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ABSTRACT OF THE DISSERTATION 

 
Improving Radiotherapy Targeting for Cancer Treatment Through Space and Time  

by 

Camille E. Noel 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2013 

Research Advisor:  Parag Parikh 

 

Radiotherapy is a common medical treatment in which lethal doses of ionizing radiation are 

preferentially delivered to cancerous tumors. In external beam radiotherapy, radiation is delivered by 

a remote source which sits several feet from the patient’s surface. Although great effort is taken in 

properly aligning the target to the path of the radiation beam, positional uncertainties and other 

errors can compromise targeting accuracy. Such errors can lead to a failure in treating the target, and 

inflict significant toxicity to healthy tissues which are inadvertently exposed high radiation doses. 

 

Tracking the movement of targeted anatomy between and during treatment fractions provides 

valuable localization information that allows for the reduction of these positional uncertainties. 

Inter- and intra-fraction anatomical localization data not only allows for more accurate treatment 

setup, but also potentially allows for 1) retrospective treatment evaluation, 2) margin reduction and 

modification of the dose distribution to accommodate daily anatomical changes (called ‘adaptive 

radiotherapy’), and 3) targeting interventions during treatment (for example, suspending radiation 

delivery while the target it outside the path of the beam). 



xii 
 

 

The research presented here investigates the use of inter- and intra-fraction localization technologies 

to improve radiotherapy to targets through enhanced spatial and temporal accuracy. These 

technologies provide significant advancements in cancer treatment compared to standard clinical 

technologies. Furthermore, work is presented for the use of localization data acquired from these 

technologies in adaptive treatment planning, an investigational technique in which the distribution of 

planned dose is modified during the course of treatment based on biological and/or geometrical 

changes of the patient’s anatomy. The focus of this research is directed at abdominal sites, which has 

historically been central to the problem of motion management in radiation therapy. 
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Chapter 1 

Introduction 
 

1.1 Positional Uncertainties in Radiotherapy 
 

Radiotherapy is a common medical treatment in which lethal doses of ionizing radiation are 

preferentially delivered to cancerous tumors. Through the delivery of high-energy radiation to 

cancerous tissue, the DNA of malignant cells are damaged and the mass is shrunk or killed 

altogether. Radiotherapy is used in several capacities, including as a primary or adjuvant curative 

treatment, a means for preventing spread of local disease, and an agent of palliative treatment [1]. 

Approximately 65% of cancer patients are treated with some form of radiotherapy, and of those 

patients, the majority receive external beam radiotherapy (EBRT) [2]. In EBRT, radiation is 

delivered by an external radiation source which sits several feet from the patient's surface. In most 

EBRT schemes, the radiation dose is delivered over the course of days, weeks or months. This type 

of treatment scheme allows for healthy cells in the path of the delivered radiation beam to recover 

from radiation damage between delivered treatments (called ‘fractions’), while less resilient malignant 

cells recover more slowly. 
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The fundamental sequence of steps in the radiotherapy process is as follows: 1) patient simulation, 

during which volumetric medical images of the targeted anatomy are obtained for the treatment 

planning process, 2) treatment planning, during which radiation dose to the target is virtually 

planned using the simulation image set(s), and 3) treatment delivery, during which the planned 

radiation dose is delivered using radiation-emitting equipment. 

 

Radiotherapy is often a complex process, and errors in accurate treatment targeting can originate 

from any of these fundamental steps. A major challenge in the planning and delivery of EBRT is 

accurately positioning the target in the path of the radiation beam. Many targets change position or 

shape between or during treatment fractions, introducing targeting uncertainties and exposing 

healthy tissue to radiation. Thus, inter-/intra-fraction target motion introduces two critical hazards: 

shifting the target out from the path of radiation so that malignant cells do not receive the intended 

dose, and shifting healthy tissues into the path of radiation, increasing the risk for normal tissue 

toxicities and the associated adverse side effects. 

 

Highly conformal techniques, namely intensity modulated radiotherapy (IMRT), are now 

commonplace in order to more accurately shape the radiation dose to the target region. However, 

uncertainties in localization of dynamic targets both between and during treatment fractions have 

historically called for an expansion of the targeted volume planned for irradiation. The inclusion of 

an additional volume of tissue surrounding the target (referred to as a ‘margin’) helps to ensure that 

the target is still irradiated, even if it is slightly misaligned during treatment delivery. Thus, the 

volume of tissue planned to receive the prescription dose of radiation (called the ‘planned target 

volume’ (PTV)) is actually larger than the target volume itself (called the ‘clinical target volume’). 

The inclusion of excessive spatial margins in the PTV means that the additional tissue around the 

target is also irradiated. While these excessive margins are designed to compensate for positional 

uncertainties, the associated normal tissue exposure limits dose escalation techniques, which have 

been shown to improve disease-free survival and local control [3]. 
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In order to mitigate positional uncertainties, X-ray based imaging equipment attached to the 

treatment machine is routinely used to align the patient to the path of the radiation beam (called the 

treatment ‘isocenter’) immediately before dose delivery [4]. These technologies range from 2D flat-

panel imagers to 3D volumetric fan-beam or cone-beam computed tomography. Both two- and 

three-dimensional imaging technologies have been implemented at kilo-voltage (kV) and mega-

voltage (MV) energy levels. These technologies are used to track the movement of  targeted anatomy 

between and during treatment fractions, a method known as image-guided radiotherapy (IGRT). 

IGRT provides valuable localization information that allows for the reduction of  these positional 

uncertainties and more accurate patient alignment. Inter- and intra-fraction anatomical localization 

data not only allows for more accurate treatment setup, but also potentially allows for 1) 

retrospective treatment evaluation, 2) margin reduction and modification of  the dose distribution to 

accommodate daily anatomical changes (called ‘adaptive radiotherapy’), and 3) targeting 

interventions during treatment (for example, suspending radiation delivery while the target it outside 

the path of  the beam). 

 

While onboard X-ray based imaging technology has improved patient positioning accuracy 

dramatically over the past several decades [5], it still suffers from many shortcomings. Dosimetric 

patient safety concerns limit its use for daily localization and continuous target localization during 

treatment [4]. It is also poorly suited for visualizing soft-tissue anatomy [6], which compromises 

localization accuracy of many targets and healthy tissues. New devices and techniques have been 

under development to improve upon the spatial and temporal accuracy provided by standard X-Ray 

based technologies (Figure 1.1). The research presented here investigates the use of  novel inter- and 

intra-fraction localization technologies to improve radiotherapy to moving targets. This research is 

divided into four parts, each of  which is briefly described herein.  
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Figure 1.1  Temporal and spatial resolution of current technologies (gray) and technologies investigated in the 

presented research (red). Chapter 2 (Ch.2): Fiducial and point-based tracking, Chapter 3 (Ch.3): Magnetic resonance 

imaging (MRI), Chapter 4 (Ch.4): cine MRI, and Chapter 5 (Ch.5): Adaptive radiotherapy, which is applied in 

varying degrees according to the temporal resolution. OB-CT = Onboard Computed Tomography, kV = kilovoltage 

 

 

1.2 Radiotherapy Treatment Evaluation using 
Point-based Tracking 

 

The practice of localizing targets using implanted markers or anatomical landmarks has been 

available for decades. Lacking the ability to visualize soft tissue targets and structures, practitioners 

use the position of radiopaque markers (or dense anatomical landmarks) as visualized on onboard 

X-Ray imaging equipment as a surrogate for the position of the structure of interest. More recently, 

electromagnetic tracking technology made it possible to track wireless transponders implanted in the 

target, without the use of imaging equipment (see Appendix). Point-based localization and tracking 

is widely used today for pre-treatment, intra-treatment, and post-treatment positioning verification 
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of targets under treatment. However, the tracking information acquired from point-based 

localization technologies also offers potential value for evaluation of dosimetric coverage and 

adequacy of treatment for dynamic targets. Utilizing point-based tracking data, we developed a 

highly automated method for daily computation of cumulative dosimetric effects of inter- and/or 

intra-fraction target motion for cancer patients. This work describes a software application and 

workflow which enables (1) pre-treatment determination of appropriate rotational/translational 

motion limits for dynamic targets under treatment (2) post-treatment analysis of dosimetric target 

coverage after daily treatment, and (3) visualization of three-dimensional rotations and translations 

of the target with respect to the three-dimensional planned target volume and dose distribution. 

When used as a dose delivery evaluation tool, this application can provide increased confidence for 

radiation treatment. The validation and utility of this application is demonstrated with phantom 

testing and a prostate cancer patient case localized with continuous electromagnetic fiducial-based 

tracking. 

 

There are some disadvantages of utilizing point-based data for localization and dosimetric evaluation 

in comparison to utilizing image data (as discussed in Chapter 2), which is the subject of the next 

part of this work. Emerging imaging methods may enable better targeting than current localization 

techniques. One such method is the use of magnetic resonance imagining (MRI) to localize mobile, 

deformable soft-tissue targets both before treatment and during treatment. The use of this 

technology is investigated in Chapter 3 of this work, and is introduced in the following section. 

 

1.3 MRI for Localization of Targeted Anatomy and 
Critical Structures 

 

Tissue targeting originates in the pre-treatment dose planning stage, in which computed tomography 

CT images are used to characterize the shape and location of the tumor and surrounding anatomy. 

Accurate treatment relies on the accurate delineation of these anatomical structures during planning, 

and requires that these structures are positioned in a reproducible fashion on the treatment machine 

every day. Since targets and organs at risk are often composed of soft-tissue, accurate pre-treatment 

delineation and daily alignment of these structures can be compromised using the standard X-Ray 
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based imaging equipment available in clinical practice [7, 8].  It is well-established that MRI provides 

better representation of patient anatomy for visualization and planning in many sites, including the 

head, central nervous system and pelvis [7, 9-11]. Supplementing computed tomography (CT) 

planning images with MR images for planning has been shown to result in more precise delineation 

in these sites, enabling better targeting and normal tissues sparing [9-12]. Such findings have 

motivated the development of MRI-only planning [7] and onboard MRI devices for treatment 

localization or adaptive treatment [13-15], rendering MRI-based radiotherapy a current focus of 

clinical interest. 

 

1.3.1 Segmentation Precision of Abdominal Anatomy for MRI–
based Radiotherapy 

 
Despite large research efforts for many sites, there have been few investigations on the use of MRI 

for radiotherapy planning of abdominal cancer, a disease for which improved soft tissue targeting 

could offer considerable benefit. The respiratory motion experienced by abdominal organs during 

imaging has historically made abdominal MRI challenging, and the development and use of 

abdominal motion-compensation MRI techniques is still relatively new. Thus it is perhaps not 

surprising that MRI-based radiotherapy for abdominal sites has remained largely unstudied. The first 

part of the work presented in Chapter 3 entails an evaluation of the use of MR images for 

segmentation of abdominal anatomy. The inter- and intra-observer precision of normal tissue 

delineation is characterized on images acquired with two different sequences on a 1.5T MRI scanner. 

By assessing the contouring precision of abdominal anatomy offered by MRI, we aim to gain insight 

into its potential utility for planning and localization of abdominal cancer patients.  
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1.3.2 Low-field Onboard MRI for Anatomy Visualization 
in Radiotherapy 

 
In the second part of Chapter 3, a new technology known as onboard MRI is investigated for its use 

in improving daily localization of soft-tissue structure for radiotherapy. On-board MRI is an 

emerging technology that is being investigated by many groups in aim of mitigating daily positioning 

inaccuracies and providing better anatomical information for soft-tissue localization and adaptive 

planning [13-15]. The anatomical information acquired by this technology could 1) allow for 

improved target localization 2) enable clinicians to evaluate daily dosimetric variations caused by 

positional differences in the anatomy and 3) improve treatment by enabling adaptation of the dose 

to the daily anatomy. However low-field MRI is characterized by a relatively low signal-to-noise 

ratio, and the implications of this technology for clinical target and normal structure visualization is 

unknown. 

 

The purpose of this work is to assess the use of a novel onboard low-field MRI technology for 

target and tissue visualization in patients undergoing radiotherapy, in comparison to standard 

onboard X-Ray based imaging. The research presented here is integral to the assessment of this 

technology’s clinical utility. 

 

1.4 Onboard Cine MRI for Tracking Bowel 
 

Intra-fraction tumor motion can introduce significant targeting uncertainties for radiotherapy 

treatment. Targets which move out of the path of the beam during dose delivery will be 

undertreated, while healthy tissues that move into the path of the beam are exposed to toxic levels 

of radiation. Furthermore, accurate treatment targeting can be particularly challenging for targets 

that are not only dynamic, but are also deformable. Currently, intra-fraction motion can only be 

accounted for by using surrogates, which may not accurately represent target motion, or X-Ray 

based imaging, which uses ionizing radiation and offers limited visibility of soft tissues. The promise 

of onboard, pre-treatment MRI for more accurate daily localization prior to treatment is an exciting 

http://online.myiwf.com/astro2012/Abstract.aspx
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new development which is discussed in Chapter 3; however, the use of real-time onboard MRI 

during radiotherapy may provide even greater advantages for targeting mobile, deformable tissues. 

 
In regard to this future application, we have presented similar work in the application of fiducial-

based tracking data for dosimetric evaluation of prostate radiotherapy (as detailed in Chapter 2) [16, 

17]. However, in contrast to cine MR, the nature of fiducial-based tracking data used in this previous 

work highlights an important limitation. This technique does not directly report on motion of critical 

structures, unless fiducials are implanted into the organ at risk. Fiducial-based tracking also does not 

offer volumetric information, and is generally not sensitive to organ deformation. In contrast, cine 

MRI acquired during radiotherapy does offer this information, enabling dosimetric analysis of the 

bowel and other organs that was previously impossible via clinically available technologies. 

 

Abdominal tissues are more mobile than any other treatment site [18], and are highly deformable, 

making them difficult to target during dose delivery. In particular, bowel is one of the most critical 

dose-limiting structures in the abdomen due to its low radiation tolerance and poor localization 

during treatment [19]. A potentially significant use of intra-fraction positional information acquired 

from real-time onboard MR is suspending delivery of the treatment beam while the bowel is in its 

path, a technique known as beam ‘gating.’ To investigate the potential application of real-time MR-

based ‘bowel-gated’ treatment, we have developed automated bowel-tracking software and evaluated 

its use on cine MR patient imagesets acquired with a hybrid MR-radiotherapy unit. Such a clinical 

application could enable safer dose escalation to abdominal targets and aide in clinical decisions or 

interventions designed to minimize or manage toxicity-induced side effects.  

 

1.5 Process-Based Quality Management for Clinical 
Implementation of Adaptive Radiotherapy 

 

As discussed in Chapters 2-4, enhanced localization techniques can improve radiotherapy treatment 

enabling better pre-treatment alignment, mid-treatment interventions, and post-treatment 

evaluation. However, an additional value of such enhanced localization technologies is their use in 

administering Adaptive Radian Therapy (ART).  ART entails mid-treatment dose modification based 
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on anatomical or biological changes occurring throughout the treatment scheme. In this manner, the 

dose distribution can be optimized to target alignment tissues while sparing healthy tissues, based on 

the daily anatomy. Investigational studies demonstrating significant improvement in treatment 

efficacy using adaptive techniques [5, 20] have motivated clinical implementation. 

 

Offline ART techniques involve removing the patient from the treatment couch for imaging before 

plan adaptation and dose delivery. Most commonly, the patient is sent home before receiving the 

adapted treatment plan days later. Online ART is logistically much more difficult, and involves 

imaging and re-planning the patient’s treatment while the patient is still on the treatment couch. The 

adapted plan is then delivered immediately after adaptation.  While ART is a popular focus of 

investigational study, it is rarely practiced in the clinic. Issues surrounding workflow, resource 

allocation, technology limitations and safety have limited the use of ART, and in particular, online 

ART. In light of these unique challenges, no one has described a framework for its clinical 

implementation. The lack of a robust quality management strategy for ART continues to deter its 

practice, while the lack of ART practice limits the implementation of a data-driven quality 

management scheme. We aimed to address this void by employing a process-based approach to 

identify high-priority errors and appropriate risk-mitigation strategies for ART. Chapter 5 of this 

work describes the application of Failure Mode and Effects Analysis (FMEA) in order to develop a 

quality management framework for the clinical implementation of ART. 
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Chapter 2 

Radiotherapy Treatment Evaluation using 
Point-based Tracking 

 

Point-based localization using implanted markers or anatomical landmarks is often used before, 

during or after radiation treatment for positioning verification of targets under treatment. However, 

the tracking information acquired from point-based localization technologies offers potential value 

for evaluation of dosimetric coverage and adequacy of treatment for dynamic targets. We developed 

a highly automated method for daily computation of cumulative dosimetric effects of inter- and/or 

intra-fraction target motion for cancer patients using point-based tracking. Software utilizing point-

based tracking data was written to (1) prospectively determine appropriate rotational/translational 

motion limits for dynamic targets under treatment (2) retrospectively analyze dosimetric target 

coverage after daily treatment, and (3) visualize three-dimensional rotations and translations of the 

target with respect to the three-dimensional planned target volume and dose distribution. We 

present phantom testing and a prostate cancer patient case localized with continuous 

electromagnetic fiducial-based tracking to validate and demonstrate the utility of this application. 
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2.1 Background & Significance 
 

Uncertainties in daily tumor localization have historically called for inclusion of excessive margins in 

the planning target volume (PTV). Several population-based methods have been proposed for 

determining treatment planning margins [21, 22]. Such methodologies incorporate common 

uncertainties introduced during radiation therapy, including inter- and intra-fraction organ motion, 

to define margins that provide acceptable coverage for 90% of patients. Still, standard use of 

margins determined from population-based criteria may lead to inadequate treatment for some 

patients and overtreatment for others. 

 

Furthermore, the use of population-based margins prevents margin reduction, an essential 

component for dose escalation techniques. Prostate cancer, in particular, has been the focus of 

several clinical trials investigating dose escalation treatment schemes, as studies have shown 

improved local control [23-25]. Many studies reporting on the potential benefits gained from 

reduced PTV margins suggest that the degree of beneficence from margin reduction is patient-

specific and may be dependent upon the shape of the target and its proximity to nearby organs at 

risk [26-28]. Adaptive radiation therapy using patient-specific margins and varying action levels 

based on inter-fraction set-up error has been published in detail [29-31]. More recently, an effort has 

been made to use volumetric imaging (cone-beam computed tomography (CBCT) or megavoltage 

computed tomography (MVCT)) for adaptive dose calculation [32-34]. While reports of potential 

benefits utilizing an image-guided based method are promising, clinical implementation has been 

limited for several reasons (Table 2.1). 



12 
 

Table 2.1  Limitations of image-guided techniques for ART. 

