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ABSTRACT OF THE DISSERTATION

Functional genomic examinations of interactions between

common members of the human gut microbiota
by
Michael Anthony Mahowald

Doctor of Philosophy in Biology and Biomedical Sciences
(Molecular Microbiology and Microbial Pathogenesis)

Washington University in St. Louis, 2010
Professor Jeffrey I. Gordon, Chairperson

The adult human gut microbiota consists of hundreds to thousands of bacterial spe-
cies, the majority belonging to the Bacteroidetes and the Firmicutes. Differences in the bal-
ance between these phyla has been linked to obesity in mice and humans. However, little
is known about their interactions in vivo. I have used comparative and functional genom-
ics, proteomics and biochemical assays to identify the ways they marshal their genomic

resources to adapt to life together in the distal gut.

I first annotated the complete genome sequences of two human gut Bacteroidetes
(Bacteroides vulgatus and Parabacteroides distasonis) and two Firmicutes (Eubacterium
rectale and E. eligens). By comparing the genomes of all sequenced gut Bacteroidetes
and Firmicutes, I found that gut Bacteroidetes’ genomes contain large groups of genes
responsible for (i) sensing, binding, and metabolizing the varied polysaccharides that they
encounter in the distal intestine; and (i1) constructing their polysaccharide capsules. These
portions of their genomes have been shaped by lateral gene transfer, including phage and
conjugative transposons, as well as by gene duplication. By colonizing germ-free mice
with B. thetaiotaomicron, or B. vulgatus, or both species together, I documented that B.

vulgatus upregulates its unique glycan-degrading enzymes to adapt to the presence of B.

il



thetaiotaomicron.

In contrast to the Bacteroidetes, the Firmicutes have smaller genomes, a signifi-
cantly smaller proportion of glycan-degrading genes, and are suited to degrade a more
specialized assortment of dietary carbohydrates. By colonizing germ-free mice with E.
rectale and/or B. thetaiotaomicron, 1 showed that B. thetaiotaomicron, like B. vulgatus,
upregulates its unique glycoside hydrolase activities to adapt to the presence of E. rectale,
increasing its degradation of host-derived glycans that E. rectale cannot use. In contrast,
E. rectale downregulates its polysaccharide degradation genes and upregulates nutrient
transporters, likely allowing it to access sugars released by B. thetaiotaomicron’s glycoside
hydrolases. These models of the human gut microbiota illustrate niche specialization and
functional redundancy within the Bacteroidetes, the adaptable niche specialization that
likely underlies the success of Firmicutes in this habitat, and the importance of host glycans

as a nutrient foundation that ensures ecosystem stability.
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Chapter 1

Introduction



Introduction

Studies of germ-free animals have revealed that the mammalian gut microbial community
(‘microbiota’) is essential to normal host development, nutrition and health. It stimulates
normal gut and immune system development, and synthesizes essential vitamins and fer-
ments otherwise indigestible dietary polysaccharides (“fiber”) to short chain fatty acids
(SCFA), principally acetate, propionate, and butyrate, which are absorbed by the gut epi-

thelium and used for energy [1]. This process accounts for up to 10% of our daily calories

[2].

Diversity of the gut microbiota

In humans, the gut microbial community contains an estimated 10'* organisms;
most of these reside in our distal gut, and most belong to the domain Bacteria, although the
other two domains of life (Archaea and Eukarya) are also represented. The total number of
microbial cells inhabiting our gut is estimated to be ~10-fold more than the total number of

human cells in our adult body [3].

Among the Bacteria, hundreds to thousands of species-level phylogenetic types
(phylotypes) are present in the distal gut microbiota [4, 5]. The community is dominated,
however, by just two Bacterial phyla: the Bacteroidetes and the Firmicutes [4-6]. Results
obtained from the small number of individuals and demographic groups sampled thus far
have led to the conclusion that there are no microbial species-level phylotypes associated
with all adult human guts [4]. Detailed, culture-independent surveys have revealed that
the dominant phylotypes within this community can vary greatly between individuals, and
even in the same individual over time [4, 7]. However, the current view, based on these
culture-independent surveys, is that the overall microbiota membership in an individual

adult remains relatively constant despite variation between dominant types.



Analyses of humans as well as animal models suggest that the stability of overall
membership extends beyond a single generation. Analyses of twin pairs and their moth-
ers indicate that gut communities cluster by families, suggesting that the microbiota is
vertically transmitted [4, 8]. Mouse and other mammalian studies support this notion. For
instance, 16S rRNA sequence-based analyses of the gut microbiotas of female mice and
their offspring (separated at weaning and individually housed) have demonstrated that two
mothers who are sisters produce offspring whose gut microbiota is more similar to one
another, and to their mothers, than to the offspring of an unrelated mother of the same in-
bred strain [7]. Furthermore, a survey of the gut microbiotas of 59 non-human mammalian
species (including 17 non-human primate lineages) showed that individuals belonging to a
given mammalian species (‘conspecifics’) harbor closely related gut communities indepen-
dent of their provenance (i.e., whether animals are in one of two different zoos, or are in the
wild or domesticated), suggesting that vertical transmission of the microbiota is a general

characteristic of mammals [9].

This global mammalian gut survey indicated that diet, host phylogeny and diges-
tive physiology/gut structure (i.e., foregut vs. midgut and hindgut fermenters) contribute to
microbiota structure (Figure 1). Most extant mammals are herbivores, although ancestral
mammals are thought to have been carnivorous. The microbial solution to herbivory has
been similar among mammals: in other words, there are shared features of gut microbial
community structure among herbivores, and these encompass animals that occupy quite
distinctive positions in the mammalian tree. Increased plant consumption is also associated
with the increased diversity in the gut microbiota (herbivory > omnivory > carnivory) [9].
This richness likely reflects the vast chemical complexity of glycosidic linkages present in
plant polysaccharides and the relatively paltry number of glycoside hydrolases and poly-
saccharide lyases present in mammalian genomes. As noted above, microbial fermentation
of these polysaccharides allows for harvest of energy from the diet that would otherwise

be lost.



Gut microbial affects on adiposity

Given its importance in health, it is not surprising that changes in the gut microbial
community have been observed in various pathological states. Members of our lab found
that inoculation of adult germ-free mice with a distal gut microbial community harvested
from conventionally raised animals (a process known as “conventionalization”) induces a
rapid and sustained increase in body fat (within 10 days) despite a decrease in food con-
sumption. This occurs in multiple mouse strains, in male and female animals, and does not
require mature T- or B-lymphocytes or Ppar-o [10]. Conventionalization increases fermen-
tation of polysaccharides to SCFA, which are then absorbed from the gut and metabolized
by the body, stimulating de novo lipogenesis in the liver [10]. Colonization also represses
expression of fasting induced adipose factor (Fiaf) in the gut epithelium. Fiaf is a secreted
protein that inhibits lipoprotein lipase (LPL), a key enzyme involved in uptake of lipids
into adipocytes and other tissues. Suppression of intestinal Fiaf expression produces a sig-
nificant increase in LPL activity in adipocytes and a concomitant increase in adiposity
[10]. Studies of gnotobiotic Fiaf~ and wild type littermates have established the important
contribution of Fiaf to the microbiota-induced increase in adiposity [10]. However, the
microbial factors that lead to these shifts in Fiaf expression remain uncertain. Studies of
germ-free and conventionalized wild type and knockout mice have identified other genes
whose expression in the gut epithelium is essential for this microbiota-dependent increase
in adiposity [11]. Thus, the microbiota regulates both sides of the energy balance equation:
the efficiency with which energy is harvested from the diet as well as host signaling path-
ways that are important for modulating how absorbed energy is processed and deposited

in adipocytes.

Additional experiments suggest that the microbiota and its genes (microbiome)
should be considered as possible risk factors for development of obesity. Both genetically
obese (0b/ob) mice, as well as obese humans, possess a significantly higher proportion of

Firmicutes and reduced proportion of Bacteroidetes than their lean counterparts [7, 12].



The difference in relative proportions of the Firmcutes and the Bacteroidetes is not
due to any specific clades within either phylum, and studies of runted ob/ob mice suggest
that it is not due to increased food consumption per se. Transfer of the distal gut microbial
community from ob/ob mice to wild type (+/+) germ-free recipients produces a larger gain
in adiposity than does transfer of the microbiota from lean +/+ donors to +/4+ germ-free
recipients, after 2 weeks [13]. This was correlated with increased SCFA production and
decreased energy content in feces, suggesting increased energy extraction by the obese
microbial community. Consistent with these results, metagenomic sequencing of the gut
microbiomes of ob/ob and +/+ littermates revealed an increased representation of micro-
bial genes involved in processing of dietary polysaccharides in the former compared to the

latter.

As obese humans lose weight, the proportion of Bacteroidetes in their guts rises
progressively, with the magnitude of the increase correlating significantly with their weight
loss. Intriguingly, this change in the proportion of Bacteroidetes to Firmicutes occurred
both in individuals placed on both a low fat and on a low carbohydrate diet [7]. These find-
ings in humans indicate that gut microbial ecology is dynamically linked to obesity. The
studies in mice, particularly the microbiota transplant experiments and comparative meta-
genomic analyses, suggest that the microbiota is a mediator of increased adiposity and that

the phenotype is transmissible.

More recently, members of the lab have examined the effects of obesity induced by
consumption of a prototypic Western diet, enriched in fats and simple sugars, on the dis-
tal gut microbiota and microbiome [14]. Similar to ob/ob mice, there was a phylum wide
suppression of Bacteroidetes in animals with diet-induced obesity (DIO) compared to lean
controls who had consumed a standard, polysaccharide rich, low fat diet. Unlike the ob/
ob microbiota, the proportional increase in the Firmicutes in this model was attributable
to a bloom in a single clade within the Mollicutes class of Firmicutes. This bloom did not

require a functional adaptive or innate immune system since it occurred in both Rag/” and



Myd88™ hosts, and was reversible when adiposity was stabilized or reduced by switching
animals to a reduced calorie low fat or low carbohydrate diet [14]. Comparative metag-
enomic analyses of the microbiome revealed an enrichment in genes involved in import
and processing of dietary sugars associated with DIO. Microbiota transplant experiments
showed that the adiposity phenotype could be transmitted to germ-free recipients [14].
Together, these findings further emphasize the dynamic interrelationship between gut mi-

crobial community structure, diet, and energy balance.

Large scale, phylum-wide changes in the gut microbiota make dissection of the
contributions of individual members of this community to energy/nutrient harvest very
challenging. Therefore, the goal of my thesis has been to conduct comparative genomic,
functional genomic and biochemical analyses of the ways in which human gut-derived
Bacteroidetes and Firmicutes interact in vivo. I have done so by constructing a simplified
model of the human gut microbial community in gnotobiotic mice, using sequenced mem-

bers of our distal intestinal microbiota.

Meet the gut microbiota: Bacteroidetes

The Bacteroidetes are Gram-negative obligate anaerobic bacilli (for a 16S rRNA
based phylogenetic tree see Figure 2). Human gut Bacteroidetes have long been studied as
opportunistic pathogens; in particular, Bacteroides fragilis is the most commonly isolated
organism from abdominal abscesses, vastly overrepresented among such isolates com-
pared to its proportion within the gut microbial community [15]. In healthy individuals,
though, Bacteroidetes are commensal, or perhaps mutualistic, members of the community.
A number of studies over the last decade have significantly improved our understanding of
the metabolism and properties of a model Bacteroides species, B. thetaiotaomicron, on a

genomic level.

Completion of the first Bacteroides genome sequence revealed a bacterium with

an unprecedented genomic structure. B. thetaiotaomicron’s 6.2 Mbp genome possesses



240 glycoside hydrolases and polysaccharide lyases; in comparison, the 500-fold larger
human genome possesses only 99. These enzymes are organized into gene clusters, termed
polysaccharide utilization loci (PULs), that contain various combinations of glycosidic
enzymes. There are 88 individual PULs in the B. thetaiotaomicron genome [16], and oth-
er gut and non-gut Bacteroidetes also possess PULs [17-20]. All PULs identified to date
possess two linked genes encoding homologs of two outer membrane proteins, SusC and
SusD, that are components of the first identified PUL - the starch utilization system (Sus)
[21]. SusC is predicted to be a TonB-dependent, $-barrel-type outer membrane transporter
and is essential for importing al,4-linked glucose polymers into the periplasm. SusD is
an outer membrane o-helical starch binding lipoprotein needed for growth on starch mol-
ecules containing =6 glucose units [22]. The conserved genomic organization of the PULs
[17], together with the frequent presence of linked genes encoding sensor/regulator func-
tions (e.g., ECF-o/anti-o factor pairs, ‘hybrid’ two component phosphorelay systems, plus
others) have given rise to the notion that individual PULs encode the functions needed to

act as carbohydrate substrate-specific sensing and acquisition systems [16].

GeneChip analyses of B. thetaiotaomicron gene expression in the distal guts of
gnotobiotic mice colonized with this organism alone indicate that B. thetaiotaomicron is
capable of harvesting dietary plant glycans as well as host mucosal glycans [16, 23, 24].
Specifically, comparison of the transcriptional profiles of B. thetaiotaomicron in the ceca
of adult gnotobiotic mice fed a standard, plant polysaccharide-rich chow versus (i) a diet
rich in simple sugars but devoid of plant polysaccharides [16, 24] and (ii) suckling mice
(diet rich in oligosaccharides; [23]) revealed that in both polysaccharide-poor conditions,
B. thetaiotaomicron downregulates a variety of PULs targeting plant-derived glycans, and
upregulates other PULSs predicted to access and process host-derived mucin glycans. Many
of the same loci are also induced in log-phase growth in minimal medium supplemented
with porcine gastric mucin as the sole carbon source, compared to minimal medium plus

glucose [16]. The capacity to turn to host glycans as a nutrient source when dietary poly-



saccharides are not available may be very advantageous: this type of opportunitistic, or
flexible foraging for glycans could help B. thetaiotaomicron to (i) maintain its foothold
in the very competitive distal gut microbiota; (ii) be transmitted from mothers to her oft-
spring; (iii) provide the products of polysaccharide fermentation to other members of the
community (i.e., promotion of syntrophic relationships), and (iv) contribute to ecosystem

robustness [16].

Meet the gut microbiota: Firmicutes

Firmicutes are diverse group of low-GC Gram-positive Bacteria (for a 16S rRNA-
based tree, see Figure 2). The global mammalian gut microbiota survey described earlier
revealed that the Firmicutes are inevitably present in mammalian GI tracts and are the
dominant phylum [9]. Abundant human gut-associated Firmicutes are less well studied
than Bacteroidetes. However, they have several properties that are important to mamma-
lian physiology. One is the capacity to produce butyrate. Butyrate is one of the principal
fermentation products of the gut microbial community, and is generated by phylotypes
scattered throughout the Firmicutes phylogenetic tree (e.g., see lineages marked with an
asterisk in Figure 2). Compared to other SCFAs, butyrate is preferentially absorbed and
utilized by the gut epithelium [25, 26]. Since it is longer than the other commonly gener-

ated SFCAs, it yields more energy upon oxidation.

Butyrate has profound effects on the growth of colonic cell lines in vitro, a fact that
has led to many investigations concerning its role in mediating the long-studied link be-
tween diet and colorectal carcinoma. Butyrate can inhibit inflammation, and induces apop-
tosis as well as differentiation in adenocarcinoma-derived gut epithelial cell lineages [27].
The majority of animal studies have shown that increasing butyrate concentrations (e.g.,
by feeding slowly fermented fiber, or by colonization with butyrate-producing organisms),
correlates with reduced epithelial proliferation, and decreased incidence of precancerous

lesions [28-31]. However, other studies show opposing effects [32-34]. These results may



conflict because the consumption of fiber or bacteria, as in all these in vivo studies, pro-

duces poorly defined shifts in the microbial community structure and metabolic activity.

Other metabolic activities associated with members of the Firmicutes include the
7-a. dehydroxylation of bile acids to yield the secondary bile acids deoxycholate and litho-
cholate, which have been implicated in promoting colon cancer [35, 36]; production of
conjugated linoleic acids, which have been implicated in decreasing both adiposity and
cancer risk [37]; and acetogenesis, a process by which acetate is produced by reductive

fixation of carbon dioxide via the Wood-Ljungdahl pathway [38].

At the start of this thesis project, very few genome structures of common human gut
Firmicutes were defined, and many branches of the tree were completely unrepresented by
genomic sequence. Similarly, their niche space remained poorly defined, and potentially

vast.

Overview of the dissertation

The goal of this thesis was to better characterize the genomic and metabolic prop-
erties of the two dominant phyla of mammalian gut bacteria, the Bacteroidetes and the
Firmicutes, and use a more simplified model microbial community to explore the way in

which they adapt themselves to life in the gut and to one another.

Chapter 2 describes the insights gained from the complete genomic sequencing of
two common members of the Bacteroidetes, B. vulgatus and P. distasonis. I compared the
genome content of these two Bacteroidetes with the five available completed Bacteroi-
detes genomes, including three gut Bacteroidetes (two strains of B. fragilis as well as B.
thetaiotaomicron), and two non-gut Bacteroidetes (Cytophaga hutchinsonii and Porphy-
romonas gingivalis). 1 assigned all the proteins from these seven genomes to functional
categories, and compared the proportion of genes in each category in each genome. I found

that gut Bacteroidetes in general could be differentiated from their non-gut relatives by the



large proportion of genes devoted to environmental sensing, carbohydrate metabolism, and
membrane transport; these genes are typically arranged in PULs, like those present in B.
thetaiotaomicron. | then showed that although all the gut Bacteroidetes share large numbers
of genes in these functional categories, the individual genes in each represented category
have diverged substantially, suggesting some niche differentiation among Bacteroidetes.
The genomes of B. vulgatus and P. distasonis possess a significantly smaller proportion
of glycoside hydrolases and other carbohydrate-active enzymes than B. thetaiotaomicron.
P. distasonis possesses a larger proportion of predicted proteases, while B. vulgatus has a
larger proportion of genes involved in degrading pectins, as well as genes involved in pro-

cessing xylans, which B. thetaiotaomicron is unable to utilize.

We then used a phylogenetic approach to identify genes within these species that
were acquired due to lateral gene transfer (LGT) from outside the Bacteroidetes phylum.
The results indicated that an average of 5.5% of the genes in each genome were acquired
via this mechanism. We observed predicted conjugative transposons and prophage ele-
ments within some of these loci, suggesting that these transmissible elements are at least

partially responsible for the large number of laterally transferred genes within these loci.

In Chapter 3, I built on these observations by comparing the genomes of gut Firmi-
cutes to those of Bacteroidetes, and assessing the ways in which model members of each
phylum adapt themselves to coexistence with each other in the distal gut habitats of gnoto-
biotic mice. First, I annotated the first two finished genomes from human gut Clostridium
Cluster XIVa, one of the most common gut Firmicute clades. By comparing these genome
sequences with the genome sequences of 16 other gut Firmicutes and those of human gut
Bacteroidetes, I was able to show that gut Firmicutes possess smaller genomes, a signifi-
cantly smaller proportion of glycan-degrading genes, and a more specialized or restricted
ability to acquire and process carbohydrates compared to the Bacteroidetes. Four gut Fir-

micutes also possess flagellar genes, suggesting that motility helps them adopt a more

10



specialized lifestyle in which they are able to move to areas where their preferred nutrient

source is abundant.

To test whether these predicted differences in the ability to process exogenous car-
bohydrates reflect niches that are important in the gut, I identified differences in the abil-
ity of three sequenced human gut symbionts to grow on different carbon sources in vitro.
This demonstrates that, as predicted, B. thetaiotaomicron and B. vulgatus grow on many
more simple and complex sugars than does E. rectale. However, B. vulgatus does success-
fully degrade pectin and xylan substrates that B. thetaiotaomicron cannot, while E. rectale
grows on at least one substrate that neither Bacteroides is able to utilize, namely cellobiose,

the disaccharide building block of plant cell walls.

To determine whether their differences in polysaccharide utilization were important
to the metabolism of these microbes in the guts of mice, I colonized germ-free mice with
B. thetaiotaomicron or E. rectale alone (monoassociation), or together (co-colonization),
and similarly, with either B. thetaiotaomicron or B. vulgatus, or both together. I found that
B. vulgatus almost exclusively upregulated operons of genes involved in xylan and pectin
degradation in co-colonization compared to monoassociation — i.e., the same classes of
glycan-degrading genes that were predicted to encode its unique activities. B. thetaiotao-
micron’s response to the presence of E. rectale was similar: it upregulated PULs invoved in
the degradation of host-derived mucin glycans such as a-mannans, which E. rectale cannot
utilize. These responses are similar to those seen when B. thetaiotaomicron interacts with

other bacterial lineages [39].

On the other hand, E. rectale’s response to B. thetaiotaomicron was quite dis-
tinct. Carbohydrate metabolic genes, particularly glycoside hydrolases, were proportion-
ally overrepresented among the downregulated genes when comparing the transcriptome
expressed in vivo in co-colonization versus monoassociation. Instead, E. rectale became

more selective in the glycans it utilized, upregulating four predicted sugar transport genes,
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while downregulating 14. It also induced a variety of amino acid and peptide transporters.
E. rectale broadly upregulated expression of translational and biosynthetic genes, as well
as central metabolic regulators, similar to what I observed during log-phase growth in vitro,
suggesting that it had sufficient or even improved access to nutrients in the presence of B.
thetaiotaomicron in vivo. In vitro studies confirmed that E. rectale is able to harvest simple

sugars released by the enzymes expressed by B. thetaiotaomicron.

Together, these comparative genomic, functional genomic and biochemical studies,
conducted using gnotobiotic models of the human gut microbiota, illustrate niche spe-
cialization and functional redundancy within the Bacteroidetes. Furthermore, they demon-
strate the adaptable niche specialization that likely underlies the success of Firmicutes in
this habitat. Finally, these studies underscore the importance of host glycans as a nutrient

foundation that ensures ecosystem stability.
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Figure Legends

Figure 1. Unweighted pair group method with arithmetic mean (UPGMA) clustering
of bacterial communities for each host based on pair-wise differences determined us-
ing the UniFrac metric. The tree shows clustering based on species, diet and gut type (fo-
regut fermenter, hindgut fermenter). UniFrac is based on the premise that related commu-
nities share an evolutionary history that can be estimated as the fraction of shared branch
length in a common phylogenetic tree [40]. The tree was constructed by computing the
UniFrac metric based on a neighbor-joining tree of the 21,619 16S rRNA gene sequences
in the mammalian gut survey [9]. Labels are colored according to diet (carnivores, red;
herbivores, green; omnivores, blue). Vertical bars located to the left of animal names in-
dicate coclustering of conspecific hosts. Non-clustering conspecifics are indicated with
same-color stars. Details concerning the human samples are provided in parentheses and
include sample ID, descriptors used in the original studies and PubMed ID for each study
where available (e.g., TO and T4 refer to the initial and one-year time point samples for lean
control subjects 13 and 14 in PubMed ID 17183309). The circles and squares at internal
nodes in the tree indicate jackknife support of =50% for 100 iterations; the key at the upper
right corner of the figure shows the minimum number of sequences retained per sample for

each jackknife analysis. Figure taken from [9].

Figure 2. Phylogenic relationships of select human gut-associated Firmicutes and
Bacteroidetes. A phylogeny, based on 16S rRNA gene sequences, showing the relation-
ships between representatives from the two dominant bacterial phyla in the gut microbiota.
Green, genomes generated by the Human Gut Microbiome Initiative (www.genome.gov/
Pages/Research/Sequencing/SeqProposals/HGMISeq.pdf). Black, other available related
genomes. Red, organisms sequenced as part of this work. Asterisks denote those organisms
known to produce butyrate. The phylogenetic tree was created by aligning 16S rRNA gene
sequences from each genome using the NAST aligner [41], importing the alignment into
Arb [42], and then adding them to an existing database of 16S rRNA sequences derived

from enumerations of the human gut [5, 7].
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Evolution of symbiotic bacteria in the distal human intestine
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Abstract

The adult human intestine contains trillions of bacteria, representing hundreds of species
and thousands of subspecies. Little is known about the selective pressures that have shaped
and are shaping this community’s component species, which are dominated by members of
the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment af-
fects microbial genome evolution, we have sequenced the genomes of two members of the
normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and
by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their
niche and habitat adaptations. The results show that lateral gene transfer, mobile elements,
and gene amplification have played important roles in affecting the ability of gut-dwelling
Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient re-
sources present in the distal intestine. Our findings show that these processes have been a
driving force in the adaptation of Bacteroidetes to the distal gut environment, and empha-
size the importance of considering the evolution of humans from an additional perspective,

namely the evolution of our microbiomes.
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Introduction

Our distal gut is one of the most densely populated and most thoroughly surveyed
bacterial ecosystems in nature. This microbiota contains more bacterial cells than all of our
body’s other microbial communities combined. The gut microbial community and its col-
lective genome (microbiome) endow us with physiological attributes that we have not had
to evolve on our own, including the ability to break down otherwise indigestible polysac-
charides [1,2]. The most complete 16S rRNA gene sequence-based enumerations available
indicate that >90% of phylogenetic types (phylotypes) belong to just two of the 70 known
divisions of Bacteria, the Bacteroidetes and the Firmicutes, with the remaining phylotypes
distributed among eight other divisions [3]. With an estimated 500-1,000 species, and over
7,000 strains [4], the evolutionary tree of our distal intestinal microbiota can be visualized
as a grove of ten palm trees (divisions), each topped by fronds representing divergent lin-
eages, and with each frond composed of many leaves representing closely related bacteria
[1]. In contrast, soil, Earth’s terrestrial ‘gut’ for degrading organic matter, can be viewed as

a bush, composed of many more intermediate and deeply diverging lineages [5].

It is unclear how selective pressures, microbial community dynamics, and the en-
vironments in which we live shape the genomes and functions of members of our gut
microbiota, and hence our ‘micro-evolution.” Ecological principles predict that functional
redundancy encoded in genomes from divergent bacterial lineages insures against disrup-
tion of food webs. These principles also predict that host-driven, “top-down” selection for
such redundancy should produce a community composed of distantly related members,
whose genomes convergently evolve functionally similar suites of genes [4]. Lateral gene
transfer (LGT), which allows for rapid transfer of genes under strong selection, such as
those encoding antibiotic resistance [6], represents one way that members of the microbio-
ta could share metabolic and other capabilities. In contrast, competition between members
of a microbiota should exert a “bottom-up” selective pressure that produces specialized

genomes with functionally distinct suites of genes. These distinct suites define ecological
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niches (professions), and, once established, could be maintained by barriers to homologous

recombination [4].

To explore whether and how these principles apply to the gut microbiota and its
microbiome, we have determined the complete genome sequences of two Bacteroidetes
with highly divergent 16S rRNA phylotypes that are prominently represented in the distal
gut of healthy humans - Bacteroides vulgatus and Bacteroides distasonis (now also known
as Parabacteroides distasonis; [7]). B. distasonis is basal to the Bacteroides clade, and
diverged from the common ancestor of the other Bacteroides prior to their differentiation.
The results of comparisons with other sequenced gut- and non-gut-associated Bacteroi-
detes, described below, provide insights about the evolution of niche specialization in this

highly competitive ecosystem, including the role of lateral gene transfer (LGT).

Results

Functional categorization of genomic adaptations to the distal human gut habitat

The 5,163,189 bp genome of the human gut-derived B. vulgatus type strain ATCC
8482 encodes a predicted 4,088-member proteome, while the 4,811,369 bp genome of B.
distasonis type strain ATCC 8503 possesses 3,867 predicted protein-coding genes (Table
S1 and Figure S1). These genomes were initially compared to the genomes of two oth-
er Bacteroidetes that live in the distal human gut: B. thetaiotaomicron (type stain ATCC
29148; [2] and B. fragilis (strains YCH 46 and NCTC 9343; [8,9]. We identified 1,416 sets
of orthologous protein-coding genes shared among these gut Bacteroidetes; 1,129 (79.7%)
of these conserved gene sets were assigned to COGs (Clusters of Orthologous Groups:
see Figure S2 and Table S2 for a COG-based categorization). The two most prominently
represented COG categories in each of the gut-associated Bacteroidetes proteomes are G
(carbohydrate transport and metabolism) and M (cell wall/membrane/envelope biogen-

esis). The two most prominent COG categories in their shared proteome are E (amino acid
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transport and metabolism) and J (translation, ribosomal structure and biogenesis) (Figure

S2).

The average pairwise amino acid sequence identity among the shared orthologs
was 82.0% for B. thetaiotaomicron-B. fragilis, 72.1% for B. thetaiotaomicron-B. vulga-
tus, 62.1% for B. thetaiotaomicron-B. distasonis, and 61.7% for B. vulgatus-B. distasonis.
These values are consistent with the 16S rRNA phylogenetic tree for Bacteroidetes (Figure
1). Although the evolution of these gut Bacteroidetes is characterized by comprehensive
deterioration of global synteny (Figure S3), a total of 257 “patches” of local synteny were
identified, composed of adjacent orthologous genes encompassing 765 of the 1,416 shared

orthologs (54%; average of 3.0 orthologs per cluster).

The distal gut microbiota is exposed to several prominent nutrient sources: (i) di-
etary plant polysaccharides that are not digested in the small intestine by the host because
our human proteome lacks the requisite glycoside hydrolases and polysaccharide lyases
(see the Carbohydrate Active Enyzmes database (CAZy) at http://afmb.cnrs-mrs.fr/CAZY/
for a comprehensive annotation of the human ‘glycobiome’), (ii) undigested plant proteins
[10], and (iii) host glycans associated with the continuously renewing epithelium that lines
the gut and with the even more rapidly replenished mucus layer which overlies this epithe-

lium.

To identify genomic features related to adaptation to life within this distal human
gut habitat, we compared shared orthologs among all five completely sequenced gut Bacte-
roidetes genomes to the subset that is shared with the two Bacteroidetes that occupy non-
gut habitats. These non-gut Bacteriodetes are Porphyromonas gingivalis W83, a member of
the human oral microbiota [11], and Cytophaga hutchinsonii ATCC 33406, which is found
in soil (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj&cmd=Retrieve&d
opt=Overview&list_uids=54). Each proteome was searched for conserved domains. These

domains were used to assign a functional identifier (InterPro ID) that was then mapped
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onto GO (Gene Ontology) terms [12] using InterProScan [13]. The results were compiled
and statistical comparisons made between the number of genes assigned to each GO term

in different genomes. The complete list of GO assignments for all seven Bacteroidetes ge-

nomes is available at http://gordonlab.wustl.edu/BvBd.html.

The subset of orthologs shared with non-gut Bacteroidetes is enriched for core met-
abolic activities, suggesting that all Bacteroidetes have inherited a core metabolome from
their common ancestor (Figure 2A, compare data in column 7w versus data in Sw). The
subset of orthologs unique to the gut Bacteroidetes is enriched for genes related to amino
acid biosynthesis, membrane transport, carbon-oxygen lyases, and environment sensing/
regulation (see GO terms highlighted in red/pink in the column labeled SwU in Figure
2A). Furthermore, while a comparison of each gut-dwelling Bacteroidetes proteome to
the proteomes of its non-gut relatives (Figure 2B) revealed that the four gut species are
all enriched for genes that belong to GO categories related to three general functions: (i)
polysaccharide metabolism, (ii) environmental sensing and gene regulation, and (iii) mem-
brane transport, most of these GO categories are depleted among the subset of orthologs
that are unique to the gut-associated Bacteroidetes (Figure 2A, 5w vs. Bt-G). Thus, while
all four sequenced gut Bacteroidetes species have increased numbers of genes in categories
(i)-(iii), this analysis suggests that each one has evolved a divergent array of sensing, regu-
latory and polysaccharide degradation genes that augment the core metabolome they share

with other members of their division.

Niche specialization of Bacteroidetes

To further define the niches occupied by the gut Bacteroidetes, we compared each
one to B. thetaiotaomicron. B. thetaiotaomicron was selected as the reference species be-
cause there is a wealth of information about its functional attributes. Scanning electron
microscopy, whole genome transcriptional profiling, and mass spectrometry-based me-

tabolomic studies performed in gnotobiotic mice colonized with this prominent human
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gut symbiont have shown that it is a remarkably flexible forager for polysaccharides that
opportunistically deploys different subsets of its 209 paralogs of SusC and SusD (two outer
membrane proteins involved in the binding and import of starch and maltooligosaccharides
[14,15]), and 226 predicted glycoside hydrolases and 15 polysaccharide lyases, so that it
can feast on dietary or host mucus glycans depending upon the polysaccharide content of

the host’s diet [16] (Table S1).

Compared to the other Bacteroidetes, the B. thetaiotaomicron proteome has the most
glycoside hydrolases known or predicted to degrade plant glycans (e.g., 64 arabinosidases;
our human proteome has none), and the most enzymes for harvesting host glycans (e.g.,
sulfuric ester hydrolases, hexosaminidases and fucosidases) (Figure 2B and Table S3). It
is also the only sequenced gut Bacteroidetes that possesses candidate polysaccharide lyases
for degrading animal tissue glycans (e.g., heparin, chondroitin, hyaluronan; Table S3). B.
thetaiotaomicron’s ability to opportunistically use many glycan sources likely makes it an

important generalist among intestinal Bacteroidetes.

Compared to B. thetaiotaomicron, B. distasonis is a specialist. It has the smallest
genome among the sequenced human gut-associated Bacteroidetes, the smallest repertoire
of genes that are members of the environmental sensing and gene regulation GO catego-
ries, and the smallest number of genes associated with carbon source degradation (Fig-
ure 2B and Table S1). B. distasonis lacks many accessory hemicellulases (arabinosidases,
a-glucuronidases), pectinases, and other polysaccharidases that target non-plant carbohy-
drates, such as chitinases. Moreover, the number of genes present in each CAZy enzyme
class represented in its proteome is markedly reduced compared to the other intestinal
Bacteroidetes (e.g., B. distasonis has only one candidate a-fucosidase while the other gut-

associated species have 9 or 10) (Table S3).

B. distasonis has two classes of carbohydrate-processing enzymes that are more

abundant in its proteome in than the proteomes of other gut Bacteroidetes: CAZy glycoside
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hydrolase family 13 (a-amylase-related proteins), and family 73 (N-acetylhexosaminidas-
es which can target host glycans as well as bacterial cell walls). Its proteome also contains
more polysaccharide deacetylases (7 versus 4 in B. thetaiotamicron and 1-2 in the B. fra-
gilis strains, as characterized by InterPro ID IPR002509; see http://gordonlab.wustl.edu/
BvBd.html for a complete list of InterPro ID assignments). Host epithelial glycans contain
O-acetylated sugars, including sialic acids, that protect them from direct cleavage by mi-
crobial glycoside hydrolases. Thus, B. distasonis has the capacity to make the deacetylated
products available for itself and other components of the microbiota. Finally, B. distasonis
devotes a greater proportion of its genome to protein degradation than does B. thetaiotao-

micron (GO:0006508, ‘proteolysis’; P<0.0003 by binomial test; Figure 2B).

The B. vulgatus glycobiome has features consistent with ex vivo studies indicating
that its substrate range for polysaccharides is intermediate between that of B. distasonis
and B. thetaiotaomicron [17]. B. vulgatus has the largest and most complete complement
of enzymes that target pectin, a common fruit-associated class of glycans (includes pectin
methylesterases, pectin acetylesterases, polygalacturonases, and accessory 0-4,5 unsaturat-
ed glucuronyl hydrolases). According to the CAZy classification scheme, B. vulgatus is the
only sequenced gut Bacteroidetes with a gene encoding a xylanase (Bv0041c). Together,
these findings reveal overlapping but distinct niches among these gut Bacteroidetes. We

next examined the role of lateral gene transfer in shaping their genomes.

Lateral gene transfer

Determining whether a gene is laterally transferred is widely acknowledged to be
a difficult problem (e.g. [18-21] and Supporting Information). We chose a phylogenetic
approach (see Materials and Methods) to identify genes that appeared to have been later-
ally acquired and probably selected for after the divergence of individual gut species. Our
approach could potentially identify two types of genes: genes that were laterally transferred

only into one lineage, and genes that were lost in all lineages except one. We confirmed
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that LGT was the more likely scenario for these genes by demonstrating that they differed
in composition from the rest of the genome. This approach allowed us to investigate the
adaptations of individual lineages to their specific niche. For simplicity, we refer to these
genes as ‘laterally transferred’ in the remainder of this study, although a minority of them
may actually represent differential gene loss, which would still likely indicate species-

specific selection [22].

Our approach was to use sensitive, iterated profile searches to retrieve homologs of
each protein-coding gene in the genomes of interest from publicly available databases. We
then built phylogenetic trees of the related sequences, used the NCBI taxonomy database
to assign taxonomy information to each sequence, and employed the Fitch parsimony al-
gorithm [23] to assign the most likely bacterial taxon to each internal node. This analysis
allowed us to differentiate four classes of genes: (i) those whose closest relatives are out-
side the gut Bacteroidetes, suggesting a lateral transfer event and/or differential gene loss;
(ii) those whose closest relative is within the gut Bacteroidetes, indicating likely vertical
inheritance; (iii) those without any homologs in the database (i.e., ‘novel’); and (iv) those
whose pattern of inheritance, whether lateral or vertical, could not be determined (i.e.,
‘unresolved’). Parsimony was used to assign a likely direction (‘in’ or ‘out’) to each lateral

transfer event where possible (see Table S4 and Materials and Methods).

We did not attempt to resolve lateral transfer events within the gut Bacteroidetes in
this study, primarily because the lack of sufficient taxonomic sampling within the Bacte-
roidetes made it impossible to distinguish transfer from biased sampling. Previous studies
have observed that a number of novel genes in other bacterial genomes seem to be laterally
acquired [24]. However, for the purposes of our functional analyses, these novel genes
were excluded because little functional information is available about them. Because we
wished to analyze adaptation to the gut, we also excluded genes that appeared to have been

transferred out of the Bacteroidetes.

31



Our method identified an average of 5.5% of the genes in each genome as being
laterally transferred from outside the gut Bacteroidetes (312 for B. distasonis, 184 for B.
vulgatus, 277 for B. thetaiotaomicron, 199 for B. fragilis NCTC 9343, 214 for B. fragilis
YCH 46, and 103 for P. gingivalis). We verified that the genes we identified as ‘laterally
transferred’ differed from those classified as ‘not transferred’ both in terms of GC content
(p<0.0001 for each genome by two-tailed t-test using Welch’s correction for unequal vari-
ances) and codon bias (p<0.0001 for each genome by chi-squared test). These results, to-
gether with the functions represented by this class of genes (see below), confirm that LGT
is the most likely scenario accounting for these genes, although we cannot rule out ancient
paralogs from the data available because of different rates and patterns of evolution in dif-

ferent lineages, and other confounding factors.

A complete classification of laterally transferred protein-coding genes in the gut
Bacteroidetes, and P. gingivalis, is provided in Table S4. Genes involved in core cellular
processes, such as translation (e.g., ribosomal proteins) are less susceptible to LGT than oth-
er genes [25]. Primary metabolism (GO:0044238) and protein biosynthesis (GO:0006412)
are among the GO terms most enriched in the set of genes not subject to LGT (Figure 3A).
These results suggest that our criteria exclude many genes that would be expected not to
undergo LGT. In contrast, genes that are known to be subject to LGT, such as restriction-
modification systems [26-28], were enriched in the set of laterally transferred genes we

detected (Figure 3B).

B. distasonis has a significantly larger proportion of laterally transferred genes than
the other gut Bacteroidetes (Figure 3C). This excess of LGT does not correlate with a larger
number of identifiable mobile elements: B. distasonis has fewer of the integrases and trans-
posases that can catalyze the insertion of foreign DNA than do the other Bacteroidetes, and
similar numbers of phage (five versus two to five for the other species; see Table S1). The
excess of LGT genes in B. distasonis is also not simply attributable to its more distant phy-

logenetic relationship to the other gut Bacteroidetes, because P. gingivalis does not share
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this feature (Figure 3C). Instead, B. distasonis has a striking elevation in the proportion
of DNA methylation proteins classified as laterally transferred. Seventy percent of genes
classified as “DNA methylation” (GO:0006306; e.g., restriction-modification systems) are
predicted to be laterally transferred, even though B. distasonis has fewer DNA methylation
genes overall (10 versus an average of 11.5 for other gut Bacteroidetes; Figure 3C). The
combination of a smaller number of restriction-modification systems, together with their
acquisition from unrelated bacteria, would be expected to reduce the barriers to LGT by
allowing B. distasonis to acquire genes from those bacteria. These laterally acquired genes
may contribute to the success of B. distasonis within the gut habitat. For example, among
the set of transferred genes is a ten-gene hydrogenase complex (Figure 3D), which would

allow B. distasonis to use hydrogen as a terminal electron acceptor.

Therole oflateral gene transfer in the evolution of capsular polysaccharide biosynthesis

(CPS) loci

Capsular polysaccharide biosynthesis (CPS) locus expression and the functional
importance of capsular structural variation have been best characterized in B. fragilis. For
example, studies in gnotobiotic mice indicate that the zwitterionic capsular polysaccharide
from one B. fragilis CPS locus (PSA) is presented by intestinal dendritic cells, resulting in
expansion of CD4+ T-cells, induction of IFNy production by the T-helper 1 subtype (Th1),
and reversal of the T-helper 2 (Th2) bias found in the absence of colonization. The result is
a balanced Th1/Th2 cytokine profile that should help promote co-existence with a micro-
biota, and perhaps tolerance to a variety of environmental antigens, including those found

in food [29].

B. vulgatus has 9 CPS loci, while B. distasonis has 13. Like B. thetaiotaomicron (8
CPS loci) and B. fragilis (9 each in strains NCTC 9343 and YCH 46), each CPS cluster is

composed of a pair of linked upstream UpcY and UpcZ homologs that act as a ‘regulatory
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cassette’, and downstream genes encoding glycosyltransferases, carbohydrate transporters,

and other proteins that form a ‘structural cassette’ (Table S5).

Among gut-associated Bacteroidetes, we found that glycosyltransferases and genes
in CPS loci are enriched for laterally transferred genes (Figure 3B). P. gingivalis, in con-
trast, does not show a biased representation of lateral transfer within its set of glycosyl-
transferases, suggesting that laterally acquired genes serve an important function in provid-

ing new genetic material for the rapid divergence of these loci in gut Bacteroidetes.

CPS loci are among the most polymorphic sites in the four gut-associated Bacte-
roidetes species [30,31]. A comparison of the two sequenced B. fragilis genomes [8,9]
revealed that the genome-wide synteny evident in the two closely related B. fragilis strains

is disrupted in 8 of their 9 CPS loci (Figure S4, Table S6).

Conjugative transposons, phage and other mechanisms involved in promoting CPS

diversity

Conjugative transposons

We observed that conjugative transposons (CTns) are associated with the duplica-
tion of CPS loci within a genome. In B. vulgatus, Bv0624-Bv0699 (75,747 bp) is a copy
of another region (Bv1479¢c-Bv1560, 75,277 bp) (Figure 4A and Table SS). Each copy
contains a CTn followed by a complete CPS locus. The average amino acid sequence iden-
tity of the 64 homologous gene pairs comprising the repeated regions is 90%. Two exact
28,411 bp copies harbor a major portion of the structural cassettes of these duplicated CPS
loci, plus part of a CTn (Figure 4A). The strict nucleotide-level sequence conservation
in coding and non-coding sequences suggests a recent homologous recombination event
at the structural cassettes of the CPS loci. There is also evidence that the function of CPS
loci can be disrupted by CTns, as in CPS locus 8 of B. fragilis YCH 46 where an a-1,2-

fucosyltransferase gene is interrupted by a 127Kb, 132-gene CTn (Table S5).
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Phages

Phages also appear to modulate CPS locus function. In B. distasonis, CPS locus 5
contains a block of five genes inserted between its regulatory cassette and genes encoding
carbohydrate biosynthetic enzymes. This inserted segment, oriented in the opposite direc-
tion to the upstream regulatory UpxY (and UpxZ) genes and downstream carbohydrate
biosynthetic genes, consists of a homolog of phage T7 lysozyme (N-acetylmuramoyl-L-
alanine amidase) followed by four genes encoding hypothetical proteins. Three more B.
distasonis CPS loci each harbor a block of these genes (two to five genes per block; each
block with a similar orientation; only the T7 lysozyme is conserved among all copies of the

putative phages; Figure 4B and Table S5).

B. distasonis is the only sequenced type strain where a phage disrupts CPS loci be-
tween their regulatory cassettes and structural cassettes. B. vulgatus has five copies of this
phage, all associated with CPS loci. B. thetaiotaomicron has ten copies, only two of which

are associated with CPS loci, while the B. fragilis strains each have one (Table S5).

