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ABSTRACT OF THE DISSERTATION 

Well-defined molecular brushes: 

Synthesis by a “grafting through” strategy and 

self assembly into complicated hierarchical nanostructures 

By 

Zhou Li 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2011 

Professor Karen L. Wooley, Chairperson 

 

This dissertation focuses on the development of a “grafting through” methodology to 

synthesize molecular brushes with well-defined structures, as an attempt to construct 

nanostructures by covalent bonds totally.  Detailed synthetic procedures for and 

characterization of molecular brushes, as well as complicated hierarchical nanostructures 

resulted from their self-assembly are reported.  The synthesis of molecular brushes is 

achieved by combining orthogonal living polymerization techniques rationally, such as 

living/controlled radical polymerization, ring opening polymerization and ring opening 

metathesis polymerization.  Generally, the strategy can be divided into two steps:  the 

first step involves the preparation of linear macromonomers whose chain ends are 

functionalized with polymerizable groups and the second step is the polymerization of 

chain end functional groups.  In this dissertation, living/controlled radical polymerization, 

ring opening polymerization and chain end modification have been applied in the first 

step to afford chain end functional macromonomers and ring opening metathesis 
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polymerization is used in the second step to achieve the molecular brush architectures.  

Due to the high tolerance of Grubbs‟ catalysts towards functional groups, various 

functionalities can be incorporated into the molecular brush frameworks by changing the 

side chain structures, including poly(4-acetoxystyrene), poly(pentafluorostyrene), 

poly(methyl acrylate), poly(t-butyl acrylate), poly(methyl methacrylate), poly(t-butyl 

methacrylate), polylactide, poly(ethylene glycol) and polyhedral oligomeric 

silsesquioxane (POSS).  The high versatility of our strategy is also used to increase the 

complexity of the resulting molecular brushes, by introducing block structures to either 

backbone or side chains, using the “livingness” characters of the employed 

polymerization techniques.  Those block molecular brushes can be used as building 

blocks to construct more complicated hierarchical nanostructures, which are self 

assembled from simpler precursory nanostructures.  The confinement of triblock 

copolymers within molecular brush architecture changes their self assembly behaviors.  

Dynamic cylindrical nanostructures are constructed from the PS-PMA-PAA triblock 

amphiphilic molecular brushes, while the same triblock copolymers, when not pre-

connected into the molecular brush architectures, organize only into globular assemblies.  

The vast scope of macromonomers that are compatible with this strategy can also be 

applied to prepare molecular brushes with fine tunable properties, by introducing several 

functionalities to the molecular brush frameworks and adjusting their ratios accordingly. 
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Chapter 1 

Introduction 

 

1.1 Introduction of nanoscience 

Nanoscience is the study of nanometer (10
-9

 meter) scale functional systems on the 

atomic and molecular level.  Generally, it deals with structures sized between 1 to 100 

nanometers in at least one dimension, and involves developing materials or devices 

within that size.(1-3)  The concept of nanoscience was first developed in a famous talk -

There’s Plenty of Room at the Bottom - given by Nobel Laureate physicist Richard 

Feynman on December 29, 1959.(4)  Dr. Feynman described a process by which the 

ability to manipulate several atoms and molecules might be developed, using ―one set of 

precise tools to build and operate another proportionally smaller set‖, and so on down to 

the needed scale.  However, long before that, Nature had ―adopted‖ nanoscience and 

technology for millions of years.  For example, the superhydrophobicity exhibited by the 

leaves of the lotus flowers, which makes them self-cleaning, is due to nanoscopic 

architectures of the leaf surface.(5)  There are many unique features and properties 

accompanied with nanostructures, which cannot be observed in macroscopic objects (i.e. 

inert matter becomes an active catalyst such as Au; stable matter becomes flammable 

such as Al (6)).  The surface to bulk ratio is reciprocal to the dimension and increases 

significantly in nanomaterial, making nanomaterials promising in efficient catalysis and 

controlled drug delivery.(7)  All of these distinctive properties and promises of 

nanoscience and technology have drawn attention of scientists and engineers across 

multiple disciplines.  Significant advances have been achieved from their research efforts 
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to understand the properties of nanostructures, to manipulate and construct nanoscale 

devices, and to apply them in practice to benefit human beings.  Worldwide, nanoscience 

has been profoundly influencing scientific research and manufacture, such as fabrication 

of small high-performance electromagnetic or mechanic devices,(8-12) design of efficient 

and robust catalysts(13-15) and development of ―smart‖ and versatile drug carriers.(16-

20)  These achievements, combined with significant promises for the future have given 

nanoscience and technology tremendous momentum toward continued growth.   

Many approaches have been established to construct nanostructures or nanopatterns, and 

they can be divided into two categories based on the strategies involved.  The first ―top-

down‖(21-27) approach follows the principles that were described in Dr. Feynman‘s talk, 

by which nanostructures are constructed using larger devices to direct the assembly of 

atoms and molecules.  The most successful example of this approach is the fabrication of 

microprocessors by lithography,(24, 28) which is now capable of creating features 

smaller than 100 nm and makes the blooming information technology possible.  The 

manufacturing of these nanopatterns is only possible with the invention of precision 

instruments such as the atomic force microscope (AFM) and the scanning tunneling 

microscope (STM).  In the second ―bottom-up‖ approach,(29-36) complex assemblies are 

constructed from simpler and smaller precursory components by some interactions.  The 

forces are usually inherent within their structures and include covalent bonds, hydrogen 

bonds, van der Waals forces, electrostatic forces and coordination bonds, etc.(37-42)  

Nature has been a master at constructing sophisticated systems starting from single atoms 

by the ―bottom-up‖ approach.(43)  The genetic process, in which complicated proteins 

with diverse functionalities are built from simple primitive amino acids, is one of the 
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most elegant example of Nature in constructing complex structures.  One research effort 

to mimic Nature‘s ―bottom-up‖ approach is the DNA nanotechnology that combines 

Watson-Crick basepairing and computer-programing to construct well-defined structures 

from nucleic acids.  The complicated synthesis of structures like smiley-face 

nanostructures illustrates the ability of this approach.(44, 45)  Both ―top-down‖ and 

―bottom-up‖ approaches provide specific capacities that can complement by each other.   

―Bottom-up‖ approaches should be capable of producing devices in parallel and be 

cheaper than ―top-down‖ methods which involve expensive precision equipment. 

However, ―bottom-up‖ approaches can potentially be overwhelmed as the size and 

complexity of the desired assembly increases.  From the perspective of synthetic 

chemistry, assembling small molecules to complicated structures requires the expertise to 

design their structures and manipulate their behaviors precisely.  The vast advance in 

modern synthetic chemistry in the past few decades has achieved the point where it is 

possible to prepare small molecules to almost any structure.  These methods have enabled 

the production of various useful chemicals such as pharmaceuticals and commercial 

polymers.  However, total prediction of the properties, behaviors and thus interactions of 

those molecules is still not possible.  Perhaps the system that has been best studied is the 

interactions among nucleic acids and their polymers, by which DNA nanotechnology has 

achieved precise control over the morphologies, structures, compositions and dimensions 

of nanostructures.  The hindrance to reach such a control in other systems lies in the 

difficulty to predict what is going to happen in a complicated system, especially when 

multiple interactions account for driving the assembly process, including chemical bonds, 

hydrogen bonding, coordination boding, electrostatic forces and van der Waals forces, etc.  

http://en.wikipedia.org/wiki/Chemical_synthesis
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Drug
http://en.wikipedia.org/wiki/Polymer
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Among all the forces that may be present in the system, covalent bonds have been studied 

most extensively by synthetic chemists in the rational synthesis of small molecules with 

specific structures.  This ability raises the question of extending this kind of control to the 

next-larger level, seeking methods to assemble single molecules into complex assemblies 

consisting of many molecules arranged in a well-defined manner.(46, 47)  In this 

dissertation, a common ―bottom up‖ approach to building robust nanostructures by 

covalent bonds will be discussed.  Moreover, the organization of those covalent 

nanostructures in the formation of complex hierarchically-assembled materials will be 

evaluated.  

