieved {dashed lines). The SVSD model
produced o satisfactory i (solad lines).
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Fig. 4 Fluorescence inteasity (eircles) and wavelength shili {squares)
ugron guankdne hydrochlonde dennturation of PTR] ;4% This data
could be fitked by o global two-stale moded (dashed lenex).

Fig. 5 shows the observed relaxation al 60 “C contains o very
(a5t phase of 18 s, followed by a still fest phase of < S0 us. The
data in Fig. 5 are not compaiible with a two-state scenario
{single exponential reluxation), but could be ftted by & double-
exponential function. The observed slower rate coeflicient was
temperature-independent  within  measurement  URCeTLAInLY
over the temperature range we measured.

Stopped-flow  experiments were carrisd oul ol room
temperature {23 “C) 10 check whether intermediate states
accumulate during refolding when the protein is unfolded by
GuHCl Based on the GuHCl titration measurements (Fig, 41,
PTBI : 4% is completely denatured wt 1 M GuHCL Therefore

Tejurng from 50" C o &l C
— 5, = 1526 us 8 v, = 47THI3 s
— SVED modal

2000

T r T b T i
800 1200 1800
Time {jus)

T
400

Fig. & Folthrgs relaxation kimetics of PTHI :4W by & temperature
Jumap froms 50 °C to 6l °C dereoed by pormabized Duorescence Hictime
n.‘i'll-'l'lwt {see Methods), The solid Mack curve is the SVED model fi
from Smoduchowski dynamics. The top trace shows the residual of a
direct double-cxponential fit 1o g, = 18 ps and t; = 479

protein solution containing 3 M GuHCl was mived with o
buffer solution to several final denaturant concentralions
{Fig. 6). The observed relaxation times > 10 ms are conssderably
shower than the micresecond relaxation rate observed in

2 821  ewwiieesettantiten
= .
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Fig. & Siopped-flow experimonts ai low (.27 M) and high (1.5 M)
fimal guanidine hydrochloride concentration show dew single
ummml relolding kimetics {doshed lEnes) with mo barst phase
For reference, o 3 M 10 3 M jump bascline is shown
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Fig. 7 Summary of ihe kineiic dois. The sub-ms phase upon T-jump
is shown in open markers at the top with o iemperatare oxis, The ms
refolding kinetics from GuHCI stopped Bow are shown in black circles
at the bottem. The GuHCO! chevron is curved throughout, and the
23 °C stopped flow data do not extrapolate to the muoch faster T-jump
i at 35 "C higher temperatare

0 M GuHCI T-jump experiments (Fig. 55, As seen in Fig, 6, no
evidence of & bursi phase was found, nor of slower phases up
toe 20 seconds that exceed 10% of the resolved millisecond
phitse. The GuHC refolding transients could be fitted to a
two-state (single exponentiall model, just like the GuHCI
denaturation curves in Fig, 4,

Fig. 7 summanizes the T-jump and siopped flow relaxation
kinetics by plotting log k = =log r. Only the slower phase is
plotted for the T-jumps. The stopped flow rate at 23 "C does
not approach the slower T-jump rates at 0 M GuHCL, and the
stopped flow data do not resemble a lincar cheveen plot, Thus
the apparent two-state stopped Now kinetics are not supported
by a linear chevron plot,

Model free encrgy function

The multi-probe thermodynamics and T-jump kinetics in
Fig. 3 and 5 are not fitted well by o two-state model. Our goal
was to determine the simplest one-dimensional free energy
function and diffusion coefficient compatible with all the
thermul tiration and T-jump Kinetic data.