Phase variation

LGT, CTn-mediated duplication and translocation of CPS loci, and disruption of
CPS loci by phage appear to operate in combination with at least two other mechanisms
to promote the rich diversity of surface glycan structures in Bacteroidetes. In B. fragilis, a
serine site-specific recombinase (Mpi) regulates expression of 7 of its 8 CPS loci through
phase variation (DNA inversion) at CPS promoters [32]. B. vulgatus, B. distasonis, and B.
thetaiotaomicron have Mpi orthologs (one, three and one, respectively). In addition, five of
the nine CPS loci in B. vulgatus, 11 of the 13 CPS loci in B. distasonis, 4 of the 8 CPS loci
in B. thetaiotaomicron, and only one of the 10 CPS loci in B. fragilis NCTC 9343 have an
gene encoding a tyrosine type site-specific recombinase immediately upstream of a upxY
homolog. This juxtaposition suggests that inversions of some CPS loci may be subjected to

local as well as global regulation. Such sequence inversions were observed in the assem-
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blies of the B. vulgatus and B. distasonis genomes (data not shown).

Fkp and fucose utilization

B. fragilis can also alter CPS glycan composition by means of Fkp, a protein whose
N-terminus is homologous to mammalian L-fucose-1-P-guanyltransferase and whose C-
terminus is similar to L-fucose kinases. Fkp generates GDP-L-fucose from exogenous L-
fucose; fucose from GDP-L-fucose can be incorporated into CPS glycan structures, thereby
linking L-fucose availability in the organism’s intestinal habitat to CPS capsular structure
[33]. Although Fkp is highly conserved in B. distasonis, B. vulgatus, B. thetaiotaomicron
and B. fragilis, their L-fucose acquisition and utilization capacities are not. B. distasonis,
B. vulgatus, B. thetaiotaomicron, and B. fragilis all possess a-fucosidases for harvesting
L-fucose, which is a common component of host mucus and epithelial cell glycans. In B.
thetaiotaomicron and B. fragilis, a complete fucose utilization system is incorporated into
a gene cluster (fucRIAKXP). In B. vulgatus, this gene cluster (Bv1339c-Bv1341c) contains
an ortholog of B. thetaiotaomicron’s L-fucose-inhibited repressor (R), fucose isomerase (I)
and fucose permease (P), but not L-fuculose-1-phosphate aldolase (A) or L-fuculose kinase

(K). B. distasonis lacks all elements of this gene cluster.

The role of gene duplication in diversification of gut Bacteroidetes: a case study of

SusC/SusD paralogs

As noted above, the gut Bacteroidetes genomes contain large numbers of paralogs
involved in environmental sensing and nutrient acquisition. We used one of the largest
families, the SusC/SusD paralogs (Table S1), as a model for investigating relationships
among members. SusC paralogs are predicted to be TonB-dependent, 3-barrel-type outer
membrane proteins. Thus, in addition to binding nutrients such as polysaccharides, SusC
paralogs likely participate in their energy-dependent transport into the periplasmic space

[34]. SusD paralogs are predicted to be secreted and to have an N-terminal lipid tail that
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would allow them to associate with the outer membrane [14]. Genes encoding SusC and
SusD paralogs are typically positioned adjacent to one another in the B. thetaiotaomicron
genome (102 of 107 loci encoding SusC paralogs), and are often part of multigene clus-
ters that also encode enzymes involved in carbohydrate metabolism (62 of 107 loci) [2].
Eighteen of the 62 clusters that encode SusC/SusD paralogs and glycoside hydrolases,
also contain ECF-o factors and adjacent anti-o factors. A subset of SusC paralogs contain
an extra N-terminal domain with homology to the N-terminal domain of the Escherichia
coli FecA iron-dicitrate receptor protein [35]. FecA interacts directly with an anti-o factor
(FecR) via this domain, thereby controlling gene expression through modulation of its as-

sociated ECF-o factor (Fecl).

These clusters provide case studies of the evolution of gut Bacteroidetes genomes.
Their glycoside hydrolase content varies considerably within a given species (Table S7).
Our studies in B. thetaiotaomicron indicate that ECF-o factors are required for transcription
of their adjacent polysaccharide utilization gene clusters, and that chromosomally linked
anti-o factors act as repressors of this transcription. Moreover, several B. thetaiotaomicron
loci containing ECF-o and anti-o factors are differentially regulated during growth on vari-
ous complex glycans ([16] and E. C. Martens and J.I. Gordon, unpublished observations),
suggesting that these systems act as components of carbohydrate sensors responsible for

regulating loci appropriate for utilizing available nutrients.

Six of these clusters in B. distasonis (2-6 and 16 in Table S7-A) include predicted
sulfatases, while there are fewer such loci in the other genomes: two clusters in B. vulgatus
(5 and 11 in Table S7-B), four in B. thetaiotaomicron, and three in each of the two B. fra-
gilis strains. These enzymes could be involved in the desulfation of sulfomucins that con-
tain galactose-3-sulfate, galactose-6-sulfate, and N-acetylglucosamine-6-sulfate residues.
These or other sulfatases could also be involved in the desulfation of glycosaminoglycans

such as chondroitin and heparin.
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To explore the role of gene duplication in the diversification of the Bacteroidetes,
we generated lists of all paired SusC and SusD paralogs from the four gut- and one non-
gut-associated Bacteroidetes species (see Materials and Methods). P. gingivalis has four
such pairs, while the other five intestinal Bacteroidetes species have a total of 370 (Table
S1). A cladogram generated from the multiple sequence alignment shows that many SusC/
SusD pairs have close relatives among several Bacteroidetes. However, certain specialized
groups are unique to each species, with B. thetaiotaomicron containing one particularly
large expansion (Figure SA). Gene clusters encoding related SusC/SusD pairs also contain
other genes that are closely related to one another. The homology and synteny of these loci
suggest that genomic duplication is a mechanism driving their amplification and diversifi-
cation (e.g., Figure 5B,C). An intriguing feature of some of these amplified loci is that they
contain clusters of genes with unique functions that are located downstream of the ‘core’
duplicated genes; this may serve to further diversify the roles of these loci in nutrient acqui-
sition (e.g., Figure 5B in which diverse dehydrogenase, sulfatase and glycoside hydrolase

functions are included downstream of a syntenic core of amplified genes).

Discussion

The trillions of bacteria that colonize our distal gut largely belong to two bacterial
divisions, and can be classified by 16S rRNA gene sequence analysis into hundreds of “spe-
cies” that share a common ancestry [4,36] but whose genome content may vary consider-
ably. Forces that shape the genome content of bacteria in the gut include the inter-microbial
dynamics of competition and cooperation in resource partitioning that shape complex food
webs, as well as other community-shaping forces, such as phage attacks, that can result in
‘selective sweeps’ that remove cells with similar susceptibilities. In a competitive environ-
ment where innovation in resource acquisition strategies can breed success, and where
resistance to phage can mean surviving a phage selective sweep, bacteria can be expected

to differentiate their genome content. For the host to thrive and produce more gut habitats
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(by reproducing), the gut microbial ecosystem must be functionally stable over time de-
spite the internal dynamics of the community. The constituent bacteria might therefore be
expected to have a high degree of functional redundancy between species, so that the loss
of one lineage would not adversely impact ecosystem services to the host. Our investiga-
tion of the genomes of human gut Bacteroidetes species shows that the “top-down” forces
imposed by selection at the host-level that would result in a homogenized microbiome, and
the “bottom-up” forces of inter-microbial dynamics that would result in completely differ-
entiated genomes, are both at work in the distal gut. The genomes of the gut Bacteroidetes
species that have been sequenced harbor suites of genes with similar functions, but differ
in the number of genes within functional categories and their specific sequence. It appears
that the differences between genomes are enough to carve out specific niches within the
gut habitat, such that the species are not in direct competition but are sufficiently similar to

confer resistance to disturbance to the host through functional redundancy.

Our findings demonstrate a key role for lateral gene transfer in shaping the adapta-
tion of individual Bacteroidetes to distinct niches within the human gut. It is unclear how
and when laterally transferred genes were introduced during evolution of distal gut Bacte-
roidetes. We have performed 16S rRNA gene sequence-based enumeration studies of the
fecal microbiota of 59 different mammalian species: the results reveal that none of the four
sequenced gut Bacteroidetes species is restricted to the human gut (R. E. Ley and J.I. Gor-
don, unpublished observations). Nonetheless, the impact of lateral gene transfer is likely
profound for these gut symbionts and their human hosts. A large and varied gene pool of
glycosyltransferases provides a capacity for diversification of surface polysaccharide struc-
tures that could endow symbionts with varied capacities to shape a host immune system so
that it can accommodate a microbiota (and perhaps related food and other environmental
antigens). Since the environment surrounding each human being varies, this gene flow may
promote the generation of host-specific microbiomes. Acquisition of new types of carbohy-

drate binding proteins, transporters, and degradation enzymes through both LGT and gene

39



amplification should influence the types of substrates that can be exploited for energy har-
vest. It may also affect our predisposition to conditions such as obesity where the efficiency
of caloric harvest may be influenced by the relationship between an individual’s microbial

glycoside hydrolase repertoire and the glycan content of his/her diet [37,38].

These considerations emphasize the need to have a more comprehensive view of
our genetic landscape as a composite of human and microbial genes, a transcendent view
of human evolution as involving our microbial partners, and a commitment to investigating
human biology in the larger framework of environmental microbiology. Attention to these
issues is timely given the onset of efforts to sequence the human ‘microbiome’ [39]. These
metagenomic studies will allow investigators to address new, but fundamental, questions
about humans. Do we share an identifiable core ‘microbiome’? If there is such a core, how
does the shell of diversity that surrounds the core influence our individual physiologic
properties? How is the human microbiome evolving (within and between individuals) over
varying time scales as a function of our changing diets, lifestyle, and biosphere? Finally,
how should we define members of the microbiome when microbes possess pan-genomes
(all genes present in any of the strains of a species) with varying degrees of ‘openness’ to

acquisition of genes from other microbes?

Materials and Methods

Genome sequencing

The B. vulgatus and B. distasonis genomes were assembled from two types of
whole genome shotgun libraries: a plasmid library with an average insert size of 5Kb, and
a fosmid library with an average insert size of 40Kb. For each genome, both Phrap (http://
www.phrap.org/) and PCAP [40] assemblies were generated and then compared, resulting

in a ‘hybrid’ assembly that takes advantage of the strength of both assemblies. Regions that
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contained a gap in one assembly but not in the other were made contiguous in the final as-

sembly for finishing by using Consed [41].

Sequence gaps were filled by primer-walking on spanning clones. Physical gaps
were amplified by PCR and closed by sequencing the PCR products. Poor quality regions
were detected using Consed, amplified with PCR, and resequenced. The integrity and accu-
racy of the assembly were verified by clone constraints. Regions of lower coverage, or that
contained ambiguous assemblies, were resolved by sequencing spanning individual fos-
mids. Regions that underwent sequence inversions were identified based on inconsistency
of constraints for a fraction of read pairs in those regions. The final assemblies consisted
of 12.6X and 13.2X sequence coverage for B. vulgatus and B. distasonis respectively. For

each base, the Phred quality value was at least 40.

rRNA and tRNA genes were identified with BLASTN and tRNA-Scan [42], re-
spectively. Proteins coding genes were identified using GLIMMER v.2.0 [43], ORPHEUS
v.2.0 [44] and CRITICA v.0.94h [45]. WUBLAST (http://blast.wustl.edu/) was used to
identify all predicted proteins with significant hits to the NR database. Predicted protein
coding genes containing <60 codons and without significant homology (e-value threshold
of 10°%) to other proteins were eliminated. Gene start site predictions were fine-tuned using
MED-Start [46] and BLAST homology. In general, no overlapping genes were allowed.
Potential frameshift errors were identified by sequence alignment with known proteins,
and confirmed or corrected by re-sequencing. The final set of genes, compiled from the
analysis described above, was manually curated. Protein annotation was based on homol-
ogy searches against public databases and domain analysis with HMMER (http://hmmer.
wustl.edu/). Functional classification was based on homology searches against COGs using
WU-BLAST and COGnitor [47], followed by manual curation. Metabolic pathways were
constructed with reference to KEGG [48]. Phage genes were identified using Prophage

finder [49].
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Functional comparisons

Orthologs of the five intestinal Bacteroidetes genomes were identified based on (1)
mutual BLASTP best hits with an e-value threshold of 10-°and (ii) a requirement that each
pair-wise protein alignment covers at least 60% of query length in both search directions.
The amino acid sequences of each set of orthologs were aligned using ClustalW [50] and

processed with Gblocks [51].

CPS loci in the five intestinal Bacteroidetes genomes were defined with the fol-
lowing criteria. First, an intact CPS locus included a UpxY homolog (as annotated) and a
number of downstream genes on the same strand. These downstream genes included those
that encoded functions related to surface polysaccharide synthesis (such as glycosyltrans-
ferases, carbohydrate export proteins, epimerases, glycoside hydrolases, etc), conserved
hypothetical proteins, or hypothetical proteins. Second, the 5’ boundary of each locus was
determined by the UpxY homolog. Third, the 3’ end of each locus generally was positioned
where switch of coding strand occurred. Alternatively, the 3’ end of the locus was posi-
tioned where downstream genes on the same strand encoded functions that were defined
but unrelated to capsular polysaccharide synthesis (e.g., IRNA/tRNA and two-component
signaling systems). However, the 3’ end of the locus was extended if the coding strand was
disrupted by a single hypothetical protein (to accommodate possible annotation errors), or

a mobile element composed of one or multiple genes.

Gene Ontology (GO) categories and InterPro ID were assigned using (InterProScan
release 12.1 [13]). The number of genes in each genome assigned to each GO term, or its
parents in the hierarchy (according to the ontology description available as of June 6, 2006;
[12]), were totaled. All terms assigned to at least 10 genes in a given genome were tested
for overrepresentation, and all terms with a total of 10 genes across all tested genomes
were tested for under-representation. Significantly over- and under-represented genes were

identified using a binomial comparison with the indicated reference set. To control for dif-
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ferences in the specificity of gene prediction, genes that could not be assigned to a GO cat-
egory were excluded from the reference sets. A correction was then applied to each distinct
set of tests (e.g., over- or under-representation in a genome) to achieve a false discovery
rate of 0.05 for each set [52]. These tests were implemented using the Math::CDF Perl
module (E. Callahan, Environmental Statistics, Fountain City, WI; available at http://www.

cpan.org/), and scripts written in Perl.

16S rRNA phylogeny

Phylogenetic trees were constructed based on alignment of 16S rRNA fragments
using the NAST aligner [53]. The alignment was filtered using a Lane mask, then modeled
using ModelTest 3.7 [54]: a maximum likelihood tree was found by an exhaustive search
using Paup (v. 4.0b10, http://paup.csit.fsu.edu/) employing parameters estimated by Mod-

elTest.

Laterally transferred genes

Overview of strategy used to identify lateral gene transfer - See Supporting In-

formation

Identifying classes of genes that were potentially laterally transferred or otherwise
under selection in the gut Bacteroidetes - We identified genes that were laterally acquired
and probably selected for after the divergence of gut Bacteroidetes species, and thus po-
tentially involved in niche differentiation. These genes could either have been transferred
into an individual species by lateral gene transfer, or retained in that species despite being
lost in all other related sequenced species. It is difficult, perhaps impossible, to distinguish
these two cases using the tree topology alone. We identified this class of genes by determin-
ing whether each gene met one of the following criteria. (i) No homologs were found in an
augmented NCBI non-redundant protein database (nr, plus the proteins from the newly se-

quenced strains). This case indicated that either (a) the gene has been lost in every other se-
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quenced organism but retained in this genome, or (b) that the gene was laterally transferred
from an organism that is not represented in the database. (ii) The only homologs found
were from the same species. This case is the same as case (i), except that either (a) the
gene was sequenced multiple times and deposited in the database under separate records,
or (b) there are paralogs, i.e., multiple copies of the gene in the genome being analyzed.
Both case (i) and (ii) were termed ‘novel’. (iii) The only homologs found are either from
the same species or from other divisions or non-gut Bacteroidetes. This case indicates that
the sequence is in this genome, and also in the genome of distantly related organisms, but
not in the closely related gut Bacteroidetes genomes that have been completely sequenced.
This case also provides evidence that the gene was either transferred or retained despite
loss in related organisms. (iv) The gene is more closely related to genes from other divi-
sions or to non-gut Bacteroidetes than it is to other gut Bacteroidetes that are in the tree,
and parsimony analysis indicates that the direction of transfer was into rather than out of
the genome. This pattern is most consistent with lateral gene transfer, although differential
gene loss cannot in principle be ruled out (however, differences in composition between
this class of genes and the rest of the genome provides compelling supporting evidence).

Both case (iii) and (iv) above were termed °‘laterally transferred’ (LGT).

Genomes - We carried out the analysis on six different genomes: Bacteroides vulga-
tus ATCC 8482 and Bacteroides distasonis ATCC 8503, Bacteroides fragilis NCTC 9343
(NC_0023338), Bacteroides fragilis YCH 46 (NC_006347), Bacteroides thetaiotaomicron
ATCC 29148 (NC_004663), and Porphyromonas gingivalis W83 (NC_002950).

Finding homologs - For each gene in each genome, we identified potential homologs
using PSI-BLAST against NCBI’s non-redundant protein database. In order to use all of
the available data for the Bacteroidetes and their relatives, we augmented this database
with proteins predicted by Glimmer (v. 2.0) from draft genomes in the Bacteroidetes group
that were available at NCBI. These additional genomes included Prevotella ruminicola 23

(The Institute for Genomic Research; TIGR; http://www.tigr.org), Prevotella intermedia 17
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(TIGR), Pelodictyon phaeoclathratiforme BU-1 [Dept. of Energy-Joint Genome Institute

(DOE-JGI); http://www.jgi.doe.gov], Pelodictyon luteolum DSM 273 (DOE-JGI), Chloro-
bium phaeobacteroides DSM 266 (DOE-JGI), Chlorobium limicola DSM 245 (DOE-JGI),
Chlorobium chlorochromatii CaD3 (DOE-JGI), Bacteroides forsythus (TIGR), and Bacte-

roides fragilis 638R (Wellcome Trust Sanger Institute; http://www.sanger.ac.uk).

To find the top BLAST hits using the most stringent e-value threshold possible,
we used a multi-step PSI-BLAST. In the first PSI-BLAST iteration, we used an e-value
threshold of <10, If fewer than 50 hits were found, we used the hits to make a profile for
a subsequent PSI-BLAST that was four orders of magnitude less stringent (i.e., with an
e-value of 10%). We repeated this procedure, increasing the e-value by a factor of 10+ at
each iteration, until either 50 hits were found or, after 12 iterations, the maximum allowed
e-value of 10 was reached. To remove from consideration sequences that were signifi-
cant only because of a conserved domain rather than similarity over the whole gene, we
excluded genes that differed from the length of the query sequence by more than 30%. We
also omitted hits that contained gaps greater than 50 amino acids in length or that contained
gaps at greater than 50% of the positions after performing a multiple sequence alignment

with the other sequences in the set.

Making phylogenetic trees - We performed multiple sequence alignment using
MUSCLE [55], omitting sequences that were poorly aligned to the query sequence as de-
scribed above. We used this alignment to make a neighbor-joining tree using ClustalW [50].
We used bootstrapping to collapse nodes that were not statistically supported. Specifically,
we randomly re-sampled columns from the alignment 100 times and made new neighbor
joining trees with ClustalW. We collapsed into polytomies all nodes in the original tree that

were recovered in fewer than 70% of the bootstrap replicates.

Assigning taxonomy information to sequences - We parsed the NCBI taxonomy

database and used it to assign division and genus information for each PSI-BLAST hit in
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the phylogenetic tree. Sequences that could not be assigned to any particular division were
removed from the tree. We also removed nematode and arthropod genomes, because we
found that these often provided close hits to the Bacteroidetes genomes. We expect that
these bacteria-to-eukaryote hits actually arise because gut and/or salivary gland bacteria
contaminated the DNA preparations used for genomic sequencing. We also used the ge-
nus annotations in the taxonomy to determine whether sequences from the Bacteroidetes
division were from the gut. We assigned sequences as gut Bacteroidetes if they were in
the genera Prevotella, Porphyromonas, Tannerella, Dysgonomonas, or Bacteroides, and as

non-gut Bacteroidetes otherwise.

Finding genes that are laterally transferred or differentially lost (under recent se-
lective pressure) - We used the bootstrap neighbor joining trees to identify genes that met
any of the four criteria described above. We first marked genes ‘novel’ if the PSI-BLAST
protocol returned only the query gene, indicating that they met criterion (i), or if all of the
genes in the tree were from the same species, indicating that they met criterion (ii). We as-
signed each sequence to a species using the NCBI taxonomy. If genes from other species
were present in the tree, we used the following algorithm. (/) Start at the query sequence.
(2) Step back in tree until a bootstrap-supported node containing sequences from a different
species is found. If this node has, as descendants, sequences from other gut Bacteroidetes
only, mark the gene as not laterally transferred (not selected for). If the node has, as descen-
dants, sequences from both gut Bacteroidetes and other divisions or non-gut Bacteroidetes,
mark the gene as unresolved. If the node has, as descendants, sequences from other divi-
sions or non-gut Bacteroidetes only, mark the gene as laterally transferred (selected for)
and proceed to the parsimony analysis. (3) Use parsimony analysis to determine whether
a potential transfer would have been into the Bacteroidetes species (indicating that it is
important for the gut), or out of the Bacteriodetes species into another lineage. Assign divi-
sion information to all internal nodes in the tree using the Fitch parsimony algorithm [23].

These assignments minimize the number of transfers between divisions needed to explain
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the distribution of divisions in the modern sequences. If the query sequence is surrounded
by many sequences from unrelated divisions, the parsimony analysis will indicate that
the most likely event was a transfer into the species. As noted in Supporting Information
(Overview of strategy used to identify lateral gene transfer), the method we used provides
an automated technique for assigning taxon labels to individual gene trees. Specifically,
we treat each taxon label (division labels, “gut Bacteroidetes”, or “non-gut Bacteroidetes™)
as a character state, and use the Fitch parsimony algorithm [23] to infer the ancestral state
at each node. We are not using this method in the sense of a formal evolutionary model
of taxon switching, but as a heuristic that recaptures the intuition that a phylogenetic tree
with a clade leading to sequences from one taxon that sprouts from within a clade leading
to sequences from a completely different taxon probably represents an lateral gene transfer
event, even if the inner clade is represented by more sequences. This type of strategy has
been widely applied both manually and computationally to detect lineage-specific transfers
(e.g., [56-58]), and is related to a method used in studies of host-parasite co-speciation

[59], a problem that is mathematically equivalent to lateral gene transfer detection.

SusC/SusD alignments

Pairs of genes encoding SusC and SusD paralogs were identified in the Bacteroi-
detes genome sequences by performing individual BLASTP searches against each genome
using amino acid sequences of previously annotated SusC and SusD paralogs as queries.

The low-scoring hits from each search (e-values between 10 and

101%) were themselves used as BLASTP queries to reveal more divergent puta-
tive paralogs in each genome. This process repeated until no new paralogs were identi-
fied. Lists of putative SusC and SusD paralogs were compared for each species. Paralogs
were included in subsequent ClustalW analysis based on the requirement that each had a
separately predicted, adjacent partner. This process was instrumental in excluding related

TonB-dependent hemin, vitamin B, and iron-siderophore receptors from the list of puta-
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tive SusC paralogs. The resulting dataset included 374 paralog pairs: 102 in B. thetaiotao-
micron, 69 in B. fragilis NCTC 9343, 65 in B. fragilis YCH 46, 80 in B. vulgatus, 54 in
B. distasonis and four in P. gingivalis. Because polysaccharide binding by SusC and SusD
has been shown to require both polypeptides [14], and because individual SusC and SusD
alignments suggested these paired functions have evolved in parallel (data not shown),
each pair was joined into a single sequence prior to alignment. Sequences were aligned
using ClustalW [50] (version 1.83), and a neighbor-joining cladogram was created from
the alignment using Paup (v. 4.0b10, http://paup.csit.fsu.edu/). Bootstrap values were de-
termined from 100 trees. Branches retained in Figure SA represent groups with > 70%

bootstrap values.
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Figure Legends

Figure 1. Phylogenetic relationships of fully sequenced Bacteroidetes. (A) 16S rRNA se-
quences were taken from a previously published alignment created using the NAST aligner
[60]. A maximum likelihood tree was generated using parameters estimated with ModelT-
est 3. 7 and Paup (version 4.0b11). Terminal branch lengths are not drawn to scale. (B)
The average percent amino acid sequence identities were calculated using ClustalW align-
ments for the 530 sets of 7-way orthologs that include the five intestinal Bacteroidetes

genomes, P. gingivalis and C. hutchinsonii. B. thetaiotaomicron was used as a reference.

Figure 2. Sensing, regulatory and carbohydrate metabolism genes are enriched among
all gut-associated Bacteroidetes. The number of genes assigned to each GO term from
each genome is shown. Significant enrichment is denoted by pink (p<0.05) or red (p<0.001)
while depletion is indicated by light blue (p<0.05) or dark blue (p<0.001), as calculated by
a binomial comparison followed by Benjamini-Hochberg false-discovery rate correction
(see Materials and Methods). (A) Genes assigned to GO terms related to core metabolic
functions are enriched in the subset of common gut-associated Bacteroidetes orthologs
shared with non-gut Bacteroidetes (seven-way comparison; abbreviated 7w), compared to
the reference set of 1,416 orthologs common to the five sequenced gut Bacteroidetes ge-
nomes (5w), suggesting that all Bacteroidetes have inherited a core metabolome from their
common ancestor. The set of orthologs that is not shared with non-gut-associated Bacte-
roidetes (5-way unique; SwU) is enriched, relative to all orthologs (5w), for genes in three
classes: amino acid biosynthesis; membrane transport; and two-component signal trans-
duction systems, suggesting that these genes were important in the process of adaptation
to the gut and/or other habitats by the common ancestor of gut Bacteroidetes. (B) Various
GO terms related to environmental sensing, gene regulation and carbohydrate degradation
are enriched in gut Bacteroidetes relative to C. hutchinsonii. A similar pattern is observed
relative to P. gingivalis (data not shown). Note that these same classes of genes are depleted

in the subset of shared gut Bacteroidetes orthologs (Figure 2A, 5w) relative to the full B.
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thetaiotaomicron (Bt) Genome (Figure 2A, Bt-G). Thus, these classes of genes, though
enriched in all gut Bacteroidetes, are widely divergent between them. Others classes of
genes vary between species: B. distasonis and B. vulgatus show an expanded repertoire of
proteases, while B. thetaiotaomicron lacks genes involved in synthesis of cobalamin. Other
abbreviations: B. distasonis (Bd), B. vulgatus (Bv), B. fragilis NCTC 9343 (BfN), B. fra-
gilis YCH 46 (BfY), P. gingivalis (Pg), C. hutchinsonii (Ch), orthologs shared by the five

sequenced gut Bacteroidetes genomes (Bt, Bv, Bd, plus two Bf strains), and Pg (6w),

Figure 3. Analyses of lateral gene transfer events in Bacteroidetes lineages reveal its
contribution to niche specialization. (A) Genes involved in core metabolic processes are
enriched among non-laterally transferred genes identified by a phylogenetic approach (see
Materials and Methods). The proportion of genes identified as not laterally transferred
in each genome (light blue), as well as assigned to the GO terms ‘Primary metabolism’
(yellow) and ‘Protein biosynthesis’ (red), are shown. Significant increases (enrichment)
relative to each whole genome are shown by an upward pointing arrowhead, and decreases
(depletion) by a downward pointing arrowhead, while the corresponding probability, de-
termined by a binomial test, is denoted by asterisks: *, P<0.05, **; P<0.01, ***; P<0.001.
(B) Laterally transferred genes are enriched among genes assigned to the GO term ‘DNA
methylation’ (e.g., restriction-modification systems) (red), relative to each complete ge-
nome (light blue). Glycosyltransferases (yellow) and genes located within CPS loci (green)
are also enriched within the set of transferred genes. Significance was determined and de-
noted as in panel A. (C) B. distasonis (light blue) possesses a significantly larger proportion
of laterally transferred genes than the other Bacteroidetes, as shown by significant increases
in the proportion of genes in each category of our analysis (‘LGT in’, laterally transferred
into the genome; ‘Novel’, no homologs identified from other species, ‘LGT direction unre-
solved’, laterally transferred but direction unknown; ‘LGT out’, laterally transferred out of
the genome; ‘Unresolved,’ lateral transfer uncertain; see Materials and Methods for de-

tailed explanations of categories and http://gordonlab.wustl.edu/BvBd.html for a complete
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list of genes in each category). Significant changes, denoted as in panel A, were determined
by a binomial test, using the average proportion within all other genomes used in the analy-
sis as the reference. Other strains are B. vulgatus (red), B. thetaiotaomicron (yellow), B.
fragilis NCTC 9343 (green), B. fragilis YCH 46 (purple) and P. gingivalis (orange). (D) A
prominent laterally transferred locus within B. distasonis contains a 10-gene hydrogenase
complex, likely allowing B. distasonis to use hydrogen as a terminal electron acceptor in
anaerobic respiration. Genes transferred into B. distasonis are colored red, while genes
whose phylogeny could not be resolved are yellow. Letters indicate functional components
of the hydrogenase complex: M, maturation or accessory factor, S, small subunit, L, large

subunit.

Figure 4. Evolutionary mechanisms that impact Bacteroidetes CPS loci. (A) CTn-me-
diated duplication of B. vulgatus CPS loci. Homologous gene pairs in the two duplicated
regions are linked with fine gray lines, underscoring the high level of synteny. Genes con-
stituting CPS locus 1 and 2 are highlighted in red, with the first and last genes numbered.
Green denotes essential component genes of CTns. Blue brackets indicate two sub-regions
that share 100% nucleotide sequence identity. The asterisk indicates three open reading
frames encoding two conserved hypothetical proteins and a hypothetical protein, suggest-
ing an insertion that occurred after the duplication event. (B) Locations of putative glyco-
syltransferase xenologs and inserted phage genes in CPS loci of the sequenced gut Bacte-
roidetes. Color code: integrases (green), UpxY transcriptional regulator homologs (black),
putative xenologs (primarily glycosyltransferases, red), phage genes (blue) and remaining

genes (gray). See Table S5 for functional annotations.

Figure 5. Cladogram comparison of SusC/SusD pairs shows both specialized and
shared branches among the Bacteroidetes. (A) Cladogram generated from all fully se-
quenced Bacteroidetes. Branches that are unique to each species are color-coded as indi-
cated. The homologous RagA/RagB proteins from P. gingivalis were selected as an arbi-

trary root (dashed branches). Dashed lines surrounding the tree indicate (i) a clade that is
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dominated by B. thetaiotaomicron SusC/SusD pairs (39/45 pairs, red dashes) and (ii) a
clade that is poorly represented in B. thetaiotaomicron (7/34 pairs, black dashes). Colored
hash marks surrounding the cladogram represent the linkage of two other protein families,
which show syntenic organization within related B. thetaiotaomicron SusC/SusD contain-
ing loci: NHL-repeat containing proteins (light blue) and a group of conserved hypotheti-
cal lipidated proteins (light green). These protein families are not represented in the other
sequenced Bacteroidetes, occur only adjacent to SusC/SusD pairs, and have no predicted
functions. See http://gordonlab.wustl.edu/BvBd.html for locus tags for each taxon, branch
bootstrap values, and lists of SusC/SusD-linked genes. (B) An example of a recently am-
plified polysaccharide utilization locus in which the synteny of three flanking SusC/SusD
genes has been maintained. The locations of the four SusC/SusD pairs encoded within
these amplified clusters are indicated on the cladogram shown in panel A by asterisks. The
locus schematic is arranged so that groups of related proteins (mutual best BLAST hits) are
aligned vertically, within the yellow box. The functions of amplified genes are indicated by
numbers over each vertical column and, where applicable, are color-coded to correspond to
panel A: 1, conserved hypothetical lipidated protein; 2, SusD paralog; 3, SusC paralog, 4,
NHL-repeat containing protein; and 5, glutaminase A (note that in three clusters, this gene
has been partially deleted). Gray-colored genes downstream of each amplified cluster en-
code hypothetical proteins or predicted enzymatic activities (e.g., dehydrogenase, sulfatase
and glycoside hydrolase) that are unique to each cluster. A xenolog that has been inserted
in one gene cluster is indicated in red, other genes are black. Dashed lines connecting gene
clusters show linkage only, and do not correspond to actual genomic distance. (C) An ex-
ample of a recently duplicated locus from B. distasonis that includes duplicated regulatory
genes. Syntenic regions are aligned as in panel B and include a single sulfatase (1, dark
green), a SusD paralog (2, light purple), SusC paralog (3, dark purple), an anti-o factor (4,
light orange) and an ECF-o factor (5, dark orange). Two other downstream sulfatase genes

(gray) are also included in one cluster.
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Figure 2.
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Figure 3.
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Figure 4.
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Supplemental Information

Overview of strategy used to identify lateral gene transfer

Many approaches have been used to detect LGT for different applications. For ex-
ample, compositional methods based on GC content, dinucleotide frequencies, codon us-
age, and other oligonucleotide frequencies (e.g., [1-5]) are often used to detect transferred
genes within a genome. Techniques such as patterns of BLAST hits (e.g., [6-8]) and ratios
of sequence divergence between different pairs of genes in different pairs of species (e.g.,
[9-12]) have also been used in numerous studies. However, these methods for detecting
lateral gene transfer are typically seen as surrogates for phylogenetic studies [13], and their
sensitivity and specificity have often been criticized. For example, compositional methods
are sensitive to equilibration of the gene composition to the genome composition [14-16],
and BLAST-based methods are sensitive to loss of paralogs, different rates of evolution,
recombination, and many other factors [13,17-21]. Indeed, phylogenetic re-analysis of pu-
tative laterally transferred genes that were originally found by reciprocal BLAST hits has
indicated that many of these identifications were incorrect (e.g., [22,23]). Similarly, appli-
cation of parsimony inference to identify gene losses and gains on a species or TRNA tree
(e.g., [24-27]) is sensitive to the presence of paralogous sequences and other artifacts [19].
Thus, phylogenetic analysis of individual gene trees, often manually applied, is frequently
recommended as the gold standard for lateral gene transfer detection [12,13,17,18,23,28-

30].

Phylogenetic analysis itself is subject to many issues, especially because construct-
ing the tree relies on models of sequence evolution that may be simplified or incorrect
[31,32], because many protein families lack phylogenetic signal [33], or because of arti-
facts of tree reconstruction (e.g., [34,35]). There are several formal statistical tests for tree
congruence, such as the KH test [36], but these tests require that the two trees to be com-

pared contain the same taxa (i.e. multiple sequences from the same taxon are not allowed).
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Because lineage-specific duplications in the Bacteroidetes are common, as shown by our
analysis (see Results) and previous studies [37-39], applying these tests in an automated
fashion becomes exceedingly complex. In particular, choices about which duplicate genes
to omit affect the values of the test statistics. Additionally, these tests only measure differ-
ences in tree topology, and cannot typically distinguish lateral gene transfer from ancient
loss of paralogs or other unusual phylogenetic events. Thus, although the SH test has been
extremely useful for identifying genes that lead to poor resolution in whole-genome phy-
logenies [19], it is less suitable for asking which genes in a genome have undergone lateral
gene transfer. Similar comments apply to other global tests for changes in tree topology
(e.g., [40-42]) because they cannot handle duplications in any lineage, they cannot be reli-
ably applied on a genome-wide scale. For example, Ge and colleagues were able to find
only 297 orthologous gene clusters across 40 species that were suitable for application of

their method [41].

Because different methods for detecting lateral gene transfer typically have poor
agreement about which genes are detected as transferred [9,12,13,30,43], we decided to
use phylogenetic analysis and to focus on the types of transfers it detects best: transfers
from within one specific lineage to another specific lineage. In particular, because our 16S
rRNA trees showed that the gut Bacteroidetes are well-supported as a monophyletic group,
we decided to focus on those genes that were transferred from a specific lineage outside
this group to individual species within this group. Since we are in the process of gathering
more genomic sequences from Bacteroidetes, we left study of lateral gene transfer within
the gut Bacteroidetes for future work because we expect substantially better resolution for
detecting lateral gene transfer events when better taxonomic sampling within this group is

available.

Our goal was to automatically assign taxon labels to the sequences in individual
gene trees, such that unknown sequences would acquire labels from their close relatives

in a consistent fashion. In order to achieve this outcome, we treated each taxon label as a
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character state, and inferred the ancestral state at each node using the Fitch parsimony
algorithm [44]. For example, taxon labels might correspond to bacterial divisions, such as
“Firmicutes,” or to other taxonomic groups of interest, such as “gut Bacteroidetes” or “non-
gut Bacteroidetes”. This procedure, which has often been applied either manually or in an
automated fashion to reveal lateral gene transfer among specific lineages (e.g., [45-47]), is
based on the idea that a lateral gene transfer event followed by speciation should typically
be marked by a monophyletic group of sequences from one lineage that stems from within
a paraphyletic group of sequences from a single other lineage. In other words, the transfer
of a gene from lineage X to lineage Y should give a tree in which the sequences from Y are
related to a specific group of sequences within lineage X. We would still count this event
as a transfer from X to Y even if there are more sequences in Y than remain in X, for ex-
ample if Y is a very speciose lineage or is a lineage in which paralogy of the relevant genes
is rampant. The parsimony approach we used is related to Brooks Parsimony Analysis, a
method used for detecting co-speciation between hosts and parasites [48]. The problem of
host-parasite co-speciation is mathematically identical to the problem of relating gene trees
to species trees, because both cases require the analysis of phylogenies in which duplica-

tion, deletion, and switching between hosts (or genomes) are all possible.

There are two types of events that could conceivably lead to the type of phylogeny
in which we are interested (lineage X paraphyletic with respect to lineage Y): lateral trans-
fer from one group to another, and loss of an ancient paralog in all but those two groups.
However, because strong selective advantages are required to maintain transferred genes in
bacterial populations [49] and because the divergence distances are large (mostly from other
bacterial divisions), lateral gene transfer is by far the most likely scenario leading to these
trees. We believe that this method is more suitable for detecting a set of high-confidence
transfers because global measures of phylogenetic incongruence require rejection over the
whole tree, not just for one specific group (potentially leading to high false negative rates),

and are influenced by the many factors that can lead to misplacement of taxa not relevant to
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our analysis (leading to high false positive rates). We confirmed the likely lateral transfer of
these genes by testing that the GC content and codon usage of genes chosen by our method
differed from those of randomly chosen genes in the genome. Specifically, we compared
the GC contents of transferred and non-transferred genes within each genome (excluding
unresolved genes) using two-sample ¢ tests with Welch’s correction for unequal variances,
and compared the codon usage of transferred and non-transferred genes using chi-squared
tests. Analysis of the functional categories represented by these genes and presence of
groups of genes within apparent genomic islands provided additional supporting evidence

of LGT (see Results).
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Supplemental Figure L.egends

Figure S1. B. distasonis ATCC 8503 (A) and B. vulgatus ATCC 8482 (B) chromosomes.
The coding potential of the leading and lagging strands is relatively unbiased. Circles shown
in the figure represent, from inside out, GC skew, GC content variation, rRNA operons,
tRNA genes, conjugative transposons (CTns), CPS loci, extra-cytoplasmic function (ECF)
o factors, SusC paralogs, and all predicted genes with assigned functions on reverse and
forward strands, respectively. Color codes for genes are based on their COG functional

classification.

Figure S2. COG-based characterization of all proteins with annotated functions in
the proteomes of sequenced Bacteroidetes. The term, ‘Bacteroides orthologs’ refers to
the 1,416 orthologs shared by the sequenced gut Bacteroidetes (B. vulgatus, B. distasonis,

B. thetaiotaomicron, plus the two B. fragilis strains). Color codes are the same as Figure

S1.

Figure S3. Pair-wise alignments of the human gut Bacteroidetes genomes reveal rapid
deterioration of global synteny with increasing phylogenetic distance. Each data point
on the Dotplot represents one pair of mutual best hits (BLASTP) between the two genom-

es, plotted by pair-wise genome location. Diagonal lines indicate synteny.

Figure S4. CPS loci are the most polymorphic regions in the gut Bacteroidetes genom-
es. High-resolution synteny map of CPS loci and flanking regions in the two sequenced
B. fragilis strains. There are 9 CPS loci in each genome. Each data point represents a pair
of orthologs (mutual best hits; e-value cutoff: 10°). Brackets define the coordinates for
component genes within a given locus (some pairs are missing due to gene loss or gain): X-
axis, coordinate of the middle point of the gene on the NCTC 9343 chromosome; Y-Axis,
coordinate of the middle point of the gene on YCH 46 chromosome. With the exception of
CPS locus 5, which is strictly conserved, the 9 CPS loci are affected by non-homologous

gene replacement and rearrangement.
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Supplemental Figures
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Figure S1B.
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Figure S2.
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Figure S3.
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Supplemental Table Legends

Table S1. Comparison of genome parameters for B. distasonis ATCC 8503, B. vulgatus
ATCC 8482, B. thetaiotaomicron ATCC 29148, B. fragilis NCTC 9343 and B. fragilis
YCH 46. “*’, the numbers of SusC/SusD homologs provided are based on BLASTP e-
value <10%; the numbers shown in parentheses are based on criteria described in SusC/
SusD alignments in Materials and Methods. See http://gordonlab.wustl.edu/BvBd.html
for complete lists of SusC/SusD homologs. A hybrid two-component system protein con-
tains all of the domains present in classical two-component systems but in one polypeptide

[50].

Table S2. Shared orthologs in B. distasonis ATCC 8503, B. vulgatus ATCC 8482, B.
thetaiotaomicron ATCC 29148, and B. fragilis strains NCTC 9343 and YCH 46. For an

explanation of COG-based functional codes, see Figure S1.

Table S3. Glycoside hydrolases found in B. distasonis ATCC 8503, B. vulgatus ATCC
8482, B. thetaiotaomicron ATCC 29148 and B. fragilis strains NCTC 9343 and YCH 46.
The classification scheme used is described in the Carbohydrate-Active enZYme (CAZy)

database.

Table S4. List of putative xenologs in B. distasonis ATCC 8503 (A), B. vulgatus ATCC
8482 (B), B. thetaiotaomicron ATCC 29148 (C), B. fragilis NCTC 9343 (D), and B. fra-
gilis YCH 46 (E). For an explanation of COG-based functional codes, see Figure S1. The
lateral gene transfer (LGT) column defines the predicted evolutionary history of the coding
sequence: LGT-in, laterally transferred into the genome; LGT-out, laterally transferred out
of the genome; LGT-unresolved, laterally transferred but direction unknown. See Materi-

als and Methods for detailed explanations.

Table S5. CPS loci of B. distasonis ATCC 8503 (A), B. vulgatus ATCC 8482 (B), B.
thetaiotaomicron ATCC 29148 (C), B. fragilis NCTC 9343 (D) and B. fragilis YCH

46 (E). Shown are Gene ID, annotated function, GC content (%) and the predicted evolu-
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tionary history of the coding sequence. Code: NOVEL, no homologs found in any other
genomes in public databases; NO, not laterally transferred; UNRESOLVED, whether lat-
erally transferred or not is not resolved; LGT-in, laterally transferred into the genome;
LGT-out, laterally transferred out of the genome; LGT-unresolved, laterally transferred but
direction unknown. See Materials and Methods for detailed explanations. Color codes

are the same as in Figure 4B.

Table S6. CPS loci are among the most polymorphic regions in the two B. fragilis ge-
nomes. The P value is based on the tail probability of a binomial distribution. Gene loss/
gain events (3,531 in total) are counted as the difference between the total number of genes

and the total number of genes shared between the two genomes.

Table S7. ECF-o factor-containing polysaccharide utilization gene clusters in B. dis-
tasonis ATCC 8503 (A) and B. vulgatus ATCC 8482 (B). The three columns represent
Gene ID, functional annotation and predicted evolutionary history of the gene (labeled as

in Table S5).
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Table S2.

Please access provided CD for this information.
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Table S3.

B. distasonis ATCC B. thetaiotaomicron

Family ID 8503 B. vulgatus ATCC 8482 ATCC 29148 B. fragilis NCTC 9343 B. fragilis YCH 46

Glycosidases and Transglycosidases
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Legend: The classification scheme used is described in the Carbohydrate-Active Enzymes database (CAZy) at
http://afmb.cnrs-mrs.fr/CAZY/.
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Table S4.

Please access provided CD for this information.
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Table S5

Please access provided CD for this information.
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Table S6

Table S6. CPS loci are among the most polymorphic regions in the two B. fragilis genomes.

B. fragilis NCTC 9343 B. fragilis YCH 46
Number of genes in genome 4189 4578
Number of genes in CPS loci 170 204
Number of gene loss/gain events 658 1047
Number of gene loss/gain events in CPS loci 77 109
Probability 8.8E-20 3.3E-21

Legend: The probability value is based on the tail probability of a binomial distribution. Gene loss/gain events are counted as
the difference between the total number of genes in a given strain and the total number of genes shared between the two strains
(3,531 in total).
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Table S7

Table S7. ECF-c factor-containing polysaccharide utilization gene clusters in B. distasonis ATCC

8503 (A) and B. vulgatus ATCC 8482 (B).

