
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2006-63 

2006-01-01 

Link Layer Support for Unified Radio Power Management In Link Layer Support for Unified Radio Power Management In 

Wireless Sensor Networks Wireless Sensor Networks 

Kevin Klues, Guoliang Xing, and Chenyang Lu 

Radio power management is of paramount concern in wireless sensor networks that must 

achieve long lifetimes on scarce amounts of energy. While a multitude of power management 

protocols have been proposed in the past, the lack of system support for flexibly integrating 

them with a diverse set of applications and network platforms has made them difficult to use. 

Instead of proposing yet another power management protocol, this paper focuses on providing 

link layer support towards realizing a Unified Power Management Architecture (UPMA) for 

flexible radio power management in wireless sensor networks. In contrast to the monolithic 

approaches adopted by... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Klues, Kevin; Xing, Guoliang; and Lu, Chenyang, "Link Layer Support for Unified Radio Power Management 
In Wireless Sensor Networks" Report Number: WUCSE-2006-63 (2006). All Computer Science and 
Engineering Research. 
https://openscholarship.wustl.edu/cse_research/215 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/215?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/215 

Link Layer Support for Unified Radio Power Management In Wireless Sensor Link Layer Support for Unified Radio Power Management In Wireless Sensor 
Networks Networks 

Kevin Klues, Guoliang Xing, and Chenyang Lu 

Complete Abstract: Complete Abstract: 

Radio power management is of paramount concern in wireless sensor networks that must achieve long 
lifetimes on scarce amounts of energy. While a multitude of power management protocols have been 
proposed in the past, the lack of system support for flexibly integrating them with a diverse set of 
applications and network platforms has made them difficult to use. Instead of proposing yet another 
power management protocol, this paper focuses on providing link layer support towards realizing a 
Unified Power Management Architecture (UPMA) for flexible radio power management in wireless sensor 
networks. In contrast to the monolithic approaches adopted by existing power management solutions, we 
provide (1) a set of standard interfaces that allow different power management protocols existing at the 
link layer to be easily implemented on top of common MAC level functionality, (2) an architectural 
framework for enabling these protocols to be easily swapped in and out depending on the needs of the 
applications that require them, and (3) a mechanism for coordinating the existence of multiple 
applications, each of which may have different requirements for the same underlying power management 
protocol. We have implemented these features on the Mica2 and Telosb radio stacks in TinyOS-2.0. 
Microbenchmark results demonstrate that the separation of power management from MAC level 
functionality incurs a negligible decrease in performance when compared to existing monolithic 
implementations. Two case studies show that the power management requirements of multiple 
applications can be easily coordinated, sometimes even resulting in better power savings than any one of 
them can achieve individually. 

https://openscholarship.wustl.edu/cse_research/215?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/215?utm_source=openscholarship.wustl.edu%2Fcse_research%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2006-63

Link Layer Support for Unified Radio Power Management In Wireless
Sensor Networks

Authors: Kevin Klues, Guoliang Xing, Chenyang Lu

Corresponding Author: klueska@cs.wustl.edu

Web Page: http://www.cs.wustl.edu/~lu/upma.html

Abstract: Radio power management is of paramount concern in wireless sensor networks that must achieve
long lifetimes on scarce amounts of energy. While a multitude of power management protocols have been
proposed in the past, the lack of system support for flexibly integrating them with a diverse set of applications
and network platforms has made them difficult to use. Instead of proposing yet another power management
protocol, this paper focuses on providing link layer support towards realizing a Unified Power Management
Architecture (UPMA) for flexible radio power management in wireless sensor networks. In contrast to the
monolithic approaches adopted by existing power management solutions, we provide (1) a set of standard
interfaces that allow different power management protocols existing at the link layer to be easily implemented on
top of common MAC level functionality, (2) an architectural framework for enabling these protocols to be easily
swapped in and out depending on the needs of the applications that require them, and (3) a mechanism for
coordinating the existence of multiple applications, each of which may have different requirements for the same
underlying power management protocol. We have implemented these features on the Mica2 and Telosb radio
stacks in TinyOS-2.0. Microbenchmark results demonstrate that the separation of power management from
MAC level functionality incurs a negligible decrease in performance when compared to existing monolithic

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Link Layer Support for Unified Radio Power Management
in Wireless Sensor Networks

Kevin Klues, Guoliang Xing∗, Chenyang Lu
Department of Computer Science and Engineering

Washington University in St. Louis

{klueska, xing, lu}@cse.wustl.edu

ABSTRACT
Radio power management is of paramount concern in wire-
less sensor networks that must achieve long lifetimes on
scarce amounts of energy. While a multitude of power man-
agement protocols have been proposed in the past, the lack
of system support for flexibly integrating them with a di-
verse set of applications and network platforms has made
them difficult to use. Instead of proposing yet another power
management protocol, this paper focuses on providing link
layer support towards realizing a Unified Power Manage-
ment Architecture (UPMA) for flexible radio power man-
agement in wireless sensor networks. In contrast to the
monolithic approaches adopted by existing power manage-
ment solutions, we provide (1) a set of standard interfaces
that allow different power management protocols existing
at the link layer to be easily implemented on top of com-
mon MAC level functionality, (2) an architectural frame-
work for enabling these protocols to be easily swapped in and
out depending on the needs of the applications that require
them, and (3) a mechanism for coordinating the existence
of multiple applications, each of which may have different
requirements for the same underlying power management
protocol. We have implemented these features on the Mica2
and Telosb radio stacks in TinyOS-2.0. Microbenchmark re-
sults demonstrate that the separation of power management
from MAC level functionality incurs a negligible decrease in
performance when compared to existing monolithic imple-
mentations. Two case studies show that the power man-
agement requirements of multiple applications can be easily
coordinated, sometimes even resulting in better power sav-
ings than any one of them can achieve individually.

∗Now with the Department of Computer Science, City Uni-
versity of Hong Kong

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, USA.
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols—Protocol Architecture; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Modules and In-
terfaces

General Terms
Experimentation, Design

Keywords
Wireless Sensor Networks, Radio Power Management, Ar-
chitecture, Framework

1. INTRODUCTION
Energy is a scarce resource in many wireless sensor net-

works (WSNs). As wireless communication typically con-
sumes a significant amount of energy, a tremendous amount
of research has been dedicated to the development of radio
power management protocols. While the goal of each proto-
col is ultimately the same (reduce the power consumed by
the radio as much as possible), different protocols are better
suited to some applications than others, depending on their
workload characteristics and performance requirements.