The singular value Smoluchowski dymamics (SVS0) model™
summarized in Fig. § uses & genetic algorithm 10 search
the space of folding free energy functions Gix. T), diffusion
coeflicients INx. T} and signal functions $4x) for the best fit to
the data. The functional forms fitted ane described in Methods,
Our reference coordinate x was the radius of gyration in
nanometers. This choice is arbitrary, but it provides & mapping
for the signal functions & onte a reaction coordinate in nm. 5o
one can compare the magnitude of D 1o known diffusion
cocfficients (stee Methods). SVSD cabeulates the time-cvolving
protemn population pixs) after o T-ump, and equilibrium
populations g, (5.7} at temperaiure T, without assigning ‘stutes’
and without making the transition state approXIMELQnN,

We carried out SVSD searches in spaces of 1 and 2 reaction
coordinates to globally fit the emperatuse-dependent data in
Fig. 3 amd 5. A 1-D surface was sufficient to fit the data. The best
1-I3 fits 1o the data are shown s sold lines in Fig. 3, 5 and 7.
Fig. 8 shows the corresponding free emergy function at three
different temperatures. Tt has three local mimma, which are
Inbelled M, U" and LI, The signal functions are also shown in
Fig. & The genctic algonthm docs not guarantee that these froe
encrgy and sagnal functions are unigque solutions, but they are
representative of the tvpe of Munctions required to explain the
experimental data. We fitted only the average diffusion coelficient
of B = 1.5% 107" nm’ ns ', independem of position. Different
fixed values of 2 did not produce goosd fits, but the experimental
data 1% pot guilficient o determine the poston dependence af
Gix) and £qx) independently. All Aiting parameters for the best
fit are listed in the Electronic Supplementary Information.

Discussion

PTBI1 :4W has some charactenistics of a twoestate folder: single
exponential relaxation in GuHC solution and coincident
GuHCl denaturation curves. (Mher characteristics are more
representative of a rough free energy surface: double-
exponential T-jump kinetics and mnon-coincident thermal
denaturation curves. This discrepancy can be explained if, in
the presence of denaturant. o single large barnier partitions the
reaction coordinate into a ‘folded’ and an ‘unfolded’ basin,
whercas in the absence of denaturant, no single barrier dom-
inmtes. The latter scenario matches the general situation the
SYSD model uncovered wig the genetic algorthm; without
denaturant, u folded state and two unfolded siates U and U”
with energies within a few RT compete with one another. The
barriers are not quite bow enough for downhill folding and not
quite high enough so that the local minimum U° can be
assigned 1o o separate folding imtermediate, Instead, the
observed thermodynamics and kinetics correspond o o hybrid
mechanism. This observation is in keeping with the observed
T-jump relaxation ume, which lies between the few millisecond
relaxation time of fast apparent two-state folders and the few
microsecond relaxation time of downhill folders.

GuHC] denaturation differs from thermal denaturation. As
suggesied by Tanford, proteins are more compictely unfolded
when they are denatured by GuHCI, while proteins under
thermal denaturation have some persistent structure that may
lower the folding barrier.™® As discussed by Naganathan
ar al," denaturant-induced unfolding of small fasi-folding
proteins at room lemperature entails kigher activation energies
than thermally induced unfolding. Our SYSD surface favors
the more structured state U' over U at high temperature
(Fig. §). We propose that addition of GuHCT favors the less
structured state U by raising the U'-L barrer and decreasing
the U free energy. Thermally, the protein denatures to U'
rapidly, while i denaturant, it forms U more slowly, We
recenily observed a candidate for residual structure in
U “extended structure” in several proteins at high temperature
has more ordered side chains than a randoem col, and shon
segments of beta strand-like peometry, ™

The switch between iwo-state kinetics and nearly dewnhill
dymamics is plausible according to the model of Wolynes and
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Flg. 8 (A) SVSD method. Lefi: the protesn population distribution o is caleulated at equilibrium or dunng kinctics on the free energy surfsce
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a1 50, 60 and 70 °C, Shown are the optimal fusctions fisted to the iemperatune jump and titration data in Fig. 4 and &, The normalized signal

fumctions are shown ut the top.

coworkers.'"” Maganathan ¢ o calculate a denuturant
sensitivity of the free energy such that even the slow rate of
12 7' we observed in the presence of 1.5 M GuHC! makes
PTBI: 4W a fast incipient downhill folder (barrier <387} in
the absence GuHCL. in accordance with the data in Fig. 7.