Self-assembly, the autonomous organization of separated disordered components into 

assembled ordered structures by non-covalent interaction,(43, 48) is a common 

phenomenon throughout Nature and technology and has been exploited as a basis for 

―bottom up‖ approaches to build nanostructures.  Molecules with varying chemical 

structures are synthesized or separated to drive the assembly, and this has been achieved 

in surfactants,(49, 50) proteins,(51, 52) DNAs,(44, 53, 54) peptides(55-57) and block 

copolymers, (58-62) etc.  Among them, block copolymers, in which two or more 

homopolymer subunits are connected by covalent bonds, provide a great opportunity to 

develop self-assembly strategies to build nanostructures with complex functionalities.(58-

62)  Amphiphilic block copolymers can be assembled into micellar structures due to the 

incompatibility of the subunit homopolymers in selective solvents.(63-65)  By varying 

the compositions and self-assembly conditions, the dimensions, morphologies, 

functionalities, and sizes of the resulting structures can be tuned accordingly.(58-62, 66, 

67)  In most of these studies, the building blocks are primitive linear copolymers and 

http://en.wikipedia.org/wiki/Supramolecular_assembly
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there is no architectural arrangement of them before the assembly.  In this dissertation, 

we attempt to use covalent bonds to confine polymers/copolymers within a nanoscopic 

framework first and then study their self assembly behaviors.  Complicated 

nanostructures can be built from block copolymers after increasing the complexity of the 

building blocks from block copolymers to molecular brushes.   

 

1.2 Molecular brushes 

Molecular brushes are bottlebrush-like macromolecular architectures in which many side 

chains are densely distributed along a backbone (Figure 1-1).(68, 69)  Due to the steric 

interactions among the densely grafted side chains, the backbone usually adopts 

entropically unfavored extended chain extension, which leads to cylindrical morphologies 

of molecular brushes if the backbone is longer than the side chains.  The multibranched 

nature of molecular brushes leads to compact molecular dimensions compared with linear 

polymers with the same molecular weight.   

 

Figure 1-1.  Schematic illustration of a molecular brush, composed of a polymeric 

backbone (pink) from which many side chains (yellow-green) emanate. 
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Although there are molecular brushes which are created by non-covalent forces, most of 

them are constructed from covalent bonds exclusively.  This provides us the opportunity 

to utilize our expertise in synthetic chemistry to build well-controlled soft nanostructures 

unit-by-unit using ―bottom-up‖ approach.  Within the development of living/controlled 

polymerizations,(70-75) the lengths, dimensions and compositions of both the backbone 

and side chains can be controlled precisely.  Generally, there are three strategies to 

synthesize molecular brushes (Figure 1-2): ―grafting from‖,(76-82) ―grafting onto‖(83-

85) and ―grafting through‖.(86, 87)  Each of the methods has its own utility and it is often 

advantageous to employ a combination of methods to prepare brushes with structures 

which cannot be obtained by a single technique. 

 

Figure 1-2.  Three strategies to construct molecular brushes – ―grafting from‖, ―grafting 

onto‖ and ―grafting through‖. 
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1.2.1 “Grafting from” (Grafting the side chains from a multi-initiator) 

―Grafting from‖ synthesis of molecular brushes starts with  the preparation of a backbone 

polymer (multi-initiator) with pre-determined number of initiation sites which are 

subsequentially used to initiate polymerizations.  Depending on polymerization 

techniques are used in both steps, the initiating groups can be incorporated directly or 

protected and introduced later after the first-step polymerization.(88, 89)  Since the 

backbone is synthesized first, its composition and length can be controlled.  However, 

there are significant steric effects from initiating groups in proximity with each other 

along the backbone, which usually lead to incomplete initiation of the polymerization.(90, 

91)  Because the degree of polymerization is usually controlled by a feeding ratio of 

 

Scheme 1-1.  An example of the ―grafting from‖ strategy – synthesis of PCL-b-PBA 

hetero-grafted diblock molecular brushes by a total ―grafting from‖ method. (89) 
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monomer to initiator,  loss control over the initiation efficiency results in loss control 

over the length of side chains as well.  An example of the ―grafting from‖ strategy is 

shown in Scheme 1-1.(89)  Besides of all the drawbacks mentioned before, there were 

multiple steps of protection and deprotection involved in the synthesis of the hetero-

grafted diblock molecular brushes, which increases step numbers in the synthesis and the 

number of deficient sites (sites along the backbone which are not functionalized with 

initiating groups or initiating groups which do not initiate polymerization) may increase.  

 

1.2.2 “Grafting onto” (Attachment of the side chains to a backbone) 

In the ―grafting onto‖ strategy, the backbone and the side chains are synthesized 

separately.  This method involves the reaction of end functional polymers with a 

precursory polymer backbone bearing multiple complimentary functional groups.  

Because both backbone and side chains are synthesized independently, the control over 

their compositions and lengths is good if proper polymerization techniques can be applied 

to prepare them from respective monomers.  However, the limitations in ―grafting onto‖ 

strategy are obvious.  The reaction of the chain ends of large macromolecules and 

functional groups along the backbone, which are close with each other, is unfavored both 

thermodynamically and kinetically.  The steric effect is more predominant than that in 

―grafting from" strategy (reactions between two giant macromolecules vs. reaction of a 

small monomer and a macromolecule) and leads to low grafting density.   
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1.2.3 “Grafting through” (Polymerization of the chain end groups of pre-synthesized 

polymers) 

The ―grafting through‖ strategy contains two steps: first, the synthesis of polymers whose 

chain ends are polymerizable; second, polymerization of these chain end groups to afford 

the brush structures.  Because the side chains are synthesized by appropriate 

polymerization techniques first, their structures can be controlled as well as those in 

―grafting onto‖ strategy and well-defined polymers can be synthesized.  The grafting 

density is controlled as well as that every monomer moiety (chain end group of 

macromonomer) incorporated into the backbone bears a defined number of side chains.  

If a living polymerization is used to polymerize the chain end groups in the second step, 

the length of the backbone is controlled as well.  Therefore, it can provide molecular 

brushes with best controlled structures in all the three strategies.  Some early attempts to 

apply ―grafting through‖ strategy to synthesize molecular brushes did not show sufficient 

results because the polymerization of the chain end groups of the side chains is too 

challenging.(86, 87, 92) 

 

1.3 Tutorial of the developed “grafting through” strategy 

1.3.1 Living polymerizations and controlled polymerizations 

Living polymerizations or controlled polymerizations are addition polymerizations where 

the possibility of a growing chain to terminate is significantly lowered down.  Chain 

termination and chain transfer reactions are suppressed and the rate of chain initiation is 

also much larger than the rate of propagation.  As a result, in such polymerization 
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systems, the polymer chains grow at a more constant rate and their lengths remain similar.  

Living/controlled polymerization techniques are required in the development of the 

―grafting through‖ strategy because the control over the dimensions of molecular brushes 

is expected.  Main living/controlled polymerization techniques include living anionic 

polymerizations, living/ controlled radical polymerizations, ring opening metathesis 

polymerizations, and ring opening polymerizations. 

 

1.3.1.1 Living anionic polymerization 

Scheme 1-2 showed the general mechanism of living anionic polymerizations.(93, 94)  In 

the absence of impurities, the repetitive conjugate addition reaction of unsaturated 

monomers to the terminus of growing chains will continue until the monomers are 

consumed.  Since all the chains are initiated at the same time and terminated deliberately, 

the resulting polymers can be controlled precisely in terms of molecular weight, 

molecular weight distribution and chain end functional groups.  Various 

polymers/copolymers have been synthesized by this method.  The anionic polymerization 

system may be ceased or interfered by any impurities that are sensitive to anions.  The 

main drawbacks of anionic polymerizations are the limited choice of monomer and the 

extremely demanding reaction conditions. 

