
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

Winter 12-15-2016 

Development of a One-Equation Eddy Viscosity Turbulence Model Development of a One-Equation Eddy Viscosity Turbulence Model 

for Application to Complex Turbulent Flows for Application to Complex Turbulent Flows 

Timothy Wray 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Wray, Timothy, "Development of a One-Equation Eddy Viscosity Turbulence Model for Application to 
Complex Turbulent Flows" (2016). McKelvey School of Engineering Theses & Dissertations. 214. 
https://openscholarship.wustl.edu/eng_etds/214 

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/214?utm_source=openscholarship.wustl.edu%2Feng_etds%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering & Applied Science 

Department of Mechanical Engineering & Material Science 

 

Dissertation Examination Committee: 

Dr. Ramesh Agarwal, Chair  

Dr. Mark Jakiela 

Dr. Kenneth Jerina 

Dr. Mori Mani 

Dr. David Peters 

Dr. Palghat Ramachandran 

 

 

Development of a One-Equation Eddy Viscosity Turbulence Model for 

Application to Complex Turbulent Flows 

by 

Timothy J. Wray 

 

 

A dissertation presented to  

The Graduate School  

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

 

December 2016 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016, Timothy J. Wray



ii 

 

Table of Contents 
List of Figures ................................................................................................................................ iv 

List of Tables ................................................................................................................................ vii 

Acknowledgments........................................................................................................................ viii 

Abstract of the Dissertation ........................................................................................................... ix 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Background and Motivation .................................................................................................. 1 

1.3 Objectives .............................................................................................................................. 2 

1.4 Outline ................................................................................................................................... 3 

Chapter 2: Introduction to Turbulence Modeling ........................................................................... 5 

2.1 Introduction ........................................................................................................................... 5 

2.2 Reynolds-Averaged Navier-Stokes Equations. ..................................................................... 6 

2.3 Eddy Viscosity Turbulence Models ...................................................................................... 7 

Chapter 3: OpenFOAM Verification ............................................................................................ 12 

3.1 Spalart-Allmaras Model Refinements and Verification ...................................................... 15 

3.2 SST k-ω Model Refinements and Verification ................................................................... 19 

Chapter 4: The Wray-Agarwal (WA) Turbulence Model ............................................................. 24 

4.1 Introduction ......................................................................................................................... 24 

4.2 Derivation of the WA model ............................................................................................... 25 

4.3 Characteristics of the WA model ........................................................................................ 29 

Chapter 5: Validation Cases.......................................................................................................... 32 

5.1 Introduction ......................................................................................................................... 32 

5.2 Subsonic Flows ................................................................................................................... 32 

5.2.1 2D Mixing Layer ........................................................................................................................ 32 

5.2.2 2D Wake .................................................................................................................................... 35 

5.2.3 2D Flat Plate .............................................................................................................................. 37 

5.2.4 2D Channel ................................................................................................................................ 40 

5.2.6 2D NACA0012 Airfoil............................................................................................................... 41 

5.2.8 2D Backward Facing Step .......................................................................................................... 44 

5.2.9 2D Asymmetric Diffuser ............................................................................................................ 48 



iii 

 

5.2.10 2D NACA4412 Airfoil............................................................................................................. 53 

5.2.11 2D Wall-Mounted Hump ......................................................................................................... 57 

5.2.12 Axisymmetric Separated Boundary Layer ............................................................................... 60 

5.3 Transonic Flows .................................................................................................................. 65 

5.3.1 2D RAE2822Airfoil ................................................................................................................... 65 

5.3.2 Axisymmetric Bump .................................................................................................................. 66 

5.4 Supersonic Flows ................................................................................................................ 71 

5.4.1 2D Flat Plate .............................................................................................................................. 71 

5.4.2 2D Slot Nozzle Ejector .............................................................................................................. 73 

5.4.3 Axisymmetric Shock Wave/Boundary Layer Interaction (SWBLI) .......................................... 77 

Chapter 6 Rotation/Curvature and Surface Roughness Corrections ............................................. 80 

6.1 Rotation and Curvature Corrections .................................................................................... 80 

6.1.1 Introduction ................................................................................................................................ 80 

6.1.2 The Spalart-Shur Correction ...................................................................................................... 80 

6.1.1 2D Convex Curvature Boundary Layer ..................................................................................... 81 

6.2 Surface Roughness .............................................................................................................. 84 

6.2.1 Introduction ................................................................................................................................ 84 

6.2.2 WA Model Roughness Correction ............................................................................................. 85 

6.2.3 2D Rough flat plate .................................................................................................................... 86 

6.2.4 2D Rough S809 Airfoil .............................................................................................................. 89 

Chapter 7: Summary and Future Work ......................................................................................... 92 

7.1 Summary ............................................................................................................................. 92 

7.2 Future Work: Turbulence Model Closure Coefficients Sensitivity Analysis ..................... 93 

References ..................................................................................................................................... 95 

Appendix A ................................................................................................................................. 100 

 

  



iv 

 

List of Figures 
Figure 3.1: 2D mixing layer (a) geometry and (b) mesh. ............................................................. 13 

Figure 3.2: 2D wake (a) geometry and (b) mesh. ......................................................................... 14 

Figure 3.3: 2D flat plate geometry and boundary conditions [4]. ................................................. 14 

Figure 3.4: 2D flat plate mesh....................................................................................................... 15 

Figure 3.5: SA model 2D mixing layer verification at x=200mm. ............................................... 16 

Figure 3.6: SA model 2D mixing layer verification at x=650mm. ............................................... 16 

Figure 3.7: SA model 2D mixing layer verification at x=950mm. ............................................... 17 

Figure 3.8: SA model 2D wake verification at x=1.05, 1.40, 2.19. .............................................. 17 

Figure 3.9: Spalart-Allmaras (a) velocity and (b) skin friction coefficient verification. .............. 18 

Figure 3.10: Spalart-Allmaras skin friction coefficient convergence verification. ...................... 18 

Figure 3.11: SST model 2D wake verification at x=200mm. ....................................................... 20 

Figure 3.12: SST model 2D wake model verification at x=650mm. ............................................ 20 

Figure 3.13: SST model 2D wake verification at x=950mm. ....................................................... 21 

Figure 3.14: SST model 2D wake verification at x=1.05, 1.40, 2.19. .......................................... 21 

Figure 3.15: SST k-ω (a) velocity and (b) skin friction coefficient verification. ......................... 22 

Figure 3.16: SST k-ω skin friction coefficient convergence verification. .................................... 23 

Figure 4.1: Plane jet spreading rates as a function of free stream eddy viscosity N and number of 

grid points. .................................................................................................................................... 30 

Figure 4.2: Convergence of skin friction coefficient at x = 0.97. ................................................. 31 

Figure 5.1: 2D mixing layer (a) geometry and (b) mesh. ............................................................. 33 

Figure 5.2: Normalized velocity profile comparisons at x=200mm. ............................................ 34 

Figure 5.3: Normalized velocity profile comparisons at x=650mm. ............................................ 34 

Figure 5.4: Normalized velocity profile comparisons at x=950mm. ............................................ 35 

Figure 5.5: 2D wake (a) geometry and (b) mesh. ......................................................................... 36 

Figure 5.6: Normalized velocity profile comparisons at x=1.05. ................................................. 36 

Figure 5.7: Normalized velocity profile comparisons at (a)x=1.40 and (b)x=2.19. ..................... 37 

Figure 5.8: 2D flat plate geometry and boundary conditions [4]. ................................................. 38 

Figure 5.9: 2D flat plate mesh....................................................................................................... 38 

Figure 5.10: Skin friction coefficient for flow over a 2D flat plate. ............................................. 39 

Figure 5.11: Velocity profiles at (a) Reθ=5000 and (b) Reθ=10,000. ........................................... 40 

Figure 5.12: Nondimensional velocity profile comparison for fully developed channel flow at Reτ 

= (a) 550, and (b) 1000. ................................................................................................................ 41 

Figure 5.13: (a)Pressure coefficient and (b)skin friction coefficient comparisons for the 

NACA0012 at α=5°. ..................................................................................................................... 42 

Figure 5.14: (a)Pressure coefficient and (b)skin friction coefficient comparisons for the 

NACA0012 at α=10°. ................................................................................................................... 43 

Figure 5.15: (a)Pressure coefficient and (b)skin friction coefficient comparisons for the 

NACA0012 at α=15°. ................................................................................................................... 43 



v 

 

Figure 5.16: 2D backward facing step geometry and boundary conditions. [4] ........................... 44 

Figure 5.17: 2D backward facing step mesh. ................................................................................ 45 

Figure 5.18: Pressure coefficient comparison of the 2D backward facing step. ........................... 46 

Figure 5.19: Skin friction coefficient comparison of the 2D backward facing step. .................... 46 

Figure 5.20: Velocity profile comparisons at x/H = (a)1, (b)4, (c)6, and (d)10. .......................... 47 

Figure 5.21: 2D asymmetric diffuser geometry. ........................................................................... 48 

Figure 5.22: 2D asymmetric diffuser mesh................................................................................... 48 

Figure 5.23: Comparisons of skin friction coefficient along the bottom diffuser wall................. 50 

Figure 5.24: Comparisons of skin friction coefficient along the top diffuser wall. ...................... 50 

Figure 5.25: Comparison of the pressure coefficient along the bottom diffuser wall. ................. 51 

Figure 5.26: Comparison of the pressure coefficient along the top diffuser wall. ........................ 51 

Figure 5.27: Velocity profile comparisons at stations x/H = -3 through 35. ................................ 52 

Figure 5.28: Velocity profile comparisons at stations x/H = 40 through 74. ............................... 52 

Figure 5.29: 2D NACA 4412 airfoil mesh.................................................................................... 53 

Figure 5.30: Comparison of the pressure coefficient distribution over the NACA4412 airfoil. .. 54 

Figure 5.31: Pressure coefficient comparison in the trailing edge region of the NACA4412 airfoil.

....................................................................................................................................................... 55 

Figure 5.32: Normalized velocity profile comparisons at x/c = (a)0.6753, (b)0.7308, (c)0.7863, 

(d)0.8418, (e)0.8973, and (f)0.9528 for the NACA4412 airfoil. .................................................. 56 

Figure 5.33: 2D wall mounted hump mesh. .................................................................................. 57 

Figure 5.34: Inlet velocity profile of the NASA 2D hump. .......................................................... 58 

Figure 5.35: Skin friction coefficient comparison along the NASA 2D hump. ........................... 59 

Figure 5.36: Pressure coefficient comparison along the NASA 2D hump. .................................. 59 

Figure 5.37: Normalized velocity profile comparisons at x/c=(a)1.0, (b)1.1, (c)1.2, and (d)1.3. 60 

Figure 5.38: Axisymmetric separated boundary layer geometry and boundary conditions. ........ 61 

Figure 5.39: Comparison of the pressure coefficient for the axisymmetric separated boundary layer 

flow. .............................................................................................................................................. 62 

Figure 5.40: Comparison of the skin friction coefficient for the axisymmetric separated boundary 

layer flow. ..................................................................................................................................... 63 

Figure 5.41: Comparison of the normalized velocity profiles for the axisymmetric separated 

boundary layer at x=(a)-0.3302, (b)0.0508, (c)0.1524, and (d)0.3048 meters. ............................ 64 

Figure 5.42: Comparison of the surface pressure coefficient for the RAE2822 airfoil. ............... 66 

Figure 5.43: Computational domain of the axisymmetric transonic bump. ................................. 67 

Figure 5.44: Comparison of the surface pressure coefficients for the axisymmetric transonic bump.

....................................................................................................................................................... 68 

Figure 5.45: Comparison of the mean velocity profiles at x/c =(a)-0.25, (b)0.688, (c)0.813, 

(d)0.938, (e)1.125 and (f)1.25. ...................................................................................................... 70 

Figure 5.46: Sonic flat plate (a) grid and (b) boundary conditions. .............................................. 71 

Figure 5.47: Skin friction coefficient comparisons for the Minf =2.0, Tw/Tinf =1.712 and Minf =5.0, 

Tw/Tinf =1.090 case. ....................................................................................................................... 72 



vi 

 

Figure 5.48: Skin friction coefficient comparisons for the Minf =2.0, Tw/Tinf =2.725 and Minf =5.0, 

Tw/Tinf =5.450 case. ....................................................................................................................... 73 

Figure 5.49: Experimental apparatus cross-section and measurement locations. ......................... 74 

Figure 5.50: Comparison of the mixing section wall pressure distribution. ................................. 75 

Figure 5.51: Comparison of the velocity profiles at locations (a)3”, (b)7”, and (c)10.5” downstream 

of the slot nozzle ejector. .............................................................................................................. 76 

Figure 5.52: Computational domain of the axisymmetric SWBLI. .............................................. 77 

Figure 5.53: Comparison of the nondimensional wall pressure for the axisymmetric SWBLI .... 78 

Figure 5.54: Comparison of the nondimensional wall heat flux for the axisymmetric SWBLI. .. 79 

Figure 6.1: Computational grid and coordinate system of the convex curvature boundary layer[4].

....................................................................................................................................................... 82 

Figure 6.2: Comparison of the convex wall pressure coefficient. ................................................ 83 

Figure 6.3: Comparison of the convex wall skin friction coefficient. .......................................... 83 

Figure 6.4: Comparison of skin friction coefficients for a roughness of ks=0.00025. .................. 87 

Figure 6.5 Comparison of skin friction coefficients for a roughness of ks=0.0005. ..................... 87 

Figure 6.6: Comparison of skin friction coefficients for a roughness of ks=0.0010. .................... 88 

Figure 6.7: Comparison of skin friction coefficients for a roughness of ks=0.0015. .................... 88 

Figure 6.8: Comparison of lift coefficients for smooth S809 airfoil. ........................................... 90 

Figure 6.9: Transitional model effect on the lift coefficients for smooth S809 airfoil. ................ 90 

Figure 6.10: Comparison of lift coefficient for rough S809 airfoil. ............................................. 91 

Figure 7.1: SA Closure Coefficient Sobol Indicies. ..................................................................... 94 

  



vii 

 

List of Tables 
Table 2.1: Spalart-Allmaras closure coefficients. ........................................................................... 9 

Table 2.2: SST k-ω closure coefficients. ...................................................................................... 10 

Table 4.1: Free shear flow spreading rates ................................................................................... 27 

Table 5.1: Lift and drag predictions for the NACA0012 airfoil. .................................................. 42 

Table 5.2: Comparison of the flow separation and reattachment points for the axisymmetric 

transonic bump. ............................................................................................................................. 68 

 

 

 

 

  



viii 

 

Acknowledgments 
I would like to thank Dr. Ramesh Agarwal for his guidance and advice throughout this research. 

Your support of my ideas and confidence in my abilities is what made this work possible. You 

have set an example of excellence as a researcher, mentor, and role model. 

I would like to extend my gratefulness to my committee members and the staff of the MEMS 

department for their time and contributions to my development while at Washington University. 

I would like to thank my family for their love support, and constant encouragement. A special 

thank you to all my colleagues in the CFD lab over the years for their camaraderie and 

collaboration. 

The financial support for this work was provided by a NASA Space Grant and a NASA EPSCoR 

Grant. It is gratefully acknowledged. 

 

Tim Wray 

Washington University in St. Louis 

December 2016  



ix 

 

ABSTRACT OF THE DISSERTATION 

Development of a One-Equation Eddy Viscosity Turbulence Model for Application to Complex 

Turbulent Flows  

by 

Timothy J. Wray 

Doctor of Philosophy in Mechanical Engineering 

Washington University in St. Louis, 2017 

Research Advisor: Ramesh Agarwal 

Computational fluid dynamics (CFD) is routinely used in performance prediction and design of 

aircraft, turbomachinery, automobiles, and in many other industrial applications.  Despite its wide 

range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate 

simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in 

conjunction with a turbulence model. The goal of this research has been to develop an eddy 

viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated 

flows, flows with rotation and curvature effects, and flows with surface roughness.  It is 

accomplished by developing a new zonal one-equation turbulence model which relies heavily on 

the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence 

model. The effectiveness of the new model is demonstrated by comparing its results with those 

obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-

Stress-Transport k – ω model and experimental data. Results for subsonic, transonic, and 

supersonic flows in and about complex geometries are presented.  It is demonstrated that the Wray-

Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable 

turbulence model for the computation of a large class of complex turbulent flows. 



1 

 

Chapter 1: Introduction 

1.1 Background and Motivation 
Computational fluid dynamics (CFD) is routinely used in the design and performance prediction 

of aircraft, turbomachinery, automobiles, and may other industrial applications.  Over the last four 

decades, a great deal of progress has been made in the accurate CFD prediction of a wide variety 

of turbulent flows. Turbulence modeling, however, remains a critical item in the accurate 

prediction of complex turbulent flows. Modeling approaches can be broadly labeled as full 

modeling using the Reynolds-Averaged Navier-Stokes (RANS) equations, partial modeling using 

Large Eddy Simulation (LES), and zero modeling using Direct Numerical Simulation (DNS). DNS 

resolves the complete turbulence structure, producing accurate simulations. However, even 

optimistic predictions believe DNS will be unavailable for common engineering problems until 

2080 due to its large computational requirements [1]. LES reduces the computational cost of DNS 

by only resolving large scale turbulence and modeling sub-grid turbulence.  For 3D high Reynolds 

number flows, LES is still cost prohibitive and expected to remain unavailable for routine use until 

2045 [1].  Hybrid RANS/LES approaches further reduce the computational cost by using LES 

away from solid boundaries and reserving the RANS equations for modeling the near-wall 

turbulence. Hybrid methods introduce the additional complication of blending the RANS/LES 

frameworks and the computational cost remains large for massively separated 3D flows. Also the 

near wall accuracy of the simulation is still dependent on the underlying RANS modeling. 

Complete modeling of the turbulent stresses in the RANS equations remains by far the most widely 

used approach for the prediction of turbulent flows due to its ease of use and low computational 



2 

 

cost.  For these reasons accurate RANS modeling of the turbulent stresses is essential to current 

and next generation CFD. 

Many turbulence models have been developed in the RANS framework. Despite their wide range 

of use, deficiencies in the prediction accuracy of the models still exist. The purpose of this work 

is to develop an eddy viscosity turbulence model to increase the accuracy of flow simulations for 

mildly separated flows, flows with rotation and curvature effects, and flows with surface 

roughness.  This is accomplished by building a zonal one-equation turbulence model reliant on 

flow physics, termed the Wray-Agarwal (WA) model. The effectiveness of the new model is 

demonstrated by comparing it against the industry standard Spalart-Allmaras (SA) and Shear-

Stress-Transport (SST) k-ω models and experimental data. Results for subsonic, transonic, and 

supersonic flows of varying geometrical difficulty are presented.  It is anticipated that the Wray-

Agarwal model will provide industry and researchers the means for accurate and reliable 

computation of a large class of complex turbulent flows. 

1.3 Objectives 
The overall objective of this work is to develop a new one-equation eddy viscosity turbulence 

model and to evaluate its performance for a broad range of turbulent flows.  The principal tasks to 

be accomplished are: 

1) Correct the implementation of the SA and SST k-ω turbulence models in the flow solver 

OpenFOAM so that they are in agreement with previous published results. 

2) Derive a new one-equation turbulence model based on k-ω closure. 

 



3 

 

3) Define a blending function to control the near-wall and away from the wall behavior of the 

WA model.  

4) Validate the WA, SA, and SST k-ω models for a wide range of subsonic, transonic, and 

supersonic flows. 

5) Implement rotation/curvature corrections and surface roughness corrections in the WA, SA, 

and SST k-ω models. 

1.4 Outline 
The overall goal of this dissertation is introduce a new one-equation eddy viscosity turbulence 

model and establish its accuracy for a broad range of fluid flows. Each Chapter will explain in 

sufficient detail the following topics: 

Chapter 2: Introduction to Turbulence Modeling: This chapter provides an introduction to 

computational fluid dynamics (CFD) and turbulence modeling. First the governing equations of 

fluid dynamics are introduced, along with their transformation into the Reynolds-Averaged 

Navier-Stokes (RANS) equations. Eddy viscosity turbulence models are explained and the 

equations of the SA and SST k-ω turbulence models are provided. 

Chapter 3: OpenFOAM Verification: In order to build confidence in the capabilities of the 

OpenFOAM solver, several basic flows are investigated. Implementation of the SA model and 

SST k-ω model will be investigated and the models are modified to become consistent with the 

NASA CFL3D and FUN3D solvers. 

Chapter 4: The Wray-Agarwal (WA) Turbulence Model: This chapter introduces the WA 

turbulence model. A historical perspective of one-equation eddy viscosity turbulence models is 



4 

 

provided. The derivation of the WA turbulence model and its relation to other models is given. 