In downhill folding. the fastest phase (r; = 15 ps in Fig. 5)is
wsually labelled “r," for “molecular phase.” indicating that it
corresponds to the barrier-free (AGT = RT) diffusion time
across the reaction coordinate. Experiments show that .,
depends on the topology and the size of the protein. Small
downhill folders have 1, in the range of 0.1 10 2 ps near the
thermal densturation transition,'™™™* " and perhaps on
arder of magnitude slower at room temperature.”” One would

expect that downhill folders with more complicated topolagy
have slightly longer t,. The 415 residue protein phospho-
glycerate kinase has 1, = 10 ps under denaturing condition, ™
It is possible that the 91-residue protein PTBI: 4W with its
a + B topology has a similarly slow molecular time scale,
More likely, and supported by the $WSD fit in Fig. 8, very
small residual barriers remain.

SVSD does not allow the arbitrary basclines frequently wsed
for “two-state’ ftting: rather, signal changes arise because the
protein distribution shifts aleng the reaction coordinate,
sampling different signaks S(x). The large fluorescence intensity
haseline below the main unfolding transition ( Fig. 3) is caused
by o switch of the SVSD signal Msnction. Again, we have
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observed a candidate for such intensity changes: iryprophan
sidechain fluctuations in the native state that loosen upon
increasing temperature can chunge the fiuorescence quanium
vield. M *“Two-state’ fits that require large baselines should be
suspect, as these baselines could signal low barriers or large
shifts in free emergy minima, and hence a breakdown of the
Iwo=stale Approximation,

The actual diffusion cocfficient of the PTBI 4W folding
reaction should be coordinate-dependent,™ ™ but even 10, the
average value 1.5 x 107" nm® ns ™" we fitted is at the low end of
values expected for a polypeptide chain. A larger value could
not fit the expenmental data with a 1-D free energy function.
The small diffusion cocfficient can be explamned in two ways, It
could model additional small traps on the free energy land-
scape, indicating that the true free encrgy surface of PTBI - 4W
is rougher than the 3 well model shown in Fig. 8. Aliernatively,
the collective nature of our single reaction coordinate, which
reflects diffusion im a multidimensional coordinate space of
protein backbone and sidechains, may result in the smaller
effective diffusion coeflicient in one dimension.™ A similar
result was abio reporied for folding of the lambda repressor
fragment, where a 1-D free encrgy model required a diffusion
coefficient much smaller than the free chain diffusion value
of =0.05 nm* ns ">

The minimal folding barriers in absence of denaturant make
PTBI:4W an ideal candidate for prodein engincering to
produce a downhill folder. We make some suppestions of
how such a redesign could be achieved. To mcrease the
magnitude of the luorescence change For kinetic studies and
to increase native bias, mutations L6BY or L7IY are good
candidates based on the PDE structure Igm®."" In the lambda
repressor fragment, an analogous Q33Y mutation places a
tyrosine in contact with the Auorescent iryptophan probe,
producing o great signal enhancement and stabilizing the
nittive state vig aromatic stacking interactions, "™ To stabilize
the secondary structufe, the helix propensity of helix | can be
increased from 4.98% 1o 21.03% as predicied by AGADIR™
by replacing Val32 and Ser35 with Ala; turn formation is
promoted by shortening the long loops such as the %-residue
loop 5 or the &-residue loop | by inserting four-residue turn
maotifs.

In summary, PTBI: 4W is a natural ‘missing link" beiween
downhill and activated folding, even withoui extensive
sequence engineering, 118 free energy landscape i likely 1o be
rougher (contain more local minima) than the minimal ftting
model in Fig. §; otherwise the fitted diffusion coeflicient would
have been larger. We suggest mutations that coubd reduce
the =400 ps ‘stow’ phase towards the expected molecular
time 1, = |10 ps. which the faster phase in Fig. 5 already
approaches. Addition of GuHCl considerably reduces the bias
towards the native state and increases the folding barner.

Methods
Proiein samphe

The RRM4 domain of human FTBI protein was subcloned by
pelvmerase chain resction from the human PTBI gene into the
pET28A plasmid (obtained from Professor Doug Black.

UCLA)L The RRM4 gene fragment with an added Neol
FESLACLION eneyme culling site at the N-terminus and s Hindl11
cutting site at the C-terminus was cloned into an lsopropyl-f-
o=l -thiogalactopyranoside-inducible  (IPTG-nducible)  pac
plasmid. The RRM4 gene fragment begins with the Met-Gly
at position 440 of full length PTBI protein, and exiends
through the natural terminus (isolewcine 531). REMAW was
generated by mutation of Phe32é to Trp using the Quick-
Change site-directed mutagensss kit (Siratagene). Both DNA
constructs were sequenced for verification.

