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Abstract

More recent evidence has shown that access of animal microRNAs (miRNAs) to their

complementary sites in target mRNAs is determined by more sequence-specific de-

terminants than the seed regions in the 5’ end of miRNAs. Although these factors

have been shown to be related to the repressive power of miRNAs and used, in sep-

arate programs, to predict the efficacy of miRNA complementary sites, it remains

unclear whether these factors can help to improve miRNA target prediction. We de-

velop a new miRNA target prediction algorithm, called Hitsensor, by incorporating

more sequence-specific features that determine complementarities between miRNAs

and their targets, in addition to the canonical seed regions in the 5’ ends of miRNAs.

We evaluate the performance of our algorithm on 720 known animal miRNA:target

pairs in four species, Homo sapiens, Mus musculus, Drosophila melanogaster and

Caenorhabditis elegans. Our prediction results show that Hitsensor outperforms five

popular existing algorithms, indicating that our unique scheme to quantify the deter-

minants of complementary sites is effective in improving the performance of a miRNA

target prediction algorithm. Unlike most existing algorithms, our method does not

use conservation information and can find many unconserved miRNA:target pairs.
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determinants
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Introduction

MicroRNAs are non-coding RNAs that regulate the expression of protein-coding genes at

post-transcriptional level [1]. They function by base-paring to their target mRNAs, subse-

quently leading to translational repression [1,2], mRNA cleavage [3–5] or miRNA-induced

degradation [6–8]. Due to the complexity in experimental validation of miRNA targets,

several computational miRNA target prediction methods have been developed, including

TargetScan [9] (later updated to TargetScanS [10]), Miranda [11,12], PicTar [13], methods in

[14,15], RNAHybrid [16], rna22 [17], PITA [18] for animals, and methods in [19–21], miRU

[22] for plants. Many of these methods were reviewed in [23].

Most predicted and reported complementary sites of animal miRNAs are located in the

3’ untranslated region (3’ UTR) of target mRNAs [9–16]. The imperfect complementarity

between miRNAs and their targets in animals makes target prediction much harder than in

plants. Many existing methods for animals [9–16] extensively make use of the seed region,

which is from the 2 to 8 nucleotides from the 5’ end of a mature miRNA, in their prediction.

However, a substantial number of miRNA:target pairs do not have good seed regions. Bren-

necke et al. [24] found that there are mainly two categories of miRNA complementary sites,

5’ dominant sites and 3’ compensatory sites. The first category constitutes most animal

miRNA complementary sites [13,10,24]. For this category, 7mer and 8mer 5’ seed matches

are sufficient to function with 3’ paring below a random noise level [24]. On the other hand, 3’
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Zhang).
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compensatory sites have insufficient 5’ seed matches and require strong 3’ pairing in order to

be functional [24]. One example is the let-7 binding sites in lin-41 [25]. Thus, a strong pref-

erence to seed region by the existing methods may miss 3’ compensatory sites. For example,

TargetScan cannot find 3’ compensatory sites [23].

Most existing methods [9–16] also use evolutional conservation, which is effective for finding

conserved targets. On the other hand, conservation information does not help to identify

species specific targets.

More recent evidence indicated that there exist other determining factors besides the seed re-

gions in miRNA complementary sites. As well documented, most miRNAs start with uridine;

correspondingly, their binding sites end with adenosine. Even for some miRNAs that do not

begin with uridine, the position complementary to the first nucleotide of miRNA is preferen-

tially adenosine [26]. Lewis et al. [10] found that seed complementary sites are often flanked

by adenosines. Nielsen et al. [26] noticed the preference of adenosine or uridine for the site

complementary to the ninth nucleotide from the 5’ end of a miRNA. They also found that

an increased AU content in the 3’ of the seed region is correlated with an increased mRNA

down-regulation effect. Jing et al. [27] and Grimson et al. [28] further noticed that many

effective sites preferentially reside within regions that are locally AU rich. As suggested by

[24], 3’ compensatory sites can function because there are extensive parings in those regions.

Moreover, Grimson et al. [28] quantified a compensatory pairing region of 12-17 nucleotides

from the 5’ end of a miRNA. In addition, Grimson et al. [28] also found that closely spaced

sites in the 3’ UTR of a target mRNA often synergistically promote the repression of the

target, and effective complementary sites often locate after the 15-th nucleotide from the

stop codon of the mRNA and in the first and last quarters of the 3’ UTR. All these results

indicated that local AU-content, 12-17 nt pairing, closely-paced sites, site positions, along

with seed pairing, are important determinants to enhance miRNA-induced repression.
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Motivated by the evidence mentioned above, we hope that incorporating these determinants

can further improve miRNA target prediction. One of our aim is to investigate whether

these determinants are useful to improve the performance of a target prediction algorithm.

In particular, we propose a novel miRNA target prediction algorithm, called Hitsensor, to

exploit and combine various sequence determinants. In the Hitsensor algorithm, we introduce

a set of rules to quantify the contributions from the seed region, 12-17nt region, local AU-

content, close sites and site positions. Although some existing algorithms, such as Miranda

[11], also give additional rewards to seed region, our approach uses a new rewarding scheme

to emphasize the continuously matched seed. Briefly, the Hitsensor algorithm does not use

conservation information in its prediction. It starts from a sequence alignment with the

Smith-Waterman algorithm [29] for miRNA and its target mRNA, calculates the scores of

the 5 determinants for each alignment site, and then adds these individual determinant

contributions to the alignment score to get the total score of a miRNA complementary site.