Habitat monitoring applications [20][21], for example, have
steady, periodic traffic and can benefit from power manage-
ment protocols that duty cycle their radios in order to re-
duce energy consumption. Latencies in message delivery are
tolerable, and sometimes even encouraged if it means that
better power savings can be achieved. Applications such as
intruder detection and tracking [10], on the other hand, rely
on fast message delivery due to the urgency of the informa-
tion they are providing. These applications are dominated
by long periods of inactivity followed by large bursts of traf-
fic once something has been detected. They would rather
sacrifice some energy savings for an increased level of per-
formance once they start generating messages.

As evidenced above, we cannot always use the same radio
power management protocol for every type of application.
A protocol optimized for low data rate, periodic habitat ap-
plications may perform poorly in an intruder detection ap-
plication [27]. On the other hand, a protocol designed for
the bursty workloads of an intruder detection application
would be unnecessarily complex for a simple habitat mon-
itoring application that always operates at a constant low
rate. There must therefore be a way to allow an applica-
tion to incorporate the use of whichever power management
protocol is most appropriate for it.



Sometimes it may also be desirable to allow multiple appli-
cations to run concurrently on a single node. Imagine a set
of habitat monitoring applications that each take readings
from different sensors at different sampling rates. If each
of these applications were to be installed on a single node,
we would need a way of resolving the different requirements
they impose on an underlying radio power management pro-
tocol. Sometimes it may be sufficient to configure a single
protocol accordingly (either at compile time for static re-
quirements or at runtime for dynamically changing require-
ments). Other times it may be more convenient to choose
multiple protocols from among a set of predefined ones and
find a way to compose them together in some coherent way.
Unfortunately, despite significant progress in the develop-
ment of each of these protocols, existing WSN systems still
lack architectural support for flexible radio power manage-
ment.

To address the issues outlined above, we propose an ar-
chitecture that not only allows different radio power man-
agement protocols to be flexibly integrated into a fully func-
tional wireless sensor network system, but also allows the
requirements imposed by multiple applications to be coor-
dinated in such a way that a single coherent radio power
management solution is produced. While some power man-
agement protocols may exist at different layers in the net-
working protocol stack, we focus our current work on duty
cycling protocols existing only at the data link layer. A
high-level overview of an overall Unified radio Power Man-
agement Architecture (UPMA) is presented in [12].

Specifically, this paper makes the following primary con-
tributions: (1) We design and implement a set of interfaces
that allow different power management protocols to share
common MAC functionality at the data link layer. Tradi-
tionally, MAC protocols and power management protocols
have been developed together to produce a single mono-
lithic implementation. Development of a new power man-
agement protocol often meant redesigning an entire radio
stack from the ground up. The separation we propose gives
different applications the ability to incorporate the use of
whichever power management protocol is best suited to its
needs, independent of the underlying MAC protocol it relies
on. Certain power management optimizations (such as over-
hearing avoidance) may still need to be implemented within
the MAC layer itself, but features such as this are beneficial
to all power management protocols existing at the link layer,
and their existence does not diminish the need for providing
the separation that we do. (2) We propose an architec-
tural framework that gives multiple applications the ability
to specify differing requirements to a component implement-
ing a single underlying radio power management protocol.
Coordination of these requirements is achieved through a
customizable component whose implementation depends on
both the power management protocol in use and the types
of applications running on top of it. (3) We demonstrate the
practicality of this architecture by implementing it on top of
both the Mica2 and Telosb radio stacks in TinyOS-2.0. We
show that separating power management protocols from the
MAC level functionality on which they rely increases flexibil-
ity while introducing only a negligible performance penalty.
(4) Finally, we provide two case studies demonstrating how
differing requirements from multiple applications can be re-
solved within our architecture. In each case study we show
how to coordinate these requirements in a different way.

The rest of this paper is organized as follows. Section
2 provides an overview of the types of power management
protocols this architecture is designed to support. Section
3 presents the design of the architecture as well as example
implementations demonstrating its various features. Section
4 presents experimental results of the overhead incurred by
implementing power management protocols using this archi-
tecture, as well results obtained during our two case studies.
Finally, Section 5 concludes the paper.

2. POWER MANAGEMENT APPROACHES
In this section, we review existing approaches to radio

power management in WSNs. This review provides the basis
for our design of a common set of interfaces and a unified
architecture that can support diverse power management
protocols.

Existing approaches to radio power management fall into
two categories: transmission power control and duty cy-
cling. Transmission power control [19] reduces the energy
consumed during communication by adjusting the power at
which a radio transmits. Duty cycling reduces energy wasted
during idle listening by allowing the radio to cycle between
periods of activity and sleep. The architecture presented in
this paper only focuses on supporting duty cycling protocols,
which have proven to be a very efficient means of extending
the system lifetime of WSNs. It can be accomplished by fol-
lowing one of three different approaches: TDMA, scheduled
contention, or channel polling [27].

In TDMA based protocols, time is divided up into discrete
time slots and allocated to all nodes within transmission
range of one another. Nodes transmit during the time slots
that have been allocated to them, and listen during the time
slots that have been allocated to those nodes from which
they wish to receive. When not transmitting or receiving, a
node is free to sleep. Several different TDMA based proto-
cols have been proposed for use in WSNs. These protocols
include TRAMA [16], and DRAND [18]. One limitation of
these types of protocols is that their schedules can be very
sensitive to changes in network traffic or network topology,
and all nodes sharing a schedule must remain synchronized
with one another. Whenever one of these properties changes,
a new TDMA schedule must somehow be generated and dis-
tributed to some subset of nodes in the network.

Protocols based on scheduled contention allow nodes to
schedule times in which they will all be awake in order to
communicate. Nodes within transmission range of one an-
other synchronize their schedules to ensure that they are
all awake at the same time. While awake, nodes contend
for use of the radio channel through a process known as
CSMA/CA. Nodes that gain access to the channel during
this contention period are allowed to send, while all other
nodes listen. Several energy-efficient MAC protocols based
on sleep scheduling include S-MAC [26], T-MAC [23], and
Z-MAC [17]. Despite the energy savings achieved using pro-
tocols of this type, energy is still wasted in maintaining syn-
chronization and waking up when there is no data to trans-
mit or receive.