 

Scheme 1-2.  General mechanism of living anionic polymerizations. 
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1.3.1.2 Living/controlled radical polymerizations 

There have been great advances in the development of living/controlled radical 

polymerizations in the past two decades.  A living radical polymerization is a free radical 

polymerization that aims at display living characters.  For example, the growing polymer 

chains do not terminate or transfer and are able to continue polymerization by addition of 

more monomers.  However, termination processes are inherent to radical reactions (bi-

radical coupling), and this side reaction can be suppressed by various mechanisms in 

different LRP techniques.  There are several distinct LRP techniques, including nitroxide-

mediated polymerizations (NMP),(95-97) atom transfer radical polymerization 

(ATRP)(98-101) and reversible addition-fragmentation chain transfer (RAFT) 

polymerizations.(102-105)  The principles of those polymerizations are similar – 

decrease the concentration of propagating radicals by capping them with protecting 

groups using reversible reactions.   

Scheme 1-3 is the general mechanism of RAFT polymerization.  This control is achieved 

by a molecular transfer agent that reacts with initiating and propagating radicals and then 

fragments to form both a new radical center capable of initiation and a dormant species 

that can transfer to another growing chain, which in turn liberates new propagating 

radicals.  The great advantages of radical polymerizations are their wide range of 

monomers, tolerance of various functional groups and their facile reaction conditions.   
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Scheme 1-3.  General mechanism of RAFT polymerizations. 

 

1.3.1.3 Ring opening metathesis polymerizations (ROMP) 

Ring opening metathesis polymerization (ROMP) is a variant of the olefin metathesis 

reaction, which can polymerize strained cyclic olefins to produce monodispersed 

polymers and copolymers.  The general mechanism of ROMP is shown in Scheme 1-4.  

Metal-alkylidene complexes, which are derived from metathesis catalysts, are capable of 

reacting with strained cyclic olefins to open the ring structures.  The ―new‖ olefins 

generated by metathesis reaction remain attached to the metal species, forming new 

metal-alkylidiene complexes.  Although the size of the resulting complexes has increased 

due to the incorporation of monomers, their reactivity toward strained cyclic olefins is 

similar.  Analogous catalytic cycles occurs continuously until all the monomers are 
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consumed.  The driving force of ROMP reaction is the enthalpy released from the ring 

strains and thus the polymerization is essentially irreversible.   

 

Scheme 1-4.  General mechanism of ring opening metathesis polymerization (ROMP).  

 

1.3.1.4 Ring opening polymerizations (ROP) 

In polymer chemistry, ring opening polymerization falls into the category of chain-

growth polymerization, in which the chain end of a polymer acts as a reactive center, 

where further cyclic monomers be incorporated to form a longer polymer.  By definition, 

ROMP is a specific form of ROP, but it is discussed separately in this dissertation due to 

its irreplaceable role in our ―grafting through‖ strategy.  Scheme 1-5 showed an example 

of ROP and its mechanism.  Initiation occurs when a nucleophile such as an alcohol 

reacts with a lactide-DMAP complex (activated monomer) to form the mono adduct, and 

the terminal ω-hydroxyl group acts as a nucleophile to facilitate further chain growth. 
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Scheme 1-5.  Mechanism of ring opening polymerization of lactide using DMAP as a 

catalyst. 

 

1.3.2 Choice of the right polymerization techniques 

The ―grafting through‖ strategy involves two steps - synthesis of macromonomers whose 

chain end is a polymerizable functional group and polymerization of these chain end 

groups.  The second step is more challenging due to the low effective concentration of 

polymerizable end groups and high steric hindrance of the propagating chain end.  Hence, 

polymerizations can be slow and not proceed to high conversion.  There have been 

several reports on anionic polymerizations or controlled radical polymerizations of 

various macromonomers to construct molecular brushes.  Hadjichristidis N. et al. studied 

the anionic polymerization of polyisoprene, polybutadiene and polystyrene with terminal 

styrenic functionalities.(106)  They have found that impurities that are introduced during 

the isolation of macromonomers by pouring the macromonomer solution to nonsolvent 

usually terminate the anionic polymerization of macromonomers at early stage.  Instead, 

they have to develop complicated special glass apparatus to synthesize and polymerize 

macromonomers in the same reactor without isolating them.  Although successful, this 
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method has proved inefficient and expensive.  The limited scope of monomers that are 

compatible with anionic polymerization restricts the expansion of such a strategy to 

incorporate other monomers into molecular brushes. 

Conventional free radical polymerization has been used to construct molecular brushes 

from a wide range of monomers and reaction conditions by ―grafting through‖ strategy; 

however, their poor control over molecular weight precludes its application to prepare 

well-defined structures.  To maintain the tolerance of functional groups of radical 

polymerizations, controlled radical polymerization becomes a candidate which can 

overcome this issue by increasing control over molecular weight.  However, the 

polymerization rate of CRP processes is determined by activation/deactivation equilibria, 

the polymerization becomes very slow and often limited to low polymerization degrees 

when monomer size is increased.  When the steric hindrance of the macromonomer is 

decreased to a certain extent, this method can be successful.  Matyjaszewski K. et al. 

polymerized poly(ethylene glycol) methyl ether methacrylate, where the length of 

poly(ethylene glycol) (PEG) is tuned.(107)  When the DP of PEG is 5, molecular brushes 

with long backbone (DPbackbone > 400) and low polydispersity index (PDI = 1.18 – 1.47) 

can be synthesized; while the DP of PEG is increased to 23, the PDI of the resulting 

molecular brushes increased and DPbackbone is significantly lowered, indicating the loss of 

the controlled manner of polymerizations when the bulkiness of the macromonomers 

increases.  Moreover, to eliminate the bi-radical coupling side reactions which can 

terminate radical polymerizations, CRP is usually ceased deliberately at early stage when 

the conversion of monomers is still low.  This feature of CRP presents a challenge to 
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separate molecular brushes from their representative macromonomers, since they usually 

have similar solubility.  

Ring opening metathesis polymerization (ROMP) was chosen to polymerize 

macromonomers in our ―grafting through‖ strategy because it can address those 

challenges presented by anionic polymerizations and CRP.  First, the grafting density of 

side chains in molecular brushes is lower, providing a kinetically favorable environment 

for propagation reactions.  Second, ring strain released from the polymerization provides 

dramatic thermodynamic forces to drive the reaction to high completion, which is critical 

to polymerize the polymerizable end groups, whose concentration is low.  Third, unlike 

CRP, the degree of polymerization of ROMP is controlled totally by the feeding ratio of 

monomer to initiator when the reaction condition is optimized.  Last, ROMP is tolerated 

with many functional groups if proper catalysts are selected as initiators, which promises 

the versatility of the developed strategy to incorporate various functionalities into the 

framework. 

 

1.3.3 Macromonomer synthesis 

1.3.3.1 RAFT 

 

 

 

Scheme 1-6.  Scheme of the synthesis of macromonomers bearing norbornenyl chain end 

groups by RAFT polymerization. 
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RAFT polymerization can be used to synthesize polymers whose chain ends are 

norbornenyl groups, starting from a norbornenyl functionalized RAFT chain transfer 

agent, as shown in Scheme 1-6.(108, 109)  The detailed synthesis of this norbornenyl 

functionalized RAFT chain transfer agent can be found in Chapter 2.  The general 

mechanism of RAFT polymerization has been described previously in Scheme 1-3.  In 

this polymerization, azobisisobutyronitrile (AIBN) is used as initiator to provide the 

initial radicals upon heating.  The molecular weight of the resulting polymers is 

controlled by the addition/fragmentation processes that is tuned by the chain transfer 

agent.  The main side reaction is the participation of norbornenyl groups to radical 

polymerization, leading to bi-modal molecular weight distribution of the resulting 

polymers.  Moreover, this side reaction also leads to inaccurate calculation of the amount 

of norbornenyl groups in the second step in ―grafting through‖ strategy.  The success of 

the synthesis of macromonomers by RAFT was accomplished by carefully tuning the 

polymerization conditions, including adjusting polymerization temperature, selecting 

proper solvent, changing the feeding ratio of monomer / chain transfer agent / initiator, 

and controlling the monomer conversions.   

Temperature is known to influence the RAFT polymerization.(105)  The initiation of the 

polymerization system requires the production of initiating radicals from certain starting 

reagents by thermo or photo-induced splitting.  In our polymerization system, we try to 

avoid high temperature to preserve the norbornenyl functionalities.  AIBN has a half-life 

of 10 h in toluene at 65 
o
C decomposition temperature,(110) which falls into an 

acceptable range that norbornenyl groups can tolerate.  In practice, the temperature is 
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usually lowered further to 50 
o
C to decrease the concentration of radicals in the system as 

well as the polymerization rate and, thereby, achieve better control. 