Finally, sites with total scores larger than a pre-specified threshold are outputted.

Grimson et al. [28] proposed a context score to predict the site efficacy with these determi-

nants. However, the goal of our method and context score is different. The model proposed

by Grimson et al. [28] was used to predict the efficacy of a miRNA complementary site in

repressing the target, especially at mRNA levels. Their regression model requires mRNA

expression information. In contrast, our method focuses on predicting true miRNA:target

relations, meanwhile, it attempts to reduce false miRNA:target relations by making use of

additional information from these determinants. In another study, Wang and Naqa [30] em-

ployed mRNA expression profiles to select important features for prediction of miRNA:target

pairs. Our method is easier to use than those in [28,30] because our method uses no infor-

mation other than sequences of miRNAs and targets. Furthermore, the methods in [28,30]

could miss some targets if they are down-regulated by miRNAs at protein level.

We adopt two methods to evaluate the performance of the Hitsensor algorithm, the receiver
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operating characteristic (ROC) curve and the signal-to-noise ratio (S2N). We use a data set of

96 verified functional and 83 non-functional miRNA:target pairs of Drosophila melanogaster

to quantify the contributions of individual determinants. The Hitsensor algorithm reaches

an area under the ROC curve (AUC) of 0.794 and an S2N of 7.62, which are the highest

among all compared algorithms, including PITA [18], PicTar [13] and Miranda [11], on this

data set.

We then select 541 verified functional miRNA:target pairs across four species, Homo sapi-

ens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans, to validate the

performance of the Hitsensor algorithm. Again, the Hitsensor algorithm produces the largest

number of correct predictions, 293, among all algorithms compared. In comparison, the ex-

isting algorithms, PITA with and without flanking sequences [18], TargetScanS [10], PicTar

[13] and Miranda [11] have, respectively, 231, 262, 188, 138 and 123 correct predictions on

these selected data sets.

Materials and Methods

Data Sets

As summarized in Table 1, we extrated 720 experimentally verified miRNA:target pairs for

four species from [18], the TarBase [31] and [32]. Kertesz et al. [18] summarized a data sets

with 190 Drosophila melanogaster miRNA:target pairs, 102 functional and 88 non-functional.

Because the target genes of 6 and 5 pairs from 102 functional and 88 non-functional sets,

respectively, have no 3’ UTR in the FlyBase (http://flybase.bio.indiana.edu/), we only use

the remaining 96 functional and 83 non-funcational pairs, i.e., dme96P and dme83N in Table

1, which are used as training data set to find optimal quantifications of the 5 determinants.

In addition, the TarBase contains another 16 functional miRNA:target pairs of Drosophila

not in dme96P, which form dme16P in Table 1. The cel, hsa and mmu data sets are for worm
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Table 1

The experimentally verified miRNA:target pairs used in training and testing.

No. Functionality Reference

training

dme96P 96 functional [18]

dme83N 83 non-functional [18]

subtotal 179

testing

dme16P 16 functional TarBase[31]

cel 14 functional TarBase[31]

hsa 440 functional TarBase[31]

mmu 49 functional TarBase[31]

unc-hsa 22 functional [32]

subtotal 541

Total 720

Caenorhabditis elegans, human Homo sapiens and mouse Mus musculus and downloaded

from the TarBase. After removing some miRNA:target pairs of worm, human and mouse in

the TarBase because either their miRNA or target sequences are not available, we have 14,

440 and 49 pairs in cel, hsa and mmu data sets. The unc-hsa data set in Table 1 consists

of 22 of the 23 unconserved human miRNA:target pairs in [32], because we did not find 3’

UTR for 1 of the 23 pairs in [32]. The detailed list of these 720 miRNA:target pairs are given
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in Supplementary Table S1.

The sequences of miRNAs of these 720 pairs were downloaded from the miRBase (release 10)

[33]. The sequences of mRNA targets were from NCBI RefSeq database (ftp://ftp.ncbi.nih.

gov/refseq/H sapiens/H sapiens/RNA for hsa, ftp://ftp.ncbi.nih.gov/refseq/M musculus/

Contigs/RNA for mmu) and NCBI CoreNucleotide database and the FlyBase for dme96P,

dme84N, dme16P and cel.

Algorithms Compared

We will compare Hitsensor with 5 benchmark methods, i.e., PITA with (PITAf) and with-

out (PITAn) flanking sequences [18], TargetScanS [10], PicTar [13] and Miranda [11]. The

features used by the algorithms compared are summarized in Table 2 and discussed in detail

in the next section. All these algorithms make use of the seed region, although in different

ways. Hitsensor and Miranda give additional rewards to Watson-Crick pairs in seed regions

with different schemes (to be discussed in next section). PITAn, PITAf and TargetScanS di-

rectly find perfectly seed regions [18,10]. PicTar prefers perfect seed matches but also allows

imperfect seed matches [13,32]. Hitsensor is the only algorithm that uses the 12-17nt region.