Protocols based on channel polling (such as the Low Power
Listening features of B-MAC [14], WiseMac [7] and X-MAC
[3]) do not require synchronized contention periods for re-
ception and transmission. All nodes independently wake up
to poll the radio channel for activity. If there is, they prepare
themselves for message reception. If there is not, they return



immediately to sleep. Transmitting nodes send a stream of
preamble bytes (or wake up tones) equal to the polling pe-
riod of their destination nodes, in order to ensure that they
wake up in time to receive any actual data. In lightly loaded
networks, these types of protocols can achieve better power
savings than scheduling based protocols since the overhead
associated with long contention periods and synchronization
is avoided. In heavily loaded networks, however, the over-
head of transmitting a long stream of preamble bytes starts
to outweigh these benefits.

Hybrid protocols (SCP [27], Funneling-MAC [1], and IEEE
802.15.4 [11]) combine some of the features present in TDMA,
scheduled contention, and channel polling based protocols
in order to find a reasonable tradeoff between message la-
tency and power consumption. SCP, for example, combines
the advantages provided by channel polling with those of
scheduled contention in order to avoid the problems nor-
mally associated with requiring time synchronization while
at the same time avoiding long preamble costs. Funneling-
MAC, on the other hand, allows some nodes near a sink to
run TDMA schedules while all others follow either a sched-
uled contention or polling based duty cycle. The overhead
of maintaining the TDMA schedule is mitigated by the fact
that only a small number of nodes actually need to follow
it.

To improve the performance of duty cycling protocols,
backbone based power management protocols have also been
proposed to support performance sensitive applications. Pro-
tocols such as ASCENT [4], SPAN [5], GAF [24], and PEAS
[25] set up a backbone of nodes that must be continually ac-
tive in order to quickly forward messages between a source
and its sink. Nodes not in the backbone are allowed to fol-
low one of the four different types of duty cycling protocols
presented in this section. Membership in the backbone is pe-
riodically changed in order to balance the power consumed
by all nodes in the network.

3. DESIGN OF THE ARCHITECTURE
In this section, we describe the architectural support nec-

essary for providing flexible radio power management at the
data link layer. This architecture defines a set of interfaces
that allow different duty cycling protocols to be indepen-
dently implemented on top of a common underlying radio
stack. The introduction of these interfaces enables support
for flexibly integrating different duty cycling protocols into a
system based on its specific application requirements. This
architecture also includes support for defining components
that are capable of coordinating the duty cycling require-
ments from multiple applications. By combining these re-
quirements inside a separate architectural component, dif-
ferent duty cycling protocols can be made to work with a
diverse set of applications and platforms.

3.1 Supporting Flexibility
We begin by defining a clear separation between what

functionality is shared among all duty cycling protocols and
what is not. We define this separation to occur above the
features present in radio specific MAC implementations, but
below the features distinguishing one duty cycling protocol
from another. Figure 1 shows how we propose to perform
this separation by introducing a set of uniform interfaces
between duty cycling protocols and the MAC layer.

Three interfaces are made available through the MAC

MAC

Send/Receive
Buffers

Clear Channel
Assessment

Backoff Controller

Radio
State

Machine

Send/Receive Interfaces Backoff Control Interfaces

Duty Cycling Protocol

Radio Component

ChannelMonitorRadioPowerControlPreambleLength

Duty Cycling Interfaces

Figure 1: Proposed separation of duty cycling pro-
tocols from common MAC level functionality

layer for use by different duty cycling protocols. Ideally,
all radio stack implementations should provide each of these
interfaces. If a particular MAC layer is unable to provide
one of them, it may be limited in the types of duty cycling
protocols that can be built on top of it. Each interface is
described in greater detail below.

The RadioPowerControl Interface:
The first of these interfaces is RadioPowerControl. This
interface allows a radio to be switched between its active
and sleep power states. It must be implemented by all types
of MAC protocols, since without it, duty cycling of the radio
is not possible.

interface RadioPowerControl {

async command void on();

async event void onDone(error_t error);

async command void off();

async event void offDone(error_t error);

}

The ChannelMonitor Interface:
The second interface is the ChannelMonitor interface. This
interface is used to expose clear channel assessment (CCA)
capabilites of a radio. This capability is required by all
duty cycling protocols based on channel polling in order to
determine if a radio channel has any activity on it or not. If
this interface is not exposed, the use of certain duty cycling
protocols (such as Low Power Listening) will not be possible.

interface ChannelMonitor {

command void check();

async event void free();

async event void busy();

event void error();

}

The PreambleLength Interface:
The third and final interface is the PreambleLength inter-
face. This interface allows a duty cycling protocol to dynam-
ically change the length of the preamble associated with a
particular outgoing packet. It is intended for duty cycling
protocols that require a constant wakeup tone of a certain
length to be sent (transparent to the operation of the duty
ccling protocol itself). For certain types of radios (in partic-
ular, packet radios like the cc2420 [6]), the implementation
of this interface may need to be emulated by sending multi-
ple packets with very short gaps instead of a constant stream



of preamble bytes. For duty cycling protocols that actually
rely on the transmission of short packets, this interface is
not necessarily required.

interface PreambleLength {

async command void set(uint16_t numBytes);

async command uint16_t get();

}

In addition to the interfaces presented above, the MAC
layer may also need to support time stamping for incoming
and outgoing packets in order to facilitate the development
of time synchronization protocols required by both sched-
uled contention and TDMA based protocols. Time stamp
data can be appended as metadata to any packets passed up
the radio stack through the Receive interface of the MAC
layer. Duty cycling protocols that exploit the use of this
information simply need to extract it from the packets as
they are passed up the stack.

3.2 Supporting Multiple Applications
UPMA provides a framework for coordinating different

power management requirements from multiple applications.
For purposes of this discussion, an application refers to any
component in the system that wishes to specify a set of
power management requirements to a duty cycling protocol
existing at the link layer. Our architectural framework pro-
vides a mediator that resolves any conflicts among these ap-
plications’ stated power requirements.1 Figure 2 illustrates
the framework for coordination.