(A). ECF-o factor-containing polysaccharide utilization gene clusters in B. distasonis ATCC 8503

Cluster 1
Bd0229
Bd0230
Bd0231
Bd0232
Bd0233
Bd0234
Bd0235
Bd0236
Bd0237
Bd0238
Bd0239
Bd0240
Bd0241
Cluster 2
Bd1126¢
Bd1127¢
Bd1128¢
Bd1129¢
Bd1130c¢
Bdl131c
Bd1132¢
Bd1133c¢
Bd1134c
Cluster 3
Bd1642¢
Bd1643c
Bd1644c
Bd1645¢
Bd1646¢
Bd1647
Bd1648c
Cluster 4
Bd2026
Bd2027
Bd2028
Bd2029
Bd2030
Bd2031
Bd2032
Bd2033
Bd2034
Bd2035
Cluster 5
Bd2259c¢
Bd2260c
Bd2261c¢
Bd2262c¢

putative RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein probably involved in nutrient binding
conserved hypothetical protein

glycoside hydrolase family 38, distantly related to alpha-mannosidases
putative sodium-dependent transporter

helicase domain protein

conserved hypothetical protein

conserved hypothetical protein

putative exonuclease

conserved hypothetical protein

putative acetyltransferase

two-component system sensor histidine kinase

conserved hypothetical protein

probable NADH-dependent dehydrogenase

oxidoreductase, Gfo/ldh/MocA family

putative arylsulfatase

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

putative RNA polymerase ECF-type sigma factor

mucin-desulfating sulfatase

arylsulfatase A

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

conserved hypothetical protein

RNA polymerase ECF-type sigma factor

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein probably involved in nutrient binding
putative outer membrane protein probably involved in nutrient binding
putative sulfatase

arylsulfatase A

putative aminotransferase

peptidyl-prolyl cis-trans isomerase SlyD, FKBP-type

chorismate synthase

putative multidrug resistance protein

conserved hypothetical protein
arylsulfatase A

putative outer membrane protein probably involved in nutrient binding
putative outer membrane protein probably involved in nutrient binding

10f8

89

UNRESOLVED
UNRESOLVED
NO
UNRESOLVED
NO

NO

NO

LGT-in

LGT-in

LGT-in
NOVEL

NO

NOVEL

NO
UNRESOLVED
NO
NO
NO
NO
NO
NO
NO

NO
LGT-unresolved
NO
NO
NO
NO
NO

NO

NO

NO

NO

NO
UNRESOLVED
NO

NO

NO

LGT-in

NO
LGT-in
NO
NO



Bd2263c
Bd2264c
Cluster 6
Bd2265¢
Bd2266¢
Bd2267¢
Bd2268¢c
Bd2269¢
Bd2270c
Bd2271c¢
Cluster 7
Bd2277¢
Bd2278¢
Bd2279¢
Bd2280c
Bd2281c
Bd2282
Cluster 8
Bd2405¢
Bd2406¢
Bd2407c¢
Bd2408c
Bd2409¢
Bd2410c
Bd2411c
Bd2412¢
Cluster 9
Bd2413c
Bd2414c
Bd2415¢
Bd2416¢
Bd2417¢
Bd2418
Cluster 10
Bd3036
Bd3037
Bd3038
Bd3039
Bd3040

Bd3041

Cluster 11
Bd3042
Bd3043
Bd3044
Bd3045
Bd3046
Bd3047
Bd3048
Bd3049¢
Bd3050
Bd3051

putative anti-sigma factor
RNA polymerase ECF-type sigma factor

putative secreted sulfatase precursor

arylsulfatase A

arylsulfatase A

conserved hypothetical protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

putative 1-acyl-sn-glycerol-3-phosphate acyltransferase

glycoside hydrolase family 92, related to an ill-defined alpha-1,2-mannosidase

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

hypothetical protein

conserved hypothetical protein

conserved hypothetical protein

glycoside hydrolase family 28, related to polygalacturonases

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

putative dehydrogenase

putative glycosylhydrolase (putative secreted protein)

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
conserved hypothetical protein with endonuclease/exonuclease/phosphatase
family domain

conserved hypothetical protein with endonuclease/exonuclease/phosphatase
family domain

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein probably involved in nutrient binding
putative outer membrane protein probably involved in nutrient binding
conserved hypothetical protein

hypothetical protein

glycoside hydrolase family 2, candidate beta-glycosidase

glycoside hydrolase family 2, candidate beta-glycosidase

conserved hypothetical protein

putative transmembrane protein

20f8

90

NO
NO

UNRESOLVED
UNRESOLVED
LGT-unresolved
NO
NO
NO
NO

NO
UNRESOLVED
NO
UNRESOLVED
NO
UNRESOLVED

NOVEL

LGT-unresolved
UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED

NO
UNRESOLVED
NO
NO
NO
NO

UNRESOLVED
UNRESOLVED
NO

UNRESOLVED
UNRESOLVED

NO

UNRESOLVED
NO

NO

NO

LGT-in
NOVEL
UNRESOLVED
NO

NO
UNRESOLVED



Cluster 12
Bd3052
Bd3053
Bd3054
Bd3055
Bd3056
Bd3057
Bd3058
Cluster 13
Bd3059
Bd3060
Bd3061
Bd3062
Bd3063
Bd3064
Bd3065
Bd3066
Bd3067
Bd3068
Cluster 14
Bd3260c¢
Bd3261c
Bd3262¢
Bd3263c¢
Bd3264c
Bd3265¢
Bd3266¢
Cluster 15
Bd3386
Bd3387
Bd3388
Bd3389
Bd3390
Bd3391
Bd3392
Bd3393c¢
Cluster 16
Bd3859
Bd3860
Bd3861
Bd3862
Bd3863
Bd3864

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
conserved hypothetical protein

glycoside hydrolase family 97, related to alpha-glucosidases

putative lysophospholipase L1 and related esterase

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
conserved hypothetical protein

putative integrase/transposase

conserved hypothetical protein

hypothetical protein

glycoside hydrolase family 78, related to alpha-L-rhamnosidases

glycoside hydrolase family 92, related to an ill-defined alpha-1,2-mannosidase

putative exported protein

conserved hypothetical protein

conserved hypothetical protein

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

putative ECF-type RNA polymerase sigma factor

putative RNA polymerase ECF-type sigma factor

conserved hypothetical protein

hypothetical protein

putative outer membrane protein probably involved in nutrient binding
putative outer membrane protein probably involved in nutrient binding
conserved hypothetical protein

hypothetical protein

putative permease

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
arylsulfatase precursor

N-acetylgalactosamine 6-sulfatase (GALNS)

30f8

91

NO
NO
NO
NO
LGT-unresolved
UNRESOLVED
NO

NO

UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED
UNRESOLVED
NO

NO

NO
UNRESOLVED
NO
NO
NO
NO
NO

NO

NO
LGT-unresolved
NO
UNRESOLVED
LGT-in

NOVEL

NO

NO
NO
NO
UNRESOLVED
UNRESOLVED
UNRESOLVED



(B). ECF-o factor-containing polysaccharide utilization gene clusters in B. vulgatus ATCC 8482

Cluster 1
Bv0103c
Bv0104c
Bv0105¢
Bv0106¢
Bv0107¢
Bv0108c
Bv0109c
Cluster 2
Bv0110c
BvOlllc
Bv0112¢
Bv0113c
Bv0114c
Bv0115¢
Bv0116¢
Bv0117¢
Bv0118c
Bv0119c¢
Bv0120c
Bv0121c
Bv0122¢
Bv0123c
Bv0124c
Bv0125¢
Bv0126¢
Bv0127¢
Cluster 3
Bv0132¢
Bv0133¢c
Bv0134c
Bv0135¢
Bv0136¢
Cluster 3
Bv0293c
Bv0294c
Bv0295¢
Bv0296¢
Bv0297c¢
Bv0298c
Cluster 4
Bv0342c¢
Bv0343c
Bv0344c
Bv0345¢
Bv0346¢
Bv0347c¢
Bv0348c
Bv0349¢
Bv0350c
Bv0351c

hypothetical protein

conserved hypothetical protein, possible ATP/GTP-binding site
putative oxidoreductase

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

putative thiol:disulfide interchange protein DsbE
putative thiol:disulfide interchange protein
conserved hypothetical protein

conserved hypothetical protein

putative regulatory protein

glycoside hydrolase family 88, candidate delta-4,5 unsaturated glucuronyl hydrolase
glycoside hydrolase family 43, candidate beta-xylosidase/alpha-L-arabinofuranosidase

glycoside hydrolase family 97, related to alpha-glucosidases

conserved hypothetical protein

putative beta-lactamase class C and other penicillin binding proteins
conserved hypothetical protein

glycoside hydrolase family 28, distantly related to polygalacturonases
conserved hypothetical protein

conserved hypothetical protein

glycoside hydrolase family 28, distantly related to polygalacturonases
putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
RNA polymerase ECF-type sigma factor

glycoside hydrolase family 92, related to an ill-defined alpha-1,2-mannosidase
glycoside hydrolase family 97, related to alpha-glucosidases

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative RNA polymerase ECF-type sigma factor

glycoside hydrolase family 2, related to beta-galactosidases

glycoside hydrolase family 63, distantly related to alpha-glycosidases
putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

putative RNA polymerase ECF-type sigma factor

histidyl-tRNA synthetase

putative ABC transporter, periplasmic sugar-binding protein
transposase

ABC-type sugar transport system, periplasmic component
putative integral membrane protein

conserved hypothetical protein

glycerol kinase 2 (ATP:glycerol 3-phosphotransferase 2)
transketolase, C-terminal subunit

transketolase, N-terminal subunit

transcriptional regulator of sugar metabolism

40f 8

92

NOVEL
UNRESOLVED
NO

NO

NO

NO

NO

NO
NO
NO
NO
NO
NO
NO
NO
NO
LGT-in
NO
LGT-out
NO
NO
NO
NO
NO
NO

UNRESOLVED
NO
UNRESOLVED
NO
UNRESOLVED

UNRESOLVED
UNRESOLVED
UNRESOLVED
NO
NO
NO

NO

LGT-in
UNRESOLVED
LGT-in

NO
LGT-unresolved
LGT-unresolved
LGT-unresolved
LGT-unresolved
LGT-in



Bv0352c¢
Bv0353c¢
Bv0354c¢

Bv0355¢
Bv0356¢
Bv0357¢
Bv0358¢c
Cluster 5
Bv0377
Bv0378
Bv0379
Bv0380
Bv0381
Bv0382
Bv0383
Bv0384
Bv0385
Bv0386
Bv0387
Cluster 6
Bv0472¢
Bv0473¢c
Bv0474c
Bv0475¢
Bv0476¢
Bv0477¢

Bv0478¢
Bv0479¢

Bv0480¢
Bv0481c
Bv0482¢
Bv0483c¢
Bv0484c
Cluster 7
Bv0593¢
Bv0594c
Bv0595¢
Bv0596¢
Bv0597¢
Bv0598¢c
Bv0599¢
Bv0600c
Bv0601c
Bv0602c
Bv0603¢c
Bv0604c
Bv0605¢
Bv0606¢
Bv0607¢

3,4-dihydroxy-2-butanone 4-phosphate synthase (cyclohydrolase 1I)

conserved hypothetical protein

two-component system sensor histidine kinase/response regulator, hybrid (‘one-
component system')

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
conserved hypothetical protein, putative anti-sigma factor

RNA polymerase ECF-type sigma factor

putative RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
glycoside hydrolase family 2, candidate beta-glycosidase

glycoside hydrolase family 20, distantly related to beta-N-acetylhexosaminidases
glycoside hydrolase family 2, candidate beta-glycosidase

arylsulfatase

hypothetical protein

NADH-ubiquinone oxidoreductase subunit

hypothetical protein

conserved hypothetical protein

glycoside hydrolase family 31, candidate alpha-glycosidase; related to beta-
putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
two-component system response regulator

glycoside hydrolase family 35, candidate beta-glycosidase; related to beta-
galactosidases

glycoside hydrolase family 51, related to alpha-L-arabinofuranosidases
glycoside hydrolase family 43, modular protein with N-terminal domain distantly
related to beta-glycosidases and C-terminal related to beta-xylosidases/alpha-L-
arabinofuranosidases

glycoside hydrolase family 30, candidate beta-glycosidase

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

putative RNA polymerase ECF-type sigma factor

putative oxidoreductase

conserved hypothetical protein

putative signal transducer

conserved hypothetical protein

exo-alpha sialidase

conserved hypothetical protein

glycoside hydrolase family 18, related to chitinases

conserved hypothetical protein

putative outer membrane protein, probably involved in nutrient binding
glycoside hydrolase family 97, related to alpha-glucosidases

putative endonuclease/exonuclease/phosphatase family protein

conserved hypothetical protein

putative outer membrane protein, probably involved in nutrient binding
glycoside hydrolase family 92, related to an ill-defined alpha-1,2-mannosidase
glycoside hydrolase family 92, related to an ill-defined alpha-1,2-mannosidase
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LGT-unresolved
LGT-unresolved
NO

UNRESOLVED
NO
NO
NO

NO

NO

NO

NO
UNRESOLVED
LGT-unresolved
NO

NO

LGT-in
NOVEL
NOVEL

UNRESOLVED
NO
NO
NO
NO
NO

NO
UNRESOLVED
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NO
NO
NO
NO
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NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
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Bv0608c
Bv0609¢
Cluster 8
Bv0709¢
Bv0710c
Bv0711c¢
Bv0712¢
Bv0713¢c
Bv0714c¢
Bv0715¢
Bv0716¢

Cluster 9
Bv0915¢
Bv0916
Bv0917
Bv0918
Bv0919
Bv0920
Bv0921
Cluster 10
Bv1025
Bv1026
Bv1027
Bv1028
Bv1029¢
Bv1030
Bv1031
Bv1032
Bv1033
Bv1034
Bv1035
Bv1036
Bv1037
Bv1038
Cluster 11
Bvl124
Bvl1125
Bv1126
Bv1127
Bv1128
Bv1129
Bv1130
Cluster 12
Bv1663¢c
Bv1664
Bv1665
Bv1666
Bv1667
Cluster 13
Bv1721c
Bv1722¢
Bv1723c¢

putative anti-sigma factor
RNA polymerase ECF-type sigma factor

hypothetical protein

conserved hypothetical protein

conserved hypothetical protein

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

glycoside hydrolase family 36, candidate alpha-glycosidase; related to alpha-

galactosidases

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
conserved hypothetical protein

conserved hypothetical protein

putative oxidoreductase (putative secreted protein)

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
hypothetical protein

erythronate-4-phosphate dehydrogenase

glycosyltransferase family 9, related to glycosyltransferases

putative acetyltransferase

putative LPS biosynthesis related UDP-galactopyranose mutase
conserved hypothetical protein

conserved hypothetical protein

glycosyltransferase family 2, related to beta-glycosyltransferases
glycosyltransferase family 2, distantly related to beta-glycosyltransferases
glycosyltransferase family 14, related to beta-glycosyltransferases
glycosyltransferase family 4, related to alpha-glycosyltransferases

putative ECF sigma factor

putative membrane protein

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
sulfatase

arylsulfatase precursor

putative ATP-binding ABC transporter protein

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
glycerophosphoryl diester phosphodiesterase

glycoside hydrolase family 28, related to polygalacturonases
glycoside hydrolase family 2, candidate beta-glycosidase
glycoside hydrolase family 28, related to polygalacturonases
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Bv1724
Bv1725¢
Bv1726¢
Bv1727¢
Bv1728¢c
Bv1729
Cluster 14
Bv1733
Bv1734
Bv1735
Bv1736
Bv1737
Bv1738
Bv1739
Bv1740
Bv1741
Bv1742
Bv1743
Bv1744
Bv1745
Bv1746
Bv1747
Cluster 15
Bv1758
Bv1759
Bv1760
Bv1761
Bv1762
Bv1763
Bv1764
Bv1765
Bv1766¢
Bv1767
Bv1768
Bv1769

Bv1770

Bv1771
Bv1772
Cluster 16
Bv1927¢
Bv1928c
Bv1929¢
Bv1930c¢
Bv1931c
Bv1932¢
Bv1933c¢
Bv1934c
Bv1935¢
Cluster 17
Bv1972

hypothetical protein

iduronate 2-sulfatase precursor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

putative ECF-type RNA polymerase sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
conserved hypothetical protein

conserved hypothetical protein

glycoside hydrolase family 2, candidate beta-glycosidase

hypothetical protein

glycoside hydrolase family 78, distantly related to alpha-L-rhamnosidases
two-component system response regulator

aldehyde dehydrogenase A

glycoside hydrolase family 43, related to beta-xylosidases/alpha-L-
conserved hypothetical protein

conserved hypothetical protein

conserved hypothetical protein

putative RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
glycoside hydrolase family 2, candidate beta-glycosidase

glycoside hydrolase family 2, candidate beta-glycosidase

glycoside hydrolase family 31, candidate alpha-glycosidase

conserved hypothetical protein

putative pectin degradation protein

polysaccharide lyase family 10, related to pectate lyases

conserved hypothetical protein

carbohydrate esterase family 8, modular protein with N-terminal domain distantly
related to pectin acetylesterases and C-terminal domain related to pectin
methylesterases

two-component system sensor histidine kinase/response regulator, hybrid (‘one-
component system')

hypothetical protein

dipeptidyl peptidase IV

putative thiol-disulfide oxidoreductase

putative disulphide-isomerase

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

glycoside hydrolase family 43, candidate beta-xylosidase/alpha-L-arabinofuranosidase

conserved hypothetical protein
glycoside hydrolase family 28, related to polygalacturonases

RNA polymerase ECF-type sigma factor
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Bv1973
Bv1974
Bv1975
Bv1976
Bv1977
Bv1978
Bv1979
Bv1980
Bv1981
Bv1982
Bv1983
Bv1984
Cluster 18
Bv2160
Bv2161
Bv2162
Bv2163
Bv2164
Bv2165
Bv2166
Bv2167
Cluster 19
Bv2384c
Bv2385¢
Bv2386¢
Bv2387c¢
Bv2388¢c
Bv2389c¢
Cluster 20
Bv4006¢
Bv4007¢
Bv4008c
Bv4009¢
Bv4010c

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
hypothetical protein

ABC transporter ATP-binding protein

putative endothelin-converting enzyme

conserved hypothetical protein

putative metal resistance related exported protein

AcrB/AcrD/AcrF family cation efflux system protein

conserved hypothetical protein

ThiJ/Pfpl family protein

putative nitroreductase

RNA polymerase ECF-type sigma factor

putative anti-sigma factor

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative thiol-disulfide oxidoreductase

putative thiol-disulfide oxidoreductase

glycoside hydrolase family 2, candidate beta-glycosidase

aldose 1-epimerase precursor

L-serine dehydratase

conserved hypothetical protein

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor

conserved hypothetical protein

putative outer membrane protein, probably involved in nutrient binding
putative outer membrane protein, probably involved in nutrient binding
putative anti-sigma factor

RNA polymerase ECF-type sigma factor
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Legend: The three columns represent Gene ID, functional annotation and predicted evolutionary
history of the gene (labeled as in Table S5).
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Chapter 3

Characterizing a model human gut microbiota composed of
members of its two dominant phyla
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Abstract

The adult human gut microbial community is dominated by two bacterial phyla, the Firmi-
cutes and the Bacteroidetes. Little is known about the factors that govern the interactions
between their members. We have examined the niches (professions) of representatives of
both phyla in vivo. Finished genome sequences were generated from E. rectale and E. eli-
gens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute
clades. Comparison of these and 16 other gut Firmicutes to gut Bacteroidetes indicated that
the former possess smaller genomes and a disproportionately smaller number of glycan-
degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a promi-
nent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole genome
transcriptional profiling of both organisms in their distal gut (cecal) habitat, high resolution
proteomic analyses of their cecal contents, and biochemical assays of their metabolism. B.
thetaiotaomicron adapts to E. rectale by upregulating expression of a variety of polysac-
charide utilization loci (PULSs), encoding numerous glycoside hydrolase gene families, so
that it can degrade an increased variety of glycans that E. rectale cannot access, including
those derived from the host. E. rectale responds to B. thetaiotaomicron by decreasing pro-
duction of its glycan-degrading enzymes, altering its expression of sugar and amino acid
transporters, and facilitating glycolysis by increasing its ratio of NAD* to NADH in part
via generation of butyrate from acetate, which in turn is utilized by the gut epithelium. In
contrast, co-colonization of germ-free mice with B. thetaiotaomicron and another human
gut Bacteroidetes, B. vulgatus, produces minimal changes in the former’s glycobiome,
while B. vulgatus upregulates genes uniquely represented in its genome that are involved
in the metabolism of pectin and xylans. These models of the human gut microbiota illus-
trate niche specialization and functional redundancy within the Bacteroidetes, the adapt-
able niche specialization that likely underlies the success of Firmicutes in this habitat, and

the importance of host glycans as a nutrient foundation that ensures ecosystem stability.
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Introduction

The adult human gut houses a bacterial community containing trillions of mem-
bers comprising hundreds to thousands of species-level phylogenetic types (phylotypes).
Culture-independent surveys of this community have revealed remarkable interpersonal
variations in strain- and species-level phylotypes, but a consistent pattern of domination
of this ecosystem, at the phylum level, by the Firmicutes and the Bacteroidetes [1, 2]. This
domination is not a unique feature of humans: a global survey of the guts of 59 other mam-

malian species showed a similar phylum level pattern [3].

Finished genomes are available for several members of the human gut Bacteroi-
detes. Each contains a large repertoire of genes involved in the acquisition and metabo-
lism of polysaccharides: this includes: (i) up to hundreds of glycoside hydrolases (GHs)
and polysaccharide lyases (PLs); (i1) myriad paralogs of SusC and SusD, outer membrane
targeted proteins involved in recognition and import of specific carbohydrate structures
[4]; and (ii1) a large array of environmental sensors and regulators [S5]. Each of these hu-
man gut Bacteroidetes assembles these genes into multiple, similarly organized, selectively
regulated polysaccharide utilization loci (PULSs) that encode functions necessary to detect,
bind, degrade and import carbohydrates encountered in the gut habitat — either from the
diet or from host glycans associated with mucus and the surfaces of epithelial cells [6,
7]. Studies of germ-free mice colonized with Bacteroides thetaiotaomicron alone have
demonstrated that this organism can vary its pattern of PUL expression of as a function of
diet: e.g., during the transition from mother’s milk to a polysaccharide-rich chow encoun-
tered when mice are weaned [6], or when adult mice are switched from a diet rich in plant
polysaccharides to a diet devoid of these glycans and replete with simple sugars (under the
latter conditions, the organism forages host glycans, a strategy that likely contributes to

ecosystem stability [7, 8].
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Our previous functional genomic studies of the responses of B. thetaiotaomicron
to colonization of the guts of gnotobiotic mice with Bifidobacterium longum, a member of
the Actinobacteria that is prominently represented in the gut microbiota of infants, or with
Lactobacillus casei, a probiotic present in a number of fermented diary products, have
shown that B. thetaiotaomicron responds to the presence of these other microbes by modi-
fying expression of its PULs in ways that expand the breadth of its carbohydrate foraging

activities [9].

These observations underscore the notion that gut microbes live at the intersection
of two forms of selective pressure: bottom-up selection, where fierce competition between
members of a community that approaches a population density of 10" organisms/ml of
colonic contents drives phylotypes to assume distinct functional roles; and top-down se-
lection, where the host selects for functional redundancy to insure against the failure of

bioreactor functions that could prove highly deleterious [10, 11].

The content, genomic arrangement and functional properties of PULs in sequenced
gut Bacteroidetes illustrate the specialization and functional redundancy within members
of this phylum. They also emphasize how the combined metabolic activities of members
of the microbiota undoubtedly result in interactions that are both very dynamic and over-
whelmingly complex (at least to the human observer), involving multiple potential path-
ways for the processing of substrates (including the order of substrate processing), varying
patterns of physical partitioning of microbes relative to substrates within the ecosystem,
and various schemes for utilization of products of bacterial metabolism. Such a system
likely provides multiple options for processing of a given metabolite, and for the types of

bacteria that can be involved in these activities.

All of this means that the task of defining the interactions of members of the hu-
man gut microbiota is daunting, as is the task of identifying general principles that govern

the operation of this system. In the present study, we have taken a reductionist approach
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to begin to define interactions between members of the Firmicutes and the Bacteroidetes
that are commonly represented in the human gut microbiota. In the human colon, members
of Clostridium cluster XIVa are one of two abundantly represented clusters of Firmicutes.
Therefore, we have generated the initial two complete genome sequences for members
of the genus Eubacterium in Clostridium cluster XIVa, (the human gut-derived E. rec-
tale strain ATCC 33656 and E. eligens strain ATCC 27750) and compared them with the
draft sequences of 25 other sequenced human gut bacteria belonging to the Firmicutes and
the Bacteroidetes. The interactions between E. rectale and B. thetaiotaomicron were then
characterized by performing whole genome transcriptional profiling of each species after
colonization of the distal guts of gnotobiotic mice with each organism alone or in combina-
tion. The gene expression data were verified by mass spectrometry of cecal proteins, plus
biochemical assays of carbohydrate metabolism. The responses of each organism were
compared to the niche adaptations of B. thetaiotaomicron to another sequenced human gut
Bacteroides, B. vulgatus. These defined model human gut microbiotas (‘synthetic micro-
biomes’) likely illustrate general themes about how members of the dominant gut bacterial

phyla are able to co-exist.

Results and Discussion

Comparative genomic studies of human gut-associated Firmicutes and Bacteroidetes

We produced finished genome sequences for Eubacterium rectale, which contains
a single 3,449,685 bp chromosome encoding 3,627 predicted proteins, and Eubacterium
eligens which contains a 2,144,190 bp chromosome specifying 2,071 predicted proteins,

plus two plasmids (Tables S1-S3).

We classified the predicted proteins in these two genomes using Gene Ontology
(GO) terms generated via Interproscan, and then applied a binomial test to identify func-

tional categories of genes that are either over- or under-represented within (i) 9 sequenced
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human gut-derived Bacteroidetes [includes the finished genomes of B. thetaiotaomicron,
B. fragilis, B. vulgatus, and Parabacteroides distasonis, plus deep draft assemblies of the
B. caccae, B. ovatus, B. uniformis B. stercoris and P. merdae genomes generated as part of
the human gut microbiome initiative (HGMI; http://genome.wustl.edu/hgm/HGM_front-
page.cgi], and (ii) 16 other human gut Firmicutes where deep draft assemblies were avail-

able through the HGMI (see Figure S1 for a phylogenetic tree).

While the sequenced gut Bacteroidetes all harbor large sets of polysaccharide sens-
ing, acquisition and degradation genes, the gut Firmicutes, including E. rectale and E.
eligens, have smaller genomes and a significantly smaller proportion of genes involved in
glycan degradation (Figure S2). As noted above, the gut-associated Bacteroidetes possess
large families of SusC and SusD paralogs involved in binding and import of glycans, while
the genomes of E. rectale and other gut Firmicutes are enriched for phosphotransferase
systems and ABC transporters (Figure S2). Lacking adhesive organelles, the ability of gut
Bacteroidetes to attach to nutrient platforms consisting of small food particles and host mu-
cus via glycan-specific SusC/SusD outer membrane binding proteins likely increases the
efficiency of oligo- and monosaccharide harvest by adaptively expressed bacterial GHs,
as well as preventing washout from the gut bioreactor [12]. Unlike the surveyed Bacteroi-
detes, several Firmicutes, notably E. rectale, E. eligens, E. siraeum, and Anaerotruncus
colihominis (the later belongs to the Clostridium leptum cluster) possess genes specifying
components of flagellae (Figure S2): these organelles may contribute to persistence within
the gut ecosystem and/or enable these species to move to different microhabitats to access

their preferred nutrient substrates.

Table S4 lists predicted GHs and PLs present in the Firmicutes and Bacteroidetes
surveyed, sorted into families according to the scheme incorporated into the Carbohydrate
Enzymes (CAZy) database (www.cazy.org). The Firmicutes have significantly fewer total
polysaccharide-degrading enzymes than the Bacteroidetes. Nonetheless, most of the sam-

pled Firmicutes have sets of carbohydrate active enzyme families that are more abundant
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in their genomes than in any known gut Bacteroidetes (highlighted lines of Table S4). For
example, while E. rectale and E. eligens lack a variety of enzymes to degrade host-derived
glycans present in mucus and/or the apical surfaces of gut epithelial cells (e.g., fucosi-
dases and hexosaminidases), E. rectale has a disproportionately large number of predicted
a—amylases (GH family 13; Table S4 and Figure S3). E. eligens has fewer of the latter,
but possesses many enzymes for degrading pectins (e.g. GH family 28, PL families 1 and
9) (Table S4). Among the Bacteroidetes ‘glycobiomes’, there is also evidence of niche spe-
cialization: while B. vulgatus has fewer GHs and PLs overall than B. thetaiotaomicron, it
has a larger assortment of enzymes for degrading pectins (GH family 28 and PL families 1,
10 and 11) and possesses enzymes, which B. thetaiotaomicron lacks, that should enable it
to degrade certain xylans [GH family 10 and Carbohydrate esterase (CE) family 15] (Fig-
ure S3 and Table S4). In vitro assays of the growth of B. thetaiotaomicron, B. vulgatus and
E. rectale in defined medium containing mono- di- and polysaccharides produced results

broadly consistent with these predictions (Table SS5).

We chose E. rectale and B. thetaiotaomicron as representatives of these two phyla
for further characterization of their niches in vivo, because of their prominence in culture-
independent surveys of the distal human gut microbiota [1, 10] and because of the pat-
tern of representation of carbohydrate active enzymes in their glycobiomes. We chose B.
vulgatus as a second representative of the Bacteroidetes because of its distinct repertoire
of GHs compared to B. thetaiotaomicron. These choices set the stage for ‘arranged mar-
riages’ between a Firmicute and a Bacteroidetes, and between two Bacteroidetes, hosted by

formerly germ-free mice.
Creating a minimal human gut microbiota in gnotobiotic mice

Young adult male germ-free mice belonging to the NMRI inbred strain were colo-
nized with B. thetaiotaomicron or E. rectale, or both species together. 10-14 d after inocula-

tion by gavage, both species colonized the ceca of recipient germ-free mice fed a standard
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chow diet rich in plant polysaccharides at levels that were not significantly different (n=4-5

mice/treatment group in each of 3 independent experiments; Figure S4A).
Functional genomic analyses of the minimal human gut microbiome

B. thetaiotaomicron’s response to E. rectale - A custom, multispecies, human gut
microbiome Affymetrix GeneChip was designed (Tables S6, S7 plus Supplemental Meth-
ods), and used to compare the transcriptional profile of each bacterial species when it was
the sole inhabitant of the cecum (mono-asociated), and when it co-existed together with
the other species (co-colonization). 55 of the 106 B. thetaiotaomicron genes that satisfied
our criteria for being differentially expressed with E. rectale colonization in a statistically
significant manner (Methods) were located in PULs: of these, 51 (93%) were upregulated
(Figure S4B; see Table S8 for a complete list of differentially regulated B. thetaiotaomi-

cron genes).

As noted in the Introduction, two previous studies from our lab examined changes
in B. thetaiotaomicron’s transcriptome in the ceca of mono-associated gnotobiotic mice
when they were switched from a diet rich in plant polysaccharides to a glucose-sucrose
chow [7], or in suckling mice consuming mother’s milk as they transitioned to a stan-
dard chow diet [6]. In both situations, in the absence of dietary plant polysaccharides, B.

thetaiotaomicron adaptively forages on host glycans.

The transcriptional changes induced in B. thetaiotaomicron by co-colonization
with E. rectale overlap with those noted in these two previous datasets (Figure S4C). In
addition, they involve several of the genes upregulated during growth on minimal medium
containing porcine gastric mucin (PGM) as the sole carbon source [8]. For example, in
co-colonized mice and in vitro, B. thetaiotaomicron upregulates two operons (BT3787-
BT3792; BT3774-BT3777; Figure S4D) used in degrading a.—mannans, a component
of host O-glycans. (Note that E. rectale is unable to grow in defined medium containing

o-mannan or mannose as the sole carbon sources; Table S5). B. thetaiotaomicron also up-
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regulates expression of its starch utilization system (Sus) PUL in the presence of E. rectale
(BT 3698-3704; Figure S4D). This well-characterized PUL is essential for degradation of

starch molecules containing =6 glucose units [4].

Thus, it appears that B. thetaiotaomicron adapts to the presence of E. rectale by
upregulating expression of a variety of PULSs, so that it can broaden its niche and degrade
an increased variety of glycan substrates, including those derived from the host that E. rec-
tale s unable to access. The capacity to access host glycans likely represents an important
trait underpinning microbiota function and stability: glycans in the mucus gel are not only
abundant but consistently represented; mucus could serve as a microhabitat for Bacteroi-
detes spp. to embed in (and adhere to via SusD paralogs) thereby avoiding washout; the
products of polysaccharide digestion/fermentation generated by Bacteroidetes spp. can be
shared with other members of the microbiota that are located in close proximity, including

the Firmicutes.

E. rectale’s response to B. thetaiotaomicron - E. rectale’s response to B. thetaiotao-
micron in the mouse cecum is in marked contrast to B. thetaiotaomicron’s response to E.
rectale. Carbohydrate metabolism genes, and particularly GHs, are significantly overrep-
resented among E. rectale genes that are downregulated in the presence of B. thetaiotao-
micron compared to monoassociation; i.e. 12 of E. rectale’s predicted 51 GHs are down-
regulated while only two are upregulated (Figure 1A,B; see Table S9 for a complete list
of E. rectale genes regulated by the presence of B. thetaiotaomicron). The two upregulated
GH genes [EUBREC_1072, a 6-P-f-glucosidase (GH family 1) and EUBREC_3687, a
cellobiose phosphorylase (GH family 94)], lack export signals and are predicted to break
down cellobiose. Three simple sugar transport systems with predicted specificity for cel-
luobiose, galactoside, and arabinose/lactose (EUBREC_3689, EUBREC_0479, and EU-
BREC_1075-6, respectively) are among the most strongly upregulated genes (highlighted

with arrowheads in Figure 1C).
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Evidence for nutrient sharing

The concurrent upregulation of sugar transporters and downregulation of GHs not
only suggest that E. rectale is more selective in its sugar degradation in the presence of B.
thetaiotaomicron, but that it may benefit by harvesting sugars released by B. thetaiotao-
micron glycosidases. In vitro studies support the latter notion. Approximately 107 colony-
forming units (CFU) of B. thetaiotaomicron were plated onto the center of agar plates
containing defined medium with various carbon sources plus 10* to 10* CFU of E. rectale.
E. rectale colonies grew to a larger size the closer they were to B. thetaiotaomicron. This
effect was most pronounced on plates with dextran as the carbon source, a glucan that can
be utilized by B. thetaiotaomicron but not by E. rectale (Figure S5, Table S5). In the pres-
ence of a simple sugar that both organisms can utilize (glucose), a simple sugar only uti-
lized by B. thetaiotaomicron (D-arabinose; Table S5), or plating on tryptone alone without

a carbohydrate, the growth effect was considerably reduced (Figure SS5).

Transcriptional and biochemical data obtained from gnotobiotic mice further sup-
port the idea that E. rectale 1s better able to access nutrients in the presence of B. thetaiotao-
micron. In the presence of B. thetaiotaomicron, E. rectale upregulates a significant propor-
tion of genes involved in biosynthetic and amino acid metabolic functions (listed in Figure
1A). Phosphoenolpyruvate carboxykinase (EUBREC_2002) is also upregulated with co-
colonization. This enzyme catalyzes an energy conserving reaction that produces oxaloac-
etate from phosphoenolpyruvate. In a subsequent transanimase reaction oxaloacetate can
be converted to aspartate, linking this branching of the glycolytic pathway with amino acid
biosynthesis. In addition, a number of peptide and amino acid transporters in E. rectale are
upregulated when it encounters B. thetaiotaomicron, as are the central carbon and nitro-
gen regulatory genes CodY (EUBREC_1812), glutamate synthase (EUBREC_1829) and
glutamine synthetase (EUBREC_2543) (Figure 1B). Moreover, the expression profile of
E. rectale in the ceca of co-colonized mice is intermediate between that observed when it

alone colonizes the cecum, and during its exponential phase growth in tryptone-glucose
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(T-G) medium: i.e., 80% of the genes that are differentially regulated between monoas-
sociation and co-colonization are regulated in the same direction between growth on T-G,
and monoassociation (Table S10). Among these are genes involved in translation, cell en-
velope biogenesis and amino acid biosynthesis. All of these data suggest that the presence

of B. theta increases nutrient availability for E. rectale.

Changes in E. rectale’s fermentative pathways - E. rectale harbors genes (EU-
BREC_733-737 and EUBREC_1017) for the production of butyrate that show high simi-
larity to genes from other Clostridia. This pathway involves the condensation of two
molecules of acetylCoA to form butyrate. Transcriptional and high resolution proteom-
ic analyses (see below) indicate that enzymes involved in the production of butyrate are
among the most highly expressed in cecal extracts prepared from E. rectale colonized mice

(Table S2 and S11).

In vitro studies have shown that E. rectale consumes large amounts of acetate
for butyrate production in the presence of carbohydrates [13]. Several observations sug-
gest that E. rectale utilizes acetate produced by B. thetaiotaomicron to generate increased
amounts of butyrate in vivo: First, E. rectale upregulates a phosphate acetyltransferase
(EUBREC_1443; EC 2.3.1.8), one of two enzymes involved in the interconversion of ace-
tylCoA and acetate (Table S9; GeneChip data verified by gqRT-PCR assays in 2 indepen-
dent experiments involving 3-4 mice/treatment group). Second, cecal acetate levels are
significantly lower in co-colonized mice compared to B. thetaiotaomicron monoassociated
mice (Figure 2B). Third, although cecal butyrate levels are similar in E. rectale monoas-
sociated and co-colonized animals (Figure 2C), expression of mouse Mct-1, encoding a
monocarboxylate transporter whose inducer and preferred substrate is butyrate [14, 15], is
significantly higher in the distal gut of co-colonized versus E. rectale monoassociated mice
(p<0.05; Figure 2D). The cecal concentrations of butyrate observed are similar to levels
known to upregulate Mct-1 in colonic epithelial cell lines [14]. Fourth, higher levels of ac-

etate (i.e. those encountered in B. thetaiotaomicron monoassociated mice) are insufficient
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to induce any change in Mct-1 expression compared to germ-free controls (Figure 2B and
2D). Fifth, levels of other monocarboxylates transported by Mct-1 are unchanged (lactate,
succinate) or significantly decreased (proprionate) in the ceca of co-colonized compared to

E. rectale monoassociated mice (Figure 2E, and data not shown).

Conversion of acetate to butyrate is accompanied by the oxidation of two molecules
of NADH to NAD*, which is required for glycolysis. The butyrylCoA dehydrogenase/
electron transfer flavoprotein (Bcd/Etf) complex (EC 1.3.99.2) in the butyrate production
pathway also offers a recently discovered additional pathway for energy conservation, via
a bifurcation of electrons from NADH to crotonylCoA and ferredoxin [16]. The reduced
ferredoxin in turn may be reoxidized via hydrogenases, or via the membrane-bound oxi-
doreductase, Rnf, which generates sodium-motive force. While our GeneChip data indi-
cated no significant difference in expression of the operon encoding the Bcd/Etf complex
(EUBREC_0735-0737) in E. rectale monoassociated versus co-colonized mice, we ob-
served downregulation of genes that catalyze both of these reduced ferredoxin-dependent
reactions (hydrogenases [EUBREC_1227 and EUBREC_2390, EC:1.12.7.2] and Rnf [EU-
BREC_1641-1646]). This indicates that more of the NADH generated through glycolysis
might be reoxidized in the reduction of crotonylCoA rather than by reduction of ferre-

doxin.

Consistent with these observations, we found that the NAD*/NADH ratio in cecal
contents was significant increased with co-colonization (Figure 2A). A high NAD*/NADH
ratio promotes high rates of glycolysis, since NAD" is a required cofactor. This shift, there-
fore, may represent an adaptation by E. rectale to the increased nutrient uptake discussed

above. Figure 3 summarizes the metabolic responses of E. rectale to B. thetaiotaomicron.

The pathway for acetate metabolism observed in the model human gut community
composed of B. thetaiotaomicron and E. rectale differs markedly from what is seen in

mice that harbor B. thetaiotaomicron and the principal human gut methanogenic archaeon,
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Methanobrevibacter smithii. When B. thetaiotaomicron encounters M. smithii in the ceca
of gnotobiotic mice, there is increased production of acetate by B. thetaiotaomicron, no
diversion to butyrate (and no induction of Mct-1; [17] and B. Samuel and J. Gordon, un-
published observations), increased serum acetate levels, and increased adiposity compared
to B. thetaiotaomicron monoassociated controls. In contrast, serum acetate levels and host
adiposity (as measured by fat pad to body weight ratios) are not significantly different
between B. thetaiotaomicron monoassociated and B. thetaiotaomicron-E. rectale co-colo-

nized animals (n=4-5 animals/group; n=3 independent experiments; data not shown).

Proteomic studies of this simplified two-component model of the human gut

microbiome

Model communities, such as the one described above, constructed in gnotobiotic
mice, where microbiome gene content is precisely known and transcriptional data are ob-
tained under controlled conditions, provide a way to test the efficacy of mass spectrometric
methods for characterizing gut microbial community proteomes. Therefore, we assayed lu-
minal contents, collected from the ceca of 8 gnotobiotic mice: (germ-free, monoassociated,
and co-colonized; n=2 mice/treatment group representing two independent biological ex-
periments). Samples were processed by a small sample method, in which cells were lysed
with 6M Guanidine/10mM DTT and heat, proteins were denatured, reduced, and digested
with trypsin, and samples analyzed (in triplicate) using tandem mass spectrometry with a
linear ion trap. All MS/MS spectra were searched with SEQUEST [18] against a combined
database containing predicted proteins from E. rectale, B. thetaiotaomicron, mouse, plant
components of the diet (e.g., rice), and common contaminants (e.g. trypsin). All 8 samples

were coded, and MS measurements conducted in a blinded fashion.

The measured proteomes had high reproducibility in terms of total number of pro-
teins observed and spectra matching to each species. Differentiating unique peptides and

thus unique proteins between E. rectale and B. thetaiotaomicron was straightforward since
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there are no shared predicted peptides between the two. The resultant microbial species
distributions were exactly as expected from the coded samples. Table 1 summarizes our
results, including the percentage of mRNAs called present in the GeneChip datasets for
which there was an identified protein product. The most abundant identified proteins from
both microbes included ribosomal proteins, elongation factors, chaperones, and proteins
involved in energy metabolism (for a full list of identified proteins, see Table S11 and
http://compbio.ornl.gov/mouse_cecal_microbial_metaproteome/; note that Tables S8
and S9, which list differentially expressed genes in co-colonization experiments, indicate
whether protein products from the transcripts were identified in these mass spectrometry
datasets; in addition, Table S2, which lists the genome annotation for E. rectale, describes
the number of times each protein was identified in our replicate MS/MS analyses). Many
conserved hypothetical and pure hypothetical proteins were identified, as well as 10 genes
in B. thetaiotaomicron whose presence had not been predicted in our initial annotation of
the finished genome (Table S12). Together, these results provide validation of experimen-
tal and computational procedures for proteomic assays of a model gut microbiota, and also

illustrate some of the benefits in obtaining this type of information.

Putting the niche adaptations of B. thetaiotaomicron and E. rectale in perspective: a

model gut community containing B. thetaiotaomicron and B. vulgatus

In a final set of experiments, we colonized adult male NMRI mice consuming a
standard polysaccharide-rich chow diet with B. thetaiotaomicron alone, B. vulgatus alone,
or with both organisms together. Animals were sacrificed 14d after gavage. As with E. rec-
tale and B. thetataiomicron, co-colonization produced similar cecal population densities of
both organisms. Moreover, these levels did not differ significantly from what was observed

with monoassociation (Figure S6A).

The number of genes whose expression was significantly different in co-colonization

compared to monoassociation was very modest: only 7 in the case of B. thetaiotaomicron
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(6 upregulated; see Table S13 for complete list) and 52 in B. vulgatus (60% upregulated)
(see Table S14 for a complete list). This is consistent with the fact that these two human gut
Bacteroidetes have largely similar capacities to utilize different polysaccharides. Remark-
ably, all of the differentially expressed genes in B. vulgatus that had functional annotations
were located in predicted operons involved in carbohydrate utilization. The upregulated
genes included several involved in degradation/metabolism of pectin and xylans (Figure
S6B,C): i.e., the same genes identified as distinctively represented in the glycobiome of B.

vulgatus compared to B. thetaiotaomicron.

Prospectus

These studies of model human gut microbiotas created in gnotobiotic mice support
a view of the Bacteroidetes, whose genomes contain a disproportionately large number of
glycan-degrading enzymes compared to sequenced Firmicutes, as responding to increasing
diversity by modulating expression of their vast array of PULs. B. vulgatus adapts to the
presence of B. thetaiotaomicron by increasing expression of its unique and enriched classes
of GHs. B. thetaiotaomicron responds to E. rectale by upregulating a variety of loci spe-
cific for host-derived mucin glycans that E. rectale is unable to utilize (e.g. o—mannans).
E. rectale, which like other Firmicutes has a more specialized capacity for glycan degrada-
tion, broadly downregulates its available GHs in the presence of B. thetaiotaomicron, even
though it does not grow efficiently in the absence of carbohydrates. It becomes more selec-
tive in its harvest of sugars, while its transcriptional profile suggests improved access to
nutrients, with a generalized upregulation of biosynthetic genes, including those involved
translation, as well as a set of nutrient transporters that can harvest peptides as well as car-
bohydrate products liberated by gut Bacteroidetes-derived GHs and PLs: i.e., it becomes,

in part, a ‘secondary consumer’ of the buffet of glycans available in the cecum.