Results of the WA model for several self-similar free shear flows are presented. 

Chapter 5: Validation Cases: In this chapter a direct comparison among the WA, SA, SST k-ω 

models, and experimental data for a wide range of flows are made.  The goal of this chapter is to 

establish the ability of the WA model to predict a broad range of flow physics. The flow conditions, 

geometry, and grid for each case are given.  

Chapter 6: Rotation/Curvature and Surface Roughness Corrections: Two special flow 

regimes for which regular eddy viscosity turbulence models cannot capture the flow physics are 

flows with system rotation / geometry curvature and flows with surface roughness. An introduction 

to these flow regimes is provided.  Corrections for the WA model are developed. Corrections for 

the SA and SST k-ω models are taken from the literature. Results for the baseline and corrected 

models for several simple cases are presented.  

Chapter 7: Summary and Future Work: This chapter summarizes the results obtained with the 

WA model. Contributions made in the dissertation and possible future work are discussed. 

  



5 

 

Chapter 2: Introduction to Turbulence 

Modeling  

2.1 Introduction 
The Navier-Stokes (NS) equations completely describe the motion of continuum fluid flow. 

Analytical solutions of these equations exist only for laminar flows for very simple geometries and 

flow conditions.  For large Reynolds numbers, the flow becomes turbulent and the analytical 

solutions to the NS equations cannot be obtained. Thus, at high Reynolds numbers a numerical 

approach becomes necessary for solution of turbulent flow fields. The methodology of numerically 

solving the governing equations of fluid dynamics is known as computational fluid dynamics 

(CFD).  

The computational cost of exactly solving the NS equations at high Reynolds numbers is extremely 

high.  Turbulence is inherently unsteady with a wide range of time and length scales. Capturing all 

the features of turbulence for an industrial flow is not feasible in terms of computation time and 

storage. Estimates put the first direct numerical simulation (DNS) of a complete aircraft to be 

possible around 2080 [1]. Therefore for CFD to be useful today, a computationally simpler set of 

equations for computation of turbulent flows is required. The most popular approach for reducing 

the NS equations is based on statistical modeling of the turbulent stresses, leading to the Reynolds-

Averaged Navier-Stokes (RANS) equations. In the RANS equations turbulent stresses are 

unknown which results in the “closure problem.” The closure problem is addressed by modeling 

the turbulent stresses using the empirically known behavior of turbulence quantities such as 

turbulent kinetic energy, turbulent dissipation, etc. The modeling of turbulent stresses in the RANS 



6 

 

equation is known as “turbulence modeling.” The most accurate possible representation of the 

turbulent stresses is the goal of turbulence modeling. 

In the following sections the RANS equations are introduced. Eddy viscosity turbulence models 

are discussed with special emphasis on the industry standard Spalart-Allmaras and Shear-Stress-

Transport k-ω turbulence models. The numerical considerations for solving the RANS equations 

are described. Finally the numerical solver OpenFOAM and a general CFD procedure are 

discussed. 

2.2 Reynolds-Averaged Navier-Stokes Equations. 
The Navier-Stokes equations completely describe the motion of continuum fluid. The equations 

are derived from conservation of mass, momentum, and energy, Stoke’s hypothesis, and an 

equation of state. For simplicity the incompressible NS equations are considered.  The governing 

equations for an incompressible fluid are given in Eq (1). 

 

 

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 

 

𝜌
𝜕𝑢𝑖
𝜕𝑡
+ 𝜌𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= −
𝜕𝑝

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
(2𝜇𝑠𝑖𝑗) 

 

(1)  

where ui and xi are velocity and position vectors, t is time, p is pressure, ρ is density, µ is dynamic 

viscosity, and sij is the strain rate tensor.  All these quantities are instantaneous values.  In Reynolds 

decomposition an instantaneous quantity is decomposed into the sum of its mean and fluctuating 

component.  For example, instantaneous velocity, 𝑢, can be written as the sum of the mean velocity 

U and velocity fluctuation 𝑢′.  The mean velocity is the time-averaged instantaneous velocity.  By 

applying this operation to the incompressible NS equations the Reynolds-Averaged Navier-Stokes 

equation are obtained as: 



7 

 

 

𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 

 

𝜌
𝜕𝑈𝑖
𝜕𝑡
+ 𝜌𝑈𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

= −
𝜕𝑃

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
(2𝜇𝑆𝑖𝑗 − 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) 

 

(2)  

where Ui, P, and Sij are the mean velocity, pressure, and strain rate tensor, respectively.  Comparing 

Eqs. 1 and 2, it can be seen that the time averaged continuity equation is identical to the 

instantaneous continuity equation with mean velocity replacing the instantaneous velocity.  

Similarly time-averaged quantities replace the instantaneous quantities in the Navier-Stokes 

momentum equation.  The only difference between Eqs. (1) and (2), aside from these replacements, 

is the additional term 𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  found in the time averaged NS equation.  This term represents the rate 

of momentum transfer due to turbulence and is known as the Reynolds-stress tensor.  The Reynolds 

stress tensor must be defined in order to close the system of equations and compute the mean flow 

quantities. 

2.3 Eddy Viscosity Turbulence Models 
In an analogy to the molecular momentum transport process, the Boussineq approximation given 

in Eq. 3 can be used to model the Reynolds-stress tensor by introduction a scalar, the eddy 

viscosity. The modeling problem then becomes that of determining the eddy viscosity.  The class 

of turbulence models that define νt, are known as eddy viscosity turbulence models.  Eddy viscosity 

models are the most common and are the easiest to implement turbulence models.  

 𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = −𝜈𝑡𝑆𝑖𝑗 +
2

3
𝑘𝛿𝑖𝑗 (3)  

To model the eddy viscosity one can either use some combination of turbulent length scale, time 

scale, and kinetic energy or introduce directly an equation for eddy viscosity. The former method  

has the advantage of using well defined quantities, such as the turbulent kinetic energy, while the 



8 

 

latter is generally simpler. Details of two of the most widely used eddy viscosity models are given 

in the next sections. 

2.3.1 Spalart-Allmaras Turbulence Model 

The Spalart-Allmaras (SA) turbulence model is a single equation eddy-viscosity model developed 

for the prediction of aerodynamic flows [2].  The SA model’s transport quantity, 𝜈, defines the 

eddy-viscosity everywhere except very close to the wall. A clever formulation allows 𝜈 to vary 

linearly as 𝜈=uky not only through the log-layer but also down to the wall. This linearity makes 

the model numerically attractive because second order discretization methods can capture linear 

functions very accurately.  The model was derived using empiricism and arguments of dimensional 

analysis (having no link to the k-ε turbulence model).  It is a low-Reynolds number model, allowing 

for accuracy all the way to the wall assuming that the mesh is properly refined.  The transport 

equation for the standard SA model and its definition of eddy viscosity are given below: 

 

𝐷𝜈

𝐷𝑡
 =  𝑐𝑏1[1 − 𝑓𝑡2] 𝑆 ̃𝜈 + 

1

𝜎
 [
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈) 

𝜕𝜈

𝜕𝑥𝑗
) + 𝑐𝑏2 (

𝜕𝜈

𝜕𝑥𝑗
)

2

] 

− [𝑐𝑤1𝑓𝑤 −
𝑐𝑏1
𝜅2
𝑓𝑡2] [

𝜈

𝑑
]
2

 

(4)  

The turbulent eddy-viscosity is given by the equation: 

 

 𝜈𝑡 = 𝜈 𝑓𝑣1. (5)  
 

Near wall blocking is accounted for by the damping function fv1. 

 

 𝑓𝑣1  =  
𝜒3

𝜒3 + 𝑐3𝑣1
, 𝜒 =  

𝜈

𝑣
. (6)  

 

The remaining function definitions are given by the following equations: 

 



9 

 

 �̃� = Ω +
𝜈

𝜅2𝑑2
𝑓𝑣2, 𝑓𝑣2 = 1 −

𝜒

1 − 𝜒𝑓𝑣1
  (7)  

 

 𝑓𝑤 = 𝑔[
1 + 𝑐6𝑤3
𝑔6 + 𝑐6𝑤3

]1/6 , (8)  

 

 𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟), (9)  

   

 𝑟 =
𝜈

�̃� 𝜅2𝑑2
, (10)  

 

 

 𝑓𝑡2 = 𝐶𝑡3𝑒𝑥𝑝(−𝐶𝑡4𝜒
2) (11)  

 

The closure coefficients for the SA model are given in Table 2.1. 

Table 2.1: Spalart-Allmaras closure coefficients. 

Closure Coefficient Value 

𝒄𝒃𝟏 1.355 
𝒄𝒃𝟐 0.622 
𝒄𝒗𝟏 7.1 
𝒄𝒕𝟑 1.2 
𝒄𝒕𝟒 0.5 
𝒄𝒘𝟐 0.3 
𝒄𝒘𝟑 2.0 
𝝈 2/3 
κ 0.41 

2.3.2 Shear-Stress-Transport k-ω Turbulence Model 

The Shear-Stress-Transport (SST) k-ω [3] model combines the desirable characteristics of the k-ε 

and k-ω models.  This is accomplished by blending the k-ω and k-ε formulations.  Wilcox’s k-ω 

[4] model remains active only near the solid boundaries and the standard k-ε model is used at the 

boundary layer edge and other shear regions.  By confining the k-ω model to the inner part of the 

boundary layer, its sensitivity to the free-stream conditions is avoided. Additionally, k-ε models 

have historically been more accurate in predicting free-shear flows than k-ω models [6]. The near 

wall behavior of k-ε models is poor and requires additional damping functions to resolve the 

viscous sublayer, while k-ω models are integrable to the wall without corrective functions.  The 



10 

 

shear-stress-transport aspect of the model limits the eddy viscosity as a function of the turbulent 

kinetic energy.  This modification improves the prediction of flows with strong pressure gradients 

and separation. The equations of the SST k-ω model are given below. The transport equations for 

k and ω are given by: 

 

 

𝐷𝜌𝑘

𝐷𝑡
= 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔𝜅 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
] 

(12)  

 

 
𝐷𝜌𝜔

𝐷𝑡
=
𝛾

𝜈𝑡
𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝜌𝜔2 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

1

𝜔
 
𝜕𝑘

𝜕𝑥𝑗
 
𝜕𝜔

𝜕𝑥𝑗
 (13)  

 

The turbulent eddy-viscosity is computed from: 

 𝜈𝑡 =
𝑎1𝑘

max (𝑎1𝜔;Ω𝐹2)
 ,   𝛺 = √2𝑊𝑖𝑗𝑊𝑖𝑗  ,   𝑊𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) (14)  

 

Each model constant is blended between an inner and outer constant by: 

 
𝜑 = 𝐹1𝜑1 + (1 − 𝐹1)𝜑2 (15)  

The remaining function definitions are given by the following equations: 

 𝐹1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1
4) (16)  

 

 𝑎𝑟𝑔1 = min [max (
√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔
) ,
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑑2
 ] (17)  

 

 𝐶𝐷𝑘 = max(2𝜌𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20) (18)  

 

 𝐹2 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔2
2) (19)  

   

 

 
𝑎𝑟𝑔2 = max (2

√𝑘

𝛽∗𝜔𝑑
,
500𝜈

𝑑2𝜔
)  (20)  

   

The closure coefficients for the SST k-ω model are given in  

Table 2.2. 



11 

 

 

Table 2.2: SST k-ω closure coefficients. 

Closure Coefficient Standard Value 

𝜷∗
𝒊𝒏𝒇

 0.09 

𝒂𝟏 0.31 
𝜷𝟏 0.075 
𝜷𝟐 0.0828 
𝝈𝒌𝟏 0.85 
𝝈𝒌𝟐 1.0 
𝝈𝒘𝟏 0.5 
𝝈𝒘𝟐 0.856 
κ 0.41 

  



12 

 

Chapter 3: OpenFOAM Verification 
Before using OpenFOAM in the present study, the implementations of the SA and SST k-ω models 

in OpenFOAM were investigated. Examination of the source code of these models showed that 

they did not match the standard turbulence model definitions found on the NASA Langley 

Turbulence Model Resource (TMR) website [5]. The NASA TMR website provides a central 

location for the documentation of turbulence models and provides verification cases for testing 

turbulence model implementations.  Corrections were made to the original code of the SA and SST 

k-ω models to match the definitions of the SA-noft2 [6] and SST-2003 [7] models from the TMR 

website. In what follows, the original implementations are denoted as SA-OF-Baseline and SST-

OF-Baseline. The corrected implementations are denoted as SA-OF-Corrected and SSTkω-OF-

Corrected. The results from the baseline and corrected models are compared to results from the 

NASA codes CFL3D [8] and FUN3D [9] to verify the newly implemented models.  

Three cases selected from the TMR website were run to verify the corrected models. These cases 

were the 2D mixing layer, the 2D wake, and the 2D flat plate boundary layer. Details of these cases 

are given below with results for the SA and SST k-ω models shown in the next sections.  The three 

cases were run using a steady-state incompressible solver and second order discretization schemes.  

 2D Mixing Layer - In this case, the upper higher-velocity stream and lower slower velocity 

stream mix to form a freeshear mixing layer that eventually achieves a self-similar solution. 

The reference Mach number of the upper stream is M = 0.121108 and Reynolds number 

ReL = 2900. The reference static pressure Pref for both streams was 101325 Pa.  The 

geometry is shown in Figure 3.1(a). A family of computational grids was provided by the 

TMR website.  Results presented below were achieved with the second-finest grid shown 



13 

 

in Figure 3.1(b). The quantities of interest for this case are the non-dimensional velocity at 

x = 200, 650, and 950 mm.  The baseline and corrected SA and SST k-ω models are 

compared to the CFL3D results taken from the TMR website. 

 

 
Figure 3.1: 2D mixing layer (a) geometry and (b) mesh. 

 2D Wake - In this case wake characteristics behind a non-symmetric 10% thick Model A-

airfoil at angle of attack α = 0° were measured. Both the upper and lower surfaces of the 

airfoil were tripped. The definition of the airfoil was slightly altered to achieve a sharp 

trailing edge with chord length c = 1. The freestream Mach number was M = 0.088 and 

Reynolds number per chord was ReC = 1.2x106. A family of computational grids is 

provided by the TMR website.  Results presented below were achieved with the second-

finest grid. The computational grid is shown in Figure 3.2(b). The quantities of interest for 

this case are the non-dimensional velocity profiles at x/c = 1.05, 1.40, and 2.19.  The 

baseline and corrected SA and SST k-ω models are compared to the CFL3D results taken 

from the TMR website. 

(a) 

(b) 



14 

 

 

Figure 3.2: 2D wake (a) geometry and (b) mesh. 

 2D Flat Plate - In this case, characteristics of a flat plate turbulent boundary layer were 

measured. The case had a Mach number of M = 0.2 and Reynolds number Re = 5x106. A 

family of computational grids is provided by the TMR website.  The skin friction 

coefficient along the plate and the normalized velocity profile at x = 0.97 was given. Skin 

friction and velocity results presented below were achieved with the second-finest grid. 

The computational grid is shown in Figure 3.4. Additionally the convergence behavior of 

the skin friction coefficient is also presented. 

 
Figure 3.3: 2D flat plate geometry and boundary conditions [5]. 

(a) (b) 

20c 

Airfoil 



15 

 

 
Figure 3.4: 2D flat plate mesh. 

3.1 Spalart-Allmaras Model Refinements and Verification 
The main difference between the SA-OF-Baseline and SA-OF-Corrected model is the inclusion of 

the fv3 term in the SA-OF-Baseline model. This form of the SA model is “not recommended 

because of unusual transition behavior at low Reynolds numbers. Unfortunately, coding of this 

version still persists”[10]. After removing this term, the fv2 and �̃� definitions were corrected. The 

ft2 term found in the SA-Standard model was not added but is not expected to influence the 

solutions for the high Reynolds number cases examined [11]. The SA-noft2 code is available in 

Appendix A of this dissertation. 

The SA-OF-Corrected model was first tested on the 2D mixing layer and 2D wake cases.  The 

non-dimensionalized velocity at x = 200, 650, and 950 mm are shown in Figure 3.5, Figure 3.6, 

and Figure 3.7 respectively.  It can be seen that the both the SA-OF-Baseline and SA-OF-Corrected 

results agree very well with the SA-CFL3D results. Some discrepancy in the core of the predicted 

2D wake flow is seen in Figure 3.8. This difference in the predicted velocity is most pronounced 

near the airfoil trailing edge. Overall the models are in very good agreement for these two free 

shear cases. 



16 

 

 
Figure 3.5: SA model verification for the 2D mixing layer at x = 200 mm. 

 

 
Figure 3.6: SA model verification for the 2D mixing layer at x = 650 mm. 

-1.0

-0.5

0.0

0.5

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

(U-U1)/ΔU

SA-CFL3D

SA-OF-Baseline

SA

-1.0

-0.5

0.0

0.5

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

(U-U1)/ΔU

SA-CFL3D

SA-OF-Baseline

SA

SA-OF-Corrected 

SA-OF-Corrected 



17 

 

 
Figure 3.7: SA model verification for the 2D mixing layer at x = 950 mm. 

 
Figure 3.8: SA model verification for the 2D wake verification at x/c = 1.05, 1.40, and 2.19. 

The next case used to verify the implementation of the SA-OF-Corrected model was the 2D flat 

plate turbulent boundary layer.  Comparisons of the velocity profile at x = 0.97 and the skin friction 

coefficient along the plate are shown in Figure 3.9 (a) and (b) respectively. It can be seen that the 

corrected SA model shows some improvement in the velocity and skin friction predictions. Also 

the baseline SA model predicts some transitional behavior near the leading edge of the plate which 

-1.0

-0.5

0.0

0.5

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

(U-U1)/ΔU

SA-CFL3D

SA-OF-Baseline

SA

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

y/
c

u/Uinf

SA-CFL3D
SA-OF-Baseline
SA-OF-Corrected

SA-OF-Corrected 



18 

 

is not seen in the corrected SA model and FUN3D model. The skin friction coefficient of the 

corrected SA model was also improved as can be seen in Figure 3.10 

 
Figure 3.9: SA model verification of the (a) velocity and (b) skin friction coefficient. 

 
Figure 3.10: SA verification of the skin friction coefficient convergence.  

 

0

5

10

15

20

25

30

0.01 1 100 10000

u
+

y+

(a)

SA-CFL3D

SA-OF-Baseline

SA-OF-Corrected

0.002

0.003

0.004

0.005

0.006

0.0 0.5 1.0 1.5 2.0

C
f

x
(b)

SA-FUN3D

SA-OF-Baseline

SA-OF-Corrected

0.00269

0.0027

0.00271

0.00272

0.00273

0.00274

0.00275

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

C
f 

@
 x

=0
.9

7

h=(1/#grid pts.)^0.5

FUN3D

OpenFOAM-Baseline

OpenFOAM-Standard

FUN3D 

SA-OF-Baseline 

SA-OF-Corrected 



19 

 

 

3.2 SST k-ω Model Refinements and Verification 
The SSTkω-OF-Baseline model includes an extra function, F3, not found in any of the versions 

present on the TMR website.  After removing this function, changes were made in the definition 

of the eddy-viscosity and CDkω.  Also a limiter was placed on both the k and ω production terms.  

The biggest change between the SSTkω-OF-Baseline and SSTkω-OF-Corrected model was the 

removal of wall functions. While this change is not specifically outlined on the TMR website, it 

was done to ensure that the proper wall boundary conditions were being applied.  The SST k-ω 

model is integrable down to the wall but the use of wall functions risks overwriting the computed 

near wall flow. Wall functions were disabled in OpenFOAM and the TMR recommended ωwall 

and kwall boundary conditions were applied in the SSTkω-OF-Corrected model.  The SST-2003 

code is available in Appendix A of this dissertation. 

The free shear flows of the 2D mixing layer and 2D wake were first used to verify the SSTkω-OF-

Corrected model.  The 2D wake non-dimensionalized velocity at x = 200, 650, and 950 mm are 

shown in Figure 3.11, Figure 3.12, and Figure 3.13 respectively. It can be seen that the SST-OF-

Baseline model gives very poor results compared to SSTk-CFL3D. The SSTk-OF-Corrected 

model is in very good agreement with SSTk-CFL3D except at x=200mm. The results of the 2D 

wake are shown in Figure 3.14.  Again it is evident that some errors exist in the SSTk-OF-

Baseline model. The implementation of the SSTk-OF-Corrected model greatly improves the 

accuracy of OpenFOAM. 



20 

 

 
Figure 3.11: SST k-ω model verification of the 2D wake at x = 200mm.  

 
Figure 3.12 SST k-ω model verification of the 2D wake at x = 650 mm. 