DutyCycle Interface

Application 2

MAC

PHY

DutyCycle Table

OnMode

OffMode

PreambleLengthChannelMonitor RadioPowerControl

Application 0 Application 1

Duty Cycling Protocol

Power Coordinator

Figure 2: Architecture for enabling the coordination
of differing application requirements.

Applications insert parameters into a Power Management
Table using a set of predefined interfaces. The interfaces de-
pend on the power management protocol in use. Protocols
based on scheduled contention provide interfaces that allow
applications to specify their on/off intervals, while protocols

1If only a single application happens to be running on the
system, this mediator need not be included in its compila-
tion.

based on channel polling provide interfaces that allow them
to specify a polling period and a preamble length. Protocols
based on a hybrid of these two approaches require both sets
of interfaces. Rows in the Power Management Table repre-
sent a single parameter type into which an application may
supply a value. Columns are used to separate the values
supplied by different components. For example, all param-
eters supplied by ‘Application 1’ in the figure will be stored
in column 1, and all parameters supplied by ‘Application 2’
will be stored in column 2.

A Power Coordinator is used to coordinate the use of all
parameters supplied to the Power Management Table by
each application. It decides how to combine these parame-
ters in order to provide a coherent radio power management
solution that satisfies the needs of all applications as best
it can. The Power Coordinator can be customized based
on the requirements of the applications and the underlying
duty cycling protocol on which they rely. We envision that a
library of efficient standard coordination techniques (similar
to design patterns) will be created that will be able to meet
the needs of different types of applications.

3.3 Implementation
To enable the flexible integration of different radio power

management protocols, the cc1000 and cc2420 radio stacks
in TinyOS-2.x have been altered to expose the interfaces de-
scribed in section 3.1. Implementations of several different
duty cycling protocols have been created on top of these ra-
dio stacks for use on both the Mica2 and TelosB hardware
platforms. We have chosen to use TinyOS-2.0 as our imple-
mentation platform since it is still maturing and does not yet
have many radio power management protocols developed for
it. Our hope is that as developers start porting implemen-
tations of their protocols from TinyOS-1.x to TinyOS-2.x,
they will do so within the architecture presented here. Doing
so will ease the development of these protocols and create a
rich set components for use within the architecture.

In this section we describe sample implementations of
both the polling based Low Power Listening (LPL) protocol
and a simple scheduling based protocol called Simple Syn-
chronous Sleeping (SSS). A third protocol that we call Basic
Synchronous Sleeping (BSS) is also introduced. It is func-
tionally similar to SSS, but differs in the type of interface it
provides to its users. By providing implementations of both
polling based and scheduling based duty cycling protocols,
we are able to demonstrate the flexibility introduced by this
new architecture.

We also present how two different coordination polices can
be implemented using the mechanisms described in section
3.1. One policy coordinates the use of different duty cycling
requirements from multiple applications, while the other co-
ordinates a backbone maintenance protocol with these same
duty cycling requirements.

We note that the implementations provided in this sec-
tion are just examples that demonstrate the flexibility and
efficacy of the architecture presented in this paper. More so-
phisticated duty cycling protocols and coordination policies
can (and should) be implemented within the framework pro-
vided here. The focus of this work has not been to develop
new protocols or coordination policies, but rather the archi-
tectural framework within which they can be developed.



3.3.1 Duty Cycling Protocols
LPL allows a radio to sleep for long periods of time, peri-

odically polling the radio channel to check if there are any
incoming packets. If no packet is present, it goes back to
sleep for an amount of time equal to the node’s polling in-
terval. Packets are sent with preamble lengths equal to the
size of the polling interval so that the destination node is
guaranteed to be awake when the packet is sent. LPL al-
lows a user to specify two different parameters: the time
interval between subsequent checks for activity on the ra-
dio channel, and the preamble length for outgoing packets.
We have implemented Low Power Listening on top of the
interfaces presented in section 3.1.2

We have also designed and implemented a scheduling based
duty cycling protocol known as SSS (Simple Synchronous
Sleeping) on top of our interfaces. SSS relies on global time
synchronization of all nodes in a network to precisely con-
trol their duty cycles. This protocol is intended as an ex-
ample of how a scheduling based protocol could be imple-
mented, rather than a replacement for more robust proto-
cols. This protocol allows the duty cycle of the radio to be
tuned through the following interface:

interface RadioDutyCycling {
command error_t setDutyCycle(uint8_t on, uint8_t off);
command error_t setOnTime(uint8_t onTime);
command error_t setOffTime(uint8_t offTime);
event void beginOnTime();
event void beginOffTime();

}

A higher layer uses this interface to set the duty cycle of
the radio and be notified whenever it has been switched on
or off. Since the start of every radio’s duty cycle must be
synchronized, all nodes having the same duty cycle will be
able to communicate with each other during the on time of
the radio (using CSMA/CA) and conserve energy during the
off time.

The third protocol we have implemented is BSS (Basic
Synchronous Sleeping). Both SSS and BSS require time
synchronization for all nodes in a network, and they both
turn the radio on and off for certain time durations as spec-
ified by the user. The primary difference between the two
is that SSS allows an application to specify a periodic radio
duty cycle, while BSS requires that an application explicitly
request the radio to be turned on or off just before making
each transition. This allows the on and off periods to be
changed on every transition rather than requiring them to
be periodic. SSS could, in fact, be simulated using BSS by
always specifying the same on and off times every time the
appropriate transition was supposed to occur. Because of
this flexibility in changing on and off times at every tran-
sition, BSS has the capability of supporting more sophisti-
cated scheduling algorithms as well as integrating different
schedules supplied by multiple applications.