Adding solvent to the polymerization system can reduce the viscosity of the reaction and 

thus decrease the autoacceleration at high monomer concentrations.  Another benefit of 

adding solvent is that the concentration of living radicals is decreased as well.  If the 

polymerization proceeds at a relatively low rate, adding solvent may not be helpful (such 

as polymerization of styrene by RAFT whose polymerization rate is around 1.5% - 2% 

conversion of monomers per hour at 60 
o
C).  However, when the polymerization rate is 

high, control over the polymerization can be improved significantly by adding proper 

solvents.  In the polymerizations of acrylates, whose reaction rate is around 15% - 25% 

conversion of monomers per hour, the polymerization can easily become uncontrolled 

easily if no solvent is added. 

The feeding ratio of monomer / chain transfer agent / initiator determines the target 

length of the resulting polymers, partially.  It also affects the concentration of living 

radicals in the polymerization system.  Larger amount of initiators will produce more 

radicals at a definite time and thus lead to undesired side reactions.  Also, too much 

initiator will result in some macromonomers whose chain ends are capped by AIBN half 

radicals instead of the norbornenyl groups.  In the synthesis of homo-macromonomers 

(macromonomers synthesized from one monomer), the initiator / chain transfer agent 

ratio is usually controlled around 5%.  In the synthesis of block-macromonomers 

(macromonomers synthesized from two or more monomers by sequential polymerization), 

the initiator / chain transfer agent ratio becomes more important and subtle, which will be 

discussed further in the following chapters. 
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Controlling the monomer conversion represents a unique feature of controlled radical 

polymerization (CRP).  As shown in Scheme 1-3, RAFT polymerization can be 

terminated by bi-radical coupling, which becomes dominant when monomer 

concentration is low.  Quenching the polymerization at an early stage can diminish this 

side reaction.  In the RAFT polymerization using norbornenyl functionalized chain 

transfer agent, similar principles can be utilized to increase the reaction selectivity toward 

monomer olefins and suppress the side reaction of norbornenyl olefins and radicals.  The 

presence of large amounts of unreacted olefin monomers helps with the protection of the 

norbornenyl groups.  In all cases, the conversion of monomers is less than 55%. 

Given any monomer, all of these conditions should be tuned carefully to achieve good 

control over the polymerization reaction.  Only after that can well-defined 

macromonomers be synthesized by RAFT polymerizations. 

 

1.3.3.2 ATRP 

 

Scheme 1-7.  Scheme of the synthesis of macromonomers bearing norbornenyl chain end 

groups by ATRP. 

 

Atom transfer radical polymerization (ATRP) is another example of a controlled radical 

polymerization, which was discovered independently by Sawamoto(111) and 
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Matyjaszewski.(99)  Its mechanism involves reversible equilibria between active 

propagating radicals and inactive dormant forms of the polymers, by reversibly capping 

them with halogens.  Although different in mechanism, ATRP shared many features in 

common with RAFT.  Thus, the principles to adjust polymerization conditions to achieve 

good control over polymer structures are similar to those of RAFT (Scheme 1-7). 

 

1.3.3.3 ROP 

 

Scheme 1-8.  Scheme of the synthesis of ɑ-norbornenyl polylactide by ROP. 

Exo-5-norbornene-2-methanol acts as a nucleophile to initiate the ring opening 

polymerization of L-lactide (Scheme 1-8).  Activated by DMAP, the reaction condition is 

mild and can afford polylactide whose chain end is functionalized by norbornenyl group 

at 35 
o
C.(112, 113)  Due to the ionic pathways in its mechanism, this polymerization does 

not require the control of the monomer conversion like that in radical polymerizations.  

However, it was observed that significant chain transfer reactions occur in the presence of 

DMAP if the polymerization solution is kept untreated under room temperature for a long 

time.  
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1.3.3.4  Post modification of chain end 

The chain ends of well-defined polymers synthesized from living / controlled 

polymerizations can be usually capped with functional groups deliberately.  Grubbs R. et 

al. synthesized linear homopolymers by ATRP and replaced halogens in the chain ends 

by azide groups, which were used to incorporate norbornenyl functionalities by ―click 

chemistry‖.(114, 115)  This similar strategy can be applied to functionalize 

dendrimers(116) and  polyhedral oligomeric silsesquioxane (POSS).  The reaction that is 

used to modify the end groups of macromolecules should be highly efficient and it is 

usually practiced with excess feeding of other reagents to drive the modification to high 

completion.  By post-polymerization modification, incorporation of ROMP active 

moieties is required for every newly synthesized polymer, which may decrease the 

research efficiency if many polymers are involved in. 

 

1.3.4 Polymerization of the chain end groups 

1.3.4.1 Cleanness of macromonomers 

Macromonomers that are synthesized by living /controlled radical polymerization are 

purified by pouring the polymerization solution into a nonsolvent when the monomer 

conversion is below 100%.  By this method, the resulting macromonomers usually bear 

trace amounts of unpolymerized vinyl monomers and those residual olefins may present 

potential problems in the second step of polymerization of norbornenyl groups.  A 

controlled experiment has been done to demonstrate the influence of unreacted 

monomers to ROMP.  Norbornenyl polystyrene macromonomers (NB-PS32) were mixed 
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with styrene at 2: 1 mole ratio before ROMP.  The mole ratio may seem extraordinarily 

high at first glance, however, the mass ratio of NB-PS32 to styrene is about 70: 1, which 

approaches the possible compositions of an ―unclean sample‖.  Compared to ROMP of 

pure NB-PS32 at macromonomer/initiator (M/I) = 100, the molecular brushes from 

―uncleaned‖ macromonomers under the same reaction conditions showed smaller 

molecular weight (78k Da for ―uncleaned‖ vs. 380k Da for pure).  Also, the 

polymerizations of ―uncleaned‖ macromonomers at different M/I ratios produced 

molecular brushes with similar molecular weight (78k Da at M/I = 100 vs. 98k Da at M/I 

= 200).  All these results suggest that the presence of styrene can trigger chain transfer 

reactions of ROMP and that this side reaction can be avoid by carefully purifying the 

macromonomers. 

 

1.3.4.2 Selection of catalysts 

 

Figure 1-3.  Chemical structures of several Grubbs‘ catalysts.   

Well-defined olefin-metathesis catalysts are essential for ROMP in our research.  Without 

them, controlled living polymerization cannot be possible.  Most of the well-defined 

catalysts are molybdenum based (Schrock‘s catalysts)(117) or ruthenium based (Grubbs‘ 

catalysts).  Grubbs‘ catalysts (Figure 1-3) are chosen in our research because Ru shows 
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low oxophilicity, which makes it inherently stable toward many polar functional groups, 

promising the versatile functionalities that can be achieved by the ―grafting through‖ 

strategy.  In general, there are two generations of Grubbs‘ catalysts.  The first generation 

catalyst is a bisphosphine Ru alkyldiene (1)(118) while in the second generation catalyst 

a phosphine ligand is replaced a N-heterocyclic carbene (NHC) ligand (2 and 3).(119)  

We have found that the propagation in ROMP of macromonomers is often terminated 

unexpectedly when 1 is used as the initiator.  This may be attributed to the labile nature 

of the phosphine ligands and thus catalyst decomposition occurs during the reaction.  

NHC ligands are strong σ-donors and less likely to dissociate from the catalyst.(120)  

However, ROMP using catalyst 2 as initiator usually went uncontrolled because the 

catalyst exhibits slow initiation rates and fast propagation rates (ki < kp).  Catalyst 3 was 

found to initiate more rapidly than 2(121) and can initiate living polymerization of 

macromonomers. 

 

1.3.4.3 Concentration of macromonomer solutions 

The effective concentration of the polymerizable end groups (norbornenyl groups) is very 

low because it is only a small portion of the whole macromonomer structure.  The mass 

ratio of norbornenyl end group to the whole polymer chain is usually around 1:15 to 1: 40, 

depending on the molecular weight of the macromonomers.  Driven by the ring strain 

released from ROMP, polymerization does occur even the concentration of the chain end 

moieties is low.  However, in ROMP to build polynorbornene backbones, it is beneficial 

to run the reaction with high concentration of macromonomers.  It should also be pointed 
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out that the viscosity of polymerization solution may increase significantly when the 

concentration of macromonomers is too high, resulting in early termination of the 

polymerization because residual macromonomers cannot access to propagating sites 

easily. 