Limitations References 

1) Regular QA and accuracy of HU units for 
dose computation 

Oelfke et al [35], Baumann et al [36], Verellen 
[37] and McParland [6]

 

2) Mechanical limitations: Limited FOV, 
isocentric/geometric uncertainties due to 
gantry sag 

Oelfke et al [35] and Verellen [37] 

3) Image Quality: Increased noise and artifacts 
due to scatter, constraints on reconstruction 
algorithms, blurring from organ motion 

Oelfke et al [35], Verellen [37], Chen et al [38], 
McParland [6] and Tran [39] 

4) Only accounts for inter-fraction anatomical 
variability 

Verellen [37], Chen et al [38] 

5) Equipment/Technical costs Baumann et al [36], McParland [6] and Tran 
[39]

 

6) Staffing and user training (acquisition, 
registration, target delineation) 

Baumann et al [36], Chen et al [38], McParland 
[6] and Tran [39] 

7) Accuracy/Reproducibility of automatic and 
manual soft-tissue delineation 

Chen et al [38], McParland [6] and Tran [39] 

8) Accuracy of image registration techniques 
(manual and automatic) 

Verellen [37], Chen et al [38] and Tran [39] 

9) Additional patient dose Moseley et al [40], Murphy et al [4], Verellen 
[37], McParland [6] and Tran [39]

 

10) Data storage/transfer Swerdloff [41], Baumann et al [36], Chen et al 
[38] and McParland [6]

 

11) Acquisition/Reconstruction/Registration 
time 

Oelfke et al [35], Baumann et al [36], Verellen 
[37], Chen et al [38], McParland [6] and Tran 
[39]

 

 

Point-based tracking offers a new approach to the adaptive therapy process that bypasses many of 

the challenges involved in adaptive radiation therapy using volumetric imaging, including speed, data 

storage, additional radiation dose to the patient, and the requirement for target segmentation. Thus, 

our goal was to develop an infrastructure to evaluate dosimetric coverage of cancer patients utilizing 

point-based localization data. We developed a computer-based tool to (1) prospectively determine 

appropriate rotational and translational motion limits for dynamic targets, (2) retrospectively analyze 

dosimetric target coverage using tracked positions of individual patient data and (3) visualize both 

theoretical and actual three-dimensional rotations and translations of the target with respect to a 

stationary PTV and dose matrix. To demonstrate its utility, we utilized continuous intra-fraction 
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tracking data of prostate cancer patients treated with radiotherapy. This application, referred to as 

SWIFTER (Semi-Automatic Workflow using Intra-fraction Fiducial-based Tracking for Evaluation 

of Radiotherapy), enables the assessment of potentially more effective treatment techniques that 

simultaneously introduce more risks, such as dose escalation, sub-target boosts and reduced-margin 

treatment planning. 

 

2.2 Materials & Methods 

2.2.1 Real-time Tracking System 
 

Real-time electromagnetic tracking has recently been introduced into clinics for use of target 

localization, both before and during treatment. This technology utilizes continuous tracking to 

monitor the target isocenter position, and is used clinically to enable beam-hold interventions (i.e. 

suspending radiation delivery while the target it outside the path of the beam). The Calypso® 4D 

Localization System (Varian Medical Systems, Inc., Seattle WA) uses an electromagnetic array to 

track passive Beacon® electromagnetic transponders (8.5x1.85-mm glass-encapsulated copper coils) 

implanted in the patient’s tumor. The first clinical application of the Calypso System was in prostate 

cancer patients. The three-dimensional coordinates of each transponder, with respect to treatment 

isocenter, are determined from the CT scan taken during simulation. These coordinates are entered 

into the Calypso System to serve as the planned treatment position. During localization on the 

treatment machine, the electromagnetic array, a rectangular panel encasing electromagnetic coils, is 

positioned over the patient’s target area. The coils emit a radiofrequency signal to excite the 

implanted transponders. The transponders then return a signal at a specific frequency, allowing for 

their positions to be detected at a nominal sampling rate of 10Hz. The system also monitors ambient 

radiation in the treatment room for synchronization with tracking data, enabling identification of 

target motion collected during active radiation delivery. Previous studies done by Balter et al [42] and 

Parikh et al  [43] have documented the submillimeter accuracy of the system (see Appendix for 

details). 
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2.2.2 Tracking Data 
 

Prospective Motion Limits. The Calypso System is designed for both set-up localization and 

continuous monitoring of isocenter position. At the time of initial localization, the Calypso System 

reports translational shifts and rotational offsets, as compared to the planned transponder positions. 

The user is allowed to set patient-specific rotational limits for patient set-up. If the system detects 

target rotation greater than this value, the user is warned during initial localization. 

 

Additionally, the user is allowed to set patient-specific motion limits of translational isocenter 

movement. The system is designed to warn the user if the isocenter exceeds these limits during 

treatment. Limits for each axis (lateral, anterior-posterior, and superior-inferior) are set 

independently, allowing for asymmetrical motion boundaries. Our method is designed to determine 

the appropriate rotational and translational motion limits for each patient, before treatment. This is 

done using a computer simulation that identifies the maximum rotation and translation the target 

can undergo before exceeding its PTV boundaries. The target structure is virtually moved through a 

set of theoretical rotations/translations and excursions of the displaced volume from the stationary 

PTV structure are detected in search of optimal motion boundaries. Details of this method are 

presented in Section 2.2.4. 

 

Retrospective dose analysis. Tracking data from each treatment fraction is stored by the Calypso 

System on the tracking station. The clinical system at our institution is equipped with supplementary 

functionality allowing for exportation of individual transponder positions to an external computer. 

Individual tracking files are exported into an Excel (Microsoft Corporation) spreadsheet via a non-

clinical software application. Data exported for each fraction consists of individual transponder and 

isocenter positions as a function of time. Also included is synchronized radiation detection data. 

Transponder positions are sampled and recorded sequentially at a nominal sampling frequency of 10 

Hz, resulting in reported isocenter positions approximately every 0.1 seconds. This data is used to 

create a probability density histogram of target rotations and translations for combination with the 

planned dose distribution. 
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2.2.3 Treatment Planning System Data 
 

The patient plan is exported from the treatment planning system (TPS) into an external viewing 

application (Computational Environment for Radiotherapy Research (CERR), Washington 

University, St Louis, MO) [44]. The CERR application is designed to import contours, beams, dose 

and images from both RTOG and DICOM formats for conversion into a common MATLAB 

(Mathworks, Natick, MA) data structure. This feature enables universal compatibility with any 

treatment planning system with RTOG or DICOM export functionality. 

 

The clinical target volume (CTV) contours from CT simulation are extracted and used as the mobile 

target structure. The PTV structure is designated as the bounding structure which is used as a 

constraint on the CTV to determine appropriate motion limits. Alternately, a bounding structure can 

be generated from an isodose line to form a dose rind in order to constrain the target structure to a 

dose boundary. The three-dimensional dose array is used for dose computation. Multiple treatment 

prescriptions are supported to accommodate treatment plans that include two treatment volumes. 

 
 

2.2.4 The SWIFTER Application 
 

A MATLAB (vR2006b) computer program was written to process and analyze treatment plan and 

point-based tracking data. This application automatically extracts information from the plan to 

register the structures, dose, and absolute transponder data to the treatment room reference frame. 

The data flow and functionalities are summarized in Figure 2.1. 
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Figure 2.1  Flowchart of input data, application processes, and output data for SWIFTER. 

 

Prospectively determining patient-specific motion tolerances. First, prospective motion limits 

can be established. Rotational set up tolerances are assessed by virtually moving the structure 

through a series of theoretical rotations and translations.  A binary approach is used to judge 

appropriateness of rotational limits. When the target structure is detected as exceeding the bounding 

structure’s volume, the motion condition is flagged. Because real-time target rotations are not 

reported during treatment and therefore are not used as criteria by which intra-fraction radiation 

delivery is held, the SWIFTER application is programmed to assume set-up rotation as a systematic 

offset when testing translational motion limits. By testing translational and rotational limits 

concurrently, SWIFTER is able to detect conditions where an intra-fraction translation or rotation 

might push the prostate out of the PTV. An example of such a condition is shown in Figure 2.2. 

Patient-specific translational tolerances that compensate for geometric misalignments caused by 

target rotations during treatment are established by SWIFTER. 
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Figure 2.2  Example of a condition where a combination of rotational and translational motion would push the 

prostate (red structure) out of a 3 mm PTV margin (gray structure): (A) prostate is within the PTV for a 3 mm shift 

(no rotation); (B) prostate is within the PTV for 8◦ rotation (no shift); (C) prostate falls out of the PTV when rotated 

8◦ and shifted 3 mm. SWIFTER tests all three cases to detect such conditions. 

 

These translational motion limits are also assessed by binary pass/fail criteria. SWIFTER identifies 

conditions when the target structure exceeds PTV boundaries. Since there is no way of directly 

controlling intra-fraction rotation during treatment, the application attempts to reduce translational 

motion limits before reducing rotational limits in efforts to minimize the volume of the target 

outside the bounding structure. Several PTV margins can be tested (e.g. 3 mm, 5 mm, 8 mm) to 

decide on the most appropriate one to encompass theoretical rotations. A set of theoretical rotations 

encompassing a range of common rotations observed during patient treatment was established from 

a dataset of inter- and intra-fraction prostate rotations. 
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Approximately 30 h of  tracking data collected from a group of  ten prostate cancer patients was 

analyzed. A range limited within two standard deviations of  the mean of  rotations about each axis 

(lateral, superior–inferior (S–I) and anterior–posterior (A–P)) was established. Figure 2.3 displays a 

frequency histogram of  this dataset. An upper translational motion tolerance of  3 mm (coinciding 

with tolerances used for a multi-institutional clinical Calypso study [45]  and a lower tolerance of  2 

mm (the minimal allowed setting by the Calypso System) was used for translational motion limit 

testing. SWIFTER is designed to test combinations in a hierarchical fashion for optimum speed. 

Large rotations, which are more likely to fail than smaller rotations, are tested first. If  the rotation 

fails, the program ceases testing further translational combinations and continues with the next 

smallest rotational value. 

 

Figure 2.3  Frequency histogram of inter- and intra-fraction prostate rotations (difference from planned position) 

about the lateral, S–I and A–P axes. 
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Retrospectively estimating delivered dose. Next, SWIFTER is designed to perform dose 

computation using patient tracking data to estimate dose delivered to the target during treatment. 

Dose computation could potentially be performed after each treatment fraction. SWIFTER is 

designed to allow for combination of previous analysis with the ‘dose of the day’ to provide 

accumulated dosimetric effects. Consequently, the delivered dose distribution can be monitored 

throughout treatment to detect poor plan efficacy before a large dosimetric impact is incurred 

(Figure 2.4). 

 
 

 

Figure 2.4  Workflow for SWIFTER's retrospective dose analysis. 

 
Tracking data exported from the system is applied to the target structure. Translational motion of 

the isocenter is reported by the Calypso System, however explicit rotation data is not. Rigid rotations 

are calculated by SWIFTER by minimizing the fiducial registration error using a least-squares 

method. Three-dimensional rotations and translations with resolutions of 1 degree and 0.05cm, 

respectively, are binned into a six-dimensional frequency histogram. 
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The three-dimensional target volume is then virtually rotated and translated within the static dose 

cloud to each position differentiated by the frequency bins. Thus, for each distinct 

rotation/translation, every voxel comprising the target structure is displaced to a new location inside 

the three-dimensional dose array. At each position (bin), the dose to every voxel is recorded and 

mathematically weighted by the frequency of that positional occurrence. The end product is a matrix 

of indexed voxels and their accumulated doses, as determined by the amount of time spent at 

different locations within the dose array. The target structure alone is treated as a dynamic volume, 

while the rigid body (skin) and surrounding structures are assumed to be static structures. 

 

As tracking data is added daily to SWIFTER for each individual patient, previous results are 

combined with new analysis in order to calculate cumulative dose to each voxel. Statistics and dose 

volume histograms (DVHs) are computed on the planned and delivered dose distributions to 

evaluate the adequacy of the plan under real target motion. 

 

Visualizing target motion. Finally, SWIFTER allows for visualization of the target structure with 

respect to the stationary PTV and three-dimensional dose array (Figure 2.5). The visualization tool 

allows the user to manually enter rotations and translations to display the displaced target relative to 

the treatment room reference frame. Additionally, processed tracking data can be input for 

visualization of target motion collected during treatment. Sequential positions from tracked data can 

be read in as a function of time to simulate actual movement of the target under radiation delivery. 

Processed tracking data can also be read as a frequency table of each target position and the amount 

of target volume exceeding the PTV. In this manner, the user can visualize the actual target 

positions as a function of occurrence frequency or percentage of volume excursion. This 

visualization tool can be used to ensure that the rotations and translations measured by the point-

based tracking system are physiologic and do not represent corrupted or flawed data. 
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Figure 2.5  Visualization tool of the SWIFTER application for a prostate cancer patient displaying the prostate (red) 

relative to the PTV structure (gray) and planned dose with a 15° rotation and 0.3cm shift. 

 

2.2.5 Phantom Study 
 
A phantom study was conducted to validate the process in its entirety (including data transfer, 

coordinate transformation, calculation of rotations, dose analysis, etc). The accuracy of dose 

computation for a structure under the influence of rotational and translational offsets was tested 

using controlled phantom tracking data and a patient treatment plan. 

 

The data (structure set, plan information and dose matrix) from a seven-field intensity modulated 

radiation therapy (IMRT) prostate treatment plan was exported from the Pinnacle treatment 

planning system (TPS) (v8.0 m, Philips Medical Systems, Madison, WI) into the SWIFTER 

application. To ensure the accuracy of SWIFTER’s dose computation in both high and low-dose 

areas and over high gradient regions of the dose distribution, we performed testing with a structure 

encompassing a larger area of the treatment volume (as opposed to simply the high-dose target area 

surrounding the prostate). For this reason, the skin contour was designated as the dynamic target 

structure for dose computation. 
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Tracking data was obtained using a 10 × 10 × 13 cm3 cubic phantom (QA Fixture—Varian Medical 

Systems, Inc., Seattle, WA) embedded with three Calypso transponders. The phantom was imaged 

on the Philips Brilliance 64-slice CT scanner (Philips Medical Systems, Cleveland OH) with 1.5 mm 

slice thickness, and the image set was transferred to the Pinnacle TPS. The isocenter position 

(identified from external marks on the phantom surface) and transponder locations obtained from 

CT images were entered into the Calypso System and the phantom was localized and tracked on the 

treatment machine. The phantom was translated ±1 cm from the isocenter to offsets in the S–I, 

lateral and A–P directions and each position was separately tracked (six tracking sessions in total). 

The phantom was then re-aligned to the isocenter and tracking was repeated while the phantom was 

rotated ±20◦ (verified with a digital level) about each axis using a Styrofoam wedge. In total, tracking 

sessions were collected for 13 different positions: 0 cm/0◦ (no shift), ±1 cm/0◦ along each axis (six 

total) and 0 cm/±20◦ about each axis (six total). Transponder data was exported from the Calypso 

System for input into the SWIFTER application, and the resulting dose theoretically delivered to the 

skin contour was computed for each tracking session. 

 

For three-dimensional evaluation of the accuracy of the SWIFTER application, axial, sagittal and 

coronal isocentric dose planes (1 mm dose grid spacing) were exported from the TPS and 

SWIFTER to a commercial quality assurance analysis software (OmniPro-I’mRT v1.6, IBA 

Dosimetry, Germany). Each translated or rotated dose plane exported from our application was 

compared to the static dose plane (from the TPS), which was virtually translated/rotated by ±1 

cm/±20◦ using the OmniPro-I’mRT software application (Figure 2.6). Planes were analyzed using 

the Gamma method (tolerance of 1 mm/1%, see Appendix) and computation of percent dose 

difference inside a region of interest defined by the skin contour. 
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Figure 2.6  SWIFTER phantom validation. Screenshots from the commercial QA software showing the validation 

process by isodose comparison of axial dose planes (20◦ rotation) between the TPS and SWIFTER. Step 1: import 

the dose plane from the TPS into the commercial QA software; step 2: virtually rotate the planned dose plane 20◦ 

using the commercial QA software; step 3: import the dose plane analyzed by SWIFTER into the commercial QA 

software; step 4: compare dose planes between SWIFTER and the TPS (rotated). An overlay of isodose lines is 

shown. 

 

2.2.6 Patient Case Study 

 
The data from a prostate cancer patient treated with a standard seven-field IMRT plan using a 5mm 

margin PTV was acquired for analysis. A total dose of 75.6 Gy at an energy of 18 MV was planned 

for delivery over 42 fractions. Contouring and planning was done on a CT data set with 1.5mm slice 

thickness using the Pinnacle TPS. A magnetic resonance image (MRI) acquired before transponder 

implantation was used to supplement prostate delineation. 

 

Real-time tracking data using a 3mm action limit for beam-hold (in any individual direction) was 

acquired from the patient’s treatment to assess actual dose delivery. Since the tracking data used for 

this case study includes intra-fraction beam-hold interventions, it is likely that the dosimetric impact 

of prostate motion is less severe than for a case including no intervention. Tracking data was 

unavailable for two treatment sessions, so analysis was completed using the remaining 40 fractions. 

Inter-fractional and cumulative dose computation was performed (using only ‘beam-on’ motion 
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data) and planned and delivered dose distributions were compared. Maximum dose (Dmax), minimum 

dose (Dmin), mean dose (Dmean), and percent of prescription dose covering 95% of the prostate 

volume (D95) were calculated and used as a metric to assess the coverage and homogeneity of the 

delivered dose distribution. A plan using a reduced PTV margin of 3mm was generated for 

additional comparison and dose computation was repeated using patient tracking data. Planned Dmax, 

Dmin, Dmean, and D95 for each plan were comparable at 108.7, 99.6, 102.7, and 100.8 for the 5mm-

margin treatment plan and 109.9, 99.8, 102.5, and 100.9 for the 3mm-margin treatment plan. The 

time required for each step in the dose evaluation process was recorded to assess the time efficiency 

of our technique. 

2.3 Results 

2.3.1 Phantom Study 
 

Gamma analysis revealed over 99% of dose points in each plane processed by SWIFTER agreed to 

within 1mm/1% of dose planes exported from the TPS. The average point-by-point percent 

difference for all planes was <1%, with a maximum standard deviation of 2%. The mean percentage 

difference and standard deviation for each analyzed plane are reported in Table 2.2. 
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Table 2.2  Percent dose difference between dose planes exported from the SWIFTER application (DoseSWIFTER) and 

the TPS (DoseTPS). Viewing convention for orientation of rotation (clockwise (cw) or counterclockwise (ccw)) in the 

axial, sagittal, and coronal planes is defined as: view from feet, view from left, and view from above (respectively). 

Analyzed Dose Plane Shift 

Percent Dose Difference 

(DoseSWIFTER – DoseTPS)/DoseTPS 

Mean (%) Std Dev (%) 

Axial 

None 0.2 1.0 

+1cm (left) 0.2 0.9 

-1cm (right) 0.2 0.9 

+20° (cw) 0.4 1.9 

-20° (ccw) 0.4 1.7 

Sagittal 

None 0.8 1.7 

+1cm (ant.) 0.8 1.7 

-1cm (post.) 0.8 1.7 

+20° (ccw) 0.8 2.0 

-20° (cw) 0.8 2.0 

Coronal 

None 0.3 1.7 

+1cm (sup.) 0.3 1.7 

-1cm (inf.) 0.3 1.7 

+20° (ccw) 0.9 2.0 

-20° (cw) 0.9 2.0 

 

2.3.2 Patient Case Study 
 

The transfer of patient plan data (dose, plan, structures) from the TPS to an external computer in 

MATLAB-based format required approximately 10 ½ minutes. The determination of appropriate 

rotational and translational motion limits was reported within seconds. Processing point-based 

tracking data for a single fraction (including exportation of tracking data, importation into a 

MATLAB-based format, data sampling, calculation of rotations, and distribution of positions into 

frequency bins) required approximately 5 minutes. On average, an additional 2 to 5 minutes was 

required to complete dose computation for each individual fraction. This value varied depending on 

the number of positional bins. Table 2.3 displays each process and its associated time requirement 

for dose evaluation of a treatment single fraction. Cumulative dose computation for 40 fractions was 

completed in 80 minutes. 
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Table 2.3  Approximate time requirement for each process in the SWIFTER application (on a per-fraction basis). 

The shaded process indicates a task performed only once. Approximate total time for cumulative dose computation 

of 40 fractions is 80 minutes. 

Frequency Process Sub-processes Time 

Per patient 
(one-time) 

Transfer of Patient 
Plan Data 

Export Patient RTOG plan, dose, & 
structures 

½ min 

10 ½ min 

Import plan data into CERR/MATLAB 10 min 

Per tx fraction 

Transfer & 
Processing of 

Patient Tracking 
Data 

Export tracking data (seconds) 

7 – 10 min 

Import into Excel 1 min 

Read Excel ¼ min 

Process Bin Positions 3 ½ min 

Dose Computation 
& Analysis 

Dose computation 2 – 5 min 

Generation of dose statistics (seconds) 

 

The average translational position of the isocenter during radiation delivery (while the treatment 

beam was on) was 0.0 cm in the lateral, S-I, and A-P directions. The range of motion for each axis 

was -0.6 to 0.2 cm, -0.8 to 0.5 cm, and -0.4 to 0.7 cm, respectively. Rotational motion during 

radiation delivery was largest around the lateral axis (pitch), with a mean of 8° and a range of -7° to 

27°. The average rotations around the S-I and A-P axes (roll and yaw, respectively) were within 2°. 