Hitsensor, PITAf and TargetScanS employ the flanking regions of seeds [32,18]. Hitsensor

uses close site determinants and optionally uses site position determinants. PITA, i.e. both

PITAf and PITAn, is the only algorithm that considers the free energy of 3’ UTR before

miRNA binding (∆Gopen) by employing the energy gain after and before a miRNA binds

its target, i.e., ∆Gduplex − ∆Gopen [18]. Miranda, TargetScanS and PicTar compute the free

energy of miRNA:target duplex, ∆Gduplex, with different methods [32]. Finally, conservation

information is used by TargetScanS, PicTar, and optionally by Miranda [32]; therefore, these

algorithms are conservation based.

The results of TargetScanS were downloaded from the TargetScan website (http://www.target
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Table 2

The features used by the 6algorithms compared. ’opt.’ means optional. ∆Gopen is energy cost of

unpairing the 3’ UTR of target. ∆Gduplex is the free energy of miRNA:target duplex.

HITS MIRA PITAn PITAf TSS PicTar

Seed
√ √ √ √ √ √

12-17nt
√

seed flank
√ √ √

close site
√

site position opt.

∆Gopen

√ √

∆Gduplex

√ √ √ √ √

conservation opt.
√ √

scan.org/), for both conserved and nonconserved miRNA families. The results of PicTar

were downloaded from annotation databases of dm2, hg17, mm7 and ce2 of the UCSC

genome browser (http://hgdownload.cse.ucsc.edu/). The results of PITA were downloaded

from (http://genie.weizmann.ac.il/pubs/mir07/mir07 data.html) for targets catalog with

and without 3nt upstream and 15nt downstream flanking sequences. We used a local version

of the Miranda algorithm (version 1.9), available at the Miranda website (http://www.micro

rna.org/miranda new.html), to obtain its results.

Because some verified complementary sites, such as miR-431 complementary sites on RTL1/Rtl1

[34], are located in coding regions of targets, we applied Hitsensor and Miranda (without

conservation information) separately to 3’ UTRs and coding sequences (CDS) to examine

miRNA complementary sites in CDS.
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Sequence-Specific Determinants

We use the example in Figure 1 to show how to use a set of parameters, called reward bases,

to quantify the five sequence-specific determinants of miRNA complementary sites, i.e., seed

region, 12-17nt region, local AU-content, close sites and site positions. Different values can

be given to the reward bases to adjust the contributions of different determinants. In our

implementation, we have assigned optimal default values, 8, 4, 44, 12 and 0 to reward bases

of the seed region, 12-17nt region, local AU-content, close sites and site position determinant,

respectively. We will discuss how to obtain these values of the reward bases in Results.

Seed Determinant

Continuously matched seed regions are critical for repressing target mRNA or inducing

target mRNA degradation [24,10,28]. To capture the importance of continuous matches in

seed regions, we design a new score scheme that rewards functional, continuously matched

seed regions with larger scores than uncontinuously matched counterparts, which often occur

by chance. Formally, we give a reward to the seed region based on Equation (1),

SeedScore = R ×
8∑

i=1

(αi − βi × 2), (1)

where R is the reward base of seed determinant, αi is the number of continuous Watson-Crick

matches from the 5’ end of a miRNA and is reset to 0 when a mismatch or a G:U pair occurs,

and βi is the number of continuous mismatches or G:U pairs from the 5’ end of a miRNA

and is renewed to 0 when a Watson-Crick pair appears. αi and βi in Equation (1) serve as

a reward to continuous matches and a penalty to mismatches and G:U pairs, respectively.

In addition, because 8-mer perfect seeds are more effective to repress targets than 7-mer

ones [28,26], we also adopt the following empirical rules: if there is a continuously paired

8-mer seed, an additional reward of 3R will be given; if there exists a continuously paired
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7-mer seed with a G:U pair or mismatch at the first nucleotide, an additional reward of

2.5R and 2R will be added; if there is at least 7 continuously paired nucleotides and the

ninth nucleotide is a Watson-Crick pair, an additional reward of R will be given. Finally,

if there are totally more than 2 mismatches or G:U pairs, we give an additional penalty of

R× (nm + nG:U), where nm and nG:U are the number of mismatches and the number of G:U

pairs from the first to the eighth nucleotide of the miRNA, respectively.

For example, in site 2 (S2) of Figure 1, hsa-miR-101 is continuously paired to 3’ UTR of

EZH2 from the first to ninth nucleotide. Thus, this site receives a seed score of 160, i.e.,

(1 + 2 + . . . + 8) × 4 = 144 based on Equation (1), plus 12 for a continuous 8-mer pair

and 4 for a paired ninth nucleotide. As another example, if there was a mismatch at the

fifth nucleotide of S2, then α5 to α8 would become 0 to 3 (see Supplemental Figure S1(a)).

Therefore, the seed score would be (1 + . . . + 4) × 4 − 8 + (1 + 2 + 3) × 4 = 56, which is

104 less than a continuously matched 8-mer seed, where -8 is the penalty to a mismatch at

position 4. In contrast, if the reward is determined by the number of Watson-Crick pairs,

as used by Miranda [11] (see Figure S1(b)), the difference between the two cases is only

4 × 8 − (4 × 7 − 4) = 8.