-1.0

-0.5

0.0

0.5

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

(U-U1)/ΔU

SSTkω-CFL3D

SSTkω-OF-Baseline

SST k-ω

-1.0

-0.5

0.0

0.5

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

(U-U1)/ΔU

SSTkω-CFL3D

SSTkω-OF-Baseline

SST k-ωSSTkω-OF-Corrected 

SSTkω-OF-Corrected 



21 

 

 
Figure 3.13: SST k-ω model verification of the 2D wake at x = 950 mm. 

 
Figure 3.14 SST k-ω model verification of the 2D wake at x = 1.05, 1.40, and 2.19. 

The 2D flat plate turbulent boundary was used next to verify the implementation of the SSTk-

OF-Corrected model. Comparisons of the velocity profile at x = 0.97 and the skin friction 

coefficient along the plate are shown in Figure 3.15 (a) and (b) respectively. It can be seen that the 

-1.0

-0.5

0.0

0.5

1.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

(U-U1)/ΔU

SSTkω-CFL3D

SSTkω-OF-Baseline

SST k-ω

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

y/
c

u/Uinf

SSTkω-CFL3D

SSTkω-OF-Baseline

SSTkω-OF-Corrected

SSTkω-OF-Corrected 



22 

 

corrected model is in much better agreement with FUN3D results than the baseline model. The 

SSTkω-OF-Baseline model relies on wall functions to correctly predict the skin friction 

coefficient.  With wall functions disabled the baseline model cannot accurately simulate turbulent 

boundary layers.  

 
Figure 3.15: SST k-ω verification of the (a) velocity and (b) skin friction coefficient. 

0

5

10

15

20

25

30

0.01 1 100 10000

u
+

y+

SSTkω-CFL3D

SSTkω-OF-Baseline

SSTkω-OF-Corrected

0.002

0.003

0.004

0.005

0.006

0.0 0.5 1.0 1.5 2.0

C
f

x

SSTkω-FUN3D

SSTkω-OF-Baseline

SSTkω-OF-Corrected



23 

 

 
Figure 3.16: SST k-ω verification of the skin friction coefficient convergence. 

The results of these three cases demonstrate that the newly implemented SA and SST k-ω models 

are in excellent agreement with NASA’s CFL3D and FUN3D implementations.  The minor 

discrepancies that remain may be due to running OpenFOAM’s incompressible solver while 

CFL3D/FUN3D run compressible solvers or it could be due to the selection of different 

discretization schemes in OpenFOAM and CFL3D/FUN3D.  With the SA and the SST k-ω models 

verified, results from OpenFOAM can be directly compared with confidence to results from other 

CFD codes and results from the literature. 

  

0.00225

0.00250

0.00275

0.00300

0.00325

0.00350

0.00375

0.00400

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

C
f 

@
 x

=0
.9

7

h=(1/N)^0.5

FUN3D
OpenFOAM-Baseline
OpenFOAM-Standard

FUN3D 

SSTkω-OF-Baseline 

SSTkω-OF-Corrected 



24 

 

Chapter 4: The Wray-Agarwal (WA) 

Turbulence Model 

4.1 Introduction 
Baldwin and Barth [12] were among the first to derive a one-equation turbulence model by 

transforming and simplifying a two-equation model.  However, the assumptions made in their 

derivation resulted in the model having a very different behavior then the parent k-ε model. 

Additionally the model was ill-conditioned near shear layer regions leading to extreme numerical 

difficulties. Menter [13] refined this transformation methodology and used it to propose his own 

one-equation model also based on k-ε closure.  Menter’s one-equation model showed very similar 

and even improved results compared to its parent k-ε model [13]. Since then several one-equation 

models based on k-ε and k-ω closure have been proposed but have found limited adoption by the 

scientific community due to their poor numerical behavior, difficulty in implementation, or poor 

accuracy compared to the industry standard models.  Goldberg [14] developed a one-equation 

model functionally similar to the Baldwin-Barth model, except that a switch function was used to 

‘turn off’ the problem term when needed. The switch function was non-Galilean-invariant and the 

model did not see wide adoption.  Nagano et. al [15], who have also done extensive work on two-

equation models, derived their one-equation model by transforming their k-ε model.  However, the 

complexity of their two-equation model led to many non-linear and singular terms in their one-

equation model.  Fares and Schröder [16] proposed a one-equation model based on k-ω closure.  

Their model showed good results for free shear flows and some wall bounded adverse pressure 

gradient flows but was later shown to be sensitive to freestream boundary conditions [17]. 

Elkhoury [18] refined Menter’s one-equation model by limiting the production term and later 

adding a switch to the destruction term.  Rahman et. al [19] took experience gained with their 



25 

 

previous algebraic stress model and two-equation model to propose a model similar to Baldwin-

Barth with additional functions to capture non-equilibrium effects and enforce realizability 

constraints. The model showed good results for several canonical cases but is complex and difficult 

to implement. Rahman et. al [20,21] have also recently proposed a one-equation k-model and one-

equation ε-model that have shown accurate prediction of near wall k and ε profiles compared to 

DNS. Remarkably, despite being one of the first one-equation models, the Spalart-Allmaras model 

has remained the benchmark one-equation model due to its simplicity, ease of use, and excellent 

numerical characteristics. The goal of this research has been to develop a one-equation model that 

combines the most desirable characteristics of the one-equation k-ε models and one-equation k-ω 

models, analogous to the SST k-ω model’s combination of the two-equation k-ε and k-ω models. 

It is shown that the new model is generally more accurate than the SA model and is competitive 

with the SST k-ω model for a wide range of flows.  

4.2 Derivation of the WA model 
The Wilcox’s 2006 k-ω model [4] in the boundary layer coordinates can be written as: 

 

𝐷𝑘

𝐷𝑡
=
𝜕

𝜕𝑦
(𝜎𝑘

𝑘

𝜔

𝜕𝑘

𝜕𝑦
) + 𝜈𝑡 (

𝜕𝑢

𝜕𝑦
)
2

− 𝛽∗𝑘𝜔 

 

(21)  

 

𝐷𝜔

𝐷𝑡
=
𝜕

𝜕𝑦
(𝜎𝜔

𝑘

𝜔

𝜕𝜔

𝜕𝑦
) + 𝛼

𝜔

𝑘
𝜈𝑡 (

𝜕𝑢

𝜕𝑦
)
2

− 𝛽𝜔2 +
𝜎𝑑
𝜔

𝜕𝑘

𝜕𝑦

𝜕𝜔

𝜕𝑦
 

 

(22)  

where the material derivative 𝐷 𝐷𝑡 = 𝜕 𝜕𝑡⁄ + 𝑢𝑗(𝜕 𝜕𝑥𝑗⁄ )⁄ . Boundary layer coordinates are used 

for simplicity and the model coefficients are not defined to emphasize the generality of this 

approach. It should also be noted that the last term of the -equation was not present when Fares 

and Schröder derived their one equation model.  This cross diffusion term will be responsible for 

additional terms in the resulting one-equation. With R defined as k/ω, the material derivative of R 

can be obtained as: 



26 

 

 
𝐷𝑅

𝐷𝑡
=
1

𝜔

𝐷𝑘

𝐷𝑡
−
𝑘

𝜔2
𝐷𝜔

𝐷𝑡
 (23)  

Substitution of Eq. 21 and Eq. 22 in Eq. 23 defines the new transport equation for R. However, 

two independent equations are still necessary to remove k and ω from the new transport equation 

for R. The first of these has already been defined with R = k/ω.  The closure is completed using 

the Bradshaw’s relation [22, 23] given in Eq. 24, where a1 is the Bradshaw’s constant and |−𝑢′𝑣′̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ | 

is the turbulent shear stress. 

 |−𝑢′𝑣′̅̅ ̅̅ ̅̅ | = 𝜈𝑡 |
𝜕𝑢

𝜕𝑦
| = 𝑎1𝑘 (24)  

After substitution and the additional assumption that 𝜎𝑘 = 𝜎𝜔 = 𝜎𝑅 , the R-Equation can be 

obtained as: 

 
𝐷𝑅

𝐷𝑡
=
𝜕

𝜕𝑦
(𝜎𝑅𝑅

𝜕𝑅

𝜕𝑦
) + 𝐶1𝑅 |

𝜕𝑢

𝜕𝑦
| + 𝐶2

𝑅

|
𝜕𝑢
𝜕𝑦
|

𝜕𝑅

𝜕𝑦

𝜕 |
𝜕𝑢
𝜕𝑦
|

𝜕𝑦
− 𝐶3𝑅

2

(

  
 
𝜕 |
𝜕𝑢
𝜕𝑦
|

𝜕𝑦

𝜕 |
𝜕𝑢
𝜕𝑦
|

𝜕𝑦

|
𝜕𝑢
𝜕𝑦
|
2

)

  
 

 (25)  

After comparison with previous one-equation models, it can be noted that the C2 term is identical 

to the destruction term of one-equation k-ω models (Fares and Schröder) while the C3 term is 

identical to the destruction term in one-equation k-ε models (Menter). Therefore it is possible to 

control the behavior of the new model by controlling which destruction term is active. The two-

equation k-ω model has a strong dependency on the free stream values which has been shown to 

carry over into the one-equation k- model.  To minimize this effect, the C2 destruction term is 

limited to be employed near solid boundaries and away from shear layer edges. The aim is to 

design a blending function f1 which has a value of one in the viscous sub-layer and in the majority 

of the log layer.  Then, near the outer edge of the log-layer, it decreases to zero allowing the C3 



27 

 

term to dominate.  This approach is analogous to the F1 blending function of the SST k-ω model. 

The F1 blending function of the SST k-ω has the form as follows

 𝑓1 = tanh (𝑎𝑟𝑔1
4) (26)  

Hyperbolic tangent is a desirable function because it is bounded and smooth.  Use of it in this 

model gives better numerical behavior than the “if-then” and “min-max” switch functions of 

Goldberg and Elkhoury. The remaining problem is to find a formula for arg1 such that arg1=1.0 

in the log-layer and zero away from the wall. Noting that in the log-layer 𝑅 = 𝑢𝑡𝜅𝑑 = 𝑆𝜅
2𝑑2, the 

following definition of arg1 is suggested. The coefficient Cb is used to control how fast the 

transition from one to zero occurs.   

 𝑎𝑟𝑔1 = 𝐶𝑏
𝜈 + 𝑅

𝑆𝜅2𝑑2
 (27)  

The coefficients of the new one-equation model were calibrated by applying the model to free 

shear flows. Similarity solutions were derived for four standard free shear cases, namely the plane 

wake, the planer jet, the round jet, and the radial jet. The equations were cast into self-similar 

solutions following the procedure of Wilcox [24] and numerically solved.  The spreading rates for 

these four free shear flows are shown in Table 4.1. 

Table 4.1: Free shear flow spreading rates 

Flow R-Eqn. SA [24] SST k-ω [25] Experiment 

Far Wake 0.305 0.341 0.258 0.32-0.40 [26] 

Plane Jet 0.108 0.157 0.112 0.10-0.11 [27] 

Round Jet 0.119 0.248 0.127 0.086-0.096 [28] 

Radial Jet 0.093 0.166 --- 0.096-0.110 [29] 

 

It can be seen from Table 4.1 that the predicted spreading rates using the R-Equation are in much 

better agreement than the SA model for the plane, round, and radial jets. For the far wake flow, 



28 

 

the SA model is in best agreement with the experimental value followed by the R-Equation model 

and lastly by SST k-ω model.  The model coefficients are given in Eqs. (32) – (36).  The law of 

the wall was also used as a constraint when determining the model coefficients. 

For appropriate model behavior in the viscous sub-layer and buffer layer, further modification to 

the model is required.  The wall blocking effect is accounted for by the damping function of Mellor 

and Herring [30] shown in Eq. (31). The value of Cw was determined by calibrating the model to 

a simple flat plate flow. A value of Cw=13.0 is used and ν has the usual definition of dynamic 

viscosity. 

The final form of the new zonal one-equation model, known as the Wray-Agarwal (WA) model is 

as follows: 

 

𝜕𝑅

𝜕𝑡
+
𝜕𝑢𝑗𝑅

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜎𝑅𝑅 + 𝜈)

𝜕𝑅

𝜕𝑥𝑗
] + 𝐶1𝑅𝑆 + 𝑓1𝐶2𝑘𝜔

𝑅

𝑆

𝜕𝑅

𝜕𝑥𝑗

𝜕𝑆

𝜕𝑥𝑗

− (1 − 𝑓1)𝐶2𝑘𝜀𝑅
2(

𝜕𝑆
𝜕𝑥𝑗

𝜕𝑆
𝜕𝑥𝑗

𝑆2
) 

 

(28)  

 
𝜈𝑇 = 𝑓𝜇𝑅 

 
(29)  

 
𝑓1 = 𝑡𝑎𝑛ℎ(𝑎𝑟𝑔1

4), 𝑎𝑟𝑔1 = 𝐶𝑏
𝜈 + 𝑅

𝑆𝜅2𝑑2
 

 
(30)  

 𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3
, 𝜒 =

𝑅

𝜈
 (31)  

 𝐶1𝑘𝜔 = 0.0833,        𝐶1𝑘𝜀 = 0.16 (32)  

 𝐶1 = 𝑓1(𝐶1𝑘𝜔 − 𝐶1𝑘𝜀) + 𝐶1𝑘𝜀 (33)  

 𝐶2𝑘𝜔 = 1.22, 𝐶2𝑘𝜀 = 1.95 (34)  



29 

 

 𝜎𝑅 = 𝑓1(𝜎𝑘𝜔 − 𝜎𝑘𝜀) + 𝜎𝑘𝜀 (35)  

 𝜎𝑘𝜔 = 0.72,        𝜎𝑘𝜀 = 1.0 (36)  

 𝐶𝑤 = 8.54, 𝐶𝑏 = 1.66 (37)  

 𝑆 =  √2𝑆𝑖𝑗𝑆𝑖𝑗  , 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (38)  

 

4.3 Characteristics of the WA model 
The WA model was first applied to compute free shear flows.  Since these flows are inexpensive 

and quick to solve numerically, they can be used to easily investigate some properties of the new 

model.  Solution sensitivity to free stream boundary conditions is an issue that plagues many two-

equation models and especially the k-ω models [31].  Since a k-ω closure was used in the derivation 

of the WA model, it must be determined whether this behavior is also present in the new one-

equation model. Figure 4.1 shows the plane jet spreading rates for the WA and SA models for 

varying free stream non-dimensional eddy viscosity, N, on two grids.  It can be seen that both one-

equation models have no free stream dependency.  The WA model however is more sensitive to 

the number of grid points than the SA model but it is much more accurate than the SA model in 

calculation of the spreading rate when compared to the experimental data as shown in Table 4.1. 



30 

 

 

Figure 4.1: Plane jet spreading rates as a function of free stream eddy viscosity N and number of grid points. 

One-equation models are attractive in part due to their numerical efficiency.  A simple 2D subsonic 

boundary layer flow past a flat plate is used to investigate the convergence behavior of the models.  

As can be seen from Figure 4.2, the SA model converges quite well to its final value showing very 

little mesh sensitivity. This is somewhat expected since special consideration was given to the 

numerical behavior during its formulation. The WA and SST k-ω models have a similar order of 

convergence. The computational cost per iteration of the three models was also measured for the 

finest mesh of computation of boundary flow past flat plate on a single processor. The SA model 

ran the fastest with 0.090 seconds per iteration, followed by the WA model with a speed of 0.125 

seconds per iteration.  The SST k-ω model expectedly was the slowest with a CPU time of 0.185 

seconds per iteration. All models were run in serial on the same desktop computer. All models 

converged in nearly the same number of iterations, making the SA model the least computationally 

intensive followed by the WA model and lastly by the SST k-ω model. This trend in CPU time 

and convergence was observed for all the computed cases in the following chapters.  

0.05

0.1

0.15

0.2

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

Sp
re

ad
in

g 
R

at
e

N

WA - 101 grid points WA - 51 grid points

SA - 101 grid points SA - 51 grid points



31 

 

 
Figure 4.2: Convergence of skin friction coefficient at x = 0.97. 

  

0.0023

0.00235

0.0024

0.00245

0.0025

0.00255

0.0026

0.00265

0.0027

0.00275

0.0028

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

C
f 

@
 x

=0
.9

7

h=(1/N)^0.5

WA

SA

SST k-ω



32 

 

Chapter 5: Validation Cases 

5.1 Introduction 
In Chapter 3, the correct implementations of the SA and SST k-ω models were verified for a few 

canonical flows. In this chapter comparison of the WA, SA, and SST k-ω models to experimental 

data are made. A wide variety of validation cases are calculated. The majority of the cases are 

selected from the NASA Langley Research Center Turbulence Modeling Resource (TMR) [5] or 

the National Project for Application-oriented Research in CFD (NPARC) Alliance [32].  A few 

additional canonical cases from literature are also computed. Cases are broken into the following 

sections: Subsonic Flows, Transonic Flows, and Supersonic Flows. Details of the flow conditions, 

geometry, and grid are given for each case. Whenever possible, TMR-provided grids are used so 

that a direct comparison to TMR results can be made. The variety of cases considered demonstrates 

the WA model’s ability to accurately reproduce a wide range of flows. 

5.2 Subsonic Flows 

5.2.1 2D Mixing Layer 

In this section results for the TMR 2D Mixing Layer are presented.  The experimental data is taken 

from Deville et. al [33].  In this case, the upper higher-velocity stream and lower slower velocity 

stream mix to form a freeshear mixing layer that eventually achieves a self-similar solution. The 

reference Mach number of the upper stream is M = 0.121108 and Reynolds number ReL = 2900. 

The reference static pressure Pref for both streams is 101325 Pa.  The geometry is shown in Figure 

5.1(a). A family of computational grids is provided by the TMR website.  Results presented below 

were obtained with the second-finest grid. The computational grid is shown in Figure 5.1(b).  



33 

 

The quantities of interest for this case are: the non-dimensional velocity profiles at x = 200, 650, 

and 900 mm. The vorticity thickness δw from the experiment was used to nondimensionalize the 

y-coordinate. It can be seen in Figure 5.2-5.4 that the velocity profiles from all three models are in 

good agreement with the experimental data.  

 

 

 
Figure 5.1: 2D mixing layer (a) geometry and (b) mesh. 

(a) 

(b) 



34 

 

 
Figure 5.2: Normalized velocity profile comparisons at x = 200mm. 

 
Figure 5.3: Normalized velocity profile comparisons at x = 650mm. 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

w

(U-U1)/ΔU

WA

SST k-ω

SA

Exp. Data

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

w

(U-U1)/ΔU

WA

SST k-ω

SA

Exp. Data



35 

 

 
Figure 5.4: Normalized velocity profile comparisons at x = 950mm. 

5.2.2 2D Wake 

In this section results for the TMR 2D Airfoil Near-Wake are presented. In this case wake 

characteristics behind a non-symmetric 10% thick Model A-airfoil at angle of attack α = 0° were 

measured. Both the upper and lower surfaces of the airfoil were tripped. Experimental test 

conditions for this case are given by Nakayama. [34] The definition of the airfoil was slightly 

altered to achieve a sharp trailing edge with chord length c = 1. The freestream Mach number is 

M = 0.088 and Reynolds number per chord is ReC = 1.2x106. A family of computational grids is 

provided by the TMR website.  Results presented below were achieved with the second-finest grid. 

The computational grid is shown in Figure 5.5:. The quantities of interest for this case are: the non-

dimensional velocity profiles at x/c = 1.05, 1.40, and 2.19. As seen in Figure 5.6-5.7 all three 

models are in general agreement with the experimental data.   

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y/
δ

w

(U-U1)/ΔU

WA

SST k-ω

SA

Exp. Data



36 

 

 

Figure 5.5: 2D wake (a) geometry and (b) mesh. 

 

 
Figure 5.6: Normalized velocity profile comparisons at x=1.05. 

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

y/
c

u/Uinf

WA

SST k-ω

SA

Exp. Data

(a) (b) 

20c 

Airfoil 



37 

 

 
Figure 5.7: Normalized velocity profile comparisons at (a)x=1.40 and (b)x=2.19. 

5.2.3 2D Flat Plate 

In this section results for the TMR 2D Zero Pressure Gradient Flat Plate are presented.  This case 

has a Mach number M = 0.2 and Reynolds number Re = 5x106. A family of computational grids 

is provided by the TMR website.  Results presented below were obtained with the second-finest 

grid. The computational grid is shown in Figure 5.9. 

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.7 0.8 0.9 1.0 1.1

y/
c

u/Uinf
(a)

WA

SST k-ω

SA

Exp. Data

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.7 0.8 0.9 1.0 1.1
y/

c
u/Uinf

(b)

WA

SST k-ω

SA

Exp. Data



38 

 

 
Figure 5.8: 2D flat plate geometry and boundary conditions [5]. 