An application can inform BSS when (as well as for how
long) to power the radio on and off using the following in-
terface:

2Due to the limited preamble lengths allowed by the cc2420
hardware, our specific implementation of LPL can only be
used by the cc1000 radio stack. Ye, et al., [27] propose a
way of implementing a variation of LPL for use on the cc2420
radio stack. This variant is compatible with our architecture
and we plan on implementing it as future work.

interface DutyCycleTimes {

command turnOnFor(uint32_t onTime);

command turnOffFor(uint32_t offTime);

event void ready();

}

Calling the turnOnFor() and turnOffFor() commands
does not necessarily indicate that the radio will be turned on
or off immediately. These commands are a way of specifying
the on and off times that will be used the next time BSS sig-
nals the ready event. To duty cycle a radio, an application
can alternate calls to turnOnFor() and turnOffFor() within
the body of the ready() event. If no calls to turnOnFor() or
turnOffFor() are made between subsequent ready() events,
the power state of the radio remains unchanged and the next
ready() event is signaled after the same amount of time it
took to receive the previous ready() event.

Our current implementations of SSS and BSS use a simple
time synchronization scheme that operates in a single-hop
network. Under this scheme, all nodes other than the base
station turn on their radio interfaces once they are booted,
and leave it on until they have a received a synchroniza-
tion packet. Once the base station is started, it sends the
synchronization packet, and all nodes in the network start
a timer simultaneously. There are no synchronization up-
dates and clock drift is not taken into consideration. If one
of the nodes happens to not hear the synchronization mes-
sage, then it will not become synchronized and the entire
network will need to be rebooted. It is left as future work to
implement more sophisticated sychronization protocols us-
ing the time stamping features provided by the MAC layer
[8, 9, 13].

In addition to the simple duty cycling protocols presented
here, more complicated duty cycling protocols such as SCP-
MAC and 802.15.4 can also be implemented within this ar-
chitecture. We consider these two protocols as examples
because 802.15.4 is the most widely accepted industry stan-
dard, and both 802.15.4 and SCP-MAC are both represen-
tative hybrid protocols that combine the features present in
TDMA, scheduled contention, and polling based protocols.
Both protocols would use the underlying CSMA/CA capa-
bilities of the radio to contend for use of the radio channel,
as well as the RadioPowerControl interface to turn the radio
on and off. The time stamping feature provided by the MAC
layer would also be used in order to provide a time synchro-
nization service for use by the protocols. 802.15.4 would use
the RadioPowerControl interface to turn on the radio for
both its contention access period (CAP) and its contention
free period (CFP). During the CAP it would use CSMA/CA
to send and receive messages over the radio and during the
CFP it would use a TDMA schedule to decide in which guar-
anteed times slots a node should be sending. After both
the CAP and CFP, the radio would be turned off again via
the RadioPowerControl interface. SCP would only use the
RadioPowerControl interface to turn the radio on for the
reception of packets, and off again once all packets were re-
ceived. It would additionally require the ChannelMonitor

interface to perform its channel polling capabilities and the
PreambleLength interface to adjust the number of preamble
bytes associated with any outgoing packets.

3.3.2 Coordination Policies
We have implemented two coordination policies that are

able to combine different duty cycling requirements speci-



fied through the RadioDutyCyling interface. The parame-
ters passed to this interface are stored in a Power Manage-
ment Table, and a Power Coordinator is used to combine
these requirements to produce a single coherent duty cy-
cling schedule. This schedule is used to inform BSS of the
on and off times it should use when duty cycling the radio.
Note that different systems may desire different coordina-
tion policies. We provide the two coordination policies just
as examples to demonstrate the capability of our architec-
tural framework to coordinate multiple power management
requirements.

In our first coordination policy, the Power Coordinator
is implemented to aggregate the duty cycles specified by
multiple applications according to an OR policy as shown
in Figure 3.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Time (ms)

Duty Cycle 0

Duty Cycle 1

Aggregate Duty Cycle

Figure 3: Aggregation of multiple duty cycles

This coordination policy is implemented as follows. (1)
All duty cycles from all applications are synchronized to
begin at the same time instant. (2) They all run periodically
according to their own schedule. (3) If any of the duty cycles
requires the radio to be on at any particular point in time,
the radio will be turned on. (4) Only if all duty cycles
indicate that the radio should be turned off will the radio
ever be turned off. The coordinator creates a schedule whose
length equals the least common multiple of the duty cycles
of all applications.

In Figure 3 we see that ‘Duty Cycle 0’ has an on time du-
ration of 200ms and an off time duration of 800ms, while
‘Duty Cycle 1’ has both an on and off time duration of
200ms. the period of ‘Duty Cycle 0’ is therefore 1000ms,
while the period of ‘Duty Cycle 1’ is just 400ms. In order
to find the period of the ‘Aggregate Duty Cycle’ schedule,
the least common multiple of all duty cycles must be deter-
mined. In this case it is 2000ms. Since multiple on and off
periods will exist within one period, BSS is more appropriate
than SSS for executing the aggregated schedule.

The second coordination policy we have implemented al-
lows a backbone based duty cycling protocol to be intro-
duced as one of the applications specifying parameters to
the RadioDutyCyling interface. The backbone based proto-
col we use is known as PEAS [25]. When nodes first wake up
in a PEAS enabled network, they send out a probing mes-
sage to determine if any of their neighboring nodes are awake
and operating. If they do not hear any responses, they de-
cide to become active and turn their radios on accordingly.
Once a node has become active, it will remain active un-
til its power supply has been depleted. Active nodes take
on the the responsibility of responding to probing messages
sent by inactive nodes. If inactive nodes hear one of these
responses, they return immediately to sleep and wait some
predetermined amount of time before sending out the next
probe. The amount of time they have to wait changes dy-
namically based on the number of active nodes within their

probing range as well as the frequency with which other
inactive nodes send out their probing messages. We have
implemented a lightweight version of PEAS that uses the
same probe/reply mechanism as described above, but uses
a fixed delay time between each probing message.

Our coordination policy allows PEAS to determine which
nodes should be active, but instead of keeping these nodes
always turned on, it allows them to run according to some
duty cycle. The duty cycles on active nodes are aggregated
according to the same OR policy on top of BSS as described
before. Only active nodes run these aggregated duty cycles,
sending and receiving both their own messages and PEAS
probe/reply messages in the background. Inactive nodes do
not run any applications and simply run a periodic sleep
schedule specified by PEAS, continuously probing if they
should become active or not.