 

1.4 Scope of the dissertation 

This dissertation demonstrates our research efforts to develop a ―bottom-up‖ approach to 

construct robust well-defined nanostructures, by using the expertise in synthetic polymer 

chemistry to assemble small molecules strategically.  More specifically, a highly efficient, 

versatile ―grafting through‖ synthetic methodology has been established by combining 

―controlled radical polymerizations‖ (CRP), ―ring opening polymerization‖ (ROP), 

―chain end modification‖ and ―ring opening metathesis polymerization‖ (ROMP).  The 

exploitation of living polymerizations techniques and quantitative functional group 

modification enables us to control the composition, molecular weight, chain length, and 

structures of both backbone and side chains.  We have achieved the preparation of 

molecular brushes with well-defined structures and diverse types of architectures.  

Various molecular brushes with different structures were designed based on the structure-

property relationships, synthesized by the ―grafting-through‖ strategy and their unique 

properties were investigated. 

Chapter 2 is focused on the synthesis of homo-grafted molecular brushes, which are 

synthesized by polymerization of macronomers which are homopolymers.  As an example, 

the ROMP of α-norbornenyl-functionalized poly(t-butyl acrylate), catalyzed by the modified 
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2
nd

 generation Grubbs‘ catalyst, achieved completion in minutes under air.  Following 

hydrolysis, functionalizable water-soluble poly(acrylic acid) molecular brushes were 

afforded.  The versatility of this strategy is also demonstrated by expanding macromonomer 

structures to other polymers, including polystyrene, poly(4-acetyl styrene), poly(methyl 

acrylate), poly(t-butyl acrylate), poly(methyl methacrylate), poly(t-butyl methacrylate), 

polylactide and polyhedral oligomeric silsesquioxane.  A wide range of macronomers that are 

compatible with this strategy enables us to prepare a variety of molecular brushes with 

tunable structures and compositions. 

In Chapter 3, ―livingness‖ of ROMP is utilized to develop a facile and efficient ―grafting 

through‖ strategy to synthesize hetero-grafted diblock molecular brushes with precisely 

controlled structure, which exhibit block structures along the backbone.  These diblock 

molecular brushes were prepared by polymerizing different homopolymer macromonomers 

sequentially in one-pot.  Some of them are chemically transformed to amphiphilic 

nanostructures, whose aqueous solution self-assembly behaviors are studied.   

In Chapter 4, livingness of controlled radical polymerization is applied to increase the 

complexity of molecular brush structures.  We optimized polymerization conditions to 

prepare macromonomers which are block copolymers and polymerized them into 

molecular brushes.  The ―grafting through‖ strategy guarantees the compositional 

consistency of molecular brushes and corresponding macromonomers and enables us to 

study the difference of their self assembly behaviors, which may be caused by 

macromolecular architecture only.  In this study, we have demonstrated a hierarchical 

process that combines linear triblock copolymers into concentric globular sub-units 

through strong chemical bonds and is followed by their supramolecular assembly via 
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weak non-covalent interactions to afford one-dimensionally-assembled, dynamic 

cylindrical nanostructures.   

In Chapter 5, the efficiency of the ―grafting through‖ strategy is further utilized to synthesize 

PPFS-POSS molecular brush copolymers (9 polymers at one time), whose PPFS/POSS ratio 

is adjusted simply by changing the feeding amounts of the macromonomers.  

Characterization of nanostructures assembled from them suggests that their sizes and 

morphologies are independent with PPFS/POSS ratios.  However, PPFS content in molecular 

brush architecture affects the mechanical properties of the resulting nanostructures 

significantly.  Lower PPFS/PPFS ratio leads to flexible and looser nanostructures.  It is also 

revealed that the geometric regularity of the nanostructures may also be influenced by the 

arrangement of PPFS blocks and POSS blocks in molecular brushes. 
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Chapter 2 

Homo-grafted molecular brushes 

 

[Portions of this work have been published previously as Zhou Li, Ke Zhang, Jun Ma, 

Chong Cheng, and Karen L. Wooley, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 

5557-5563] 

 

Part I.  Facile syntheses of molecular brushes by a sequential 

RAFT and ROMP “grafting-through” methodology 

 

 

ABSTRACT 

The orthogonality of RAFT and ROMPolymerization chemistries are exploited for a highly 

efficient ―grafting through‖ strategy to afford cylindrical molecular brushes.  The ROMP of 

α-norbornenyl-functionalized poly(t-butyl acrylate) macroRAFT chain transfer agents, 

catalyzed by Grubbs‘ 3
rd

 generation catalyst, achieved completion in minutes under air.  

Following hydrolysis, functionalizable water-soluble poly(acrylic acid) molecular brushes 

were afforded. 
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INTRODUCTION 

Of significant interest is the development of synthetic methodologies to prepare complex 

macromolecular structures that contain functionalities, allowing for stimuli-responsive 

characteristics and further chemical modifications.(1-3)  The cylindrical molecular brush, 

which is composed of many side chain polymers distributed densely along a backbone, 

has attracted much attention because its chemical composition, size and morphology can 

be controlled precisely by choosing appropriate monomers and tuning the lengths of the 

backbone and side chains.(4, 5)  To prepare such structures, three synthetic strategies are 

often employed: ―grafting onto‖(6, 7) (grafting side chains onto a pre-established 

multifunctional backbone by coupling reactions), ―grafting from‖(8-10) (growth of side 

chains from a multifunctionalized initiating backbone) and ―grafting through‖(11-15) 

(polymerization of previously synthesized side chains through their terminal groups).  

Previously, our laboratory has demonstrated the compatibility of the three primary living 

radical polymerizations (nitroxide mediated radical polymerization (NMRP), atom 

transfer radical polymerization (ATRP) and reversible addition-fragmentation chain 

transfer (RAFT) polymerization) together with ring-opening metathesis polymerization 

(ROMP) in the ―grafting from‖ method.(9, 16, 17)  Our interest has focused recently on 

the ―grafting through‖
 
method, because it provides exceptional control over the grafting 

density, the length of the backbone, and the length of the side chains, each independently. 

Although the ―grafting through‖ approach offers versatility in the construction of 

complex macromolecular systems, it is likely to encounter steric hindrance during the 

polymerization of high molecular weight or sterically-bulky macromonomers.(4, 5)  To 

overcome this issue, ROMP has often been used, which is driven by the release of 
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enthalpy from cyclic monomer structures and affords a polymer backbone with a 

relatively loose grafting density.  For example, the syntheses of molecular brushes have 

been reported using ROMP from norbornene-terminated poly(ethylene oxide),(13) 

polystyrene,
(12)

 polyphosphazene,(11) poly(-caprolactone),(15) and polylactide,(14) 

macromonomers synthesized mainly from anionic polymerization or ring opening 

polymerization.  NMRP, ATRP and RAFT are controlled radical polymerization 

techniques that allow for the preparation of well-defined polymers from vinylic 

monomers, which can be converted into ROMP-based macromonomers.  Grubbs recently 

reported an elegant combination of ATRP, click chemistry and ROMP to produce 

narrowly-dispersed brush polymers, whereby the termini of ATRP-generated poly(tert-

butyl acrylate), poly(methyl acrylate) and polystyrene were converted to norbornenyl 

groups via click chemistry, and those norbornenyl groups were then utilized for 

―grafting-through‖ growth of the final brush polymers.(18)  In this study, we also take 

advantage of the reactivity and control of ROMP in ―grafting-through‖ polymerizations, 

but we obtain the norbornenyl-functionalized macromonomers directly from RAFT(19) 

of t-butyl acrylate using a dual-functionality small molecule that serves as a RAFT agent 

and carries the norbornene unit.  The selectivity of RAFT for the polymerization of t-

butyl acrylate in the presence of the norbornenyl group allows this chemistry to be used 

to prepare α-norbornenyl-functionalized poly(t-butyl acrylate).  Subsequent ROMP of the 

resulting macromonomer then achieves brush synthesis.  A kinetic study of this 

polymerization showed that it was extremely quick and air-insensitive, using the 3
rd

 

generation Grubbs‘ catalyst.  Furthermore, the poly(t-butyl acrylate) side chains were 
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converted to poly(acrylic acid)s, affording water-soluble functional nanoparticles, which 

are pH-responsive and are readied for future chemical modifications. 