 
Figure 5.9: 2D flat plate mesh. 

The quantities of interest to compare are: the skin friction coefficient Cf along the plate and the 

non-dimensional velocity u+ at Reθ = 5,000 and 10,000. Experimental data from Weighardt[35] as 

well as empirical formulas from Coles[36] are used for comparison.  Calculation of the momentum 

thickness θ is necessary for determining Reθ.  This calculation required numerical integration of 

the boundary layer. Evaluation of the integral for θ was carried out by an additional post-processing 

code not included in OpenFOAM. 



39 

 

Figure 5.10 compares the skin friction coefficient, Cf, computed using the WA, SA, and SST k-ω 

models. It can be seen that all the models predict the correct profile of skin friction coefficient 

along the plate.   Figure 5.11 compares the computed velocity profiles using the three models. As 

expected for this simple case, the results from all the models compare extremely well with the 

experimental data and the empirical formula.   

 
Figure 5.10: Skin friction coefficient for flow over a 2D flat plate. 

0.002

0.003

0.004

0.005

0.006

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

C
f

x

Exp. Data

WA

SST k-ω

SA



40 

 

  
Figure 5.11: Velocity profiles at (a) Reθ=5000 and (b) Reθ=10,000. 

5.2.4 2D Channel 

In this section results for a fully developed turbulent channel flow at Reτ = 550 and Reτ = 1000 are 

presented.  The calculation is conducted in a half-width channel, imposing periodic boundary 

conditions.  A pressure gradient source is applied to achieve the necessary Reτ. The grid was 

refined for the Reτ = 1000 case until mesh independence was achieved.  This mesh was then used 

for the Reτ = 550 case. Figure 5.12 shows the comparison of predicted velocity profiles with the 

DNS results of Lee and Moser [37]. For both Reynolds numbers, excellent agreement between the 

predicted and DNS results can be seen.  

0

5

10

15

20

25

30

1 10 100 1000 10000

u
+

y+

SA

WA

SST

Exp. Data

0

5

10

15

20

25

30

1 10 100 1000 10000

u
+

y+

SA

WA

SST

Coles Eqn.



41 

 

 
Figure 5.12: Comparison of nondimensional velocity profiles for fully developed channel flow at Reτ = (a) 550, 

and (b) 1000. 

5.2.6 2D NACA0012 Airfoil 

In this section results for the TMR 2D NACA0012 Airfoil are presented.  Experimental test 

conditions for this case are given by Ladson. [38] Both the upper and lower surfaces of the airfoil 

were tripped. The definition of the airfoil was slightly altered to achieve a sharp trailing edge with 

chord length c = 1. The freestream Mach number is M = 0.15 and the Reynolds number per chord 

is ReC = 6x106. A family of computational grids is provided by the TMR website.  Results 

presented below were achieved with the second-finest grid. The quantities of interest to compare 

are: the lift coefficient Cl, the drag coefficient Cd, the surface pressure coefficient Cp and the 

surface skin friction coefficient Cf at angles of attack α = 5°, 10°, and 15°.  Surface pressure 

coefficients are compared to the data of Gregory [39] which better captured the 2D effects, while 

lift and drag coefficients are compared to the experiment of Ladson[38]. 

0

5

10

15

20

25

0.1 1 10 100 1000

u
+

y+

(a)

WA

SST

SA

DNS

0

5

10

15

20

25

0.1 1 10 100 1000
u

+

y+

(b)

WA

SST

SA

DNS



42 

 

The predicted lift and drag coefficients are compared to experimental values in Table 5.1. It can 

be seen that the WA model under predicts the lift coefficient and over predicts the drag at each 

angle of attack.  The SA and SST models are both reasonably close to the experimental value.  

Table 5.1: Lift and drag predictions for the NACA0012 airfoil. 

  α=5° α=10° α=15° 

Model Cl Cd Cl Cd Cl Cd 

WA 0.544134 0.009680 1.069435 0.013018 1.473077 0.023764 

SST k-ω 0.549202 0.008485 1.079623 0.010850 1.537168 0.017703 

SA 0.551979 0.009023 1.082537 0.011731 1.537900 0.020150 

Exp. -- -- ~1.076 ~0.0118 ~1.519 ~0.0185 

 

Figure 5.13-5.15 show the comparison of pressure coefficient and skin friction coefficient at α = 

5°, 10°, and 15° respectively obtained using the three models. 

 
Figure 5.13: (a)Pressure coefficient and (b)skin friction coefficient comparisons for the NACA0012 at α=5°. 

-4

-3

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

C
p

x/c
(a)

WA

SST

SA

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.2 0.4 0.6 0.8 1

C
f

x/c
(b)

WA

SST

SA



43 

 

 
Figure 5.14: (a)Pressure coefficient and (b)skin friction coefficient comparisons for the NACA0012 at α=10°. 

 
Figure 5.15: (a)Pressure coefficient and (b)skin friction coefficient comparisons for the NACA0012 at α=15°. 

 

-6

-5

-4

-3

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

C
p

x/c
(a)

WA

SST

SA

Exp. Data

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

C
f

x/c
(b)

WA

SST

SA

-12

-10

-8

-6

-4

-2

0

2

0 0.2 0.4 0.6 0.8 1

C
p

x/c
(a)

WA

SST

SA

Exp. Data

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1

C
f

x/c
(b)

WA

SST

SA



44 

 

 

5.2.8 2D Backward Facing Step 

In this section results for the TMR 2D Backward Facing Step are presented.  The computations for 

this case correspond to the experiment investigated by Driver and Seegmiller [40]. The reference 

Mach number, M = 0.128, is taken at x/H = -4. This case has ReH = 36,000 based on step height.  

The wall opposite the step has zero deflection and is treated as a viscous wall. The ratio between 

the channel height and the step is 9.  Figure 5.16 shows the geometry of this case. A family of 

computational grids is provided by the TMR website.  Results presented below were obtained with 

the second-finest grid. The computational grid is shown in Figure 5.17. The quantities of interest 

to compare are: the flow reattachment point, the pressure coefficient Cp and skin friction 

coefficient Cf of the lower wall, and normalized u-velocity profiles at x/H = 1, 4, 6, and 10. 

 
Figure 5.16: 2D backward facing step geometry and boundary conditions. [5] 



45 

 

 
Figure 5.17: 2D backward facing step mesh. 

The pressure coefficient and skin friction coefficients along the lower wall are given in Figure 5.18 

and Figure 5.19 respectively.  The predicted pressure coefficients of the WA and SST k-ω models 

are very similar and are in general agreement with the experimental data.  The SA model pressure 

coefficient prediction is furthest from the experimental values, especially in the separation region 

and in the recovery region after reattachment. The reattachment length given in the experiment is 

x/H = 6.26±0.1. The WA and SA models predict reattachment slightly before this range at 5.95 

and 6.08 respectively. The SST k-ω model overpredicts the length of the separation bubble with a 

reattachment point at x/H = 6.60. Skin friction through the separation region and downstream of 

the reattachment is best predicted by the WA model. 

Velocity profiles sampled at four stations are shown in Figure 5.20(a)-(d).  The results of the WA 

and SST k-ω model are very similar at x/H = 1 and 4. At x/H = 6 the SST k-ω model has yet to 

reattach. Despite being the first model to reattach, the WA model shows delayed recovery evident 

at x/H = 6 and 10. The SA model recovers well and is able to predict the velocity profiles accurately 

downstream of reattachment. 

 



46 

 

 
Figure 5.18: Pressure coefficient comparison for the 2D backward facing step. 

 
Figure 5.19: Skin friction coefficient comparison for the 2D backward facing step. 

  

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-5 0 5 10 15 20 25 30

C
p

x/H

Exp. Data

WA

SST

SA

-0.002

-0.001

0

0.001

0.002

0.003

0.004

-5 0 5 10 15 20 25 30

C
f

x/H

Exp. Data

WA

SST

SA



47 

 

 

 

Figure 5.20: Velocity profile comparisons at x/H = (a)1, (b)4, (c)6, and (d)10. 

0

1

2

3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

y/
H

u/Uref
(a)

Exp. Data

WA

SST

SA

0

1

2

3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
y/

H
u/Uref

(b)

Exp. Data

WA

SST

SA

0

1

2

3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

y/
H

u/Uref
(c)

Exp. Data

WA

SST

SA

0

1

2

3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

y/
H

u/Uref
(d)

Exp. Data

WA

SA

SST



48 

 

5.2.9 2D Asymmetric Diffuser 

In this section results for the NPARC 2D Asymmetric Diffuser are presented. The diffuser has an 

opening angle of α = 10° and an expansion ratio of 4.7 corresponding to the experiment conducted 

by Buice [41]. The inlet flow is a fully developed channel flow with Reynolds number ReH = 

20,000 based on the centerline velocity and channel height. An adverse pressure gradient causes 

the flow to separate. The computational grid was created using ANSYS ICEM and was uniformly 

refined until grid independence was achieved.  The final grid contained ~175,000 cells and a y+ < 

1.3 along the bottom wall. The quantities of interest to compare are: the surface pressure coefficient 

Cp and skin friction coefficient Cf along the bottom and top walls, the normalized u-velocity at x/H 

= -3, 3, 6, 14, 17, 20, 24, 27, 30, 34, 40 47, 53, 60, and 67. 

 
Figure 5.21: 2D asymmetric diffuser geometry. 

 

Figure 5.22: 2D asymmetric diffuser mesh. 



49 

 

The skin friction coefficient along the bottom wall is shown in Figure 5.23.  The separation point 

in the experiment is x/H = 6.6 and the reattachment point is at x/H = 27.5.  Of the three models, 

the WA model most accurately predicts the separation location with a value of x/H = 5.9.  The SA 

and SST k-ω models predict the separation location much too early at x/H = 4.5 and 2.3 

respectively.  The WA model under predicts the reattachment point at x/H=24.9 while the SA and 

SST k-ω have an over prediction at x/H ~ 30.9. Figure 5.24 shows the skin friction coefficient 

along the top wall of the diffuser.  The WA and SST k-ω most accurately predict the skin friction 

distribution.  The SA model significantly under-predicts the skin friction coefficient in the region 

above the separation bubble. The pressure coefficient along the bottom and top wall are shown in 

Figure 5.25 and Figure 5.26 respectively.  For both walls, the SST k-ω model is closest to the 

experimental values followed by the WA model and lastly by the SA model. All three models 

over-predict the pressure coefficient. 

A comparison of the velocity profiles at several streamwise locations is shown in Figure 5.27 and 

Figure 5.28. All three models enter the diffuser with nearly the same developed channel flow 

evident at x/H = -3.  As the flow enters the expansion, the SA model is first to slow while the WA 

and SST models maintain general agreement with the experimental data at x/H = 3 and 6. As the 

separation region begins to grow, the WA model most accurately matches the experimental data 

as seen at x/H = 14 and 17. The WA model reattaches sooner than the experiment and begins 

recovery at x/H ~ 24.  The WA and SA model recover at about the same rate, while the SST k-ω 

model continues to overpredict the velocity in the upper region of the diffuser. 



50 

 

 
Figure 5.23: Comparisons of skin friction coefficient along the bottom diffuser wall. 

 
Figure 5.24: Comparisons of skin friction coefficient along the top diffuser wall. 

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

-20 -10 0 10 20 30 40 50 60 70

C
f

x/H

Exp. Data

WA

SST

SA

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

-20 -10 0 10 20 30 40 50 60 70

C
f

x/H

Exp. Data

WA

SST

SA



51 

 

 
Figure 5.25: Comparison of the pressure coefficient along the bottom diffuser wall. 

 
Figure 5.26: Comparison of the pressure coefficient along the top diffuser wall. 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-20 -10 0 10 20 30 40 50 60 70

C
p

x/H

Exp. Data

WA

SST

SA

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-20 -10 0 10 20 30 40 50 60 70

C
p

x/H

Exp. Data

WA

SST

SA



52 

 

 
Figure 5.27: Velocity profile comparisons at stations x/H = -3 through 35. 

 
Figure 5.28: Velocity profile comparisons at stations x/H = 40 through 74. 

0.0

4.7

-5 0 5 10 15 20 25 30 35 40

y/
H

u/U

WA

SA

SST

Exp. Data

0.0

4.7

40 45 50 55 60 65 70 75 80

y/
H

u/U

WA

SA

SST

Exp. Data



53 

 

5.2.10 2D NACA4412 Airfoil  

In this section results for the TMR NACA4412 Airfoil with Trailing Edge Separation are 

presented.  Results are compared with data obtained from the experiment of Coles and Wadcock 

[42,43]. At Mach number M = 0.09 and angle of attack α = 13.9°, a trailing edge separation 

occurred on the upper surface of the airfoil. The Reynolds number based on chord length is ReC = 

1.52x106. The definition of the airfoil is slightly altered to achieve a sharp trailing edge with chord 

length c = 1. A family of computational grids is provided by the TMR website.  Results presented 

below were obtained with the second-finest grid. The computational grid is shown in Figure 5.29. 

The quantities of interest to compare are: the pressure coefficient Cp, and normalized u-velocity at 

x/c = 0.6753, 0.7308, 0.8418, and 0.9528. It is important to note that the experimental velocities 

were non-dimensionalized by the velocity at a location about 1 chord below and behind the airfoil 

and not by the usual freestream value. The surface pressure coefficient from experiment was not 

corrected and therefore should only be viewed in a qualitative sense. 

 
Figure 5.29: 2D NACA 4412 airfoil mesh. 

A comparison of the surface pressure coefficients is shown in Figure 5.30 with a detailed view of 

the trailing edge separation region shown in Figure 5.31. The predictions of the WA and SST 



54 

 

models are nearly indistinguishable. While all three models are in general agreement with the 

experimental data over most the airfoil, none of them can accurately predict the pressure in the 

separation region. 

The comparison of the velocity profiles through the separation region is a better indicator of the 

relative models performance.  It can be seen in Figure 5.32(a)-(d) that leading up to the separation 

region, the SST model is in excellent agreement with the experimental data followed closely by 

the WA model.  Both the WA and SST model correctly account for the non-equilibrium effects of 

the large adverse pressure gradient. As the flow separates the SST model most accurately predicts 

the bubble height followed closely by the WA model as evident in the upper regions of Figure 

5.32(d)-(f). The SA model’s poor velocity prediction early on along the airfoil only becomes worse 

moving downstream.  

 
Figure 5.30: Comparison of the pressure coefficient distribution over the NACA4412 airfoil. 

-8

-6

-4

-2

0

2

0.0 0.2 0.4 0.6 0.8 1.0

C
p

x/c

Exp. Data

WA

SST k-ω

SA



55 

 

 
Figure 5.31: Pressure coefficient comparison in the trailing edge region of the NACA4412 airfoil. 

  

-1.0

-0.5

0.0

0.5

1.0

0.6 0.7 0.8 0.9 1.0

C
p

x/c

Exp. Data

WA

SST k-ω

SA



56 

 

 

 

 
Figure 5.32: Normalized velocity profile comparisons at x/c = (a)0.6753, (b)0.7308, (c)0.7863, (d)0.8418, 

(e)0.8973, and (f)0.9528 for the NACA4412 airfoil. 

0.00

0.02

0.04

0.06

0.08

0.10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(y
-y

0
)/

c

u/Uref
(a)

Exp. Data

WA

SST k-ω

SA

0.00

0.02

0.04

0.06

0.08

0.10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(y
-y

0
)/

c

u/Uref
(b)

Exp. Data

WA

SST k-ω

SA

0.00

0.02

0.04

0.06

0.08

0.10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(y
-y

0
)/

c

u/Uref
(c)

Exp. Data

WA

SST k-ω

SA

0.00

0.02

0.04

0.06

0.08

0.10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(y
-y

0
)/

c

u/Uref
(d)

Exp. Data

WA

SST k-ω

SA

0.00

0.02

0.04

0.06

0.08

0.10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(y
-y

0
)/

c

u/Uref
(e)

Exp. Data

WA

SST k-ω

SA

0.00

0.02

0.04

0.06

0.08

0.10

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(y
-y

0
)/

c

u/Uref
(f)

Exp. Data

WA

SST k-ω

SA



57 

 

5.2.11 2D Wall-Mounted Hump 

In this section results for the TMR 2D NASA Wall-Mounted Hump Separated Flow are presented.  

The focus of this case is to assess the ability of turbulence models to predict separation, 

reattachment, and boundary layer recovery.  The geometry designed by Seifert and Pack [44] is 

run under the test conditions given in Greenblatt et al. [45].  The Reynolds number based on the 

hump length is ReC = 936,000 and the Mach number is M = 0.1. A family of computational grids 

is provided by the TMR website.  Results presented below were obtained with the second-finest 

grid. The flow control plenum present in the experiment is removed from the grid.  The upper wall 

is contoured to approximately account for side-plate blockage present in the original geometry. 

The computational grid is shown in Figure 5.33. The inlet boundary condition is prescribed to 

match the experimental values at x/c = -2.14 as shown in Figure 5.34. The quantities of interest to 

compare are: the flow separation point, the flow reattachment point, the pressure coefficient Cp 

and skin friction coefficient Cf along the hump and lower wall, and normalized u-velocity profiles 

at x/c = -2.14, 1.0, 1.1, 1.2, and 1.3. 

 
Figure 5.33: 2D wall mounted hump mesh. 

The skin friction coefficient along the hump wall is shown in Figure 5.35. All three models show 

separation at x/c = 0.665 which is in good agreement with the experimental value.  The 



58 

 

reattachment point in the experiment was found to be in the range of x/c = 1.07 to 1.13.  All three 

models predict a reattachment point in the range of x/c = 1.26-1.29, greatly over predicting the 

size of the separation region. Results for the mean pressure coefficient along the hump wall are 

presented in Figure 5.36.  Leading up to the hump and over the top of the hump, all three models 

are in agreement with the experimental data. The models predict higher pressure levels in the 

separation region than measured experimentally and the stretching of the separation region is also 

evident. 

 
Figure 5.34: Inlet velocity profile for the NASA 2D hump case. 

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5

y/
c

u/Uref

WA

SA

SST k-ω

Exp. Data



59 

 

 
Figure 5.35: Skin friction coefficient comparison along the NASA 2D hump. 

 
Figure 5.36: Pressure coefficient comparison along the NASA 2D hump. 

-0.004

-0.002

0

0.002

0.004

0.006

0.008

-0.5 0 0.5 1 1.5 2

C
f

x/c

Exp. Data

WA

SST k-ω

SA

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.5 0 0.5 1 1.5 2

C
p

x/c

Exp. Data

WA

SST k-ω

SA



60 

 

Velocity profiles at four stations through the separation and recovery region are shown in Figure 

5.37(a)-(d).  The behavior of the WA model is very similar to that of the SST model. The large 

error in the reattachment point prediction is also evident in the velocity profile comparisons. All 

the models fail to accurately predict the velocity profiles. 

 
Figure 5.37: Normalized velocity profile comparisons at x/c=(a)1.0, (b)1.1, (c)1.2, and (d)1.3. 

5.2.12 Axisymmetric Separated Boundary Layer 

In this section results for the TMR Axisymmetric Separated Boundary Layer are presented. The 

geometry and flow conditions for this case are taken from the experiment by Driver [47]. In the 

0

0.05

0.1

0.15

0.2

-0.5 0 0.5 1 1.5

y/
c

u/Uref
(a)

WA

SA

SST k-ω

Exp. Data

0

0.05

0.1

0.15

0.2

-0.5 0 0.5 1 1.5

y/
c

u/Uref
(b)

WA

SA

SST k-ω

Exp. Data

0

0.05

0.1

0.15

0.2

-0.5 0 0.5 1 1.5

y/
c

u/Uref
(c)

WA

SA

SST k-ω

Exp. Data

0

0.05

0.1

0.15

0.2

-0.5 0 0.5 1 1.5

y/
c

u/Uref
(d)

WA

SA

SST k-ω

Exp. Data



61 

 

experiment an adverse pressure gradient was imposed so that the boundary layer separated and 

reattached. A streamline shape far from the boundary layer was provided in the experiment and 

was used as an inviscid upper boundary condition for the computation. The geometry and boundary 

conditions are shown in Figure 5.38. The reference Mach number is M = 0.08812 and Reynolds 

number Re = 2x106. A family of computational grids is provided by the TMR website.  Results 

presented below were achieved with the second-finest grid. The quantities of interest to compare 

are: the separation and reattachment points, the surface skin friction coefficient Cf, the surface 

pressure coefficient Cp, and normalized u-velocity profiles at x=-0.3302, 0.0508, 0.1524, and 

0.3048. 

 

Figure 5.38: Axisymmetric separated boundary layer geometry and boundary conditions [5]. 