We have previously used gnotobiotic mice to show that the efficiency of fermenta-

tion of dietary polysaccharides to short chain fatty acids by B. thetaiotaomicron increases
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in the presence of M. smithii [17]. Co-colonization increases the density of colonization
of the distal gut by both organisms, increases production of formate and acetate by B.
thetaiotaomicron and allows M. smithii to use H, and formate produce methane, thereby
preventing the build-up of these fermentation end-products (including NADH) in the gut
bioreactor, and improving the efficiency of carbohydrate metabolism [17]. Removal of
H, by methanogenic Archaea, by phylogenetically diverse acetogens that use the Wood-
Ljungdhal pathway for synthesis of acetyl CoA from CO,, and/or by Proteobacteria that
reduce sulfate to sulfide, allows B. thetaiotaomicron’s hydrogenase to oxidize NADH to
NAD*, which can then be used for glycolysis. This situation constitutes a mutualism, in
which both members show a clear benefit. The present study, characterizing the interaction
between B. thetaiotaomicron and E. rectale, describes a more nuanced interaction where
there are not significant changes in the level of colonization of either species. It is currently
difficult to determine the benefit versus cost of these interactions. The cost to B. thetaiotao-
micron of liberating simple sugars in excess of what it can absorb may not be large enough
to allow selection against it. Alternatively, B. thetaiotaomicron may benefit from its inter-

action with E. rectale in ways as yet uncharacterized.

It seems likely that as the complexity of the gut community increases, interactions
between B. thetaiotaomicron and E. rectale will either by subsumed or magnified by other
‘similar’ phylogenetic types (as defined by their 16S rRNA sequence and/or by their gly-
cobiomes). Constructing model human gut microbiotas of increasing the complexity in
gnotobiotic mice using sequenced members of our intestinal communities should be very
useful for exploring two ecologic concepts: (i) the neutral theory of community assembly
which posits that most species will share the same general niche (profession), and thus are
likely to be functionally redundant [19], and (ii) the idea that both bottom-up selection,
where fierce competition between members of the microbiota drives phylotypes to assume
distinct functional roles, and top-down selection, where the host selects for functional re-

dundancy to insure against failure of bioreactor functions, operate in our guts [2].
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Materials and Methods

Genome comparisons

All nucleotide sequences from all contigs of completed assemblies containing both
capillary sequencing and pyrosequencer data, produced as part of the HGMI were down-
loaded from the Washington University Genome Sequencing Center’s website (http://
genome.wustl.edu/pub/organism/Microbes/Human_Gut_Microbiome/) on September 27,
2007. The finished genome sequences of B. thetaiotaomicron VPI-5482, Bacteroides vulg-

atus ATCC 8482, and B. fragilis NCTC9343 were obtained from GenBank.

For comparison purposes, protein-coding genes were identified in all genomes us-
ing YACOP [20]; nonredundant NCBI nucleotide (NT) database dated 9/27/2007). Each
proteome was assigned InterPro numbers and GO terms using InterProScan release 16.1
[21]. Statistical comparisons between genomes were then carried out, as described previ-

ously [5] using perl scripts that are available upon request from the authors.

GeneChip Analysis

RNA was isolated from a 100-300 mg aliquot of frozen cecal contents, and cDNA
synthesized, biotinylated and hybridized to GeneChips, as described previously [17], ex-
cept that 0.1lmm zirconia/silica beads (Biospec Products, Bartlesville, OK) were used for
lysis in a bead beater (Biospec) for 4 min at high speed. Genes in a given bacterial spe-
cies that were differentially expressed in mono- versus co-colonization were identified
using CyberT (default parameters) following probe masking and scaling with the MASS5
algorithm (Affymetrix; for details of the methods used to create the mask, see the Methods

section of Supplementary Information).
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Other methods

Details about bacterial culture, genome sequencing and finishing, animal husband-
ry, quantitative PCR assays of the level of colonization of the ceca of gnotobiotic mice,
GeneChip design and masking, plus proteomic and metabolite assays of cecal contents are

described in the Methods section of Supplementary Information.
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Figure Legends

Figure 1. Response of E. rectale to co-colonization with B. thetaiotaomicron. (A) Genes as-
signed to GO terms for carbohydrate metabolism (GO:0005975), transporters (GO: GO:0006810)
and predicted GHs are all significantly overrepresented among down-regulated genes while genes
with GO terms for biosynthesis (GO:0044249), in particular amino acid metabolism (GO:0006520),
are significantly overrepresented among upregulated genes. All categories shown are significantly
different from the genome as a whole. ¥*P<0.05; **P<0.01; ***P<0.001 (binomial test). (B) Heat
map from GeneChip data showing: (i) all significantly regulated GH genes (top), with all but two
are downregulated (both cytoplasmic cellobiose processing enzymes); (ii) upregulation of global
regulator genes (i) CodY, a repressor of starvation-response genes, and (ii) glutamate synthase,
and (iii) glutamine synthetase, which require adequate carbon and nitrogen supplies for activation
[22, 23]. (C) Heat map of all significantly regulated genes assigned to the GO term for transport-
ers (GO:0006810) illustrates that a number of simple sugar transporters are downregulated upon
co-colonization, while peptide and amino acid transporters as well as three predicted simple sugar
transporters (arrows; EUBREC_0479, a galactoside ABC transporter; EUBREC_1075-6, a lactose/
arabinose transport system, and EUBREC_3689, a predicted cellobiose transporter) are upregu-
lated. Differentially regulated genes were identified using the MASS algorithm and Cyber-T (see
Table S9 and Materials and Methods). Genes whose differential expression with co-colonization
was further validated by qRT-PCR are highlighted with red lettering (2 independent experiments,

n=4-5 mice per group, 2-3 measurements per gene).

Figure 2. Co-colonization affects the efficiency of fermentation with an increased NAD*:NADH
ratio and increased acetate production. (A) NAD*:NADH ratios are increased in co-colonization
relative to either monoassociation or germ-free mice (n=7-9 per group). (B,C) GC-MS assays of
cecal acetate and butyrate levels (n=6-8 per group). (D) Expression of Mct-1, a monocarboxylate
transporter whose preferred substrate and inducer is butyrate, in the proximal colon (n=3-5 per
group). (E) Cecal propionate concentrations (n=7-9 per group). Mean values + s.e.m. are plotted; *,

p<0.05, **, p<0.01, *** p<0.001 compared with co-colonization (1-way analysis of variance with
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Bonferroni correction).

Figure 3. Proposed model of the metabolic responses of E. rectale to B. thetaiotaomicron. B.
thetaiotaomicron increases its break down of complex host glycans (HG) and dietary polysaccha-
rides (DP) into monosaccharides (MS) that E. rectale efficiently takes up using phosphotransferase
systems (Pts) and ABC transporters. Fermentative pathways in B. thetaiotaomicron generate ac-
etate that E. rectale consumes. E. rectale increases its production of butyrate, which is formed from
acetyl-CoA in several reductive steps. This regenerates NAD* that is reduced during glycolysis,
leading to an increase in the NAD*/NADH ratio. The downregulation of hydrogenase and Rnf may
indicate that E. rectale uses NADH to produce butyrate rather than to generate reduced ferredoxin
or subsequently H, (via hydrogenase) or sodium motive force (via Rnf). The butyrate in turn in-
duces the monocarboxylate transporter Mct-1 in the host epithelium, causing an increased uptake
of this short chain fatty acid. The constant removal of butyrate from the colon keeps its concentra-

tion low, thus favoring E. rectale’s production of butyrate.
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Table Legends

Table 1. Detection of proteins and protein expression by tandem mass spectrometry and gene
chip compared. Mono=Monoassociated mouse cecal contents; Biassoc=Biassociated cecal
contents. Chip -: less than 75% of gene chips with “Present” call for a gene; for E. rectale
this number includes genes not covered by gene chip; in parentheses is the number of chip-

negative genes excluding those not on the chip.
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Table 1

E. rectale B. thetaiotaomicron
Mono Biassoc Total Mono Biassoc Total
Detected by

msms| %01 453 680 1608 1367 1687
75% present by 2139 2010 2150 3798 3865 3995
gene chip 91% 85% 91% 78% 79% 82%

Chip -/ MS/MS +?| 132 (7) 83 (7) 135 (8) 40 21 23
MS/MS-/ Chip +| 1608 1638 1603 2280 2569 2357
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Supplemental Information

Methods

Bacterial culture

Bacterial strains were stored frozen at -80°C in a pre-reduced mixture of two parts
TYG medium [1] to one part glycerol. Bacteria were routinely cultured in TYG medium in
an anaerobic chamber (Coy Lab Products, Grass Lake, MI) under an atmosphere of 40%
CO,, 58% nitrogen, and 2% H,. To assay growth of E. rectale on specific carbon sources, the
organism was cultured on medium containing 1% tryptone, 100mM potassium phosphate
buffer (pH 7.2), 15 mM NaCl, 180uM CaCl,, 100 pM MgCl,, 50 uM MnCl,, 42 uM CoCl,
and 15 uM FeSO,, 1% trace element mix (ATCC), 2ug/ml folinic acid (calcium salt), 1.2
pug/ml hematin, and Img/ml menadione. Growth curves for different carbon sources were
acquired at 37°C in the Coy anaerobic chamber using a 96-well plate spectrophotometer
(Tecan Sunrise, Tecan U.S., Durham, NC). Growths were scored as positive if the OD

measurement rose by =0.2 over a 72 h incubation at 37°C.

Genome sequencing

E. rectale and E. eligens were grown to late log phase under anaerobic conditions
in TYG medium. Cells were pelleted from 50 ml cultures and lysed in 11 ml Buffer B1
(Qiagen Genomic DNA buffer set; Qiagen) with 2.2 mg RNAse A, 50 U lysozyme, 50 U
mutanolysin, and 600 U achromopeptidase (all from Sigma) for 30 min at 37°C. Four ml of
Buffer B2 (Qiagen) was added with 10 mg (300 U) proteinase K (Sigma) and incubated at
50°C for 2 h. The DNA was precipitated by adding 1.5 ml of 3M sodium acetate and 30 ml

isopropanol, removed with a sterile glass hook, and washed several times with ethanol.

Unlike E. eligens, genomic DNA from E. rectale was very resistant to standard

cloning techniques. This cloning bias made efforts to produce fosmids ineffective, and left
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vast regions of the genome uncloned in our primary sequencing vector, pOT. Only half (1.7
Mb) of its genome was represented in our initial assembly containing 228 contigs from
>9X plasmid shotgun reads with a ABI 3730 capillary instrument. Therefore, we generated
>40X coverage of the E. rectale genome through pyrosequencing with a 454 GS20 instru-
ment, and used an additional vector (pJAZZ) for capillary sequencing in order to obtain a
finished genome sequence. Significant manual closure efforts including PCR and sequenc-
ing of products across gaps, manual manipulation of sequence assemblies to resolve misas-
semblies, and sequence editing to ensure accurate base calling. were employed to produce
a final, hand-curated, base-perfect sequence. In our experience, the effort required was
far more extensive than for most finished microbial genomes, due to the repetitive, highly

clone-biased nature of this assembly.

Protein-coding genes were subsequently identified using Glimmer 2.13 [2] and
GeneMarkS [3] using the start site predicted by GeneMarkS where the two overlapped.
‘Missed’ genes were then added by using a translated BLAST of intergenic regions against
the NCBI nonredundant protein database to find conserved ORFs. Additional missed genes
were added to the E. rectale genome using YACOP (trained by Glimmer 2.13) [4]. tRNA,
rRNA and other non-coding RNAs were identified and annotated using tRNAscan-SE [5],
RNAMMER [6], and RFAM [7], respectively. Protein-coding genes were annotated with
the KEGG Orthology group definition using a NCBI BLASTP search [8] of the KEGG

genes database [9] (Mar. 10, 2008), with a minimum bit score of 60.

Animal husbandry

All experiments using mice were performed using protocols approved by the ani-
mal studies committee of Washington University. NMRI-KI mice [10] were maintained
in flexible plastic film isolators under a strict 12h light cycle, and fed a standard poly-
saccharide-rich chow (BK, Zeigler, UK). For colonizations involving B. vulgatus and B.

thetaiotaomicron, mice were maintained on this diet for the duration of the experiment. 6-8
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week old males were placed on an irradiated polysaccharide-rich chow diet (Harlan-Teklad
#2918, Madison, WI) 10 to 14d prior to colonizations involving B. thetaiotaomicron and

E. rectale.

Animals were colonized via gavage with 108 CFU from an overnight culture of a
B. thetaiotaomicron or B. vulgatus, or a log-phase culture of E. rectale. Gavage with E.
rectale was repeated on three successive days using cells from separate log-phase cultures
begun from separate colonies. Cecal contents and colon tissue were flash frozen in liquid

nitrogen immediately after animals were killed.

Quantitative PCR measurements of colonization

A total of 100-300 mg of frozen cecal contents from each gnotobiotic mouse was
added to 2 ml tubes containing 250 u10.1mm-diameter zirconia/silica beads (Biospec Prod-
ucts), 0.5 ml of Buffer A (200 mM NaCl 20 mM EDTA), 210 ul of 20% SDS, and 0.5 ml
of a mixture of phenol:chloroform:isoamyl alcohol (25:24:1; pH 7.9; Ambion, Austin, TX).
Samples were lysed by using a bead beater (BioSpec; ‘“high” setting for 4 min at room
temperature). The aqueous phase was extracted following centrifugation (8,000 x g at 4°C
for 3 min), and the extraction repeated with another 0.5 ml of phenol:chloroform:isoamyl
alcohol and 1 min of vortexing. DNA was precipitated with 0.1 volume of 3M sodium ac-
etate (pH 5) and 1 volume of isopropanol (on ice for 20 min), pelleted (14,000 x g, 20 min
at 4°C) and washed with ethanol. The resulting pellet was resuspended in water and one
half (for E. rectale monoassociations) or one tenth of the DNA (for B. thetaiotaomicron
colonized samples) further cleaned up using a DNAEasy column (Qiagen). qPCR was per-
formed using (i) primers specific to the 16S rRNA gene of B. thetaiotaomicron [11] and the
Clostridium coccoides/E. rectale group (forward: 5’-CGGTACCTGACTAAGAAGC-3’;
reverse: 5’-AGTTT(C/T)ATTCTTGCGAACG-3’) [12] and (ii) conditions described pre-
viously for B. thetaiotaomicron [11]. The amount of DNA from each genome in each PCR

was computed by comparison to a standard curve of genomic DNA prepared in the same
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manner. Data were converted to genome equivalents by calculating the mass of each fin-
ished genome (2.8 x 10° genome equivalents (GEq) per ng E. rectale DNA, and 1.5 x 103
GEq per ng B. thetaiotaomicron DNA).

GeneChip design, hybridization and data analysis

A custom, six-species human gut microbiome Affymetrix GeneChip was designed
using the finished genome sequences of B. thetaiotaomicron, B. vulgatus, P. distasonis and
M. smithii genomes [13-15], plus draft versions of the E. rectale and E. eligens genomes.
Gene predictions for the Firmicute assemblies were made using Glimmer3 [2]. The design
included 14 probe pairs (perfect match plus mismatch) per CDS (protein coding sequence)
in each draft assembly, and 11 probe pairs for each CDS in a finished genome. The result-
ing coverage, after soft pruning against all 6 microbial genomes and the mouse genome, is

summarized in Table S6.

Non-specific cross-hybridization was controlled in three ways. First, probe
masks for each genome were developed as follows. For analyses involving organisms
for which the finished genomes were used for GeneChip design (B. thetaiotaomicron-B.
vulgatus co-colonizations), a new GeneChip description file (CDF) was created using the
Bio::Affymetrix::CDF perl module obtained from www.cpan.org [16], that included all
genes from the genome of interest. Second, for analyses involving E. rectale-B. thetaiotao-
micron co-colonizations, additional probes were removed to avoid cross-hybridization re-
sulting from misassembly and missing sequences in the E. rectale draft assembly. NCBI
BLASTN [8] was used, with parameters adjusted for small query size (word size 7, no
filtering or gaps), to identify probesets that either failed to find a perfect match in the fin-
ished genomes (once the E. rectale genome was completed), or that registered a hit to more
than one sequence feature with a bit score > 38 (using the default scoring parameters for
BLASTN). This mask reduced the proportion of probesets exhibiting a spurious ‘Present’

call (by Affymetrix software) by 36%. The resulting CDF file was imported into BioCon-
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ductor using the altcdfenvs package [17], and all expression analyses were performed us-
ing the MASS algorithm implemented in BioConductor’s ‘Affy package’ [18], following
masking of GeneChip imperfections with Harshlight [19] - in both cases using the default
parameters. Third, for all analyses we also identified all probesets that registered a ‘Pres-
ent’ call when hybridized to targets generated from the cecal contents of mice that had
been monoassociated with either E. rectale, or B. thetaiotaomicron, or B. vulgatus. These

probesets were also excluded from further analyses and are listed in Table S7.

Proteomic analyses of cecal contents

Cecal contents were pelleted by centrifugation, and the cell pellets processed via a
single tube cell lysis and protein digestion method as follows. Briefly, the cell pellet was re-
suspended in 6M Guanidine/10 mM DTT, heated at 60°C for 1 h followed by an overnight
incubation at 37°C to lyse cells and denature proteins. The guanidine concentration was
diluted to 1 M with 50mM Tris/10mM CaCl, (pH 7.8) and sequencing grade trypsin (Pro-
mega, Madison, WI) was added (1:100; wt/wt). Digestions were run overnight at 37°C.
Fresh trypsin was then added followed by an additional 4 h incubation at 37°C. The com-
plex peptide solution was subsequently de-salted (Sep-Pak C , solid phase extraction; Wa-
ters, Milford, MA), concentrated, filtered, aliquoted and frozen at -80°C. All eight samples

were coded and mass spectrometry measurements conducted in a blinded fashion.

Cecal samples were analyzed in technical triplicates using a two-dimensional (2D)
nano-LC MS/MS system with a split-phase column (SCX-RP) [20] on a linear ion trap
(Thermo Fisher Scientific) with each sample consuming a 22 h run as detailed elsewhere
[21, 22]. The linear ion trap (LTQ) settings were as follows: dynamic exclusion set at one;
and five data-dependent MS/MS. Two microscans were averaged for both full and MS/
MS scans and centroid data were collected for all scans. All MS/MS spectra were searched
with the SEQUEST algorithm [23] against a database containing the entire mouse genome,

plus the B. thetaiotaomicron, E. rectale, rice, and yeast genomes (common contaminants
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such as keratin and trypsin were also included). The SEQUEST settings were as follows:
enzyme type, trypsin; Parent Mass Tolerance, 3.0; Fragment Ion Tolerance, 0.5; up to 4
missed cleavages allowed (internal lysine and arginine residues), and fully tryptic peptides
only (both ends of the peptide must have arisen from a trypsin specific cut, except N and
C-termini of proteins). All datasets were filtered at the individual run level with DTASelect
[24] [Xcorrs of at least 1.8 (+1 ions), 2.5 (+2 ions) 3.5 (+3 ions)]. Only proteins identified
with two fully tryptic peptides were considered. Previous studies with reverse database
searching have shown this filter level to generally give a false positive rate less than 1%

even with large databases [21, 25, 26].

Biochemical analyses

Measurements of acetate, butyrate, propionate, NAD*, NADH, lactate, succinate,
and formate in cecal contents were performed as described previously [11], with the excep-
tion that acetic acid-1-""C,d, (Sigma) was used as a standard to control for acetate recovery

rather than the isomer listed in the reference.
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Supplemental Figure Legends

Figure S1. Phylogenic relationships of human gut-associated Firmicutes and Bacte-
roidetes surveyed in the present study. A phylogeny, based on 16S rRNA gene sequenc-
es, showing the relationships between representatives from two dominant bacterial phyla
in the gut microbiota. Green, genomes generated by the Human Gut Microbiome Initia-
tive (www.genome.gov/Pages/Research/Sequencing/SeqProposals/HGMISeq.pdf). Black,
other available related genomes. Red, organisms used for co-colonization studies described
in the present study. The phylogenetic tree was created by aligning 16S rRNA gene se-
quences from each genome using the NAST aligner [27], importing the alignment into Arb
[28], and then adding them to an existing database of 16S rRNA sequences derived from

enumerations of the human gut [29, 30].

Figure S2. Genes involved in carbohydrate metabolism and energy production whose
representation is significant enriched or depleted in sequenced human gut-associated
Firmicutes and Bacterodetes. The number of genes assigned to each GO term in each ge-
nome is shown. Significance is judged by a binomial test, with multiple hypothesis testing
correction (see Methods) comparing the proportion of genes assigned to a GO term in one
genome versus the average number assigned to the same GO term across all the Firmicutes.
Protein-coding genes were identified using YACOP. Each proteome was assigned InterPro
numbers and GO terms. The Firmicutes also use distinct mechanisms for environmental
sensing and membrane transport. The Bacteroidetes employ a large number of paralogs of
the SusC/D system to bind and import sugars (classified as receptors, GO:0004872), while
the Firmicutes use ABC transporters and phosphotransferase systems (classified as active
membrane transporters, GO:0022804). Color code: red: enriched; blue: depleted; dark,
p<0.001; light, p<0.05) relative to the average of all Bacteroidetes genomes (excluding the

one tested).
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Figure S3. Comparison of glycoside hydrolases and polysaccharide lyases repertoires
of E. rectale, E. eligens, B. vulgatus and B. thetaiotaomicron. The number of genes in
each genome in each CAZy GH or PL family are shown. Families that are significantly de-
pleted relative to B. thetaiotaomicron are colored blue (p<0.001), as judged by a binomial
test followed by Benjamini-Hochberg correction [31]. Families in which the other genom-
es have more members are colored yellow. Families that are absent in B. thetaiotaomicron
are orange. B. thetaiotaomicron has a larger genome and a disproportionately larger as-
sortment of GHs. Both Firmicutes have a reduced capacity to utilize host-derived glycans
(hexosaminidases, mannosidases, and fucosidases; GH20, GH29, GH78, GH95). E. rectale
has a large number of starch-degrading enzymes (GH13), while E. eligens has a capacity to
degrade pectins (PL9, GH28, GH53). See Table S4 or a complete list of all CAZy enzymes

among the sequenced gut Bacteroidetes and Firmicutes examined.

Figure S4. Creation of a minimal synthetic human gut microbiota composed of a se-
quenced Firmicute (E. rectale) and a sequenced Bacteroidetes (B. thetaiotaomicron).
(A) Levels of colonization of the ceca of 11 week-old male gnotobiotic mice colonized
for 14d with one or both organisms. Animals were given an irradiated polysaccharide-
rich chow diet ad libitum. B. thetaiotaomicron and E. rectale colonize the ceca of mice
to similar levels in both monoassociation and bi-association. Error bars denote standard
error of the mean of 2-3 measurements per mouse, 4 mice per group. Results are represen-
tative of 3 independent experiments. (B) Summary of genes showing upregulation in B.
thetaiotaomicron with co-colonization. 55 of the 106 genes are within PULs, and of these,
51 (93%) were upregulated. (C) Summary of B. thetaiotaomicron PUL-associated genes
upregulated with co-colonization and their representation in datasets of genes upregulated
during the suckling-weaning transition, and when adult gnotobiotic mice are switched from
a polysaccharide-rich diet to one devoid of complex glycans and containing simple sugars
(glucose, sucrose). The latter two datasets are composed of all genes upregulated >10-fold

relative to log-phase growth in minimal glucose medium [32]. (D) Heat map of GeneChip
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data from three loci upregulated by B. thetaiotaomicron upon colonization with E. rectale;
two are involved in degradation of a-mannans (left; [32]) which E. rectale cannot access;
the third is the Starch-utilization system (Sus) locus [33], which targets a substrate that
both species can utilize. Maximal relative expression across a row is red; minimal is green.
Differential expression was judged using the MASS algorithm and CyberT (see Table S9
and Methods).

Figure SS. In vitro plate-based assay showing that sugars released by B. thetaiotao-
micron are utilized by E. rectale, allowing its colonies to grow larger. E. rectale cells
from an overnight culture were plated on tryptone agar with the indicated carbon sources.
Ten ul of an overnight culture of B. thetaiotaomicron were then spotted in the middle of
the plate (at the right edge of each panel). Note that colonies of E. rectale located closest to
B. thetaiotaomicron grow larger on dextran, a glucose polymer that E. rectale is unable to
degrade. This growth phenotype is due to E. rectale’s ability to acquire glucose monomers
released during the degradation of dextran and not to other growth factors produced by B.
thetaiotaomicron since the effect is not observed in tryptone medium alone (bottom panel),
or in medium with D-arabinose, a simple sugar that E. rectale cannot utilize. Boxed areas

in the upper panels are shown at higher magnification in the lower panels. Bars, 2 mm.

Figure S6. B. vulgatus adapts to the presence of B. thetaiotaomicron by upregulat-
ing its unique repertoire of polysaccharide degrading enzymes. (A) B. vulgatus and B.
thetaiotaomicron colonize germ-free NRMI mice to similar levels in mono- and bi-associ-
ation. Colony forming units (CFU) were measured in the cecum 14 d after gastric gavage
with 108 CFU of one or both bacterial species (n=4 mice/group, 2-3 replicates per mouse;
mean values + SEM are plotted). (B) Heat map showing three B. vulgatus loci containing
genes involved in xylan and xylose utilization that are significantly upregulated upon co-
colonization with B. thetaiotaomicron. Each column represents one GeneChip hybridized
to cecal contents from one mouse (n=4 per group). (C) A depiction of the predicted xylose-

utilization pathway encoded by the operon displayed in panel B. Red indicates significant
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upregulation, while violet indicates a level of upregulation that failed to meet the FDR

threshold.
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Supplemental Figures

Figure S1.
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Figure S3.

CAZy
Family
GH2 various
GH20 hexosaminidase
GH43 furanosidase
GH92 a-1-2-mannosidase
GH76 a-1-6-mannosidase
GH97 a-glucosidase
chitinase/
GH18 glucosaminidase 12 2 1 1
GH28 galacturonase 9 13 0 3
GH29 a-fucosidase 9 8 0 0
GH1 6-P-R-glucosidase 0 0 1 1
GH25 lysozyme 1 1 4 5
GH94 phosphorylase 0 0 3 1
PL9 pectate lyase 2 0 0 4
GHS8 oligoxylanase 0 0 1 0
GH13 |a-amylase 7 4 13 6
GH24 lysozyme 0 1 1 0
GH42 R-galactosidase 1 1 2 0
endo-1,4-
GH53 galactanase 1 0 2 0
GH77 amylomaltase 1 1 3 1
galacto-N-biose
GH112 |phosphorylase 0 0 1 0
GH10 [xylanase 0 1 0 0
GH15 |a-glycosidase 0 1 0 0
GH63 |a-glucosidase 0 2 0 0
Total GH| 255
Total PL| 17 7 7
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Figure S4.

A B

All genes
M Mono-association (4778)
M Co-colonization
10"
100 4 PULs
E 100
& 1004
g w0
(] 7
] 10
[
= 10°-
2
g- 105-
()
0 104-
E 3
% 10° 42 up
© 1021 9 down
101 E
100 Bt vs Bt+Er

B. theta E. rectale regulated

D

Bt

BT3787 NHL repeat-containing protein
BT3788 SusC homolog

BT3789 SusD homolog

BT3790 Hypothetical protein

BT3691 Concanavalin A-like lectin/glucanase
BT3792 GH73 putative o-1,6-mannanase

BT3774 GH38 a-mannosidase
BT3775 GT32 Glycosyltransferase
BT3776 GT32 Glycosyltransferase
BT3777 Hypothetical protein

BT3698 SusG, GH13 alpha amylase
BT3699 SusF, outer membrae lipoprotein
BT3700 SusE, outer membrae lipoprotein
BT3701 SusD, outer membrae lipoprotein
BT3702 SusC

BT3703 SusB, GH97 a-glucosidase
BT3704 SusA, GH13 a-amylase
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Figure S5.

Dextran

D-arabinose
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Figurs S6.

A

CFU/ml cecal contents

M Mono-association

M Co-colonization
1012 T

108 ]

1047

10° -

xylose
(extracellular)

BVU_0354 Vl,li’ermease/
- transporter

xylose
(intracellular)

BVU_0356 ¢ )5(y3Io15§ isomerase

xylulose

BVU 0357 Xylulose kinase
- J' 27117

xylulose-6-P

BVU 0358-9 transketolase
- 2211

fructose-6-P

glycolysis
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Bv_Bv+Bt

BVU_0036:Hypothetical protein
BVU_0037:SusD homolog
BVU_0038:SusC homolog
BVU_0039:GH43 R-xylosidase
BVU_0040:GH43 R-xylosidase
BVU_0041:GH10 B-xylanase

BVU_1983:GH43 xylosidase
BVU_1984:conserved hypothetical protein
BVU_1985:GH28 polygalacturonidase homolog

BVU_0354:Ribose permease
BVU_0355:Putative integral membrane protein
BVU_0356:Putative fucose-isomerase

B. theta B. vulgatus BVU_0357:glycerol/xylulose kinase
BVU_0358:transketolase, C-terminal subunit

BVU_0359:transketolase, N-terminal subunit

D

BVU_0359 BVU_0358 BVU_0357

transketolase, transketolase Glycerol/xylulose kinase
C-terminal subunit N-terminal subunit

BVU_0356 BVU_0355 BVU_0354
hypothetical protein hypothetical protein Ribose
with fucose isomerase permease
domain



Supplemental Table Legends

Table S1. Summary of results of genome finishing for E. rectale strain ATCC 33656 and E.

eligens strain ATCC 27750.

Table S2. Annotated finished genome of E. rectale strain ATCC 33656. Mean Expr. Fields
give average expression value for each GeneChip condition: T-G = log-phase tryptone-
glucose broth; Mono = cecum, monoassociation; BtEr = cecum, co-colonization with B.

thetaiotaomicron. Abs = “absent” signal; N/A = feature not included in analysis.
Table S3. Annotated finished genome of E. eligens strain ATCC 27750.

Table S4. CAZy categorization of glycoside hydrolase and polysaccharide lysase genes in the
sequenced human gut-derived bacterial species surveyed. Highlighted categories have increased

numbers of genes in gut Firmicutes compared to gut Bacteroidetes.

Table S5. Growth of B. thetaiotaomicron, B. vulgatus and E. rectale in defined medium with
the indicated carbon sources. Differences between B. thetaiotaomicron and the other two species

are highlighted.

Table S6. Custom GeneChip containing genes from six common human gut microbes, rep-
resenting two bacterial phyla and two domains of life. Genome sequences are reported here or
in earlier reports from our group [13-15]. Numbers in parentheses denote remaining GeneChip

features after application of a cross-hybridization probe mask (for details, see Methods).

Table S7. GeneChip probesets yielding =60% Present calls when hybridized to cDNAs pre-
pared from the cecal contents of mice colonized with the indicated species. These probesets

were excluded from all analyses involving that species.

Table S8. List of B. thetaiotaomicron genes whose expression in the ceca of gnotobiotic mice
was significantly affected by E. rectale. Significance measured by CyberT; Fold=fold difference
in expression in co-colonization relative to monoassociation; PPDE(p)=posterior probability of dif-

ferential expression for an individual gene; PPDE(<p)= global posterior probability of differential
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expression for the set of all genes with PPDE=PPDE(p). PPDE(<p) = 0.95 was used as a cutoff.
Detection by MS/MS lists the number of technical replicates (out of 3) in which each protein was

detected.

Table S9. List of E. rectale genes whose expression in the ceca of gnotobiotic mice was significant-
ly affected by the presence of B. thetaiotaomicron. Significance measured by CyberT; Fold=fold
difference in expression in co-colonization relative to monoassociation; PPDE(p)=posterior prob-
ability of differential expression for an individual gene; PPDE(<p)= global posterior probability
of differential expression for the set of all genes with PPDE=PPDE(p). PPDE(<p) = 0.95 and +1.5
minimum fold change were used as cutoffs. Detection by MS/MS lists the number of technical

replicates (out of 3) in which each protein was detected.

Table S10. Changes in E. rectale gene expression when comparing E. rectale’s transcription
during logarithmic phase growth on tryptone-glucose (T-G) medium with its transcriptome
during mono-colonization of the cecum. Significance measured by CyberT; Fold=fold difference
in expression in co-colonization relative to monoassociation; PPDE(p)=posterior probability of dif-
ferential expression for an individual gene; PPDE(<p)= global posterior probability of differential

expression for the set of all genes with PPDE=PPDE(p). PPDE(<p) = 0.99 was used as a cutoff.

Table S11. Proteomic analysis of the cecal contents of gnotobiotic mice.
Spectral counts corresponding to every identfied protein are listed for each of 3 replicates per

sample from 2 independent experiments are shown.

Table S12. Summary of the validation of hypothetical and previously unannotated proteins in

E. rectale and B. thetaiotaomicron using tandem mass spectrometry.

Legend
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212 individual MS/MS runs, three from each of two monoassociated and two B. thetaiotaomicron/E.

rectale co-colonnized mice comprising two independent biological experiments, searched using

SEQUEST (see Methods for details).

®Assignments to a COG or KEGG orthology group or Interpro number (for details, see Methods).

°Additional genes were identified using GeneMarkS [3] and added to the search database.

Table S13. List of B. thetaiotaomicron genes whose expression in the ceca of gnotobiotic mice
was significantly affected by the presence of B. vulgatus. Significance measured by CyberT;
Fold=fold difference in expression in co-colonization relative to monoassociation; p-value=p-value
of Baysian t-test; corrected p-value=p-value with Benjamini-Hochberg multiple hypothesis testing

correction applied [31].

Table S14. List of B. vulgatus genes whose expression in the ceca of gnotobiotic mice was
significantly affected by the presence of B. thetaiotaomicron. Significance measured by Cy-
berT; Fold=fold difference in expression in co-colonization relative to monoassociation;
PPDE(p)=posterior probability of differential expression for an individual gene; PPDE(<p)= global

posterior probability of differential expression for the set of all genes with PPDE=PPDE(p).
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Supplemental Tables

Table S1.
E. rectale E. eligens
Genome size (bp) 3,449,685 2,831,389
Plasmids 0 2 (626 kb, 60 kb)
Predicted proteins 3,627 2,766
tRNAs 57 47
rRNAs 15 15
Other features 20 17
ABI 3730xI Plasmid reads | 120,005 reads (9.6x)| 37,846 reads (4.0x)
454 GS20 Pyrosequencer 120 Mb (40x) 114 Mb (40x)
Finishing reactions 204 104
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Table S2.

Please access provided CD for this information.
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Table S3.

Please access provided CD for this information.
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Table S4.
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Table S5.
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Table S6

Species| B. theta |B. vulgatus| . P . | E. rectale| E. eligens | M. smithii
distasonis
Genes| 5059 4557 4140 3699 2852 1838
Proteins| 4973 4445 4057 3627 2773 1796
. 54961 36943
Probe pairs (53876) 57313 52355 (32794) 25934 25425
4998 2644
Probe sets (4924) 9400 8441 (2382) 1860 3445
Genes| 4927 2600
covered| (4922) 4303 4008 (2367) 1786 1815
Proteins| 4900 2557
covered| (4896) 4303 4008 (2348) 1773 1782
Intergenic) 8508 7198 0 0 4931
probes
% of proteins| 99% o o 71% o o
covered| (98%) 7% 99% (65%) 64% 99%
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Table S7.

B. theta probe sets cross-
hybridizing with B.

B. vulgatus probe sets
cross-hybridizing with B.

B. theta probe sets cross-
hybridizing with E. rectale

E. rectale probe sets cross-
hybridizing with B. theta

160

vulgatus cDNA theta cDNA cDNA cDNA

BT0174_at Bv_tRNA21_x_at BT0101_at Er-060123-0150_at
BT0216_at Bv_tRNA22_x_at BT0133_at Er-060123-0898_at
BT0332_at Bv_tRNA31_x_at BT0136_at Er-060123-0918_at
BT0351_at Bv_tRNA46_x_at BT0154_at Er-060123-0953_at
BT0353_at Bv_tRNA70_x_at BT0317_at Er-060123-1056_at
BT0413_at Bv_tRNA73_x_at BT0332_at Er-060123-1145_at
BT0422_at Bv_tRNA74_x_at BT0366_at Er-060123-1250_at
BT0433_at Bv_tRNA84_x_at BT0535_at Er-060123-1311_at
BT0623_at Bv0006c_at BT0733_at Er-060123-1330_at
BT0701_at Bv0046c_at BT0753_at Er-060123-1481_at
BT0703_at Bv0100_at BT0897_at Er-060123-1503_at
BT0756_at Bv0205c_at BT0968_at Er-060123-1748_at
BT0790_at Bv0230c_at BT1003_at Er-060123-2049_at
BT0804_at Bv0326_at BT1012_at Er-060123-2292_at
BT0827_at Bv0584c_at BT1095_at Er-060123-2382_at
BT1088_at Bv0602c_at BT1105_s_at Er-060123-2406_at
BT1103_s_at Bv0797c_s_at BT1107_s_at Er-060123-2446_at
BT1104_s_at Bv0903_at BT1449_at Er-060123-2496_at
BT1105_s_at Bv0923c_at BT1533_at Er-060123-tRNA12_x_at
BT1107_s_at Bv1199_at BT1607_at Er-060123-tRNA17_x_at
BT1108_s_at Bv1322_at BT1683_at Er-060123-tRNA50_at
BT1109_s_at Bv1361c_at BT16S_rRNA1_copy1_a_at

BT1110_s_at Bv1547c_at BT16S_rRNA1_copy2_a_at

BT1337_at Bv1567c_at BT16S_rRNA1_copy3_a_at

BT1470_at Bv1615c_at BT16S_rRNA1_copy4_a_at

BT1523_at Bv1621_at BT1734_at

BT1550_at Bv1625_at BT1814_at

BT1627_at Bv1630_at BT1851_at

BT1691_at Bv1652c_at BT2053_at

BT16S_rRNA1_copy1_a_at |Bv1872c_at BT2099_at

BT16S_rRNA1_copy2_a_at |Bv1978_at BT2271_at

BT16S_rRNA1_copy3_a_at |Bv2075_at BT23S_rRNA1_a_at

BT16S_rRNA1_copy4_a_at |Bv2090_at BT2448_at

BT1766_at Bv2157_at BT2505_at

BT1833_at Bv2214_at BT2524_at

BT1882_at Bv2256¢_at BT2862_at

BT1966_at Bv2325c_s_at BT3189_at

BT2002_at Bv2384c_at BT3254_at

BT2026_at Bv23s_RNA1_a_at BT3411_at

BT2157_at Bv2428c_at BT3552_at

BT2163_at Bv2548_at BT3644_at

BT2191_at Bv2573c_s_at BT3688_at

BT2238_at Bv2841_at BT3800_at

BT23S_rRNA1_a_at Bv2891_at BT3856_at

BT2532_at Bv3373_at BT3935_at

BT2553_at Bv3402_at BT3950_at

BT2712_at Bv3409_at BT4047_at

BT2737_at Bv3434c_s_at BT4064_at

BT3020_at Bv3468c_at BT4106_at

BT3055_at Bv3472c_at BT4162_at

BT3116_at Bv3473c_at BT4289_at




B. theta probe sets cross-
hybridizing with B.

B. vulgatus probe sets
cross-hybridizing with B.

B. theta probe sets cross- E. rectale probe sets cross

hybridizing with E. rectale

hybridizing with B. theta

vulgatus cDNA theta cDNA cDNA cDNA
BT3254_at Bv3526_at BT4522_at
BT3272_at Bv3622c_at BT4649_at
BT3299_at Bv3891_at BT4696_at
BT3644_at Bv3957c_at BT4736_at
BT3759_at Bv-GM2025_x_at BT4772_at
BT3871_at Bv-GM2278_at BT-GM1094_at
BT3991_at Bv-GM3714_s_at BT-GM2964_at
BT4028_at Bv-GM4208_x_at BT-tRNA45_x_at
BT4059_at BT-tRNA64_x_at
BT4121_at

BT4195_at

BT4404_at

BT4461_at

BT4496_at

BT4555_at

BT4557_at

BT4666_at

BT-GM1625_at
BT-GM2011_at
BT-GM2011_x_at
BT-GM2028_at
BT-tRNA1_x_at
BT-tRNA41_s_at
BT-tRNA45_x_at
BT-tRNA5_at
BT-tRNA5_x_at
BT-tRNA55_x_at
BT-tRNA58_x_at
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Table S8.
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Table S10.

Please access provided CD for this information.
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Table S11.

Please access provided CD for this information.
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Table S12.

] Observed
Predicted b
roteins y
E. rectale P MS/MS?
Total 3627 680
Without annotation® 1111 25
B. thetaiotaomicron
Total 4778 1687
Original Without
d o 1527 293
annotation
.Addl 180 10
3 predictions
Additional Add'l w/o
173 7

annotation®
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Chapter 4

As mentioned in Chapter 1, the effects of the gut microbiota on murine adiposity are linked
with changes in host gene expression, including decreased expression of the circulating
inhibitor of lipoprotein lipase, Fiaf [1, 2]. However, the signal(s) or metabolite(s) respon-
sible for these changes remain unknown. The most direct contributions of the microbiota
to energy harvest are the short chain fatty acids (SCFAs) it produces. Studies of germ-free
mice colonized with B. thetaiotaomicron with and without the methanogen and hydrogen-
consumer Methanobrevibacter smithii show a correlation between increased adiposity and
the amount of SCFAs produced [3]. This is only one of many changes in B. thetaiotaomi-
cron’s metabolism induced by the presence of M. smithii, however, and more generally,

methanogen levels have not been correlated with obesity in humans.

The balance between Bacteroidetes and Firmicutes in the gut has been linked with
obesity in mice and humans in both genetic and dietary models, as discussed in the Intro-
duction. Transfer of a gut microbiota from obese donors to germ-free mouse recipients
produces a larger increase in adiposity than the equivalent transfer from lean donors [4,
5]. The simplified, two-component communities characterized in Chapter 3 provide an
opportunity to test whether an increase in the proportion of Firmicutes in a simplified com-
munity might likewise produce an increase in obesity. A simplified community would also
provide a more experimentally tractable model to assess specific bacterial contributions to

host adiposity.

Host adiposity in simplified microbial communities

Iobserved increased adiposity in mice co-colonized with E. rectale and B. thetaiotao-
micron compared to mice colonized with either species alone or to germ-free controls in

two of three experiments (Figure 1). The inconsistency between the three experiments
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was not due to measurable differences in feed efficiency (weight gain per food consumed);
however, this parameter is difficult to measure over the short time frame of the experiments
described (data not shown). The observed increases in adiposity were also smaller than
those seen after transplantation of an intact cecal microbiota from conventionally-raised

lean donors.

While increased power (repetition) might show conclusively that the addition of
E. rectale to B. thetaiotaomicron affects adiposity, I believe that it will be more useful to
carefully and incrementally increase the complexity of the community to achieve a more
consistent phenotype. As mentioned in Chapter 3, inoculating B. thetaiotaomicron-colo-
nized mice with the methanogenic archaeon Methanobrevibacter smithii triggered a 100-
fold increase in the colonization level of B. thetaiotaomicron and 19% increase in mouse
adiposity. This was attributed to increased efficiency of fermentation in the presence of
M. smithii due to its consumption of hydrogen, since cecal and serum acetate levels and
cecal formate levels also increased significantly. Rather than consuming hydrogen, E. rec-
tale produces large amounts [6], which explains, at least in part, why B. thetaiotaomicron
does not show a similar syntrophy with E. rectale. An alternative hydrogen-consuming
pathway is the Wood-Ljungdahl pathway, or acetogenesis, which produces acetate from
carbon dioxide and hydrogen or formate. Since acetate is efficiently absorbed by the gut
epithelium and metabolized by liver, muscle and fat cells, introduction of this pathway into
the gut microbial community may result in increased energy harvest, and thus, increased

host adiposity.

Two acetogenic bacteria have been sequenced thus far as part of the Human Gut
Microbiome Initiative (HGMI). One, Bryantella formatexigens, utilizes formate but not
hydrogen, while Ruminococcus hydrogenotrophicus uses primarily hydrogen in the pro-
duction of acetate. While preliminary results indicate no dramatic difference in adiposity

between B. thetaiotaomicron-colonized mice and those co-colonized with B. thetaiotaomi-
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cron and either acetogen (F. Rey and J. Gordon, unpublished observations), B. thetaiotao-

micron does not produce levels of hydrogen that are as high as E. rectale in vitro [6, 7].

