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ABSTRACT:

The motion of cilia could be further understood by creating and analysing a large scale model

with similar stiffness and property values. Varying amounts of vibrating HEXBUG robots, representing

motion and active particles, were placed in series with different segment lengths connecting them.

The oscillating motion of a ciliium was able to be replicated and analyzed using autotracing and

autotracking programs. The amplitude of the model increased with increasing length, while increasing

length had an inconclusive effect on period. Furthermore, the visual path of a marked end segment

repeated with each oscillation recorded.

INTRODUCTION

Motile cilia are hairlike structures found on the surface of cells. The beating nature of cilia

moves fluid and aids in general development within the body. The motion and structure of cilia

including different types of imaging have highlighted a ”9+2 axoneme comprising nine outer doublet

microtubules and a central apparatus” [1]. The physical model created will be used to learn more

about how the axoneme moves and the importance of its movement. Scaling up from realistically

sized cilia allows properties and theories about cilia movement to be tested.

Hexbug Properties. To introduce vibrations and motion into the model, HEXBUG nano®

robots were used to simulate active particles. The HEXBUG can move due to a combination of a

rotating motor and twelve bent rubber legs. The motor ”rotates a counterweight that causes forces up

and down” [2]. The rotation of this counterweight is believed to only be in one direction. When the

force is downwards the legs are pressed down. On the reverse, when the force from the weight is up,

the legs are uncompressed. This leg motion produces the movement and bouncing of the HEXBUG.

The direction of the bugs is random and the power is dependent on the battery power [3].

Stiffness Calculations. A nylon rod was used to calculate the force produced by the HEXBUG.

The properties of the nylon rod were found by using length, added weight, and difference in height of

a tube. Young’s modulus was calculated using the following beam displacement equation.

𝐸𝐼 =
𝐹𝑚 ∗ 𝐿3

3 ∗ 𝛿 ∗ 10003 (1)
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where E is the Young’s modulus [Pa], 𝐹𝑚 is the weight [N], L is the length of rod [m], and𝛿 is the

difference in height [m].

To find the Young’s modulus, the area of inertia for a solid cylinder is calculated with eqn. 2

𝐼 =
𝜋 ∗ 𝑑4

64
(2)

where I is the calculated area moment of inertia for solid cylinder [𝑚4], and d is the diameter of the

rod [m].

Force Calculations. To measure the force produced by a HEXBUG, a nylon rod was connected

to the HEXBUG and the displacement was measured. To find the force eqn. 3 was used.

𝐹ℎ𝑒𝑥𝑏𝑢𝑔 =
𝛿 ∗ 3 ∗ 𝐸𝑟𝑜𝑑 ∗ 10002

𝐿3
𝑟𝑜𝑑

(3)

where 𝐹ℎ𝑒𝑥𝑏𝑢𝑔 is the force produced by a HEXBUG [𝑁], 𝛿 is the displacement [m], 𝐸𝑟𝑜𝑑 is the Young’s

modulus of the rod [GPa], 𝐿𝑟𝑜𝑑 is the length of the rod [m].

Scaling of Physical Model. The scale of the physical model was based on previous

experiments done by Zheng and coauthors. The experiment conducted by Zheng et al. used seven

HEXBUGs in series to represent active particles. The HEXBUGSs were connected by a laser-cut

rubber chain with slots for each HEXBUG. For the physical model discussed in this paper, rubber

tubing was used to connect 3d printed HEXBUG casings. For the laser cut model, the width and

height of the segments were constant with a varied length between segments. The different segment

lengths varied the motion of the HEXBUG chain [4]. Using the dimensions of rubber segments that

produce an oscillating motion and rubber tubing with a set Young’s modulus and cross-sectional area,

estimates the length of the rubber tubing needed to produce oscillations. This relation is done by

calculating the stiffness of the rubber segments (eqn. 4) and setting it equal to the stiffness of the

rubber tubing as shown in eqn 5.

𝐾𝑠 =

𝑊𝑠∗𝐻3
𝑠

12 ∗ 𝐸𝑠
𝐿𝑠

(4)

where 𝐾𝑠 is the stiffness [N*m], 𝑊𝑠 is the width [m], 𝐻𝑠 is the height [m], 𝐸𝑠 is the Young’s modulus

[Pa], 𝐿𝑠 is the length [m].
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𝐾𝑠 = 𝐾𝑡 (5)

The 𝐾𝑡 is the stiffness of the rubber tubing [N*m]. The s is used to indicate rubber segments and the

t indicates the rubber tubing. With the stiffness known, the estimated length needed for oscillations

using rubber tubing is found using eqn. 6.