12-17nt Region Determinant

The continuously matched 12-17nt region is important and compensatory to imperfect seed

region [24], and enhances miRNA binding [28]. Therefore, similar to the SeedScore in Equa-

tion (1), we reward the 12-17nt region with Equation (2).

TwelveSeventeenScore = U ×
6∑

j=1

(αj − βj × 2), (2)

where U is the reward base for the 12-17nt region determinant, αj and βj have the same

values as αi and βi in Equation (1) except starting from 12nt of a miRNA. Similar to the
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seed region, we also give an additional penalty of U ×(nm +nG:U) where nm and nG:U are the

number of mismatches and the number of G:U pairs from 12 to 17nt, respectively, if there

are more than 2 mismatches or G:U pairs in the 12-17nt region.

A complementary site with sufficient matches in the seed region can function with little

support from the pairing from the 3’ end of the miRNA [24]. Therefore, if there exists at

least one basic 6-mer (2-7nt) seed match, we will not give a penalty to the 12-17nt region, i.e.,

penalty = 0. On the contrary, if a complementary site does not contain a 6-mer seed match

and 12 to 17nt form a 6-mer continuous Watson-Crick match, we will give an additional

reward of 6U to 12-17nt determinant, and set the SeedScore in Equation (1) to 0 if it is

negative.

For the example in Figure 1, site S2 has an 8-mer matched seed, thus penalty to 12-17nt

region is zero. There are totally four Watson-Crick paired nucleotides with 2 of them con-

tinuously matched, thus the total reward is 4 + 4 + 8 + 4 = 20.

Local AU-Content Determinant

We calculate the score of local AU-content with Equation (3).

AUScore = (
30∑

i=1

1

i
× IsAUup(i) +

30∑

j=1

1

j
× IsAUdown(j)) × B, (3)

where IsAUup(i), a variable indicating whether a position on mRNA beginning from the

opposite of 9nt of miRNA is A or U(T), will be 1 if the nucleotide at position i is A or

U(T), or 0 otherwise. Because local AU preference normally appears with continuous seed

match [10,28], we allocate different reward base B and 0.25B to sites with and without

perfectly matched 6-mer seeds (2-7nt) to further differentiate functional sites with perfect

seeds to those with imperfect seeds normally due to random chance. Because AU preference

immediately beside seed region is important and decreases fast when the distance from the
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seed increases [10,28], the weights of these A and U, 1/i and 1/j, are decreasing when the

distance between them and seed, i and j, increases. As shown in Figure 1, the weights of

local A and U around seed are reflected by the height of the bars above the corresponding

nucleotides. Thus, the sum operations in Equation (3) capture the effects of A and U in the

flanking region of the seed. For the example in Figure 1, because the site has a matched

8-mer seed, B is 8, and the score of local AU-content is 51.9, following Equation (3).

Close Sites Determinant

If a miRNA has more than one complementary sites on a target, these sites may synergisti-

cally repress the target, when they have an intersite distance between 19 to 34nt [28]. Thus,

we first find all sites with at least a 6-mer matched seed or a total score from other determi-

nants greater than that of an 8-mer matched seed plus 8 additional paired nucleotides, and

then calculate the distances between these sites. If the distance between two sites is within

19 to 34nt, we give a close site score of D. In Figure 1, sites S2 and S1 have a close site score

of D = 12, because S2 and S1 are 32nt apart and S1 has a 7-mer matched seed.

Position Determinant

We give a position score of Q if a complementary site is located in the first or last quarter

of a 3’ UTR, and an additional reward of 0.5Q if the 3’ UTR is longer than 1300nt. This is

because complementary sites in the first and last quarters of 3’ UTRs longer than 1300nt are

more effective [28]. However, if a complementary site is located within the first 15nt of the

first quarter of a 3’ UTR, we will not give reward to it, because such a site is weaker than

those in other regions of the 3’ UTR [28]. The position determinant is only applicable to the

miRNA complementary sites in 3’ UTRs of target mRNAs. For the example in Figure 1, no

position score is given to site S2, which is located in the second quarter of the 3’ UTR.
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The Hitsensor Algorithm

Hitsensor first uses a modified Smith-Waterman (SW) algorithm [29] to find regions with

sufficient matches between miRNAs and their targets. Instead of performing alignments

with matched nucleotides, e.g., A-A and C-C, Hitsensor finds complementary nucleotides,

i.e., G-C, A-U and G-U “wobble” pairs that have rewards of +6, +4 and +2, respectively,

in alignment. The affine gap penalty, i.e., the penalty increasing linearly with the length

of gap after initial gap opening penalty, is used for gap opening (-8) and gap extension

(-4). The algorithm gives a penalty of -3 to known mismatch nucleotides and a penalty of

-1 to mismatches to unspecified nucleotides (i.e., “N”) in mRNAs. The algorithm will first

recursively search for miRNA complementary sites on the whole target mRNA sequence. If

a site has a positive alignment score, the algorithm will keep it for further analysis.