 

RESULTS AND DISCUSSION 

The dual ROMP-active and RAFT chain transfer agent containing both a norbornene and 

a trithiocarbonate functionality, NB-TTC, was prepared in 89% yield by esterification of 

exo-5-norbornene-2-methanol
3
 (1.0 equiv.) and S-1-dodecyl-S‘-(R,R‘-dimethyl-R‖-acetic 

acid)trithiocarbonate.  
1
H NMR spectroscopy showed a series of characteristic resonances, 

including those of the norbornene alkenyl protons at 6.05 ppm, CH2OC(O) at 4.17 and 

3.92 ppm, CH2SC(S)S at 3.25 ppm and the terminal CH3 group at 0.85 ppm, whose 

integrations agreed with the theoretical ratios. 

The chain transfer agent was then used in the polymerization of t-butyl acrylate to afford 

the NB-PtBA macromonomers (Scheme 2-1).  An undesirable amount of the norbornenyl 

groups participated in the RAFT polymerization in our first trials, as was confirmed by 

both gel permeation chromatography (GPC), which gave unsymmetrical peaks, and 
1
H 

NMR spectroscopy, which revealed partial reduction of the norbornene alkenyl proton 

resonance intensities.  To suppress the norbornenyl group radical polymerization, a series 

of experiments was conducted to optimize the polymerization conditions.  Ultimately, the 

polymerization was performed in 2-butanone (50% v/v) with 0.05 equiv. AIBN at 51 
o
C 

and quenched at 40% conversion by freezing the reaction mixture in a liquid nitrogen 

bath.  By this method, the RAFT polymerization was controlled, as indicated by retention 

of both the norbornenyl terminus and the trithiocarbonate terminus in the resulting 
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macromonomer.  The 
1
H NMR spectrum showed good agreement between the resonance 

intensities for the protons from the norbornenyl double bond at 6.05-6.10 ppm and the 

protons from the CH2SC(S)S group resonating at 3.30-3.40 ppm.  GPC analysis of the 

macromonomer showed a symmetric peak with a polydispersity index (PDI) of 1.16, also 

demonstrating that the polymerization was well controlled.  The Mn obtained from 
1
H 

NMR spectroscopy (17.3 kDa) agreed with the Mn  value from GPC (16.9 kDa, relative to 

polystyrene standards).  Overall, the involvement of norbornenyl groups in RAFT was 

suppressed and a linear NB-terminated poly(t-butyl acrylate) was synthesized, which 

could then serve as a macromonomer and/or a macroRAFT chain transfer agent. 

The brush synthesis was achieved by ROMP of the terminal norbornenyl group of the 

NB-PtBA macromonomer (Scheme 2-1), using the modified second generation Grubbs‘ 

catalyst.
17

  ROMP of bulky macromonomers using the 1
st
 and 2

nd
 generations Grubbs‘ 

catalysts generally require longer reaction times than those of small monomers.(14, 17, 

20)  The 3
rd

 generation Grubbs‘ catalyst exhibits fast initiation and propagation,(20) 

suggesting that it could be an ideal catalyst for the ROMP of bulky macromonomers.  

Therefore, a kinetic study was performed for the ROMP of the norbornenyl-terminated 

poly(t-butyl acrylate) using 320 equiv. of PtBA macromonomer relative to catalyst at 

room temperature in CH2Cl2.  The polymerization was conducted in air without Ar 

protection.  At increasing time intervals, an aliquot of the reaction mixture was collected, 

quenched by ethyl vinyl ether and analyzed by GPC (Fig. 1).  At 1 min, ca. 75% 

conversion was achieved and the reaction had reached completion at 2 min.  GPC 

analysis showed that the macromonomer peak at 21.4 min had nearly disappeared and a 

peak for the molecular brush appeared at 17.4 min.  By 
1
H NMR spectroscopy, the 
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characteristic protons resonating at 6.05-6.10 ppm and 2.60-2.00 ppm disappeared, 

supporting complete consumption of the norbornenyl groups.  Conducting the reaction in 

open air or under argon protection showed no discernible difference by GPC and NMR.  

Even when left for 12 h, no deleterious side reactions were observed.  After quenching 

with ethyl vinyl ether and isolation by precipitation into a H2O: methanol mixture (1:5, 

v:v), the molecular brushes were obtained in >90% yield with well-defined molecular 

weight and composition. 

As observed by GPC, the PtBA molecular brushes had uniform size distribution, with a 

PDI of 1.20, similar to that of the macromonomer (Figure 2-1).  By comparison of their 

relative areas of integration, ca. 93% of the macromonomer had been incorporated into 

the final brush structure.  Within all the experiments, however, there remained a small 

peak at 21.4 min elution time in the GPC chromatograms of the products, which is 

believed to be due to the presence of residual macromonomer.  One possible explanation 

is that these macromonomers lacked a norbornenyl end group, due to the mechanism of 

RAFT and the potential for a portion of the tBA chains to be initiated by AIBN during 

the macromonomer synthesis. 
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Scheme 2-1.  The RAFT-ROMP ―grafting through‖ synthetic route to molecular brushes 

bearing poly(acrylic acid) side chains. 
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Figure 2-1.  GPC curves from the ROMP kinetic study of α-norbornenyl-functionalized 

PtBA. 

 

To afford water-soluble poly(acrylic acid) (PAA) brushes, the t-butyl groups were 

cleaved by reaction with trimethylsilyl iodide (TMSI), followed by hydrolysis of the 

intermediate silyl esters.  Treatment of the PtBA molecular brush with TMSI in CH2Cl2 

at room temperature for 90 min, concentration under reduced pressure, dissolution into 

THF, decoloration with sodium thiosulfate, dialysis against water, and lyophilization 

gave the PAA molecular brush structure.  The deprotection was confirmed by expected 

characteristic absorption bands in the IR spectra, and by the loss of t-butyl protons (1.50 

ppm) in the 
1
H NMR spectrum and the loss of t-butyl carbons (29.0 and 81.1 ppm) in the 

13
C NMR spectrum, each obtained in DMSO-d6.  For each molecular brush, the 

resonances corresponding to the protons of the double bonds along the backbone were 
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not discerned, in any solvent, suggesting that there is limited solvent access to the most 

internal regions of the molecular brush frameworks and/or limited mobility for the central 

norbornenyl backbone.   

Differential scanning calorimetry (DSC) analysis indicated that there was no observable 

difference between the thermal transition temperatures for the linear vs. brush structure, 

suggesting that the apparent mobility differences were either not present in the bulk state 

or were too subtle to be observed by the relatively insensitive DSC technique.  Both the 

PtBA macromonomer and the resulting molecular brush showed a Tg at 43 
o
C, which is 

typical for PtBA.  Upon removal of the tBA protecting groups, the Tg of the PAA 

molecular brush had increased to 101 °C.  Collecting accurate Tg values for PAA is 

complicated by many factors,(21) including the extent of hydration; the thermal history 

has a significant impact, therefore, the second heating run was used for determination of 

the Tg value. 

The solution-state sizes of the PtBA and PAA molecular brushes were determined by 

dynamic light scattering (DLS) in THF and water, respectively.  The average diameters 

of the PtBA brush were 17 ± 2 nm by number averaging, 19 ± 2 nm by volume averaging 

and 24 ± 2 nm by intensity averaging.  Solvation of the PAA brushes into DMSO and 

dialysis against nanopure water allowed for measurement of the hydrodynamic diameter, 

Dh, of the PAA brushes.  The aqueous solution after dialysis had a pH of 4.  At this pH, 

the particles showed an apparent diameter of ca. 340 nm, which was much larger than 

that of the PtBA brush, indicating intermolecular aggregation in the aqueous solution.  