 

The delivered Dmax, Dmin, Dmean, and D95 to the prostate expressed as percentages of the prescription 

dose were 106.5%, 98.7%, 102.7%, and 101.3% (respectively) for the 5mm-PTV plan. These values 

agreed to within 2.2% of the planned dose statistics. The delivered Dmax, Dmin, Dmean, and D95 values 

for the 3mm-PTV plan were generally similar at 106.9%, 91.5%, 102.5%, and 101.0%, respectively. 

All values for the 3mm-PTV plan, with the exception of Dmin, were within 2.1% of the planned dose 

statistics. The delivered Dmin was 8.3% lower than the planned Dmin. Figure 2.7 displays a three-

dimensional representation of the prostate volume and the planned and delivered dose to the target. 

A concentration of low-dose voxels is found at the posterior portion of the prostate apex for the 

delivered dose distribution, indicating that part of the volume was not adequately covered.  
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Figure 2.7  Three-dimensional representation of the prostate structure surface and planned (left) and delivered 

(right) dose distribution for 3mm-margin plan. 

 

Computation of dose statistics for individual treatment fraction revealed increased inter-fraction 

instability of Dmax and Dmin as compared to D95 (Figure 2.8), particularly for the 3mm-PTV plan. Dmin 

experienced the greatest instability across all treatment fractions with a standard deviation of 8.0% 

for the 5mm-PTV plan and 12.2% for the 3mm-PTV plan (Table 2.4). 

 
 

 
Figure 2.8  Dmin, Dmax, and D95 of the prostate for each individual treatment for the 3mm-margin and 5mm-margin 

plan. Dose values are expressed as a percentage of the prescription dose. 
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Table 2.4  Mean and standard deviation of dose statistics over 40 fractions (planned and delivered) for the prostate 

for both 5mm-PTV and 3mm-PTV IMRT treatment plans. 

Metric 
5mm PTV margin 3mm PTV margin 

Mean (%) Std Dev (%) Mean (%) Std Dev (%) 

Dmax 108.0 0.8 107.8 0.8 
Dmin 96.2 8.0 89.7 12.2 

Dmean 102.7 <0.0 102.5 0.1 
D95 101.2 <0.0 100.9 0.1 

 

2.4 Discussion 
 

The development of methods to mitigate uncertainties presented by daily target localization is 

ongoing. Evaluation of target coverage from daily dose delivery can provide increased certainty in 

treatment efficacy and help enable adaptive planning decisions. This is demonstrated by the patient 

case study presented here. Computation of cumulative dose delivery indicated a considerable drop in 

the minimum dose to the prostate from a 5 mm to 3 mm PTV margin treatment plan. While 

potentially adequate coverage might be offered by the 5 mm PTV margin treatment plan over a 40-

fraction treatment course, it is important to consider the effect of a hypo-fractionated treatment 

scheme for such a patient. For example, the variability observed in the Dmin over the first ten 

fractions indicates a possible under-dosing to the prostate during the beginning of treatment. This 

would cause an exaggerated effect of a hypo-fractionated treatment scheme. It should be taken 

under consideration that the dosimetric effects presented in this patient case include intra-fraction 

beam-hold intervention. Dose computation of an intervention-free treatment might have revealed a 

larger dosimetric miss. Incorporation of daily target coverage review would help enable an inter-

fraction intervention before a large dosimetric impact is incurred. 

 

For clinical use as a dose delivery evaluation tool, this application can provide increased confidence 

for radiation treatment [16, 17]. It can be used for point-based dose evaluation for any anatomical 

targets impacted by intra-fraction motion, such as lung and abdominal tumors. However, it is a 

notable limitation that point-based localization may not be sensitive to volumetric deformation of 

the target and nearby tissues, which may be more or less concerning depending on the target site. 
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Evidence suggests that the prostate, for example, can be adequately represented by point-based 

information. A study done by van der Wielen et al  found that deformation of the prostate with 

respect to intraprostatic fiducials was small [46]. Additionally, Deurloo et al  reported that the 

magnitude of prostate deformation is secondary compared with organ motion and intra-observer 

variability in target delineation [47]. However, the magnitude of motion and degree of deformation 

of thoracic and abdominal targets elevates the complexity of estimating dose delivery. Thus, the 

application of the method described here for thoracic and abdominal targets may call for the 

development of specialized anatomic models.  

 

There are some clear advantages of using point-based localization data rather than volumetric 

localization data. While fiducial-based methods provide limited knowledge of the daily dosimetric 

impact on normal tissues, analytical efforts are focused on target anatomy in the high-dose region. 

The large amount of data provided by volumetric imaging entail that additional efforts are not 

required for a point-based technique. However, there is no doubt that as compared with point-based 

techniques, image-guided techniques can provide a substantial amount of information about the 

position and geometry of the target and nearby tissues.  

 

One of the most significant advantages of utilizing point-based tracking data for dose delivery 

evaluation is the incorporation of intra-fraction motion. Adaptive radiation therapy techniques using 

volumetric imaging alone have historically been limited to pre- and post-treatment sampling, relying 

on the condition that the internal anatomy remains stationary between the time of image acquisition 

and the end of treatment. It is well documented that the mobile targets can experience intra-fraction 

movement ranging from several millimeters to a few centimeters [18]. Without the use of intra-

fraction tracking, the magnitude and impact of this motion is unknown. 

 

The SWIFTER application has proven clinically valuable for reduced-margin prostate radiotherapy. 

Our group published work on its use for a clinical patient cohort and found that SWIFTER was able 

to diagnose undertreatment for 3/15 patients planned with reduced PTV margins [17]. Through an 

industrial collaboration with Philips Medical Systems, the SWIFTER application has been converted 

to a commercial platform for integration into a clinical environment. This application has been 
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patented and is available for use [48]. It has since been used in our clinical as a dose monitoring tool 

for hypo-fractionated prostate treatments. Future work is planned for its use for assessing dose to 

lung cancer patients tracked with point-based localization. 

 
Work to develop real-time volumetric imaging is also underway, and may provide significantly more 

anatomical information for dynamic targets and the surrounding anatomy. Onboard MRI is a new 

technology that may offer enhanced spatial resolution while maintaining acceptable temporal 

resolution for real-time tracking. It may also provide better anatomical visualization for improving 

pretreatment targeting accuracy. To date, onboard MRI has yet to be used in a clinical setting during 

radiotherapy, and its value for treatment improvement still remains to be seen. This exciting new 

technology is the focus of the next chapters of this work. 
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Chapter 3 

MRI for Localization of  Targeted Anatomy 
and Critical Structures 
 

The effective administration of radiotherapy treatment relies on accurate identification and 

localization of the target and surrounding healthy tissues both during treatment planning and during 

daily treatment delivery. The limited soft tissue visualization provided by computed tomography 

(CT), the standard imaging modality for treatment planning and daily localization, has motivated 

studies on the use of MRI for better characterization of soft tissue targets [7]. Supplementing 

radiation treatment planning with MR images can offer better anatomical information and greatly 

improve the identification of tissue borders, thus improving targeting [9-12]. Furthermore, if 

acquired just before treatment, such information can be used to modify the planned treatment dose 

to compensate for daily positional variations - a technique known as Adaptive Radiation Therapy 

(ART). Emerging technologies may enable MRI-based planning, dosimetry, daily localization and 

ART in the near future, however it remains to be seen if MRI-based radiotherapy offers significant 

treatment improvement. Here, work is presented investigating the use of MRI for target positioning 

using novel onboard MRI technology, with specialized focus on the application of MRI for 

localization of abdominal tissues. This work is comprised of two parts. The first is a study on the use 

of MRI for localization of healthy tissues for treatment planning of abdominal sites. The second is a 

study of low-field onboard MRI for visualization of targeted anatomy and critical structures. 
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3.1 Segmentation Precision of Abdominal Anatomy 
for MRI–based Radiotherapy 

3.1.1 Background & Significance 
 

It is well-known that X-ray based imaging, the standard imaging modality for radiotherapy planning and 

pre-treatment setup, offers limited visualization of soft-tissue boundaries [7]. The application of 

magnetic resonance imaging (MRI) to aid in tissue visualization during planning and pre-treatment 

localization carries significant implications for many treatment sites. The benefits of utilizing MRI for 

treatment planning of targets in the head, central nervous system, and pelvis have been well-established 

[7, 9-12]. Supplementing computed tomography (CT) planning images with MR images for planning has 

been shown to result in more precise delineation in these sites, enabling better targeting and normal 

tissue sparing [9-12]. Such findings have motivated the development of MRI-only planning [7] and 

onboard MRI devices for treatment localization or adaptive treatment [13-15], rendering MRI-based 

radiotherapy a current focus of clinical interest. 

 

Despite large research efforts for many sites, there have been few investigations on the use of MRI for 

radiotherapy planning of abdominal cancer, a disease for which improved soft tissue targeting could 

offer considerable benefit. Cancer of the pancreas, liver, and other abdominal sites have historically 

demonstrated poor treatment prognosis and high mortality rates. Surgical resection is widely regarded as 

the only curative technique available, however many patients are diagnosed at advanced stages of disease 

making them poor surgical candidates [49-51]. Studies have indicated that dose escalation strategies 

offer more effective treatment of abdominal tumors compared to conventional radiotherapy, especially 

if normal tissue toxicity is minimized using accurate targeting [49, 51]. However, accurate targeting 

during CT-based planning and pre-treatment localization is particularly challenging for abdominal sites, 

which are mostly comprised of soft tissue. 
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There has been recent interest in the use of MRI for improved delineation of abdominal targets, and 

evidence from several studies supports this proposition [52-54]. A study of 23 patients with liver tumors 

performed by Voroney et al found significant differences in target size when tumors were imaged with 

CT as compared to MRI [54]. Another study of 21 liver cancer patients (Dawson et al) concluded that 

tumor volumes defined on MRI were larger than those defined on CT, suggesting that some disease may 

be missed when using only CT images for target delineation. Authors concluded that MRI can detect 

tumor extension that CT cannot [52]. Romero et al compared pathologic tumor size to that defined on 

MRI for 13 patients with colorectal cancer and found that MRI provided good agreement with actual 

tumor size [53].  

 

These investigations highlight the potential advantage of using MRI for target delineation in abdominal 

cancer patients, which may provide more accurate representation of the tumor without the use of 

ionizing radiation. This advantage also makes MRI a particularly attractive option for daily radiotherapy 

localization. However, despite these promising findings, MRI-based radiotherapy for abdominal sites 

has remained largely unstudied. Currently, there is no evidence that MRI-based segmentation of 

abdominal anatomy achieves adequate delineation precision for planning and localization. In fact, there 

is no evidence at all of the utility of MRI for abdominal tissue segmentation for radiotherapy. In this 

study, we evaluate the use of abdominal MR images for segmentation by characterizing the inter- and 

intra-observer precision of normal tissue delineation on MR images. Two MRI sequences are evaluated:  

the first is a commercial scan sequence specifically designed for motion compensation, and the second is 

a sequence optimized for acquisition using a breath-hold method. By assessing the segmentation 

precision of abdominal anatomy offered by MRI, we aim to gain insight into its potential utility for 

planning and localization of abdominal cancer patients. 

 
 

3.1.2 Materials & Methods 
 

Subjects and Imaging.  Fourteen healthy subjects enrolled on an IRB-approved protocol were 

imaged on a 1.5T Philips Intera MR scanner (Philips Healthcare, The Netherlands). The subject 

sample was 57% male, with a mean age of 30 years (σ=9 years) (Table 3.1).  For imaging, each 

subject laid flat on the MR table head-first supine with arms above their head, and a MRI coil was 
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secured to their abdominal surface. The built-in body RF coil was used for RF transmission, and a 

four-channel pelvic phased-array coil was used for signal receiving. A pneumatic belt was used to 

monitor patient respiratory motion, for synchronization with MR imaging. During each subject’s 

one-hour imaging session, two different volumetric MR sequences were obtained. The first was a 

commercial T2-weighted (T2W) sequence specifically designed for motion compensation (triggered 

at exhalation, 2377.9 ms repetition time, 70.0 ms echo time, 90° flip angle, 2.5mm slice thickness, 

1.4mm in-plane resolution). T2W sequences are often used for imaging of liver lesions since they are 

particularly well-suited for evaluating tumor margins and internal structures [55].  The second was a 

balanced fast field echo (BFFE) sequence acquired with a breath-hold technique (4.3 ms repetition 

time, 2.1 ms echo time, 60° flip angle, 2.5mm slice thickness, 1.4mm in-plane resolution). MRI 

sequences that enhance the visualization of fluids, like the BFFE sequence, are extremely useful for 

visualization of the pancreatic and bile ducts [55]. The BFFE sequence is also very fast, making it 

well-suited for breath-hold acquisition. In total, 28 imagesets of abdominal anatomy were obtained 

from the group of subjects. 

 
Table 3.1  Subject sample characteristics. 

Characteristic 
Percentage (Frequency), 
unless otherwise noted 

Gender 

Male 

Female 

 

57.1 (8/14) 

42.9 (6/14) 

Ethnicity 

Caucasian 

East Asian 

Indian 

 

57.1 (8/14) 

28.6 (4/14) 

14.3 (2/14) 

Mean Age, Range 30 years, 20-54 years 
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Segmentation.  After acquisition, the two abdominal MR imagesets acquired from each subject 

were loaded into a clinical treatment planning system (Pinnacle v9.0, Philips Healthcare, Madison 

WI) for segmentation of normal tissues. Three independent observers performed manual 

segmentation of eight normal structures generally accepted as standard abdominal organs at risk 

(OARs): liver, stomach, duodenum, pancreas, spleen, bowel, kidneys, and spinal cord (Figure 3.1). 

The spleen of one subject was not contoured due to a previous splenectomy.  Observers were 

blinded details of the MR imagesets and subjects, other than the MR sequence used to obtain the 

imageset (T2W or BFFE). 

 

 
Figure 3.1  Schematic of OAR segmentation for a single observer. Each trial is performed four times.  

 

To ensure a standardized approach was used across observers, each was provided with standard 

instructions for organ delineation (for example, to contour ‘bowel-in-a-bag’, as opposed to contouring 

individual bowel loops). Observers were permitted to use any basic contouring tools used in clinical 

practice, including ‘sparse contouring’ (interpolation between manually contoured slices), automatic 

intensity thresholds, and copying contours onto adjacent slices. All observers performed manual editing 

following the use of any of the aforementioned automated planning tools. In this manner, observers 

were required to ensure that any automatically generated contour points agreed with their interpretation 
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of the appearance of the anatomy. Furthermore, all contours were reviewed by a single observer 

independently to detect any gross contouring errors (eg. missing slices). Any gross errors detected 

during the review process were corrected by the respective observer. 

 

To investigate intra-observer precision, observers were asked to contour each of the 28 imagesets 

four separate times (Figure 3.1). Each contouring session (herein referred to as ‘trial’) occurred at 

least one week apart. The assigned order in which the 28 imagesets were contoured by each observer 

was randomized. Additionally, standard imageset window/level values were set and remained fixed 

for all contouring trials over all imagesets (T2W: window/level = 300/-20, BFFE: window/level = 

190/-20). In total, 2664 structures were contoured by the three observers. The contoured three-

dimensional (3D) structures for each imageset were then exported to MATLAB (Mathworks Inc., 

Natick MA) and analyzed to assess contour precision between contouring trials and between 

observers. 

 

Precision Measurements. Segmentation precision between contouring trials of the same imageset 

and organ were assessed by computing three-dimensional (3D) overlap of each of the contoured 

structures from each trial compared to a baseline. Since there was no ground truth available, a 

baseline structure was created for each imageset and organ. A baseline volumetric structure of each 

of the eight OARs was generated with the four trial contour sets using the “Simultaneous Truth and 

Performance Level Estimation” (STAPLE) algorithm (Figure 3.2) [56]. This algorithm computes a 

probabilistic estimate of the true segmentation of a structure from a set of contours using an 

expectation-maximization algorithm. This is a widely accepted methodology often used in similar 

studies in which no ground truth structure is available [57-59]. 
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Figure 3.2  Derivation of a baseline liver structure for intra-observer precision analysis using liver structures from 

four contouring trials from a single observer. 

 

The agreement of each trial structure with the baseline structure was then measured using two 

metrics: the Dice coefficient and the median two-dimensional (2D) slice-wise Hausdorff distance, 

which are both common metrics of contour agreement used in segmentation studies [60, 61]. The 

Dice coefficient provides a measure of volumetric overlap between two 3D structures and is 

computed as follows (Equation 3.1): 

 

                 
      

       
 (3.1) 

 

Here, X and Y represent two 3D contour structures. The Dice coefficient ranges from 0 to 1, with a 

value of 0 indicating no overlap, and a value of 1 indicating perfect overlap. Dice coefficients for 

each contour structure were compared to a standard literature-based value of 0.7, above which 

generally indicates a good level of agreement [62]. 
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The Hausdorff distance is used as a metric of surface agreement by providing a measure of the 

maximum value in the set of nearest distances between two sets of contour points, and is computed 

as follows (Equation 3.2): 

 

                          
   

    
   

          
   

    
   

        (3.2) 

 
Here, X and Y represent two 2D contours on the same axial image slice and x and y represent the 

finite points contained on contours X and Y. The maximum Euclidean distance between these two 

sets of points is computed as the Hausdorff distance. Sets containing a contour on only one of the 

two slices were omitted. As described by similar studies, the median of all Hausdorff distances over 

all slices was computed [60]. The median is used because it provides a better measure of central 

tendency for the distribution of Hausdorff distances, which was skewed towards high values 

(positively skewed) for most structures. Low values indicate a high level of contouring precision, 

while high values indicate poor precision. 

 

To assess inter-observer contouring precision, the STAPLE structures derived for the four 

contouring trials were used to represent individual observer structures. For each imageset and 

structure, an additional baseline structure was derived using a second iteration of the STAPLE 

algorithm from these three observer structures. In the same manner as above, the Dice coefficient 

and Hausdorff distance were computed for each observer structure using the new STAPLE 

structure as a baseline. 
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Statistical Analysis. Due to the non-normal distribution of precision metrics, non-parametric 

significance testing was used to identify significant factors affecting contouring precision (indicated 

by Dice coefficients and Hausdorff distances) over all trials (n=2664). Potential factors included 

organ, MRI sequence, subject gender, subject age, and subject ethnicity. It was hypothesized that 

organ and MRI sequence would be significant predictors, while the others would not. Once 

significant predictors were identified, Dice coefficients and Hausdorff distances were grouped into 

clinically relevant categories and entered into a multinomial logistic regression model. Odds ratios 

were computed for each predictor variable and tested for significance. Due to the large variation in 

size, shape, and tissue contrast of the organ set, odds ratios were specifically computed for each 

organ. 

 

The Dice coefficient (DC) was categorized as indicating “good agreement” (0.7 < DC ≤ 0.9), or 

“great agreement” (0.9 < DC). A Dice coefficient of greater than 0.7 is commonly referenced by 

segmentation studies as indicating a good level of agreement [60-62]. Similarly, the Hausdorff 

distance (HD) was categorized as indicating “poor agreement” (5mm < HD), “good agreement” 

(3mm < HD ≤ 5mm), or “great agreement” (HD ≤ 3mm). These distance values are 

complementary to common values often used for treatment planning or setup margins, which helps 

to define clinically meaningful precision categories. 