After obtaining a list of sites, Hitsensor will continue to evaluate the sequence-specific de-

terminants for all sites and set the scores for the determinants. The final score of a comple-

mentary site is then the sum of the scores of all determinants and alignment score from the

Smith-Waterman algorithm. For example, the final score for S2 in Figure 1 is 299.9 which

is the sum of the scores of different determinants and the alignment score. If the final score

of a given pair is greater than a user-specified threshold, Hitsensor will output this site.

Finally, the max score of all sites for a given miRNA:target pair is used as the representative

score of the pair to reflect the best possible binding of the pair. This information is useful

because even though many miRNA:target pairs carry a single complementary site [32], a

large number of them have multiple complementary sites. And when multiple sites exist, the

most accessible site should be more likely to be bound than the other sites since a site with

a larger final score should be more accessible than one with a smaller final score.

In some extreme cases, we found that some miRNA:pairs with perfect seed matches, such

as dme-miR-79 vs bap, have optimal SW alignments with imperfectly matched seed regions.
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Consequently, these sites will have low final scores based on our score scheme. To correct this

drawback due to application of the SW alignment, Hitsensor will check whether the target

has regions that perfectly match to 2-7nt of the miRNA if it fails to find complementary sites

after evaluating all determinants. If such regions are found, Hitsensor will cut the flanking

sequences, upstream 29nt and downstream 1nt, of these regions, re-evaluate the determinants

and output these sites if they satisfy the specified threshold.

We have implemented the Hitsensor algorithm with the Java programming language. The

software package and documents are available at the supplementary website of the journal.

Evaluation Methods

The receiver operating characteristic (ROC) curve

The ROC curve shows the sensitivity vs false positive ratios (fpr, i.e., 1 - specificity) under

different score thresholds. The area under the curve (AUC) measures the ability of the

algorithm to correctly classify functional and non-functional miRNA:target pairs. On an

ROC curve, the point nearest to the upper left corner provides the optimal algorithm setting,

where the algorithm reaches the optimal balance between sensitivity and specificity (i.e., 1 -

fpr).

Signal-To-Noise Ratio

The signal-to-noise (S2N) ratio is often used to evaluate the performance of target prediction

algorithms [13,9]. We use the scores of verified functional miRNA:target pairs as the scores

of positive samples and the scores of verified non-functional miRNAs as values of negative

samples to generate the signal-to-noise ratio.
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Table 3

The number of positive predictions of the compared algorithms. The subtotal row lists the total

number of correct predictions on all testing data sets. The last row shows the threshold scores

to obtain the results. Algorithm names are the same as those in Figure 2. The best prediction

performances, i.e., the largest numbers for data sets with functional pairs and the smallest number

for dme83N with non-functional pairs, are shown in bold face.

3UTR CDS 3UTR+CDS

HITS MIRA PITAn PITAf TSS PicTar HITS MIRA HITS MIRA

dme96P 72 40 69 69 31 61 13 21 77 48

dme83N 17 25 22 22 4 19 15 25 32 38

dme16P 11 1 5 2 2 10 0 0 11 1

cel 6 4 8 9 4 4 1 2 7 6

hsa 237 96 226 202 151 117 50 54 268 132

mmu 30 21 17 11 31 7 14 16 39 30

unc-hsa 9 1 6 7 0a 0a 3 5 10 6

subtotal 293 123 262 231 188 138 68 77 335 175

threshold 472 139 -6.8 -2.2 NA NA 472 139 472 139

a results from [32].

Results

Improved Performance by Incorporating Diverse Sequence-Specific Determi-

nants

Examining Effects of Different Determinants

To find optimal quantifications of determinants, we exclusively changed the reward base for

one of the five determinants, i.e., seed region (R), 12-17nt region (U), local AU-content (B),
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close sites (D) and site position (Q), from 0 to 20, and obtained the ROC curves of the

training data set (dme96P+dme88N). The results are listed in Supplementary Figures S2(a)

to (e), respectively. The AUC and S2N against various values of the five reward bases are

given in Figures S3(a) and (b). As shown in Figures S2(a) and (b), the algorithm had very

different performance, and reached best AUC and S2N when R = 8 and U = 0 in Figures

S3(a) and (b). But after reviewing Figure S2(b), we found that the algorithm had the optimal

tradeoff between sensitivity and specificity when U = 4. The increasing reward base of local

AU-content, B, had a beneficial effect on the AUC and S2N of the algorithm, although

less significantly than R and U (Figures S3(a) and (b)). After testing various B values, we

found that AUC reached the maximal value when B was around 40 (Figure S3(c)). When

B = 44, the Hitsensor algorithm had its best tradeoff between sensitivity and specificity

(Figure S2(f)). Various reward bases of close site determinant, D, had little effect on the

performance of the algorithm (Figures S2(d) and S3(a),(b)). We also found that increasing

Q, the reward base of position determinant, could decrease AUC and S2N values (Figures

S2(e) and S3(a),(b)). Therefore, we applied R = 8, U = 4, B = 44, D = 12 and Q = 0 to

both the training and testing data sets. The obtained ROC curve, AUC and S2N of Hitsensor

on training data sets, as well as those from other algorithms, are given in Figure 2, while

the number of positive predictions, i.e., samples predicted as functional miRNA:target pairs,

for all data sets at the optimal settings of the compared algorithms are listed in Table 3.