Protein was expressed in £, roli BL-21 DE3 gold cells grown
at 37 “C. AL 0Dy = 0.9, | mM IPTG was used Lo induce
protein overexpression. Cells were harvested afier 4 hours,
pelleted by centrifugution al 6500 fpm, washed with bufler A
(20 mM tris buffer, pH 7.5, 20 mM NaCl, and 2 mM EDTA),
repelleted, and stored at —80 "C overnight Cells were
resuspended in buffer B (20 mM sodium acetate, pH 5.3,
50 mM MaCl, 2 mM EDTA) with 20 pg mL ™" of the serine
protease inhibitor phenyvlimethylulphonyl Aueride (PMSF),
50 units g™° of DMase I and proicase inhibitor cockiail
(Sigma), and lysed using a French press. The lysate was spun
clown an 15000 rpm and diakvzed agminst L of buffer B a4 °C
for 3 hours, The dialvss product was cleared vio centrifugation
and loaded onto a CM-sepharose column equilibeated in buffer
C (50 mM Tns, pH 7.5 at room temperature, 10 mM NaCl) at
room temperature. Afler flow-through was discarded. the
proteins were eluted with the 10-100 mM NaCl gradient of
buffer . Fractions from the column were combined and
concentrated using Vivaspin centrifugal concentrators, and then
exchanged into buffer. Freshly prepared 2 mM protein samples
in 50 mM sodium phosphate and |50 mM NaCl buffer at pH 7
were stored at 4 "C for further messurements because (recring
and thawing protein samples can cause protein aggregation
Protein purity was verified by sodium dodecyl sulfme poly-
acrylamide gel electrophoresis (SDS/PAGE).

Thermodynamic measurements

Temperature-dependent fluorescence spectra were collected on
a Vanan Cary Eclipse fluonmeter, Circular dichroism (CD)
spectra and thermal titrations were acquired on a JASCO
=715 spectropolanmeter equipped with a PMT for Aluorescence
measurements and a Peltier temperature controller, The stored
protein sample was diluted with 50 mM sodium phosphate and
150 mM MNaCl buffer at pH 7 to redwce 515 concentration Lo
about 3 pM. The sample was contained In @ square quartz
cuvette with 1 ¢m pathlength and covered with mineral oil to
prevent evaporation at the higher ttration temperatures. The
thermal ttration was measured from 2 "C 10 98 "C in 2 °C
sieps. Integruted fluorescence data exclied at 280 nm was
collectod simultangously with the CD signal at 222 nm.
Fluorescence peak wavelength was measured on a fluorimeter.
The signals 54T were fitted to o global two-state model with
fimgar haselines:

Spail T ) + mpl T_— Tl

.‘F-lTI - T 4 ¢Mon DIRT

(1

o 50T} + mop (T — T, ) Jettin KT
1 + Ao BT
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where the free energy difference between the native stiate
(M) and the denatured state (D) was fitted by a quadratic
polynomial

Alnp = Gy — Gp = AGUL(T - Tm)
+ AGEHT = T ¥ 2

and Ty is the meling iemperature. The two state model was
insuficient 1o fit the three traces in Fig. 3 simultancously.

Kinetic measirements

Stopped flow experiments were performed with an Applied
Photophysics SXC18 MY system with 1:1 or 10; ] mixing at
23 "C. The protein concentration was | pM before mixing and
the two buffers used were 8 3 M GuHCl/50 mM phosphate/
150 mM MaCl solution and 2 0 M GuHCI/S0 mM phosphate/
150 mM NaCl solution. Tryptophan was excited at 280 nm
and the imegrated fuorescence wis collected with a 320 nm
cutaff filter (WG 3200 before the PMT. The time resolution of
the collection was | ms and the data were acquired with linear
time base or logarithm time base for | 5 o 20 s,