The mean surface friction coefficient over the cylinder wall is shown in Figure 5.40. The three 

models predict nearly the same separation point. The WA model vastly under predicts the 

separation bubble size. The SST and SA models over predict the bubble length. A comparison of 

the pressure coefficients is shown in Figure 5.39.  The WA and SST models are in excellent 

agreement with the experimental data. 



62 

 

All models approach the separation with nearly the same developed boundary layer as shown in 

Figure 5.41(a).  Continuing into the separation region the WA and SST models have very similar 

predicted profiles, except very near the wall where the SST model correctly predicts a small 

separation region. 

 
Figure 5.39: Comparison of the pressure coefficient for the axisymmetric separated boundary layer flow. 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

C
p

x [m]

SA

WA

SST

Exp. Data



63 

 

 
Figure 5.40: Comparison of the skin friction coefficient for the axisymmetric separated boundary layer flow. 

  

-0.0005

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

C
p

x [m]

SA

WA

SST

Exp. Data



64 

 

 

 
Figure 5.41: Comparison of the normalized velocity profiles for the axisymmetric separated boundary layer 

at x=(a)-0.3302, (b)0.0508, (c)0.1524, and (d)0.3048 meters. 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y'
 [

m
]

u/Uinf
(a)

Exp. Data

WA

SA

SST

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
y'

 [
m

]

u/Uinf
(b)

Exp. Data

WA

SA

SST

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y'
 [

m
]

u/Uinf
(c)

Exp. Data

WA

SA

SST

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y'
 [

m
]

u/Uinf
(d)

Exp. Data

WA

SA

SST



65 

 

5.3 Transonic Flows 

5.3.1 2D RAE2822Airfoil 

In this section results for the NPARC 2D Transonic RAE2822 Airfoil are presented. Results are 

compared with data obtained from the experiment of Cook et al. [50] At Mach number M = 0.725 

and angle of attack α = 2.79° a shockwave develops over the suction side of the airfoil. The 

Reynolds number based on chord length is ReC = 6.2x106. A grid was created for this case with 

ANSYS ICEM and uniformly refined until grid independence was achieved. The final mesh had 

165,000 cells and a maximum y+<0.7 across the airfoil.  

The comparison of the pressure coefficients is given in Figure 5.42.  As can be seen, all the models 

show very good agreement with the experimental data over the majority of the airfoil surface.  The 

only discernable difference among the models is the prediction of the shock location.  The SA 

model exhibits a shift in downstream of the experimental data.  The SST and WA models predict 

nearly identical shock positions slightly upstream of the experimental position. 



66 

 

 
Figure 5.42: Comparison of the surface pressure coefficient for the RAE2822 airfoil. 

5.3.2 Axisymmetric Bump 

In this section results for the TMR Axisymmetric Transonic Bump are presented. The 

computations of this case correspond to the experiment of Bachalo and Johnson [51]. In the 

experiment a shockwave developed near the trailing edge of a bump protruding from a cylinder.  

The shock and adverse pressure gradient caused flow separation with eventual reattachment.  The 

reference Mach number is M = 0.875 and Reynolds number is Re = 2.763x106. The geometry is 

shown in Figure 5.43. A family of computational grids is provided by the TMR website.  Results 

presented below were achieved with the second-finest grid. The quantities of interest to compare 

are: the separation and reattachment points, the surface skin friction coefficient Cf, the surface 

pressure coefficient Cp, and normalized u-velocity profiles at x/c= -0.250, 0.688, 0.813, 0.938, 

1.125, and 1.25. 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

C
p

x/c

WA

SST k-w

SA

Experiment



67 

 

 
Figure 5.43: Computational domain of the axisymmetric transonic bump [5]. 

Figure 5.44 shows the comparison of the pressure coefficients along the surface of the bump. The 

SA model predicts a delay of the shock position and overpredicts the pressure after the shock and 

into the separation region. The SST k-ω model most accurately predicts the shock location 

followed closely by the WA model. The predicted pressure coefficients of the SST k-ω and WA 

models are comparable and are in good agreement with the experimental data after the shock and 

throughout the separation region. Oil-flow visualizations have determined that the separation and 

reattachment occur at approximately x/c = 0.7 and x/c = 1.1 respectively.  The predicted separation 

and reattachment points determined from the skin friction coefficient are shown in Table 5.2. It 

can be seen that the SA model most accurately predicts the separation point while the WA model 

most accurately predicts the reattachment point. The shock position and separation bubble size 

have a strong coupling. It is noteworthy that even though the WA model predicts an earlier shock 

than SST k-ω and SA models, it has the latest separation. This is in closer agreement with the 

behavior observed in the experiment where the separation occurred slightly downstream of the 

shock. 



68 

 

 

 
Figure 5.44: Comparison of the surface pressure coefficients for the axisymmetric transonic bump. 

Table 5.2: Comparison of the flow separation and reattachment points for the axisymmetric transonic bump. 

  Experiment WA % Error SST k-ω  % Error SA % Error 

Separation 0.7 0.75 7.14 0.65 -7.14 0.69 -1.43 

Reattachment 1.1 1.109 -0.82 1.16 5.45 1.16 5.45 

 

Comparisons of the velocity profiles at specific measured positions are shown in Figure 5.45. The 

wall normal coordinate y’/c is defined such that y’/c = 0 on the geometry surface. The first velocity 

measurements were taken just before the flow reached the bump at x/c = -0.25.  It can be seen 

from Figure 5.45(a) that all three models develop a boundary layer indistinguishable from each 

other and give results in excellent agreement with the experimental data. Figure 5.45(b) shows the 

velocity profiles over the bump. It can be seen that this location intersects the predicted 

shockwaves from the WA and SST k-ω models.  Figure 5.45(c-e) compare the velocity profiles 

through the separation region and just after reattachment. Very close to the wall, the WA model 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

C
p

x/c

WA

SST k-ω

SA

Experiment



69 

 

most accurately predicts the velocity profile. This is most evident in Figure 5.45(e), where the WA 

model is the only model that predicts the reattachment of the flow. After y’/c ~ 0.15 the WA model 

begins to underpredict the velocity and the SST k-ω and SA models are in better agreement with 

the experimental data. Downstream of the reattachment point and into the recovery region, the SA 

model is in best agreement with the experimental data. 

  



70 

 

 
Figure 5.45: Comparison of the mean velocity profiles at x/c =(a)-0.25, (b)0.688, (c)0.813, (d)0.938, (e)1.125 

and (f)1.25. 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.5 0.0 0.5 1.0 1.5

y
'/

c

u/Uinf 

(a)

WA

SST k-ω

SA

Experiment

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.5 0.0 0.5 1.0 1.5

y
'/

c

u/Uinf 

(b)

WA

SST k-ω

SA

Experiment

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.5 0.0 0.5 1.0 1.5

y
'/

c

u/Uinf 

(c)

WA

SST k-ω

SA

Experiment

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.5 0.0 0.5 1.0 1.5

y
'/

c

u/Uinf 

(d)

WA

SST k-ω

SA

Experiment

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.5 0.0 0.5 1.0 1.5

y
'/

c

u/Uinf 

(e)

WA

SST k-ω

SA

Experiment

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.5 0.0 0.5 1.0 1.5

y
'/

c

u/Uinf

(f) 

WA

SST k-ω

SA

Experiment



71 

 

5.4 Supersonic Flows 

5.4.1 2D Flat Plate 

In this section results for the TMR 2D Zero Pressure Gradient High Mach Number Flat Plate are 

presented. High speed flow over a flat plate at four flow conditions was calculated. The Reynolds 

number based on unit length was ReL=15x106. The four flow conditions are: 

 Minf =2.0, Tw/Tinf =1.712 

 Minf =5.0, Tw/Tinf =1.090 

 Minf =5.0, Tw/Tinf =2.725 

 Minf =5.0, Tw/Tinf =5.450 

A family of computational grids is provided by the TMR website.  Results presented below were 

achieved with the finest grid. The computational grid is shown in Figure 5.46. 

 

Figure 5.46: Sonic flat plate (a) grid and (b) boundary conditions [5]. 

The quantities of interest to compare are: the wall skin friction coefficient Cf, and the 

nondimensional velocity at Reθ = 10,000. Results are compared to empirical incompressible 

correlations by use of the van Driest transformation [52] of the Karman-Schoenherr [53] relation. 

It should be noted that the correlations are imperfect. 

X 
(a) 

X 
(b) 

Y Y 



72 

 

Skin friction results for the flat plate simulations for the four flow conditions are shown in Figure 

5.47 and Figure 5.48. For all the cases the three models are in general agreement with the 

theoretical value.  The largest spread in predictions is seen in the Minf =5.0, Tw/Tinf =1.090 case 

shown in Figure 5.48.  For this case, the SA model notably predicts a much lower skin friction 

coefficient. The results of the WA model are comparable to that of the SST k-ω model. 

 
Figure 5.47: Skin friction coefficient comparisons for the Minf =2.0, Tw/Tinf =1.712 and Minf =5.0, Tw/Tinf =1.090 

case. 

0.00125

0.00150

0.00175

0.00200

0.00225

0.00250

4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000

C
f

Reθ

Theory

SA

SST k-w

WAMinf =2.0, Tw/Tinf =1.712 

Minf =5.0, Tw/Tinf =1.090 



73 

 

 
Figure 5.48: Skin friction coefficient comparisons for the Minf =2.0, Tw/Tinf =2.725 and Minf =5.0, Tw/Tinf =5.450 

case. 

5.4.2 2D Slot Nozzle Ejector 

In this section results for the NPARC 2D Slot Nozzle Ejector are presented. The nozzle 

configuration evaluated experimentally by Gilbert and Hill [54] is considered.  The geometry is 

shown in Figure 5.49. High speed flow ejected from the nozzle entrains the ambient air into the 

mixing chamber as a means to create additional thrust.  A grid was created for this case with 

ANSYS ICEM and uniformly refined until grid independence was achieved. The final mesh had 

205,000 cells and a maximum y+=1.5 along the mixing section wall. The quantities of interest to 

compare are: the surface static pressure along the mixing section wall, and velocity profiles at x = 

3”, 7” and 10.5” from the nozzle outlet. 

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000

C
f

Reθ

Theory

SA

SST k-w

WA

Minf =5.0, Tw/Tinf =2.725 

Minf =5.0, Tw/Tinf =5.450 



74 

 

 
Figure 5.49: Experimental apparatus cross-section and measurement locations. 

Computational results for the mixing section wall static pressure are compared to the experimental 

data in Figure 5.50.  It can be seen that the WA and SST k-ω models are in best agreement with 

the experimental data.  The SA model has the correct trend but greatly underpredicts the pressure 

magnitude.  

Figure 5.51 compares the computed and measured velocity profiles at three 3”, 7”, and 10.5” 

locations downstream from the nozzle outlet.  It can be seen from Figure 5.51(a) that at location 

3” away from the nozzle, all the models overpredict the velocity of the jet core. The SST k-ω and 

WA models are in agreement with the experimental data away from the jet.  The prediction of the 

centerline velocity of the SST k-ω and WA models approaches the experimental values further 

from the nozzle discharge as can be seen from Figure 5.51(b,c). The SA model continues to greatly 

overpredict the velocity even at location 10.5” away from the nozzle discharge. 

 



75 

 

 
Figure 5.50: Comparison of the mixing section wall pressure distribution. 

 

  

-28000

-23000

-18000

-13000

-8000

-3000

0 0.1 0.2 0.3 0.4 0.5 0.6

S
ta

ti
c
 P

re
ss

u
re

 (
P

a
)

Distance fom Nozzle Discharge (m)

WA

SST k-ω

SA

Experimental



76 

 

 

 

 
Figure 5.51: Comparison of the velocity profiles at locations (a)3”, (b)7”, and (c)10.5” downstream of the slot 

nozzle ejector. 

0

50

100

150

200

250

300

350

400

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

V
e
lo

c
it

y
 (

m
/

s)

Distance from Centerline (m)
(a)

WA

SST k-ω

SA

Experimental

0

50

100

150

200

250

300

350

400

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

V
e
lo

c
it

y
 (

m
/

s)

Distance from Centerline (m)
(b)

WA

SST k-ω

SA

Experimental

0

50

100

150

200

250

300

350

400

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

V
e
lo

c
it

y
 (

m
/

s)

Distance from Centerline (m)
(c)

WA

SST k-ω

SA

Experimental



77 

 

5.4.3 Axisymmetric Shock Wave/Boundary Layer Interaction (SWBLI) 

In this section results for the TMR Axisymmetric Shock Wave Boundary Layer Interaction are 

presented. Results are compared with data obtained from the experiment of Kussoy and Horstman 

[55]. High speed flow over an ogive cylinder reaches a flare designed to produce an oblique shock 

and shock wave boundary layer interaction. The experiment with a flare of 20° was considered in 

this case. The geometry is shown in Figure 5.52. This case has a freestream Mach number of M = 

7.11 and Reynolds number Re = 57,000. The wall had constant temperature of Twall = 311K. A 

family of computational grids is provided by the TMR website.  Results presented below were 

obtained with the second-finest grid. The quantities of interest to compare are the nondimensional 

surface pressure and heat transfer. 

 

 

Figure 5.52: Computational domain of the axisymmetric SWBLI [5]. 

Figure 5.53 and Figure 5.54 compare the predicted pressure and heat transfer profiles along the 

surface with the experimental data. The pressure along the wall is comparable for all three models 

as seen in Figure 5.53. The SST k-ω model predicts a noticeable separation region at the beginning 

of the flare which is not seen in the experiment.  All models slightly over predict the pressure in 



78 

 

the region near the shock. Further downstream the models underpredict the pressure. It can be seen 

in Figure 5.54 that the SA model is in best agreement with the experimental heat transfer. The WA 

predicts a sharp increase in the heat transfer at the beginning of the flare, similar to the SA model 

but more extreme. The SST k-ω and WA model slightly overpredict the heat transfer immediately 

following the shock. All three models return to the same heat transfer level after the flow 

downstream of the shock. 

 
Figure 5.53: Comparison of the nondimensional wall pressure for the axisymmetric SWBLI 

0

2

4

6

8

10

12

14

-5 0 5 10 15

P
w
/P

w
,i

n
f

S (cm)

WA

SST k-ω

SA

Experiment



79 

 

 
Figure 5.54: Comparison of the nondimensional wall heat flux for the axisymmetric SWBLI. 

  

0

2

4

6

8

10

12

14

-5 0 5 10 15

Q
w
/Q

w
,i

n
f

S (cm)

WA

SST k-ω

SA

Experiment



80 

 

Chapter 6 Rotation/Curvature and Surface 

Roughness Corrections 

6.1 Rotation and Curvature Corrections 

6.1.1 Introduction 

One of the major deficiencies of linear eddy-viscosity turbulence models is their inability to 

capture the effects of streamline curvature and system rotation. Since these effects are significant 

in many engineering flows, modification of existing turbulence models to account for these effects 

is of practical interest. The Spalart-Shur correction [56] has been shown to improve the predictive 

capability of the SA and SST k-ω turbulence models when applied to flows where streamline 

curvature and system rotation are present [57,58]. This motivates the application of the Spalart-

Shur correction to the WA model.  

In the following section, the WA turbulence model is modified to include the Spalart-Shur 

correction. The new model is then applied to compute the 2D flow in a curved channel. Along with 

WA-RC results, results from the original WA, the SA, SA-RC, SST k-ω, and SST-RC models are 

also obtained. The results from all the models are compared with experimental data. The results 

show that the new model more accurately predicts skin-friction coefficient and surface pressure 

coefficient than the base model. 

6.1.2 The Spalart-Shur Correction 

To account for rotation and curvature effects, the empirical function shown in Eq. 39 is used.  This 

function multiplies the production term in the SA eddy viscosity transport equation and similarly 

multiplies the production terms of both k and ω equations in the SST k-ω model. For the WA 

model, implementation of the Spalart-Shur correction is also a straightforward modification to the 



81 

 

transport equation shown in Eq. 28. The source term (𝐶1𝑅𝑆) is simply multiplied by the rotation 

function shown in Eq. 39. 

 𝑓𝑟1(𝑟
∗, �̃�) = (1 + 𝑐𝑟1) [

2𝑟∗

1 + 𝑟∗
] [1 − 𝑐𝑟3 tan

−1(𝑐𝑟2�̃�)] − 𝑐𝑟1 (39)  

 

where 𝑟∗ and �̃� are nondimensional quantities given by: 

 

 𝑟∗ =
𝑆

𝜔
, �̃� = 2𝜔𝑖𝑗𝑆𝑗𝑘(

D𝑆𝑖𝑗

D𝑡
)/𝐷4 (40)  

 

 
𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) , 𝜔𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

(41)  

 𝐷2 = 𝜔2𝑖𝑗 + 𝑆
2
𝑖𝑗 (42)  

 

The derivative in Eq. 40, D𝑆𝑖𝑗/D𝑡, are the components of the Lagrangian derivative of the strain 

tensor. For finite volume method codes, it may be more convenient to represent the derivative 

using an Eulerian formulation. This procedure is outlined in Ref. 58 and was used in the present 

OpenFOAM implementation. The three model constants 𝑐𝑟1 = 1.0, 𝑐𝑟2 = 8.0, and 𝑐𝑟3 = 1.0 were 

calibrated for the WA model. 

6.1.1 2D Convex Curvature Boundary Layer 

In this section results for the TMR 2D Convex Curvature Boundary Layer are presented. The focus 

of this case is to assess the capability of turbulence models to capture the effects of curvature on 

the boundary layer formation. This flow has been computed at the conditions corresponding to the 

experiment of Smits et al. [59].  The experiment measured flow through a constant area square 

duct of height 0.127 m with a rapid 30° bend. The aspect ratio of the experimental duct was 6:1, 

but the case was modeled as 2D in the present computation. The duct was essentially reduced to a 

channel flow with Mach number M = 0.093 and Reynolds number Re = 2.1x106. A family of 

computational grids is provided by the TMR website.  Results presented below were obtained with 



82 

 

the second-finest grid. The computational grid is shown in Figure 6.1. The experiment showed the 

presence of Görtler vortices which cannot be predicted in the 2D simulation. For this reason, 

comparison of the CFD and experimental results should be considered ambiguous but a 

comparison among the models can still be made. The quantities of interest to compare are the 

pressure coefficient Cp on the convex wall and the skin friction coefficient Cf along the convex 

wall. 

 

 
Figure 6.1: Computational grid and coordinate system of the convex curvature boundary layer[5]. 

Figure 6.2 shows the calculated and experimental values of the pressure coefficient along the 

convex wall.  It can be clearly seen that there is no discernible difference between the turbulence 

models and every model is in excellent agreement with the experimental data.  The addition of the 

Spalart-Shur correction has no effect on this quantity. Comparison of the calculated and 

experimental skin friction coefficients are shown in Figure 6.3. The positive effect of Spalart-Shur 

correction is clearly demonstrated.  The results of the SA-RC and SST-RC are in excellent 

agreement with FUN3D results from the NASA TMR [5], verifying their implementation in 

OpenFOAM. An improvement in the accuracy of each base model is accomplished with the 

addition of the RC correction.  



83 

 

 
Figure 6.2: Comparison of the convex wall pressure coefficient. 

 

Figure 6.3: Comparison of the convex wall skin friction coefficient. 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-1E-15

0.1

0.2

-0.5 0 0.5 1 1.5

C
p

x

SA

SA-RC

SST

SST-RC

WA

WA-RC

Exp



84 

 

6.2 Surface Roughness 

6.2.1 Introduction 

Many aerodynamic and heat transfer applications require a model that can accurately simulate 

flow over smooth and rough surfaces. Surface roughness is generally caused by manufacturing or 

by some environmental degradation of the surface material, such as erosion. Even though surface 

conditions play a major role in boundary-layer characteristics, most turbulence models require an 

additional modification in order to account for it.  Various surface-roughness modelling techniques 

have been suggested. For example, a wall-function approach offers a simple and easy to implement 

modification, but has not found broad adoption because wall-functions are reliable only for simple, 

attached flows. More common and robust methods of surface-roughness modelling modify the 

boundary conditions of the turbulence variable as a function of the surface roughness. 

The most common method used to model surface roughness is the equivalent sand grain approach 

based on the work of Nikuradse [60]. In the equivalent sand grain approach an equivalent sand 

grain height, ks, is assigned to the surface.  This height is determined based on empirical 

correlations and the geometry of the surface. The need for additional geometric parameters in order 

to define ks is a problem when dealing with complex geometries.  Also, although the inclusion of 

ks improves the accuracy of the temperature distribution, the correlation between ks and the heat 

transfer has no physical basis.  Despite these drawbacks it is still very widely used. 

In the next section a surface roughness modification is presented for the WA turbulence model.  