Given the fact that the pKa of acrylic acid units is around 4.0-4.5,(22) the pH of the 

solution was then increased.  Initially, titration with NaOH to pH 9 gave a decrease in the 
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Dh to 36 ± 10 nm (number averaged), falling into a reasonable range of the size of a 

single PAA brush if hydration is considered, in comparison with the PtBA brushes in 

THF solution.  Further increase of pH to 14 showed similar results as those at pH 9.  

When the solution was titrated back to pH 0 using HCl, aggregates reformed, having an 

initial number-average diameter of ca. 1028 nm, and macroscopic precipitation occurred 

overnight.   

The PAA brushes were also studied by atomic force microscopy (AFM) (Figure 2-2(A) 

and 2-2(B)).  The images from the PAA solution at pH 4 showed collapsed globular 

structures, whose height was ca. 1.5 nm and diameter was ca. 32 nm.  The size was much 

smaller than the hydrodynamic size of the aggregates measured by DLS at pH 4, but 

similar to that of individual PAA brushes at pH 9.  Disassembly of aggregates and 

conformational reorganization within the macromolecular structures may have occurred 

when the particles were adsorbed onto the mica surface, suggesting that the 

intermolecular attractive forces were relatively weak and the structures were quite 

flexible.  The images from PAA brushes deposited from a solution at pH 9 showed 

particles with rod-like morphology, whose height was again ca. 1.5 nm but length was 

about 58 nm, suggesting a more extended conformation at elevated pH.  A similar 

phenomenon was also reported previously.(23)  The average norbornenyl unit length 

(0.18 nm) calculated from the AFM image collected from the pH 9 sample preparation 

suggested that the backbone was not fully extended (0.5 nm per norbornenyl repeat unit).  

Similarly, in the work by Fréchet and Grubbs,(24) nanorings from ROMP of sterically-

bulky dendritic macromonomers also did not adopt fully extended conformations, rather 

they had an average backbone unit length of ca. 0.25 nm.  
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Transmission electron microscopy (TEM) was also used to study the size and 

morphology of the PAA brushes (Figure 2-2(C) and (D)).  The TEM images were quite 

difficult to obtain and are challenging to interpret.  Some particle-particle interactions are  

 

Figure 2-2.  Tapping-mode AFM images of PAA brushes on mica after being spin-

coated from aqueous solutions (2 μL) at pH 4 (A) and pH 9 (B) onto freshly-cleaved mica 

and allowed to dry under ambient conditions; TEM images of PAA brushes on a carbon-

coated copper grid after being deposited from aqueous solution at pH 4, staining with 

uranyl acetate solution (1% wt.) (pH = 4), removal of the excess solution and allowing to 

dry under ambient conditions, collected at different magnifications (C, D). 

 

captured, but individual particles could be selected out and counted to calculate the 

average particle size, which was ca. 68 nm.  This value fell into a reasonable range, 
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compared with the sizes measured by DLS and AFM.  As was observed by AFM, most of 

the molecular brushes deposited at pH 4 were seen as globular structures, although a few 

elongated images are discernible. 

In conclusion, the present study has introduced a methodology for the synthesis of 

cylindrical molecular brushes with low polydispersity, well defined side chain and chain 

end structures, and well controlled grafting density.  This synthetic strategy is 

accomplished by combining RAFT and ROMP in a ―grafting through‖ methodology.  

The practical advantages of this strategy include time efficiency and air insensitivity.  

Because the ROMP-active norbornenyl group is introduced into the initial RAFT chain 

transfer agents, the final brush polymer structures retain the trithiocarbonate end groups, 

so that it would be possible to follow with further ―grafting from‖ chain growth.  The 

brushes bearing carboxylic acid groups also may be used for further chemical 

modifications, in addition to their observed pH-responsive transformations.  

 

Part II.  Other homo-grafted molecular brushes synthesized by 

the “grafting-through” methodology 

The ―grafting-through‖ strategy we developed is versatile and a variety of functional 

groups can be incorporated into the molecular brush architectures by this method.  As we 

have discussed in the Introduction chapter, the ruthenium-based metathesis catalysts are 

tolerant with various functional groups due to the low oxophilicity of late transition 

metals.  Figure 2-3 showed a library of homo-grafted molecular brushes that have been 

synthesized successfully by the ―grafting-through‖ strategy.  It includes poly(t-butyl 
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acrylate), poly(methyl acrylate), poly(t-butyl methacrylate), poly(methyl methacylate), 

polystyrene, poly(4-acetoxystyrene), polypentafluorostyrene, polylactide and polyhedral 

oligomeric silsesquioxane.  Using the modified 2
nd

 generation catalyst as the initiator, 

ROMP of macromonomers with norbornenyl terminus can afford the resulting molecular 

brush structure in minutes, just like what we did with poly(t-butyl acrylate) in Part I.  

Based on the nature of the monomers, the respective macromonomers can be prepared 

from a wide range of small monomers or precursory polymers by appropriate methods, 

including RAFT polymerization, ATRP, ROP and chain end modification.  The detailed 

synthesis of the macromonomers and molecular brushes can be found in the following 

chapters. 

 

Figure 2-3.  A library of macromonomers that have been tested by the ―grafting-through‖ 

strategy. 
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EXPERIMENTAL 

Measurements. 

Infrared spectra were obtained on a Perkin-Elmer Spectrum BX FT-IR system using 

diffuse reflectance sampling accessories.  1H-NMR spectra were recorded at 300 MHz on 

solutions in CDCl3, DMSO-d6, or CD2Cl2 on a Varian Mercury 300 spectrometer with the 

solvent proton signal as standard.  13C-NMR spectra were recorded at 75.4 MHz on 

solutions in CDCl3, DMSO-d6, or CD2Cl2 on a Varian Mercury 300 spectrometer with the 

solvent carbon signal as standard. 

 

Gel permeation chromatography (GPC) was conducted on a Waters 1515 HPLC (Waters 

Chromatography, Inc.) equipped with a Waters 2414 differential refractometer and a 

three-column series PL gel 5μm Mixed C, 500 Å, and 104 Å, 300 × 7.5 mm columns 

(Polymer Laboratories Inc.).  The system was equilibrated at 35 °C in anhydrous THF, 

which served as the polymer solvent and eluent with a flow rate of 1.0 mL/min. Polymer 

solutions were prepared at a known concentration (ca. 3 mg/mL) and an injection volume 

of 200 μL was used. Data collection and analysis were performed, respectively, with 

Precision Acquire software and Discovery 32 software (Precision Detectors, Inc.).  The 

system was calibrated by a nearly monodispersed polystyrene standard (Pressure 

Chemical Co., Mp = 90 kDa, Mw/Mn < 1.04). The differential refractometer was calibrated 

with standard polystyrene reference material (SRM 706 NIST), of known specific 

refractive index increment dn/dc (0.184 mL/g).  
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DLS analysis was performed using a Brookhaven Instruments Co. (Holtsville,NY) 

system consisting of a model BI-200SM goniometer, a model EMI-9865 photomultiplier, 

and a model BI-9000AT digital correlator. Incident light was provided by a model 95-2 

Ar+ laser (Lexel Corp., Palo Alto, CA) operated at 514.5 nm. All measurements were 

made at 20 ± 1 °C in solvents. Prior to analysis, solutions were filtered through 0.2 μm 

poly(ether sulfone) membrane syringe filters (Gelman Laboratory, Pall Corporation, Ann 

Arbor, MI) to remove dust particles. Scattered light was collected at 90° angle. The 

digital correlator was operated with 522 channels, a dual sampling time of 100 ns, a 5s 

ratio channel spacing, and a duration time of 6 min. A photomultiplier aperture of 400 

μm was used, and the incident laser intensity was adjusted to obtain a photon counting 

rate between 200 to 300 kcps. Only measurements in which the measured and calculated 

baselines of the intensity autocorrelation function agreed to with 0.1% were used to 

calculate the particle size. The calculation of the particle size distribution and distribution 

averages was performed with the ISDA software package (Brookhaven Instruments Co., 

Holstville, NY), which employed double exponential fitting, cumulants analysis, NNLS, 

and CONTIN particle size distribution analysis routines. 