Temperature jump-induced rebuxation kinetics were measured
on our home-buill nancsecond  laser induced T-jump
apparatus.”’ Protein samples were prepared in a 50 mM
phosphate and 150 mM NaCl buffer containing 20% D20 at
pH 7.0 (without isotope effect corrections). The concentration
of the protein was kept below 21 pM, and the final temperature
wis kept below 63 °C to avoid aggregation. Full reversibility
was confirmesd by checking that the steadve-state fluorescence
lifetimes ai 25 "C before and after the T-jump experiment were
wdentical,

The output from o Nd: YAG laser was Baman shifted by
360 psi Hy gas 1o produce 1.9 pm wavelength, 10 as duration
T-jump pump pulses. The pump pulse collimated 10 2 mm
dismeter generated an 8-12 °C T-jump in the protein solution
within several nunoseconds. The probe beam was a train of
2E0 nm sub-ps laser pulses 14 ns apart, generated by tripling
the output from a mode-locked Ti-sapphire liser. Trypiophan
Auorescence wis collected with a photomultiplier tube through
i Hoya BT filter to filter out the scaitered incident light. In
each measurement, a series of tryptophan Auorescence decays
digitized with 500 ps time resolution and spaced by 14 ns was
collected for a total of 500 ps (limited by the memory of the
digitizer used), Folding kinetics longer than 500 ps were
ohtained by delaying the tigger position for data and obmining
seversl overlapped traces. Data were binned imto several-
microsecond intervals (o schieve better signal to noise ratio.

When proteins relax towards o larger unfolded populstion
after the T-jump, the Auoreicence decay profile evolves in
time. The folding kinetics traces were extructed by npplying
cither y-analysis or plotting the integrated fluorescence
intensity traces. 'Y y.Analysis fits the change in Ruorescence
lifetime to a linear combination of two Nuorescence decay
basis functions, one right after the T-jump, and the other at
the end of the data collection window. Al the raw dats traces
obtained by cither method (Fig. 4A) coukd be fitted 1o
exponential decay lunctions

Signul(f) = yo + A~ 4 Az~ i3)

The Marquard-Levenberg algorithm used for fitting yickded
one ssandard deviation uncertainties for the relaxation times. "
A nonzero amplitude for more than & single exponential
violates the two-state assumption.

SYSD method

In protein folding kinetics, multi-state masier equations are
usually the fitting model of choice. States are separated by
large barriers so protein population can be assigned uniquely
to o state for the purposes of thermodynamic Atting: dwell
time in such states is long compared to barrier crossing lime,
500 transition slate theory can be used. In contrasi, downhill
folding involves pepulations that cannot be assigned uniguely
1o states, and Langevin dynamics™ or other physics-based™
mogdels must be used.

Here we presemt a model that does not assign protein
populations to fived sates separated by large barriers, SVSD
achieves this by solving the Smoluchowski equation 1o
determine the protein population probability distribution,
The ingredients of SVSD are: a free energy surface Gix,T)
which depends on reaction coordinates x and & perturbation
{e.g. temperature T), signal functions S(x) that correspond Lo
spectroscopic probes, and a diffusion cocfficient Mx) that may
be coordinate dependent. For fitting, we assumed 2 1o be
constant; the free energy is modelied by a sum of Gauwssian
“dimples’, and the signal functions are modelled by sigmoids,
as described im detail in the Electronic Supplementary
Information,t For x, we picked the radius of gyraion R,
Ry 15 1.5 nm for ihe native state based on the 1QM9 structure
in the protein data bank,* analyzed with VMD.* For the
unfolded state, we used the consensus value £ nm) = 0,21
from ref. 47, which yielded 3.1 nm. The choice of x is arbitrary
in the sense that the experimental reaction coordinates are
fluorescence and circular dichroism valwes. which could be
mapped onto any reference coordinate. 'We chose R, so the
order of magnitude of the diffuston coefficient can be com-
pared with literature values,

We have implemented the SVSD method by combining an
eflicient singular value integrator for the multi-dimensional
Smoluchowski equation with & genclic algorithm scarch
through G, 5 and D to identily free energy surfaces, diffusion
coeffbcients. and signal functions compatible with the data, ™