As discussed in Chapter 3, E. rectale consumes acetate during its production of
butyrate. Therefore, the combination of a hydrogen-consuming acetogen such as R. hy-
drogenotrophicus and an acetate-consuming hydrogen producer such as E. rectale in a
two-component simplified microbiota may provide a syntrophic relationship even more
beneficial to host energy harvest than the methanogenic archaeon and B. thetaiotaomicron.
Such an idea has precedence in efforts to improve ruminant feed efficiency through inhi-
bition of methanogenesis [8]. The addition of B. thetaiotaomicron to this two-component
community may create a microbiota that has an even larger increase in its ability to pro-
mote energy harvest, since as described in Chapter 3, E. rectale grows more rapidly in the

presence of B. thetaiotaomicron.

Hydrogen and carbon dioxide are not the only fermentative byproducts whose en-
ergy is lost to the host in these simplified models of the human gut microbiota. Lactate is
produced in large amounts by E. rectale and by B. thetaiotaomicron in vitro, and is pres-
ent in the ceca of E. rectale and B. theta mono-associated as well as co-colonized mice (1
pumol/g dry weight cecal contents in all three conditions; see [3] for methods). Its level is,
on average, higher than that found for butyrate in the ceca of gnotobiotic mice consuming
the polysaccharide-rich diet used in the studies described in Chapter 3 (0.35 ygmol butyrate
per gram wet weight in both E. rectale-colonized groups; see Chapter 3). Lactate is not as
efficiently absorbed as butyrate [9, 10], but is only detected at low levels in conventional
mice. This is thought to be because of the presence of bacteria that reduce it to butyrate
[11, 12]. The effect of this conversion may be three-fold: firstly, replacing the supply of
one poorly absorbed nutrient for a preferred one may increase the efficiency of host energy
harvest. Additionally, butyrate induces expression of intestinal SCFA transporters [13].
Finally, butyrate provides more energy to the host than shorter, more oxidized substrates

such as lactate.
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One lactate-reducing organism, Anaerostipes caccae, has been sequenced as part of
the HGMI, and another, related to E. halii, is slated for sequencing. Comparing the effect
on host energy balance of simplified gut communities both with and without acetogens and
lactate reducers will enable further tests of the hypothesis that SCFAs are a major mecha-
nism by which the microbiota contributes to host adiposity. Bacterial SCFA prodution and
host absorption can be monitored by biochemical methods. In addition, the known genome
sequences of all of these organisms would permit concomitant transcriptional studies to
assess the extent to which acetogenesis and lactate reduction contribute to the metabolism

of the bacterial community in vivo.

Microbial-dependent increases in feed efficiency

In examining the role of the microbiota in energy harvest from these simplified
communities, it will be critical to manipulate and define the dietary polysaccharides that
are resistant to mouse-derived glycoside hydrolases and accessible to the bacteria. The
diets used in the studies described in the Chapter 3 are primarily composed of wheat, corn
and soy; their precise polysaccharide content has not been well characterized either before
or after sterilization prior to consumption by germ-free mice. It will be helpful to use bet-
ter-characterized purified diets, composed of components that the bacteria in the gut micro-
biota can metabolize. A starting point for the design of such diets would be the simplified
diets used in the study of diet-induced obesity discussed in the Introduction [4] (Table 1).
Because the cellulose included in these diets is not accessible to the simplified community,
the amount of microbially-accessible polysaccharides can be increased by replacing cel-
lulose with other, more readily fermented polysaccharides. For example, resistant starches,
inulin and pectins are common food additives with known structures that are not degraded
in the proximal intestine [14] and are fermented by the bacteria studied here (see Chapter
3). Systematically varying the amount of these substrates that is added to purified diets will

allow more decisive tests of the relationship between microbial and host energy harvest
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and adiposity. Concurrent monitoring of bacterial and host SCFA metabolism both tran-
scriptionally and biochemically, in a manner similar to that described in Chapter 3, would

permit more detailed modeling of the factors that drive that relationship.

Developing a more defined dietary platform for assessment of bacterial contribu-
tions to adiposity faces several hurdles, but the first is that such a diet must be suitable for
coexistence of the members of the simplified microbiota in mice. With this in mind, I have
conducted a proof of concept pilot study to assess the feasibility of this approach. Germ-
free male NMRI mice co-colonized with B. thetaiotaomicron and E. rectale were fed one
of three diets (n=5 mice/treatment group): either a standard, 18% protein irradiated diet
consisting principally of wheat, corn and soy, as in Chapter 3 (3.4 kcal/g), or two puri-
fied formulations, a low fat and a “Western” diet, consisting of corn starch, maltodextrin,
sucrose, shortening and beef tallow that differ primarily in their caloric density and fat
content (Table 1). Mice consumed significantly less of either purified diet than the standard
chow, and significantly less of the high fat Western diet than the low fat diet (Figure 2A).
Fecal levels of each bacterium were monitored 4 weeks after co-colonization, using the
same qPCR assay developed for the studies described in Chapter 3. The results revealed
that all three of these diets support the coexistence of both bacterial strains throughout the
course of the experiment (Figure 2B). The two purified diets, however, produce a higher
ratio of B. thetaiotoaomicron to E. rectale. These diets probably provide less accessible
polysaccharide to the distal gut community, since starch is largely absorbed in the proximal
intestine and neither bacterium can degrade cellulose. Thus, B. thetaiotaomicron’s ability

to ferment host-derived glycans likely favors it.

Differences were also observed in fat pad weights, with increased adiposity occur-
ring in both purified diets (Figure 2C). The similarity in adiposity between mice fed the
two purified diets is surprising, since they differ both in caloric density (Table 1) and in
their ability to produce diet-induced obesity [4]. This similarity suggests that the increased

adiposity produced by the purified diets may be due to increased microbial energy harvest
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compared to the standard chow. This possibility can be verified by cecal and serum SCFA
measurements as in Chapter 3. Correlating biochemical measurements of SCFA metabo-
lism with bacterial and host transcription will help identify bacterial pathways associated
with increased energy harvest. In addition, careful and incremental manipulation of the
amount of fermentable polysaccharide in the diet and/or the complexity of the community,
as described above, would enable a dissection of the effects of differences in SCFA produc-

tion and community composition on host energy balance.

Microbial affects on the host: beyond energy balance

A number of bacterial metabolites are thought to have profound effects on colonic
and generalized host health. Prominent among these is butyrate. To date, studies that ex-
amine the effects of butyrate on the host have been conducted using several approaches:
(i) in vitro examinations of colonic cell lines; (ii) in vivo administration of probiotic strains
(i.e., live bacteria that produce the proposed beneficial metabolite, e.g., butyrate); (iii) in
vivo administration of prebiotics, i.e., polysaccharides known to stimulate the growth of a
particular butyrate-producing class of bacteria in a microbial community whose complete
composition is unknown; (iv) direct supplementation. For example, in vivo models have
included supplementation of drinking water with butyrate or infusion of butyrate via injec-
tion or enema: unfortunately, such studies preclude studying butyrate utilization long-term
and at physiological levels. Alternatively, some workers have added resistant starches or
inulin, which stimulate butyrate production by a ‘normal’ microbiota. It is impossible from
such experimental designs to determine whether any changes seen in the host or microbial
community reflect direct or indirect effects. However, as described in the Introduction,
these different techniques result in contradictory phenotypes. Resolving the contradictions

requires a more physiological and more easily manipulated model of butyrate production.

The construction of simplified microbial communities, composed of sequenced

members of the human gut microbiota in gnotobiotic mice, provides a means to conduct
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more direct tests of the effect of this intriguing bacterial metabolite, as well as others. The
phylogeny of butyrate production suggests that it has evolved (or been lost) many times
over the evolution of the Firmicutes (see Introduction Figure 2 and [15, 16]). In the setting
of gnotobiotic mice, this presents the advantage that phenotypically and phylogenetically
similar bacteria can be studied that differ in few known ways other than their production
of butyrate. For instance, the R. obeum-related strains SR1/1 and SR1/5 [17] are 99%
identical to each other based on their 16S rRNA gene sequences, but only the SR1/1 strain
produces butyrate. Similarly, Clostridium nexile and C. sp. A2-232 are 98% identical in
their 16S rRNA sequence, but only sp. 2-232 produces butyrate [17]. Both members of the
latter pair are part of the HGMI. Identifying matched strains such as SR1/1 and SR1/5 for
targeted whole genome sequencing will facilitate more careful study of the evolution of
butyrate production as well as its effect on the host. An experimental paradigm substitut-
ing such matched strains for each other in gnotobiotic mice harboring suitably constructed
simplified models of the human gut microbiota (e.g., adding them alone, or together with
B. thetaiotaomicron and/or R. hydrogenotrophicus), combined with careful transcriptional,
biochemical, calorimetric and proteomic monitoring of both host and microbe, should en-

able dissection of the effects of butyrate from other effects of these organisms on the host.

Butyrate production is not the only example of a trait with highly variable repre-
sentation within the Firmicutes; several other phenotypes of known importance to host
physiology show a similarly ‘scattered phylogeny’. Among these is the Wood-Ljungdahl
pathway of acetogenesis [18]. A similar approach can therefore be used to examine the ef-

fect of acetogenesis upon the microbial community and its host.
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Figure Legends

Figure 1. Fat pad to body weight ratios for three independent colonization experi-
ments show a trend toward increased adiposity with co-colonization in two out of
three experiments. Each experiment involved 14 d colonizations of 6-10 week old male
germ-free NMRI mice as described in Chapter 3; n=4-5 mice per group per experiment.

Error bars are + s.e.m.

Figure 2. The impact of purified diets on membership in a simplified model human
gut microbiota. (A) Chow consumption varies proportionally to caloric density: polysac-
charide-rich (3.4 kcal/g), low-fat (3.7 kcal/g, and western (4.7 kcal/g). Both purified diets
showed significantly less chow consumption over the course of the experiment (p<0.001).
(B) The ratio of genome equivalents of B. theta to E. rectale in fecal pellets is higher in
both purified diets, regardless of caloric density or fat content (see Table 1). Fecal pellets
from B. thetaiotaomicron and E. rectale co-colonized mice were assayed for colonization
levels after 6 weeks on the indicated diet as described in Chapter 3. (C) Fat pad weights
eight weeks post-colonization on the purified diets, both low fat and western, compared
with the polysaccharide-rich diet. *: p<0.05, ** p<0.01, *** p< 0.001 using a heterosce-

dastic t-test; error bars are + standard deviation.
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Figures

Figure 1.
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Figure 2.
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Table 1.

Composition of a proposed basic diet
for examination of microbial community

contributions to obesity
Ingredient =~ lowfat Western
Casein 200 236
DL -Methionine 3 3.54
_Sucrose 18299 18262
Corn Starch 340 160
Maltodextrin 120 120
_Shortening (Primex) 25 100
Beef Tallow 25 100
Soybean Qil 5 0
Mineral Mix 35 41.3
CaHPO4 4 472
Vitamin Mix 10 11.8
_Cellulose' 50 40
_Calories (kcal/q) 3.7 45

' Substituting cellulose for polysaccharides such as
pectins, resistant starch and inulin that can be utilized
by a gnotobiotic microbial community is suggested in
the text.

194



APPENDIX A

Peter J. Turnbaugh, Ruth E. Ley, Michael A. Mahowald, Vincent Magrini, Elaine R. Mardis

and Jeffrey I. Gordon
An obesity-associated gut microbiome with increased capacity for energy harvest

Nature. 2006 Dec 21;444(7122):1027-31.

195



Vol 44421/28 December 2006 |doi:10.1038/nature05414 nature

ARTICLES

An obesity-associated gut microbiome
with increased capacity for energy harvest

Peter J. Turnbaugh®, Ruth E. Ley', Michael A. Mahowald', Vincent Magrini?, Elaine R. Mardis"* & Jeffrey I. Gordon'

The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance.
Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and
lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant
bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical
analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese
microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of
germ-free mice with an ‘obese microbiota’ results in a significantly greater increase in total body fat than colonization with a
‘lean microbiota’. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of

obesity.

The human ‘metagenome’ is a composite of Homo sapiens genes and
genes present in the genomes of the trillions of microbes that colonize
our adult bodies. The latter genes are thought to outnumber the
former by several orders of magnitude'. ‘Our’ microbial genomes
(the microbiome) encode metabolic capacities that we have not
had to evolve wholly on our own>’, but remain largely unexplored.
These include degradation of otherwise indigestible components of
our diet*, and therefore may have an impact on our energy balance.

Colonization of adult germ-free mice with a distal gut microbial
community harvested from conventionally raised mice produces a
dramatic increase in body fat within 10-14 days, despite an associated
decrease in food consumption®. This change involves several linked
mechanisms: microbial fermentation of dietary polysaccharides that
cannot be digested by the host; subsequent intestinal absorption of
monosaccharides and short-chain fatty acids; their conversion to
more complex lipids in the liver; and microbial regulation of host
genes that promote deposition of the lipids in adipocytes®. These
findings have led us to propose that the microbiota of obese indivi-
duals may be more efficient at extracting energy from a given diet
than the microbiota of lean individuals™®.

In a previous study, we performed a comparative 16S-rRNA-gene-
sequence-based survey of the distal gut microbiota of adult C57BL/6]
mice homozygous for a mutation in the leptin gene (Lep"b) that
produces obesity, as well as the microbiota of their lean (0b/+ and
+/+) littermates®. Members of two of the 70 known divisions of
Bacteria”®, the Bacteroidetes and the Firmicutes, consisted of more
than 90% of all phylogenetic types in both groups of mice, just as they
do in humans®*'°. However, the relative abundance of the Bacter-
oidetes in ob/ob mice was lower by 50%, whereas the Firmicutes were
higher by a corresponding degree®. These differences were division-
wide, and not attributable to differences in food consumption (a
runted ob/ob mouse weighed less than his ob/ob littermates owing
to reduced chow consumption, but still exhibited a markedly greater
per cent body fat and ratio of Firmicutes to Bacteroidetes)®.

We have observed analogous differences in the distal gut micro-
biota of obese versus lean humans; the relative abundance of
Bacteroidetes increases as obese individuals lose weight on either a
fat- or a carbohydrate-restricted low-calorie diet. Moreover, the

increase in Bacteroidetes was significantly correlated to weight loss
but not to total caloric intake’.

To determine if microbial community gene content correlates
with, and is a potential contributing factor to obesity, we character-
ized the distal gut microbiomes of ob/ob, ob/+, and +/+ littermates
by random shotgun sequencing of their caecal microbial DNA. Mice
were used for these comparative metagenomics studies to eliminate
many of the confounding variables (environment, diet and genotype)
that would make such a proof of principle experiment more difficult
to perform and interpret in humans. The caecum was chosen as the
gut habitat for sampling because it is an anatomically distinct struc-
ture, located between the distal small intestine and colon, that is
colonized with sufficient quantities of a readily harvested microbiota
for metagenomic analysis. The predicted increased capacity for diet-
ary energy harvest by the ob/ob microbiome was subsequently vali-
dated using biochemical assays and by transplantation of lean and
obese caecal microbiotas into germ-free wild-type mouse recipients.
These transplantation experiments illustrate the power of marrying
metagenomics to gnotobiotics to discover how microbial communit-
ies encode traits that markedly affect host biology.

Shotgun sequencing of microbiomes

Bulk DNA was prepared from the caecal contents of two ob/ob and
+/+ littermate pairs. A lean ob/+ mouse from one of the litters was
also studied. All caecal microbial community DNA samples were
analysed using a 3730xI capillary sequencer (10,500 = 431 (s.e.m.)
unidirectional reads per data set; 752 = 13.8 (s.e.m.) nucleotides per
read; 39.5 Mb from all five plasmid libraries). Material from one of
the two obese and lean sibling pairs was also analysed using a highly
parallel 454 Life Sciences GS20 pyrosequencer'’: three runs for the
+/+ mouse (known as leanl), and two runs for its 0b/ob littermate
(obl) produced a total of 160 Mb of sequence (345,000 = 23,500
(s.e.m.) unidirectional reads per run; 93.1 = 1.56 (s.e.m.) nucleotides
per read) (Supplementary Tables 1-3). Both sequencing platforms
have unique advantages and limitations: capillary sequencing allows
more confident gene calling (Supplementary Fig. 1) but is affected by
cloning bias, whereas pyrosequencing can achieve higher sequence
coverage with no cloning bias, but produces shorter reads

'Center for Genome Sciences, and “Genome Sequencing Center, Washington University, St. Louis, Missouri 63108, USA.
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(Supplementary Table 2). The three pyrosequencer runs of the lean1
caecal microbiome (94.9 Mb) yielded 0.44 X coverage (on the basis of
PROmer sequence alignments'?) of the 3730xl-derived sequences
obtained from the same sample (8.23 Mb), whereas the two pyrose-
quencer runs of the microbiome of its 0b/ob littermate (ob1; 65.4 Mb)
produced 0.32X coverage of the corresponding 3730x] sequences
(8.19 Mb).

Taxonomic analysis of microbiomes

Environmental gene tags (EGTs) are defined as sequencer reads
assigned to the NCBI non-redundant, Clusters of Orthologous
Groups' (COG), or Kyoto Encyclopedia of Genes and Genomes'"
(KEGG) databases (Fig. la; Supplementary Fig. 2; Supplementary
Table 4). Averaging results from all data sets, 94% of the EGTs
assigned to the non-redundant database were bacterial, 3.6% were
eukaryotic (0.29% Mus musculus; 0.36% fungal), 1.5% were archaeal
(1.4% Euryarcheota; 0.07% Crenarcheota), and 0.61% were viral
(0.57% double stranded DNA viruses) (Supplementary Table 5).
The relative abundance of the eight bacterial divisions identified
from EGTs and 16S rRNA gene fragments was comparable to our
previous PCR-derived, 16S-rRNA-gene-sequence-based surveys of

a 4,500
4,000 6s20
3730 pyrosequencer
3,500 - :
capillary sequencer ob1 lean1
3,000 -

2,500 -
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these caecal samples, including the increased ratio of Firmicutes to
Bacteroidetes in obese versus lean littermates (Supplementary Fig. 2).
In addition, comparisons of the leanl and obl reads obtained with
the pyrosequencer against the finished genome of Bacteroides thetaio-
taomicron ATCC29148', and a deep draft genome assembly of
Eubacterium rectale ATCC33656 (50% of total contig bases present
in contigs =75.9 kb; http://gordonlab.wustl.edu/supplemental/
Turnbaugh/obob/) provided independent confirmation of the
greater relative abundance of Firmicutes in the ob/ob microbiota.
These organisms were selected for comparison because both are pro-
minently represented in the normal human distal gut microbiota'”
and species related to B. thetaiotaomicron (Bacteroidetes division)
and E.rectale (Firmicutes division) are members of the normal
mouse distal gut microbiota®. The ratio of sequences homologous
to the E. rectale versus B. thetaiotaomicron genome was 7.3 in the obl
caecal microbiome compared with 1.5 in the lean1 microbiome.
Intriguingly, there were more EGTs that matched Archaea
(Euryarchaeota and Crenarchaeota) in the caecal microbiome of
ob/ob mice compared with their lean ob/+ and +/+ littermates
(binomial test of pooled obese versus pooled lean capillary-sequen-
cing-derived microbiomes, P<0.001; Supplementary Table 5).

1,500

Orthologous groups
N
k=)
o
o
1

1,000 -

500 |

ob1

ob1
Versus versus versus

ob2

lean1 lean1 lean2

(3730) (GS20) (3730) COG category

[J] Translation*

[K] Transcription*

[L] Replication, recombination, repair*
[D] Cell cycle control, cell division

[V] Defense mechanisms

[T] Signal transduction*

[M] Cell wall/membrane/envelope biogenesis
[N] Cell motility *

[U] Intracellular trafficking and secretion
[O] Posttranslational modification

[R] General function prediction only *
[S] Function unknown

Depleted Enriched

<0.001<0.01 <0.05 0 >0.95>0.99>0.999

Figure 1| Comparison of data sets obtained from the caecal microbiomes
of obese and lean littermates. a, Number of observed orthologous groups
in each caecal microbiome. Black indicates the number of observed groups.
Grey indicates the number of predicted missed groups. b, Relative
abundance of a subset of COG categories (BLASTX, e-value < 10~°) in the
leanl (red) and ob1 (blue) caecal microbiome, characterized by capillary-
and pyro-sequencers (squares and triangles, respectively). ¢, d, A subset of
COG categories (c) and all KEGG pathways (d) consistently enriched or
depleted in the caecal microbiomes of both obese mice compared with their
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lean littermates. Red denotes enrichment and green indicates depletion on
the basis of a cumulative binomial test (brightness indicates the level of
significance). Black indicates pathways whose representation is not
significantly different. Asterisks indicate groups that were consistently
enriched or depleted between both sibling pairs using a more stringent EGT
assignment strategy (e-value < 10~®). For additional details see
Supplementary Discussion; Supplementary Figs 5 and 6, and Supplementary
Tables 6, 8 and 9.
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Methanogenic archaea increase the efficiency of bacterial fermenta-
tion by removing one of its end products, H,. Our recent studies of
gnotobiotic normal mice colonized with the principal methanogenic
archaeon in the human gut, Methanobrevibacter smithii, and/or
B. thetaiotaomicron revealed that co-colonization not only increases
the efficiency, but also changes the specificity of bacterial polysac-
charide fermentation, leading to a significant increase in adiposity
compared with mice colonized with either organism alone'.

Comparative metagenomic analysis

Using reciprocal TBLASTX comparisons, we found that the
Firmicutes-enriched microbiomes from ob/ob hosts clustered
together, as did lean microbiomes with low Firmicutes to Bacter-
oidetes ratios (Fig. 2a). Likewise, Principal Component Analysis of
EGT assignments to KEGG pathways revealed a correlation between
host genotype and the gene content of the microbiome (Fig. 2b).

Reads were then assigned to COGs and KOs (KEGG orthology
terms) by BLASTX comparisons against the STRING-extended
COG database'’, and the KEGG Genes database'* (version 37). We
tallied the number of EGTs assigned to each COG or KEGG category,
and used the cumulative binomial distribution’, and a bootstrap
analysis'®", to identify functional categories with statistically signifi-
cant differences in their representation in both sets of obese and lean
littermates. As noted above, capillary sequencing requires cloned
DNA fragments; the pyrosequencer does not, but produces relatively
short read lengths. These differences are a likely cause of the shift in
relative abundance of several COG categories obtained using the two
sequencing methods for the same sample (Fig. 1b). Nonetheless, com-
parisons of the caecal microbiomes of lean versus obese littermates
sequenced with either method revealed similar differences in their
functional profiles (Fig. 1c).

The ob/ob microbiome is enriched for EGTs encoding many
enzymes involved in the initial steps in breaking down otherwise
indigestible dietary polysaccharides, including KEGG pathways for
starch/sucrose metabolism, galactose metabolism and butanoate
metabolism (Fig. 1d; Supplementary Fig. 3 and Supplementary
Table 6). EGTs representing these enzymes were grouped according
to their functional classifications in the Carbohydrate Active
Enzymes (CAZy) database (http://afmb.cnrs-mrs.fr/CAZY/). The
ob/ob microbiome is enriched (P < 0.05) for eight glycoside hydrolase
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ob1 (ob/ob)
2 0 PCA1
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Figure 2 | Microbiomes cluster according to host genotype. a, Clustering of
caecal microbiomes of obese and lean sibling pairs based on reciprocal
TBLASTX comparisons. All possible reciprocal TBLASTX comparisons of
microbiomes (defined by capillary sequencing) were performed from both
lean and obese sibling pairs. A distance matrix was then created using the
cumulative bitscore for each comparison and the cumulative score for each
self-self comparison. Microbiomes were subsequently clustered using
NEIGHBOUR (PHYLIP version 3.64). b, Principal Component Analysis
(PCA) of KEGG pathway assignments. A matrix was constructed containing
the number of EGTs assigned to each KEGG pathway in each microbiome
(includes KEGG pathways with >0.6% relative abundance in at least two
microbiomes, and a standard deviation >0.3 across all microbiomes), PCA
was performed using Cluster3.0 (ref. 25), and the results graphed along the
first two components.
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families capable of degrading dietary polysaccharides including
starch (CAZy families 2, 4, 27, 31, 35, 36, 42 and 68, which contain
a-glucosidases, o-galactosidases and B-galactosidases). Finished gen-
ome sequences of prominent human gut Firmicutes have not been
reported. However, our analysis of the draft genome of E. rectale has
revealed 44 glycoside hydrolases, including a significant enrichment
for glycoside hydrolases involved in the degradation of dietary
starches (CAZy families 13 and 77, which contain a-amylases and
amylomaltases; P << 0.05 on the basis of a binomial test of E. rectale
versus the finished genomes of Bacteroidetes— Bacteroides thetaiotao-
micron ATCC29148, B. fragilis NCTC9343, B. vulgatus ATCC8482
and B. distasonis ATCC8503).

EGTs encoding proteins that import the products of these glyco-
side hydrolases (ABC transporters), metabolize them (for example,
o- and B-galactosidases KO7406/7 and KO1190, respectively), and
generate the major end products of fermentation, butyrate and
acetate (pyruvate formate-lyase, KO0656, and other enzymes in the
KEGG ‘Butanoate metabolism’ pathway; and formate-tetrahydro-
folate ligase, KO1938, the second enzyme in the homoacetogenesis
pathway for converting CO, to acetate) are also significantly enriched
in the ob/ob microbiome (binomial comparison of pyrosequencer-
derived obl and leanl data sets, P<<0.05) (Fig. 1d; Supplementary
Fig. 3 and Supplementary Table 6).

As predicted from our comparative metagenomic analyses, the ob/
ob caecum has an increased concentration of the major fermentation
end-products butyrate and acetate (Fig. 3a). This observation is also
consistent with the fact that many Firmicutes are butyrate produ-
cers'®2°. Moreover, bomb calorimetry revealed that ob/ob mice have
significantly less energy remaining in their faeces relative to their lean
littermates (Fig. 3b).

Microbiota transplantation

We performed microbiota transplantation experiments to test
directly the notion that the ob/ob microbiota has an increased capa-
city to harvest energy from the diet and to determine whether
increased adiposity is a transmissible trait. Adult germ-free C57BL/
6] mice were colonized (by gavage) with a microbiota harvested
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Figure 3 | Biochemical analysis and microbiota transplantation
experiments confirm that the ob/ob microbiome has an increased capacity
for dietary energy harvest. a, Gas-chromatography mass-spectrometry
quantification of short-chain fatty acids in the caeca of lean (n = 4) and
obese (n = 5) conventionally raised C57BL/6] mice. b, Bomb calorimetry of
the faecal gross energy content (kcalgfl) of lean (+/+, ob/+; n=19) and
obese (ob/ob; n = 13) conventionally raised C57BL/6] mice. ¢, Colonization
of germ-free wild-type C57BL/6] mice with a caecal microbiota harvested
from obese donors (ob/ob; n = 9 recipients) results in a significantly greater
percentage increase in total body fat than colonization with a microbiota
from lean donors (+/+; n = 10 recipients). Total body fat content was
measured before and after a two-week colonization, using dual-energy X-ray
absorptiometry. Mean values = s.e.m. are plotted. Asterisks indicate
significant differences (two-tailed Student’s ¢-test of all datapoints,

*P < 0.05, **P=0.01, **P <0.001).
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from the caecum of obese (0b/ob) orlean (+/+) donors (1 donor and
4-5 germ-free recipients per treatment group per experiment; two
independent experiments). 16S-rRNA-gene-sequence-based surveys
confirmed that the ob/ob donor microbiota had a greater relative
abundance of Firmicutes compared with the lean donor microbiota
(Supplementary Fig. 4 and Supplementary Table 7). Furthermore,
the ob/ob recipient microbiota had a significantly higher relative
abundance of Firmicutes compared with the lean recipient micro-
biota (P < 0.05, two-tailed Student’s t-test). UniFrac analysis® of 16S
rRNA gene sequences obtained from the recipients’ caecal microbio-
tas revealed that they cluster according to the input donor commun-
ity (Supplementary Fig. 4): that is, the initial colonizing community
structure did not exhibit marked changes by the end of the two-week
experiment. There was no statistically significant difference in (1)
chow consumption over the 14-day period (55.4 +=2.5g (ob/ob)
versus 54.0 * 1.2 ¢ (+/+); caloric density of chow, 3.7kcalg '),
(2) initial body fat (2.7 =0.2g for both groups as measured by
dual-energy X-ray absorptiometry), or (3) initial weight between
the recipients of lean and obese microbiotas. Strikingly, mice colo-
nized with an ob/ob microbiota exhibited a significantly greater per-
centage increase in body fat over two weeks than mice colonized with
a +/+ microbiota (Fig. 3¢; 47 * 8.3 versus 27 * 3.6 percentage
increase or 1.3 *=0.2 versus 0.86 *+0.1g fat (dual-energy X-ray
absorptiometry): at 9.3kcal g~ ! fat, this corresponds to a difference
of 4 kcal or 2% of total calories consumed).

Discussion

The primary cause of obesity in the 0b/ob mouse model is increased
food consumption due to leptin deficiency. We have used this model
to provide direct experimental evidence that at least one type of
obesity-associated gut microbiome has an increased capacity for
energy harvest from the diet. This finding provides support for the
more general concept that the gut microbiome should be considered
as a set of genetic factors that, together with host genotype and life-
style (energy intake and expenditure), contribute to the patho-
physiology of obesity. Yet to be answered are the questions of what
mechanisms are responsible for mediating the linkage between the
relative abundance of the Bacteroidetes to Firmicutes divisions and
adiposity in both mice and humans, and to what extent is this rela-
tionship self-perpetuating?

Energy balance is an equilibrium between the amount of energy
taken in as food and the amount expended during resting metabol-
ism, as well as the thermic effect of food, physical activity, and loss in
the faeces and urine. The alteration in efficiency of energy harvest
from the diet produced by changes in gut microbial ecology does
not have to be great to contribute to obesity, given that small changes
in energy balance, over the course of a year, can result in significant
changes in body weight*>. We are aware of only one report showing
that obese humans may have an increased capacity to absorb energy
from their diet: in this case, analysis of four lean and four obese
individuals given three different diets (high protein/high fat, ‘aver-
age’, and high carbohydrate) revealed that on average, the obese indi-
vidualslost less energy to stool compared with their lean counterparts.
However, the differences did not achieve statistical significance®.

Our study in mice demonstrates the feasibility and utility of apply-
ing comparative metagenomics to mouse models of human physio-
logic or pathophysiologic states in order to understand the complex
interplay between host genetics, microbial community gene content
and the biological properties of the resulting ‘superorganism’. As
such, it opens the door for comparable investigations of the interac-
tions between humans and their microbial communities, including
whether there is a core set of genes associated with the microbiomes
of obese versus lean individuals; whether these genes are transmitted
from mothers to their offspring; what genetic or behavioural traits of
the host can reshape the community**; how the microbiome changes
as body mass index changes within an individual; the degree to which
these changes correlate with energy harvest from their diets; and
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whether germ-free mice can be used as a bioassay to compare the
energy harvesting activities encoded in human gut microbiomes. Our
results indicate that if the gut microbiome of obese humans is com-
parable to that of obese mice, then it may be a biomarker, a mediator
and a new therapeutic target for people suffering from this increas-
ingly worldwide disease.

METHODS

DNA was isolated from the caeca of ob/ob, ob/+ and +/+ littermates using a
bead beater to mechanically disrupt cells, followed by phenol-chloroform
extraction. DNA was sequenced using 3730xl capillary- and GS20 pyro-sequen-
cers: in the case of the latter, DNA was purified further using the Qiaquick gel
extraction kit (Qiagen).

Individual reads in the resulting 199.8 Mb data set were directly compared
with each other and to reference sequenced gut microbial genomes using
MUMmer'?. Taxonomic assignments were made on the basis of BLASTX
searches of the non-redundant database (e-value <10 °) and alignment of
16S gene fragments. Reads were also assigned to EGTs (environmental gene tags)
by BLASTX searches against the non-redundant database, STRING-extended
COG", and KEGG" (v37) databases. Microbiomes from each animal were clus-
tered according to reciprocal TBLASTX comparisons and their EGT assignments
to KEGG pathways. Statistically enriched or depleted COG and KEGG groups
were identified using bootstrap'®'” and cumulative binomial® analyses. For the
binomial analysis, the probability of observing ‘n;” EGT assignments to a given
group in microbiome 1, given ‘N;” EGT assignments to all groups in microbiome
1, was calculated using the cumulative binomial distribution and an expected
probability equal to ‘n,/N,’ (the number of EGTs assigned to a given group in
microbiome 2 divided by the total number of EGTs assigned to all groups in
microbiome 2). Detailed descriptions of these methods and techniques for (1)
measuring short-chain fatty acids in caecal samples by gas-chromatography
mass-spectrometry, (2) bomb calorimetry of faecal samples, (3) transplanting
the caecal microbiota of C57BL/6] ob/ob or +/+ donors into 8-9-week-old
germ-free +/+ C57BL/6] recipients, (4) measuring the total body fat of trans-
plant recipients, before and after colonization, by dual-energy X-ray absorptio-
metry, and (5) performing 16S-rRNA-gene-sequence-based surveys of the input
(donor) and output (recipient) caecal microbiotas are provided in Supple-
mentary Information.
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Supplementary Discussion of data presented in Figure 1

Each pyrosequencer run of cecal DNA from leanl and obl littermates yielded
387+95 new groups (s.e.m.) (Fig. 1A). The observed relative abundance of COG
categories was markedly influenced by sequencing platform (Fig. 1B).

As expected, the Firmicutes-enriched, Bacteroidetes-depleted ob/ob microbiome
is depleted for genes involved in the biosynthesis of lipopolysaccharide (a major
component of the outer membrane of Gram-negative bacteria), and enriched for genes
involved in cell motility and sporulation (many Firmicutes are motile and form
endospores) (Fig. 1C and 1D; Supplementary Fig. 6).

EGT assignment notes (Fig. 1D): (i) ‘Type III secretion systems’ are represented
by EGTs involved in flagellar assembly (very few EGTs were assigned specifically to the
secretion apparatus); (i1) ‘Galactose metabolism’ includes glycoside hydrolases [alpha-
glucosidase (KO1187), beta-galactosidase (KO1190), and alpha-galactosidase
(KO7406/7)], and 6-phosphofructokinase (KO0850, catalyzes the rate limiting step in
glycolysis); (iii) ‘Glycerolipid metabolism” includes glycoside hydrolases [beta-
galactosidase (KO1190) and alpha-galactosidase (KO7406/7)] plus glycerol kinase
(KO0864, involved in degradation of triglycerides and phospholipids); (iv)
‘Glycosphingolipid metabolism’ also includes glycoside hydrolases [beta-galactosidase
(KO1190) and alpha-galactosidase (KO7406/7)]; (v) ‘Reductive carboxylate cycle’ and
‘Pyruvate/oxoglutarate oxidoreductases’ both include genes involved in the citrate cycle

[2-oxoglutarate ferrodoxin oxidoreductase (KOO0174/5) and succinate dehydrogenase
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(KO0238/39/40)], (vi) ‘C5-branched dibasic acid metabolism’ includes valine and
isoleucine biosynthesis from pyruvate [i.e. acetolactate synthase (KO1651/2)**"].
Metabolic capacity is defined based on microbial community gene content.

Transcriptomic, proteomic and/or metabolomic data are necessary to confirm predicted

activites of genes and their products (e.g. see Fig. 3).
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Materials and Methods

Animals — All experiments involving mice were performed using protocols
approved by the Washington University Animal Studies Committee. Once C57BL/6J
ob/ob, ob/+, and +/+ littermates were weaned, they were housed individually in
microisolator cages where they were maintained in a specified pathogen-free state, under
a 12-h light cycle, and fed a standard polysaccharide-rich chow diet (PicoLab, Purina) ad
libitum. Germ-free and colonized animals were maintained in gnotobiotic isolators®®,
under a strict 12-h light cycle and fed an autoclaved chow diet (B&K Universal, East
Yorkshire, U.K.) ad libitum. Fecal samples for bomb calorimetry were collected from
mice at 8 or 14 weeks of age, after which time animals were sacrificed.

Community DNA Preparation — The cecal contents used for community DNA
sequencing and gas chromatography-mass spectrometry (GC-MS) were obtained, at eight
weeks of age, from the same animals used for our previous PCR-based 16S rRNA survey
of the gut microbiota’: samples had been stored at -80°C (Supplementary Table 1). An
aliquot (~10mg) of each sample was suspended while frozen in a solution containing 500
uL of extraction buffer [200 mM Tris (pH 8.0), 200 mM NaCl, 20 mM EDTA], 210 uL
of 20% SDS, 500 uL of a mixture of of phenol:chloroform:isoamyl alcohol (25:24:1)],
and 500 uL of a slurry of 0.1-mm-diameter zirconia/silica beads (BioSpec Products,
Bartlesville, OK). Microbial cells were then lysed by mechanical disruption with a bead
beater (BioSpec Products) set on high for 2 min (23°C), followed by extraction with
phenol:chloroform:isoamyl alcohol, and precipitation with isopropanol. In order to

perform pyrosequencing, DNA was purified further using the Qiaquick gel extraction kit

(Qiagen).
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Shotgun sequencing and assembly of cecal microbiomes — DNA samples were
used to construct plasmid libraries for 3730x1 capillary-based sequencing.
Pyrosequencing was performed as previously described''. Briefly, samples were
nebulized to 200 nucleotide fragments, ligated to adaptors, fixed to beads, suspended in a
PCR reaction mixture-in-oil emulsion, amplified, and sequenced using a GS20
pyrosequencer (454 Life Sciences, Branford, CT). The Newbler de novo shotgun
sequence assembler (454 Life Sciences) was used to assemble sequences based on
flowgram signal space. This process includes overlap generation, contig layout, and
consensus generation. The resulting GS20 contigs were then broken into linked
sequences to generate pseudo paired-end reads, and aligned with 3730x1 reads using
PCAP”.

Sequences were aligned to reference genomes using the PROmer script in
MUMmer'? (version 3.18). Capillary sequencer reads from each microbiome, the finished
genome of the human gut-derived Bacteroides thetaiotaomicron type strain
ATCC29148', and a deep draft genome of the human gut-derived Eubacterium rectale
type strain ATCC33656 (http://gordonlab.wustl.edu/supplemental/Turnbaugh/obob/)
were used as a reference for the pyrosequencer datasets. Coverage was calculated by
dividing the sum of all alignment lengths by the length of the reference genome.

Whole genome sequencing and annotation — A draft assembly of Eubacterium
rectale ATCC33656 was generated from AB36731xl paired end-reads of inserts in whole
genome shotgun plasmid and fosmid libraries, as well as from reads produced by the
GS20 pyrosequencer. Sequences were assembled using Newbler and PCAP (see above)

and ORFs predicted with Glimmer3.01°° (maximum overlap of 100, minimum length of
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110 and a threshold of 30). Each predicted gene sequence was translated, and the
resulting protein sequence assigned to InterPro numbers using InterProScan’' (Release
12.0).

Database search parameters —- NCBI BLAST was used to query the non-
redundant database (NR), the STRING-extended COG database (179 microbial genomes,
version 6.3)", a database constructed from 334 genomes available through KEGG
(version 37)', and the Ribosomal Database Project database (RDP, version 9.33)*".
Reads with multiple COG/KO hits were counted once for each classification scheme. KO
hits were also categorized into CAZy families (http://afmb.cnrs-mrs.fr/CAZY/). KEGG
pathway maps are available on-line
(http://gordonlab.wustl.edu/supplemental/Turnbaugh/oboby/).

NR, COG, and KEGG comparisons were performed using NCBI BLASTX. RDP
comparisons were performed using NCBI BLASTN, and microbiomes were directly
compared using TBLASTX. A cutoff of e-value < 10” was used for EGT assignments
and sequence comparisons'® (corresponds to a p-value cutoff of
107"? against the NR and KEGG databases, and 10" against the COG database). Given
this cutoff, we would only expect three false EGT assignments in our combined analyses
due to random chance. We also re-analyzed the data using a more stringent cutoff>> (e-
value < 10°®).

Taxonomic assignments of shotgun 16S rRNA gene fragments — Shotgun
reads containing a 16S rRNA fragment were identified by BLASTX comparison of each
microbiome to the RDP database. 16S rRNA gene fragments were then aligned using the

NASTA multi-aligner’* with a minimum template length of 20 bases and a minimum
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percent identity of 75%. The resulting alignment was then imported into an ARB
neighbor-joining tree and hypervariable regions were masked using the lanemaskPH
filter’”. Direct BLAST taxonomic assignments were performed through BLASTX
comparisons of each microbiome and the NR database. Best-BLAST-hits with an e-value
<10~ were used to assign each read to a given species.

Estimating the total number of orthologous groups — The total estimated
number of COGs and NOGs (Non-supervised Orthologous Groups) in each sample was
calculated using the lower-limit of the Chaol 95% confidence interval in EstimateS
(Version 7.5, R. K. Colwell, http://purl.oclc.org/estimates), based on the number of EGTs
assigned to each orthologous group. The number of missed groups was calculated by
subtracting the estimated total (Chaol lower-limit) from the observed number of groups.

Direct comparisons of microbiome sequences — Microbiomes sequenced using
the 3730xI instrument were evaluated by reciprocal pairwise TBLASTX comparisons'®.
8,832 reads were used from each microbiome to limit artifacts that arise from different
sized datasets. Each possible pairwise comparison was made by using a BLAST database
constructed from each microbiome. Samples were clustered based on the cumulative
pairwise BLAST score. An estimate of distance was constructed using the D2
normalization and genome conservation approach previously used for genome
clustering®®. This method calculates a distance score based on the minimum cumulative
BLAST score (sum of all best-BLAST-hit scores) between two microbiomes and the
weighted average of both self-self comparisons (D2 = -In(min S,y,, Syyi/average). The
weighted average is calculated using average = squareroot(2) * Siy; * S,y2/ squareroot

(Slv12 + SMZ). The resulting distances were used to create a distance matrix. A tree was
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constructed using NEIGHBOR (PHYLIP version 3.64; kindly provided by J. Felsenstein,
Department of Genome Sciences, University of Washington, Seattle), and was viewed
using Treeview X°'.

Clustering of microbiomes based on predicted metabolic function —
Microbiomes were clustered based on the percent representation of EGTs assigned to
each COG, KEGG pathway, and phylotype (genome in NR) using Cluster3.0%°. Percent
representation was calculated as the number of EGTs assigned to a given group divided
by the number of EGTs assigned to all groups. Single linkage hiearchical clustering via
Pearson’s correlation was performed on each dataset, and the results were visualized by
using the Treeview Java applet™. Principal Component Analysis was also performed
based on the percent representation of EGTs assigned to KEGG pathways (Cluster3.0>),
and the data were graphed according to the first two coordinates.

Identification of statistically enriched and depleted metabolic groups — Two
methods were used to determine statistically enriched or depleted metabolic groups: the
cumulative binomial distribution’ and a bootstrap analysis'®'”. The cumulative binomial
distribution was used for pairwise comparisons of microbiome COG, KEGG, and
taxonomic assignments. The calculation uses the following inputs: number of successes
for microbiome 1 (number of EGTs assigned to a given group), number of trials for
microbiome 1 (total number of EGTs assigned to all groups), and the expected frequency
(number of successes/number of trials for microbiome 2). The probability of having less
than or equal to the number of observed EGTs in a given group was then calculated using
the cumulative binomial distribution. Depletion was defined as having a probability less

than 0.05, 0.01, or 0.001 assuming p equals the expected frequency and that the expected
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frequency is normally distributed. Enrichment was defined as having a probability of
greater than 0.95, 0.99, or 0.999 given the same assumptions. To minimize false
negatives, no corrections for multiple sampling were made. To limit false positives
resulting from low sampling, only groups with at least one hit in each microbiome were
evaluated.

Xipe'” (Rodriguez-Brito, version 0.2) was employed for bootstrap analyses of
KEGG pathway enrichment and depletion, using the following parameters: 10,000
samples, 10,000 repeats, and three confidence levels (95%, 99%, and 99.9%). Briefly, a
dataset composed of the number of EGTs assigned to each KEGG pathway was sampled
with replacement from each microbiome 10,000 times. The difference between the
number of EGTs per pathway in the first microbiome, and the number of EGTs per
pathway in the second microbiome, was calculated for each group. This process was
repeated 10,000 times and the median difference calculated for each pathway. A
confidence interval was determined by pooling both datasets and comparing 10,000
random samples to 10,000 other random samples. Groups with a larger median difference
between microbiomes than the confidence interval were considered significantly
different.

Biochemical analyses — Short-chain fatty acids (SCFAs) were measured in nine
cecal samples (4 lean, 5 obese) obtained from nine mice that had been used for our
previous 16S rRNA gene sequence-based survey [animals C1, C3, C4, C9, C10, C13,
C15 (lean2), C17, and C22 in ref. 6]. Two aliquots of each sample were evaluated. SCFA
levels were quantified according to previously published protocols': i.e., double diethyl

ether extraction of deproteinized cecal contents spiked with isotope-labeled internal
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SCFA standards; derivatization of SCFAs with N-tert-butyldimethylsilyl-N-
methyltrifluoracetamide (MTBSTFA); and GC-MS analysis of the resulting TBDMS-
derivatives.