 

To assess the reproducibility of segmentation within and between observers, the magnitude of intra- 

and inter-observer contouring variability was computed. Intra-class correlation coefficients (ICC) 

[63] were computed for repeated contouring trials (to establish intra-observer variability) and 

repeated contouring by observers (to establish inter-observer variability) using organ as the grouping 

class. ICC values range from 0 to 1, and provide an indicator of the level of variability between trials 

(or observers) when contouring is repeated on a single subject for several different organs. A high 

value indicates low variability between trials or observers. The intra-observer and inter-observer ICC 

values were computed for each subject and imageset. Non-parametric statistical testing was used to 

assess if intra-observer ICC values were significantly different from inter-observer ICC values. 
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3.1.3 Results 
 

The mean and standard deviation of intra-observer Dice coefficient and Hausdorff distance values 

were 0.89 ± 0.12 and 3.6mm ± 1.5, respectively. The mean and standard deviation of inter-observer 

Dice coefficient and Hausdorff distance values were 0.89 ± 0.15 and 3.2mm ± 1.4, respectively. As 

displayed in Figure 3.3, the mean Dice coefficient for all OARs over all trials was greater than 0.7, 

while the mean Hausdorff distance was less than 6mm. When organs were ranked according to their 

mean precision metrics from least to most precise, the duodenum, pancreas, and bowel ranked 

among the least precise for both metrics (mean Dice coefficient and mean Hausdorff distance), 

suggesting that they were contoured with the poorest precision. The spinal cord yielded a relatively 

low mean Dice coefficient, but yielded the best (lowest) mean Hausdorff distance. In contrast, the 

liver yielded a high mean Dice coefficient, but a relatively poor (low) mean Hausdorff distance. 

 

 

 

Figure 3.3  Mean Dice coefficients and Hausdorff distances for each organ over all trials with 95% confidence 

intervals. The Dice coefficient graphical scale is shown here from 0.7 to 1.0, as all mean dice coefficients were > 

0.7. 

 

Nonparametric significance testing revealed that organ (Kruskal-Wallis test) and MRI sequence 

(Wilcoxon Signed-Ranks test) were significant predictors of the intra-observer Dice coefficient 

and/or Hausdorff distance values (α-level = 0.05). Sample images of T2W and BFFE sequences 
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with overlaid contours are shown in Figure 3.4. Only organ was a significant predictor of inter-

observer precision metrics. Subject gender, age, and ethnicity were not significant predictors (α-level 

= 0.05) for intra- or inter-observer agreement, and were not included in further logistic regression 

modeling. 

 

 

Figure 3.4  Images of a BFFE and T2W  sequence for a single subject. Contours for two trials produced from a 

single observer are overlaid on the right-hand panel. Contours for the stomach, duodenum, and spinal cord produced 

from a single observer are displayed in black for the T2W sequence to enhance visualization. 

 

Logistic regression modeling revealed that MRI sequence was a significant predictor of poor, good, 

or great intra-observer agreement in all OARs except for the spleen and kidneys (Table 3.2). In all 

OARs where MRI sequence was considered a significant predictor of either the Dice coefficient or 

Hausdorff distance, the BFFE sequence produced higher odds of better precision than the T2W 

sequence. For example, the BFFE sequence was 2.1 and 3.4 times more likely than the T2W 
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sequence to produce a “good” and “great” Hausdorff distance (respectively) for segmentation of the 

stomach (Table 3.2). Differences in intra-observer contour agreement can be easily noticed for the 

pancreas. Full results with associated odds ratios are displayed in Table 3.2. 

 
Table 3.2 Odds ratios for categorized intra-observer precision metrics, according to MRI sequence. 

 

Odds Ratio for MRI Sequence 
(BFFE/T2W) 

Organ DC HD 

 Good Great Good Great 

Liver NS NS NS NS 

Stomach NS NS 2.1 3.4 

Duodenum NS NS NS 2.6 

Pancreas 2.0 NS NS 2.7 

Spleen NS NS NS NS 

Bowel 6.8 5.3 NS NS 

Spinal Cord 3.2 9.2 NS NS 

Kidneys NS NS NS NS 

DC = Dice coefficient, HD = Hausdorff distance, NS = not 
significant. The “poor agreement” level is used as the 
reference category for odds ratio values.  

 

The mean and standard deviation of intra- and inter-observer ICC values for the Dice were ICCDC, 

intra- = 0.84 ± 0.12 and ICCDC, inter- = 0.48 ± 0.18; the mean and standard deviation of the intra- and 

inter-observer ICC values for the Hausdorff distance were ICCHD, intra- = 0.93 ± 0.07 and ICCHD, inter- 

= 0.86 ± 0.08 (Figure 3.5). The intra- and inter-observer ICC values were found to be significantly 

different using the Mann-Whitney U test (α-level = 0.05), indicating that inter-observer variability is 

higher than intra-observer variability. 
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Figure 3.5  Mean intra- and inter-observer ICC values for precision metrics. ICC values for Dice coefficients and 

Hausdorff distances are significantly different between groups. 

 

3.1.4 Discussion 
 
In the interest of assessing its utility for MRI-based radiotherapy planning and localization, we 

present the first study evaluating the segmentation precision of abdominal anatomy on MRI. 

Overall, results indicate that MRI can be used for abdominal organ delineation with a good level of 

precision (mean DC > 0.7, mean HD < 4mm). The number of subjects (n = 14), observers (n = 3), 

contouring trials (n = 4), and organs (n = 8) investigated in this study amounted to a substantially 

large amount of data, compared to similar studies for other anatomical sites. While labor-intensive, 

this study offers an exploratory investigation into the potential use of MRI in abdominal 

radiotherapy as emerging MRI-based technologies and onboard imaging devices start to become 

available for clinical use [13-15]. Results of this study support the use of MRI for abdominal 

radiotherapy planning and localization, as contouring precision was found to be adequate by our 

metrics.  

 

The use of both the Dice coefficient and the Hausdorff distance as indicators of contouring 

precision was motivated by the fact that each metric is sensitive to a different geometric property of 

the segmented structures, collectively providing a good representation of contour agreement. The 

Dice coefficient, a volume-based metric, is a good indicator of structure overlap. However, it has 
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been shown to be sensitive to structure size, and is not necessarily a singular robust metric for 

assessment of a set of structures of various sizes. A brain tumor segmentation study performed by 

Zou et al demonstrates this very issue, and authors suggest that distance based metrics may be a 

good alternative to the Dice coefficient when spatial information is of interest [61]. We hypothesize 

that this may be why the spinal cord yielded a relatively poor (low) Dice coefficient, but a very good 

(low) Hausdorff distance. The Hausdorff distance is an indicator of spatial distance between two 

structures, and provides a measure that is clinically meaningful in the context of contouring error 

and setup margins. However, it is sensitive to any discrepancies in trial- or observer-specific 

delineation preferences of structure boundaries. For example, there were some variations between 

observers and trials in the extension of the liver contour around the vena cava to include the caudate 

lobe of the liver. This may explain the relatively large Hausdorff distance reported for the liver 

(Figure 3.3). It is important to note that the Hausdorff distance takes into account the maximum 

slice-wise distance between two structures, and therefore is an indication of the largest slice-wise 

contouring errors per structure, and not three-dimensional contouring errors. 

 

The duodenum and pancreas yielded the lowest precision overall. The duodenum extends from the 

stomach to the main section of the bowel, and it can be difficult to reproducibly define where this 

structure connects to these adjacent organs. This may be why the duodenum yielded relatively low 

and variable precision metric values, as indicated by mean precision metric values and corresponding 

confidence intervals (Figure 3.3). The pancreas is highly deformable, and perhaps the most 

inconsistent in shape from person to person of all evaluated OARs [64]. It is likely that the 

ambiguous and variable nature of the geometry of the pancreas is why resulting precision metrics 

were relatively poor. Comparatively, the spleen and kidneys, both relatively consistent in boundary 

and shape, yielded high precision overall. Furthermore, contouring precision was not significantly 

impacted by any MRI sequence for either the spleen or the kidneys, suggesting that they are 

generally well-visualized on MRI. 

 

It is not surprising that MRI sequence was a significant predictor of contouring precision, as 

variations in sequence can dramatically impact the visualization of anatomy.  The BFFE breath-hold 

sequence outperformed the T2W sequence for all OARs which MRI sequence was found to be a 
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significant predictor. It is not clear whether this is due to the breath-hold nature of MRI acquisition 

(versus the exhalation-triggered nature of the T2W acquisition) or due to the visualization offered by 

the sequence itself, but this finding underscores the need for site-specific sequence optimization. 

Future studies comparing different types of motion-compensation methods for abdominal imaging 

would be very useful to this end. 

 

Abdominal sites are of great interest for these types of MRI-based radiotherapy, as they could 

experience substantial benefit from better soft tissue targeting [49, 51]. The work presented here 

demonstrates that segmentation of abdominal tissues on MRI can be performed with good precision 

for radiotherapy. The results of this study offer important insight into the potential use of MRI for 

abdominal planning and localization, as emerging MRI technologies, techniques, and onboard 

imaging devices are beginning to enable MRI-based radiotherapy [13-15]. In fact, MRI-only planning 

is currently the subject of much investigation [7], and may be implemented into clinical practice in 

the near future. Pretreatment MRI-based positioning verification will soon be a reality, with the first 

clinical installations of onboard MRI imaging devices (Section 3.2). Understanding how precisely 

anatomical borders can be localized is of great importance here, as uncertainties will have an impact 

on the inclusion of setup margins around the target and critical structures. Some of these devices are 

also designed to enable adaptive planning, during which anatomy will be segmented solely on an 

MRI imageset. The utility of daily onboard MRI for enhanced location and adaptive techniques is an 

exciting new prospect, and is the focus of the next section of this chapter. 

 

3.2 Low-field MRI for Anatomy Visualization 
in Radiotherapy 

3.2.1 Background & Significance 
 

As previously discussed, MRI-based radiotherapy (RT) has recently become a prominent interest in 

radiation oncology due to its superior soft-tissue visualization [7, 65].  The additional benefit of 

image acquisition without the use of ionizing radiation makes MRI a particularly attractive modality 

for weekly or daily imaging throughout treatment. However, the use of standalone, offline MRI 

devices for routine imaging of the anatomical changes occurring over the course of treatment is not 

http://online.myiwf.com/astro2012/Abstract.aspx
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optimal. First, many practices do not have convenient access to an MRI scanner directly in the clinic. 

The coordination of MRI scheduling, patient transfer and set-up, image acquisition, data transfer, 

and re-planning requires substantial time and resources, making it impractical to do on a daily (or 

even weekly) basis. In addition to cumbersome workflow issues, offline MRI cannot account for 

daily anatomical shifts and deformations due to daily patient positioning. These obstacles have 

motivated the development of onboard MRI for daily patient setup, anatomical localization and 

adaptive treatment. 

 

Several groups have made substantial progress in the development of onboard MRI technology. 

Currently, several variants of onboard MRI-RT devices exist in various stages of development. 

Research teams in the Netherlands [66] and Canada [14] are each developing systems integrating 

linear accelerators with onboard MRI. Groups from Melbourne [67] and Cleveland [13] have 

proposed an alternative design, using a 60Co treatment approach to simplify the technical 

considerations. A less integrated solution, where the MRI is de-coupled from the treatment system, 

has also been developed [5]. Many of these MRI-RT devices are designed to utilize low-field MRI 

(0.2-0.35T) to reduce perturbations of the dose distribution, machine interference, and distortion 

caused by the magnetic field. 

 

The clinical advantage of onboard low-field MRI for daily anatomical position verification, however, 

has not been established. Although there are dosimetric benefits for MRI over X-Ray based imaging, 

no clinical studies have compared visualization of radiotherapy targets and critical structures 

between low-field MRI and standard onboard CT (OB-CT) imaging modalities commonly used in 

clinical practice. There are many studies comparing MRI simulation images to CT simulation images 

which have shown that MRI can more accurately represent soft tissue anatomy [7, 65], however this 

is not necessarily translatable to on-board imaging technology. Low-field MRI is characterized by a 

relatively low signal-to-noise ratio, and the implications of this technology for clinical target and 

normal structure visualization is unknown. A comparison of low-field on-board MRI to the clinical 

CT-based standard for image-guided RT is warranted to justify the clinical use of this technology. 
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We conducted a physician-based comparison for visualization of patient anatomy between onboard 

MR images acquired with a hybrid low-field MRI-RT system (see Appendix) and OB-CT images 

acquired as standard of care. We sought to evaluate the utility of onboard MRI for anatomic 

visualization of target and critical structures in the context of current clinical practice. 

 

3.2.2 Materials & Methods 
 

Low-field MRI. Imaging was performed on the ViewRay System (ViewRay Inc., Cleveland OH). 

The hybrid MRI-treatment unit is comprised of an open, split-solenoid low-field MRI co-registered 

to a three-head 60Co gamma-ray radiation delivery device. The MRI has a nominal field strength of 

0.35T and is a variant of the Siemens MAGNETOM product used for intraoperative imaging. The 

imaging and treatment isocenter are co-registered, allowing for simultaneous target treatment and 

localization (see Appendix). The low-field design of the MRI scanner allows for imaging with 

preservation of spatial integrity by limiting magnetic susceptibility artifacts. This design also prevents 

significant perturbations of the dose distribution. For this investigation, only the MRI component of 

the machine was used.   

 

Patients. Fourteen patients undergoing fractionated radiotherapy for cancer in the thorax (n = 2), 

pelvis (n = 6), abdomen (n = 3) and head and neck (n = 3) were enrolled onto an IRB-approved 

protocol for MRI imaging with the ViewRay device (ViewRay Inc., Cleveland OH). The onboard 

MRI system was used to image each patient for one or two sessions prior to installation of source 

heads on the machine. All patients received additional standard of care image-guided treatment with 

routine daily/weekly onboard CT imaging on the TrilogyTM (Varian Medical Systems, Palo Alto, CA) 

or the Tomotherapy® (Accuracy Inc., Sunnyvale, CA) treatment systems. 

 

MR Imaging and Data. During each imaging session, patients were laid flat on the MRI table and 

fitted with a 12-channel torso or 11-channel head and neck receiver coil. Patients were positioned on 

the center of the table and their treatment position was reproduced as closely as possible, with feet 

secured together and arms placed on their chest or above their head. Patient-specific immobilization 

devices were not used due to size constraints and/or MRI-compatibility issues. Patients were 
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positioned with their treatment site longitudinally aligned with the imaging/treatment isocenter. 

Volumetric axial-plane MR images were acquired for each patient using a fast gradient echo 

sequence (TrueFISP or turbo FLASH) with parallel imaging techniques. Each imageset was acquired 

with an in-plane resolution of 1.5x1.5mm, slice thickness of 1.5mm (n = 10) or 3.0mm (n = 4), and 

field of view of 400-540mm x 228-449mm x 264-432mm in the lateral, anterior-posterior, and 

superior-inferior directions, respectively. Each volumetric scan lasted 1-3 minutes. 

 

OB-CT data. Conebeam CT (CBCT) and mega-voltage (MVCT) image sets used for routine 

treatment localization were acquired on the Trilogy or Tomotherapy treatment systems within two 

weeks of MRI imaging for each patient. CBCT imagesets (n = 13) were acquired with an in-plane 

resolution of 0.7-1.2mm, slice thickness of 2-2.5mm, and a radial field of view of 250mm (n = 2), 

450mm (n=9), or 465mm (n = 2). One patient was imaged with MVCT, acquired with an in-plane 

resolution of 1.5mm, slice thickness of 4mm, and radial field of view of 400mm. 

 

Evaluation. For each of the 14 patients, the volumetric onboard MRI and OB-CT image sets were 

displayed side-by-side on clinical image viewing software and independently reviewed by three 

experienced radiation oncologists. Each physician was given a survey and instructed to indicate 

which image set (if either) offered better visualization of the target and individual organs at risks 

(OARs), as derived from a standardized list of site-specific critical structures [68]. For each image set 

pair, physicians recorded one of four responses for each structure: “Better visualized on MRI”, 

“Better visualized on OB-CT”, “Equivalent”, “Unable to see on either image set”. Physicians were 

permitted to freely scroll through axial images and adjust the zoom and window/level settings for 

optimal visualization. Fifteen to 24 OARs per patient were planned for evaluation, depending on the 

anatomical site (n = 24 for the thorax and head and neck, n = 15 for the abdomen, n = 20 for the 

pelvis (female), n = 21 for the pelvis [69]). Ten of 14 target structures were evaluable (i.e. intact 

tumors) and included in the evaluation. 

 

Analysis. To assess the overall level of agreement among physician ratings, the proportion of 

structures resulting in majority (2/3 physicians) and unanimous consensus (3/3 physicians) 

agreement was computed. Additionally, agreement was measured by computing Fleiss' kappa, a 
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commonly used statistical metric of inter-rater reliability (9). The proportion of structures rated as 

better visualized on MRI or OB-CT was computed overall, and by anatomical site. To investigate if 

visualization was dependent on the type of structure, ratings were also analyzed after stratifying 

structures into five categories: soft tissue, central nervous system (CNS), vasculature, bone, 

pulmonary/airways, and target structure. One-way chi-square statistical testing (α=0.05) was 

performed to test for significant differences between the proportion of structures better visualized 

on MRI and the proportion better visualized on OB-CT (overall, stratified by anatomical site, and 

stratified by structure type). 

 

3.2.3 Results 
 
Overall, 296 structure pairs were planned for evaluation on 14 MRI/OB-CT images set pairs. Seven 

of these structures were not evaluable due to previous surgical removal. Fifty-eight of the remaining 

289 structures were not within the field of view of the OB-CT image sets (n = 49, 17%), MRI image 

sets (n = 1, <1%), or both image sets (n=8, 3%), and were omitted from the evaluation. Thus, 231 

structure pairs were evaluated in total (nthorax = 46, npelvis = 70, nabdomen = 48, nhead and neck = 67) by each 

of the three physicians. Sample imageset pairs are shown in Figure 3.6. 
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Figure 3.6. Examples of OB-MRI/OB-CT image set pairs for four targets: lumpectomy cavity, liver tumor, lung 

tumor, pancreas tumor (from top to bottom). 
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Agreement between the independent evaluations by physicians was high, indicating a high degree of 

inter-rater reliability. Physicians agreed in majority and in unanimous consensus for >99% and 74% 

of cases, respectively. In a single case, the three physician ratings were split between three categories, 

yielding no majority result. Fleiss’ kappa was calculated as 0.63, indicating “substantial” agreement 

between physicians [70]. The following results are represented by majority agreement, unless 

otherwise stated. 

 

Twenty-two (10%) structures were better visualized on OB-CT and 163 (71%) structures were better 

visualized on MRI, which was found to be a significant difference (p<.001). For thorax, pelvis, 

abdomen, and head and neck sites, the proportion of structures better visualized on MRI were 63, 

63, 77, and 79%, respectively (Figure 3.7), and significantly greater than the proportion of structures 

better visualized on OB-CT by both majority and unanimous agreement (p<.001). Consensus was 

not reached for one thorax structure (the trachea), as reflected in Figure 3.7. Structures that were 

consistently better visualized on MRI 100% of the time are displayed in Table 3.3. 

 

 
Figure 3.7  Ratings (majority agreement) stratified by anatomical site. 
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Table 3.3  List of evaluated OARs, by site. OARs which were better visualized on MRI or OB-CT for 100% of 

cases are indicated. OARs visualized equivalently on MRI and OB-CT (or better in some cases but not in others) are 

listed at the bottom of the table. 