𝑙𝑡 =

𝜋∗(𝑑4
𝑡 −𝑑4

𝑖
)∗1000

64 ∗ 𝐸𝑡
𝐾𝑡

(6)

where 𝑙𝑡 is the length [mm], 𝑑𝑡 is the outer diameter [m], 𝑑𝑖 is the inner diameter [m], 𝐸𝑡 is the Young’s

modulus [Pa]. This length value is the starting point for creating a range of length values that could

produce oscillations.

METHODS

Stiffness Properties. Initially, a nylon rod was going to be used in between the HEXBUGs

to add stiffness to the model. The properties of the nylon rod available were unknown. To find the

properties, a set length of the rod was placed over the side of a table with the other end taped down.

The pre-weight free end height was measured from the ground to the middle of the rod cross-section.

A 10 g weight was taped with a string on the free end of the rod. The post-weight height was measured

to find the height difference. This was repeated with a 20 g and 50 g weight. The length of the rod was

changed two more times for a total of nine trials. The length and weight values used were set to prevent

too much bending. This rod material was not considered for the segments between the HEXBUGs

because the average Young’s modulus was too large and would have required large segments lengths.

Instead, this tubing was used to find the force produced by a HEXBUG because its properties were

known.

Force Properties. Three different types of robots were considered to act as active particles

due to their force values. Each robot had a rotating motor and rubber legs. The rod previously used

was measured at a set length and one end was tabled down on the table. The free end was placed so

that the rod was linear and the distance from the tip to the side of the table was measured. A bug was
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taped to the end of the free end perpendicular to the rod. After the bug turned on and stabilized in

one bend rod position, the distance from the middle of the bug to the side of the table was measured.

The distance was the only unknown property needed to find the force values.

Scaling Model. The MATLAB file lengthcalculator.m uses the known property values from

the Zheng et al. paper and user inputs [4]. When run, a popup tab appears asking for the outer

diameter of the rod (mm), inner diameter of the rod (mm), and Young’s modulus of material (DURO).

This allows the user to use different materials in the tube shape. Once input, the script uses the known

properties to find stiffness, as shown in eqn. 4. That is set as the stiffness of the new material, eqn.

5. The final output is 𝐿𝑒𝑛𝑔𝑡ℎ𝑛𝑒𝑒𝑑𝑒𝑑𝑚𝑚, which is the length needed to keep the same stiffness as the

material known to oscillate.

Creating Hexbug Casing. The HEXBUG required a casing that was able to hold it in motion

and connect to other casings. A SolidWorks model of a HEXBUG was found online. This model

was used to cut out the shape on an extruded rectangle. This rectangle was cut down to replicate

the shape of the HEXBUG. The size of the connection part of the casing had to be adjusted due to

the material for the in-between segments. A rubber tubing was chosen because it had a low enough

Young’s modulus to allow smaller connecting segments between casings. The connection part was

a hollow cylinder. Midway down the cylinder, a hole was made. This hole allowed for a pin to go

through the rubber tubing and secure the segments together. The pin was also important because it

allowed chains with varying amounts of HEXBUGS to be experimented with.

Experiment. Once all of the parts of the chain’s properties had been made and analyzed, the

experiment could be run. The experiment was run on a smooth, white table to allow for contrast and

optimal movement. The first rubber tubing segment was weighed down on one side and pinned to

the first HEXBUG casing. The HEXBUG casings were all pinned in series with the rubber tubing

in between. There were a total of eight casings. A camera was set up overhead of the experiment

to record the motion of the series. For the first set of trials, 10/16” segments were used. Once all

eight of the HEXBUGS were pinned and turned on, time was given to let the oscillation start. Once

the oscillations started, three to four full oscillations were recorded with the camera. Then the end

HEXBUG was unpinned, shortening the series to seven. Time was given for the oscillations to adjust
4



and then the model was recorded. This was repeated until there were three HEXBUGS left, for a total

of six trials. This process was also repeated for 11/16” and 12/16” segments.

Video modificaiton. Before the videos were traced, different video modifications had to be

performed. The video camera used recorded at 29.87 fps. The number of frames collected per video

was too much to efficiently trace. videoDOWNsample.m is a MATLAB script created by Dr. Louis

Woodhams of Washington University in St. Louis. This program reduces the number of frames in a

video by a set number. For this experiment, the videos were all reduced so only one of every ten frames

are saved in a new video. shape.m is a Matlab script that replaces a set area with a white rectangle in

each frame. The tracing program relies on contrast, so a dark object not part of the waveform could

distract the program. The output of this program is a new video with the white rectangle added.