Surface roughness modifications based on the equivalent sand grain approach exist for both the 

SA [61] and SST k-ω turbulence models [62]. The three modified models with roughness 

corrections, designated WA-rough, SST k-ω-rough, and SA-rough, were implemented into 

OpenFOAM. The models were then used to simulate the flow over a rough flat plate and rough 



85 

 

S809 airfoil and were compared with experimental and empirical data. The results show that the 

WA-rough model accurately accounts for surface roughness characteristics. 

6.2.2 WA Model Roughness Correction 

The equivalent sand grain approach represents the physical roughness with an idealized roughness, 

based on the work of Nikuradse [60] along with empirical correlations.  The roughness effect is 

captured by increasing the eddy viscosity in the near wall region as a function of the equivalent 

sand grain height. Nikuradse showed that for fully rough surfaces, a shift occurred in the boundary 

layer velocity profiles.  The velocity profile in the log-layer obeys: 

 𝑢+ =
1

𝜅
𝑙𝑛
𝑦

𝑘𝑠
+ 8.5  

The development of the WA-rough model follows the procedure of the SA-rough model.  The wall 

distance, d, is modified to match the expected shift in the log-layer.  The value of d, present in the 

blending function is replaced with dnew so that the switch between destruction terms still occurs 

near the top of the log-layer. 

 𝑑𝑛𝑒𝑤 = 𝑑 + 0.03𝑘𝑠  

The viscous damping must also be modified to give realistic viscous sublayer and buffer layer 

profiles.  This was accomplished by replacing Eq. (8) with the following: 

 𝑓𝜇 =
𝜒3

𝜒3 + 𝐶𝑤
3
, 𝜒 =

𝑅

𝜈
+ 𝐶𝑟1

𝑘𝑠
𝑑

  

where Cr1=0.5 and the value of Cw becomes Cw=13.0. 

A non-zero value of R is used at the wall to capture the increase in the eddy viscosity.  Therefore 

the wall boundary condition, Rwall=0, becomes: 



86 

 

 
𝜕𝑅

𝜕𝑛
=

𝑅

𝑑𝑛𝑒𝑤
  

where n is the wall normal vector.  

The boundary condition modification of R does not give a large enough increase in the eddy 

viscosity near the wall at higher roughness values.  To increase the eddy viscosity further, the 

coefficient of k-ω destruction term is modified.  The destruction coefficient C2kω in Eq. 28 is 

replaced by Eq. 43 with Cr2=0.006.  

  𝑓𝑟 = 𝐶2𝑘𝜔(
1

1 +
𝐶𝑟2𝑘𝑠
𝑑𝑛𝑒𝑤

) (43)  

6.2.3 2D Rough flat plate 

Boundary layers over uniformly roughened subsonic zero pressure gradient flat plates were 

computed for varying surface roughness.  A uniform inlet velocity of Uref = 66.3 m/s was used 

with fully turbulent inlet conditions.  The height of the first near-wall grid node was at y+ < 1.0 

across the entire plate. Mills and Hang [63] have deduced the following semi-empirical formula 

for the skin friction coefficient on a sand-roughened flat plate: 

 𝑐𝑓 = (3.476 + 0.707𝑙𝑛
𝑥

𝑘𝑠
)
−2.46

 (44)  

Figure 6.4-6.7 show the computed skin friction distributions of the WA-rough, SA-rough, and SST 

k-ω-rough models for four surface roughness values.  It can be seen that the WA-rough and SST 

k-ω-rough models are in very close agreement with Eq. (16) for low roughness cases.  As the 

surface roughness increases, the WA-rough and SST k-ω-rough models begin to under predict the 

skin friction coefficient near the leading edge of the plate.  The SA model significantly 

underpredicts the skin friction coefficient for the entire roughness regime. 



87 

 

 

 
Figure 6.4: Comparison of skin friction coefficients for a roughness of ks=0.00025.  

 
Figure 6.5 Comparison of skin friction coefficients for a roughness of ks=0.0005. 

WA-Rough 

SA-Rough 

SST-Rough 

Mills and Hang 

WA-Rough 

SA-Rough 

SST-Rough 

Mills and Hang 



88 

 

 
Figure 6.6: Comparison of skin friction coefficients for a roughness of ks=0.0010. 

 
Figure 6.7: Comparison of skin friction coefficients for a roughness of ks=0.0015. 

  

WA-Rough 

SA-Rough 

SST-Rough 

Mills and Hang 

WA-Rough 

SA-Rough 

SST-Rough 

Mills and Hang 



89 

 

6.2.4 2D Rough S809 Airfoil 

The next case examined is flow over a S809 airfoil.  The S809 airfoil is commonly used in 

horizontal-axis wind turbines.  A leading edge grit roughness was applied to simulate surface 

irregularities that occur on wind turbine blades. These irregularities are caused by the accumulation 

of insect debris, ice, and erosion. The effect of surface roughness on these airfoils is of importance 

because the surface conditions directly affect the efficiency of the of the wind turbines. Accurate 

simulation of this roughness effect will directly aid in the design of more efficient wind turbines. 

 The simulation conditions correspond to the experiments conducted by Somers at the National 

Renewable Energy Laboratory [64] and by Ruess Ramsay et. al [65].  Although experiments were 

carried out for 2D airfoil and 3D blade, only the two-dimensional case is considered in the present 

effort. A chord Reynolds number of 1 million is considered in the present study since it was used 

in both the experiments. The experimental steady state results from Refs. 64 and 65 showed a 

baseline maximum lift coefficient of 1.03 at an angle of attack of 15°. The application of leading 

edge roughness reduced the maximum lift coefficient by 15.5%. 

Figure 6.8 and Figure 6.9 show the lift coefficient as a function of angle attack. In Figure 6.8, the 

simulation results of the WA, SST k-ω and SA models are compared to the experimental data.  It 

can be seen that the turbulence models agree with the experimental data for small angles of attack 

but greatly overpredict the lift coefficient for angles of attack larger than 8°.  Figure 6.9 shows the 

results of the SST k-ω model and a laminar-turbulent transition model, called the SST k-ω Reθ-γ 

model [66].  It can be seen that the use of a transition model significantly improves the quality of 

the solution for large angles of attack. The prediction of the laminar separation bubble present near 

the leading edge of the airfoil is extremely important. The SST k-ω Reθ-γ model, however, does 

not account for surface roughness and cannot be applied to the rough airfoil case.  This motivates 



90 

 

the development of laminar-turbulent transition models sensitized to roughness effects, which has 

recently been investigated by Hou [67].  

 
Figure 6.8: Comparison of lift coefficients for smooth S809 airfoil. 

 
Figure 6.9: Transitional model effect on the lift coefficients for smooth S809 airfoil. 

For the experimental roughness case of Ref. 65, a standard pattern was developed using a molded 

insect pattern taken from a wind turbine. Based on average particle size from the field specimen, 

a standard #40 lapidary grit was used for the roughness elements, giving ks/c = 0.0019. Figure 6.10 

shows the predicted lift coefficients as a function of angle of attack for the WA-rough, SST k-ω-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25

C
l

α

WA

SA

SST k-w

Experiment[9]

Experiment[10]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25

C
l

α

SST k-w

SST k-w Re-γ

Experiment[9]

Experiment[10]

Exp. Data 

Exp. Data 

Exp. Data 

Exp. Data 



91 

 

rough, and SA-rough models.  It can be seen that all three models correctly predict a decrease in 

lift coefficient compared to the smooth airfoil case. SA-rough and WA-rough most closely match 

the experimental lift coefficients. SA-rough slightly overpredicts the lift coefficients while WA-

rough slightly underpredicts the lift coefficient.  SST k-ω-rough significantly underpredicts the lift 

coefficient for angles of attack larger than 2̊.  

A surface roughness correction was successfully applied to the WA turbulence model. The new 

model is then compared with the SA-rough and SST k-ω-rough models.  The three models were 

implemented in OpenFOAM and verified for rough flat plate flows. An improvement in the 

accuracy of each base model is accomplished with the addition of the surface roughness correction.  

 
Figure 6.10: Comparison of lift coefficient for rough S809 airfoil. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20

C
l

α

Experiment[10]

SA-rough

WA-rough

SST k-w-rough

Exp. Data 



92 

 

Chapter 7: Summary and Future Work 

7.1 Summary 
The new one-equation Wray-Agarwal model was successfully developed and applied to simulate 

a large number of benchmark flows. Cases included freeshear flows, wall bounded flows, flows 

with separation, subsonic, transonic, and supersonic flows, and SWBLIs. Additionally a 

rotation/curvature correction and surface roughness correction were applied to the WA model to 

extend its applicability to these flows. In every case considered the WA model did as well as or 

better than the SA model. Two flow types with the most noticeable benefit from the use of the WA 

model were the adverse pressure gradient flows of the NACA4412 airfoil and asymmetric diffuser 

and the jet flow of the 2D slot nozzle ejector. The SA model was shown to be incapable of 

accurately predicting the separation due to the adverse pressure gradients. Also the SA model could 

not predict the spreading and entrainment of the 2D slot nozzle ejector. This led to an under 

prediction of the pressure along the mixing section wall.  Adverse pressure gradient and jet flows 

are typically simulated using the two-equation models. The behavior of the WA model is very 

similar to the SST k-ω model for these types of flows. Based on the results shown in this 

dissertation, the WA model can provide the industry and CFD researchers an accurate one-

equation alternative for the computation of a large class of turbulent flows. 

An additional accomplishment of this research has been the implementation and verification of the 

SA, SA-RC, SA-Rough, SST k-ω, SST-RC, and SST-Rough turbulence models in OpenFOAM. 

The implementation of these industry standard models into an open-source package will allow 

CFD users and researchers to investigate a wide range of engineering flows without the purchase 

of proprietary codes or the use of user restricted government codes. 



93 

 

7.2 Future Work: Turbulence Model Closure Coefficients 

Sensitivity Analysis 
Interest in uncertainty quantification (UQ) in CFD has grown in recent years.  UQ has been 

successfully applied to design, optimization, and modeling problems, and is becoming a standard 

tool for verification and validation of numerical solutions. The development of non-intrusive UQ 

methods has reduced the computational expense of UQ and has allowed uncertainty propagation 

through complex models without alteration of the underlying model.  

In this section the sensitivities of the closure coefficients of the SA model are presented.  The 

subsonic flow over the NASA wall-mounted hump is considered. A non-intrusive Kriging model 

[68] is used to propagate the uncertainty of the closure coefficients. DAKOTA [69] is used to 

calculate the Sobol indices which quantify the sensitivity of some quantity of interest to each 

turbulence model coefficient. Previous studies have calculated the sobol indices along the bottom 

wall of the hump [70]. The preliminary results given below extend the analysis to the entire flow 

field. The benefit of this analysis is that the model coefficients can be linked to flow features 

instead of a single local quantity.  



94 

 

 
   (a)            (b) 

 
   (c)            (d) 

Figure 7.1: SA Closure Coefficient Sobol Indices. 

The results of this sensitivity analysis are shown in Figure 7.1. The quantity of interest investigated 

here is the Reynolds stress. Results from Section 5.2.9 showed that the SA model overpredicts the 

reattachment length.  This is due to the under prediction of the Reynolds stress. The results of the 

sensitivity analysis demonstrate that modification of diffusion constant, σν, and the production 

constant, Cb1, will have the largest impact on the Reynolds stress in the separation region. Also 

von Karman’s constant, κ, has a large influence on the boundary layer over the hump but not in 

the separation region. The model constant Cw3 is very large only in the recovery region. Identifying 

the coefficients that affect these flow features will aid modelers in improving the accuracy of 

turbulence model predictions for these flows.  

 

 

  



95 

 

References 
1. Spalart, P. R., “Strategies for Turbulence Modeling and Simualations,” Int. J. Heat Fluid Flow, Vol. 21, 2000, 

pp. 252-263. 

 

2. Spalart, P. R. and Allmaras, S. R, “A One Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper 

1992-0439, 1992. 

 

3. Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J., 

Vol. 32, No. 8, August 1994, pp. 1598-1605. 

 

4. Wilcox, D. C., "Formulation of the k-ω Turbulence Model Revisited," AIAA Journal, Vol. 46, No. 11, 2008, 

pp. 2823-2838 

 

5. NASA Langley Turbulence Modeling Resource website, http://turbmodels.larc.nasa.gov. [retrieved 

November 2016] 

 

6. Eca, L., Hoekstra, M., Hay, A., and Pelletier, D., “A Manufactured Solution for a Two-Dimensional Steady 

Wall Bounded Incompressible Turbulent Flow,” International Journal of Computational Fluid Dynamics, 

Vol. 21, 2007, pp. 175-188. 

 

7. Menter, F. R., Kuntz, M., and Langtry, R., "Ten Years of Industrial Experience with the SST Turbulence 

Model," Turbulence, Heat and Mass Transfer 4, ed: K. Hanjalic, Y. Nagano, and M. Tummers, Begell 

House, Inc., 2003, pp. 625 - 632. 

 

8. CFL3D Version 6 website, http://cfl3d.larc.nasa.gov. [retrieved November 2016] 

  

9. FUN3D website, http://fun3d.larc.nasa.gov. [retrieved November 2016] 

 

10. The Spalart-Allmaras Turbulence Model, NASA Langley Turbulence Modeling Resource website, 

http://turbmodels.larc.nasa.gov/spalart. [retrieved November 2016] 

 

11. Rumsey, C. L., “Apparent Transition Behavior of Widely-Used Turbulence Models,” International Journal 

of Heat and Fluid Flow, Vol. 28, 2007, pp. 1460-1471. 

 

12. Baldwin, B. S., and Barth, T. J., “A One-Equation Turbulence Model for High Reynolds Number Wall 

Bounded Flows,” NASA TM-102847, 1990. 

 

13. Menter, F. R., “Eddy Viscosity Transport Equations and Their Relation to the k-ε Model,” Journal of Fluids 

Engineering, Vol. 119, 1997, pp. 876-884. 

 

14. Goldberg, U., “Hypersonic Flow Heat Transfer Prediction Using Single Equation Turbulence Models,” 

Journal of Heat Transfer, Vol. 123, 2001, pp. 65-69. 

 

15. Nagano, Y., Pei, C. Q., and Hattori, H., “A New Low-Reynolds-Number One-Equation Model of 

Turbulence,” Flow, Turbulence and Combustion, Vol. 63, 2000, pp. 135-151. 

 

16. Fares, E., and Schröder, W., “A General One-Equation Turbulence Model for Free Shear and Wall-bounded 

Flows,” Flow, Turbulence and Combustion, Vol. 73, 2005, pp. 187-215. 

http://turbmodels.larc.nasa.gov/
http://cfl3d.larc.nasa.gov/
http://fun3d.larc.nasa.gov/
http://turbmodels.larc.nasa.gov/


96 

 

 

17. Elkhoury, M., “Modified Menter Model in Comparison with Recently Developed Single-Equation Turbulenc 

Closures,” AIAA Journal, Vol. 49, 2011, pp.1399-1408. 

 

18. Elkhoury, M., “Assessment and Modification of One-Equation Models of Turbulence for Wall Bounded 

Flows,” Journal of Fluids Engineering, Vol 129, 2007, pp. 921-928. 

 

19. Rahman, M., Siikonen, T., and Agarwal, R. K., “Improved Low-Reynolds-Number One-Equation 

Turbulence Model,” AIAA Journal, Vol. 49, 2011, pp.735-747. 

 

20. Rahman, M., Agarwal, R. K., and Siikonen, T., “A Modified One-Equation Turbulence Model Based on 

Turbulent Kinetic Energy Equation, 54th AIAA Aerospace Sciences Meeting, AIAA 2016-1598. 

 

21. Rahman, M., Agarwal, R. K., and Siikonen, T., “One-Equation Turbulence Model Based on ε-Equation,” 

46th AIAA Fluid Dynamics Conference, AIAA 2016-3643. 

 

22. Bradshaw, P., Ferriss, D. H., and Atwell, N. P., “Calculation of Boundary Layer Development Using the 

Turbulent Energy Equation,” Journal of Fluid Mechanics, Vol. 28, 1967, pp. 593-616. 

 

23. Townsend, A. A., “Equilibrium Layers and Wall Turbulence,” Journal of Fluid Mechanics, Vol. 11, 1962. 

 

24. Wilcox, D. C., Turbulence Modeling for CFD, 3rd ed., DCW Industries, Inc., La Canada, CA, 2006. 

 

25. Bardina, J. E., Huang, P. G., and Coakley, T. J., “Turbulence Modeling Validation, Testing, and 

Development,” NASA TM-110446, 1997. 

 

26. Fage, A., and Falkner, V. M., “Note on Experiments on the Temperature and Velocity in the Wake of a 

Heated Cylindrical Obstacle,” Proc. R. Soc., London, Vol. A135, 1932, pp. 702-705. 

 

27. Bradbury, L. J. S., “The Structure of a Self-Preserving Turbulent Plane Jet,” Journal of Fluid Mechanics, 

Vol. 23, 1965, pp. 31-64. 

 

28. Wygnanski, I.,  and Fiedler, H. E., “Some Measurements in the Self-Preserving Jet,” Journal of Fluid 

Mechanics, Vol. 38, 1969, pp. 577-612. 

 

29. Witze, P. O., and Dwyer, H. A., “The Turbulent Radial Jet,” Journal of Fluid Mechanics, Vol. 75, 1967, pp. 

401-417. 

 

30. Mellor, G. L., and Herring, H. J., “Two Methods of Calculating Turbulent Boundary Layer Behavior Based 

on Numerical Solution of the Equation of Motion,” Computation of Turbulent Boundary Layers-1968 

AFOSR-IFP-Stanford Conference Proceedings. 

 

31. Menter, F. R., “Influence of Free-stream Values on k-ω Turbulence Model Predictions,” AIAA Journal, Vol. 

30, No. 6, 1992. 

 

32. NPARC Alliance National Program for Applications-Oriented Research in CFD website, 

https://www.grc.nasa.gov/WWW/wind/ [retrieved November 2016] 

 

https://www.grc.nasa.gov/WWW/wind/


97 

 

33. Delville, J., Bellin, S., Garem, J. H., and Bonnet J. P., “Analysis of Structures in a Turbulent, Plane Mixing 

Layer by Use of Pseudo Flow Visualization Method Based on Hot-Wire Anemometry,”  in: Advances in 

Turbulence 2, eds: H.-H. Fernholz and H. E. Fiedler, Proceedings of the Second European Turbulence 

Conference, Berlin, Aug 30-Sept 2, 1988, Springer Verlag, Berlin, 1989, pp. 251-256. 

 

34. Nakayama, A., "Characteristics of the Flow around Conventional and Supercritical Airfoils," J. Fluid Mech. 

(1985), Vol. 160, pp. 155-179. 

 

35. Weighardt K. and Tillman, W., “On the Turbulent Friction Layer for Rising Pressure,” NACA TM-1314, 

1951. 

 

36. Coles D., “The Law of the Wake in the Turbulent Boundary Layer.” Journal of Fluid Mechanics, Vol. 1, 

1956, pp. 191-226. 

 

37. Lee, M. and Moser, R. D., “Direct numerical simulation of turbulent channel flow up to Reτ = 5200,” Journal 

of Fluid Mechanics, vol. 774, 2015, pp. 395-415. 

 

38. Ladson, C. L., "Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed 

Aerodynamic Characteristics of the NACA 0012 Airfoil Section," NASA TM 4074, October 1988 

 

39. Gregory, N. and O'Reilly, C. L., "Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Sections, 

including the Effects of Upper-Surface Roughness Simulation Hoar Frost," NASA R&M 3726, Jan 1970. 

 

40. Driver, D. M. and Seegmiller, H. L., "Features of Reattaching Turbulent Shear Layer in Divergent Channel 

Flow," AIAA Journal, Vol. 23, No. 2, Feb 1985, pp. 163-171. 

 

41. Bruice, C. and Eaton, J. K., “Experimental Investigation of Flow through an Asymmetric Plane Diffuser.” 

Department of Mech. Engineering, Thermoscience Div., Rept. TSD-107, Stanford University, California, 

CA, 1997. 

 

42. Coles, D. and Wadcock, A. J., "Flying-Hot-Wire Study of Flow Past an NACA 4412 Airfoil at Maximum 

Lift," AIAA Journal, Vol. 17, No. 4, April 1979, pp. 321-329. 

 

43. Wadcock, A. J., "Structure of the Turbulent Separated Flow around a Stalled Airfoil," NASA-CR-152263, 

February 1979. 

 

44. Seifert, A. and Pack, L. G., "Active Flow Separation Control on Wall-Mounted Hump at High Reynolds 

Numbers," AIAA Journal, Vol. 40, No. 7, July 2002. 

 

45. Greenblatt, D., Paschal, K. B., Yao, C.-S., Harris, J., Schaeffler, N. W., and Washburn, A. E., "A Separation 

Control CFD Validation Test Case, Part 1: Baseline and Steady Suction," AIAA Journal, Vol. 44, No. 12, 

2006, pp. 2820-2830. 