Bomb calorimetry was performed on 44 fecal samples collected from 22 mice (9
lean, 13 obese). Each mouse was transferred to a clean cage for 24 hours, at which point
fecal samples were collected and oven dried at 60°C for 48 hours. Gross energy content
was measured using a semimicro oxygen bomb calorimeter, calorimetric thermometer,
and semimicro oxygen bomb (Models 6725, 6772 and 1109, respectively, from Parr
Instrument Co.). The calorimeter energy equivalent factor was determined using benzoic
acid standards. The mean of each distribution was compared using a two-tailed Student’s
t-Test.

Microbiota transplantation experiments — Germ-free C57BL/6J mice (8-9
weeks old) were colonized with a cecal microbiota obtained from either a lean (+/+) or an
obese (ob/ob) C57TBL/6J donor (n=1 donor and 4-5 recipients/treatment
group/experiment; 2 independent experiments). Recipient mice were anesthetized at 0
and 14 days post colonization with an i.p. injection of ketamine (10 mg/kg body weight)
and xylazine (10mg/kg) and total body fat content was measured by dual-energy x-ray
absorptiometry (Lunar PIXImus Mouse, GE Medical Systems) using previously
described protocols®®. Donor mice were sacrificed at day 0 and recipient mice after the
final DEXA on day 14.

16S rRNA sequence-based surveys of the cecal microbiotas of
conventionalized mice — Cecal contents were recovered at the time of sacrifice by

manual extrusion and frozen immediately at -80°C. DNA was prepared by bead beating,

www.nature.com/nature 9



doi: 10.1038/nature05414 SUPPLEMENTARY INFORMATION

phenol/chloroform extraction, and gel purification (see above). Five replicate PCRs were
performed for each mouse. Each 25 ul reaction contained 50-100 ng of purified DNA
from cecal contents, 10 mM Tris (pH 8.3), 50 mM KCI, 2 mM MgSO,, 0.16 uM dNTPs,
0.4 uM of the bacteria-specific primer 8F (5’-AGAGTTTGATCCTGGCTCAG-3"), 0.4
uM of the universal primer 1391R (5’-GACGGGCGGTGWGTRCA-3"), 0.4 M betaine,
and 3 units of Taq polymerase (Invitrogen). Cycling conditions were 94°C for 2 min,
followed by 35 cycles of 94°C for 1 min, 55°C for 45 sec, and 72°C for 2 min, with a
final extension period of 20 min at 72°C. Replicate PCRs were pooled, concentrated with
Millipore columns (Montage), gel-purified with the Qiaquick kit (Qiagen), cloned into
TOPO TA pCR4.0 (Invitrogen), and transformed into E. coli TOP10 (Invitrogen). For
each mouse, 384 colonies containing cloned amplicons were processed for sequencing.
Plasmid inserts were sequenced bidirectionally using vector-specific primers and the
internal primer 907R (5’-CCGTCAATTCCTTTRAGTTT-3").

16S rRNA gene sequences were edited and assembled into consensus sequences
using the PHRED and PHRAP software packages within the Xplorseq program™.
Sequences that did not assemble were discarded and bases with PHRED quality scores
<20 were trimmed. Sequences were checked for chimeras using Bellerophon®*' and
sequences with greater than 95% identity to both parents were removed (n=535; 13% of
aligned sequences). The final dataset (n=4,157 sequences; for ARB alignment and tree
see http://gordonlab.wustl.edu/supplemental/Turnbaugh/obob/; for sequence designations
see Supplementary Table 7) was aligned using the on-line version of the NAST multi-
aligner’* (minimum alignment length=1250; percent identity >75), hypervariable regions

were masked using the lanemaskPH filter provided with the ARB database™, and the
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aligned sequences were added to the ARB neighbor-joining tree (based on pairwise
distances with the Olsen correction) with the parsimony insertion tool. A phylogenetic
tree containing all 16S rRNA gene sequences was exported from ARB and clustered

using online UniFrac*' without abundance weighting.
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Supplementary Figure 1: The effect of decreasing e-value cut-offs on EGT assignments to
the KEGG database from pyrosequencer and capillary sequencer datasets. Points indicate
the average number of KO assignments per kb of microbiome sequence. Mean values + s.e.m.
are plotted. The GS20 pyrosequencer and the 3730xl1 capillary sequencer both resulted in an
average 0.3 KO (KEGG orthology) assignments per kb of sequence at an e-value cutoff <10-.
However, the number of EGTs present in the pyrosequencer-derived datasets rapidly decays as
the e-value cutoff is decreased, whereas the number of EGTs present in the capillary sequencer

datasets is relatively stable to <10-39,
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Supplementary Figure 2: Taxonomic assignments of EGTs and 16S rRNA gene fragments.

(A) Relative abundance of EGTs (reads assigned to NR, BLASTX with an e-value<10-°) in each

cecal microbiome confirms the presence of the indicated bacterial divisions in addition to

Euryarcheota. Metazoan sequences (including Mus musculus and fungi) are also present at low

abundance. Bacterial divisions with greater than 1% representation in at least three microbiomes

are shown. (B) Alignment of 16S rRNA gene fragments (black) confirms our previous PCR-

derived 16S rRNA gene sequence-based survey® (white). Comparisons include all microbiomes

sampled with the capillary sequencer (square) and the two microbiomes sampled with the pyro-

sequencer (triangle).
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Supplementary Figure 3: KEGG pathways that are enriched or depleted in the cecal
microbiomes of both obese versus lean sibling pairs, as indicated by bootstrap analysis of
relative gene content. Pathways that are consistently enriched or depleted in the
pyrosequencer-based comparison of obl versus leanl littermates, and the capillary sequencer-
based comparison of ob2 versus lean2 littermates are shown. Red indicates enrichment and green
indicates depletion (brightness denotes level of significance). Black indicates groups that are not

significantly changed.

www.nature.com/nature 16



doi: 10.1038/nature05414 SUPPLEMENTARY INFORMATION

— ob/ob recipient 1 =

— ob/ob recipient 5

N — ob/ob recipient 2 ob/ob donor

— ob/ob recipient 4

—= o0b/ob recipient 3

¢

ob/ob recipient 6 —)
E ob/ob donor 1
ob/ob donor 2

ob/ob recipient 7

ob/ob recipients

¢

ob/ob recipient 9

ob/ob recipient 8 =—

o lean donor
—H — lean recipient1 =

— |ean recipient 2

— |ean recipient 3

.

lean recipient 5 .
lean recipients

| lean donor 1

lean recipient4

-

[ Firmicutes [ | Bacteroidetes [ Other

Supplementary Figure 4: Analyses of microbial communities harvested from obese (0b/ob)
and lean (+/+) C57BL/6J donor mice and colonized gnotobiotic recipients. Online Unifrac
clustering?! of microbial community structure, based on 4,157 16S rRNA gene sequences (see
Supplementary Table 7 for number of sequences per sample; ARB tree available at
http://gordonlab.wustl.edu/supplemental/Turnbaugh/obob/). Nodes denoted by a black square are
robust to sequence number (jackknife values > 0.70, representing the number of times the node
was present when 166 sequences were randomly chosen for each mouse for n=100 replicates).
Pie charts indicate the average relative abundance of Firmicutes (black), Bacteroidetes (white),
and other (grey; includes Verrucomicrobia, Proteobacteria, Actinobacteria, TM7, and Cyanobac-

teria) in the donor and recipient microbial communities.
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Supplementary Figure 5: Relative abundance of COG categories (percentage of total

EGTs assigned to COG using BLASTX and e-value<10-5) in the lean1 (black square), ob1

(white square), lean2 (black triangle), and ob2 (white triangle) cecal microbiomes. Microbi-

omes were characterized by capillary sequencing.
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ob1 ob1 ob2
Vs. vs. vs.
lean1 lean1 lean2
COG Category COG (3730) (GS20) (3730) Annotation
Signal Transduction COG2198 FOG: HPt domain
C0G2203 FOG: GAF domain
C0OG2337 Growth Inhibitor
COG0784 FOG: CheY-like Receiver
COGO0745 Response Regulators
Cell Motility COG0840 Methyl-accepting Chemotaxis Protein
Energy Production COG0674 Pyruvate:ferredoxin Oxidoreductase, Alpha Subunit

COG1014 Pyruvate:ferredoxin Oxidoreductase, Gamma Subunit
COG0437 Fe-S-cluster-containing Hydrogenase Components 1
COG1013 Pyruvate:ferredoxin Oxidoreductase, Beta Subunit
COG1894 NADH:ubiquinone Oxidoreductase, NADH-binding (51 kD) Subunit
COG1883 Na+-transporting Methylmalonyl-CoA/oxaloacetate Decarboxylase, Beta Subunit
COG1048 Aconitase A
Nucleotide COG0209 Ribonucleotide Reductase, Alpha Subunit
COG2759 Formyltetrahydrofolate Synthetase
Coenzyme COG4206 Outer Membrane Cobalamin Receptor Protein
lon COG1629 Outer Membrane Receptor Proteins

COG1116 ABC-type Nitrate/Sulfonate/Bicarbonate Transport System, ATPase Component

Deﬁleted Enriched

<.001 <01 <05 0 >.95 >99 >999

Supplementary Figure 6: COGs that are enriched or depleted in the cecal microbiomes of
both obese versus lean sibling pairs, as indicated by binomial comparisons of relative gene
content. The COGs shown are enriched or depleted in the pyrosequencer-based comparison of
obl versus leanl littermates and the capillary sequencer-based comparison of ob2 versus lean2
littermates. Red indicates enrichment and green indicates depletion (brightness denotes level of

significance). Black indicates groups that are not significantly changed.
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Supplementary Table 1 — Nomenclature used to designate metagenomic datasets
obtained from the cecal microbiota of C57BL/6J 0b/ob, 0b/+, and +/+ littermates.

Figure Metagenome 16S rRNA Host
label label Litter survey label' Tree label' genotype
obl PT6 1 C23 M2B-4 ob/ob
ob2 PT4 2 C18 M1-2 ob/ob
lean1 PT3 1 C21 M2B-1 +/+
lean2 PTS8 2 CI15 M1-3 ob/+
lean3 PT2 2 Cl6 Ml1-4 +/+

'Samples obtained from our previous 16S rRNA survey (ref. 6).
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Supplementary Table 2 — Sequencing results for each cecal microbiome.

Average Number

Microbiome read length of reads Sequence
leanl (GS20) 90.9 1,046,611 94,913,476
obl (GS20) 96.4 677,384 65,370,448

leanl (3730xI) 765 10,752 8,227,047

lean2 (3730xl1) 782 11,136 8,705,876

lean3 (3730x1) 706 10,752 7,590,528

obl (3730xl) 735 11,136 8,185,880

ob2 (3730x1) 771 8,832 6,811,035
TOTAL - 1,776,603 199,804,290

Abbrevations: GS20, pyrosequencer; 3730x1, capillary sequencer
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Supplementary Table 3 — Assembly of reads from capillary sequencer and
pyrosequencer datasets.

Average N50 contig

contig Contiged Largest length

Sample Contigs length bases’ Assembly (kb)?
leanl (GS20) 102,299 117 11,966,580 2,793 0.109
obl (GS20) 56,425 116 6,518,469 2,174 0.109
leanl (3730x1) 167 1527 254,985 5,500 1.62
lean2 (3730x1) 407 1598 650,499 5,522 1.71
lean3 (3730x1) 224 1528 342,172 3,281 1.59
obl (3730xl) 320 1393 445,814 3,225 1.49
ob2 (3730xl) 269 1644 442,210 4,186 1.70
All (3730x1) 2,575 1734 4,465,685 11,213 1.78
All (GS20) 159,245 118 18,809,438 2,708 0.110
All (GS20 and 13,667 898 12,275,469 14,755 0.903

3730x1)

!Contiged bases refers to the combined length of all contigs.

*N50 contig length refers to the length of the contig, such that 50% of the total contiged

bases are present in contigs of greater or equal size.

Assembly of the GS20 pyrosequencer datasets from leanl (+/4) or obl (0ob/ob) produced
very modest contiguity. Note that assembly of all GS20 pyrosequencer data from both
lean1 and ob1 did not improve contiguity. However, including the five 3730xI1 datasets

increased the average contig length to 1kb, and the largest contig to >14 kb.
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Supplementary Table 4 — Number of EGTs assigned to the NR, COG, and/or

KEGG databases.
Total NR  Total COG Total KO Total Percent
Microbiome EGTs EGTs EGTs EGTs unassigned
lean1 (GS20) 48,625 51,481 28,359 56,599 94.6
obl (GS20) 33,360 32,819 18,308 39,058 94.2
lean1 (3730x1) 7,973 7,970 2,810 8,462 21.3
lean2 (3730x1) 7,309 7,687 2,723 8,170 26.6
lean3 (3730x1) 7,042 7,119 2,562 7,616 29.2
obl (3730xl1) 7,331 7,299 2,639 7,859 29.4
ob2 (3730xl1) 6,008 6,016 2,053 6,425 27.3
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Supplementary Table 5 — Percentage of total assigned reads among each
taxonomic domain based on BLASTX searches of the NR database with an e-value
cutoff<107.

leanl leanl lean2 lean3 obl obl ob2
Domain 3730x1 GS20 3730x1  3730x1  3730xl GS20 3730x1
Archaea 1.28 0.658 1.55 1.59 2.07 1.23 2.08
Bacteria 95.8 97.9 90.7 95.1 94.4 93.4 92.9
Eukarya 2.36 1.39 7.36 2.74 2.77 4.15 4.19
(Viruses) 0.527 0.065 0.383 0.611 0.709 1.21 0.782
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Supplementary Table 6 —- KEGG pathways enriched in the pooled 0b/0b cecal
microbiome relative to the pooled lean cecal microbiome (capillary sequencing
datasets, ob1+ob2 vs. lean1+lean2+lean3, binomial test, P<(.05).

KEGG Category

KEGG Pathway1

Carbohydrate Metabolism

Amino Acid Metabolism
Metabolism of Other Amino Acids
Glycan Biosynthesis and Metabolism

Biosynthesis of Polyketides and
Nonribosomal Peptides
Transcription

Folding, Sorting and Degradation
Folding, Sorting and Degradation

Signal Transduction
Cell Motility

Cell Growth and Death

Starch and sucrose metabolism
Aminosugars metabolism
Nucleotide sugars metabolism
Lysine biosynthesis

D-Alanine metabolism

N-Glycan degradation
Glycosaminoglycan degradation
Glycosphingolipid metabolism
Polyketide sugar unit biosynthesis

Biosynthesis of vancomycin group antibiotics
Other and unclassified family transcriptional
regulators

Type III secretion system

Membrane Transport

ABC transporters

Phosphotransferase system (PTS)
Two-component system

Bacterial chemotaxis

Flagellar assembly

Bacterial motility proteins

Sporulation

'Only pathways with greater than ten hits in both pooled datasets are shown.
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Supplementary Table 7 — 16S rRNA gene-sequence libraries from microbiota
transplant experiments.

Host 16S gene
Label in Fig. S4 ARB label Genotype sequences

lean donor 1 lean2 +/+ 166
ob/ob donor 1 obobl ob/ob 199
ob/ob donor 2 obob2 ob/ob 229

lean recipient 1 SWPT11 +/+ 248
lean recipient 2 SWPT13 +/+ 265
lean recipient 3 SWPTI18 +/+ 247
lean recipient 4 SWPT19 +/+ 278
lean recipient 5 SWPT20 +/+ 271
ob/ob recipient 1 SWPT1 +/+ 219
ob/ob recipient 2 SWPT2 +/+ 268
ob/ob recipient 3 SWPT3 +/+ 280
ob/ob recipient 4 SWPT4 +/+ 272
ob/ob recipient 5 SWPTS5 +/+ 290
ob/ob recipient 6  SWPTI12 +/+ 197
ob/ob recipient 7  SWPT14 +/+ 272
ob/ob recipient 8§  SWPTI15 +/+ 198
ob/ob recipient9  SWPTI16 +/+ 258
TOTAL - - 4,157
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Supplementary Table 8 - KEGG pathways depleted in the pooled 0ob/ 0b cecal
microbiome relative to the pooled lean cecal microbiome (capillary sequencing
datasets, ob1+ob2 vs. lean1+lean2+lean3, binomial test, P<(.05).

KEGG Category KEGG Pathway'

Carbohydrate Metabolism Glycolysis / Gluconeogenesis
Citrate cycle (TCA cycle)
Pentose phosphate pathway
Pentose and glucuronate interconversions
Fructose and mannose metabolism

Energy Metabolism Carbon fixation
Reductive carboxylate cycle (CO2 fixation)
Pyruvate/Oxoglutarate oxidoreductases

Lipid Metabolism Fatty acid metabolism
Nucleotide Metabolism Pyrimidine metabolism
Amino Acid Metabolism Glutamate metabolism

Glycine, serine and threonine metabolism
Cysteine metabolism
Arginine and proline metabolism
Phenylalanine, tyrosine and tryptophan
biosynthesis
Glycan Biosynthesis and Metabolism  Lipopolysaccharide biosynthesis
Metabolism of Cofactors and Vitamins Riboflavin metabolism
Folate biosynthesis
Translation Ribosome
Folding, Sorting and Degradation Other ion-coupled transporters

'Only pathways with greater than ten hits in both pooled datasets are shown.
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Supplementary Table 9 — COG categories involved in information storage and
cellular processes that are enriched or depleted in the pooled 0b/0b cecal
microbiome relative to the pooled lean cecal microbiome (capillary sequencing
datasets, ob1+ob2 vs. lean1+lean2+lean3, binomial test, P<0.05).

ENRICHED

[K] Transcription

[L] Replication, recombination, repair

[Y] Nuclear structure

[T] Signal transduction

[M] Cell wall/membrane/envelope biogenesis
[N] Cell motility

DEPLETED

[J] Translation

[V] Defense mechanisms

[O] Posttranslational modification, protein turnover, chaperones
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SUMMARY

The gut microbiotas of zebrafish and mice share
six bacterial divisions, although the specific
bacteria within these divisions differ. To test
how factors specific to host gut habitat shape
microbial community structure, we performed
reciprocal transplantations of these microbio-
tas into germ-free zebrafish and mouse recipi-
ents. Theresults reveal that communities are as-
sembled in predictable ways. The transplanted
community resembles its community of origin
in terms of the lineages present, but the relative
abundance of the lineages changes to resemble
the normal gut microbial community composi-
tion of the recipient host. Thus, differences in
community structure between zebrafish and
mice arise in part from distinct selective pres-
sures imposed within the gut habitat of each
host. Nonetheless, vertebrate responses to
microbial colonization of the gut are ancient:
Functional genomic studies disclosed shared
host responses to their compositionally distinct
microbial communities and distinct microbial
species that elicit conserved responses.

INTRODUCTION

Animal evolution has occurred, and is occurring, in a world
dominated by microorganisms. As animals evolved to oc-
cupy different habitats (addresses) and niches (profes-
sions) in our biosphere, they have forged strategic alli-
ances with microorganisms on their body surfaces. The
genomes of microbes within these consortia encode
physiologic traits that are not represented in host ge-
nomes: Microbial-microbial and host-microbial mutualism
endows the resulting “super-organisms” with a fitness ad-
vantage (Ley et al., 2006b). The majority of these microbes
are present in digestive tract communities where, among
other things, they contribute to the harvest of dietary nutri-

ents that would otherwise be inaccessible (Backhed et al.,
2004; Sonnenburg et al., 2005), as well as to the education
of the host’s immune system (Cebra, 1999).

The advent of massively parallel DNA sequencers pro-
vides an opportunity to define the gene content of these
indigenous microbial communities with increased speed
and economy. These “microbiome” sequencing projects
promise to provide a more comprehensive view of the ge-
netic landscape of animal-microbial alliances and testable
hypotheses about the contributions of microbial commu-
nities to animal biology. The results should allow a number
of fundamental questions to be addressed. Is there an
identifiable core microbiota and microbiome associated
with a given host species? How are a microbiota and its
microbiome selected, and how do they evolve within
and between hosts? What are the functional correlates
of diversity in the membership of a microbiota and in the
genetic composition of its microbiome?

Answers to these questions also require model organ-
isms to assess how communities are assembled, to deter-
mine how different members impact community function
and host biology, and to ascertain the extent of redundancy
or modularity within a microbiota. One approach for gener-
ating such models is to use gnotobiotics—the ability to
raise animals under germ-free (GF) conditions —to colonize
them at varying points in their life cycle with a single mi-
crobe or more complex collections, and to then observe
the effects of host habitat on microbial community struc-
ture and function and of the community on the host.
Methods for raising and propagating rodents under GF
conditions have been available for 50 years (see Wost-
mann, 1981), although genomic and allied computational
methods for comprehensively assessing microbial com-
munity composition, gene content, and host-microbial
structure/function relationships have only been deployed
in the last five years (e.g., Hooper and Gordon, 2001; Ley
etal., 2005). Recently, we developed techniques for rearing
the zebrafish (Danio rerio) under GF conditions (Rawls et al.,
2004). In principle, this model organism provides a number
of attractive and distinctive features for analyzing host-
microbial mutualism. Zebrafish remain transparent until
adulthood, creating an opportunity to visualize microbes
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in their native gut habitats in real time. A deep draft refer-
ence genome sequence of D. rerio is available (http://
www.sanger.ac.uk/Projects/D_rerio/). In addition, forward
genetic tests and chemical screens can be conducted
(Patton and Zon, 2001; Peterson and Fishman, 2004) to
characterize zebrafish signaling pathways regulated by
microbial consortia and/or their component members.

A preliminary functional genomic study of the effects of
colonizing GF zebrafish with an unfractionated microbiota
harvested from adult conventionally raised (CONV-R) ze-
brafish revealed 59 genes whose responses were similar
to those observed when GF mice were colonized with an
adult mouse gut microbiota (Rawls et al., 2004). These
genes encode products affecting processes ranging from
nutrient metabolism to innate immunity and gut epithelial
cell turnover (Rawls et al., 2004). The experiments did not
distinguish whether the host responses were evolutionarily
conserved and thus present in the last common ancestor
of fish and mammals, or if they had been independently de-
rived in mammals and fish. However, the fact that numerous
homologous genes and shared cellular changes comprised
the “common” response favors the notion of evolutionary
conservation over convergence. It was also unclear whether
these common host responses were elicited by the same
or different bacterial signals in each host or by signals
from the whole community versus from specific bacteria.

A recent comprehensive 16S rRNA sequence-based
survey of the adult mouse gut disclosed that, asin humans,
>99% of the bacterial phylogenetic types (phylotypes) be-
long to two divisions—the Firmicutes and Bacteroidetes
(Ley et al., 2005). In contrast, limited surveys of different
fish species indicate that their gut communities are domi-
nated by the Proteobacteria (Cahill, 1990; Huber et al.,
2004; Rawls et al., 2004; Bates et al., 2006; Romero and
Navarrete, 2006). Fish and mammals live in very different
environments, so it is possible that differences in their gut
microbiotas arise from “legacy effects” (e.g., local environ-
mental microbial community composition or inheritance of
a microbiota from a parent). Furthermore, legacy effects
might combine with “gut habitat effects” (e.g., distinct selec-
tive pressures arising from differences in anatomy, physiol-
ogy, immunologic “climate,” or nutrient milieu) to shape the
different community structures of fish and mammals.

In the present study, we have performed reciprocal mi-
crobiota transplantations in GF zebrafish and mice. We
provide evidence that gut habitat shapes microbial com-
munity structure and that both animal species respond
in remarkably similar ways to components of one an-
other’s microbiota.

RESULTS

Comparison of the Zebrafish and Mouse Gut
Microbiota: Overlapping Bacterial Divisions

but Marked Differences at More Shallow
Phylogenetic Resolution

Our previous survey of the gut microbiota of adult CONV-
R zebrafish was limited to 176 bacterial 16S rRNA gene
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sequences (Rawls et al., 2004). Therefore, we performed
a more comprehensive analysis of intestinal contents
pooled from 18 adult male and female C32 zebrafish
(comprised of two independent pools, each containing
material from 9 animals). A total of 1456 bacterial 16S
rRNA sequences formed the final analyzed dataset: 616
from pool 1 and 840 from pool 2 (libraries JFR0503 and
JFR0504, respectively, in Table S1 available with this arti-
cle online). Phylogenetic analysis revealed 198 “species-
level” phylotypes defined by 99% pairwise sequence
identity. These phylotypes represented a total of 11 bacte-
rial divisions and were dominated by the Proteobacteria
(82% =+ 22.9% [SD] of all clones averaged across both
libraries) and the Fusobacteria (11% + 15.2%; Figures 1
and 2). The Firmicutes, Bacteroidetes, Verrucomicrobia,
Actinobacteria, TM7, Planctomycetes, TM6, Nitrospira, and
OP10 divisions were minor components (3.2%-0.6%).

Six of the eleven bacterial divisions found in adult zebra-
fish are also found in mice (Ley et al., 2005); five of these
are also shared by the adult human microbiota (Eckburg
et al., 2005; Figure 1A). However, zebrafish community
members within these shared divisions are distinct from
those in mice and humans at more shallow phylogenetic
resolution (Figures 1B-1D).

The Gut Selects Its Microbial Constituents

The composition of the mouse gut microbiota is affected
by host genotype, as well as by legacy (it is inherited
from the mother; Ley et al., 2005). To determine whether
the observed differences between zebrafish and mouse
microbiotas reflect host genome-encoded variations in
their gut habitats versus differences in the local microbial
consortium available for colonization, we colonized (1)
adult GF mice with an unfractionated gut microbiota har-
vested from CONV-R adult zebrafish (yielding “Z-mice”)
and (2) GF zebrafish larvae with a gut microbiota from
CONV-R adult mice (“M-zebrafish”). By comparing the
composition of the community introduced into the GF
host (“input community”) with the community that estab-
lished itself in the host (Z-mouse or M-zebrafish “output
community”), we sought to determine whether gut micro-
bial ecology is primarily influenced by legacy effects (the
input community structure would persist in the new host)
versus gut habitat effects (the representation changes
when certain taxa are selected).

We introduced the pooled intestinal contents of 18
CONV-R adult zebrafish belonging to the C32 inbred
strain (pools 1 and 2 above) into adult GF mice belonging
to the NMRI inbred strain (n = 6, Table S1, Figure S1). The
resulting Z-mice were housed in gnotobiotic isolators and
sacrificed 14 days after colonization (i.e., after several cy-
cles of replacement of the intestinal epithelium and its
overlying mucus layer). Their cecal contents were har-
vested and provided community DNA for 16S rRNA se-
quence-based enumerations. The cecum was selected
for this analysis because it is a well-defined anatomic
structure located at the junction of the small intestine
and colon, and its luminal contents can be readily and
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Figure 1. Bacterial Divisions and Their Lineages Detected
in the Zebrafish Digestive Tract, Mouse Cecum, and Human
Colon

(A) Summary of shared and distinct bacterial divisions in the zebrafish,
mouse, and human gut microbiota (data from this study; Rawls et al.,
2004; Ley et al., 2005; Eckburg et al., 2005; Backhed et al., 2005).
Divisions found in the normal gut microbiota of each host are indi-
cated (+). (B-D) Phylogenetic trees constructed from enumeration
studies of the zebrafish digestive tract (B), mouse cecal (C), and
human colonic (D) microbiotas. The zebrafish data are 1456 16S
rRNA gene sequences derived from adult CONV-R C32 fish. The
mouse data are 2196 sequences from adult CONV-R C57BI/6J mice
and their mothers (Ley et al., 2005). The human dataset contains

reliably recovered. It also harbors a very dense microbial
population in CONV-R mice (10''-10"2 organisms/ml lu-
minal contents) that has been comprehensively surveyed
(Ley et al., 2005).

In addition to the 1456 16S rRNA sequences represent-
ing 198 phylotypes from the input zebrafish community
(libraries JFR0503 and JFR0504; see above), we obtained
a total of 1836 sequences representing 179 phylotypes
from the Z-mouse cecal community (libraries JFR0507—-
12; Figures S1 and S2). Only 12% of the phylotypes found
in the Z-mouse community, representing 39% of all se-
quences, were detected in the input zebrafish community.
The dominant division in the input zebrafish community
(Proteobacteria) persisted but shrank in abundance in
the Z-mouse community (82% + 22.9% in the input versus
41.7% = 8.9% in the output; Figure 2). The Z-mouse com-
munity only contained members of the y- and B-Proteo-
bacteria subdivisions, whereas the input zebrafish com-
munity had also included 3- and a-Proteobacteria. In
addition, members of the Bacteroidetes detected in the
input zebrafish community were not observed in the
Z-mouse community. The Z-mouse community showed
a striking amplification of the Firmicutes (1% + 1.1% of
the input, 54.3% + 6.5% of the Z-mouse output; Figure 2);
this ampilification included members of Bacilli as well as
Clostridia classes.

By comparing communities at multiple thresholds for
pairwise percent identity among 16S rRNA gene se-
quences (%ID), we determined that divergence between
the input zebrafish and output Z-mouse communities oc-
curred at 89%ID and higher (Figure 3). This implies that
genera represented within the zebrafish and Z-mouse gut
microbiotas are different but represent the same major lin-
eages. The analysis also demonstrated that the phylotypes
that bloomed in the mouse cecum were minor constituents
of the input zebrafish digestive tract community. Despite
the difference in genus/species representation, the rich-
ness and diversity of the input zebrafish and Z-mouse
gut communities remained similar through the shift in mi-
crobial community composition (Figure S2 and Table S1).

When a similar analysis was applied to the input mouse
and M-mouse communities obtained from a mouse-into-
mouse microbiota transplant experiment (Backhed et al.,
2004), we found that a high degree of similarity was main-
tained at levels as great as 97%ID (Figure 3). Based on
these results, we concluded that (1) the difference in
composition of the input zebrafish and output Z-mouse
communities is not likely to be due to the microbiota trans-
plantation procedure per se and (2) the adult mouse
cecum is able to support a complex foreign microbial
consortium by shaping its composition.

2989 bacterial 16S rRNA sequences from colonic mucosal biopsies
and a fecal sample obtained from a healthy adult (Eckburg et al.,
2005). Within a given panel, yellow lines indicate lineages unique to
the host, blue lines indicate lineages that are shared by at least one
other host, while black lines indicate lineages that are absent from
the host. The scale bar indicates 10% pairwise 16S rRNA sequence
divergence.
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Figure 2. Comparison of Input and Output Communities
following Reciprocal Transplantation of Gut Microbiotas in
Gnotobiotic Zebrafish and Mice

Tree based on pairwise differences between the following bacterial
communities (weighted UniFrac metric, based on a 6379 sequence
tree; Lozupone and Knight, 2005): (1) CONV-R zebrafish digestive tract
microbiota (conventionally raised zebrafish, red); (2) CONV-R mouse
cecal microbiota (conventionally raised mice, yellow); (3) output com-
munity from the cecal contents of ex-GF mice that had been colonized
with a normal zebrafish microbiota (Z-mice, blue); (4) output commu-
nity from the digestive tracts from ex-GF zebrafish that had been col-
onized with a normal mouse microbiota (M-zebrafish, green); and (5)
a control soil community that served as an outgroup (Soil; Axelrood
et al., 2002). The distance p value for this entire UniFrac tree (UniFrac
P, the probability that there are more unique branches than expected
by chance, using 1000 iterations) was found to be <0.001, assigning
high confidence to the overall structure of the UniFrac tree. 16S
rRNA library names are shown next to their respective branch (see
Table S1 for additional details about these libraries). The relative abun-
dance of different bacterial divisions within these different communi-
ties (replicate libraries pooled) is shown in pie charts with dominant
divisions highlighted.

We performed the reciprocal experiment by colonizing
recently hatched (3 days post-fertilization [dpf]) GF C32
zebrafish with the pooled cecal contents of three CONV-R
adult female mice (libraries JFR0505 and JFRO0506 in
Table S1) and conducting surveys of the recipients’ diges-
tive tract communities 3 or 7 days later (libraries JFR0513-
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Figure 3. Similarity Indices for Pairwise Comparisons of
Communities Defined as Assemblages of Phylotypes Com-
puted at Levels of %ID Ranging from 86%ID to 100%ID and
Compared at Each %ID Threshold using the Chao-Jaccard
Abundance-Based Similarity Index

Abbreviations: zebrafish into mouse, CONV-R zebrafish compared to
Z-mouse microbiotas; mouse into zebrafish, CONV-R mouse com-
pared to M-zebrafish microbiotas; zebrafish into zebrafish, CONV-R
zebrafish compared to Z-zebrafish microbiotas (data from Rawls
et al., 2004); mouse into mouse, CONV-R mouse compared to M-
mouse microbiotas (data from Béackhed et al., 2004). Similarity indices
range from 0 (no overlap in composition) to 1 (identical communities).

18 in Table S1; Figure S1). As in the previous experiment,
the dominant bacterial division in the input mouse com-
munity (Firmicutes) persisted in the output M-zebrafish
community (87.3% + 2.2% of input, 64.9% =+ 41.7% of
output; Figure 2). However, only members of Bacilli, the
dominant Firmicute class in the zebrafish but not the nor-
mal mouse gut microbiota, were retained; other prominent
members of the Firmicutes found in the input mouse
library (i.e., Clostridia and Mollicutes) were no longer
detected in the M-zebrafish gut. Bacteroidetes (9.8% =
3.3% of input community) were also undetected. Proteo-
bacteria, a minor member of the input mouse community,
were amplified markedly in the M-zebrafish gut (2.2% +
0.6% of input, 35.1% + 41.7% of output; Figure 2).

In addition to their drastic compositional differences, we
also found that the output M-zebrafish community was
less rich and less diverse than the input mouse community
(Table S1and Figure S2), indicating that only a small subset
of the mouse gut microbial consortium was able to estab-
lish and/or thrive in the larval M-zebrafish gut. In contrast to
the reciprocal zebrafish-into-mouse experiment where the
contents of the adult fish gut were gavaged directly into the
stomachs of recipient GF mice, our mouse-into-zebrafish
gut microbiota transplantation involved introduction of
mouse cecal contents into gnotobiotic zebrafish medium
(GZM) containing 3dpf fish. Therefore, environmental fac-
tors could operate to select a subset of the input mouse
community prior to entry in the recipient fish gut.



The similarities between input mouse and M-zebrafish
communities were high, from 86%ID to 91%ID, above
which the communities diverged in composition (Figure 3),
i.e., different genera were representative of the same
deeper phylogenetic lineages. Indeed, there was no over-
lap between phylotypes with threshold pairwise >99%ID
in the datasets obtained from the input mouse and M-ze-
brafish communities. This was due, in part, to the limited
degree of coverage (73% for the input community accord-
ing to Good’s method; Good, 1953). Phylotypes that were
detected only in the M-zebrafish community were identifi-
able in the input mouse community using PCR and phylo-
type-specific primers (e.g., Staphylococcus; data not
shown). Compared to the reciprocal zebrafish-into-mouse
transplantation experiment, the input mouse and output
M-zebrafish communities diverged at a higher %ID cut-
off (Figure 3), indicating that they were more similar at a
higher taxonomic level than the zebrafish/Z-mouse com-
munities. Part of the drop in similarity could be attributed
to the experimental manipulation since a similar analysis
of a zebrafish-into-zebrafish transplant (Rawls et al.,
2004) revealed a drop in similarity at a comparable %ID
(Figure 3).

The similarity indices described above are derived from
phylotype abundances at different phylotype thresholds
(%IDs). However, an implicit assumption underlying
such an analysis is that all phylotypes are treated equally
regardless of lineage, even though they may represent
similar or very unrelated lineages (Lozupone and Knight,
2005). Another way to compare communities is the Uni-
Frac analysis: In this method, the abundance of each line-
age is weighted, such that the abundance of lineages is
considered as well as which lineages are present (Lozu-
pone and Knight, 2005). The UniFrac approach circum-
vents the problem of having to decide at what %ID level
to define the phylotype units that we call “different” (the
cut-off is likely to vary according to lineage).

UniFrac analysis revealed that replicate Z-mouse data-
sets are most similar to the input zebrafish datasets with
respect to detected lineages (Figure 2). However, the
abundance of the Firmicutes in Z-mice expanded to re-
semble the division’s abundance in CONV-R mice, indi-
cating that the input community, although derived from a
zebrafish, has been shaped to resemble a native mouse
community. Similarly, the M-zebrafish communities are
most similar to the mouse input communities by UniFrac,
but the Proteobacteria in M-zebrafish expanded to re-
semble a CONV-R zebrafish community, indicating that
the input mouse community has been shaped to resemble
a native zebrafish microbiota (Figure 2).

Together, the results from our reciprocal microbiota
transplantation experiments disclose that (1) gut habitat
sculpts community composition in a consistent fashion,
regardless of the input, and (2) stochastic effects are min-
imal (One notable exception was that y-Proteobacteria in
M-zebrafish [Escherichia, Shigella, and Proteus spp.] were
more abundant in one experimental replicate [69.8% =+
20.5%] compared to the other [0.5% + 0.6%)]). The ampli-

fied taxa in both sets of transplantation experiments rep-
resented dominant divisions in the native gut microbiota
of the respective host: Firmicutes in the case of teleostifi-
cation (zebrafish-into-mouse), Proteobacteria in the case
of murinization (mouse-into-zebrafish).

Shared Responses Elicited in Gnotobiotic Mice after
Exposure to a Mouse or Zebrafish Gut Microbiota
from Conventionally Raised Animals

While the studies described above indicated that the com-
position of the gut microbiota is sensitive to host habitat,
we did not know whether the host response was sensitive
to microbial community composition. Therefore, we con-
ducted a GeneChip-based functional genomic analysis
of gene expression in the distal small intestines (ileums)
of mice that had been subjected to zebrafish-into-mouse
(Z-mice) and mouse-into-mouse (M-mice) microbiota
transplantations. All animals (n = 3-5/treatment group)
were sacrificed 14 days after inoculation, RNA was pre-
pared from the ileum of each mouse, and the cRNA target
generated from each RNA sample was hybridized to an
Affymetrix 430 v2 mouse GeneChip. Ingenuity Pathways
Analysis software (IPA; see Supplemental Data) was
then used to compare host responses to these different
microbial communities. IPA software was utilized for
genes that exhibited a >1.5-fold change (increased or
decreased) in their expression compared to GF controls
(false discovery rate <1%).

Despite the different bacterial compositions of the two
input communities, their impact on the mouse was re-
markably similar (Figure 4). The number of IPA-annotated
mouse genes whose expression changed in response to
the two microbiotas was comparable: 500 in response
to the native mouse microbiota (Table S7) and 525 in
response to the zebrafish microbiota (Table S8 and Fig-
ure 4A). Approximately half of the genes (225) were re-
sponsive to both microbial communities (Table S10): 217
(96.4%) were regulated in the same direction. Among
the two sets of responsive genes, there was shared en-
richment of IPA-annotated metabolic pathways involved
in (1) biosynthesis and metabolism of fatty acids (sources
of energy as well as substrates for synthesis of more
complex cellular lipids in an intestinal epithelium that
undergoes continuous and rapid renewal); (2) metabolism
of essential amino acids (valine, isoleucine, and lysine); (3)
metabolism of amino acids that contain the essential trace
element selenium (selenocystine/selenomethioinine) and
are incorporated into the active sites of selenoproteins
such as glutathione peroxidase; (4) metabolism of buty-
rate (a product of polysaccharide fermentation that is
a key energy source for the gut epithelium); and (5) biosyn-
thesis of bile acids needed for absorption of lipids and
other hydrophobic nutrients (Figure 4B and Table S12).

Both communities altered expression of a similar set
of genes involved in insulin-like growth factor-1 (Igf-1),
vascular endothelial growth factor (Vegf), B cell receptor,
and interleukin-6 (lI-6) signaling pathways (Figure 4C
and Table S13). These results are intriguing: Previous
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Figure 4. Identifying a Common Response of the Germ-free Mouse Distal Small Intestine to Colonization with Mouse and Zebra-
fish Gut Microbial Communities

(A) Summary of results of GeneChip analysis of the ileal transcriptome in GF mice versus mice colonized for 14 days with a mouse cecal microbiota
(M-mice versus GF; red lines) or a normal zebrafish digestive tract microbiota (Z-mice versus GF; blue lines). Note that only a subset of all Affymetrix
GeneChip probe sets are annotated by Ingenuity Pathway Analysis (IPA). Supplemental tables containing GeneChip probe set and IPA gene infor-
mation are indicated. IPA reveals metabolic pathways (panel B; Table S12) and molecular functions (panel C; Table S13) that are significantly enriched
(p < 0.05) in the host response to each community. The seven most significant metabolic pathways and the four most significant signaling pathways
from the M-mice versus GF mice comparison (red bars) are shown along with corresponding data from the Z-mice versus GF mice comparison (blue
bars). (Not shown: the 275 IPA-annotated mouse genes regulated by the mouse microbiota but unchanged by the zebrafish digestive tract microbiota
were significantly enriched for components of ERK/MAPK, SAPK/JNK, antigen presentation, and the pentose phosphate pathways [Table S9]. In con-
trast, the 300 IPA-annotated mouse genes regulated by the zebrafish microbiota but unchanged by the mouse microbiota were enriched for com-
ponents of glutamate and arginine/proline metabolism, ketone body synthesis/degradation, plus B-adrenergic signaling pathways [Table S11]).

mouse-into-mouse and zebrafish-into-zebrafish trans- bial communities with shared divisions represented by dif-

plantations revealed that the microbiota-directed increase
in proliferative activity of gut epithelial lineage progenitors
is a shared host response (Rawls et al., 2004). The under-
lying mechanisms are not known. However, we recently
found that components of Igf-1, Vegf, B cell receptor,
and II-6 signaling pathways were significantly enriched in
mouse small intestinal epithelial progenitors (Giannakis
et al., 2006). Thus, it is tempting to speculate that these
pathways may be involved in mediating the microbiota’s
effect on mouse intestinal epithelial renewal.

Taken together, these results reveal a commonality in
the transcriptional responses of the mouse to two micro-
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ferent lineages at a finer phylogenetic resolution (Figure 1).
This common response to a microbiota may reflect as yet
unappreciated shared functional properties expressed by
the two compositionally distinct communities and/or
a core response, evolved by the mouse gut to distinct
microbial communities.

Comparison of Zebrafish Host Responses to

a Zebrafish versus a Mouse Gut Microbiota

Analysis of zebrafish 3 days after colonization with either
a zebrafish or a mouse microbiota at 3dpf also demon-
strated shared features of the host response to both



microbial communities. To quantify these responses, we
selected biomarkers identified from our comparisons of
6dpf GF, CONV-R, and Z-zebrafish (Rawls et al., 2004).
Quantitative real-time RT-PCR (qRT-PCR) of biomarkers
of lipid metabolism, including fasting-induced adipose
factor (fiaf; circulating inhibitor of lipoprotein lipase,
Backhed et al., 2004), carnitine palmitoyltransferase 1a
(cptia), and the trifunctional enzyme hydroxyacylCoA
dehydrogenase/3-ketoacylCoA thiolase/enoyl CoA hy-
dratase o. (hadha), revealed that the mouse microbiota
was able to largely recapitulate the effect of the zebrafish
microbiota (Figures 5 and S3). In contrast, the zebrafish
microbiota, but not the mouse microbiota, prominently
increased host expression of (1) innate immune response
biomarkers (serum amyloid a [saa], myeloperoxidase
[mpo; Lieschke et al., 2001; Figure 5], and complement
component factor b [bf; Figure S3]) and (2) proliferating
cell nuclear antigen (pcna; biomarker of epithelial cell re-
newal; Figure 5).

Selecting Readily Culturable Microbial Species that
Are Useful Models for Translating Information about
Host-Bacterial Mutualism from Zebrafish to Mice

In order to use gnotobiotic zebrafish as a surrogate for
studying the mechanisms underlying host-microbial mu-
tualism in the mammalian gut, we sought culturable bac-
terial species that were capable of (1) efficiently colonizing
the digestive tracts of GF zebrafish and mice and (2) elic-
iting evolutionarily conserved host responses in both
hosts. Therefore, we performed culture-based bacterial
surveys of the Z-mouse and M-zebrafish output commu-
nities in parallel with our culture-independent 16S rRNA
surveys. 16S rRNA sequence-based analysis of 160 differ-
ent bacterial isolates from the communities of six Z-mice
yielded 47 different phylotypes (defined at 97%ID) repre-
senting four divisions (Proteobacteria, Fusobacteria, Acti-
nobacteria, and Firmicutes). Similarly, an analysis of 303
isolates recovered from the communities of 18 M-zebra-
fish yielded 41 phylotypes representing the Proteobacte-
ria and Firmicutes (Tables S1 and S14).

We selected seven primary isolates from the transplan-
tation experiments representing the Firmicutes (Enteroc-
coccus and Staphylococcus spp.) and the Proteobacteria
(Shewanella, Aeromonas, Citrobacter, Plesiomonas, Es-
cherichia spp.). Three laboratory strains of y-Proteobacte-
ria (Aeromonas hydrophila ATCC35654, Pseudomonas
aeruginosa PAO1, and E. coli MG1655) were used as con-
trols (Table S15). These primary isolates and lab strains
were selected based on the relative abundance of their
phylotypes in our culture-based surveys of input and out-
put communities (Table S14).