SVSD involves five steps. (1) A family of solutions |G, 5, [
is generated, subject to physically motivated consiraints, (2)
Equilibrium populations are evaluated al temperatures T

Pog (%, T) ~ &~ GnT)/buT (4
fior thermodynamic titrations. Time-dependent populations
dre evaluated after a jump from T-AT to T by solving the
Smoluchowsk: equation

Bp & -G Tkl & G T T
E—E{ﬂf:}r . el Al gl
#(1=0) = (T - AT) ()

Pl = o) = p [T}

for modelling fast relaxation measurements. {3) Signal functions
Six) are integrated over equilibrium populations g, (.7} 0
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yiehd thermodynumic signals S{TY and over kinctic populaitons
prx.y to vield kinetic signals S}, (4) A least squares “fitness’
criterion ranks all family members. (5} The fittest family
members (G, 5. D) are *mated” by the genetic algorithm
to produce diverse offspring, which replace less fit family
members in the next ieration. The result 15 a diverse family
of free energy surfaces. signal functions and diffusion
coctficients comparible with the daia. from which the opiimizad
solution can be packed.

The optimal parnmeters and range of purameter values are
listed in a table in Electroni Supplementary Information.t
These valuees can be used 1o reproduce the plots in Fig 8,
except thatl we have shified the minimum free energy of the
native state 1o A = 0 Fig. 8 since only the relative free
energy of slales malters,
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Chapter 8

Dynamic coupling of PTB RRM3 and RRM4

One of the more interesting implications of the interaction between PTB RRM3
and RRM4 is the possibility of allosteric connection of the binding sites in PTB1:34. We
already know that the interaction changes both the motional properties of the protein and
its ability to bind RNA. However, the root of these changes remains to be determined.
The fact that RRM4 is folded and quite stable as an individual domain, yet only
participates in the RNA binding event when coupled to RRM3 in the context of PTB1:34
suggests some form of communication between the binding sites of RRM3 and RRM4
(Maynard and Hall, 2009). Since no large scale structural rearrangements occur as a
result of the interaction, the means of communication must be more subtle, possibly

involving dynamic, small scale structural changes.

Minor rearrangements of secondary structure usually occur on a microsecond
timescale. This leads to the hypothesis that the communication between PTB RRM3 and
RRM4 binding sites may occur via a network of non-covalent contacts that are ushered
through the protein by small scale rearrangements of secondary structure. This idea is
consistent with the increased motions and decreased secondary structure observed upon
interaction of these RRMs. Guided by a recently developed method to identify pathways
of non-covalent contacts (Bradley et al., 2008), we have produced a mutant protein that is
likely to decouple the RNA binding sites without physically separating the domains. This
mutant protein will allow us to probe further into the importance of communication

between the RRMs, particularly in regard to RNA binding and protein dynamics.

188



Identification of communication pathways

Possible paths between the binding sites of RRM3 and RRM4 were determined
using the method described in Bradley et al., 2008. Binding sites were defined as the set
of residues involved in RNA binding of each domain in PTB1:34 for both RNA tetramer
binding studies (Oberstrass et al, 2005) and the binding studies involving a longer RNA
described in Chapter two. Using numbering from PDB ID:2EVZ (Oberstrass et al., 2005),
these residues include: G12, V15, V16, N22, Y38, V41, Q42, R43, 183, K105, 1126,
H134, L135, K169, L199, V201, S202, F203, S204, K205 and 1208. It is important to
point out that the method for determining non-covalent contacts does not account for
hydrophobic contacts. Since the interaction between the RRMs is primarily hydrophobic
(Vitali et al., 2006), a good deal of the possible pathways may be missed. However, any
pathways that do emerge from this analysis will be likely to include residues that can be

mutated with less chance of protein destabilization.

The above analysis yielded a single residue, arginine 114 (numbering from PDB
ID: 2EVZ), that was present in 80% of all possible paths between binding sites. Likely
there exist many more paths that were missed due to incomplete binding site definitions
(as discussed in chapter 2), as well as the fact that the analysis does not account for
hydrophobic interactions. Nonetheless, the goal was to identify a single residue for

mutation, so a mutant with R114 changed to an alanine was prepared (Figure 1).