 

46. Rumsey, C. L., Gatski, T. B., Sellers III, W. L., Vasta, V. N., and Viken, S. A., “Summary of the 2004 

Computational Fluid Dynamics Validation Workshop on Synthetic Jets,” AIAA Journal, Vol. 44, No. 2, 

2006, pp. 194-207. 

 



98 

 

47. Driver, D. M., "Reynolds Shear Stress Measurements in a Separated Boundary Layer Flow," AIAA Paper 

91-1787, from the AIAA 22nd Fluid Dynamics, Plasma Dynamics, and Lasers Conference, June 1991, 

Honolulu, HI. 

 

48. Wellborn, S.R., Reichert, B.A, and Okiishi, T.H., “An Experimental Investigation of the Flow in a Diffusing 

S-Duct,” AIAA Paper 92-3622, 28th Joint Propulsion Conference and Exhibit, Nashville, TN, 6-8 July 1992. 

 

49. Wellborn, S.R., Okiishi, T.H., and Reichert, B.A, “A Study of Compressible Flow through a Diffusing S-

Duct,” NASA Technical Memorandum 106411, December 1993. 

 

50. Cook, P.H., McDonald, M.A., and Firmin, M.C.P., "Aerofoil RAE 2822 - Pressure Distributions, and 

Boundary Layer and Wake Measurements," Experimental Data Base for Computer Program Assessment, 

AGARD Report AR 138, 1979. 

 

51. Bachalo, W. D., and Johnson, D. A., “An Investigation of Transonic Turbulent Boundary Layer Separation 

Generated on an Axisymmetric Flow Model,” AIAA Paper 79-1479. 

 

52. White, F. M., “Viscous Fluid Flow,” McGraw-Hill, 1974, New York, pp. 632. 

 

53. Schoenherr, K. E., Trans SNAME. 40:279-313, 1932. 

 

54. Gilbert, G. B., and Hill, P. G., “Analysis and Testing of Two-dimensional Slot Nozzle Ejectors with Variable 

Area Mixing Sections,” NASA CR-2251, 1973. 

 

55. Kussoy, M. I. and Horstman, C. C., "Documentation of Two- and Three-Dimensional Hypersonic Shock 

Wave Boundary Layer Interaction Flows," NASA TM 101075, January 1989. 

 

56. Spalart, P. R. and Shur, M., “On the Sensitization of Turbulence Models to Rotation and Curvature,” 

Aerospace Science and Technology, 1997, pp. 297-302. 

 

57. Shur, M. L., Strelets, M. K., Travin, A. K., Spalart, P. R., "Turbulence Modeling in Rotating and Curved 

Channels: Assessing the Spalart-Shur Correction," AIAA Journal Vol. 38, No. 5, 2000, pp. 784-792. 

 

58. Smirnov, P. E., Menter, F. R., "Sensitization of the SST Turbulence Model to Rotation and Curvature by 

Applying the Spalart-Shur Correction Term," ASME Journal of Turbomachinery, Vol. 131, October 2009, 

041010. 

 

59. Smits, A. J., Young, S. T. B., and Bradshaw, P. “The Effect of Short Regions of High Surface Curvature on 

Turbulent Boundary Layers,” Journal of Fluid Mechanics, Vol. 94, Part 2, 1979, pp. 209-242. 

 

60. Nikuradse, J., “Law of Flow in Rough Pipes,” Technical Report 1292, VDI-Forchungsheft 361, Series B, 

Vol. 4, 1933; NACA TM-1292, 1950. 

 

61. Aupoix, B., and Spalart, P. R., “Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall 

Roughness,” International Journal of Heat and Fluid Flow, Vol. 24, 2003, pp. 454-462. 

 

62. Hellsten, A., and Laine, S., “Extnesion of the k-ω-SST Turbulence Model for Flows Over Rough Surfaces,” 

22nd Atmospheric Flight Mechanics Conference, 1997. 



99 

 

 

63. Mills, A., and Hank, X., “On the Skin Friction Coefficient for a Fully Rough Flat Plate,” Journal of Fluids 

Engineering, September 1983, pp. 364-365. 

 

64. Somers, D. M., “Design and Experimental Results for the S809 Airfoil.” NREL/SR-440-6918, January 1997. 

 

65. Reuss Ramsay, R., Hoffmann, M. J., and Gregorek, G. M., “Effects of Grit Roughness and Pitch Oscillations 

on the S809 Airfoil.” NREL/TP-442-7817, December 1999. 

 

66. Langtry, R. B., and Menter, F. R., “Transition Modeling for General CFD Applications in Aeronautics,” 

43red AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 2005. 

 

67. Hou, Y., Wray, T. J., and Agarwal, R. K., “Application of the SST k-ω Transition Model to Flow Past Smooth 

and Rough Airfoils,” AIAA SciTech, 2017 

 

68. Shimoyama, K., Kawai, S., and Alonso, J. J., “Dynamic adaptive sampling based on Kriging surrogate 

models for efficient uncertainty quantification,” in 15th AIAA Non-Deterministic Approaches Conference, 

AIAA 2013–1470  

 

69. Adams, B.M., Bauman, L.E., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Hough, 

P.D., Hu, K.T., Jakeman,  J.D., Stephens, J.A., Swiler, L.P., Vigil, D.M., and Wildey, T.M., "Dakota, A 

Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty 

Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual," Sandia Technical Report SAND2014-

4633, July 2014. Updated November 2015 (Version 6.3). 

 

70. Schaefer, J., West, T., Hosder, S., Rumsey, C., Carlson, J.-R., and Kleb, W., “Uncertainty Quantification of 

Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows,” 22nd AIAA Computational 

Fluid Dynamics Conference, AIAA Paper 2015-2461, 2015. 

  



100 

 

Appendix A 
WrayAgarwal.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2013 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef WrayAgarwal_H 
#define WrayAgarwal_H 
 
#include "RASModel.H" 
#include "wallDist.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
/*---------------------------------------------------------------------------*\ 
                       Class WrayAgarwal Declaration 
\*---------------------------------------------------------------------------*/ 
 
class WrayAgarwal 
: 
    public RASModel 
{ 
 
protected: 
 
    // Protected data 



101 

 

 
        // Model coefficients 
 
            dimensionedScalar kappa_; 
            dimensionedScalar Cmu_; 
            dimensionedScalar alpha1_; 
            dimensionedScalar alpha2_; 
            dimensionedScalar Aplus_; 
            dimensionedScalar C1ke_; 
   dimensionedScalar C1kw_; 
            dimensionedScalar sigmake_; 
            dimensionedScalar sigmakw_; 
   dimensionedScalar C2ke_; 
            dimensionedScalar C2kw_; 
 
        // Fields 
 
            volScalarField Rnu_; 
            volScalarField nut_; 
   volScalarField Switch_; 
 
            wallDist d_; 
 
    // Protected Member Functions 
 
        tmp<volScalarField> chi() const; 
 
        tmp<volScalarField> fv1(const volScalarField& chi) const; 
 
        tmp<volScalarField> fv2 
        ( 
            const volScalarField& chi, 
            const volScalarField& fv1 
        ) const; 
 
        tmp<volScalarField> fw(const volScalarField& Stilda) const; 
 
        tmp<volScalarField> blend 
        ( 
            const volScalarField& F1, 
            const dimensionedScalar& psi1, 
            const dimensionedScalar& psi2 
        ) const; 
 
        tmp<volScalarField> sigma(const volScalarField& F1) const 
        { 
            return blend(F1, sigmakw_, sigmake_); 
        } 
 
        tmp<volScalarField> C1(const volScalarField& F1) const 
        { 
            return blend(F1, C1kw_, C1ke_); 
        } 
 
public: 
 
    //- Runtime type information 



102 

 

    TypeName("WrayAgarwal"); 
 
    // Constructors 
 
        //- Construct from components 
        WrayAgarwal 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
            const word& turbulenceModelName = turbulenceModel::typeName, 
            const word& modelName = typeName 
        ); 
 
 
    //- Destructor 
    virtual ~WrayAgarwal() 
    {} 
 
 
    // Member Functions 
 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for nuTilda 
        tmp<volScalarField> DRnuEff(volScalarField Switch) const; 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const; 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const; 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const; 
 
        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 



103 

 

        virtual bool read(); 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
  



104 

 

WrayAgarwal.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2013 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "WrayAgarwal.H" 
#include "addToRunTimeSelectionTable.H" 
#include "wallFvPatch.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
defineTypeNameAndDebug(WrayAgarwal, 0); 
addToRunTimeSelectionTable(RASModel, WrayAgarwal, dictionary); 
 
// * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * * // 
 
tmp<volScalarField> WrayAgarwal::chi() const 
{ 
    return Rnu_/nu(); 
} 
 
tmp<volScalarField> WrayAgarwal::fv1(const volScalarField& chi) const 
{ 
    const volScalarField chi3(pow3(chi)); 
    return chi3/(chi3 + pow3(Aplus_)); 
} 



105 

 

 
tmp<volScalarField> WrayAgarwal::blend 
( 
 const volScalarField& F1, 
 const dimensionedScalar& psi1, 
 const dimensionedScalar& psi2 
) const 
{ 
 return F1*(psi1 - psi2) + psi2; 
} 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
WrayAgarwal::WrayAgarwal 
( 
    const volVectorField& U, 
    const surfaceScalarField& phi, 
    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    kappa_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "kappa", 
            coeffDict_, 
            0.41 
        ) 
    ), 
 
    Cmu_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cmu", 
            coeffDict_, 
            0.09 
        ) 
    ), 
    alpha1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alpha1", 
            coeffDict_, 
            0.03 
        ) 
    ), 
    alpha2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alpha2", 



106 

 

            coeffDict_, 
            200.0 
        ) 
    ), 
 
    Aplus_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Aplus", 
            coeffDict_, 
            8.54 
        ) 
    ), 
 
    C1ke_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "C1ke", 
            coeffDict_, 
   0.16 
        ) 
    ), 
 
    C1kw_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "C1kw", 
            coeffDict_, 
            0.0833 
        ) 
    ), 
 
    sigmake_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmake", 
            coeffDict_, 
            1.0 
        ) 
    ), 
 
    sigmakw_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmakw", 
            coeffDict_, 
            0.72 
        ) 
    ), 
 
    C2ke_(C1ke_/sqr(kappa_)+sigmake_), 
 



107 

 

    C2kw_(C1kw_/sqr(kappa_)+sigmakw_), 
 
    Rnu_ 
    ( 
        IOobject 
        ( 
            "Rnu", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    nut_ 
    ( 
        IOobject 
        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    Switch_ 
    ( 
        IOobject 
        ( 
            "Switch", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_, 
        dimensionedScalar("0", dimensionSet(0, 0, 0, 0, 0), 0) 
    ), 
 
    d_(mesh_) 
{ 
 Info<< "C2ke: " << C2ke_.value() <<endl; 
 Info<< "C2kw: " << C2kw_.value() <<endl; 
    printCoeffs(); 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volScalarField> WrayAgarwal::DRnuEff(volScalarField Switch) const 
{ 
    return tmp<volScalarField> 
    ( 
        new volScalarField("DRnuEff", Rnu_*sigma(Switch) + nu()) 



108 

 

    ); 
} 
 
 
tmp<volScalarField> WrayAgarwal::k() const 
{ 
    return tmp<volScalarField> 
    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "k", 
                runTime_.timeName(), 
                mesh_ 
            ), 
            mesh_, 
            dimensionedScalar("0", dimensionSet(0, 2, -2, 0, 0), 0) 
        ) 
    ); 
} 
 
 
tmp<volScalarField> WrayAgarwal::epsilon() const 
{ 
    return tmp<volScalarField> 
    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "epsilon", 
                runTime_.timeName(), 
                mesh_ 
            ), 
            mesh_, 
            dimensionedScalar("0", dimensionSet(0, 2, -3, 0, 0), 0) 
        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> WrayAgarwal::R() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "R", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            ((2.0/3.0)*I)*k() - nut()*twoSymm(fvc::grad(U_)) 



109 

 

        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> WrayAgarwal::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "devRhoReff", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
           -nuEff()*dev(twoSymm(fvc::grad(U_))) 
        ) 
    ); 
} 
 
 
tmp<fvVectorMatrix> WrayAgarwal::divDevReff(volVectorField& U) const 
{ 
    const volScalarField nuEff_(nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(nuEff_, U) 
      - fvc::div(nuEff_*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
tmp<fvVectorMatrix> WrayAgarwal::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(muEff, U) 
      - fvc::div(muEff*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
bool WrayAgarwal::read() 
{ 
    if (RASModel::read()) 
    {  



110 

 

  alpha1_.readIfPresent(coeffDict()); 
         alpha2_.readIfPresent(coeffDict()); 
  C1kw_.readIfPresent(coeffDict()); 
  C1ke_.readIfPresent(coeffDict()); 
  sigmakw_.readIfPresent(coeffDict()); 
         sigmake_.readIfPresent(coeffDict()); 
      C2ke_ = (C1ke_/sqr(kappa_)+sigmake_); 
      C2kw_ = (C1kw_/sqr(kappa_)+sigmakw_); 
  Aplus_.readIfPresent(coeffDict()); 
         kappa_.readIfPresent(coeffDict()); 
 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
 
void WrayAgarwal::correct() 
{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        // Re-calculate viscosity 
        nut_ = Rnu_; 
        nut_.correctBoundaryConditions(); 
 
        return; 
    } 
 
    if (mesh_.changing()) 
    { 
        d_.correct(); 
    } 
 
 
 volScalarField S2(2.0*magSqr(symm(fvc::grad(U_)))); 
 volScalarField S = sqrt(S2); 
 bound(S, dimensionedScalar("0", S.dimensions(), SMALL)); 
 bound(S2, dimensionedScalar("0", S2.dimensions(), SMALL)); 
 
    const volScalarField chi(this->chi()); 
    const volScalarField fv1(this->fv1(chi)); 
 
 
 volScalarField Ebb = max(magSqr(fvc::grad(Rnu_)),dimensionedScalar("EbbMin", 
dimensionSet(0, 2, -2, 0, 0), SMALL)); 
 volScalarField Eke = sqr(Rnu_)*magSqr(fvc::grad(S))/S2; 
 volScalarField boundEke = 7.0*Ebb*tanh(Eke/(7.0*Ebb)); 
 volScalarField Ekw = Rnu_/S*(fvc::grad(Rnu_) & fvc::grad(S)); 
 volScalarField boundEkw = min(Rnu_/S*(fvc::grad(Rnu_) & 
fvc::grad(S)),dimensionedScalar("EbbMin", dimensionSet(0, 2, -2, 0, 0), -1*SMALL)) ; 
 
 Switch_ = tanh(pow(1.66*(nu()+Rnu_)/(sqr(kappa_)*S)*1.0/sqr(d_),4.0)); 



111 

 

 
  const fvPatchList& patches = mesh_.boundary(); 
  forAll(patches, patchi) 
  { 
      const fvPatch& curPatch = patches[patchi]; 
 
      if (isType<wallFvPatch>(curPatch)) 
      { 
    Switch_.boundaryField()[patchi] == 1.0; 
   } 
  } 
 
 tmp<fvScalarMatrix> RnuEqn 
    ( 
        fvm::ddt(Rnu_) 
      + fvm::div(phi_, Rnu_) 
      - fvm::laplacian(DRnuEff(Switch_), Rnu_) 
     == 
        C1(Switch_)*Rnu_*S 
   + C2kw_*Switch_*boundEkw 
   - (1.0-Switch_)*(C2ke_)*boundEke 
    ); 
 
    RnuEqn().relax(); 
    solve(RnuEqn); 
    bound(Rnu_, dimensionedScalar("0", Rnu_.dimensions(), 0.0)); 
    Rnu_.correctBoundaryConditions(); 
 
    // Re-calculate viscosity 
    nut_.internalField() = fv1*Rnu_.internalField(); 
    nut_.correctBoundaryConditions(); 
 
} 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
 
  



112 

 

SpalartAllmarasNoft2.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2013 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::incompressible::RASModels::SpalartAllmaras 
 
Group 
    grpIcoRASTurbulence 
 
SourceFiles 
    SpalartAllmarasNoft2.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef SpalartAllmarasNoft2_H 
#define SpalartAllmarasNoft2_H 
 
#include "RASModel.H" 
#include "wallDist.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
/*---------------------------------------------------------------------------*\ 
                       Class SpalartAllmarasNoft2 Declaration 
\*---------------------------------------------------------------------------*/ 
 
class SpalartAllmarasNoft2 
: 



113 

 

    public RASModel 
{ 
 
protected: 
 
    // Protected data 
 
        // Model coefficients 
 
            dimensionedScalar sigmaNut_; 
            dimensionedScalar kappa_; 
 
            dimensionedScalar Cb1_; 
            dimensionedScalar Cb2_; 
            dimensionedScalar Cw1_; 
            dimensionedScalar Cw2_; 
            dimensionedScalar Cw3_; 
            dimensionedScalar Cv1_; 
 
        // Fields 
 
            volScalarField nuTilda_; 
            volScalarField nut_; 
 
            wallDist d_; 
 
    // Protected Member Functions 
 
        tmp<volScalarField> chi() const; 
 
        tmp<volScalarField> fv1(const volScalarField& chi) const; 
 
        tmp<volScalarField> fv2 
        ( 
            const volScalarField& chi, 
            const volScalarField& fv1 
        ) const; 
 
        tmp<volScalarField> fw(const volScalarField& Stilda) const; 
 
public: 
 
    //- Runtime type information 
    TypeName("SpalartAllmarasNoft2"); 
 
 
    // Constructors 
 
        //- Construct from components 
        SpalartAllmarasNoft2 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
            const word& turbulenceModelName = turbulenceModel::typeName, 
            const word& modelName = typeName 
        ); 



114 

 

 
 
    //- Destructor 
    virtual ~SpalartAllmarasNoft2() 
    {} 
 
    // Member Functions 
 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for nuTilda 
        tmp<volScalarField> DnuTildaEff() const; 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const; 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const; 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const; 
 
        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 
        virtual bool read(); 
}; 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 



115 

 

 

SpalartAllmarasNoft2.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2013 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "SpalartAllmarasNoft2.H" 
#include "addToRunTimeSelectionTable.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
defineTypeNameAndDebug(SpalartAllmarasNoft2, 0); 
addToRunTimeSelectionTable(RASModel, SpalartAllmarasNoft2, dictionary); 
 
// * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * * // 
 
tmp<volScalarField> SpalartAllmarasNoft2::chi() const 
{ 
    return nuTilda_/nu(); 
} 
 
 
tmp<volScalarField> SpalartAllmarasNoft2::fv1(const volScalarField& chi) const 
{ 
    const volScalarField chi3(pow3(chi)); 
    return chi3/(chi3 + pow3(Cv1_)); 



116 

 

} 
 
 
tmp<volScalarField> SpalartAllmarasNoft2::fv2 
( 
    const volScalarField& chi, 
    const volScalarField& fv1 
) const 
{ 
 
    return 1.0 - chi/(1.0 + chi*fv1); 
 
} 
 
 
tmp<volScalarField> SpalartAllmarasNoft2::fw(const volScalarField& Stilda) const 
{ 
    volScalarField r 
    ( 
        min 
        ( 
            nuTilda_ 
           /( 
               max 
               ( 
                   Stilda, 
                   dimensionedScalar("SMALL", Stilda.dimensions(), SMALL) 
               ) 
              *sqr(kappa_*d_) 
            ), 
            scalar(10.0) 
        ) 
    ); 
    r.boundaryField() == 0.0; 
 
    const volScalarField g(r + Cw2_*(pow6(r) - r)); 
 
    return g*pow((1.0 + pow6(Cw3_))/(pow6(g) + pow6(Cw3_)), 1.0/6.0); 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
SpalartAllmarasNoft2::SpalartAllmarasNoft2 
( 
    const volVectorField& U, 
    const surfaceScalarField& phi, 
    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    sigmaNut_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 



117 

 

        ( 
            "sigmaNut", 
            coeffDict_, 
            0.66666 
        ) 
    ), 
    kappa_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "kappa", 
            coeffDict_, 
            0.41 
        ) 
    ), 
 
    Cb1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cb1", 
            coeffDict_, 
            0.1355 
        ) 
    ), 
    Cb2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cb2", 
            coeffDict_, 
            0.622 
        ) 
    ), 
    Cw1_(Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_), 
    Cw2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cw2", 
            coeffDict_, 
            0.3 
        ) 
    ), 
    Cw3_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cw3", 
            coeffDict_, 
            2.0 
        ) 
    ), 
    Cv1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 



118 

 