We note that PEAS saves energy by controlling the spa-
tial density of active nodes, while duty cycling saves energy
by controlling the temporal frequency of radio activity. By
combining the energy benefits provided by PEAS with those
of duty cycling, this coordination policy is able to save more
energy in a network than using of either one of these pro-
tocols individually. A key advantage of implementing all
of these protocols within the architecture described in this
paper is that neither the implementations of PEAS, BSS,
nor any of the applications needs to be altered in order to
achieve these energy savings. All coordination is handled by
the implementation of the coordination policy itself.

4. EVALUATION
This section presents the empirical evaluation of our archi-

tecture. The first set of experiments evaluates the efficiency
of the uniform interfaces between duty cycling protocols and
the MAC in terms of both performance and code size. The
second set of experiments evaluates the effectiveness of our
framework in coordinating the duty cycle requirements of
multiple applications. The final set of experiments evalu-
ates the coordination of a backbone protocol and duty cycle
requirements of multiple applications.

4.1 Efficiency
The first set of experiments involve comparing the mono-

lithic implementation of Low Power Listening (LPL) on the
cc1000 radio stack with the one designed for use within our
architecture. Our experimental settings are the same as the
ones presented for the full B-MAC implementation in [14].
We also compare the difference in the code size between the
two implementations. By showing that our implementation
of Low Power Listening is comparable to the original one
in terms of both performance and code size, we are able to
demonstrate that our architecture provides just as efficient a
framework for implementing it as the original one. Since our
implementation is not implemented within the MAC com-
ponent of the default radio stack, however, it provides much
more flexibility.

We first measure throughput vs. number of nodes in a
single hop network. There is one receiver, with a variable
number of senders from 1 to 4. All senders are equidistant
from the receiver at 2 feet. Each sender transmits as often
as possible with messages containing 38 bytes of data and
8 preamble bytes. We measure the total throughput (bits
per second) at the receiver over 2 minutes. The results are
given in Figure 4.



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 1  2  3  4  5

T
h

ro
u

g
h

p
u

t 
(b

it
s/

se
co

n
d

)

Number of Nodes

BMAC-LPL-original
BMAC-LPL-new

Figure 4: Throughput vs. Number of nodes at 100%
duty cycle for two different LPL implementations

With only one node in the network, performance between
the two implementations is almost identical. While the origi-
nal LPL implementation achieves slightly higher throughput
for two and three nodes, the results for the two implemen-
tations are comparable again for four and five.

Next, we measure the delivery latency vs. number of hops
in a fixed route multi-hop network. Nodes are placed in a
chain, with the first node being both the source and the
sink node. Messages are sent from one node to the next un-
til the last node in the chain is reached. Messages are then
sent in reverse back to the original sender. The number of
nodes varies from 2 to 5, resulting in 2, 4, 6, and 8 hops
respectively. The sender sends 20 messages, each contain-
ing 38 bytes of payload and a variable number of preamble
bytes depending on the length of the LPL check interval
that has been selected. LPL check intervals of “always on”,
800ms, and 1600ms were chosen, and the average latency
from source to sink of each data packet was measured. The
results are given in Figure 5. In this experiment, we see that
the results for both LPL implementations are identical for
all measured check intervals.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 2  4  6  8

D
el

ay
 (

m
s)

Number of Hops

Mica2-orig-lpl-0
Mica2-orig-lpl-7(interval 800ms)

Mica2-orig-lpl-8(interval 1600ms)
Mica2-new-lpl-0

Mica2-new-lpl-7(interval 800ms)
Mica2-new-lpl-8(interval 1600ms)

Figure 5: Latency vs. Number of Hops at different
check intervals for two different LPL implementa-
tions

Original LPL New LPL
RAM/ROM RAM/ROM

SenderApp 383/11956 394/12350
ReceiverApp 705/15098 716/15560

Table 1: LPL Memory Footprint (Bytes)

Table 1 shows the difference in code size for each imple-
mentation when they are compiled into the applications used
in the experiments above. As expected, both the RAM and
ROM sizes for the new implementation are slightly larger
than for original one. The main contributor to this increase
in size is the extra timer required by the new LPL imple-
mentation. In the original implementation of LPL, the timer
used to switch between the different states of the radio was
shared by the LPL implementation. Other contributors in-
clude additional flags and logic needed to coordinate the use
of the interfaces now provided by the radio stack.

The second set of experiments shows the performance
characteristics of our SSS implementation. The results of
these experiments show that it is easy to reuse the imple-
mentation of this sleep scheduling policy on top of two very
different radio stack implementations. Results are given for
both Mica2 and TelosB.

The setups for each experiment are the same as those used
for LPL. For measuring throughput vs. number of nodes,
we ran SSS at duty cycles of 100%, 47%, and 20%, and
measured the total throughput for each duty cycle over 2
minutes. For measuring latency vs. number of hops, we ran
SSS at a 50% duty cycle, and measured the average latency
from source to sink for a single packet.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 1  2  3  4

T
h

ro
u

g
h

p
u

t 
(b

it
s/

se
co

n
d

)

Number of Nodes

Mica2-BMAC-sss-100%
Mica2-BMAC-sss-47%
Mica2-BMAC-sss-20%

Figure 6: Throughput vs. Number of nodes at dif-
ferent duty cycles for the SSS implementation on
mica2

Figures 6 and 7 show that SSS is able to deliver more data
as its duty cycle is increased. As expected, TelosB achieves
higher throughput for all duty cycles in both experiments
because data is sent at a much higher rate by the cc2420
radio than by the cc1000 radio.

Figure 8 shows the latency associated with running SSS.
Once again, the higher data rate of the cc2420 radio accounts
for the difference in performance between the TelosB and the
Mica2 platforms in this experiment.



 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000
 32000

 1  2  3  4

T
hr

ou
gh

pu
t (

bi
ts

/s
ec

on
d)

Number of Nodes

Telos-BMAC-sss-100%
Telos-BMAC-sss-47%
Telos-BMAC-sss-20%

Figure 7: Throughput vs. Number of nodes at dif-
ferent duty cycles for the SSS implementation on
telosb

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400
 440

 2  4  6  8

D
el

ay
 (

m
s)

Number of Hops

Mica2-sss
Telos-sss

Figure 8: Latency vs. Number of Hops at 50% duty
cycle for the SSS implementation on both mica2 and
telosb

Overall, the results of these experiments show the follow-
ing: (1) Implementing LPL using our framework only incurs
a negligible performance penalty. (2) Exposing the proposed
MAC layer interfaces may produce a slight increase in code
size, but it allows much more flexibility when choosing the
sleep scheduling policy that is most appropriate. (3) Both
channel polling and scheduled contention based protocols
can easily be implemented on top of these interfaces and
used by different mote platforms. These implementations
produce results typical of these types of protocols.