Tracing. The tracing MATLAB script, 𝑎𝑢𝑡𝑜𝑡𝑟𝑎𝑐𝑒 𝑓 𝑢𝑛ℎ𝑒𝑥𝑏𝑢𝑔𝑠.𝑚, was created by Dr.

Woodhams. The input of this program is the video being traced, the spatial resolution, and the

frames per second. When the program is run, the user is given the first frame of the video and roughly

traces the cilium. Once traced, the program will use the contrast to trace the rest of the frames. To get

the program to trace correctly for each video, different tracing factors such as the number of segments

along the length and number of theta values had to be adjusted. The relevant output of this program

was the length, period, and amplitude. plotThetaArray.m, another MATLAB script created by Dr.

Woodhams, takes the output from the autotrace program and makes a GIF of the movement of the

cilium.

Autotrack. autotrack.m, made by Dr. Woodhams, is another tracing program that tracks the

body motion of a focused shape in a video. In this case, the user is able to circle one of the HEXBUGS.

The output is a visual trace of where the HEXBUG was in all of the frames on one image. This was

done with each of the HEXBUG videos.
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RESULTS AND DISCUSSION

Stiffness and Force Results. The average calculated Young’s modulus value for the rod was

2.19 GPa. This is similar to the known Young’s modulus value for nylon of 2.7 GPa. Table 1 shows

the force values of three different types of robotic bugs.

Table 1 Force Values of Different Robot Bugs

Average Force Value (N)

Nanoflash Large 0.0169

Nanoflash Small 0.0171

Nano Nitro 0.0229

The Nano Nitro had the largest force, but it also bounced back and forth at the max

displacement. For the final model, the Nanoflash small was chosen.

Scaling Model. The dimensions and properties of the rubber segments and the rubber tubing

are shown in Table 2 and Table 3. The rubber segments are from the Zheng el al. paper [4]. The

rubber tubing is the material used as segments for this model.

Table 2 Properties of Rubber Segments

Width (m) Height (m) Length (m) Youngs Modulus (Pa)

4.25E-03 4.25E-03 8.50E-03 2.39E+05

Table 3 Properties of Rubber Tubing

Outer Diameter(m) Inner Diameter(m) Young’s Modulus (Pa)

3.20E-03 1.60E-03 1.00E+06

Using lengthcalculator.m the length needed was found to be 6.31𝒎𝒎. This length does not

include the 6.7 mm of the HEXBUG casing. The total length of each segment needed to be around

19.71 mm (∼ 12/16 in). The length of segments used in this experiment were 10/16 in, 11/16 in, 12/16

in.
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Hexbug Casing. Figure 1 and 2 show the Solidworks model for the HEXBUG casing.

Figure 1 Top View of HEXBUG Casing

The shape of the HEXBUG was cut out so that the HEXBUG has a snug fit. The dotted lines

are hollowed cylinders.

Figure 2 Rotated View of HEXBUG Casing

The holes in the connection parts are for inserting a pin to hold the rubber segments.

Autotrace Results. Figure 3 shows eight frames from the trial with 12/16 in segments and

four HEXBUGS.
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Figure 3 Frames from Trial with Four HEXBUGS

Figure 4 shows eight frames from the trial with 12/16 in segments and eight HEXBUGS.

Figure 4 Frames from Trial with Eight HEXBUGS

Figure 5 shows four frames from a .Gif of the traced motion. This trace is from the trial with

11/16 in segments and six HEXBUGS.

8



Figure 5 Frames from Autotrace Tracing

There will be a link to all of the Gifs of the traces in the Appendix. The most important values

from Autotrace were period and amplitude. Figure 6 shows the period vs. calculated length of the

cilia model in mm.

Figure 6 Period vs. Calculated Length of Cilia Model

The calculated length of cilia was found by the length of the HEXBUG casings and the length

of the segments in between the casings. Each point signifies the amount of HEXBUGs included

starting with three HEXBUGs on the left to eight HEXBUGs on the right. For all of the different

segment lengths, from three to five HEXBUGS, the period increased with the length of the cilia

model. This means that as the cilia model increased the time in-between cycles increased. The 11/16”

and 12/16” segment experiment’s periods peaked at five HEXBUGs and then slightly decreased. The

largest period of the 11/16” segment trials and the 12/16” segment trials were respectively, 18.4 s
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and 23.7 s. The increasing length of the cilia model did not seem to increase the period of 11/16”

and 12/16” segment trials for over five HEXBUGs. The 10/16” segment trial’s period continued to

increase with the length of cilia until peaking at seven HEXBUGs. This means that as the length of

the cilia model increased, the period also increased until over seven HEXBUGs. The 10/16” segment

trials largest period of 35.4 s was at a length of 442.72 mm (7 HEXBUGs). Figure 7 shows the

amplitude vs. calculated length of the cilia model.