            "Cv1", 
            coeffDict_, 
            7.1 
        ) 
    ), 
 
    nuTilda_ 
    ( 
        IOobject 
        ( 
            "nuTilda", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    nut_ 
    ( 
        IOobject 
        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    d_(mesh_) 
{ 
    printCoeffs(); 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volScalarField> SpalartAllmarasNoft2::DnuTildaEff() const 
{ 
    return tmp<volScalarField> 
    ( 
        new volScalarField("DnuTildaEff", (nuTilda_ + nu())/sigmaNut_) 
    ); 
} 
 
 
tmp<volScalarField> SpalartAllmarasNoft2::k() const 
{ 
    WarningIn("tmp<volScalarField> SpalartAllmarasNoft2::k() const") 
        << "Turbulence kinetic energy not defined for Spalart-Allmaras model. " 
        << "Returning zero field" << endl; 
 
    return tmp<volScalarField> 
    ( 



119 

 

        new volScalarField 
        ( 
            IOobject 
            ( 
                "k", 
                runTime_.timeName(), 
                mesh_ 
            ), 
            mesh_, 
            dimensionedScalar("0", dimensionSet(0, 2, -2, 0, 0), 0) 
        ) 
    ); 
} 
 
 
tmp<volScalarField> SpalartAllmarasNoft2::epsilon() const 
{ 
    WarningIn("tmp<volScalarField> SpalartAllmarasNoft2::epsilon() const") 
        << "Turbulence kinetic energy dissipation rate not defined for " 
        << "Spalart-Allmaras model. Returning zero field" 
        << endl; 
 
    return tmp<volScalarField> 
    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "epsilon", 
                runTime_.timeName(), 
                mesh_ 
            ), 
            mesh_, 
            dimensionedScalar("0", dimensionSet(0, 2, -3, 0, 0), 0) 
        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> SpalartAllmarasNoft2::R() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "R", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            ((2.0/3.0)*I)*k() - nut()*twoSymm(fvc::grad(U_)) 
        ) 
    ); 
} 



120 

 

 
 
tmp<volSymmTensorField> SpalartAllmarasNoft2::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "devRhoReff", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
           -nuEff()*dev(twoSymm(fvc::grad(U_))) 
        ) 
    ); 
} 
 
 
tmp<fvVectorMatrix> SpalartAllmarasNoft2::divDevReff(volVectorField& U) const 
{ 
    const volScalarField nuEff_(nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(nuEff_, U) 
      - fvc::div(nuEff_*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
tmp<fvVectorMatrix> SpalartAllmarasNoft2::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(muEff, U) 
      - fvc::div(muEff*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
bool SpalartAllmarasNoft2::read() 
{ 
    if (RASModel::read()) 
    { 
        sigmaNut_.readIfPresent(coeffDict()); 
        kappa_.readIfPresent(coeffDict()); 
 



121 

 

        Cb1_.readIfPresent(coeffDict()); 
        Cb2_.readIfPresent(coeffDict()); 
        Cw1_ = Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_; 
        Cw2_.readIfPresent(coeffDict()); 
        Cw3_.readIfPresent(coeffDict()); 
        Cv1_.readIfPresent(coeffDict()); 
 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
 
void SpalartAllmarasNoft2::correct() 
{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        // Re-calculate viscosity 
        nut_ = nuTilda_*fv1(this->chi()); 
        nut_.correctBoundaryConditions(); 
 
        return; 
    } 
 
    if (mesh_.changing()) 
    { 
        d_.correct(); 
    } 
 
    const volScalarField chi(this->chi()); 
    const volScalarField fv1(this->fv1(chi)); 
 
    const volScalarField Stilda 
    ( 
        sqrt(2.0)*mag(skew(fvc::grad(U_))) 
      + fv2(chi, fv1)*nuTilda_/sqr(kappa_*d_) 
    ); 
 
    tmp<fvScalarMatrix> nuTildaEqn 
    ( 
        fvm::ddt(nuTilda_) 
      + fvm::div(phi_, nuTilda_) 
      - fvm::laplacian(DnuTildaEff(), nuTilda_) 
      - Cb2_/sigmaNut_*magSqr(fvc::grad(nuTilda_)) 
     == 
        Cb1_*Stilda*nuTilda_ 
      - fvm::Sp(Cw1_*fw(Stilda)*nuTilda_/sqr(d_), nuTilda_) 
    ); 
 
    nuTildaEqn().relax(); 
    solve(nuTildaEqn); 
    bound(nuTilda_, dimensionedScalar("0", nuTilda_.dimensions(), 0.0)); 



122 

 

    nuTilda_.correctBoundaryConditions(); 
 
    // Re-calculate viscosity 
    nut_.internalField() = fv1*nuTilda_.internalField(); 
    nut_.correctBoundaryConditions(); 
} 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
 
  



123 

 

kOmegaSST2003.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::incompressible::RASModels::kOmegaSST 
 
SourceFiles 
    kOmegaSST2003.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef kOmegaSST2003_H 
#define kOmegaSST2003_H 
 
#include "RASModel.H" 
#include "wallDist.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
/*---------------------------------------------------------------------------*\ 
                          Class kOmegaSST2003 Declaration 
\*---------------------------------------------------------------------------*/ 
 
class kOmegaSST2003 
: 
    public RASModel 
{ 
 



124 

 

protected: 
 
    // Protected data 
 
        // Model coefficients 
 
            dimensionedScalar kappa_; 
            dimensionedScalar sigmak1_; 
            dimensionedScalar sigmak2_; 
            dimensionedScalar sigmaOmega1_; 
            dimensionedScalar sigmaOmega2_; 
            dimensionedScalar Prt_; 
            dimensionedScalar beta1_; 
            dimensionedScalar beta2_; 
            dimensionedScalar betaStar_; 
            dimensionedScalar gamma1_; 
            dimensionedScalar gamma2_; 
            dimensionedScalar a1_; 
 
        //- Wall distance 
        //  Note: different to wall distance in parent RASModel 
         wallDist y_; 
 
        // Fields 
 
            volScalarField k_; 
            volScalarField omega_; 
            volScalarField nut_; 
   volScalarField F1_; 
   volScalarField F2_; 
 
 
    // Protected Member Functions 
 
        tmp<volScalarField> F1(const volScalarField& CDkOmega) const; 
        tmp<volScalarField> F2() const; 
 
        tmp<volScalarField> blend 
        ( 
            const volScalarField& F1, 
            const dimensionedScalar& psi1, 
            const dimensionedScalar& psi2 
        ) const 
        { 
            return F1*(psi1 - psi2) + psi2; 
        } 
 
        tmp<volScalarField> sigmak(const volScalarField& F1) const 
        { 
            return blend(F1, sigmak1_, sigmak2_); 
        } 
 
        tmp<volScalarField> sigmaOmega(const volScalarField& F1) const 
        { 
            return blend(F1, sigmaOmega1_, sigmaOmega2_); 
        } 
 



125 

 

        tmp<volScalarField> beta(const volScalarField& F1) const 
        { 
            return blend(F1, beta1_, beta2_); 
        } 
 
        tmp<volScalarField> gamma(const volScalarField& F1) const 
        { 
            return blend(F1, gamma1_, gamma2_); 
        } 
 
 
public: 
 
    //- Runtime type information 
    TypeName("kOmegaSST2003"); 
 
 
    // Constructors 
 
        //- Construct from components 
        kOmegaSST2003 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
            const word& turbulenceModelName = turbulenceModel::typeName, 
            const word& modelName = typeName 
        ); 
 
 
    //- Destructor 
    virtual ~kOmegaSST2003() 
    {} 
 
 
    // Member Functions 
 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for k 
        tmp<volScalarField> DkEff(const volScalarField& F1) const 
        { 
            return tmp<volScalarField> 
            ( 
                new volScalarField("DkEff", sigmak(F1)*nut_ + nu()) 
            ); 
        } 
 
        //- Return the effective diffusivity for omega 
        tmp<volScalarField> DomegaEff(const volScalarField& F1) const 
        { 
            return tmp<volScalarField> 
            ( 



126 

 

                new volScalarField("DomegaEff", sigmaOmega(F1)*nut_ + nu()) 
            ); 
        } 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const 
        { 
            return k_; 
        } 
 
        //- Return the turbulence specific dissipation rate 
        virtual tmp<volScalarField> omega() const 
        { 
            return omega_; 
        } 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const 
        { 
            return tmp<volScalarField> 
            ( 
                new volScalarField 
                ( 
                    IOobject 
                    ( 
                        "epsilon", 
                        mesh_.time().timeName(), 
                        mesh_ 
                    ), 
                    betaStar_*k_*omega_, 
                    omega_.boundaryField().types() 
                ) 
            ); 
        } 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const; 
 
        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 
        virtual bool read(); 
}; 



127 

 

 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
 
  



128 

 

kOmegaSST2003.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2013 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "kOmegaSST2003.H" 
#include "addToRunTimeSelectionTable.H" 
#include "wallFvPatch.H" 
 
#include "backwardsCompatibilityWallFunctions.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
defineTypeNameAndDebug(kOmegaSST2003, 0); 
addToRunTimeSelectionTable(RASModel, kOmegaSST2003, dictionary); 
 
// * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * * // 
 
tmp<volScalarField> kOmegaSST2003::F1(const volScalarField& CDkOmega) const 
{ 
    tmp<volScalarField> arg1 = min 
    ( 
        max 
        ( 
            (scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_), 
            scalar(500)*nu()/(sqr(y_)*omega_) 



129 

 

        ), 
        (4.0*sigmaOmega2_)*k_/(CDkOmega*sqr(y_)) 
    ); 
 
    return tanh(pow4(arg1)); 
} 
 
tmp<volScalarField> kOmegaSST2003::F2() const 
{ 
    tmp<volScalarField> arg2 = max 
    ( 
        (scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_), 
        scalar(500)*nu()/(sqr(y_)*omega_) 
    ); 
 
    return tanh(sqr(arg2)); 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
kOmegaSST2003::kOmegaSST2003 
( 
    const volVectorField& U, 
    const surfaceScalarField& phi, 
    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    kappa_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "kappa", 
            coeffDict_, 
            0.41 
        ) 
    ), 
    sigmak1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmak1", 
            coeffDict_, 
            0.85 
        ) 
    ), 
    sigmak2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmak2", 
            coeffDict_, 
            1.0 



130 

 

        ) 
    ), 
    sigmaOmega1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmaOmega1", 
            coeffDict_, 
            0.5 
        ) 
    ), 
    sigmaOmega2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmaOmega2", 
            coeffDict_, 
            0.856 
        ) 
    ), 
    Prt_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Prt", 
            coeffDict_, 
            0.9//1.0 
        ) 
    ), 
    beta1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "beta1", 
            coeffDict_, 
            0.075 
        ) 
    ), 
    beta2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "beta2", 
            coeffDict_, 
            0.0828 
        ) 
    ), 
    betaStar_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "betaStar", 
            coeffDict_, 
            0.09 
        ) 
    ), 
    gamma1_ 



131 

 

    ( 
        //dimensioned<scalar>::lookupOrAddToDict 
        //( 
        //    "gamma1", 
        //    coeffDict_, 
            beta1_/betaStar_-sigmaOmega1_*kappa_*kappa_/sqrt(betaStar_)//0.55556 
        //) 
    ), 
    gamma2_ 
    ( 
        //dimensioned<scalar>::lookupOrAddToDict 
        //( 
        //    "gamma2", 
        //    coeffDict_, 
            beta2_/betaStar_-sigmaOmega2_*kappa_*kappa_/sqrt(betaStar_)//0.44 
        //) 
    ), 
    a1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "a1", 
            coeffDict_, 
            0.31 
        ) 
    ), 
 
    y_(mesh_), 
 
    k_ 
    ( 
        IOobject 
        ( 
            "k", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
    omega_ 
    ( 
        IOobject 
        ( 
            "omega", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    nut_ 
    ( 
        IOobject 



132 

 

        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    F1_ 
    ( 
        IOobject 
        ( 
            "F1", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_, 
        dimensionedScalar("1.0", dimensionSet(0, 0, 0, 0, 0), 1.0) 
    ), 
    F2_ 
    ( 
        IOobject 
        ( 
            "F2", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_, 
        dimensionedScalar("1.0", dimensionSet(0, 0, 0, 0, 0), 1.0) 
    ) 
 
{ 
    bound(k_, kMin_); 
    bound(omega_, omegaMin_); 
 
    nut_ = 
    ( 
        a1_*k_ 
      / max 
        ( 
            a1_*omega_, 
            F2()*sqrt(2.0)*mag(skew(fvc::grad(U_))) 
        ) 
    ); 
    nut_.correctBoundaryConditions(); 
 
    printCoeffs(); 
 
 const fvPatchList& patches = mesh_.boundary(); 
    forAll(patches, patchi) 
    { 



133 

 

        const fvPatch& curPatch = patches[patchi]; 
 
        if (isType<wallFvPatch>(curPatch)) 
        { 
   if 
(!isType<zeroGradientFvPatchScalarField>(omega_.boundaryField()[patchi])) 
   { 
       FatalErrorIn("wall-function evaluation") 
          << omega_.boundaryField()[patchi].type() 
          << " is the wrong omega patchField type for wall-functions on patch " 
          << curPatch.name() << nl 
          << "    should be zeroGradient" 
          << exit(FatalError); 
   } 
  } 
 } 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volSymmTensorField> kOmegaSST2003::R() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "R", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            ((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc::grad(U_)), 
            k_.boundaryField().types() 
        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> kOmegaSST2003::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "devRhoReff", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
           -nuEff()*dev(twoSymm(fvc::grad(U_))) 



134 

 

        ) 
    ); 
} 
 
 
tmp<fvVectorMatrix> kOmegaSST2003::divDevReff(volVectorField& U) const 
{ 
    return 
    ( 
      - fvm::laplacian(nuEff(), U) 
      - fvc::div(nuEff()*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
tmp<fvVectorMatrix> kOmegaSST2003::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(muEff, U) 
      - fvc::div(muEff*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
bool kOmegaSST2003::read() 
{ 
    if (RASModel::read()) 
    { 
  kappa_.readIfPresent(coeffDict()); 
        sigmak1_.readIfPresent(coeffDict()); 
        sigmak2_.readIfPresent(coeffDict()); 
        sigmaOmega1_.readIfPresent(coeffDict()); 
        sigmaOmega2_.readIfPresent(coeffDict()); 
        Prt_.readIfPresent(coeffDict()); 
        beta1_.readIfPresent(coeffDict()); 
        beta2_.readIfPresent(coeffDict()); 
        betaStar_.readIfPresent(coeffDict()); 
       // gamma1_.readIfPresent(coeffDict()); 
       // gamma2_.readIfPresent(coeffDict()); 
        a1_.readIfPresent(coeffDict()); 
 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
 



135 

 

void kOmegaSST2003::correct() 
{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        return; 
    } 
 
    if (mesh_.changing()) 
    { 
        y_.correct(); 
        bound(k_, kMin_); 
        bound(omega_, omegaMin_); 
    } 
 
    const volScalarField S2(2.0*magSqr(symm(fvc::grad(U_)))); 
    const volScalarField W2(2.0*magSqr(skew(fvc::grad(U_)))); 
    volScalarField G(GName(), nut_*S2); 
 
 #include "calcWallOmega.H" 
    // Update omega and G at the wall 
    //omega_.boundaryField().updateCoeffs(); 
 
    const volScalarField CDkOmega 
    ( 
        max((2.0*sigmaOmega2_)*(fvc::grad(k_) & 
fvc::grad(omega_))/omega_,dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-20)) 
    ); 
 
    const volScalarField F1(this->F1(CDkOmega)); 
 F1_ = F1; 
 
    // Turbulent frequency equation 
    tmp<fvScalarMatrix> omegaEqn 
    ( 
        fvm::ddt(omega_) 
      + fvm::div(phi_, omega_) 
      + fvm::SuSp(-fvc::div(phi_), omega_) 
      - fvm::laplacian(DomegaEff(F1), omega_) 
     == 
        gamma(F1)*min(G, 10.0*betaStar_*k_*omega_)/nut_ 
      - fvm::Sp(beta(F1)*omega_, omega_) 
      - fvm::SuSp 
        ( 
            (F1 - scalar(1))*CDkOmega/omega_, 
            omega_ 
        ) 
    ); 
 
    omegaEqn().relax(); 
 
 #include "setWallOmega.H" 
    //omegaEqn().boundaryManipulate(omega_.boundaryField()); 
 
    solve(omegaEqn); 
    bound(omega_, omegaMin_); 



136 

 

 
    // Turbulent kinetic energy equation 
    tmp<fvScalarMatrix> kEqn 
    ( 
        fvm::ddt(k_) 
      + fvm::div(phi_, k_) 
      + fvm::SuSp(-fvc::div(phi_), k_) 
      - fvm::laplacian(DkEff(F1), k_) 
     == 
        min(G, 10.0*betaStar_*k_*omega_) 
      - fvm::Sp(betaStar_*omega_, k_) 
    ); 
 
    kEqn().relax(); 
    solve(kEqn); 
    bound(k_, kMin_); 
 
    // Re-calculate viscosity 
    nut_ = a1_*k_/max(a1_*omega_, F2()*sqrt(S2)); 
    //nut_.correctBoundaryConditions(); 
} 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
 
  



137 

 

calcWallOmega.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
\*---------------------------------------------------------------------------*/ 
 
{ 
    labelList cellBoundaryFaceCount(omega_.size(), 0); 
 
    scalar Cmu25 = pow(betaStar_.value(), 0.25); 
 
    const fvPatchList& patches = mesh_.boundary(); 
 
    //- Initialise the near-wall omega and G fields to zero 
    forAll(patches, patchi) 
    { 
        const fvPatch& curPatch = patches[patchi]; 
 
        if (isType<wallFvPatch>(curPatch)) 
        { 
            forAll(curPatch, facei) 
            { 
                label faceCelli = curPatch.faceCells()[facei]; 
 
                omega_[faceCelli] = 0.0; 
                G[faceCelli] = 0.0; 
            } 
        } 
    } 
 
    //- Accumulate the wall face contributions to omega and G 
    //  Increment cellBoundaryFaceCount for each face for averaging 
    forAll(patches, patchi) 
    { 
        const fvPatch& curPatch = patches[patchi]; 



138 

 

 
        if (isType<wallFvPatch>(curPatch)) 
        { 
//#           include "checkkOmega_LowRePatchFieldTypes.H" 
 
            //const scalarField& nuw = nu().boundaryField()[patchi]; 
      const tmp<volScalarField> tnu = nu(); 
      const volScalarField& nu = tnu(); 
      const scalarField& nuw = nu.boundaryField()[patchi]; 
            const scalarField& nutw = nut_.boundaryField()[patchi]; 
 
            scalarField magFaceGradU = 
                mag(U_.boundaryField()[patchi].snGrad()); 
 
            forAll(curPatch, facei) 
            { 
                label faceCelli = curPatch.faceCells()[facei]; 
 
                // For corner cells (with two boundary or more faces), 
                // omega and G in the near-wall cell are calculated 
                // as an average 
 
                cellBoundaryFaceCount[faceCelli]++; 
 
                omega_[faceCelli] += scalar(60.0)*nuw[facei] 
                    /(beta1_.value()*sqr(y_[faceCelli])); 
 
                G[faceCelli] += 
                    (nutw[facei] + nuw[facei])*magFaceGradU[facei] 
                    *Cmu25*sqrt(k_[faceCelli])/(kappa_.value()*y_[faceCelli]); 
            } 
        } 
    } 
 
 
    // Perform the averaging 
 
    forAll(patches, patchi) 
    { 
        const fvPatch& curPatch = patches[patchi]; 
 
        if (isType<wallFvPatch>(curPatch)) 
        { 
            forAll(curPatch, facei) 
            { 
                label faceCelli = curPatch.faceCells()[facei]; 
 
                omega_[faceCelli] /= cellBoundaryFaceCount[faceCelli]; 
                G[faceCelli] /= cellBoundaryFaceCount[faceCelli]; 
            } 
        } 
    } 
} 
 
 
// ************************************************************************* // 
  



139 

 

setWallOmega.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
\*---------------------------------------------------------------------------*/ 
 
{ 
    const fvPatchList& patches = mesh_.boundary(); 
 
    forAll(patches, patchi) 
    { 
        const fvPatch& p = patches[patchi]; 
 
        if (isType<wallFvPatch>(p)) 
        { 
            omegaEqn().setValues 
            ( 
                p.faceCells(), 
                omega_.boundaryField()[patchi].patchInternalField() 
            ); 
        } 
    } 
} 
 
// ************************************************************************* // 
 
 

 


	Development of a One-Equation Eddy Viscosity Turbulence Model for Application to Complex Turbulent Flows
	Recommended Citation

	tmp.1485447847.pdf.VXvnK