4.2 Coordinating Multiple Duty Cycles
In this section, we evaluate the architecture in terms of

the different coordination policies used to combine duty cy-
cles specified by multiple applications. The first experiment
demonstrates the ability to combine the duty cycling re-
quirements of multiple applications in a way that is trans-
parent to each of them. The second one presents the results
obtained from coordinating the duty cycling requirement
from multiple applications for use with PEAS and BSS. The
network used in this set of experiments is a one-hop cluster
consisting of a master TelosB node and a number of slave

TelosB nodes. Each slave node runs a sensing application
that periodically sends packets to the master node.

Although each node only runs a single application, up to 6
different applications can be running in the network at any
given time. The on time of the duty cycle for each applica-
tion is 200ms, with off times of 200ms, 600ms, 1.4s, 3s, 6s,
and 12.6s, respectively. Each application sends a packet of
66 bytes (including header and payload) at a random time
within the 200ms active period of each duty cycle. The mas-
ter node is able to receive packets from each application by
running an aggregate duty cycle according to the OR policy
described in section 3.2.

The first run of experiments consists of the master node
and two slave nodes running the application with the lowest
duty cycle. Two more slave nodes running the application
with the next highest duty cycle are then added in each
following run. Each run lasts for 320 s. Figure 9 shows the
delivery ratio measured at the master node for each run. We
can see that the delivery ratio remains close to 100% as the
number of applications increases. Once all six applications
(total 12 nodes) have been added to the network, however,
we do begin to see a slight increase in the number of packets
that are lost.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6

D
el

iv
er

y
 R

at
e

Number of Applications

Figure 9: The delivery ratio measured at the master
node.

Figure 10 shows the duty cycle measured at the master
node. A 100% duty cycle corresponds to the radio always be-
ing on, and a 0% duty cycles corresponds to the radio always
being off. The duty cycle was calculated by instrumenting
the cc2420 radio stack with a 32 KHz timer in order to mea-
sure the amount of time spent in each radio state. We can
see that the duty cycle measured at the master node matches
the predicted curve, verifying the correctness of the combi-
nation logic of the aggregator. As a baseline we also show
the predicted duty cycle of the master node if no aggregation
policy were used. This duty cycle is simply calculated as the
sum of the duty cycles of all applications in the network. As
shown in Figure 10, performing the combination will always
yield a lower overall duty cycle than not performing it.

The results in this section demonstrate that this coor-
dination policy is capable of correctly combining the duty
cycles specified by multiple applications, and that combin-
ing these duty cycles according to some aggregation policy
can potentially lead to lower energy consumption.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6

D
u
ty

 C
y
cl

es

Number of Applications

Measured Combined Duty Cycle
Theoretical Duty Cycle w combination

Theoretical Duty Cycle w/o Combination

Figure 10: The duty cycle of the master node.

4.3 Coordinating Duty Cycles with PEAS
In this section, we evaluate the architecture in terms of

the coordination policy allowing PEAS to be combined with
applications specifying different duty cycles. The network
consists of a master Telosb node and 15 slave Telosb nodes
placed within a 5×3 grid. Each slave node runs both PEAS
as well as one of six different applications. Each applica-
tion runs with a duty cycle period of 3.2s. The on times of
each duty cycle range from 200ms to 1.2s in steps of 200ms.
Nodes designated as ‘inactive’ by PEAS run with a duty cy-
cle period of 16s and an on time of 200ms. Inactive nodes
send probe messages at some random time within their on
periods, and active nodes send messages from their appli-
cations at some time during their on periods. Although all
nodes are within communication range of one another, the
probing range of PEAS is limited to 1.5 times the grid width.

In this set of experiments we measure the total energy
consumed by the radio for all nodes in the network. The
amount of energy used by each radio is measured as the
sum of the energy consumed in each of four different radio
states: idle, receiving, transmitting, and sleeping. We first
measure the total time that the radio spends in each radio
state by instrumenting the Telosb cc2420 radio stack with
a 32 KHz timer. We then calculate the energy consumed
in each state by multiplying the total time the radio spends
in that state by the power consumed in that state. These
power consumption values are all taken directly from the
cc2420 data sheet [6]3.

As a baseline, we first measure the power consumption
of the network when only PEAS is enabled and all active
nodes have their radios powered all the time. We then dis-
able PEAS and allow all nodes to run their duty cycling
applications, without PEAS specifying certain nodes as in-
active. Finally, we measure the power consumption when
these two policies are combined: PEAS is enabled and only
active nodes are able to run their application. Figure 11
shows the total energy consumption of the network in each
situation. The baseline is represented by a straight line.

3There are two different sleeping modes available on the
cc2420. In the sleeping mode benchmarked here, the trans-
mitter is turned off while the crystal oscillator and voltage
regulator remain on. In the data sheet this state is referred
to as IDLE.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

37.5%31.25%25%18.75%12.5%6.25%

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J)

Duty Cycles

Duty Cycles
PEAS + Duty Cycles

Figure 11: The total energy consumption of the net-
work.

We can see from Figure 11 that the policy combining
PEAS with each application duty cycle yields the lowest en-
ergy consumption. These energy savings are achieved by (1)
allowing PEAS to choose the subset of nodes that will actu-
ally run each application, and (2) allowing those nodes cho-
sen by PEAS to run at their application-specified duty cycle.
Overall, the energy consumption under the combined policy
is 57 − 86% lower than running PEAS alone and 42 − 63%
lower than duty cycling alone.

The results in this section demonstrate the power of com-
bining complementary power management protocols using
the architectural framework provided in this paper. By us-
ing the Power Coordinator to combine the use of the these
protocols, more energy can be saved than by using either
one of them individually.