Site Thorax Pelvis Abdomen Head and Neck 

Better visualized on MRI (majority) 

A_Brachialceph  AnalCanal  Aorta  A_Carotid  

A_Pulmonary Bladder Colon  Cerebellum 

A_Subclavicular Cervix Duodenum  Chiasm 

Atrium  Colon Kidney CN_VII  

BrachialPlexus  PenileBulb  Liver  CN_VIII  

Carina Penis SmallBowel  Hippocampus 

Pericardium Prostate SpinalCord  OccipitalLobe 

SpinalCord  Rectum Spleen  OpticNerve  

V_CavaInferior  SeminalVesicle  Stomach  ParietalLobe 

V_CavaSuperior  SmallBowel  Vessels  Parotid 

V_Pulmonary Uterus  
 

Pituitary 

V_SubClav Vagina 
 

SpinalCord 

Ventricle Vessels  
 

Submandibular  

Better visualized on MRI (consensus) 

Aorta AnalSphincter  Esophagus BaseOfTongue  

Esophagus CaudaEquina Pancreas BrainStem  

V_Azygos 
  

Retina 

   
Tongue 

Better visualized on OB-CT (majority) Rib 
 

Rib 
 

Better visualized on OB-CT (consensus)    Ear_Middle 

   
VB_Cervical 

Equivalent or Varied Ratings 

A_Coronary FemoralJoint  VB_Lumbar  Cochlea 

BronchialTree Femur VB_Thoracic  Glottis 

Lung Ovary 
 

LacrimalGland  

MainBronchus PelvicBones  
 

Larynx 

Trachea Sacrum 
 

Thyroid 

VB_Thoracic Testis 
  

 Urethra   

 VB_Lumbar   

 AnalCanal   
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Stratification of ratings based on structure-type categories revealed stronger trends (Figure 3.8). MRI 

provided better visualization for a vast majority of soft tissue (92%), vasculature (94%), and CNS 

structures (100%). OB-CT provided better visualization for two of 98 soft tissue structures (the 

larynx and the glottis, on one image set pair). The remaining 6% of structures in each of the soft 

tissue and vasculature categories were evaluated as “unable to see on either image set”. 

 

 
Figure 3.8  Ratings (majority agreement) stratified by structure type. 

 

Bony anatomy was better visualized on OB-CT for 48% of structures, and equivalently visualized on 

both MRI and OB-CT for 52% of structures. All pulmonary structures were visualized equivalently 

on MRI and OB-CT datasets, although majority agreement was not reached for one pulmonary 

structure (the trachea), as reflected in Figure 3.8. 

 

Target structures varied in location and size, and included three thoracic tumors, three pelvic 

tumors, two abdominal tumors, and two head and neck tumors. Four of ten target structures were 

better visualized on MRI, one was visualized equivalently on MRI and OB-CT, and five were not 

visualized on either. Targets were never better visualized on OB-CT, as compared to MRI. 

Physicians were in unanimous agreement for five of ten target evaluations (Table 3.4). Examples of 

MRI and OB-CT image sets are displayed for four targets in Figure 3.6. 
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Table 3.4 Majority and physician-specific ratings for the ten evaluated targets. 

Target Evaluated Physician 1 Physician 2 Physician 3 Majority Rating 

Lumpectomy Cavity MRI MRI MRI MRI 

Liver Tumor MRI MRI MRI MRI 

Neck Tumor MRI MRI MRI MRI 

Nasopharynx Tumor MRI MRI MRI MRI 

Lung Tumor MRI Equivalent Equivalent Equivalent 

Esophagus Tumor Not Seen Not Seen MRI Not Seen 

Pancreas Tumor Not Seen Not Seen MRI Not Seen 

Cervix Tumor Not Seen MRI Not Seen Not Seen 

Anal Tumor Not Seen Not Seen MRI Not Seen 

Anal Tumor Not Seen Not Seen Not Seen Not Seen 

 

3.2.4 Discussion 
 

The results of this study provide evidence that onboard low-field MRI offers better visualization for 

selected radiotherapy targets and most critical structures compared to OB-CT. Soft tissue, 

vasculature, and CNS structures were consistently better visualized on MRI, although high density 

bony anatomy was better visualized on OB-CT. Pulmonary structures such as the lungs and airways 

were comparably visualized for MRI and OB-CT. OB-CT never outperformed MRI for visualization 

of pulmonary structures, which is an interesting finding since CT is generally well-suited for imaging 

high-contrast interfaces. OB-CT also never outperformed MRI for visualization of target structures, 

which in this study were of soft tissue and pulmonary origin. 
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The degree of radiotherapy target visualization on MRI did vary. This is not surprising given the 

array of target sizes and locations included in the study. MRI proved particularly advantageous for 

visualizing solid tumors in the head and neck, liver, and lumpectomy cavity in the breast. There was 

some discordance among physicians on the usefulness of MR images for providing visualization of 

targets in the anus, cervix, esophagus, and pancreas. The anal and esophageal targets were smaller 

and less discreet compared to the other targets evaluated, possibly causing them to be less easily 

visualized by physicians. The pancreatic tumor (Figure 3.6) was not seen by 2/3 physicians, possibly 

due to a metal clip implanted at the target site which created an image artifact. 

 

OB-CT may offer benefit when imaging high-density structures. While MRI provided equivalent 

visualization for a majority of bony anatomy, OB-CT was evaluated as superior for a considerable 

number of bony structures; specifically the ribs and some vertebral bodies. In one comparison case, 

OB-CT provided better visualization for two soft tissue structures – the larynx and the glottis – 

which are partially composed of cartilage. However, in the remaining two cases, the larynx and 

glottis were reported as better visualized on MRI.  

 

Overall, onboard MRI enhanced anatomical visualization in comparison to onboard CT for most 

anatomy, including radiotherapy targets. Use of this technology could have significant implications 

for patient treatment. Better visualization can lead to better targeting, as demonstrated by the 

emergence of the first image-guided radiotherapy (IGRT) techniques years ago. The use of onboard 

X-Ray imaging to visualize internal anatomy has enabled more accurate patient setup, more 

conformal treatment techniques and smaller treatment margins [71, 72]. It has also been conducive 

to the use of dose escalation techniques, which has been shown to be beneficial for multiple disease 

sites [71-73]. Still, CT-based image guidance suffers from considerable geometric uncertainties and 

the need for additional post-processing for automated soft-tissue registration [73]. Manual 

registration is still necessary for soft-tissue sites due to suboptimal soft-tissue contrast, which can 

reduce the efficiency of patient setup. Enhanced visualization offered by MRI may lead to faster 

setup, and the possibility of automated registration based on soft tissue rather than bony anatomy. 
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MRI may be better suited than OB-CT for adaptive radiotherapy as well. MRI is known to improve 

the delineation of targets in the head and neck, central nervous system, and pelvis for radiotherapy 

treatment planning [7, 65], and may potentially replace CT in the future as the primary planning 

image set for some treatment sites. Efforts are currently underway to demonstrate the feasibility of 

MRI-only treatment planning.  Jonsson et al performed a planning study for 40 patients with targets 

in the prostate, lung, head and neck and brain, and found that MRI-only treatment planning could 

be performed with a maximum dosimetric error of 1.6% [74]. Similar results have been reported by 

other studies investigating prostate radiotherapy planning [75-77], which has been the most 

frequently studied site for MRI-based planning and a likely target for its early clinical use. A 

publication by Kapanen et al describes the commissioning of a radiotherapy process for prostate 

treatment using MRI-only planning, which authors conclude is sufficiently accurate to replace CT-

based planning and slated for use in their clinic [78]. 

 

While our findings support the use of MRI-guided radiotherapy, there are a few limitations of our 

study. First, study data is based on qualitative physician-based evaluations that are subjective in 

nature. However, we aimed to minimize any potential observer-specific bias by including three 

different radiation oncologists to perform independent reviews. Furthermore, results of Cohen’s 

kappa indicate a substantial level of agreement between the three physicians, suggesting that results 

are generalizable across multiple observers. Results may not necessarily be generalizable across the 

general patient population, however, given our small patient sample of 14 patients. Our data may 

not adequately capture the full variation of anatomy and targets observed in other clinics. In 

particular, our ability to assess visualization of all types of tumors was limited since only ten patients 

had evaluable target structures. Still, the sample comprised a good variety of targets, varied in size, 

shape, location and composition. We were also able to evaluate a large variation of critical structures 

by selecting patients with different treatment sites. Utilizing a published structure taxonomy ensures 

that this evaluation can be widely interpreted in standard clinical context [68]. This study, however, 

did not quantify the impact of using onboard MRI for clinical tasks such as patient positioning or 

mid-treatment intervention. Future studies investigating the clinical impact of enhanced onboard 

MRI-based anatomical visualization will be necessary to fully demonstrate the value of onboard MRI 

for clinical practice.  
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Our results suggest that low-field MR provides better anatomic visualization of many radiotherapy 

targets and many organs at risk as compared to CBCT/MVCT, which is currently the clinical 

standard for volumetric localization. This finding was consistent across all major anatomical sites 

(thorax, pelvis, abdomen, and head and neck), and supports implementation of this technology for 

visualization of radiotherapy targets and critical structures in the clinic. 
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Chapter 4 

Onboard Cine MRI for Tracking Bowel 
 

Intra-fraction tissue motion is a crucial problem for many treatment sites. However it is most 

problematic for abdominal sites, which can experience motion on the order of several centimeters 

during treatment [18]. Intra-fraction motion introduces substantial challenges in delivering the dose 

to the target as intended. In particular, bowel is one of the most critical dose-limiting structures in 

the abdomen due to its low radiation tolerance and poor localization during treatment [19]. Newly 

emerging technologies incorporating real-time MRI during radiotherapy may enable visualization 

and dosimetric avoidance of the bowel during treatment. A potentially significant advancement is 

the use of intra-fraction positional information to suspend delivery of the treatment beam while the 

bowel is in its path, a technique known as beam ‘gating’. However, gating treatment based on the 

bowel position has never been investigated. Tracking bowel is exceptionally challenging due to 

unpredictable shape changes, non-systematic peristaltic motion, and random fluctuations in bowel 

contrast. Here, we have developed automated deformable bowel-tracking software using a 

combination of normalized cross-correlation tracking and an active contour method in order to 

investigate the potential application of real-time MR-based bowel tracking and ‘bowel-gated’ 

treatment.  
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4.1 Background & Significance 
 

The use of radiotherapy is a common treatment alternative for unresectable abdominal cancers, and 

is also often used in conjunction with surgical resection [49, 51].  Moreover, emerging magnetic 

resonance image (MRI) guided interventions, such as MR-guided focused ultrasound, are also being 

investigated for treatment of abdominal cancers [79]. Radiotherapy studies have shown promising 

results in local control of abdominal cancers when treated with high radiation doses [80, 81], 

however potential complications arising from normal tissue toxicity limits dose escalation techniques 

[19]. 

 

Bowel is regarded as one of the most critical dose-limiting structures in the abdomen due to its low 

radiation tolerance and poor localization during treatment [19]. The bowel experiences drastic 

deformations between daily treatment sessions and large-scale respiratory motion during radiation 

delivery. When this motion is not controlled for, bowel segments in close proximity to the target 

area may enter regions of high dose during treatment. Repeated exposure of high doses to the bowel 

can cause ulcerations, bleeding, frequency, fistula formation, and obstruction [82]. While onboard 

X-Ray imaging systems are commonly used for many anatomical sites to localize the target and 

critical structures for treatment, the soft tissue of the abdomen is poorly visualized using these 

techniques. Currently, there is no way to directly monitor or intervene on motion of the bowel 

during delivery. 

 

Our group has performed the first clinical imaging trial with the hybrid MRI-radiotherapy device, 

ViewRay (Cleveland OH). This new technology incorporates real-time MRI during radiotherapy, 

enabling bowel visualization during treatment. This could potentially aide in a delivery intervention 

scheme where the radiation beam is temporarily and automatically disabled when the bowel enters 

high dose regions. This type of ‘gating’ scheme typically utilizes an external surrogate for target 

localization. Until now, the feasibility of real-time tracking of the bowel for gated radiotherapy has 

never been explored, nor even presented as a possibility in clinical practice. The development of 

real-time MRI has made this application a real possibility. 
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However, tracking the bowel during radiotherapy presents considerable challenges. Unlike tracking 

targets in the thorax, which is a popular topic of research in the literature [4, 83], bowel tracking 

must accommodate random motion patterns, unpredictable shape changes, and large fluctuations in 

contrast. Research has been done on the study of peristaltic bowel motion on cine-MRI for 

diagnosis and assessment of gastro-intestinal diseases [84, 85]. These studies attest to the challenges 

of tracking the shape and borders of imaged bowel. The bowel’s flaccidity gives rise to continuous 

deformations, causing both in-plane and out-of-plane geometric changes. Whole segments of bowel 

may disappear and reappear in 2D cine images. Furthermore, peristaltic motion of the bowel is 

usually not systematic or predictable. Therefore predictive modeling, which has been used ex-

tensively for targets in the thorax [86, 87], is not as easily applied for bowel-tracking. Changes in 

position and shape are often coupled to fluctuations in bowel contrast, since both physiologic 

changes are driven by bowel filling and emptying. Because bowel contents vary from air, to liquids, 

to solids, these contrast changes are often extreme. This can cause complications for tracking 

techniques that rely upon image intensities and gradients to define regions and borders of interest 

[85]. 

 

To date, algorithms investigated for bowel tracking have been designed for retrospective post-

processing in order to assess bowel motility. Wu et al reported on the use of a fast-marching method 

to retrospectively track bowel borders undergoing peristaltic motion [85]. In their publication, 

authors describe the implementation of an anisotropic Gaussian filter and a boundary penalty to 

improve tracking of low-contrast regions, as the traditional fast-marching method is reliant on image 

gradients. Authors gauged the success of this algorithm by comparing diameter measurements of the 

tracked bowel to manual measurements of the bowel. While they reported approximately 94% 

accuracy, only 240 cine image frames were tested, and details of the MRI image sets and evaluation 

were limited in their published report [85]. Yigitsoy et al demonstrate the use of their manifold 

learning algorithm for tracking out-of-plane bowel motion on approximately 2,700 image frames; 

however authors describe a multi-planar method for tracking respiratory-induced motion only, and 

do not explicitly report any tracking accuracy results [88].  
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We aimed to develop tracking software for real-time tracking of deforming bowel on low-field cine 

imagesets, and demonstrate its utility on a dataset of more than 11,000 image frames. To our 

knowledge, no such applications have been developed or tested on such an extensive data set. The 

tracking algorithm described herein combines a template matching approach with an active contour 

method. A template matching approach was selected due to its demonstrated robustness in tracking 

moving anatomy on 2D cine MRI [89].  The selection of an active contour method to track bowel 

deformations was made for several reasons. First, due to its intrinsic connectivity, the information of 

an active contour is integrated along the length of the contour, which is particularly advantageous 

for analyzing noisy images or natural scenes [90]. Thus, this method can be expected to be well-

suited for images demonstrating a lower signal-to-noise ratio, as is seen in low-field MRI. The active 

contour method is also robust to tracing boundaries of objects with edge gaps (caused by low 

contrast, image artifacts, or noise corruption), while other edge detection algorithms generally fail in 

this scenario. This makes it advantageous for detecting subjective contours which may not have fully 

explicit edges [91]. The active contour model offers the ability to tune parameters to control 

inherent properties of  the contour (such as contour flex and elasticity) and to weight internal and 

external forces acting on the contour. These forces act to complement each other in order to 

optimize the position of  the contour. This behavior is extremely useful for tracking continuous 

deformations and motion of non-rigid, natural shapes [90]. Due to its versatility, the active contour 

model has been used for contour tracking, stereo matching, shape skeletonization, scale-space 

tracking, and automated path planning. This method has also been used extensively for 

segmentation of static medical images, such as auto-segmentation of brain tumors [92]. 

 

Software was developed and evaluated on 70 cine MR patient imagesets acquired with the ViewRay 

hybrid MR-radiotherapy unit. 11,556 cine image frames acquired at a frame rate of 2 or 4 Hz were 

analyzed. We demonstrate its use for tracking bowel segments with varied shapes, sizes, contrast 

levels, motion patterns, and image intensities. The demonstrated application of this software offers 

promising implications for the treatment of pelvic and abdominal targets where bowel toxicity is a 

concern, and could be extended to other MRI-guided interventions. 
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4.2 Materials & Methods 

4.2.1 Imaging Equipment 
 

All imaging was performed on the ViewRay hybrid MR-radiotherapy unit, which is detailed in 

section 3.2.2 and the Appendix. 

 

4.2.2 Image Acquisition & Data 
 
Two-dimensional cine MR imagesets were collected from seven patients enrolled on an IRB-

approved protocol. All patients were diagnosed with cancer in the abdominal or pelvic region, and 

scheduled to receive radiotherapy. Cine imagesets were acquired over a duration of 0.5 to 2.5 

minutes at a frame rate of 2 or 4 Hz. In total, 11,556 image frames of patient bowel were analyzed. 

All imagesets were acquired in the coronal or sagittal plane in order to capture a maximum degree of 

motion. Images were acquired at slice thicknesses of 3.5, 5, and 7mm, and an in-plane resolution of 

3.5x3.5mm. Images were interpolated to an in-plane resolution of 1.75x1.75mm for image analysis 

and tracking. All cine image sets were acquired with a TrueFISP sequence (see Appendix) and a flip 

angle of 60°. Repetition and echo times for imaging sequences ranged from 2.4 – 3.6ms and 1.0 – 

1.6ms, respectively. 

 

4.2.3 Tracking Software 
 
Tracking software was developed to track motion of targeted bowel segments throughout the 

duration of the cine sets. The software implements a combination of a weight-normalized cross-

correlation technique to track gross displacement, and an active contouring method to track 

deformation. The software was preliminarily developed to work offline, in order to test its accuracy. 

The software workflow is first described before detailing of the components of the tracking 

algorithm itself.   

 

Workflow. Cine MR imagesets are imported into MATLAB (v2011b) as generic DICOM files, and 

the first frame is displayed for the user. The user manually segments the targeted region of the bowel 
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on the first frame of the 2D cine imageset. The tracking algorithm is then applied to identify the 

position of the bowel on subsequent images. The basic tracking workflow is depicted in Figure 4.1, 

and is as follows. 1) The image frame In  is loaded and 2) a template matching algorithm is used to 

identify the gross shift of the contoured bowel from the origin. 3) The algorithm employs an active 

contour method to deform the contour to the borders of the bowel. The process is then repeated 

for the next tracking iteration. 

 

Figure 4.1  Workflow of bowel tracking software. 

 

Tracking gross motion. The gross motion tracking component of the software is based on a 

variant of the classical normalized cross-correlation (NCC) algorithm to measure similarity between 

a matching template and the image of interest. The image region encompassed by the previously 

tracked contour (vnew) from image frame In-1 provides a template region for matching the 

segmented bowel on the subsequent image In. The classical NCC technique may compromise 

tracking accuracy since the template matching region is rectangular, and includes non-significant 

features that move in discordance with the bowel. By applying a weight to each pixel element in the 

template indicating value of matching priority, a weighted normalized cross-correlation (WNCC) can 

be achieved. At point (p,q) within an image or image sub-region (I), the WNCC coefficient  γ  

between the image I  and template T  is computed using the weighting matrix W  according to 

equation 4.1. Here, μI  and μT  are defined as the average image intensities (over the area of the 

template) of the image I and the template T, respectively. 
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 (4.1) 

 

The weighting matrix W is established using information from the image frame I. The values in the 

weighting matrix are determined for points all points (x,y) on template T:  

1. spatially, by defining positive values for points (x,y) on within the bowel contour 

region (R), and  

2. statistically, by computing the discrete probability density function (pdf) of image 

intensities on R, and weighting corresponding points (x,y) by their probabilities. 

 

Pixels located within the contour region R are considered high priority, and thus are positively 

weighted. Those values outside the contour are assigned a value of zero (Equation 4.2). 

 

          
                           

                        
  

(4.2) 

During the tracking process, the location of maximum correlation between the template and image 

is used to compute the gross translational bowel displacement for the nth frame (shiftn(x,y)).  This 

position is indicted by the location of γmax, the maximum WNCC coefficient. A search window 

constraint limiting the distance of γmax from the previous location (on frame   1) is applied to 

improve speed and accuracy. Thus, γmax  for the nth frame is identified within a window of size of sw 

x sl   on γ, centered at (xγ    , yγ   )n-1. The window size sw x sl  is user-defined, and was defined in 

our process as 15x15mm for a sampling rate of 4Hz and 30x30mm for a sampling rate of 2Hz. This 

value was determined by calculating the maximum motion the bowel was likely to move at an 

average breathing rate of 15 breaths per minute. In clinical practice, this constraint could be defined 

by monitoring the patient’s breathing frequency and amplitude immediately before initiation of daily 

treatment.  