The optimal thresholds of the compared algorithms are obtained with their ROC curves, as

discussed in Methods. The complete lists of Hitsensor predictions when using 3’ UTRs and

CDS are given in Table S2 and S3, respectively.

miRNA Complementary Sites in 3’ UTRs and CDS

Although most verified animal miRNA complementary sites are located in 3’ UTRs of tar-

gets [9–16], some mammalian coding genes also have miRNA complementary sites in their
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CDS [34,35]. As shown in Table 3, both Hitsensor and Miranda predicted more miRNA

complementary sites in 3’ UTRs than in CDS. For instance, Hitsensor predicted 237 sites

in 3’ UTRs while only 50 sites in CDS. It is important to note that we found that some

miRNAs can have complementary sites in both 3’ UTRs and CDS. We found that among

the 50 miRNAs that have complementary sites in CDS of human genes (on hsa data set),

19 also have complementary sites in 3’ UTRs (Table S4). The regulatory effects of these 50

miRNAs on CDS can be well explained by the microarray gene expression profiles of the

targets (see Table S4) in [7]. This suggests that these miRNA sites in CDS might play roles

in the regulation of the targets. Furthermore, many miRNA complementary sites in CDS

of RTL1/Rtl1, such as those of miR-136 and miR-341, have been directly verified with 5’

RACE [34].

We also find that the miRNA complementary sites of two miRNA:target pairs, hsa-miR-

125b:DDX19B/mmu-miR-125b-5p:Ddx19b and miR-431:RTL1/Rtl1, in CDS are conserved

between human and mouse (see Table S3). It is interesting to point out that miR-125b:DDX19B

was listed as an unconserved pair in [32] because there were no conserved complementary

sites in 3’ UTRs. However, our findings suggest that the regulatory relation of miR-125b and

DDX19B is conserved between human and mouse through miR-125b complementary sites in

CDS of DDX19B. As to be shown in Figure 3(a), the conservation of miR-431 complemen-

tary sites in CDS of RTL1/Rtl1 have been verified in [34]. In addition, a recent study also

demonstrated that miR-148 targets coding region of human DNMT3b, which is conserved

in mammals [35]

These findings suggest that the 3’ UTRs of animals have evolved to accommodate most

miRNA complementary sites, meanwhile coding regions still maintain a small portion of

miRNA complementary sites.
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Comparisons With the Existing Methods

Hitsensor achieved the best overall performance in all algorithms compared on both training

and testing data sets; the results are shown in Figure 2 and Table 3. On the training data

sets, Hitsensor reached a sensitivity of 75% (72/96) and a specificity of 79.5% (1-17/83),

which are 3% and 6% higher than those of PITA, repectively. As shown in Table 3, PITA

had the best performance among all existing algorithms. This was also shown by Figure

2(a), where the closest point of all ROC curves to the up-left corner is on the ROC curve

of Hitsensor. We attribute this to the 12-17nt determinant used by Hitsensor. As discussed

early, Hitsensor could reach optimal tradeoff between sensitivity and specificity when the

reward base of 12-17nt region, U , was 4 (see Figure S2(b)). Meanwhile, other algorithms

compared did not use information from 12-17nt region, as shown in Table 2. If taking CDS

of targets into account, Hitsensor could have a sensitivity of 80.2% and specificity of 70% on

the training data sets (see Table 3).

On the testing sets, Hitsensor had an overall sensitivity of 54.2% (293/541), again the highest

among all compared algorithms. When compared with the best sensitivity of the existing

algorithms (from PITAn), Hitsensor had an improvement of 5.8%. Hitsensor found another

42 pairs, 7.8%, on all test data sets if both 3’ UTRs and CDS were considered, as shown in

Table 3. On individual data sets, Hitsensor performed the best in 4 out of the 7 data sets,

shown in bold fonts in Table 3. On dme83N, Hitsensor produced 17 false positive predictions,

which was only larger than that of TargetScanS. However, the sensitivities of TargetScanS

were much lower than Hitsensor, except for the mmu data set.

Hitsensor reached an AUC value of 0.794 that is lightly higher than those of PITA, with and

without flanking sequences, and much higher than that of Miranda (Figure 2(b)). As reported

in [18], PITAf had an AUC of 0.79 on 190 samples, which were higher than those from method

in [15], PicTar [13] and Miranda [11] (see Figure 2(b)). PITA had similar performance on
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our data sets with 179 samples and 190 samples originally reported by [18], which suggests

that it is meaningful to compare our results with those methods in [18] (starred methods

in Figure 2(b)). Again, Hitsensor had higher AUC value than those methods in [18] (see

Figure 2(b)). Miranda performed better on the 190 samples in [18] than on our training

data with 179 samples, which might be resulted from different versions of Miranda and/or

different methods to calculate miRNA:target scores. Hitsensor also had higher S2N values

when compared with PITA and Miranda, as in Figure 2(c). Wang and Naqa [30] also used

the AUC to evaluate their method. Their models reached AUC values of 0.79 and 0.77 with

and without the conservation information, respectively [30]. Hitsensor obtained a slightly

better AUC value than that of Wang and Naqa’s method [30] even though Hitsensor did not

used mRNA expression information.