Figure 7 Amplitude vs. Calculated Length of Cilia Model

For each of the experiments, as the calculated length of the cilia model increased, the amplitude

increased. The amplitude is the deviation from the median, indicating more bending. Overall, the

11/16” segment trials consistently have higher amplitudes at each different HEXBUG amount, followed

by 12/16” and 10/16” segment trials.
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Autotrack Results. Figure 8 shows the tracing of the end HEXBUG from three to eight

HEXBUGS with 12/16” segments.

Figure 8 End Movement of Three to Seven HEXBUGs

Each frame shows the end movement with a different amount of HEXBUGs. The first two

frames show the light sway of the chain back and forth, while the longer chains demonstrate a figure

eight motion. The larger section on the left motion is consistent throughout all of the experiments.

The reason is unknown, but could be connected with the direction of the motor inside the HEXBUGs.
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CONCLUSION

The motion of cilia can be physically modeled on a large scale by using forces from vibration

and calculated stiffness from set segments. Using known material properties, the forces of vibrating

HEXBUGs and the stiffness of the rubber tubing were found and connected with 3d printed casings.

The motion of the 3D model was able to be recorded and analyzed visually with tracing software; the

software allowed the period and amplitude of the motion to be compared between trials with differing

segment lengths and number of HEXBUGs. These findings highlight that is possible to replicate and

analyze the motion of a large-scale cilia model. The future of this work involves using the techniques

and values discovered in this model to create coupled models. Coupled models will contribute to

understanding the synchronization of a phase and the general motion of the flagellum.
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A Additional Figures

Autotrace GIF. Click here to be able to see the all of the GIF from Autotrace.

Autotrack Results. :

Figure A.1 End Movement of HEXBUGs (10/16”)
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Figure A.2 End Movement of HEXBUGs (11/16”)
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1 MATLAB Code

1 %Bug Length Calculator

2 %TLU with variables from Zheng et al.

3 %Paper Variables

4 W p = 4.25e−3; %m (p.1 fig 1)

5 L p = W p*2; % m ( based on fig 1c)

6 H p = W p; % m (based on fig 1c)

7 G p = 0.239e6; %Pa %youngs modulus (p.7)

8

9 % %Variables

10 % d t = 3.175; %mm %diameter of rod

11 % E r = 2.185 %GPa % Measured Young's Modulus

12 % I r = 4.988E−12 %mˆ4

13

14 prompt = {'Enter Outer Diameter of Rod (mm)','Enter Inter Diameter of ...

Rod(mm)','Enter Youngs Molulus of Materal(DURO)',};

15 dlgtitle = 'Input';

16 dims = [1 40];

17 definput = {'0','0', '0'};

18 answer = inputdlg(prompt,dlgtitle,dims,definput)

19

20 %d t = str2num(cell2mat(answer(1,1)))/1000

21 %d i = str2num(cell2mat(answer(2,1)))/1000

22 %E = str2num(cell2mat(answer(3,1)))

23

24 d t = .0032

25 d i = .0016

26 E = 60

27

28 %E r = exp(E*0.02750−0.6403)*10ˆ6; %Pa

29 %E r = exp((E+50)*0.02750−0.6403)*10ˆ6

30 E r = 1e6 %

31

32 % if cylinder

33 I r = (pi * ((d t)ˆ4 − (d i)ˆ4))/64; %mˆ4

34
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35 %Paper Torsional Constsant −−> torsion is twisting

36 w p = W p/2; %m

37 l p = L p/2; %m

38 h p = H p/2; %m

39 J p = w pˆ3*h p*((16/3) − 3.36*(w p/h p)*(1−(w pˆ4/(12*h pˆ4)))); %mˆ4 (p.7)

40 C = (G p*J p)/L p; %N*m/rad %torsional stiffness (p.7)

41

42 %Paper Bending Stiffness

43 I p = (W p * H pˆ3)/(12); %mˆ4

44 C p = (I p * G p)/L p; % N*m

45 C b = C p/C;

46

47 %Model Stiffness

48 K t = C p; %N*m

49 Length needed mm = (E r * I r *1000) / K t %mm

50 Length needed c = Length needed mm/10 %cm
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