 

The coefficient γmax ranges between 0 and 1, with 1 indicating perfect correlation between In and 

template T. During initial software testing, low values of γmax often corresponded with a state in 

which the tracking failed and the resultant contour had deviated away from an accurate location. To 
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control for this situation, a subroutine within the tracking code was designed to flag instances in 

which γmax fell below a threshold of 0.7, a value which indicates “good” agreement [93]. Under this 

condition, the gross shift was defined as an average of shiftn and shiftn-1. (Figure 4.2) The 

implementation of this condition greatly improved the recovery rate of failed tracking instances. 

 

After determining the bowel displacement, the contour output from the previously tracked image 

frame (vnew ) is shifted in x and y directions by the determined gross shift (Figure 4.2).  This new 

shifted contour is defined as v0, and is passed to the deformable tracking component of the software 

as an initial guess of the location of the bowel borders.  

Figure 4.2  Workflow for determining the shift of the bowel contour from frame n-1 to frame n based on the γmax 

constraint. 

 

Tracking deformable motion. The deformable motion tracking component of the software is 

based on a modified version of the traditional active contour method, originally described by Kass et 

al [91]. Traditional active contour models, also known as “snakes”, are based on the premise of 

minimizing the energy of the contour (Esnake), which is comprised of energies contributed by 

internal (Eint) forces and image (Eext) forces (Equation 4.3). A preliminary guess of the position of 
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the boundary of interest (v0)  is first given. The position of the contour is then iteratively optimized 

to a state of minimum local energy.   

 

      
               

 

 

               
(4.3) 

 

where 

                        describes the position of the snake   

       parametric form. 

 

The internal energy Eint represents the energy contributed by contour itself modeled as a spline, and 

controls contour smoothness. The internal energy was implemented as described by Kass et al (see 

Appendix), in order to force smooth behavior of the contour. The external energy Eext includes the 

energy contributed by image forces, including image intensity and image gradients. It is represented 

by the weighted sum of image force components, as: 

 

                                         (4.3) 

 

where      ,      , and       control the weights of the line energy (     ), edge energy (     ), 

and terminal energy (     ), respectively (see Appendix). 

 

In our implementation, two major modifications were made to the traditional definition of     . The 

first modification was made to the      energy, which is traditionally represented as the image 

intensity (ie. the image I itself) in order to attract the contour towards high or low intensities 

characterizing light or dark lines, respectively. Low (dark) intensities translate to low energy, which 

attracts the contour. Weighting       with a value       < 0 negates this relationship, so that high 

intensities represent low energies, attracting the contour. On the cine MR imagesets analyzed here, 

areas of high and low intensities typically represent regions of the targeted bowel and the underlying 

background tissue, not structure borders. Furthermore, the internal region of the bowel can 



67 
 

represented by various intensities (from high to low) depending on the image set, particular bowel 

segment, and moment of time when the bowel is imaged (since the bowel is susceptible to mid-

imaging contrast changes). In order to address this issue, the      term was replaced with a term 

       , defined as the following: 

Let Rint, represent the region on image In (scaled to [0,1]) encompassed by the initial 

guess contour v0  on the nth  image frame. Let Rext represent the complement of Rint 

(ie. the region outside of the Rint, including its boundary). Let pdfint represent the 

discrete probability density function of pixel intensities [0,1] located within Rint . 

Then, 

                
   

   
                                    

1     
   
                           

  
(4.4) 

 

Thus,         represents the image In(x,y) as a matrix of probabilities, weighted by the pdf  of pixels 

lying within the contour v0  (i.e., on Rint). Pixels lying on Rint  having intensities that occur frequently 

within Rint are labeled with a high energy value, while pixels having intensities that occur less 

frequently are labeled with a low value. Conversely, pixels lying on Rext  having intensities that occur 

frequently within Rint are labeled with a low energy value. 

 

Given a reasonable initial guess contour v0 , the contour will move to encompass regions that are 

characteristic of the inner contents of the bowel, based on pixel intensity. On     , the contour is 

attracted towards regions that contain high frequency intensities of the inner contents of the bowel 

(which commonly represents bowel which has fallen outside the contour), while on     , the contour 

is attracted towards regions that do not contain high frequency intensities of the inner contents of 

the bowel (commonly representing background tissues which have fallen inside the contour). For 

example, consider a segment of deformable bowel whose inner contents appear dark (low intensity) 

on a set of cine MR images. An expansion of the deforming bowel from frame n-1 to frame n will 

leave part of the bowel un-encompassed by contour v0  (Figure 4.3). Regions of outlying bowel, 

labeled with low         values, will attract the contour outward. 
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Figure 4.3  Example of        in aiding contour expansion. Initial contour v0  overlaid on image In (Left). Initial 

contour v0  overlaid on        (Middle). Deformed contour v0 overlaid on image In  (Right). 

 

Conversely, a contraction of the deforming bowel from frame n-1 to frame n will result the 

inclusion of outlying tissues by contour v0  (Figure 4.4). Regions of encompassed tissue, labeled with 

low         values, will attract the contour inward. 

 

Figure 4.4  Example of        in aiding contour contraction. Initial contour v0  overlaid on image In (Left). Initial 

contour v0  overlaid on        (Middle). Deformed contour v0 overlaid on image In  (Right). 

 

Because         is computed based on the pdf  of the inner contents of the bowel, it is robust to a 

spectrum of intensities, low to high. While        will operate ideally in a fairly homogenous region 

of bowel, non-homogenous regions can be challenging. For example, high intensity materials may 

momentarily fill regions of the bowel as they pass through, causing inner contents to take on the 

appearance of outlying tissue. Thus,         may act to push the contour away from the true 
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boundaries of the bowel in order to accommodate such non-homogenous regions. Figure 4.5 

demonstrates this issue. To control for such situations, a feature is implemented within the tracking 

code to dynamically weight          based on the distribution of       . When the inner quartile 

range of        exceeds a certain threshold indicated a large range of pixel intensities within the 

contour,         is decreased, reducing the contribution of         to     . 

 

 
Figure 4.5  Example of changing bowel contrast and its effect on        . The red contour is the output contour, and 

the blue contour represents the true position of the tracked bowel. 

 

A second modification was introduced to the active contour implementation in order to localize the 

contour to the most probable local energy minima. This was implemented using positional 

information from the prior vn-i contours (where i = 1,2,3 ... iuser-defined limit). In our implementation, 

the previous five contours were used. The Euclidean distance from the contour vn-i is computed 

during iteration n-i, and the distance map is stored as a two-dimensional matrix. Pixels lying on the 

contour are assigned a value of zero energy, with energy values increasing for pixels located 

increasingly more distant from the contour. During the nth iteration, the stored distance maps are 

translated to the new bowel position computed by the WNCC process, and summed over (x,y). 
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This resultant matrix, representing energy as a function of distance from prior contours, is as added 

to      as           , where       is a weighting factor. Thus, the final representation of  the 

external energy is: 

                                                        (4.5) 

While these modifications greatly improve tracking accuracy, they do not fully eliminate errors. In 

some instances, energy minimization is achieved at a set of  points on the deformed contour 

boundary that does not accurately represent the deformed bowel. Most commonly, the vn contour 

will either collapse in or expand out to an inaccurate position due to local minima or nearby 

gradients which represent false bowel edges. Since vnew is used in the subsequent n+1 iteration to 

establish v0, contours which inaccurately shrink or expand often lead to composite effects, rendering 

a contour which collapses down to a point or expands out to the image edge over subsequent image 

frames. Not surprisingly, this is most common in images where the bowel is inhomogenous or there 

are nearby structures with similar intensity or gradient features. In order to control for these types of  

tracking failures, a constraint was placed on the size of  the contour itself, limiting it to 

physiologically realistic dimensions. A constraint placed on the perimeter of  the tracked bowel was 

deemed most appropriate, since the bowel can easily change shape within a matter of  seconds while 

the perimeter remains the same. Thus, a subroutine within the tracking code is implemented to flag 

instances in which the percentage change of  the perimeter of  vn  (compared to v1) falls below a 

user-defined threshold, indicating an unsatisfactory result. For our implementation, a value of  15% 

(which was established during testing) is used. Under the condition that the contour perimeter 

changes more than 15%, vnew  is defined as v0 at the end of  the nth iteration. Otherwise, vnew  is 

defined as vn  (Figure 4.6). The template is then updated as the region on image In encompassed by 

vnew. 
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Figure 4.6  Workflow for determining the output contour, vnew for the subsequent tracking iteration, based on the vn 

perimeter constraint. 

 

Evaluation. Seventy cine MR imagesets (11,556 image frames in total) of small and large bowel 

located in the upper, mid-, and lower abdominal region of seven patients were analyzed. Cine image 

sets were acquired for an average duration of 47 seconds, with a minimum of 30 seconds and a 

maximum of 2.5 minutes. The tracking software was used to track bowel segments on each cie 

imageset, and the centroid of each tracked contour was stored. Due to the lack of an objective ‘gold 

standard’ baseline for tracked images, each frame was manually inspected and the agreement be-

tween the deformed bowel contour and the appearance of the bowel on the image was assessed. 

Any disagreements were flagged by the observer on a frame-by-frame basis. Disagreements were 

considered to be cases in which 1) portions of healthy tissues were encompassed by the deformed 

contour, and 2) portions of bowel which were designated for tracking were not encompassed by the 

tracked contour. 
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Additionally, the nature of tracking inaccuracies was categorized as the following for image each 

frame (in increasing severity): 

Type 1) minor disagreement of the contour with true bowel edges, < 5mm 

Type 2) major disagreement of the contour with true bowel edges, > 5mm 

Type 3) complete tracking failure, with a majority of the contour containing outlying tissues, 

or a majority of bowel exceeding the contour. 

 
Type 2 and Type 3 tracking inaccuracies were designated as tracking failures. The percentage of image 

frames demonstrating tracking failures (Type 2 and Type 3 inaccuracies) was computed for each of 

the 70 image sets.  Examples of each type of inaccuracy can be seen in Figure 4.7. 

 

 

Figure 4.7  Examples of Type 1, 2 and 3 tracking inaccurate. The red contour is the output contour, and the blue 

contour represents the true position of the tracked bowel. 
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4.3 Results 
 

Overall, the algorithm demonstrated moderate success in tracking the bowel over large amplitudes, 

and under conditions of deformation and contrast changes. Figure 4.8 displays three subsequent cine 

image frames and the tracked bowel abutting a liver tumor. There was a substantial variation in size, 

shape, and intensity of tracked bowel segments. Table 4.1 displays statistics characterizing the large 

variation in geometric and intensity-based features over all 70 cases. Figure 4.9 displays several 

examples of bowel segments tracked by the tracking algorithm.  

 

 
Figure 4.8 A sequence of frames showing tracked bowel (blue contour) abutting a liver tumor. The yellow bar 

indicates motion of the inferior edge of the bowel. The box overlaid on the SI motion trace defines the motion range 

displayed in the insets. Each inset displays the tracked motion at that instance. 
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Table 4.1  Features of tracked bowel segments as they appear on frame 1. Width and height are computed from a 

rectangular bounding box enclosing the contour.  

Feature Std Dev  
Mean 

(Min – Max) 

Area (cm
2
) 16.6  20.3 (3.0 – 87.5) 

Width (cm) 2.5  5.1 (1.5 – 13.5) 

Height (cm) 3.1  6.1 (1.8 – 14.6) 

Eccentricity (0 - 1) 0.2  0.8 (0.3 – 1.0) 

Mean intensity of pixels within the contour* 
(0 – 1) 

0.2 
 

0.4 (0.1 – 0.8) 

Variance of pixel intensities within the contour* 0.1  0.3 (0.0 – 0.4) 

Mean absolute gradient across contour boundary* 
(0 – 1) 0.05 

 
0.31 (0.4 – 0.10) 

*Intensity-based features are normalized to pixel intensity values contained within a 4cm margin around the contour. 
 

 

 

Figure 4.9  Examples of tracked bowel segments. 
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The tracked bowel motion yielded an average amplitude of 7 mm in the superior-inferior (SI) 

direction, and 3 mm in the anterior-posterior (AP) and lateral directions over the sample of patients 

(Table 4.2). Frames which were found to yield Type 2 and Type 3 tracking inaccuracies were not 

included in the calculation of these statistics.  

 

Table 4.2  Mean, maximum, minimum, and average standard deviation of tracked motion amplitude for the SI, AP 

and lateral (Lat) directions for all patients. 

Direction 
Tracked Motion Amplitude (mm) 

Mean Maximum Minimum Average Std Dev 

SI 7.0 22.9 1.7 3.1 

AP 3.5 14.1 0.3 1.4 

Lat 3.2 15.8 0.0 2.4 

 
 

Eighty percent of cases (n = 56/70) were tracked with 80% accuracy or greater. A histogram of the 

tracking accuracy of the 70 cine MR imagesets is displayed in Figure 4.10. A majority of inaccuracies 

were categorized as Type 1 disagreements, in which the contour showed a minor disagreement 

(<5mm) with the true boundary of the bowel (Table 4.3). The mean duration of Type 1 errors was 

7.8 seconds. Sixty-three percent of cases displayed Type 2 inaccuracies; however in a majority of 

these cases (n = 24/44 or 55%), Type 2 inaccuracies were observed for 5 seconds or less. Two cases 

demonstrated Type 3 inaccuracies, resulting in a complete tracking failure (Type 3). Examples of 

these failures can be seen in Figure 4.7.  
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Figure 4.10  Histogram showing percentage of frames in which the bowel was accurately tracked. 

 

Table 4.3  Number of cases resulting in tracking inaccuracies (by type) 

Type of Tracking Inaccuracy 
Number of Cases 
(Percent of Cases) 

Type 1 (Minor) 51 (73%) 

Type 2 (Major) 44 (63%) 

Type 3 (Complete Failure) 2 (3%) 

 
 

Not surprisingly, the tracking algorithm worked well for high-contrast, fairly homogenous regions of 

bowel. The algorithm also demonstrated some robustness to intermittent changes in contrast. 

Tracking failures seemed mostly attributed to deformation tracking (rather than gross motion 

tracking) as tracked contours appeared centered on the bowel for most cases, even when there were 

disagreements between the contour and the true boundaries of the bowel. This suggests that the 

WNCC approach is satisfactory, even for rapidly changing bowel segments. While the modified 

active contour method was moderately successful, it was still somewhat susceptible to inaccuracies 
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in differentiating bowel boundaries from other nearby boundaries. An example of this can be seen in 

Figure 4.7 (center), where the contour deviated away from the true boundary of the bowel due to the 

presence of another proximal boundary in the image. Sometimes tracked contours also experienced 

some lag when deforming to portions of bowel moving into the two-dimensional imaging plane. An 

example of this can be seen in Figure 4.11.  

 

 
Figure 4.11  Example of contour deforming to bowel entering the two-dimensional imaging plane. 

 

Extensive testing was performed to adjust weighting parameters before a set was found that 

provided satisfactory tracking for a majority of image sets. This is one of the disadvantages of such a 

technique, as tracking results may be sensitive to changes in input parameters. It is likely that tuning 

parameters individually to each image set would improve tracking results, however this is impractical 

for achieving real-time tracking. Automated, prospective parameter tuning would be ideal, and 

warrants investigation for future improvements to this work.  

 

The algorithm in its current implementation does not perform with sufficient speed to enable real-

time tracking at a sampling rate of 4Hz. The software performed with overall mean processing speed 

of 0.26 seconds per frame, as implemented on MATLAB and run on a 3GHz Intel Core processor. 

However, reduction of tracking speed can be achieved through by optimizing the implementation of 

the tracking algorithm.  
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4.4 Discussion 
 

The demonstration of real-time bowel-tracking simulation for gated radiotherapy treatment offers 

promising clinical possibilities. Still, the implementation of real-time bowel tracking for radiotherapy 

or other MRI-guided interventions is not without its challenges. Both our work and others’ have 

highlighted the inherent technical difficulties in tracking bowel over even relatively short durations 

[85, 94]. MR is sensitive to fluctuations in the inner contents of the bowel, leading to continuous 

changes in image contrast of the targeted region. Even when contrast fluctuations of the bowel are 

properly determined and handled, changes in the overall shape of the organ present additional 

complications.  

 
Peristaltic motion makes the bowel more difficult to track than targets in the abdomen or thorax 

that primarily move with respiration, and out-of-plane motion poses additional complications. 

Cerviño et al reported on the use of several tracking methodologies on cine MR-images of lung 

lesions for radiotherapy [89]. Despite being relatively more rigid and systematic in motion as 

compared to bowel, authors still reported challenges in tracking lung targets. This was largely due to 

non-optimal search window constraints and complications arising from large out-of-plane motion. 

However, authors also demonstrated good success with a template-matching algorithm.  
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The use of the WNCC algorithm for tracking bowel motion demonstrated a high degree of 

robustness. The implementation of constraints on tracked bowel displacement proved to be useful 

in preventing gross tracking inaccuracies. Motion constraints used for detecting tracking results that 

are physiologically unrealistic, or used to focus a tracking algorithm’s search window, are often used 

for tracking targets in the thorax [95]. Here we have used search window which is updated according 

to the new position of each tracked image. Due to arbitrary peristaltic movements, motion con-

straints for bowel-tracking applications should incorporate a higher tolerance for random motion 

and deformation than many other organs in the abdomen and thorax. The implementation of an 

additional motion constraint based on the WNCC coefficient (γmax) proved to be very useful in 

prevention of unrecoverable tracking failures, however false positives (successes that are incorrectly 

flagged as failures) may contribute to smaller inaccuracies. More sophisticated testing conditions 

incorporating feature or texture matching approaches should be explored in future work. 

 
The deformable tracking methodology presented here has demonstrated some robustness to in-

termittent changes in contrast and shape, however improvements are warranted. The level of 

confidence in tracking accuracy is certainly dependent on the severity of regional fluctuations. As 

discussed in the Methods, we use several parameters to automatically flag potentially poor tracking 

conditions and adapt the algorithm accordingly (such as the WNCC coefficient, contour perimeter 

changes, and internal distribution of pixel intensities within the contour region). Tracking results are 

likely sensitive to the adjustment of these parameter values, as well as the value of energy weighting 

parameters. Additionally, parameter thresholds defining the tradeoff between poor tracking 

conditions and simple fluctuations in local shape and contrast may vary across cases. Thus, a method 

to automatically and prospectively detect the most appropriate value of these parameters on a case-

by-case basis is ideal, and warrants future work. 

 

While the active contour model has demonstrated success in many medical imaging applications 

[92], it can be susceptible to inaccuracies (as demonstrated), and its implementation now exists in 

various forms due to investigators’ efforts in optimizing its edge detection abilities. Several different 

variations were investigated during testing in efforts to improve tracking accuracy. Xu and Prince 

presented a technique to incorporate vector gradient flow in order to improve locating boundaries in 
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convex regions [96], however it proved unsuitably slow for real-time implementation. Cohen 

proposed the implementation of an additional ‘balloon’ force to guide the contour towards gradient 

regions [97], however this technique renders the contour susceptible to looping and entanglement. 

Geometric active contour models which use level set formulation were not explored in this work, 

but could prove more advantageous [92]. There are also many additional variations of the active 

contour model described throughout the literature, which could be explored [90, 92]. Future 

experimentation may identify one of these as a suitable technique for further enhancing deformable 

bowel tracking on cine MRI. 

 
Another challenge in the development of a deformable bowel tracking method is in establishing a 

reliable evaluation method. Published literature on bowel tracking primarily explores its application 

for assessing bowel motility for diagnostic purposes. The standard evaluation method for these 

applications consists of a simple measurement of the diameter of the bowel [85, 98]. However, the 

application of bowel tracking for gated radiotherapy treatment is a different proposition entirely. 