As shown in Table 3, PITA performed well by using free energy of target 3’ UTRs and

miRNA:target duplex (Table 2). In contrast, Hitsensor achieved an overall better perfor-

mance than PITA without employing the thermodynamical information used by PITA, which

is computationally expensive to compute. Because all algorithms used seed information, we

attribute this improvement to two unique features that Hitsensor used, the 12-17nt region

and the local AU-content (Table 2). As discussed early, 12-17nt region is effective to im-

prove the tradeoff between sensitivity and specificity (Figure S2(b)). The reward to local

AU-content determinant improved the AUC of Hitsensor (Figure S3(c)). In addition, the

score of local AU-content is computationally cheaper to compute than the free energy of 3’

UTR and miRNA:target duplex used by PITA.

We also compared the overlapped predictions of different algorithms for the dme96P and hsa

data sets, and the results were shown in Table 4. For a given algorithm, the total number

of overlapped predictions showed capability of this algorithm to find predictions from other

algorithms compared. We thus listed the total number of overlapped predictions in the

last column (for hsa data set) and last row (for dme96P data set). For instance, Hitsensor
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Table 4

The overlapped predictions in 3’ UTRs of different algorithms on the dme96P (below upper-left

to lower-right diagonal) and hsa data sets (above upper-left to lower-right diagonal). The value

in each cell means the overlapped predictions of the two algorithms from the row and column of

the cell. The last row and column list the total number of commonly predicted pairs with other

algorithms for the algorithm in this column and row on dme96P and hsa data sets, respectively.

Algorithm names are the same as those in Figure 2.

hsa HITS MIRA PITAn PITAf TSS PicT total

dme96P

HITS 95 171 147 129 101 643

MIRA 19 75 62 42 35 309

PITAn 55 37 167 120 93 626

PITAf 57 37 62 100 74 550

TSS 28 12 24 26 109 500

PicT 56 30 47 49 28 412

total 215 135 225 231 118 210

respectively had 643 and 215 total common predictions for hsa and dme96P with the other 5

algorithms compared. As shown in Table 4, Hitsensor made much larger number of common

predictions than Miranda, PITAf, TargetScanS and Pictar for the hsa data set. For the

dme96P data set, Hitsensor, PITAn, PITAf and PicTar made comparable number of total

common predictions, and the total common predictions of Miranda and TargetScanS were

much smaller than the other four algorithms compared. These indicate that Hitsensor could

successfully find major parts of correct positive predictions produced by other algorithms.
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For example, Hitsensor found 171 out of the 226 (75.7%) predictions of the hsa data set from

PITAn.

Synergistic Complementary Sites

It has been observed that miRNAs can act synergistically in post-transcriptional regulation

[36,28]. This has also been observed in our results, listed in Supplemental Table S5. We found

that 12 miRNA:target pairs, which span over 11 miRNAs and 10 targets, in Table S5, have

putative synergistic complementary sites of the same miRNA in the selected data sets.

We analyzed the complementary sites on RTL1 (of Homo sapiens)/Rtl1 (of Mus musculus)

in Figure 3, where Hitsensor predicted a total of 6 new synergistic complementary sites (red

and green sites), in addition to the 3 blue sites reported in [34]. The Hitsensor algorithm

predicted two conserved synergistic miR-431 complementary sits on RTL1/Rtl1, as shown

in Figure 3(a). Davis et al. [34] reported that 11 out of 12 clones correspond to the blue

site. This suggests that at least some of the clones might be produced by the newly found

red site in Figure 3(a). Figure 3(b) shows that, in addition to the site reported in [34],

Hitsensor predicted two more complementary sites of mmu-miR-434-5p. Davis et al. [34]

reported that only 5 out of 23 clones were shown to be the cleavage product of mmu-miR-

434-5p at the position pointed by the arrow in Figure 3(c), and other clones were supposed

to be random Rtl1 degradation products [34]. However, the predicted synergistic mmu-miR-

434-5p complementary sites in Figure 3(c) suggest that the remaining clones are very likely

to be cleavage products from the newly predicted red mmu-miR-434-5p sites. Furthermore,

Hitsensor also predicted another pair of synergistic mmu-miR-434-5p sites, i.e., the green sites

in Figure 3(c), which are 2nt downstream of the blue site. They only have 2 mismatched

nucleotides and have an intersite distance of 26nt. They might also produce some of the

remaining clones detected by Davis et al. [34].
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Figure 3 shows that there exist two levels of cooperative miRNA-induced repression on

Rtl1. First, at least three miRNAs, mmu-miR-431, mmu-miR-434-3p and mmu-miR-434-

5p cooperatively repress Rtl1 by binding to their respective complementary sites on Rtl1.

Furthermore, Davis et al. [34] reported that mmu-miR-127, mmu-miR-136, mmu-miR-433-3p

and mmu-miR-433-5p are also involved in repressing Rtl1. Second, several copies of mmu-

miR-431, mmu-miR-434-3p and mmu-miR-434-5p may bind to their respective synergistic

complementary sites and collaboratively repress Rtl1.

