The Impact of Fatty Acid Synthesis on Cell Size in Bacillus subtilis

Zhzhou (Jason) Yang

Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wuurd_vol13

Recommended Citation
https://openscholarship.wustl.edu/wuurd_vol13/228

This Abstracts S-Z is brought to you for free and open access by the Washington University Undergraduate Research Digest at Washington University Open Scholarship. It has been accepted for inclusion in Volume 13 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Nutrient availability has a significant impact on bacterial cell size. Generally, bacteria cultured in nutrient-rich environments grow bigger than those cultured in nutrient-poor environments. However, it is unclear whether cell size is determined by specific biosynthetic pathways, or by bacterial biosynthetic capacity as a whole. Previous studies in the Levin Laboratory identified fatty acid synthesis as the major biosynthetic determinant of cell size in *Escherichia coli*, a Gram-negative model bacterium. Here we examined the impact of fatty acid synthesis on cell size in the Gram-positive bacterium *Bacillus subtilis*. We found that significant reductions in fatty acid synthesis reduce the size of *B. subtilis* cells. However, fatty acid synthesis is not the only major contributor to *B. subtilis* cell size. Further investigation of factors including the small molecule (p) ppGpp, a global inhibitor of biosynthesis, is still needed for a better understanding of cell size regulation in *B. subtilis*.