The endpoint of interest is the accurate tracking of the borders of the bowel, so that the beam can 

be held when any part of the bowel enters high radiation regions. Thus, the disagreement between 

the tracked contour and border of the bowel must be evaluated.  The frame-by-frame manual 

inspection method used here is incredibly cumbersome, making it inefficient for evaluating small 

changes made to the algorithm. Indeed, this proved challenging during the development phase, as 

detecting incremental improvements in tracking accuracy required lengthy sessions of manual 

inspection. Additionally, this type of evaluation is subjective. However we attempted to control for 

this by utilizing a single observer and categorizing errors using quantitative metrics (i.e. distance of 

the contour to bowel edge).  

 

While this bowel tracking method is currently only implemented in an offline testing environment, 

the application of this work in a patient treatment setting carries significant implications in limiting 

bowel toxicity during the treatment of abdominal cancers. Such a clinical application could enable 

safer dose escalation to abdominal targets, which is marked by greater treatment efficacy [80, 81]. In 

addition to real-time intervention, this method could also be utilized as a retrospective dose 

evaluation tool to aid in treatment monitoring and adaptive therapy. By adapting initial bowel 

contours defined at the start of treatment to bowel segments tracked on images acquired during 
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treatment, the dose delivered to the bowel can be estimated using the treatment plan and delivery 

information. Monitoring dose to the bowel over subsequent treatment sessions may offer clinicians 

valuable assessment of potential bowel toxicity for individual patients. This could aide in clinical 

decisions or interventions designed to minimize or manage side effects.  
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Chapter 5 

Process-Based Quality Management for 
Clinical Implementation of  Adaptive 
Radiotherapy 

 
The work presented in Chapters 2 – 4 introduces the use of novel technologies for enabling adaptive 

treatment schemes. Adaptive radiation therapy (ART) entails mid-treatment dose modification based 

on anatomical changes occurring throughout the treatment scheme, and has been the focus of much 

experimental study due to the potential treatment improvements it offers. However, ART introduces 

unique quality assurance (QA) challenges that make it difficult to implement in a clinical setting. In 

light of these unique QA challenges, no one has described a robust framework for its clinical 

implementation. We aim to address these obstacles by applying Failure Mode and Effects Analysis 

(FMEA), a process-based risk management technique, in order to identify high-priority errors and 

appropriate risk-mitigation strategies for clinical implementation of ART. 

5.1 Background & Significance 
 

Adaptive radiotherapy (ART) has garnered tremendous attention for years. Due to the advantages it 

may offer, there has been massive interest in ART as a potentially superlative treatment technique 

for patients who experience significant anatomical changes throughout treatment, including weight 

loss or gain, tumor shrinkage or growth, anatomical deformation and motion, and even metabolic or 



83 
 

functional changes of the tumor. Publications on tools, techniques, and potential benefits of ART 

are plenty. Investigational studies demonstrating significant improvement in treatment efficacy using 

adaptive techniques [5, 20] have motivated clinical implementation. The first reports of ART in a 

clinical setting are now emerging and reveal dosimetric advantages in the pelvis and head and neck 

[5, 20].  

 

But despite the myriad of promising studies and sophisticated technology supporting clinical use of 

ART, its unique quality assurance challenges pose a major barrier. There are no clear answers as to 

how ART (especially intensity-modulated ART) will practicably fit within a quality assurance scheme 

that is both safe and efficient. Radiotherapy is comprised of many complicated processes which are 

reliant on different types of resources, such as software, hardware, and personnel. The major 

processes of radiotherapy treatment include simulation (patient imaging for planning), simulation 

image transfer and physician orders for planning, treatment planning, plan approval and preparation, 

and treatment. Intensity modulated radiation treatment (IMRT), which is now commonplace, is even 

more complicated than conventional treatment since a dynamic beam shaping device is used during 

treatment.  Due to the complexity of these processes and the resources they utilize, QA measures 

are a fundamental component of the radiotherapy process in order to catch potential errors. 

 

Recent position papers by ASTRO and AAPM have firmly endorsed pre-treatment patient-specific 

IMRT QA, which places online intensity-modulated ART at odds with the customary, time-tested 

practice of traditional phantom-based IMRT QA (see Appendix). Other standard forms of QA, such 

as detailed pretreatment plan reviews, are impractical when imaging, planning, and treatment 

delivery occur within minutes, not days or weeks. Furthermore, there is considerable uncertainty 

surrounding the potential risk and impact of ART-based errors. While analyses of radiotherapy error 

records from the last few decades have shed light on the origin and management of common 

treatment errors [99], no such data exists for ART. There is a common belief that ART is inherently 

riskier than standard radiotherapy, however there is no data demonstrating the magnitude or 

distribution of these risks throughout the ART process. 
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Given the scope of these challenges and degree of risk uncertainty, no robust quality management 

strategy has been established for ART. The lack of a framework for the safe implementation of ART 

continues to deter its practice, while the lack of ART practice limits the implementation of a data-

driven quality management scheme. We aimed to address this void by employing a process-based 

approach, which has recently been endorsed by community experts as a means to optimize 

radiotherapy safety strategies [100-102], to evaluate the QA and safety needs for implementation of 

ART. Since ART-based error data currently does not exist, process-based analysis was performed 

using expert-based data from the forthcoming AAPM task group 100 (TG-100) as a baseline. Failure 

mode and effects analysis (FMEA, see Appendix) was used to identify and quantify risks for 

potential errors occurring during ART. For simplicity, a single scheme - online intensity-modulated 

ART with an integrated imaging, planning, and treatment system - was considered here. Through 

evaluation of the ART risk profile, vulnerabilities in the ART process were identified and risk-

mitigation strategies are discussed to address high-priority QA and safety needs. 

 

5.2 Materials & Methods 

5.2.1 Failure Mode & Effects Analysis (FMEA) 
 
FMEA involves the identification of process-based failure modes and their associated risks (see 

Appendix). Risk assessment is achieved by establishing 1) the probability of occurrence for each 

possible failure (O), 2) the severity of the failure effect if unmitigated (S), and 3) the probability that 

the failure will be undetected (D). Each is rated with a value from 1 (low probability/severity) to 10 

(high probability/severity), and multiplied to achieve a single risk priority number (RPN): 

 

          (5.1) 

 

5.2.2 FMEA for Adaptive Radiotherapy 
 
An experienced team comprised of two clinical medical physicists, one clinical engineer, and one 

radiation oncologist was assembled. FMEA was executed for an online intensity-modulated ART 

scheme performed on an integrated (i.e. sharing a single database) planning, onboard imaging, and 



85 
 

treatment device equipped with some version of automated or semi-automated 

segmentation/planning software. A set of 216 radiotherapy failures composed by the forthcoming 

AAPM TG-100 was used as a basis for analysis [102] (Saiful Huq, personal communication, March 

13, 2013). 

 

The team first identified failure modes most relevant to the ART process. In the interest of isolating 

ART-specific failures, it was assumed that initial simulation and planning was first performed error-

free. Onboard imaging and subsequent adaptive planning were regarded as the ART simulation and 

treatment planning processes (Figure 5.1). Failure modes related to simulation, data transfer, 

treatment planning (including directives, image fusion, anatomical segmentation, etc.), plan approval 

and preparation, and treatment were included. In total, 127 of 216 failures were identified as being 

most relevant and of high priority to an intensity-modulated ART scheme. 
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Figure 5.1  Flow diagram of major intensity-modulated ART processes and subprocesses. The number of failure 

modes per subprocess is included in parenthesis. Each subprocess is annotated to indicate an increase or decrease in 

average RPN of the associated failure modes. Critical failures are indicated by bold symbols. Process points 

necessitating QC strategies are also indicated. Corresponding QC strategies are listed in Table 2. QC = Quality 

Control 

 

Each of the 127 failures was then evaluated for likeliness of occurrence (O), outcome severity (S) 

and likeliness of being undetected (D). The FMEA rating scale proposed by AAPM TG-100 was 

referenced for scoring (Table 5.1). Replicating the methodology employed for TG-100, it was 

assumed that no specialty QA tools (including patient-specific QA) or increased staffing was utilized 
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for ART. Factors relating to increased pressures (e.g. time constraints, real-time distractions, etc.) 

were considered, and their effects on O and D values were taken into account. The team also 

considered changes in overall severity of failures due to error accumulation over multiple fractions. 

Using the associated TG-100 values for standard IMRT as a baseline, the team established new O, S, 

and D values for each potential failure upon consensus agreement, and new RPN values were 

calculated. 

 
Table 5.1 Occurrence (O), severity (S), and detectability (D) values proposed by AAPM TG-100 for the 

radiotherapy process. (Re-created from AAPM Monograph No. 36 [103] ) 

Value Occurrence (O)  Severity (S)  Detectability (D) 

  

Qualitative Frequency  Qualitative Categorization 
 

Estimated probability 
failure goes undetected 

(%) 

        

1 Failure 
unlikely  

            No effect   0.01 

2             
Inconvenience Inconvenience 

 0.2 

3 

Relatively 
few failures 

             0.5 

4           
 

Minor dosimetric 
error 

Suboptimal plan 
or treatment  

1.0 

5 <0.2%  Limited toxicity or 
underdose Wrong dose, 

dose distribution, 
location or 

volume 

 2.0 

6 Occasional 
failures 

<0.5%   5.0 

7 <1%  Potentially 
serious toxicity or 

underdose 

 10 

8 
Repeated 

failures 

<2% 
  

15 

9 <5% 
 

Possibly very 
serious toxicity 

Very wrong dose, 
dose distribution, 

location or 
volume 

 
20 

10 
Failures 

inevitable 
>5% 

 
Catastrophic 

 
>20 

 

Failures characterized by O≥6 (at least moderate occurrence), S≥7 (serious injury or death) and D≥5 

(at least a moderate chance of  going undetected), yielding an RPN equal to 210, were categorized as 

high priority. For simplicity, the team designated failures with an RPN≥200 as potentially critical. 

Finally, quality control tools, resources and processes were identified for points of  critical failure. 
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5.3 Results 

5.3.1 Overall Trends 
 
ART demonstrated a wider range and higher maximum of O, D, and RPN values compared to 

standard IMRT (Table 5.2). RPN values increased for 38% (n = 48/127) of potential failures, with 

75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. 

Increased O values were observed for 26% (n = 33/127) of potential failures, with 36% (n = 12/33) 

attributed to failures in anatomical segmentation during treatment planning. S values increased for 

only 1% of potential failures. In many cases, the cumulative severity of failure modes prone to cause 

systematic errors was deemed less severe. It was reasoned that a systematic error occurring for 

standard IMRT would affect every treatment fraction leading to a larger cumulative error, while a 

systemic error occurring for ART would affect only the fractions for which the ART plan was used. 

D values increased (i.e. decreased probability of detection) for 44% (n = 56/127) of potential 

failures, with 86% (n = 48/56) attributed to failures in the segmentation and treatment planning 

processes. This was largely due to increased time constraints, user inattention, and inadequate 

training of onsite personnel.  

 
Table 5.2  Mean, standard deviation (σ), minimum, maximum, and range values for occurrence (O), severity (S), 

detectability (D), and risk priority number (RPN) values for 127 standard IMRT and intensity-modulated ART steps. 

 Standard IMRT  Intensity-modulated ART 

  O S D RPN   O S D RPN 

Mean ± σ 5 ± 1 7 ± 1 6 ± 1 188 ± 60  4 ± 2 7 ± 1 6 ± 2 174 ± 105 

Minimum 2 3 2 46  1 3 1 11 

Maximum 7 9 8 366  8 9 9 441 

Range 5 6 6 320  7 6 8 430 
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5.3.2 Process-specific Trends 
 

There was a reduction in O and D values for simulation processes and treatment planning directives 

due to the availability of prior knowledge of immobilization, imaging, and treatment directives given 

for the initial plan. For the majority of segmentation and planning failures, RPN values increased. 

This was largely due to tighter time constraints and user inattention. O and D values were reduced 

for some failures due to the availability of the initial treatment plan as a reference. These included 

failures in specifying optimization goals, planning constraints, prescription information, dose 

calculation parameters, and beam energy. 

 

Figure 5.2  Change in RPN, O, S, and D values for intensity-modulated ART (relative to standard IMRT) for each 

potential failure. (TP = Treatment Planning)  



90 
 

 
Increased RPN values for plan approval failures were attributed to increased time constraints, user 

inattention, and inadequate training of onsite personnel. Plan preparation, however, experienced 

reduced RPN values. Failure occurrence decreased for many plan preparation failure modes 

(preparation of localization images, transferring the plan to the delivery system, etc.) due to the 

integrated nature of the ART system. The probability of detecting these errors was improved since 

the image and treatment data was handled by staff immediately before transfer to the machine, 

making any discrepancies more obvious than they otherwise would be. 

 

Reduction of treatment delivery RPN values largely corresponded to reduction of daily setup, 

positioning and localization errors, which were improved by ART. The integrated nature of the ART 

system reduced the likeliness of inconsistencies between the planning and treatment systems. RPN 

values for severe, systematic delivery system failures experienced no substantial changes. 

5.3.3 Critical Failures 
 
Forty-three of 127 potential failures analyzed for intensity-modulated ART were identified as 

potentially critical (RPN≥200). Under the same criteria, 51 failures were identified as potentially 

critical for standard IMRT. While ART introduced 13 new critical failures, 30 critical failures were 

common between ART and standard IMRT (Figure 5.3). RPN values were higher in the majority (n 

= 23/30) of these common failures for ART than for standard IMRT. Delineation errors, 

optimization errors, and equipment failures during treatment delivery remained as some of the 

highest ranked for both standard IMRT and intensity-modulated ART, due to difficulties in 

detection. Most failures were elevated to a ‘critical’ rating due to increased time constraints, real-time 

distractions, and inadequate training of onsite personnel. 
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Figure 5.3  Processes with occurrence of common and unique critical failures for intensity-modulated ART and 

standard IMRT. (Tx = treatment). 

 

 

5.3.4 Quality Control Strategies 
 

Nine major points of quality control for critical failures were identified. Strategies for each point of 

critical failure are listed in Table 5.3 and referenced in the process map displayed in Figure 5.4. Key 

strategies are discussed below. 

 
Failures associated with isocenter documentation and communication of planning and fusion 

directives for adaptive treatment (including the proper documentation and interpretation of ‘tracked 

treatment’ from fraction to fraction) necessitate a combination of well-documented protocols, stable 

clinical workflow, staff training, and a reliable record management system. Electronic physician 

ordering and whiteboard systems are also an effective means for mitigating communication failures 

[104, 105]. Quality control measures for dataset fusion include both automated fusion tools and 

trained manual inspection [106].  
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Although automated segmentation tools will be commonplace for online ART to increase efficiency 

and reduce human error, automated quality control software is necessary for error detection. A 

system for inspection and comparison of the position, size, shape and volume of newly contoured 

structures to previously contoured structure(s) would enable an evaluation of contour accuracy using 

quantifiable metrics. Commercial software tools such as ImSimQAcontour (Modus Medical Devices, 

Inc.) and StructSure (Standard Imaging, Inc.) already offer similar capabilities designed to test inter-

user and inter-system agreement, and could be extended for detection of re-contouring errors. For 

application to ART, appropriate metrics and tolerances for mobile and deformable structures must 

be established. One option is to use a clinical database of acceptable ranges. Tolerances could also 

be constructed based on physiologic models. Alternatively, a redundancy check using a separate, 

independent auto-segmentation system could also be employed.  
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Table 5.3  Mitigation and QC strategies for ART processes with critical failures. 

 Failure Quality Control (QC) Strategy Prototypes and Commercial Tools 

1) Isocenter documentation Automated isocenter capture, 
checklists, monitoring trends in 
daily patient shifts 

 

2) Mis-communication of 
planning directives and 
failure to properly account 
for dose accumulation 

Well-defined protocols, stable 
clinical workflow, staff training, 
integrated record management, 
electronic physician order and 
whiteboard systems 

Santanam [105], Brewster [104] 

3) Poor imageset fusion Automated fusion tools, specialty 
training for onsite staff 

 

4) Incorrect target/structure 
delineation and 
construction 

Automated contour integrity 
verification software 

ImSimQA
contour

 , StructSure 

(not specifically designed for 
ART) 

5) Poor plan optimization and 
or incorrect dose 
computation 

Automated software verifying: 

 dose computation 

RadCalc (LifeLine Software), 
IMSure (Standard Imaging), 
muCheck (Oncology Data 
Systems Imaging), Sun 2012 
[107] 

  leaf sequencing Xing 2000 [108] 

  plan integrity Yang 2012 [109] 

6) Poor plan review Automated decision support 
software 

Zhu 2011 [110], Moore 2011 [111] 

7) Corruption of plan data 
during transfer to 
treatment machine 

Independent verification software 
comparing data stored on the 
planning and delivery system 

QAPV (IHE-RO) [112] 

8) Failures in treatment 
parameter setup on 
treatment machine 

Simulated delivery, pre-treatment 
(running gantry rotations and MLC 
patterns without dose output) 

 

 Retrospective MLC QA, post-
treatment 

Sun 2012 [107] 

9) Failures occurring during 
treatment delivery 

Transmission detectors 

 

In-vivo EPID dosimetry, DAVID 
harp chamber, MatriXX

Evolution
, 

Investigational transmission 
detectors (Islam 2009 [69], Goulet 
2011 [113], Wong 2012 [114])

 

 Real-time MLC monitoring Jiang 2010 [115] 

  

 

 



94 
 

 

Figure 5.4  Flow diagram of major intensity-modulated ART processes and subprocesses. The number of failure 

modes per subprocess is included in parenthesis. Each subprocess is annotated to indicate an increase or decrease in 

average RPN of the associated failure modes. Critical failures are indicated by bold symbols. Process points 

necessitating QC strategies are also indicated. Corresponding QC strategies are listed in Table 5.3. QC = Quality 

Control 

 

Automated quality control software will also be instrumental in detecting planning errors and 

facilitating more effective plan review. Commercial tools like RadCalc (LifeLine Software, Inc.) and 

IMSure (Standard Imaging, Inc., Middleton WI) are readily available and can be implemented into an 
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online ART scheme as a verification measure, as described by Peng et al [116]. Several groups have 

proposed more comprehensive tools for plan verification. Yang and Moore have described a 

software tool for automated verification of plan integrity, which includes specific error detection for 

contours (empty, incomplete, etc.), beams (inconsistencies in isocenter, type, etc.), dose calculation 

parameters, IMRT optimization, and other plan components [109]. Authors found that 

implementation of their tool led to a decrease in plan-related failures in the clinic, and it is now 

standard use in their clinical practice. This type of comprehensive automated analysis is ideal for 

rapid error detection of adaptive plans.  

 

Plan review failures (i.e. approval of poor plans) can be partially mitigated by the quality control 

software just described, however those tools are designed to specifically address technical planning 

errors. Decision support software will be necessary for this purpose. Software enabling easily-

interpreted automated comparisons between planning goals and achieved goals should be 

commonplace on ART planning software. A more sophisticated solution is to incorporate an 

automated check against a database of quality-rated plans. This approach for plan evaluation has 

been explored using various methodologies, including machine learning [110] and pareto-front type 

modeling [111]. Moore et al demonstrated that the clinical implementation of such a feedback system 

during planning of head and neck and prostate cases could improve tissue sparing and planning 

efficiency [111]. This approach could expedite and stabilize the plan review process by establishing a 

robust baseline for achievable dosimetric goals specific to the site, planning, technique, patient 

geometry, and other parameters.  