3dpf GF zebrafish were exposed to 10* CFU of each pri-
mary isolate or strain per milliliter of gnotobiotic zebrafish
medium (GZM); all reached similar densities in the diges-
tive tract by 6dpf (10°-10% CFU/gut). These densities are
similar to those documented in age-matched CONV-R or
Z-zebrafish (Rawls et al., 2004).

An epidermal degeneration phenotype that develops in
fed (but not fasted) GF zebrafish beginning at 9dpf (Rawls
et al., 2004) was ameliorated by colonization with nine of
the ten bacterial strains at 3dpf. The Enterococcus isolate
M2E1F06 was the only tested strain that did not have any
detectable effect (Figure S4). We found that epidermal de-
generation could also be prevented by placing a mesh
bag, containing an autoclaved mixture of activated carbon
and cation exchange resin, into the GZM (Figure S4). This
latter finding suggests that rescue by most of the tested
bacterial strains involves bioremediation of toxic com-
pounds that accumulate when GF zebrafish are exposed
to food. Our subsequent analysis of the impact of the Fir-
micutes (i.e., Enterococcus and Staphylococcus isolates)
on gut gene expression was performed using zebrafish
raised in the presence of activated carbon and resin.

gRT-PCR analysis of biomarkers of lipid metabolism, in-
cluding fiaf, cpt1a, and hadha, revealed that five of the
seven primary isolate strains and all of the type strains
tested were able to at least partially recapitulate the
response obtained after exposure to an unfractionated
zebrafish microbiota. Colonization with T1IE1CO05 (Shewa-
nella sp.) and P. aeruginosa PAO1 had the largest effects
(Figures 5 and S3). Two biomarkers of innate immune re-
sponses, saa and bf, were also responsive to the majority
of these strains, but the granulocyte-specific marker mpo
was relatively specific for P. aeruginosa PAO1 (Figures 5
and S3). None of the tested individual bacterial strains,
including PAO1, were able to recapitulate the degree of
stimulation of cell division in the intestinal epithelium of
6dpf zebrafish seen in the presence of an unfractionated
zebrafish microbiota harvested from CONV-R donors,
whether judged by qRT-PCR assays of pcna expression
or by immunohistochemical analysis of the incorporation
of BrdU administered 24 hr prior to sacrifice (Figure 5).

We also assessed the host response to colonization
with a consortium consisting of an equal mixture of all
seven primary isolates (n = 2 groups of 20 GF zebrafish
colonized at 3dpf and sacrificed at 6dpf). gRT-PCR indi-
cated that this model microbiota was able to partially reca-
pitulate the nutrient metabolic and innate immune (but not
epithelial proliferative) responses to the normal zebrafish
microbiota. Importantly, the response to the consortium
was a nonadditive representation of the responses to
each component strain, and not equivalent to what was
observed with a complete microbiota from CONV-R
zebrafish (Figures 5 and S3).

gRT-PCR assays established that treatment of 6dpf ze-
brafish larvae with lipopolysaccharide (LPS) purified from
P. aeruginosa was able to partially recapitulate innate im-
mune responses seen with live P. aeruginosa (Figure 5). In
contrast, LPS treatment did not affect expression of bio-
markers of nutrient metabolism (Figure 5). This notion of
distinct bacterial signaling mechanisms for innate immune
and metabolic responses is supported by the observation
that some of the tested isolates (e.g, TIE1C05, a Shewa-
nella sp.) are able to induce robust nutrient metabolic
responses without eliciting innate immune responses
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Figure 5. qRT-PCR Assays of the Responses of Germ-free Zebrafish to Colonization with Individual Culturable Members of the
Zebrafish and Mouse Gut Microbiotas

Expression levels of serum amyloid a (saa), myeloperoxidase (mpo), fasting-induced adipose factor (fiaf), carnitine palmitoyltransferase 1a (cpt1a), and
proliferating cell nuclear antigen (pcna) were assessed using RNA extracted from the pooled digestive tracts of 6dpf zebrafish inoculated since 3dpf
with a CONV-R zebrafish microbiota (Z-zebrafish), a CONV-R mouse microbiota (M-zebrafish), a consortium of seven primary isolates (Consortium),
a primary Enterococcus isolate (M2E1F06), a primary Staphylococcus isolate (M2E1A04), a primary Citrobacter isolate (T1E1C07), a primary Aero-
monas isolate (TTE1A06), a primary Plesiomonas isolate (TIN1D03), a primary Shewanella isolate (T1E1CO05), a primary Escherichia isolate
(M1N2G083), an Escherichia coli type strain (E. coli MG1655), an Aeromonas hydrophila type strain (A. hydrophila ATCC35654), a Pseudomonas aer-
uginosa type strain (P. aeruginosa PAO1), or 0.1 ng/ml P. aeruginosa LPS (P. aeruginosa LPS). Data from biological duplicate pools (> 10 animals per
pool) were normalized to 18S rRNA levels and results expressed as mean fold-difference compared to GF controls + SEM. S phase cells were
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(Figures 5 and S3). Moreover, we found that all three clas-
ses of host response (innate immunity, nutrient metabo-
lism, and cell proliferation) are strongly attenuated in the
absence of an exogenous nutrient supply (See Figure S5).

DISCUSSION

There is considerable interest in how communities assem-
ble at the microbial scale, and how the environment (e.g.,
local chemistry) and legacy effects (e.g., microbes avail-
able to colonize) interact to predict the composition of
a community (Hughes-Martiny et al., 2006). Some host-
associated microorganisms exhibit patterns of genetic dif-
ferentiation that are related to the geographic distribution
of their hosts (Bala et al., 2003; Falush et al., 2003). This
raises the question of how much of the variation is due
to habitat differences that correlate with geographic sep-
aration, versus the legacy of past communities. Our study
directly tests the effect of habitat in assembling a com-
munity: We constrained the legacy effect by presenting
empty GF hosts with a known microbial community so
that observed changes in diversity could be correlated
with factors specific to host gut habitat (e.g., either direct
effects of the niche space or indirect effects on intercom-
munity dynamics).

UniFrac showed the output community of the Z-mouse
to be made up of zebrafish-specific lineages, but the pro-
portional representation of the divisions was more similar
to what is typical of a mouse gut community. Conversely,
the M-zebrafish digestive tract community was “teleosti-
fied” by a change in the proportions of divisions from the
mouse input. Moreover, all ten of the individual cultured
strains introduced into the GF host guts took up residence.
These results show that the host will “work” with what it
gets: We constrained the input by presenting the empty
host with a constrained microbiota, and the resulting com-
munity took on a relative divisional abundance character-
istic of the recipient host’s naturally occurring community.

What determines the host’s relative abundance of divi-
sions? Its reproducibility regardless of the provenance of
the input community underscores the presence of very
powerful organizing principles in community composition
that have yet to be fully explored. A simple interpretation of
these findings is that members of the Firmicutes and Pro-
teobacteria possess division-wide properties that allow
them to succeed in the mouse and zebrafish gut, respec-
tively; thus, even distantly related members within a divi-
sion will respond similarly to habitat effects. If so, the
implication is that there is considerable functional and/or
physiological redundancy within lineages that are se-
lected for in specific host gut habitats. One obvious differ-
ence between the Gram-positive Firmicutes and the
Gram-negative Proteobacteria is their cell wall structure,

which could be a target for selection. Another trait that
may differentiate gut Firmicutes from Proteobacteria is
their oxygen tolerence: The larval and adult zebrafish gut
is predicted to have higher levels of oxygen than the
mouse cecum and might exclude Firmicutes, whose
members are more likely to be strictly anaerobic than
the Proteobacteria. However, generalizations about divi-
sion-level traits are conjecture and almost certainly prone
to exceptions, particularly since they are based on a se-
verely limited knowledge of the genomic features and
phenotypes of gut bacteria. This is highlighted by our
observation that the Firmicutes amplified in the ceca of
Z-mice were only from the classes Bacilli and Clostridia,
while the Proteobacteria amplified in M-zebrafish diges-
tive tracts were only from the y-Proteobacteria class.

The bacteria that establish themselves in a new host do
not necessarily need to be identical by 16S rRNA %ID to
be functionally similar ecotypes and to have similar ge-
nome content. Closely related phylotypes that form polyt-
omies (i.e., star phylogenies) are common in the environ-
ment and in the animal gut (Acinas et al., 2004; Eckburg
et al., 2005; Ley et al., 2006a, 2006b): Whole-genome
comparisons of gut-dwelling Bacteroidetes species
show that their proteomes have similar functional profiles,
although they can differ in 16S rRNA %ID by as much as
12% (Xu et al.,, 2003; J. Xu, M.A.M, R.E.L., and J.|.G,,
unpublished data).

Curtis and Sloan (2004) state that when a new commu-
nity is formed, it must be initiated by drawing from the
available microbes at random. Two random samples
from a log-normal distribution can have quite different
compositions. Therefore, physically identical habitats (in
this study, genetically identical hosts) will have different
communities if they are formed at random from large
seeding communities and will only be similar if the seeding
community is small enough that the same bacteria arrive
by chance (Curtis and Sloan, 2004). However, the input
communities (mouse and zebrafish) each contained hun-
dreds of species, making it unlikely that the same bacteria
would establish by chance in each recipient GF animal.

In addition to host habitat factors, dynamics within
microbial communities will interact with the host habitat
to shape the final community. The relative abundance of di-
visions can be viewed as a simple emergent property of the
community that belies underlying, highly complex organi-
zational principles. Community-level interactions such as
competition, cooperation, predation, and food web dy-
namics will all interact to shape a community (Ley et al.,
2006b). The host provides the habitat and a basic niche
space that the microbial community expands by its phys-
ical presence and metabolic activities. It is remarkable
that such complex interactions can result in the predict-
able community structure that we observed at the division

quantified in the intestinal epithelium of 6dpf zebrafish colonized since 3dpf with a CONV-R zebrafish microbiota (Z-zebrafish), a consortium of seven
primary isolates (Consortium), or individual species. The percentage of all intestinal epithelial cells in S phase was scored using antibodies directed
against BrdU, following incubation in BrdU for 24 hr prior to sacrifice. Data are expressed as the mean of two independent experiments + SEM
(n = 9-15 five micron-thick transverse sections scored per animal, >7 animals analyzed per experiment). ***, p < 0.0001; **, p < 0.001; *, p < 0.05.
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level. The shared host response to reciprocally trans-
planted zebrafish and mouse gut microbiotas suggests
that this predictability of community composition also ex-
tends to the functions encoded in their microbiomes.

EXPERIMENTAL PROCEDURES

Animal Husbandry

All experiments using zebrafish and mice were performed using
protocols approved by the Washington University Animal Studies
Committee.

Conventionally Raised Animals

CONV-R zebrafish belonging to the C32 inbred strain were maintained
under a 14 hr light cycle and given a diet described in an earlier publi-
cation (Rawls et al., 2004). CONV-R Swiss-Webster mice were pur-
chased from Taconic Labs and fed an irradiated PicoLab chow diet
(Purina) ad libitum. Mice were reared in a specific pathogen-free state,
in a barrier facility, under a 12 hr light cycle.

Germ-free Animals

Zebrafish were derived as GF and reared using established protocols
and diets (Rawls et al., 2004). GF zebrafish were maintained at 28.5°C
in plastic gnotobiotic isolators at an average density of 0.3 individuals/
ml gnotobiotic zebrafish medium (GZM; Rawls et al., 2004). GF mice
belonging to the NMRI inbred strain were housed in plastic gnotobiotic
isolators and fed an autoclaved chow diet (B&K Universal) ad libitum
(Hooper et al., 2002). GF zebrafish and mice were kept under a 12 hr
light cycle and monitored routinely for sterility (Rawls et al., 2004).
Colonization

GF zebrafish were conventionalized at 3dpf with a digestive tract mi-
crobiota harvested from CONV-R C32 donors, using established pro-
tocols (Rawls et al., 2004). To colonize zebrafish with individual bacte-
rial species, or with defined consortia (see below), cultures were added
directly to GZM containing 3dpf GF zebrafish (final density 10* CFU/
ml). Colonization with members of the Firmicutes was coupled with
addition of a cotton mesh bag containing 15 ml of ammonia-removing
resin and activated carbon (AmmoCarb, Aquarium Pharmaceuticals)
per 100 ml GZM at 3dpf.

To colonize zebrafish with a mouse gut microbiota, cecal contents
were pooled from three adult CONV-R Swiss-Webster female mice
under aerobic conditions, diluted 1:1200 in PBS, and added directly
(1:100 dilution) to GZM containing 3dpf GF zebrafish (final density:
102 CFU/ml [aerobic culture]; 10 CFU/mI [anaerobic culture], as de-
fined by incubation on BHI-blood agar for 2 days at 28°C).

GF NMRI mice were colonized at 7-11 weeks of age with a micro-
biota harvested from the cecal contents of adult CONV-R female
Swiss-Webster mice (Backhed et al., 2004). To colonize mice with a ze-
brafish microbiota, the pooled digestive tract contents of 18 CONV-R
adult C32 zebrafish were diluted 1:4 in sterile PBS under aerobic con-
ditions and a 100 pl aliquot was introduced, with a single gavage (5 x
10® CFU/mouse, as defined by anaerobic and aerobic culture on
BHI-blood agar and tryptic soy agar for 2 days at 37°C).

Other Treatments of Zebrafish

GF 3dpf animals were immersed in filter-sterilized GZM containing 0.1
png/ml LPS purified from Pseudomonas aeruginosa ATCC27316
(Sigma, L8643). Sterility during this treatment was monitored routinely
by culturing the aquaculture medium under a variety of conditions
(Rawls et al., 2004).

To quantify cellular proliferation in the intestinal epithelium, 5dpf
zebrafish were immersed in a solution of 5-bromo-2’'-deoxyuridine
(BrdU; 160 pg/ml of GZM) and 5-fluoro-2’-deoxyuridine (16 pg/ml
GZM) for 24 hr prior to sacrifice. S phase cells were detected and
scored as described (Rawls et al., 2004).

Phylogenetic and Diversity Analyses
Bulk DNA was obtained from the digestive tracts of zebrafish and the
ceca of mice by solvent extraction and mechanical disruption (Ley
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et al.,, 2005; Rawls et al., 2004). The DNA was used in replicate
PCRs using Bacteria-specific 16S rRNA gene primers. Amplicons
from replicate PCRs were pooled and cloned prior to sequencing
(See Supplemental Data).

16S rRNA gene sequences were edited and assembled into consen-
sus sequences using PHRED and PHRAP aided by XplorSeq (Daniel
Frank, University of Colorado, Boulder, personal communication);
bases with a PHRAP quality score of <20 were trimmed. Contiguous
sequences with at least 1000 >Q20 bp were checked for chimeras
and then aligned to the 16S rRNA prokMSA database using
the NAST server (http://greengenes.Ibl.gov/cgi-bin/nph-NAST _align.
cgi). The resulting multiple sequence alignments were incorporated
into a curated Arb alignment (Ludwig et al., 2004) available at http://
gordonlab.wustl.edu/supplemental/Rawls/Gut_Micro_Transplant.arb.

Assignment of the majority of sequences to their respective divisions
was based on their position after parsimony insertion to the Arb den-
drogram (omitting hypervariable portions of the 16S rRNA gene using
lanemaskPH provided with the database). Chloroplast sequences
were identified in CONV-R zebrafish libraries and removed (i.e., 8
sequences from library JFR0503 and 59 sequences from library
JFR0504). Sequences that did not fall within described divisions
were characterized as follows. Phylogenetic trees including the novel
sequences and reference taxa were constructed by evolutionary dis-
tance (using PAUP* 4.0 [Swofford, 2003], a neighbor-joining algorithm
with either Kimura two-parameter correction or maximum-likelihood
correction with an empirically determined y distribution model of
site-into-site rate variation and empirically determined base frequen-
cies). Bootstrap resampling was used to test the robustness of inferred
topologies.

Distance matrices generated in Arb (with hypervariable regions
masked, and with Olsen correction [Ley et al., 2006a]) were used to
cluster sequences into operational taxonomic units (OTU’s) by pair-
wise identity (%1D) with a furthest-neighbor algorithm and a precision
of 0.01 implemented in DOTUR (Schloss and Handelsman, 2005). We
use “phylotype” to refer to bins of sequences with >99% pairwise
identity. Collector’s curves, Chao1 diversity estimates, and Simpson’s
diversity index were calculated using DOTUR and Chao-Jaccard
Abundance-based diversity indices using EstimateS 7.5 (Colwell,
2005). The percentage of coverage was calculated by Good’s method
with the equation (1 — [n/N]) X 100, where n is the number of phylo-
types in a sample represented by one clone (singletons) and N is the
total number of sequences in that sample (Good, 1953).

To cluster the communities from each treatment, we used the Uni-
Frac computational tool (Lozupone and Knight, 2005). To do so, the
masked Arb alignment containing 5527 sequences from this study
plus 852 sequences obtained from soil (Axelrood et al., 2002) was
used to construct a neighbor-joining tree. The neighbor-joining tree
was annotated according to the treatment from which each sequence
was derived, and the fraction of tree branch length unique to any one
treatment in pairwise comparisons (the UniFrac metric) was calcu-
lated. The p value for the tree, reflecting the probability that the there
are more ungiue branch lengths than expected by chance alone,
was calculated by generating 1000 random trees (Lozupone and
Knight, 2005).

Functional Genomics

Analyses of gene expression in the mice and zebrafish using Affymetrix
GeneChips, quantitative real-time RT-PCR, and Ingenuity Pathways
Analysis were performed using methods described in previous publi-
cations (Giannakis et al., 2006; Hooper and Gordon, 2001; Rawls
et al., 2004). For additional details, see Supplemental Data.

Supplemental Data

Supplemental Data include Experimental Procedures, 5 figures, and
16 tables and can be found with this article online at http://www.cell.
com/cgi/content/full/127/2/423/DC1/.
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deposited in Gene Expression Omnibus under accession number
GSE5198.
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Supplemental Experimental Procedures

16S rRNA Gene Sequencing

Luminal contents from the ceca of CONV-R adult mice and Z-mice, and the intact
digestive tracts of CONV-R adult zebrafish and 6dpf/10dpf M-zebrafish were removed
immediately after animals were killed, and homogenized in sterile PBS under aerobic conditions
(see Fig. S1, Table S1). An aliquot of each homogenate was used immediately for culture-based
enumeration (see below): the remainder was frozen at —80°C until use.

A frozen aliquot of each sample was thawed, centrifuged at 18,000 x g for 30 min at 4°C
to pellet material, and the pellet was then pulverized with a sterile pestle in 700uL filter-
sterilized extraction buffer [100mM NaCl, 10mM Tris-Cl (pH 8.0), 25mM EDTA (pH 8.0), 0.5%
(w/v) SDS, 0.1 mg/mL proteinase K (Sigma)]. Following a 40 min incubation at 37°C for 40
min, 500uL of 0.1lmm-diamter zirconia/silica beads (Biospec Products) plus 500uL of a mixture
of phenol:chloroform (Ambion) were added to each sample, and the sample was disrupted
mechanically for 2 min at 23°C with a bead beater (Mini-Beadbeater, BioSpec Products Inc.;
using the instrument’s highest setting). Samples were centrifuged at 18,000 x g at 4°C for 3 min.
The aqueous phase was subjected to one additional round of phenol:chlorofom extraction prior to
precipitation of DNA with isopropanol. Isolated genomic DNA was further purified over
Montage PCR Centrifugal Filters (Millipore).

For each sample, three replicate 25uL polymerase chain reactions were performed, each
containing 1-200 ng of purified genomic DNA, 20mM Tris-HCI (pH 8.4), 50mM KCl, 300uM
MgCl,, 400mM Betaine, 160uM dNTPs, 3 units of Taq DNA polymerase (Invitrogen), and
400nM of universal 16S rRNA primers 27F (5’-AGAGTTTGATCCTGGCTCAG-3") and 1491R
(5>-GGTTACCTTGTTACGACTT-3"). Reactions were incubated initially at 94°C for 10 min,
followed by 30 cycles of 94°C for 1 min, 52°C for 1 min, and 72°C for 2 min, and a final
extension step at 72°C for 10 min. Replicate reactions were pooled and purified over Montage
PCR Centrifugal Filters (Millipore), and pooled PCR products cloned into pCR4-TOPO (TOPO
TA Cloning Kit for Sequencing, Invitrogen). DNA extraction of control samples from GF
animals did not yield detectable 16S rRNA PCR products or colonies. Clones were sequenced in
BigDye Terminator reactions using 16S rRNA primers [27F, 1491R, and 907R (5°-
CCGTCAATTCCTTTRAGTTT-3")]. 16S rRNA sequences derived from these culture-
independent surveys were submitted to GenBank under accession numbers DQ813844-
DQ819370.

Culture-Based Enumerations



To recover culturable bacteria from microbial consortia, homogenates of pooled zebrafish
digestive tracts or individual mouse ceca were plated under aerobic conditions in a dilutional
series on BHI-blood agar, tryptic soy agar, PEA-blood agar, nutrient agar, marine agar, and
cholera agar (Becton Dickinson), and grown at 37°C and/or 28.5°C under aerobic and anaerobic
conditions. Colonies were picked in a non-random manner into the corresponding liquid media
under aerobic conditions, and grown under the same conditions that led to their initial detection.
Liquid cultures were frozen as glycerol stocks in 96-well microtiter plates.

Aliquots (1uL) of these glycerol stocks were used directly as templates for 25uL. PCR
with the 27F and 1491R primers described above. PCR products were purified over Perfectprep
PCR Cleanup 96-well plates (Eppendorf), and partial 16S rRNA sequences were generated using
27F primer. The resulting 16S rRNA sequences with 2700 Phred >Q20 bp were aligned in Arb
and analyzed as described above. These 575 16S rRNA sequences are available on our lab
website at http://gordonlab.wustl.edu/supplemental/Rawls/Cultured Clone Seqs FastA.txt. A
subset of these cultured clones were subsequently recovered from glycerol stocks and re-
sequenced using both 27F and 1491R primers to confirm their identity and to provide more
complete sequence coverage (GenBank accession numbers DQ819371-DQ819377).

Functional Genomics

To compare gene expression in zebrafish reared under different conditions, two
biological duplicate pools of animals from each group were analyzed. For zebrafish reared in
gnotobiotic isolators, digestive tracts were removed en bloc under a dissecting microscope and
pooled (n= 10-40/pool). For zebrafish reared in tissue culture flasks, intact larvae were pooled
(n= 6-17/pool). Each pooled collection was homogenized by repeated passage through a 20-
gauge needle, and total RNA was then extracted (TRIzol reagent; Invitrogen).

To compare gene expression in mice reared under different conditions, 3-5 animals were
analyzed per treatment group. Immediately after each animal was killed, its small intestine was
removed, divided into 16 equal-size segments, and segment 14 (ileal sample) was taken. The
segment was homogenized, and RNA was extracted (Rneasy Miniprep Kit; Qiagen).

The quantity and quality of zebrafish and mouse gut RNA were assessed with a
NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies) and Agilent 2100
Bioanalyzer (Agilent Technologies). RNA preparations were then used as templates for
generating cDNAs (Superscript II reverse transcriptase; random primers; Invitrogen).

gqRT-PCR assays were performed as described (Rawls et al., 2004), except that each
25uL reaction mixture contained cDNA corresponding to 2ng of total RNA from zebrafish
digestive tracts, plus 900 nM gene-specific primers (except zebrafish 18S rRNA-specific control
primers which were used at 300 nM) (Table S16). Assays were performed in triplicate using
Absolute SYBR Green ROX Mix (ABgene) and a MX3000P QPCR Instrument (Stratagene).
Data were normalized to 18S rRNA (AACt analysis).

Whole genome transcriptional profiling was performed using Affymetrix GeneChips.
cRNA targets were prepared, and hybridized (40 pg/sample) to 430 v2 mouse GeneChips using
established protocols (Hooper et al., 2001). CEL files were normalized using RMA (Bolstad,
2004; http://rmaexpress.bmbolstad.com/), and all probesets with an average intensity across all
arrays >50 were analyzed using Significance Analysis of Microarrays software (SAM version
2.21; Tusher et al., 2001). For M-mice vs. GF mice and Z-mice vs. GF mice comparisons, a
false-discovery rate of <1% and a post-analysis fold-change cut-off of >1.5 were used, and all
genes with >50% present calls (calculated using Affymetrix Microarray Suite 5.0) across all



replicate experimental or reference arrays were culled for further analysis. The resulting datasets
were analyzed using the Ingenuity Pathways Analysis (IPA) software tool
(http://www.ingenuity.com) according to Giannakis et al. (2006). IPA annotations take into
account Gene Ontology (GO) annotations, but are distinct and based on a proprietary knowledge
base of over 1,000,000 protein-protein interactions. The IPA output includes metabolic and
signaling pathways: statistical assessments of the significance of their representation are based
on a right-tailed Fisher’s Exact Test, which is used to calculate the probability that genes
participate in a given pathway relative to their occurrence in all other pathway annotations.
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Figure S1. Flow Chart of Reciprocal Transplantation Experimental Design

The gut microbiota from two independent pools of 9 adult conventionally-raised (CONV-R)
zebrafish were harvested, combined, and used to colonize 6 adult germ-free (GF) mice, yielding
Z-mice. 14 days later, the cecal contents from individual Z-mice were harvested for analysis. The
gut microbiota from 3 adult conventionally-raised mice were harvested and used to colonize 3dpf
germ-free zebrafish, yielding M-zebrafish. 3 or 7 days later, the gut contents from groups of M-
zebrafish were harvested. As indicated, this mouse-into-zebrafish experiment was performed in
duplicate. Culture-independent 16S rRNA libraries generated from these different samples

(Library) are indicated in blue text.



>
w

Chao1 Richness Estimates Collector’s Curves
900 " —— Conventionally-raised
. i - zebrafish (JFR0503-04)
9 700 @ o —— Z-mice (JFR0507-12)
-E‘ il %" —— Conventionally-raised
<, 500 = mice (JFR0505-06)
< " = M-zebrafish (JFR0513-18)
o 3001 g 10
= - =
100
0=t T T T T 1 0 L, s . . Ly
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Clones sampled Clones sampled
C ACE Richness Estimates D Rarefaction Curves
900+ 300 1
2 700 2
% 700+ 5
- zou -
<]
_ 500. _
£ £
g 300+ ‘z,' 100
100
: L] L] L} L] L] 1 c L] L] L} T L} 1
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Clones sampled Clones sampled

Figure S2. Sample-Based Assessments of Diversity and Coverage in Reciprocal
Transplantation Experiments

The pooled libraries from the intestines of conventionally-raised zebrafish (CONV-R fish;
libraries JFR0503-04), mice colonized with a zebrafish microbiota (Z-mice; libraries JFR0507-
12), conventionally-raised mice (CONV-R mice; JFR0505-06), and zebrafish colonized with a
normal mouse microbiota (M-zebrafish; JFR0513-18) were analyzed using DOTUR (Schloss and
Handelsman, 2005). The phylotype richness for each treatment is expressed as full bias corrected
Chaol richness estimates (panel A) and abundance-based coverage estimates (ACE; panel C).
The number of observed phylotypes (99%ID) and the number of sequences sampled are shown
as Collector’s curves (panel B) and Rarefaction curves (panel D). The addition of clones along

the X-axis is non-random (ordered by library), producing the variability seen in panels A and C.
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Figure S3. gRT-PCR Assays of the Responses of Germ-free Zebrafish to Colonization with
Individual Culturable Members of the Zebrafish and Mouse Gut Microbiota

Expression levels of complement factor b (bf) and hydroxyacylCoA dehydrogenase/3-
ketoacylCoA thiolase/enoyl CoA hydratase (hadha) were assessed using RNA extracted from the
pooled digestive tracts of 6dpf zebrafish inoculated since 3dpf with a CONV-R zebrafish
microbiota (Z-zebrafish), a CONV-R mouse microbiota (M-zebrafish), a consortium of 7
primary isolates (Consortium), a primary Enterococcus isolate (M2E1F06), a primary
Staphylococcus isolate (M2E1A04), a primary Citrobacter isolate (TIE1C07), a primary
Aeromonas isolate (T1E1A06), a primary Plesiomonas isolate (TIN1D03), a primary
Shewanella isolate (T1E1CO05), a primary Escherichia isolate (M1N2G03), an Escherichia coli
type strain (MG1655), an Aeromonas hydrophila type strain (A.hydrophila ATCC35654), or a

Pseudomonas aeruginosa type strain (PAO1). Data from biological duplicate pools (=10 animals



per pool) were normalized to 18S rRNA levels and results are expressed as mean fold-change

compared to GF controls + SEM. *** P<0.0001; **, P<0.001; *, P<0.05.
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Figure S4. The Epidermal Degeneration Phenotype in Fed GF Zebrafish Is Ameliorated
with Different Treatments

(A) Caudal region of a live 9dpf GF zebrafish, fed since 3dpf, displays loss of the transparency
and integrity of the fin fold epidermis (white arrowheads; Rawls et al., 2004). (B) Age-matched
fed GF zebrafish raised since 3dpf in the presence of activated carbon and ammonia-removing
cation exchange resin (GF+carbon). The result is improved epidermal transparency and integrity
(black arrowheads). GF zebrafish can survive under these conditions beyond 30dpf (data not
shown). (C) 9dpf zebrafish colonized since 3dpf with Pseudomonas aeruginosa PAO1 (P.
aeruginosa PAO1) do not develop the epidermal phenotype, as indicated by the healthy
transparent fin fold epithelium (black arrowheads). (D) In contrast, 9dpf larvae colonized since
3dpf with a primary Enterococcus isolate (M2E1F06) display a phenotype similar to GF controls

(white arrowheads). Scale bar: 500pum.
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Figure S5. Zebrafish Host Responses to the Gut Microbiota Are Attenuated in the Absence
of an Exogenous Nutrient Supply
6dpf zebrafish that were either germ-free (GF) or colonized since 3dpf with a CONV-R zebrafish
microbiota (Z-zebrafish) and fed an autoclaved diet beginning at 3dpf (Fed) were compared with
GF and Z-zebrafish siblings deprived of all food (Fasted). Expression levels of myeloperoxidase
(mpo), proliferating cell nuclear antigen (pcna), and fasting-induced adipose factor (fiaf) were
assessed by qRT-PCR using RNA extracted from the pooled digestive tracts of 6dpf zebrafish.
Data from biological duplicate pools (=10 animals per pool) were normalized to 18S rRNA
levels and the results are expressed as mean fold-change compared to fed GF controls £ SEM.
Note that nutrient (fiaf), innate immune (mpo) and proliferative responses (pcna) to colonization
are markedly attenuated in fasted animals. Similar fiaf results were obtained in fed and fasted
6dpf zebrafish colonized with either P. aeruginosa PAO1 or A. hydrophila ATCC35654 since
3dpf (data not shown). Importantly, fasting did not produce a statistically significant reduction in
gut microbial density in any of the colonization groups (data not shown). The sensitivity of 6dpf
zebrafish to the presence of an exogenous nutrient supply was unanticipated: at this age,

zebrafish have been consuming food for only 1-2 days; moreover, many 6dpf zebrafish have not



completed yolk resorption and, therefore, are presumably still utilizing this endogenous food

source. *** P<0.0001; **, P<0.001; *, P<0.05.
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In vivo imaging and genetic analysis link bacterial
motility and symbiosis in the zebrafish gut

John F. Rawls***, Michael A. Mahowald*, Andrew L. Goodman*, Chad M. Trent", and Jeffrey I. Gordon**

*Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108; and TDepartment of Cell and Molecular Physiology,

University of North Carolina, Chapel Hill, NC 27599

Contributed by Jeffrey |. Gordon, March 14, 2007 (sent for review January 26, 2007)

Complex microbial communities reside within the intestines of hu-
mans and other vertebrates. Remarkably little is known about how
these microbial consortia are established in various locations within
the gut, how members of these consortia behave within their dy-
namic ecosystems, or what microbial factors mediate mutually ben-
eficial host-microbial interactions. Using a gnotobiotic zebrafish-
Pseudomonas aeruginosa model, we show that the transparency of
this vertebrate species, coupled with methods for raising these
animals under germ-free conditions can be used to monitor microbial
movement and localization within the intestine in vivo and in real
time. Germ-free zebrafish colonized with isogenic P. aeruginosa
strains containing deletions of genes related to motility and patho-
genesis revealed that loss of flagellar function results in attenuation
of evolutionarily conserved host innate immune responses but not
conserved nutrient responses. These results demonstrate the utility of
gnotobiotic zebrafish in defining the behavior and localization of
bacteria within the living vertebrate gut, identifying bacterial genes
that affect these processes, and assessing the impact of these genes
on host-microbial interactions.

Danio rerio | establishment of a gut microbiota | flagellar motility |
host-microbial symbiosis and mutualism | Pseudomonas aeruginosa

S tarting at birth, we are colonized by communities of micro-
organisms that establish residency on our external and
internal surfaces. These resident microbes outnumber our hu-
man cells by an order of magnitude, and their aggregate genomes
(microbiome) specify important physiologic traits that are not
encoded in our own genome (1). The vast majority of these
microbes reside in our intestine: most of our 10-100 trillion
gut-dwelling microbes belong to the domain Bacteria, although
members of Archaea (Euryachaeota and Crenarchaeota) and
Eukarya are also represented (2-6). Over the last 50 years,
experiments comparing mice and rats raised in the absence of
any microorganisms [germ-free (GF)] to those colonized with
members of gut microbial communities have revealed that the
microbiota plays an integral role in many aspects of intestinal and
extraintestinal host biology, ranging from postnatal development
of the gut’s blood and lymphatic vascular systems (7, 8) to the
proliferative activity of intestinal epithelial cells (9, 10), metab-
olism of ingested xenobiotics (1, 11), regulation of energy
balance (12-14), maturation of the innate and adaptive immune
systems (15-18), heart size (19), and behavior (e.g., locomotor
activity) (14).

The notion that each of us is a supraorganism, composed of
microbial and human parts, focuses attention on the question of
how our microbial communities are assembled (20). Under-
standing the dynamic patterns of microbial entry into and
movement within their gut habitats is critical for deciphering
how different species establish and maintain a presence in the
intestinal ecosystem, and how they interact with their host and
other microbial community members. Fluorescence in situ hy-
bridization and confocal and electron microscopic analyses have
provided static rather than dynamic views of the positioning of
microbial cells within the mammalian intestine, and in vivo
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bioluminescence analyses do not permit resolution of individual
microbial cells.

The zebrafish (Danio rerio) possesses several key attributes
that make it a distinctively powerful model organism for ad-
dressing these questions. First, the zebrafish digestive tract is
structurally similar to that of mammals, with proximal-distal
specification of functions and multiple self-renewing epithelial
cell lineages (21, 22). Second, comparisons of GF zebrafish and
those colonized with a microbiota harvested from the intestines
of conventionally raised (CONV-R) zebrafish or mice have
revealed a broad range of host processes that are impacted by the
gut microbiota and that are conserved between mammals and
fish (23-25). Moreover, individual bacterial representatives of
the zebrafish and mouse gut microbiotas have been identified
that can provoke evolutionarily conserved host responses in
gnotobiotic zebrafish (23-25). Third, this vertebrate species and
its gut are optically transparent from the time of fertilization
through the onset of adulthood. This unusual feature provides an
opportunity to make real-time in vivo observations of microbial—
microbial and microbial-host interactions. Because zebrafish
larvae can be grown in a 96-well plate format, their transparency
could also be used to conduct genetic and chemical screens for
host and/or microbial factors that mediate host-microbial inter-
actions. Finally, with the development of methods for rearing
zebrafish under GF conditions, reciprocal transplantations of
gut communities from normal mouse and zebrafish donors into
GF zebrafish and mouse recipients have revealed that differ-
ences in the normal gut communities of these vertebrates arise
in part from distinct selective pressures imposed within their
respective gut habitats. These experiments also revealed a
striking degree of conservation of host responses to the different
microbiotas (24).

We have used a simplified system, consisting of GF zebrafish
colonized with the Gram-negative y-proteobacterium Pseudo-
monas aeruginosa, to define the mechanisms by which mem-
bers of the microbiota elicit these conserved host responses. P.
aeruginosa is best known as an opportunistic pathogen. How-
ever, it has several characteristics that facilitate its use as a
model mutualist in this system. Pseudomonads are common
members of the fish gut microbiota (23-28) as well as the gut
microbiota of some mammals (e.g., the African zebra and
others; R. E. Ley and J.I.G, unpublished observations) [see
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PAO1 pMF230 MG1655 pRZT3

Fig. 1. Gut bacteria display diverse behaviors within the intestines of gnotobiotic zebrafish. (A and D) Whole-mount preparation of a live 3.5-dpf zebrafish
colonized since 3 dpf with GFP-expressing P. aeruginosa PAO1 (PAO1 pMF230) demonstrates the transparency of the developing zebrafish intestine. Brightfield
microscopy of the anterior intestine (segment 1, A) shows the intestinal lumen (lum) and the adjacent intestinal epithelium (ep). Fluorescence time-lapse
microscopy of the same field (D) shows the movements of individual bacteria over the course of 10 frames, or 4 sec (D extracted from SI Movie 3). The locations
of individual bacteria in the first (1) and the last (10) frames are numbered accordingly. (B and E) Brightfield (B) and fluorescence time-lapse (E) microscopy of
the same field from a live 6-dpf zebrafish, colonized since 3 dpf with PAO1 pMF230, shows increasing bacterial density and behavioral complexity in the
midintestine (junction of segments 1 and 2) over the course of 10 frames or 2.6 sec (E extracted from SI Movie 4). Note that the intestines shown in D and E both
contain bacteria that are nonmotile in association with the host epithelium or luminal contents (yellow), whereas other bacteria exhibit high rates of motility
in both ascending (distal to proximal; red tracks) and descending (green tracks) directions. Note that ascending and descending bacteria were tracked for only
the first several frames because they quickly moved out of the focal plane; the first and last frames over which bacteria were tracked are numbered. (Cand F)
Brightfield (C) and fluorescence time-lapse (F) microscopy of a live 4.5-dpf zebrafish colonized since 3 dpf with DsRed-expressing E. coli MG 1655 (MG1655 pRZT3)
showing movement of luminal bacteria (green tracks) in the midintestine (segment 1). Over the course of 14 frames or 14 sec (F extracted from SI Movie 5), some
bacteria appear adherent to the epithelium or luminal structures (yellow track), whereas most bacterial motion is synchronous and attributed to intestinal

motility (green tracks). Anterior is to the left, and dorsal is to the top in all images. (Scale bars: 20 um.)

supporting information (SI) Materials and Methods and Fig. 4
for a 16S rRNA sequence-based tree of zebrafish Pseudo-
monads and their relationship to P. aeruginosa]. Although
Pseudomonads are rare members of the intestinal microbiota
of healthy humans, their representation is increased in certain
pathologic states, notably inflammatory bowel diseases (29—
31). In an initial survey, 10 different bacterial species repre-
sentative of the zebrafish or mouse gut microbiota were tested
for their ability to elicit the innate immune and nutrient
metabolic responses produced when a complete microbiota is
introduced into GF zebrafish hosts. In this survey, P. aerugi-
nosa was the most potent inducer of these responses (24) (see
SI Fig. 5). Finally, in addition to the large body of knowledge
that exists about P. aeruginosa biology, valuable genetic re-
sources are available, including a finished genome sequence
for strain PAO1 (32), deep draft genome assemblies for several
other strains (PA14, C3719, 2192, PA7, and PACS2), and
saturation-level sequenced transposon insertion libraries for
strains PAO1 (33) and PA14 (34).

In the present study, we take advantage of the transparency of
zebrafish and these genetic resources to demonstrate a linkage
between motility/flagellar function and regulation of conserved
innate immune responses.

Results

Real-Time in Vivo Imaging of Microbial Consortia and Individual
Bacterial Species in the Transparent Intestine of Gnotobiotic Ze-
brafish. As noted above, the transparency of the zebrafish
provides opportunities for exploring the movement as well as
localization of microbes within their intestinal habitat through
real-time microscopy of live whole-mount zebrafish. CONV-R
zebrafish typically hatch from the GF environment within their
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protective chorions at 3 days postfertilization (dpf). This hatch-
ing event coincides with the anterior digestive tract achieving full
patency (21, 35). Fluorescence in situ hybridization has revealed
that the zebrafish digestive tract is colonized by bacteria as early
as 4 dpf (25); however, the timing and route of initial coloniza-
tion remained unclear.

Therefore, we first colonized GF zebrafish at 3 dpf with a
normal zebrafish microbiota harvested from adult CONV-R
zebrafish (a process called conventionalization) and then imaged
their digestive tracts at different time points. In vivo bright-field
microscopy of the gut microbiota in these conventionalized
(CONVD) animals revealed a striking amount of microbial
movement within their intestinal lumen (SI Movies 1 and 2),
although the activity of individual microorganisms was difficult
to monitor.

Upon exposure to P. aeruginosa, 3-dpf GF zebrafish are
colonized at densities similar to the conventional zebrafish gut
microbiota (10*-10° cfu per gut at 6 dpf; SI Table 1) and elicit
host responses that are conserved across vertebrate hosts (see
below and ref. 24). To facilitate real-time in vivo microscopic
observation of individual microbial cells, we introduced a plas-
mid that allows constitutive expression of the gene encoding
GFP under the control of the trc promoter (pMF230) (36) into
P. aeruginosa strain PAOL1 to create PAO1 pMF230. GF 3-dpf
zebrafish exposed to 10* cfu of P. aeruginosa PAO1 pMF230/ml
gnotobiotic zebrafish medium (GZM) were initially colonized
with a small cohort of bacteria that was readily seen as early as
3.5 dpf (Fig. 1 A and D and SI Movie 3). Because the anus does
not achieve patency until ~4 dpf (21, 35), our findings establish
that the anterior digestive tract becomes colonized within just a
few hours after its lumen first opens.

The size of this monocomponent community increased rapidly
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Fig. 2.
shown that include segments 1 and 2 of the intestine of a 6-dpf zebrafish
colonized since 3 dpf with P. aeruginosa strain PAO1. (A) Bacteria are clustered
together in the luminal space, and some remain close to the host epithelium
(arrowheadin A). (Band C) Bacteria (arrowheads) are also observed in association
with unidentified electron-dense laminated objects in the lumen (arrows in B)
and undergoing fission (C). (Scale bars: A, 3 um; B, 1 um; C, 500 nm.)

TEM of gut bacteria in gnotobiotic zebrafish. Transverse sections are

over the course of the next 2.5 days. As in CONVD zebrafish,
bacteria in 6-dpf P. aeruginosa monoassociated zebrafish were
observed along the entire proximal-distal length of the intestine
(e.g., SI Movie 4). Individual bacteria displayed a range of
behaviors, from intimate association with the intestinal epithe-
lium, to incorporation into large multicellular structures in the
luminal space, to rapid movement of planktonic cells through the
lumen (Fig. 1 B and E and SI Movie 4). In 6-dpf hosts, individual
bacteria were observed moving at speeds as high as 24 pum/sec
within the lumen (equivalent to ~12 body lengths per sec). This
movement is likely the result of flagella-mediated swimming
motility (see below).

A central challenge for members of a gut microbiota is to avoid
washout from its continuously perfused ecosystem. Static scan-
ning electron microscopic studies in the gnotobiotic mouse
intestine indicate this can be achieved by bacterial attachment to
nutrient platforms consisting of partially digested food particles,
exfoliated fragments of mucus, and shed epithelial cells (37, 38).
From an engineering perspective, these platforms represent well
settling particles, analogous to those that prevent microbial
washout from human-made bioreactors (37).

Our gnotobiotic zebrafish provided a dynamic view of the
interactions of bacteria with such luminal contents. Similar to the
microbiota in CONV-R and CONVD zebrafish, PAO1 pMF230
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was observed interacting with large slowly moving luminal
structures (SI Movie 2 and data not shown) that were distributed
along the length of the gut lumen; similar masses were observed
in GF animals, indicating that their formation does not depend
upon microbes. Individual bacterial cells could be seen inter-
mittently contacting the surface of these masses (SI Movie 2).

To determine whether bacteria reside within these structures,
we fixed P. aeruginosa PAO1 monoassociated 6-dpf zebrafish en
bloc and processed them for transmission electron microscopy
(TEM): this en bloc fixation was designed to minimize disruption
of the in vivo spatial relationships among microbes, other gut
contents, and host cells. Transverse TEM sections through the
zebrafish intestine revealed that the luminal masses contained
many intact bacteria mixed with other gut contents, including
mucus-like material and large electron-dense lamina (Fig. 24
and B). Consistent with our real-time in vivo imaging results,
bacterial cells were also observed outside these luminal aggre-
gates in close juxtaposition to the host epithelium (Fig. 2A4).
TEM disclosed that in CONV-R, CONVD, and P. aeruginosa-
monoassociated zebrafish, actively dividing and nondividing
bacterial cells were closely associated with epithelial cells in the
intact mucosa and in the luminal structures (Fig. 2C plus data not
shown) (23).