The PTB1:34R114A mutant

The DNA for the PTB1:34R114A mutant was generated using a Stratagene site
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directed mutagenesis kit. PTB1:34 DNA was used as a template, and the primers were
5’-CTCACCCCTGCACGCCTTCAAGAAGCCG-3’ (top) and 5°-
CGGCTTCTTGAACGGGTGCAGGGGTGA-3’ (bottom). Mutated DNA was
transformed into E. coli BL-21 DE3-gold competent cells, and protein production and

purification ensued exactly as for PTB1:34 (chapter 2).

Initial characterization began by comparison of secondary structure using CD, and
shows that the spectra of PTB1:34 and PTB1:34R114A are nearly indistinguishable, as
expected (Figure 2). GndHCI denaturation revealed that the proteins have similar
stability, but slightly difference profiles. In particular, the initial increase in ellipticity
observed at low concentrations of denaturant in PTB1:34, that was tentatively attributed
to domain separation, is missing in the denaturation profile of the mutant (Figure 2).

This result is encouraging as it shows that the thermodynamic properties of the mutant
are indeed different from the wild type protein, however, more work needs to be done to
ascertain whether or not the domains are uncoupled but not physically separated. Simple
RNA binding studies are also necessary to determine the functional consequences of the

mutation.

Initial attempts to prepare a "°N labeled sample for NMR backbone comparisons
were not successful. While the protein expresses well in LB media, the expression is
poor in M9 minimal media, even though cell growth does not seem to be compromised.
However, after only two attempts, there is no reason to think that this obstacle is

insurmountable. In the meantime, many RNA binding studies could be done that would
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be very informative.
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Figure 1: Arginine 114 may be important for communication between PTB RRM3
and RRM4. The three-dimensional structure of PTB1:34 is shown (PDB ID:2EVZ) with
the B-sheet surfaces in magenta (the putative RNA binding surfaces) and R114 in orange
licorice. R114 was mutated to an alanine in an attempt to decouple the domains without

physical separation.
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Figure 2: The secondary structure of PTB1:34 is perturbed by the R114A mutation.
CD spectra of all protein constructs used in this work is shown in the top panel with
PTB1:34 in blue and PTB1:34R114A in purple. Net secondary structure is gained with
the mutation. In addition, the chemical denaturation of R114A is significantly different
from PTB1:34 (bottom panel). Importantly, the initial increase in CD signal observed in
PTB1:34 (blue) that was tentatively attributed to separation of the domains is missing in
the mutated protein (orange). These results suggest that the mutation may indeed
decouple the two RRMs. However, structural studies will be necessary to confirm this, as

well as to make sure that the domains in the mutant are not physically separated.
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Concluding Remarks

Unique properties of the two C-terminal RRMs of PTB create a system that,
although challenging, is interesting to study on many levels. PTB has been found to
participate in a wide range of cellular tasks, though it remains unclear how it does so. To
this end, the thorough investigation of protein structure, unfolding properties and protein
dynamics presented in this work will hopefully contribute to a greater understanding of

how this versatile protein functions.

The fact that the protein consists of RRMS, protein motifs that have been
exhaustively studied in terms of structure and binding, enables more general questions
about structure function relationships to be asked. Particularly, the C-terminal extension
in RRM3 provides a tool that can be exploited to gain insight into how structural

modifications of a common motif may be used by nature to alter protein binding events.

Attempts to characterize the thermodynamic stability of the proteins used in this
study revealed a linear denaturation profile for RRM4. This discovery was used to learn
more about protein unfolding energy landscapes, and RRM4 was classified as a natural
missing link between downbhill and activated unfolding scenarios. In addition, since an
array of states are potentially accessible along the unfolding pathway, further study of this
RRM may be useful for understanding structural and thermodynamic changes that occur

as proteins unfold.
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Finally, the nature of the interaction between PTB RRM3 and RRM4 implies
allostery. We have designed a protein mutant intended to disrupt the communication
between the two RRMs without physically separating them. This protein expresses well
and is stable, facilitating future structure and dynamics studies that may be of great

interest.

Hopefully, the work presented herein not only enhances our understanding of

protein systems but opens the door for future studies as well.
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