5. CONCLUSION
In this paper, we have presented link layer support to-

wards realizing a unified radio power management architec-
ture for use in wireless sensor networks. The architectural
support we have presented is comprised of two key compo-
nents: (1) a set of standard interfaces allowing different duty
cycling protocols to be implemented on top of a common ra-
dio stack, and (2) an abstraction layer that can incorporate
the use of different coordination polices for coordinating the
duty cycling requirements of multiple applications running
on the system.

We have demonstrated the flexibility of this architecture
through the development of several different duty cycling
protocols, and have conducted experiments in order to eval-
uate their performance. We have also shown how the ar-
chitecture can be used to coordinate the duty cycling re-
quirements of multiple applications. By replacing only the
coordination policy, we demonstrate that it is possible to co-
ordinate these requirements with those of a backbone based
power management protocol as well.

In the future, we plan to build on the ideas presented in
this paper to support power management protocols existing
at layers other than the link layer. Specifically, we plan to
add support for transmission power control protocols exist-
ing at the network layer. Another important direction for
future work is to integrate this architecture with an overall



sensor network architecture [2][22]. A first step in this direc-
tion is to develop interfaces that allow it to coordinate with
a link layer abstraction such as SP [15]. Integration with
SP will enable the support of more efficient power man-
agement techniques through fine-grained interactions with
network and MAC-layer protocols. Additionally, we plan
to integrate this architecture with the power management
techniques used by other hardware components (e.g., mi-
crocontrollers, sensors, and flash) on a WSN platform. Such
a holistic power management approach will result in maxi-
mum energy savings in real world systems.

6. ACKNOWLEDGEMENTS
This work is supported by NSF NeTS-NOSS grant #CNS-

0627126.

7. REFERENCES
[1] G.-S. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong,

and F. Cuomo. Funneling-mac: A localized,
sink-oriented mac for boosting fidelity in sensor
networks. In Sensys, 2006.

[2] U. Berkeley. a network architecture for wireless sensor
networks. http://webs.cs.berkeley.edu/SNA/.

[3] M. Buettner, G. V. Yee, E. Anderson, and R. Han.
X-mac: A short preamble mac protocol for
duty-cycled wireless sensor networks. In Sensys, 2006.

[4] A. Cerpa and D. Estrin. Ascent: Adaptive
self-configuring sensor networks topologies. In
INFOCOM, 2002.

[5] B. Chen, K. Jamieson, H. Balakrishnan, and
R. Morris. Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless
networks. In MobiCom, 2001.

[6] Chipcon. Cc2420 radio data sheet. 2004.

[7] A. El-Hoiyi, J.-D. Decotignie, and J. Hernandez.
Wisemac: an ultra low power mac protocol for the
downlink of infrastructure wireless sensor networks.
Computer Communications, 1:244– 251, 2004.

[8] J. Elson, L. Girod, and D. Estrin. Fine-grained
network time synchronization using reference
broadcasts. In OSDI ’02: Proceedings of the 5th
symposium on Operating systems design and
implementation, pages 147–163, New York, NY, USA,
2002. ACM Press.

[9] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync protocol for sensor networks. In SenSys
’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 138–149,
New York, NY, USA, 2003. ACM Press.

[10] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu,
R. Stoleru, G. Zhou, Q. Cao, P. Vicaire, J. A.
Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh.
Vigilnet: An integrated sensor network system for
energy-efficient surveillance. ACM Trans. Sen. Netw.,
2(1):1–38, 2006.

[11] IEEE. Wireless medium access control (mac) and
physical layer (phy) specifications for low-rate wireless
personal area networks (lr-wpans). In IEEE Standard
15.4, 2003.

[12] K. Klues, G. Xing, and C. Lu. Towards a unified radio
power management architecture for wireless sensor

networks. In Proceedings of the First International
Workshop on Wireless Sensor Network Architecture
(WWSNA’07), Cambridge, MA, April 25-27 2007.

[13] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
flooding time synchronization protocol. In SenSys ’04:
Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 39–49,
New York, NY, USA, 2004. ACM Press.

[14] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In SenSys,
2004.

[15] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler,
S. Shenker, and I. Stoica. A unifying link abstraction
for wireless sensor networks. In SenSys ’05:
Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 76–89,
New York, NY, USA, 2005. ACM Press.

[16] V. Rajendran, K. Obraczka, and J. J.
Garcia-Luna-Aceves. Energy-efficient collision-free
medium access control for wireless sensor networks. In
SenSys, 2003.

[17] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-mac: a
hybrid mac for wireless sensor networks. In SenSys,
2005.

[18] I. Rhee, A. Warrier, J. Min, and L. Xu. Drand:
distributed randomized tdma scheduling for wireless
ad-hoc networks. In MobiHoc, 2006.

[19] P. Santi. Topology control in wireless ad hoc and
sensor networks. ACM Comput. Surv., 37(2), 2005.

[20] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson,
and D. Culler. An analysis of a large scale habitat
monitoring application. In SenSys, 2004.

[21] G. Tolle, J. Polastre, R. Szewczyk, D. Culler,
N. Turner, K. Tu, S. Burgess, T. Dawson,
P. Buonadonna, D. Gay, and W. Hong. A macroscope
in the redwoods. In SenSys, 2005.

[22] USC. A architecture for tiered wireless sensor
networks. http://enl.usc.edu/projects/tenet/.

[23] T. van Dam and K. Langendoen. An adaptive
energy-efficient mac protocol for wireless sensor
networks. In SenSys, 2003.

[24] Y. Xu, J. Heidemann, and D. Estrin.
Geography-informed energy conservation for ad hoc
routing. In MobiCom, 2001.

[25] F. Ye, G. Zhong, S. Lu, and L. Zhang. Peas: A robust
energy conserving protocol for long-lived sensor
networks. In ICDCS, 2003.

[26] W. Ye, J. Heidemann, and D. Estrin. Medium access
control with coordinated, adaptive sleeping for
wireless sensor networks. IEEE/ACM Transactions on
Networking, June 2004.

[27] W. Ye, F. Silva, and J. Heidemann. Ultra-low duty
cycle mac with scheduled channel polling. In SenSys,
2006.


	Link Layer Support for Unified Radio Power Management In Wireless Sensor Networks
	Recommended Citation
	Link Layer Support for Unified Radio Power Management In Wireless Sensor Networks

	tmp.1418149444.pdf.Ohc9A