 

Alternatives to the traditional patient-specific phantom-based IMRT QA process (which was 

assumed to be absent for the analysis) for detection of treatment parameter transfer/setup failures 

should be considered. Data transfer errors occurring between the planning and/or R&V systems to 

the treatment machine could be detected with independent software that performs automated 

comparisons between the parameters housed on each system. The ongoing development of the 

QAPV (Quality Assurance with Plan Veto) profiler by the IHE-RO group (Integrating the 

Healthcare Enterprise - Radiation Oncology) would ideally support such a solution [112]. To verify 

that treatment parameters are correctly uploaded by the treatment machine, additional measures 
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would need to be taken. One approach is to perform a ‘simulated’ treatment before delivery, which 

would entail running the treatment machine through planned gantry angles and multi-leaf collimator 

(MLC) patterns without activating the radiation beam. Comparison of machine delivery log files to 

planned patterns could reveal failures – a practice that has been shown to be both feasible and 

effective for post-delivery verification [107]. This approach is also much less resource intensive than 

physical measurement-based QA. Retrospective post-treatment QA (simulated or physical phantom-

based) could be adequate for delivery systems that demonstrate time-tested stability. It is important 

to note, however, that these methods (patient-specific IMRT QA included) do not detect clinical 

planning errors such as suboptimal or poor dosimetry, which collectively yielded higher RPN values 

than treatment parameter setup errors for both standard IMRT and ART. 

 

Pretreatment verification is also not necessarily sensitive to failures occurring during delivery, one of 

the highest rated critical failures for both standard IMRT and ART. In-vivo EPID dosimetry is very 

effective. In an analysis performed by Ford et al, EPID dosimetry was found to be one of the most 

effective QA methods of all those commonly available, with the ability to detect errors that even 

pre-treatment phantom-based IMRT missed [117]. Investigational studies demonstrate that real-time 

EPID dosimetry could even be used to detect errors as they occur [118], enabling immediate 

intervention. Transmission detectors that can be mounted onto the gantry head for online treatment 

monitoring have also been under development by many groups [69, 113, 114], and could play a key 

QA role for ART. Several of these devices are commercially available including the MatriXXEvolution 

transmission detector (IBA Dosimetry, Germany), which is marketed as an arc treatment QA device, 

and the DAVID harp chamber device (PTW, Germany), which is specifically designed for real-time 

dosimetric monitoring. Although not based on direct dosimetric measurements, post-treatment or 

real-time monitoring of MLC log files is a simpler solution and has been demonstrated by several 

groups [107, 115]. It has been suggested that supplementing MLC log file analysis with independent 

dose calculations may be a better QA method than traditional measurement-based approaches due 

to increased sensitivity to dose calculation errors, heterogeneity errors, and beam modeling errors 

[107].  Regardless of the approach, intra-fraction monitoring of treatment delivery can improve 

quality control and error detection for both standard IMRT and ART, and is likely to become an 

integral part of clinical QA as tools become more practical and widely available. 
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Many of these tools are not yet commercially available, however their need is widely recognized. 

Most (if not all) of these tools can be of value for standard IMRT as well. As these tools continue to 

be developed, data demonstrating their efficacy will offer valuable insight into their usefulness for 

ART.   

 

5.3 Discussion 
 

Evaluation of the ART risk profile suggests that ART does not substantially increase risk as 

compared to standard IMRT. While ART was particularly more vulnerable to failures in planning 

and delivery, most of the critical failures were deemed high-risk for both ART and standard IMRT. 

It is evident that many processes in the RT planning and delivery phase are just inherently risky. 

Critical risks unique to intensity-modulated ART were deemed manageable with proper mitigation. 

Furthermore, while ART experienced some elevated risks, a reduction in risk was observed for many 

failure modes. In particular, risks associated with patient positioning and localization failures were 

substantially reduced, illustrating a primary advantage of adaptive techniques.  

 

Examining the risks of intensity-modulated ART with respect to risks of standard IMRT is intended 

to offer clinical context, and not to draw direct comparisons between the overall levels of risk of 

these two treatment techniques. Overall risk will be dependent on cumulative error and the 

frequency and nature of plan adaptation, which may be difficult to quantify. The use of FMEA, 

however, enables identification and comparison of process-specific risks. Using the recommended 

FMEA values of TG-100 provides a well-developed and standardized baseline for analysis, and 

allows for the comparison of QA needs for standard and adaptive treatment. The use of a 

standardized baseline is an important feature of this work, since the assessment of risk values can be 

subjective across groups performing the FMEA. However, the major limitation of this analysis is 

that it relies on expert option. As ART is brought to practice, data-driven analysis will provide a 

more quantitative assessment of risk. For example, Ford et al [117] have demonstrated how the use 

of a clinical error database can be used to identify common failures and assess the effectiveness of 

quality control strategies for standard radiotherapy. 
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While process-based quality management is a relatively new practice for the radiotherapy field, it 

offers a pragmatic approach to a complex problem. When viewed within the traditional quality 

management framework, developing an implementation strategy for ART is daunting. Conventional 

QA practices generally embody a micromanagement strategy which emphasizes detection of 

technical errors and device-based testing. This is problematic in an environment of increasingly 

more complex systems, and some conventional QA methods are becoming impractical. For 

example, there is now evidence that phantom-based IMRT QA is one of the least effective routine 

QA measures [117], and some have suggested that software tools could potentially replace 

measurement-based pretreatment QA as RT equipment becomes increasingly stable [107, 119]. This 

position is controversial, and will undoubtedly continue to be a point of contention. 

 

At the very least, the development of alternative strategies, such as onboard QA devices and quality 

control software, indicates that investigators and vendors alike are taking measures to overcome 

such challenges. Furthermore, the recent advocacy of process-based approaches for RT quality 

management [100-102] indicates an appreciation for the shifting QA paradigm by community 

leaders. This study demonstrates the value of such a process-based technique in facilitating the safe 

clinical implementation of adaptive treatment. 

  



99 
 

Appendix 
Extended Definitions & Descriptions 
 

A.1 Calypso Electromagnetic Tracking System 
 

Real-time electromagnetic tracking has recently been introduced into clinics for enabling point-based 

target localization, both before and during treatment. This technology utilizes continuous tracking to 

monitor the target isocenter position. The Calypso® 4D Localization System (Varian Medical 

Systems, Inc., Seattle WA) uses an electromagnetic array to track passive Beacon® electromagnetic 

transponders (8.5x1.85-mm glass-encapsulated copper coils) implanted in the patient’s tumor.  

 

Figure A.1  Calypso electromagnetic tracking array. Inset displays the implantable electromagnetic transponders 

(Image courtesy of Calypso Medical). 

 

The first clinical application of the Calypso System was in prostate cancer patients. Implantation by 

general clinical protocol for prostate cancer patients involves insertion of three transponders placed 

at the left base, right base, and apex of the prostate. The stability of these implanted transponders 

has been previously reported [120]. The three-dimensional coordinates of each transponder, with 
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respect to treatment isocenter, are determined from the CT scan taken during simulation. These 

coordinates are entered into the Calypso System to serve as the planned treatment position. 

 

During localization on the treatment machine, the electromagnetic array, a rectangular panel 

encasing electromagnetic coils, is positioned over the patient’s target area. The coils emit a 

radiofrequency signal to excite the implanted transponders. Each transponder contains a RLC 

circuit, which is tuned to a unique resonant frequency between 300−500 kHz. The transponders are 

excited sequentially, and each returns a signal at a specific frequency allowing for their positions to 

be detected relative to the array at a nominal sampling rate of 10Hz. The array (equipped with 

reflective surface markers), is in-turn tracked by three infra-red cameras mounted to the ceiling, 

providing absolute positional information of the transponders. The target isocenter position as 

calculated from the transponder locations is tracked and reported throughout treatment. The system 

also monitors ambient radiation in the treatment room for synchronization with tracking data, 

enabling identification of target motion collected during active radiation delivery. 

 

Previous studies done by Balter et al and Parikh et al  have documented the submillimeter accuracy of 

the system within a volume of 14x14 cm in width, and 27cm in depth when tracking transponders 

moving up to 3cm/s [42, 43]. The tracking latency of the system is reported to be 303ms [121]. 

 

The Calypso System is designed for both set-up localization and continuous monitoring of isocenter 

position. At the time of initial localization, the Calypso System reports translational shifts and 

rotational offsets, as compared to the planned transponder positions. The user is allowed to set 

patient-specific rotational limits for patient set-up. If the system detects target rotation greater than 

this value, the user is warned during initial localization. Additionally, the user is allowed to set 

patient-specific motion limits of translational isocenter movement. The system is designed to warn 

the user if the isocenter exceeds these limits during treatment. Limits for each axis (lateral, anterior-

posterior, and superior-inferior) are set independently, allowing for asymmetrical motion boundaries. 

 

Tracking data from each treatment fraction is stored by the Calypso System on the tracking station. 

The clinical system at our institution is equipped with supplementary functionality allowing for 
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exportation of individual transponder positions to an external computer. Individual tracking files are 

exported into an Excel (Microsoft Corporation) spreadsheet via a non-clinical software application. 

Data exported for each fraction consists of individual transponder and isocenter positions as a 

function of time. Also included is synchronized radiation detection data. 

 

A.2 Gamma Dosimetric Analysis 
 

The Gamma dosimetric analysis method is a QA metric that compares an evaluated dose 

distribution to a reference dose distribution [122]. It takes into account the dosimetric difference and 

dosimetric distance to agreement (DTA) between the two distributions, simultaneously.  The 

rationale behind this composite analysis is that the dose difference and DTA metrics are actually 

complementary. The dose difference metric describes the difference in dose between the evaluated 

and reference distribution at a single point, and is therefore sensitive to regions with steep dose 

gradients. Conversely, the DTA metric is sensitive to regions of shallow dose gradients for 

interpolated dose distributions, since it measures the distance between the nearest points of equal 

dose on the evaluated and reference dose distributions [123]. By combining these two into a single 

metric (the gamma metric), false positives due to hyper-sensitivity are reduced. The gamma metric 

identifies failures only when both the dose distance and DTA metrics simultaneously exceed user-

defined values (commonly 3%/3mm for clinical use).  

 

A.3 ViewRay Onboard MRI System 
 

The hybrid MRI-treatment unit is comprised of an open, split-solenoid low-field MRI co-registered 

to a three-head 60Co gamma-ray radiation delivery device. The MRI has a nominal field strength of 

0.35T and is a variant of the Siemens MAGNETOM product used for intraoperative imaging. The 

split coil design allows for an unobstructed path from the treatment source to the patient, which 

eliminates a possible source of beam attenuation. The design also allows for the radiofrequency (RF) 

shield, 12-channel receiver coil, and patient couch to remain within the beam path, as these 

components contribute minimal attenuation. The imaging and treatment isocenter are co-registered, 

allowing for simultaneous target treatment and localization (Figure A.2).  
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Figure A.2 The ViewRay System, a hybrid MRI-
60

Co radiotherapy device (images courtesy of ViewRay, Inc.). 

 

The system is designed to enable pre-treatment volumetric MRI for positioning and adaptive 

planning. The system software is equipped with deformable image registration algorithms, a re-

planning interface, and a fast dose calculation engine. During an adaptive workflow, the patient is 

positioned on the treatment couch, a volumetric MRI is acquired, and a decision to re-plan or 

proceed with the current plan is made. The system is also designed to enable intra-fraction cine MRI 

for motion planning and mid-treatment intervention. During the tracking and intervention, the 

target is selected and contoured, the target is automatically tracked during treatment, and the beam is 

held when the target leaves the path of the treatment beam due to motion.  

 

The superconducting magnet, RF coils, and gradient coil are specifically designed to allow for 

simultaneous operation with the radiotherapy unit. The superconducting magnet is cooled with 

liquid helium. The gradient system is comprised of three gradient coils oriented in the x-, y-, and z-

axes and has a maximum strength of 18 mT/m and a maximum slew rate 200 T/m/s. The imaging 

field of view of radius of 70 cm, centered at treatment isocenter. The low-field design of the MRI 

scanner bypasses many obstacles that would be encountered with a standard-field design. 

 



103 
 

A fundamental complication of merging an MRI unit with a radiotherapy treatment unit is managing 

the effect of the magnetic field on the treatment beam and delivered dose distribution. The standard 

linear accelerator (LINAC) design relies on the use of a linear beam of electrons to produce 

radiation. However, in the presence of a magnetic field, the trajectory of the beam is governed by 

the Lorentz force, 

             (A.1) 

which describes the force acting on a charged particle (q ) moving within a vacuum at velocity   , 

within a magnetic field    . Without complete shielding from the magnetic field, accelerated electrons 

cannot be directed along a straight path. This force also effects the delivered dose distribution. 

However, by employing a low-field MRI design, the effect of the Lorentz force is reduced. 

Furthermore, the use of naturally emitting Cobalt radiation eliminates considerations for LINAC-

based radiation and its specialized shielding requirements. This feature also eliminates the concern of 

RF interference between the LINAC and the RF transceiver system of the MRI. Finally, the low-

field design of the MRI results in less magnetic susceptibility artifacts and image distortions, which 

are proportional to the field strength [124]. This is particularly important for targeting accuracy 

during radiotherapy, since patient alignment and dosimetric planning accuracy is reliant on the 

accurate spatial representation of the patient's anatomy. 

 

Only the imaging component was utilized in this work. The spatial integrity of the onboard imaging 

unit has been characterized by Hu et al [125]. Investigators reported a geometric distortion of 

approximately 0.2mm within a radial distance 100mm from isocenter, and 0.6mm within a radial 

distance of 175mm from isocenter for static planning images. Geometric distortion for cine images 

was approximately 0.1mm within a radial distance of 175mm from isocenter. Geometric distortion 

always remained <1mm within a radial distance 100mm from isocenter, and <2mm within a radial 

distance of 175mm from isocenter for both static planning and cine images. The maximum signal-

to-noise ratio (SNR) deviated from the mean SNR by values of 1.62%, 6.98%, and 7.22% the body 

coil, combined torso coil and combined head/neck coil, respectively. Investigators reported a RF 

phase stability of <2%, through measurement of the FID (free induction decay) time for both for 

both real and imaginary channels. 
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The ViewRay system is designed to for fast image acquisition, in order to minimize pre-treatment 

imaging time and the maximize intra-fraction imaging rate. Two imaging sequences were used for 

patient imaging. The TrueFISP imaging sequence was used to acquire a majority of patient 

volumetric imagesets (Chapter 3) sets and all real-time cine imaging of the bowel (Chapter 4). The 

Siemens TrueFISP sequence is designed for use in cardiac imaging due to its fast acquisition time. It 

is characterized by a high flip angle and short TR/TE. The transverse magnetization is preserved 

during acquisition, which results in fast acquisition of a T2/T1-weighted signal with high SNR. A 

TurboFLASH sequence was used to acquire two of 14 volumetric patients imagesets (Chapter 3). 

Like the True FISP imaging sequence, it is characterized by a low TR. However it is a T1-weighted 

sequence due to the saturation-recovery magnetization preparation performed before the FLASH 

acquisition. 

 

A.4 Active Contour Model 
 

The traditional active contour model was introduced by Kass et al in 1988 [91]. This traditional active 

contour model, also known as “snakes”, is based on the premise of minimizing the energy of the 

contour (Esnake), which is comprised of energies contributed by internal (Eint) forces and image (Eext) 

forces. 

 

            

 

 

          

             
 

 

               

 

(A.2) 

 

(A.3) 

 

where 

v(s) = (x(s), y(s))  describes the position of the snake  

    parametric form. 
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The internal energy represents the energy contributed by the contour itself modeled as a spline, and 

is composed of the weighted sum of: 1) a first-order term which represents the membrane energy, 

and 2) and a second-order term which represents the thin plate energy. 

 

               
             

     (A.4) 

 

where      and      control the relative weights of the first- and second-order terms, respectively. 

As these weights approach zero, the contour becomes more discontinuous. 

 

The external energy Eext includes the energy contributed by images forces (Eimage) and interactive 

force constraints imposed by the user (Econ). This constraint energy is traditionally described as 

applied by interactive user intervention. For the purposes of our implementation, Eext  is equal to 

Eimage. Thus: 

               

                                    

 

(A.5) 

(A.6) 

where      ,      , and       control the weights of the line energy (     ), edge energy (     ), 

and terminal energy (     ), respectively. In its traditional form, the line energy is represented as the 

image intensity (ie. the image I itself), 

 

               (A.7) 

 
the edge energy is represented as the image gradients convolved with Gaussian G with a standard 

deviation σ, 
                   (A.8) 
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and the terminal energy is represented as 

 

        
  

   

 

  
        

     
 

  
     

                 
 

            
 

 

(A.9) 

(A.10) 

(A.11) 

given that 

                   (a smoothed version of the image I  ),  

           

  
   (the gradient angle),  

                 (the unit vector along the gradient  

    direction),  

                  (the unit vector perpendicular to the  

    gradient direction). 

 

(A.12) 

(A.13) 

(A.14) 

 

(A.15) 

The       term attracts the contour towards high or low intensities (characterizing black or white 

lines in a grayscale image). Low (dark) intensities translate to low energy, which attracts the contour. 

Weighting       with a value < 0 negates this relationship, so that high intensities represent low 

energies, attracting the contour. The       term attracts the contour towards edges, which are 

represented as image gradients, and the combination of       and       is used to attract the 

contour towards line segment terminations and corners. 
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A.5 IMRT QA 
 

Intensity modulated radiotherapy (IMRT) is a highly conformal form of treatment, and is more 

complex than conventional techniques. During IMRT, the beam is shaped to the target dynamically 

(either between treatment beams or during beam delivery). Due to the mechanical complexities and 

the high dose output of this delivery method, it can be considered as a riskier treatment method than 

conventional dose delivery. As such, comprehensive dosimetric testing executed on a per patient 

basis is regularly performed for IMRT. Furthermore, reimbursement policies set forth by the 

Centers for Medicare and Medicaid Services (CMS) stipulate that planned dose must verified for 

IMRT treatments. Patient-specific dose verification for IMRT treatments is traditionally performed 

by delivering the planned dose to a solid water implanted with planar film or ion chambers. The 

value of this technique is that phantom-based QA accounts for multiple parameters that simulated 

calculations do not, such as correct multi-leaf collimator positions and gantry angles. Other methods 

include delivering planned dose to diode/ion chamber arrays, or using MV portal imaging 

dosimetry. The delivered dose can then be compared to the planned dose to ensure that the plan or 

delivery was not corrupted. 

 

A.6 Failure Mode and Effects Analysis (FMEA) 
 

Failure mode and effects analysis (FMEA) is a technique that is well-suited for process-based risk 

management and has recently been suggested as the future framework for radiotherapy QA by the 

AAPM [120]. The FMEA method, which is used routinely in industrial engineering fields, facilitates 

safety improvement through identification of process failure modes and their associated risks. 

 

In order to identify all possible modes of failures, the entire process is generally first mapped out as 

a process tree so that distinct subroutines can be distinguished. Within each subroutine there are 

possible modes of failure, which can be mapped out as a fault tree detailing the possible failure and 

causes. For example, a patient immobilization subroutine could involve a setup failure (failure mode) 

resulting in a random patient positioning error and caused by operator error or device failure (failure 

causes). Risk assessment is then achieved by identifying 1) the probability of occurrence for each 
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possible failure (O), 2) the Risk assessment is achieved by establishing 1) the probability of 

occurrence for each possible failure (O), 2) the severity of the failure effect if unmitigated (S), and 3) 

the probability that the failure will be undetected (D). Each is rated with a value from 1 (low 

probability/severity) to 10 (high probability/severity) [126]. Table 5.1 (Chapter 5) displays the O, S, 

D values proposed by AAPM TG-100 [103]. These values are incorporated into a single risk priority 

number defined as the product of the three values: 

 

          (A.16) 

 
Failure modes can then be ranked according to their RPN value, which high RPN values indicating 

the riskiest failures. By providing a quantitative measure of risk, FMEA enables identification of 

failure modes warranting a high degree of focus. Strategies and resources can then be put into place 

in order to mitigate these failure modes. FMEA ideally promotes efficiency, since resources are 

distributed according to safety-based needs in a systematic manner, rather than ad-hoc.  
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