Discussion

We have studied the effects of different sequence-specific determinants on predicting miRNA

target complementary sites and developed a new miRNA target prediction algorithm which

we called Hitsensor. The Hitsensor algorithm has a superior performance over five benchmark

miRNA target prediction methods that we compared on an extensive collection of experi-

mentally validated data sets. We attribute the performance of Hitsensor to three major

aspects.

First, we used various determinants in our methods, including the new scheme to quantify the

conventional seed region used by the other algorithms. As discussed in Methods, our quan-

tification method to seed region, as well as 12-17nt region, has given much higher rewards to

continuously matched seed regions than uncontinuously matched counterparts, which might

be produced by random chance. This has helped to distinguish functional miRNA:target pairs

to randomly paired non-functional miRNA and mRNA. Another important factor contribut-

ing to the success of Hitsensor is local AU content around seed region. Functional miRNA

complementary sites are often located in AU-rich regions in 3’ UTRs of targets [28,27]. Ap-

propriate reward to local AU content has helped to improve the AUC and optimal sensitivity

vs specificity of Hitsensor, as shown in Figures S3(c) and S2(f).
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Second, Hitsensor could predict species specific miRNA:target relations. In comparison, Tar-

getScanS, PicTar and Miranda used conservation information in their prediction, which let

them miss some species specific miRNA:target pairs, as shown by their predictions on unc-hsa

data set in Table 3.

Finally, as shown in Table 3, we found that 13.5% (13/96) and 12.6% (68/541) functional

pairs of training and testing data sets, respectively, have predicted complementary sites in

CDS of targets. Some of the predicted complementary sites in CDS had been verified in [34].

As shown in Results, Hitsensor had better sensitivities when taking CDS into account. These

results suggest that CDS of targets contain substantial percentage of miRNA complementary

sites and should not be ignored when performing target prediction for animal miRNAs,

although most miRNA complementary sites are located in 3’ UTRs, as shown in Table 3

and in literature [9–16]. Hitsensor made 15 positive predictions for the dme83N data set

when using CDS. Further experiments are necessary to verify whether these sites function

or not, because only 3’ UTRs of the targets were tested with reporter gene assays (see [18]

and references therein).

As shown in Figure 2 and Table 3, PITA also performed well on the selected data sets.

These suggest that difference between free energy of miRNA:target duplex and energe cost

of unpairing the 3’ UTR of target used by PITA is useful information in predicting animal

miRNA targets. Hitsensor does not use the folding energy of miRNA:target duplex and

3’ UTRs. However, there is a relationship between local AU-content and energy cost of

unpairing the 3’ UTR, because high local AU-content around seeds reduces the energy costs

to make seeds accessible for miRNAs loaded in the RNA-induced silencing complex (RISC,

see [1]). These imply that the seed and its flanking region are two critical factors that affect

the performance of target prediction algorithms. Hitsensor performed better than PITA

except for the cel data set (see Table 3) because it used additional information from 12-17nt

determinant.
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The Hitsensor algorithm is able to automatically predict putative synergistic complementary

sites by incorporating the close site determinant.
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Fig. 1. A schematic view of sequence-specific determinants that affect hsa-miR-101 binding to the

3’ UTR of EZH2 (NM 000609).

(a) The two predicted binding sites of hsa-miR-101, red boxes, in 3’ UTR of EZH2 that is

represented by the black solid line. The quarter points of the 3’ UTR are indicated by the

pink points above the 3’ UTR. (b) Detailed decomposition of different determinants for site

S2. With the values indicated with the bars, αi and αj above the seed and 12-17nt region

are the numbers of continuous matches at that position that are defined in Equation (1)

and Equation (2), respectively. For the local AU-content determinant, the weights of the

position are represented by the heights of the bar above the nucleotides. The reward base

for seed (R), 12-17nt region (U), local AU-content (B), close sites (D) and site position (Q)

determinant are 4, 4, 8, 12 and 12 respectively.
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Fig. 2. The comparisons of different algorithms.

(a) The ROC curve, (b) AUC and (c) S2N of the compared algorithms for the training data

set (dme96P+dme83N). HITS, MIRA, PITAf, PITAn, TSS and PicT stand for the Hitsensor,

Miranda, PITA with flanking sequences, PITA without flanking sequences, TargetScanS, and

PicTar algorithm, respectively. In part (a), the results obtained by a random scoring of the

targets are shown by a dashed line. The point pointed by the red arrow was the best tradeoff

between sensitivity and specificity reached by the Hitsensor algorithm. ∗In part (b), these

results are obtained from [18] on 190 pairs.
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Fig. 3. Predicted putative synergistic miRNA binding sites on RTL1 (of Homo sapiens)/Rtl1 (of

Mus musculus).

Blue sites were reported in [34]. Red and green sites are putative synergistic complementary

sites predicted by the Hitsensor algorithm. Black arrows indicate cleavage sites reported in

[34], which were identified by RLM 5’ RACE either by direct sequencing of the PCR products

(DS) or by sequencing of individual cloned products. The numbers indicate the fraction of

clones that identify the blue cleavage site [34]. (a) conserved miR-331 complementary sites

on RTL1/Rtl1. (b) mmu-miR-434-3p complementary sites on Rtl1. (c) mmu-miR-434-5p

complementary sites on Rtl1.
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