Together, these findings show that P. aeruginosa appears to
recapitulate the range of movements, as well as the locations
occupied by members of the intestinal microbiota. To investigate
whether the behavior of P. aeruginosa in this system was char-
acteristic of other +y-Proteobacteria, we colonized 3-dpf GF
zebrafish with Escherichia coli MG1655 carrying a plasmid that
directs constitutive expression of red fluorescent protein
(DsRed) under the control of the lac promoter (MG1655
pRZT3). Strain MG1655 pRZT3 displayed significantly less
motility than strain PAO1 pMF230 in 6-dpf zebrafish digestive
tracts (Fig. 1 E and F and SI Movies 4 and 5), even though its
density of colonization was not significantly different from P.
aeruginosa (SI Table 1). In contrast, in vitro assays revealed that
E. coli MG1655 has higher rates of swimming motility than P.
aeruginosa PAOL1 in soft agar (SI Fig. 6), suggesting that the
zebrafish gut environment influences motility in these bacterial
species.

Characterization of P. aeruginosa as a Model Zebrafish Mutualist. P.
aeruginosa strains generally express one of two flagellin proteins
(type-a and -b flagellin) that differ by 35% in amino acid
sequence (39). To determine whether the motility phenotype
and other effects on the host were specific to type-b strains such
as PAO1, we tested a well characterized P. aeruginosa strain that
expresses type-a flagellin (strain PAK) (40). Both strains colo-
nized the digestive tracts of GF zebrafish to similar densities (SI
Table 1) and were highly motile in vivo (SI Movies 3 and 4 and
data not shown). Moreover, both strains elicited evolutionarily
conserved nutrient and innate immune responses: quantitative
RT-PCR (qRT-PCR) assays conducted on RNA extracted from
whole 6-dpf monoassociated zebrafish indicated they suppressed
expression of fiaf [also known as angptl4; encodes a secreted
inhibitor of lipoprotein lipase (12, 41)] and carnitine palmitoyl-
transferase 1a (cptla; involved in mitochondrial oxidation of fatty
acids) and induced expression of serum amyloid a (saa; an
acute-phase protein) and myeloperoxidase (mpo; a granulocyte-
specific biomarker of the innate immune response to the normal
gut microbiota) (23, 24) (Fig. 3 and SI Table 2).

Animal models of P. aeruginosa infection and disease have
identified specific factors that this bacterium uses for virulence.
A multicomponent Type III secretion system (TTSS) functions
to translocate effector proteins into host cells. Strains PAO1 and
PAK both secrete three effectors by the TTSS (ExoS, ExoT, and
Exo0Y); these toxins target various host signaling pathways,
leading to disruption of the actin cytoskeleton and cytotoxicity
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Fig. 3. The impact of P. aeruginosa flagellar mutants on host responses in
gnotobiotic zebrafish. Expression levels of serum amyloid a (saa), myeloperoxi-
dase (mpo), fasting-induced adipose factor (fiaf), and carnitine palmitoyltrans-
ferase 1a (cptia) were assessed by qRT-PCR by using RNA extracted from whole
6-dpf larvae colonized since 3 dpf with P. aeruginosa PAK wild-type strain, PAK
exsA deletion mutant (PAK AexsA), PAK retS deletion mutant (PAK AretS), PAK
pilA deletion mutant (PAK ApilA), PAK fliC deletion mutant (PAK AfliC), or PAK
motABCD deletion mutant (PAK AmotABCD). Data from biological duplicate
pools (6-17 animals per pool) were normalized to 18S rRNA levels. Normalized
mRNA levels in colonized fish were referenced against age-matched GF controls
(AAC; method), and the results are expressed as mean percent change relative to
the PAK wild-type strain = SEM. #**, P < 0.0001; **, P < 0.001 compared with
wild-type, based on a two-tailed Student’s t test.

(42). The TTSS is required for colonization and virulence in a
range of mouse models of infection (43-45).

To test whether these gene products play a role in P. aeruginosa
colonization of the zebrafish gut, we exposed GF 3-dpf zebrafish
to the PAK strain carrying a deletion for the TTSS master
transcriptional regulator exsA4 (46). In many of the pathogenesis
models of P. aeruginosa infection, this mutant exhibits decreased
virulence and colonization (43, 47, 48). In contrast, the wild-type
and exsA mutant strains achieved comparable densities of col-
onization within the intestines of 6-dpf zebrafish (SI Table 1),
indicating that the TTSS and its secreted toxins are not essential
for colonization. In addition, qRT-PCR analysis showed that the
exsA mutant strain was capable of regulating expression of fiaf,
cptla, saa, and mpo in a manner that was not significantly
different from its wild-type parent strain (Fig. 3).

P. aeruginosa uses the RetS hybrid two-component system to
coordinately activate TTSS expression and repress exopolysac-
charide production (49). Similar to exs4 mutants, deletion of retS
leads to loss of the TTSS. In addition, these mutants overproduce
exopolysaccharides implicated in biofilm formation (49). To
ascertain whether overproduction of these exopolysaccharides
influenced P. aeruginosa—zebrafish interactions, we introduced
an isogenic PAK retS mutant strain into 3-dpf GF hosts. As with
the TTSS mutant, neither colonization density nor the response
of host innate immune and nutrient biomarker genes differed
between the mutant and wild-type strains when measured at 6
dpf (Fig. 3 and SI Table 1).

P. aeruginosa utilizes several surface appendages for coloni-
zation and virulence, including a single polar flagellum and Type
IV pili. To test the role of bacterial movement on host responses,
we examined isogenic PAK strains with loss-of-function muta-
tions in fliC and pil4 (40, 50). The flagellar apparatus of P.
aeruginosa is assembled through an intricate regulatory process,
concluding with synthesis and assembly of FliC protein into the
flagellar filament (40, 51). Transmembrane ion gradients pro-
vide energy for physical rotation of the filament by the flagellar
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motor (51). The motor consists of two structures: the rotor (the
switch that determines direction of rotation) and the stator (the
stationary component through which the rotor turns). Because
FliC is the major structural component of the flagellar filament,
the fliC mutant fails to assemble an intact flagellar filament (40,
51, 52). The pilA mutant, which is missing the major pilin
structural subunit, does not exhibit pili-dependent twitching or
swarming motility (53).

Both mutants achieved a normal density of colonization in the
zebrafish gut (SI Table 1). However, the fliC strain did not show the
highly motile phenotype characteristic of wild-type P. aeruginosa in
this habitat or in vitro (SI Fig. 6 and data not shown), suggesting that
swimming motility is a primary method of locomotion in vivo.
qRT-PCR assays revealed that, like wild-type P. aeruginosa, the fliC
and pilA mutants were able to suppress expression of the nutrient
metabolic biomarkers fiaf and cptla in 6-dpf larvae (Fig. 3). Unlike
the wild-type or three other mutant strains, fliC-deficient bacteria
failed to elicit a significant increase in expression of innate immune
response biomarkers saa or mpo (reference controls, GF 6-dpf
animals; Fig. 3).

The attenuated host immune responses to fliC mutants could
be caused by absence of FliC protein, the absence of an intact
flagellar filament, and/or the absence of flagellar function. To
help distinguish among these possibilities, we colonized 3-dpf
GF zebrafish with a P. aeruginosa PAK strain that carries
deletions of the motAB and motCD genes (AmotABCD), encod-
ing the bacterium’s two flagellar stators. PAK motABCD mu-
tants assemble an intact flagellar filament that contains the FliC
protein, but the assembled filament is nonmotile (SI Fig. 6)
because of a failure of filament rotation (54, 55). As with the fliC
mutant, we found that the motABCD mutant was able to colonize
6-dpf zebrafish at densities comparable to the isogenic wild-type
strain (SI Table 1) and to recapitulate its elicited nutrient
responses: thus, flagellar motility is not required for these host
reactions to colonization (Fig. 3). Also similar to fliC mutants,
innate immune responses to motABCD mutants in 6-dpf ze-
brafish larvae were significantly attenuated (Fig. 3). Therefore,
the ability of P. aeruginosa to evoke these conserved innate
immune responses to a complete gut microbiota is due in part to
flagellar function, rather than exclusively to the presence of an
intact flagellar filament and its component proteins such as FliC.

Discussion

For P. aeruginosa and other bacteria, flagella perform several
nonexclusive functions that can impact bacterial colonization and
host responses in the digestive tract. First, flagella mediate swim-
ming motility that can facilitate interactions with and invasion of
host cells (56), as well as chemotaxis toward preferred habitats and
nutrient sources (57) [e.g., studies of V. cholerae mutants indicate
bacterial motility and chemotaxis are important virulence deter-
minants in the (mouse) intestine (58)]. Second, flagella can act as
adhesins that bind bacteria to host epithelial cells independent of
their role in motility (59, 60). Third, flagella can serve as a secretion
apparatus for virulence factors (61, 62), a role that may be played
by P. aeruginosa flagella (63). Finally, flagellin can serve as a major
immunostimulatory antigen recognized by Toll-like receptor 5
(TLRS) homologs in both fish and mammals (64—66). Activation of
mammalian TLRS triggers NF-«kB-dependent proinflammatory
signaling pathways that stimulate production of acute-phase pro-
teins and neutrophil chemoattractants (67, 68). P. aeruginosa fla-
gella can also bind the glycolipid asialoGM1, leading to TLR2-
dependent activation of similar signaling pathways (69). Recent
studies have revealed that flagellin from other bacterial species can
also be detected by TLR5-independent mechanisms (70).

Our observations suggest that flagellar function, including the
swimming motility observed by real-time in vivo microscopy, is
an important component of host-bacterial interaction in this
system. We hypothesize that flagella-dependent swimming mo-
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tility promotes physical interaction between P. aeruginosa and
the host epithelium, where the presence of surface-attached
antigens (including the flagellum itself) and other bacterial
products can be monitored by the host. Although it remains
possible that flagella-dependent immune responses are ulti-
mately stimulated by FliC acting as an antigen, the attenuated
immune response to the flagellated but nonmotile motABCD
mutant shows that flagella motor function is required for this
process to occur. These observations set the stage for future
experiments that further dissect how dynamic interactions be-
tween P. aeruginosa and the gut epithelium mediate the observed
flagellar-motility-dependent host response in zebrafish.

Our results demonstrate the utility of using gnotobiotic ze-
brafish for defining and monitoring microbial behavior and
localization within the living vertebrate gut and for identifying
bacterial genes that affect host-microbial interactions. As such,
this genetically pliable host provides an opportunity to explore
how habitat influences the establishment of a microbiota, and
how microbial dynamics in vivo affect host biology. Although P.
aeruginosa is often used as a model opportunistic pathogen, our
study indicates that it can also serve as a model mutualist,
capable of colonizing the gut of gnotobiotic zebrafish and
eliciting nutrient metabolic and innate immune responses that
have been conserved during the ~400 million years since fish and
mammals diverged from their last common ancestor. The com-
bined advantages of P. aeruginosa (genome sequence, saturation-
level insertion libraries, and genetic tools) and gnotobiotic
zebrafish (conservation of metabolic and immune responses to
a microbiota with mammals, amenability to high-throughput
genetic and chemical screens and the ability to directly observe
the gut and its microbial inhabitants in a living vertebrate) offer
an opportunity to systematically decipher the foundations of
host-microbial mutualism in the gut and perhaps to apply the
findings to our own species.

Materials and Methods

Animal Husbandry. All experiments using zebrafish were per-
formed by using protocols approved by the Animal Studies
Committees of Washington University and the University of
North Carolina at Chapel Hill.

Zebrafish gametes were expressed manually from CONV-R
adults (C32 inbred strain), fertilized in vitro, and embryos
derived as GF according to established protocols (23). GF
zebrafish were reared under a 14-h light cycle in sterile vented
tissue culture flasks (Becton Dickinson, Sparks, MD) at an
average density of 1.3 individuals per milliliter of GZM (GZM
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components are defined in ref. 23). Animals were maintained at
28.5°C in an air incubator. Fish were fed daily beginning at 3 dpf
with a sterilized solution containing 0.1 mg of ZMO000 fish food
(ZM Ltd., Winchester, United Kingdom) per milliliter of GZM.
A 90% water change was performed before each daily feeding,
starting at 3 dpf. GF zebrafish were monitored routinely for
sterility by using culture-based methods (23).

Colonization and in Vivo Imaging. At the time of hatching at 3 dpf,
we exposed GF zebrafish reared in sterile vented tissue culture
flasks to (i) an unfractionated gut microbiota harvested directly
from CONV-R adult C32 donors, (ii) P. aeruginosa PAO1
containing pMF230 [harbors GFP under the control of a con-
stitutive #r¢ promoter (36); supplied by Michael Franklin, Mon-
tana State University, Bozeman, MT], (iii) E. coli MG1655
containing pPRZT3 (DsRed under the control of a constitutive
lac promoter; a gift from Wilbert Bitter, Vrije University Med-
ical Centre, Vrije, The Netherlands), (iv) wild-type P. aeruginosa
PAK or the isogenic AfliC strain carrying pSMC21 [a derivative
of pSMC2 (71), harboring GFP under the control of a consti-
tutive lac promoter; provided by Matthew Wolfgang, University
of North Carolina, Chapel Hill], or (v) isogenic wild-type or
mutant P. aeruginosa PAK strains without plasmids (supplied by
Matthew Wolfgang and Reuben Ramphal, University of Florida,
Gainesville, FL; plus Stephen Lory, Harvard University, Boston,
MA). Bacterial strains were grown overnight at 37°C in Luria—
Bertani broth before inoculation. Microbes were introduced at
a density of 10* cfu/ml GZM. A complete list of bacterial strains
and plasmids used can be found in SI Table 1.

Monoassociated and age-matched CONVD zebrafish were
imaged at various times after exposure to bacteria by using the
following protocol. Animals were anesthetized in 0.2 mg/ml
Tricaine (Sigma, St. Louis, MO), placed on a 40 X 22-mm glass
coverslip, and imbedded in low-melting-point 1% NuSieve GTG
agarose (FMC Bioproducts, Philadelphia, PA) containing 0.2
mg/ml Tricaine anesthetic. After the agarose quickly solidified,
animals were viewed by using an Axiovert 200M inverted
fluorescence microscope and Axiovision 4.1 software (Zeiss,
Thornwood, NY).
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The adult human distal gut microbial community is typically dom-
inated by 2 bacterial phyla (divisions), the Firmicutes and the
Bacteroidetes. Little is known about the factors that govern the
interactions between their members. Here, we examine the niches
of representatives of both phyla in vivo. Finished genome se-
quences were generated from Eubacterium rectale and E. eligens,
which belong to Clostridium Cluster XIVa, one of the most common
gut Firmicute clades. Comparison of these and 25 other gut Firmi-
cutes and Bacteroidetes indicated that the Firmicutes possess
smaller genomes and a disproportionately smaller number of
glycan-degrading enzymes. Germ-free mice were then colonized
with E. rectale and/or a prominent human gut Bacteroidetes,
Bacteroides thetaiotaomicron, followed by whole-genome tran-
scriptional profiling, high-resolution proteomic analysis, and bio-
chemical assays of microbial-microbial and microbial-host inter-
actions. B. thetaiotaomicron adapts to E. rectale by up-regulating
expression of a variety of polysaccharide utilization loci encoding
numerous glycoside hydrolases, and by signaling the host to
produce mucosal glycans that it, but not E. rectale, can access. E.
rectale adapts to B. thetaiotaomicron by decreasing production of its
glycan-degrading enzymes, increasing expression of selected amino
acid and sugar transporters, and facilitating glycolysis by reducing
levels of NADH, in part via generation of butyrate from acetate, which
in turn is used by the gut epithelium. This simplified model of the
human gut microbiota illustrates niche specialization and functional
redundancy within members of its major bacterial phyla, and the
importance of host glycans as a nutrient foundation that ensures
ecosystem stability.

human gut Firmicutes and Bacteroidetes | carbohydrate metabolism |
gnotobiotic mice | gut microbiome | nutrient sharing

he adult human gut houses a bacterial community containing

trillions of members comprising thousands of species-level
phylogenetic types (phylotypes). Culture-independent surveys of
this community have revealed remarkable interpersonal varia-
tions in these strain- and species-level phylotypes. Two bacterial
phyla, the Firmicutes and the Bacteroidetes, commonly domi-
nate this ecosystem (1), as they do in the guts of at least 60
mammalian species (2).

Comparative analysis of 5 previously sequenced human gut
Bacteroidetes revealed that each genome contains a large rep-
ertoire of genes involved in acquisition and metabolism of
polysaccharides. This repertoire includes (i) up to hundreds of
glycoside hydrolases (GHs) and polysaccharide lyases (PLs); (if)
myriad paralogs of SusC and SusD, outer membrane proteins
involved in recognition and import of specific carbohydrate
structures (3); and (iii) a large array of environmental sensors
and regulators (4). These genes are assembled in similarly
organized, selectively regulated polysaccharide utilization loci

www.pnas.org/cgi/doi/10.1073/pnas.0901529106

(PULSs) that encode functions necessary to detect, bind, degrade
and import carbohydrate species encountered in the gut habitat—
either from the diet or from host glycans associated with mucus
and the surfaces of epithelial cells (5-7). Studies of gnotobiotic
mice colonized only with human gut-derived Bacteroides thetaio-
taomicron have demonstrated that this organism can vary its
pattern of expression of PULs as a function of diet, e.g., during
the transition from mother’s milk to a polysaccharide-rich chow
consumed when mice are weaned (5), or when adult mice are
switched from a diet rich in plant polysaccharides to a diet devoid
of these glycans and replete with simple sugars (under the latter
conditions, the organism forages on host glycans) (6, 7).

Our previous functional genomic studies of the responses of B.
thetaiotaomicron to cocolonization of the guts of gnotobiotic
mice with Bifidobacterium longum, an Actinobacterium found in
the intestines of adults and infants, or with Lactobacillus casei, a
Firmicute present in a number of fermented diary products, have
shown that B. thetaiotaomicron adapts to the presence of these
other microbes by modifying expression of its PULs in ways that
expand the breadth of its carbohydrate foraging activities (8).

These observations support the notion that gut microbes may
live at the intersection of 2 forms of selective pressure: bot-
tom-up selection, where fierce competition between members of
a community that approaches a population density of
10! to 10'? organisms per milliliter of colonic contents drives
phylotypes to assume distinct functional roles (niches); and
top-down selection, where the host selects for functional redun-
dancy to ensure against the failure of bioreactor functions that
could prove highly deleterious (9, 10).

The gene content, genomic arrangement and functional prop-
erties of PULs in sequenced gut Bacteroidetes illustrate the
specialization and functional redundancy within members of this
phylum. They also emphasize how the combined metabolic
activities of members of the microbiota undoubtedly result in
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interactions that are both very dynamic and overwhelmingly
complex (at least to the human observer), involving multiple
potential pathways for the processing of substrates (including the
order of substrate processing), varying patterns of physical
partitioning of microbes relative to substrates within the eco-
system, plus various schemes for utilization of products of
bacterial metabolism. Such a system likely provides multiple
options for processing of a given metabolite, and for the types of
bacteria that can be involved in these activities.

All of this means that the task of defining the interactions of
members of the human gut microbiota is daunting, as is the task
of identifying general principles that govern the operation of this
system. In the present study, we have taken a reductionist
approach to begin to define interactions between members of the
Firmicutes and the Bacteroidetes that are commonly repre-
sented in the human gut microbiota. In the human colon,
Clostridium cluster XIVa is 1 of 2 abundantly represented
clusters of Firmicutes. Therefore, we have generated the initial
2 complete genome sequences for members of the genus Eu-
bacterium in Clostridium cluster XIVa (the human gut-derived
E. rectale strain ATCC 33656 and E. eligens strain ATCC 27750)
and compared them with the draft sequences of 25 other
sequenced human gut bacteria belonging to the Firmicutes and
the Bacteroidetes. The interactions between E. rectale and B.
thetaiotaomicron were then characterized by performing whole-
genome transcriptional profiling of each species after colonization
of gnotobiotic mice with each organism alone, or in combination
under 3 dietary conditions. Transcriptional data were verified by
mass spectrometry of cecal proteins, plus biochemical assays of
carbohydrate metabolism. Last, we examined colonization and
interactions between these microbes from a host perspective; to do
so, we performed whole-genome transcriptional analysis of colonic
RNA prepared from mice that were germ-free or colonized with
one or both species. Our results illustrate how members of the
dominant gut bacterial phyla are able to adapt their substrate
utilization in response to one another and to host dietary changes,
and how host physiology can be affected by changes in microbiota
composition.

Results and Discussion

Comparative Genomic Studies of Human Gut-Associated Firmicutes
and Bacteroidetes. We produced finished genome sequences for
Eubacterium rectale, which contains a single 3,449,685-bp chro-
mosome encoding 3,627 predicted proteins, and Eubacterium
eligens, which contains a 2,144,190-bp chromosome specifying
2,071 predicted proteins, plus 2 plasmids (Table S1). We also
analyzed 25 recently sequenced gut genomes, including (i) 9
sequenced human gut-derived Bacteroidetes [includes the fin-
ished genomes of B. thetaiotaomicron, B. fragilis, B. vulgatus, and
Parabacteroides distasonis, plus deep draft assemblies of the B.
caccae, B. ovatus, B. uniformis, B. stercoris and P. merdae
genomes generated as part of the human gut microbiome
initiative (HGMI) (http://genome.wustl.edu/hgm/
HGM_frontpage.cgi)], and (if) 16 other human gut Firmicutes
where deep draft assemblies were available through the HGMI
(see Fig. S1 for a phylogenetic tree). We classified the predicted
proteins in these 2 genomes using Gene Ontology (GO) terms
generated via Interproscan, and according to the scheme incor-
porated into the Carbohydrate Active Enzymes (CAZy) data-
base [www.cazy.org (11)], and then applied a binomial test to
identify functional categories of genes that are either over- or
under-represented between the Firmicutes and Bacteroidetes
phyla. This analysis, described in SI Results, Figs. S2 and S3, and
Table S2 and Table S3, emphasized among other things that the
Firmicutes, including E. rectale and E. eligens, have significantly
fewer polysaccharide-degrading enzymes and more ABC trans-
porters and PTS systems than the Bacteroidetes (12). We
subsequently chose E. rectale and B. thetaiotaomicron as repre-
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sentatives of these 2 phyla for further characterization of their
niches in vivo, because of their prominence in culture-
independent surveys of the distal human gut microbiota (13, 14),
the pattern of representation of carbohydrate active enzymes in
their glycobiomes and E. rectale’s ability to generate butyrate as
a major end product of fermentation (15, 16). These choices set
the stage for an “arranged marriage” between a Firmicute and
a Bacteroidetes, hosted by formerly germ-free mice.

Functional Genomic Analyses of the Minimal Human Gut Microbiome.
Creating a ““minimal human gut microbiota” in gnotobiotic mice. Young
adult male germ-free mice belonging to the NMRI inbred strain
were colonized with B. thetaiotaomicron or E. rectale alone
(monoassociations) or cocolonized with both species (biassocia-
tion). Ten to fourteen days after inoculation by gavage, both
species colonized the ceca of recipient mice, fed a standard
chow diet rich in complex plant polysaccharides, to high levels
(n = 4-5 mice per treatment group in each of 3 independent
experiments; Fig. S44). Moreover, cecal levels of colonization
for both organisms were not significantly different between
mono- and biassociated animals (Fig. S4A4).

B. thetaiotaomicron'’s response to E. rectale. A custom, multispecies,
human gut microbiome Affymetrix GeneChip was designed
(81 Methods), and used to compare the transcriptional profile of
each bacterial species when it was the sole inhabitant of the
cecum, and when it coexisted together with the other species. A
significant number of B. thetaiotaomicron genes located in PULs
exhibited differences in their expression upon E. rectale coloni-
zation [55 of 106; P < 10~ (cumulative hypergeometric test);
see SI Methods for the statistical criteria for defining significantly
different levels of gene expression]. Of these 55 genes, 51 (93%)
were up-regulated (Fig. S4B; see Table S4A for a complete list
of differentially regulated B. thetaiotaomicron genes).

As noted in the Introduction, 2 previous studies from our lab
examined changes in B. thetaiotaomicron’s transcriptome in the
ceca of monoassociated gnotobiotic mice when they were
switched from a diet rich in plant polysaccharides to a glucose-
sucrose chow (6), or in suckling mice consuming mother’s milk
as they transitioned to a standard chow diet (5). In both
situations, in the absence of dietary plant polysaccharides, B.
thetaiotaomicron adaptively forages on host glycans. The genes
up-regulated in B. thetaiotaomicron upon cocolonization with E.
rectale have a significant overlap with those noted in these 2
previous datasets (P < 10~!4, cumulative hypergeometric test;
Fig. S4C). In addition, they include several of the genes up-
regulated during growth on minimal medium containing porcine
mucosal glycans as the sole carbon source (7). For example, in
cocolonized mice and in vitro, B. thetaiotaomicron up-regulates
several genes (BT3787-BT3792; BT3774-BT3777) (Fig. S4D)
used in degrading a-mannosidic linkages, a component of host
N-glycans and the diet. (Note that E. rectale is unable to grow in
defined medium containing a-mannan or mannose as the sole
carbon sources; Table S3). B. thetaiotaomicron also up-regulates
expression of its starch utilization system (Sus) PUL in the
presence of E. rectale (BT3698-3704) (Fig. S4D). This well-
characterized PUL is essential for degradation of starch mole-
cules containing =6 glucose units (17).

Thus, it appears that B. thetaiotaomicron adapts to the pres-
ence of E. rectale by up-regulating expression of a variety of
PULs so that it can broaden its niche and degrade an increased
variety of glycan substrates, including those derived from the
host that E. rectale is unable to access. There are a number of
reasons why the capacity to access host glycans likely represents
an important trait underpinning microbiota function and stabil-
ity: (i) glycans in the mucus gel are abundant and are a
consistently represented source of nutrients; (ii) mucus could
serve as a microhabitat for Bacteroidetes spp. to embed in (and
adhere to via SusD paralogs), thereby avoiding washout from the
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Fig. 1. Summary of metabolic responses of E. rectale to B. thetaiotaomicron. (A) Overview of metabolic pathways. (B) GeneChip probeset intensities and
qRT-PCR validation assays are shown for a subset of genes. Mean values for triplicate gRT-PCR determinations (n = 4 mice per group) = SD are plotted. Pts,
phosphotransferase systems; Gpd, glycerol 3-phosphate dehydrogenase; Pck, phosphoenolpyruvate carboxykinase; Por, pyruvate:ferredoxin oxidoreductase;
Hyd, hydrogenase; Rnf, NADH: ferredoxin oxidoreductase complex; Fdreq, reduced ferredoxin; Fdox oxidized ferredoxin; Pta, phosphate acetyltransferase; Bcd,
butyryl-CoA dehydrogenase; Etf electron transport flavoproteins; Cat, butyryl CoA: acetate CoA transferase; Glt, glutamate synthetase; GInA, glutamine
synthetase GIn, glutamine; Glu, glutamate; Mct1, monocarboxylate transporter 1.
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ecosystem; and (iif) the products of polysaccharide digestion/  verified by qRT-PCR assays in 2 independent experiments involv-
fermentation generated by Bacteroidetes spp. could be shared  ing 3—-4 mice per treatment group; Fig. 1B). This enzyme catalyzes
with other members of the microbiota that are also embedded in ~ an energy conserving reaction that produces oxaloacetate from
mucus (7). phosphoenolpyruvate. In a subsequent transaminase reaction, ox-
E. rectale’s response to B. thetaiotaomicron. E. rectale’s response to B.  aloacetate can be converted to aspartate, linking this branching of
thetaiotaomicron in the mouse cecum stands in marked contrast  the glycolytic pathway with amino acid biosynthesis (Fig. 14).

to B. thetaiotaomicron’s response to E. rectale. Carbohydrate Additional data support the notion that E. rectale is better able
metabolism genes, particularly GHs, are significantly overrep-  to access nutrients in the presence of B. thetaiotaomicron. For
resented among the E. rectale genes that are downregulated in  example, a number of peptide and amino acid transporters in E.
the presence of B. thetaiotaomicron compared with monoasso-  rectale are up-regulated, as are the central carbon and nitrogen
ciation; i.e., 12 of E. rectale’s predicted 51 GHs have significantly ~ regulatory genes CodY (EUBREC_1812), glutamate synthase
reduced expression while only 2 are up-regulated (Fig. S4 £ and  (EUBREC_1829) and glutamine synthetase (EUBREC_2543)
F; see Table S4B for a complete list of E. rectale genes regulated by ~ (Fig. 1B and Fig. S4H; note that these genes are also up-regulated
the presence of B. thetaiotaomicron). The 2 up-regulated GH genes  during growth in tryptone glucose medium; Table S4C).
(EUBREC_1072, a 6-P-B-glucosidase and EUBREC_3687, a cel-

lobiose phosphorylase) are predicted to break down cellobiose.  Changes in E. rectale’s fermentative pathways. E. rectale possesses
Three simple sugar transport systems with predicted specificity for ~ genes (EUBEC733-737; EUBEC1017) for the production of
cellobiose, galactoside, and arabinose/lactose (EUBREC3689,  butyrate that show high similarity to genes from other Clostridia.
EUBREC_0479, and EUBREC_1075-6, respectively) are among  This pathway involves condensation of 2 molecules of acetylCoA
the most strongly up-regulated genes (Fig. S4G and Table S4B).  to form butyrate and is accompanied by oxidation of NADH to
Phosphoenolpyruvate carboxykinase (Pck EUBREC_2002) is also  NAD™* (Fig. 1). Transcriptional and high-resolution proteomic
induced with cocolonization (Table S4B, GeneChip data were  analyses (see below) disclosed that the enzymes involved in

Mahowald et al. PNAS | April 7,2009 | vol. 106 | no.14 | 5861

MICROBIOLOGY


http://www.pnas.org/cgi/data/0901529106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/cgi/data/0901529106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/content/vol0/issue2009/images/data/0901529106/DCSupplemental/ST4.xls
http://www.pnas.org/cgi/data/0901529106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/content/vol0/issue2009/images/data/0901529106/DCSupplemental/ST4.xls
http://www.pnas.org/content/vol0/issue2009/images/data/0901529106/DCSupplemental/ST4.xls
http://www.pnas.org/cgi/data/0901529106/DCSupplemental/Supplemental_PDF#nameddest=SF4
http://www.pnas.org/content/vol0/issue2009/images/data/0901529106/DCSupplemental/ST4.xls

Lo L

P

2N

o Acetate Butyrate MCT-1 Propionate
121 25 4 ,; 0.45- Fkk 4.0 4 3 6.0 —
0.4+ 3.5+
101 20 . 5.0
8 8 i 8
S 81 $ S 0.304 - § 4.0-
£ = t 0 2.5- =
£ 0 154 o c o
T o 9 0.25- g =
36] | g g £ 20 g 301
F4 ] 3 0.204 s 3
8 2104 @ 2 154 ) I
< 4 2 3 04157 < 3 20-
E = 1.0 - =
5 4 0.10 4
24 1.0
0.05 4 l& 0.54
04 0- 0 +—T—r—T— 0+ 0t+—=— — 1
Bt Er BUEr GF Bt Er BtEr GF Bt Er BUEr GF Bt Er BtEr GF Bt Er BUEr
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production of butyrate are among the most highly expressed in
cecal contents recovered from mono- and biassociated mice
containing E. rectale (Table S4B and Table S6A).

In vitro studies have shown that in the presence of carbohy-
drates, E. rectale consumes large amounts of acetate for butyrate
production (18). Several observations indicate that E. rectale
utilizes B. thetaiotaomicron-derived acetate to generate in-
creased amounts of butyrate in the ceca of our gnotobiotic mice.
First, E. rectale up-regulates a phosphate acetyltransferase (EU-
BREC_1443; EC 2.3.1.8)—1 of 2 enzymes involved in the
interconversion of acetyl-CoA and acetate (Fig. 1B). Second,
cecal acetate levels are significantly lower in cocolonized mice
compared with B. thetaiotaomicron monoassociated animals
(Fig. 2). Third, although cecal butyrate levels are similar in E.
rectale mono- and biassociated animals (Fig. 2), expression of
mouse Mct-1, encoding a monocarboxylate transporter whose
inducer and preferred substrate is butyrate (19), is significantly
higher in the distal gut of mice containing both E. rectale and B.
thetaiotaomicron versus E. rectale alone (P < 0.05; Fig. 2). The
cecal concentrations of butyrate we observed are similar to those
known to up-regulate Mct-1 in colonic epithelial cell lines (19).
Higher levels of acetate (i.e., those encountered in B. thetaio-
taomicron monoassociated mice) were insufficient to induce any
change in Mct-1 expression compared with germ-free controls
(Fig. 2).

The last step in E. rectale’s butyrate production pathway is
catalyzed by the butyrylCoA dehydrogenase/electron transfer
flavoprotein (Bcd/Etf) complex (EUBREC_0735-0737;, EC
1.3.99.2), and offers a recently discovered additional pathway for
energy conservation, via a bifurcation of electrons from NADH
to crotonylCoA and ferredoxin (20). Reduced ferredoxin, in
turn, can be reoxidized via hydrogenases, or via the membrane-
bound oxidoreductase, Rnf, which generates sodium-motive
force (Fig. 1A4). The up-regulation and high level of expression
of these key metabolic genes when E. rectale encounters B.
thetaiotomicron (Fig. 1B; Table S4B and Table S6A) indicates
that E. rectale not only employs this pathway to generate energy,
but to also accommodate the increased demand for NAD+ in
the glycolytic pathway. Consistent with these observations, we
found that the NAD*/NADH ratio in cecal contents was signif-
icantly increased with cocolonization (Fig. 2).

The pathway for acetate metabolism observed in this simpli-
fied model human gut community composed of B. thetaiotaomi-
cron and E. rectale differs markedly from what is seen in mice that

5862 | www.pnas.org/cgi/doi/10.1073/pnas.0901529106

harbor B. thetaiotaomicron and the principal human gut metha-
nogenic archaeon, Methanobrevibacter smithii. When B. thetaio-
taomicron encounters M. smithii in the ceca of gnotobiotic mice,
there is increased production of acetate by B. thetaiotaomicron,
no diversion to butyrate and no induction of Mct-1 (21),
increased serum acetate levels, and increased adiposity com-
pared with B. thetaiotaomicron mono-associated controls. In
contrast, serum acetate levels and host adiposity (as measured by
fat pad to body weight ratios) are not significantly different
between B. thetaiotaomicron monoassociated and B. thetaio-
taomicron-E. rectale cocolonized animals (n = 4-5 animals/
group; n = 3 independent experiments; data not shown).

Colonic transcriptional changes evoked by E. rectale-B. thetaiotaomi-
cron cocolonization. We subsequently used Affymetrix Mouse 430
2 GeneChips to compare patterns of gene expression in the
proximal colons of mice that were either germ-free, monoasso-
ciated with E.rectale or B. thetaiotaomicron, or cocolonized with
both organisms (n = 4 mice per group; total of 16 GeneChip
datasets). In contrast to the small number of genes whose
expression was significantly changed (=1.5-fold, FDR <1%)
after colonization with either bacterium alone relative to germ-
free controls (Table S7 A and B), cocolonization produced
significant alterations in the expression of 508 host genes (Table
S7C). Expression of many of these genes also changed with
monoassociation with either organism, and in the same direction
as seen after cocolonization, but in most cases the changes
evoked by B. thetaiotaomicron or E. rectale alone did not achieve
statistical significance. Unsupervised hierarchical clustering of
average expression intensity values derived from each of the 4
sets of GeneChips/group, revealed that the E.rectale monoasso-
ciation and E.rectale-B.thetaiotaomicron biassociation profiles
clustered separate from the germ-free and B. thetaiotaomicron
monoassociation datasets (Fig. S5).

Ingenuity Pathway Analysis (www.ingenuity.com) disclosed
that the list of 508 host genes affected by cocolonization was
significantly enriched in functions related to cellular growth and
proliferation (112 genes; Table S8A), and cell death (130 genes)
(Table S8B). A number of components of the canonical wnt/B
catenin pathway, which is known to be critically involved in
controlling self-renewal of the colonic epithelium, were present
in this list (4kt3, Axin2, Csnk1D, Dkk3, FrzB, Fzd2, Gjal, Mdm?2,
Ppp2r5e, Sfrp2, Tgfb3, Tgfbrl, and Tgfbr2). Many of the changes
observed in biassociated mice are likely to be related to the
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increased influx of butyrate, generated by E. rectale, into colonic
cells (Fig. 1A4). Butyrate, a histone deacetylase inhibitor that
evokes pronounced transcriptional changes in different types of
cultured epithelial cell lines (22-25), is the preferred energy
substrate for colonic enterocytes (26). While transcriptional
changes caused by butyrate differ depending upon the cell
lineage, state of cellular differentiation, and cellular energy
status (23, 24, 27, 28), in vitro and in vivo studies have shown that
it affects expression of genes involved in proliferation, differen-
tiation and apoptosis (25, 28).

As mentioned above, as part of its adaptation to the presence of
E. rectale, B. thetaiotaomicron up-regulates a number of genes
involved in the harvest of host glycans. Included among these B.
thetaiotaomicron genes are components of a fucose utilization
operon linked to production of a bacterial signal that induces
synthesis of intestinal mucosal fucosylated glycans, and microbial
catabolism of fucose from O-glycans (29). GeneChip profiling of
colonic gene expression disclosed that cocolonization results in
increased expression of Fut2 (a-1,2 fucosyltransferase), Fut4 (a-
1,3-fucosyltransferase), plus 10 other genes involved in the synthesis
of mucosal glycans (glycosphingolipids and O-glycans) (Table S8C).
Thus, by increasing host production of glycans, B. thetaiotaomicron
can benefit itself, and through its metabolic products, E. rectale.

E. rectale’s Colonization Levels and Production of Butyrate Are Af-
fected by Host Diet. In a final series of experiments, we assessed how
E. rectale and B. thetaiotaomicron were affected by changes in host
diet. Groups of age- and gender-matched cocolonized mice were
fed 1 of 3 diets that varied primarily in their carbohydrate and fat
content: (7) the standard low-fat, plant polysaccharide-rich diet used
for the experiments described above (abbreviated “LF/PP” for
low-fat/plant polysaccharide), (if) a high-fat, “high-sugar” Western-
type diet (abbreviated HF/HS) that contained sucrose, maltodex-
trin, and corn starch, plus complex polysaccharides (primarily
cellulose) that were not digestible by B. thetaiotaomicron or E.
rectale, and (jii) a control diet that was similar to (if) except that the
fat content was 4-fold lower (“LF/HS” for low-fat, high-sugar; n =
5 mice per group). Whereas B. thetaiotaomicron’s colonization
levels were similar in all 3 diets, colonization of E. rectale was
significantly reduced (5-fold) in mice fed either the LF/HS or
HEF/HS diets (P < 0.01, heteroscedastic ¢ test).

Whole-genome transcriptional profiling of both bacterial spe-
cies showed that relative to the standard polysaccharide-rich
chow diet (LF/PP), both the Western style HF/HS diet and its
LF/HS control produced a significant up-regulation of B. the-
taiotaomicron PULs involved in harvesting and degrading host
polysaccharides, and a downregulation of several PULs involved
in the degradation of dietary plant polysaccharides (Fig. S6A4).
E. rectale’s response to the HF/HS and LF/HS diets was to
down-regulate several of its GHs and a number of its sugar
transporters (Fig. S6B). Moreover, levels of butyrate were 5-fold
lower in cocolonized mice fed these compared with the standard
chow (LF/PS) diet [0.496 = 0.0051 wmol per gram of wet weight
cecal contents; (LF/PP) vs. 0.095 = 0.002 (HF/HS) vs. 0.080 =
0.008 (LF/HS) (P < 0.05 ANOVA)].

These dietary manipulations lend further support to the view that
B. thetaiotaomicron with its large repertoire of PUL-associated GHs
functions in this model 2-member human microbiota to process
complex dietary plant polysaccharides and to distribute to the
products of digestion to E. rectale, which, in turn, synthesizes
butyrate. The reduced colonization response of E. rectale to the
HF/HS and LF/HS diets can be explained by a number of factors:
(¢) this Firmicute does not have predicted GHs and PLs that can
process host glycans (Fig. S3); (i) it cannot use most of the sugars
we tested that are derived from mucosal polysaccharides (Table
S3); and (iii) the host possesses enzymes in its glycobiome that can
directly process the simple sugars present in these 2 diets. Indeed,
human subjects that are fed diets deficient in complex polysaccha-
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rides harbor lower levels of butyrate-producing gut bacteria, in-
cluding members of the E. rectale-containing clade (30). Our
simplified gnotobiotic model of the microbiota underscores the
functional implications of diet-associated changes in the represen-
tation of this clade, not only as they relate to the operations of the
microbiota itself but also potentially as they relate to butyrate-
mediated changes in gut epithelial homeostasis.

Proteomic Studies of This Simplified 2-Component Model of the
Human Gut Microbiome. Model communities such as the one
described above, constructed in gnotobiotic mice, where micro-
biome gene content is precisely known and transcriptional data
are obtained under conditions where potentially confounding
host variables such as diet and host genotype can be constrained,
provide a way to test the efficacy of high-resolution mass
spectrometric methods for characterizing gut microbial commu-
nity proteomes. Therefore, we assayed the proteins present in
luminal contents, collected from the ceca of 8 gnotobiotic mice
fed the standard polysaccharide-rich LF/PP diet (germ-free,
monoassociated, and cocolonized; » = 2 mice per treatment
group representing 2 independent biological experiments; see SI
Methods for additional details).

The measured proteomes had high reproducibility in terms of
total number of proteins observed and spectra matching to each
species. Table S5 and SI Results provide a summary of our analyses,
including the percentage of mRNAs called “Present” in the
GeneChip datasets for which there was an identified protein
product. The most abundant identified products from both mi-
crobes included ribosomal proteins, elongation factors, chaperones,
and proteins involved in energy metabolism (for a full list of
identified proteins, see Table S6; note that Table S4 A and B, which
list differentially expressed genes in monoassociation versus bias-
sociation experiments, also indicate whether protein products from
their transcripts were identified in these mass spectrometry data-
sets). Many conserved hypothetical and pure hypothetical proteins
were identified, as were proteins encoded by 10 genes in B.
thetaiotaomicron whose presence had not been predicted in our
initial annotation of the finished genome (Table S6A). Together,
the results provide validation of experimental and computational
procedures used for proteomic assays of a model gut microbiota,
and illustrate some of the benefits in obtaining this type of
information.

Prospectus. These studies of a model 2-member human gut
microbiota created in gnotobiotic mice support a view of the
Bacteroidetes, whose genomes contain a disproportionately
large number of glycan-degrading enzymes compared with se-
quenced Firmicutes, as responding to increasing microbial di-
versity in the distal intestine by modulating expression of their
vast array of polysaccharide utilization loci. B. thetaiotaomicron
adapts to the presence of E. rectale by up-regulating a variety of
loci specific for host-derived mucin glycans that E. rectale is
unable to use. E. rectale, which like other Firmicutes has a more
specialized capacity for glycan degradation, broadly downregu-
lates its available GHs in the presence of B. thetaiotaomicron,
even though it does not grow efficiently in the absence of
carbohydrates. It also becomes more selective in its harvest of
sugars and its transcriptional profile suggests improved access to
other nutrients (e.g., there is a generalized up-regulation of
amino acid biosynthetic genes and a set of nutrient transporters
that can harvest peptides). Thus, this simplified, model microbial
community illustrates some of the basic ecologic principles that
likely shape the operations of the human gut microbiota: nutrient
interchange and the observed reciprocal effects on metabolism
of these 2 organisms provide examples of classic syntrophy while
“character displacement”, where cooccurrence drives (niche)
divergence, also operates.

We have previously used gnotobiotic mice to show that the
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efficiency of fermentation of dietary polysaccharides to short
chain fatty acids by B. thetaiotaomicron increases in the presence
of M. smithii (21). Cocolonization increases the density of
colonization of the distal gut by both organisms, increases
production of formate and acetate by B. thetaiotaomicron and
allows M. smithii to use H, and formate to produce methane,
thereby preventing the build-up of these fermentation end-
products (and NADH) in the gut bioreactor, and improving the
efficiency of carbohydrate metabolism (21). Removal of H; by
this methanogenic archaeon allows B. thetaiotaomicron to re-
generate NAD™, which can then be used for glycolysis. This
situation constitutes a mutualism, in which both members show
a clear benefit. The present study, characterizing the cocoloni-
zation with B. thetaiotaomicron and E. rectale, describes a more
nuanced interaction where both species colonize to similar levels
if carbohydrate substrates are readily available. Moreover, cer-
tain aspects of bacterial-host mutualism become more apparent
with cocolonization, including increased microbial production
and host transport of butyrate, and increased host production
and microbial consumption of mucosal glycans.

It seems likely that as the complexity of the gut community
increases, interactions between B. thetaiotaomicron and E. rectale
will either by subsumed or magnified by other “similar” phylo-
genetic types (as defined by their 16S rRNA sequence and/or by
their glycobiomes). Synthesizing model human gut microbiotas
of increasing complexity in gnotobiotic mice using sequenced
members should be very useful for further testing this idea, as
well as a variety of ecologic concepts and principles that may
operate to influence the assembly and dynamic operations of our
gut microbial communities.

Materials and Methods

Genome Comparisons. All nucleotide sequences from all contigs of completed
genome assemblies containing both capillary sequencing and pyrosequencer
data, produced as part of the HGMI, were downloaded from the Washington
University Genome Sequencing Center’s website (http:/genome.wustl.edu/
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