 

Samples for AFM imaging were prepared by spin-casting ca. 2.0 μL of the sample 

solution onto freshly cleaved mica plates (Ruby clear mica, New York Mica Co.). AFM 

instrumentation was a Nanoscope IIIa system (Digital Instruments, Santa Barbara, CA), 

equipped with a J-type vertical engage piezoelectric scanner and operated in a tapping 

mode in air. Tapping-mode imaging was carried out with high resolution probes 

(DP14/HI‘RES/Al BS, from μmash: L, 125 μm; normal spring constant, 5.0 N/m; 
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resonance frequency, 160 kHz). The average height and average diameter values were 

determined by section analysis, using the Nanoscope III software package. 

 

Glass transition temperature (Tg) determinations were performed by using differential 

scanning calorimetry (DSC) on a DSC822e instrument (Mettler-Toledo, Inc.) in a 

temperature range of −50-200 °C with a heating rate of 10 °C/min under nitrogen.  The 

data were acquired and analyzed with STARe software (Mettler-Toledo, Inc.). The Tg 

values were taken at the midpoint of the inflection tangent, upon the third heating scans. 

 

 

 

 

 

Materials.  

Unless otherwise noted, all solvents and reagents were purchased from Aldrich Chemical 

Co. (St. Louis, MO) and used as received.  tert-Butyl acrylate (tBA, 98%) and 

dichloromethane (CH2Cl2, 99+%) were distilled over CaH2 before use.  The norbornenyl-

functionalized alcohol (17) ,S-1-dodecyl-S‘-(R,R‘-dimethyl-R‖-acetic 

acid)trithiocarbonate (25) and Grubbs‘ 3
rd

 generation catalyst(20) were prepared 

following literature methods. 
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Synthesis of ROMP-active RAFT chain transfer agent, with norbornenyl (NB) and 

trithiocarbonate (TTC) units (NB-TTC) 

Into a 500 mL RB flask with a stir bar were placed exo-5-norbornene-2-methanol (2.52 g, 

20.7 mmol), S-1-dodecyl-S‘-(R,R‘-dimethyl-R‖-acetic acid)trithiocarbonate (8.93 g, 24.5 

mmol), N,N‘-dicyclohexylcarbodiimide (5.31 g, 25.7 mmol), and 

4-(dimethylamino)pyridine (0.98 g, 8.1 mmol).  Dry CH2Cl2 (220 mL) was then injected 

into the flask to dissolve all the reagents.  The reaction was allowed to stir at room 

temperature for 60 h, at which time, TLC showed complete conversion of the alcohol.  

After filtration through fluted filter paper, concentration in vacuo and flash 

chromatography eluting with 10% ethyl acetate-hexane the product NB-TTC was 

afforded as an orange-colored oil.  Yield: 89%.  IR: 3059, 2925, 2853, 1735, 1569, 1465, 

1378, 1361, 1324, 1253, 1154, 1126, 1066, 998, 971, 904, 816, 750, 706 cm
-1

; 
1
H NMR 

(300 MHz, CDCl3, ppm) δ 6.05 (br s, 2H, norbornenyl alkenyl protons), 4.17 (dd, J = 7 

and 11 Hz, 1H, CH2OC(O)), 3.92 (dd, J = 10 and 10 Hz, 1H, CH2OC(O)), 3.25 (t, J = 7 

Hz, 2H, CH2SC(S)S), 2.80 (s, 1H, allylic proton of norbornenyl group), 2.65 (s, 1H, 

allylic proton of norbornenyl group), 1.50-1.80 (br m, 10H, C(O)C(CH3)2S, one bridge 

proton of norbornenyl group, CHCH2OC(O) and SCH2CH2C10H23) 1.00-1.50 (br m, 21H, 

aliphatic protons), 0.85 (ill-defined t, 3H, C(S)SCH2C10H20CH3); 
13

C NMR (125 MHz, 

CDCl3, ppm) 14.37, 22.93, 25.63, 25.68, 28.16, 29.15, 29.34, 29.58, 29.66, 29.68, 29.80, 

29.86, 32.15, 37.07, 37.93, 41.85, 43.91, 45.17, 56.22, 70.30, 136.55, 137.08, 173.24, 

221.65. 
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RAFT-based synthesis of α-norbornenyl poly(t-butyl acrylate) macromonomer 

To a 50 mL Schlenk flask with a stir bar, NB-TTC (0.1031 g, 0.2203 mmol) and t-butyl 

acrylate (10.0 mL, 68.3 mmol) were added, followed by the addition of AIBN (as a 

freshly-prepared stock solution in 2-butanone, 0.20 mg/mL, 10 mL, 5 mol%).  After 4 

cycles of freeze-pump-thaw, the polymerization was conducted in a 51 
o
C oil bath.  At 

every hour, an aliquot was withdrawn and analyzed by 
1
H-NMR spectroscopy to 

determine the extent of monomer conversion.  At 3 h, the reaction was quenched by 

freezing the reaction mixture in a liquid nitrogen bath.  The reaction mixture was then 

precipitated in 20% H2O-methanol 3 times and the polymer (NB-PtBA macromonomer) 

was collected.  Yield: 1.23 g, 45%.  Mn
NMR

 = 17.3 kDa, Mn
GPC

 = 16.9 kDa, Mw/Mn = 1.16; 

Tg = 43 
o
C;  IR: 2977, 2932, 1727, 1479, 1448, 1392, 1367, 1338, 1257, 1148, 1035, 908, 

845, 751, 705, 637, 471, 428 cm
-1

; 
1
H NMR (300 MHz, CDCl3, ppm) δ 6.05-6.10 

(norbornenyl alkene), 4.60-4.72 (CHSC(S)S), 3.80-4.20 (CH2OC(O)), 3.30-3.40 

(CH2SC(S)S), 2.60-2.90 (allylic protons of norbornenyl groups), 2.05-2.40 (polymer 

backbone protons) 1.00-1.95 (t-butyl protons and C(S)SCH2C10H20CH3), 0.80-0.90 

(C(S)SCH2C10H20CH3); 
13

C NMR (75 MHz, CDCl3, ppm) 28.0-28.2, 35.7-37.3, 41.5-

43.5, 80.2, 174.3. 

 

ROMP-based synthesis of molecular brushes bearing poly(t-butyl acrylate) side 

chains 

To a solution of Grubbs‘ catalyst in CH2Cl2 (8.4  10
-3

 mg/mL, 100 μL, 1 equiv.) under 

argon in a scintillation vial capped with a septum was added the NB-PtBA 
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macromonomer (102.3 mg, 320 equiv.) in CH2Cl2 (1.0 mL) via syringe.  The reaction 

was allowed to stir at room temperature for 4 h, and was then quenched by addition of 

ethyl vinyl ether (a few drops) via syringe.  The final PtBA brush product was obtained 

after precipitating the reaction mixture in 20% H2O-methanol.  It was later found that the 

reaction could be performed under air.  Tg=43 
o
C;  IR: 2977, 2931, 1728, 1479, 1448, 

1392, 1367, 1256, 1148, 1035, 845, 751, 632, 471 cm
-1

; 
1
H NMR (300 MHz, CD2Cl2, 

ppm) δ 4.60-4.72 (CHSC(S)S), 3.80-4.20 (CH2OC(O)), 3.30-3.40 (CH2SC(S)S), 2.05-

2.40 (grafted chain backbone protons) 0.70-1.95 (t-butyl protons and C(S)SCH2C11H23); 

13
C NMR (75 MHz, CD2Cl2, ppm) 28.0-28.2, 35.7-38.3, 41.0-43.7, 80.2, 175.9. 

 

Conversion of t-butyl groups to acrylic acid groups 

PtBA brush (23.6 mg) was loaded into a vial and dissolved in CH2Cl2 (5.0 mL).  A 

solution of trimethylsilyl iodide (400 µL, diluted by 1.0 mL CH2Cl2) was added.  After 

90 min, the excess solvent and reagent were removed in vacuo.  The residue was then 

redissolved in THF and decolorized by addition of Na2S2O3 to afford a colorless solution.  

Dialysis of the solution against nanopure water for 5 days cleaved the silyl ester bonds 

and gave the final PAA brush product, which was collected after removal of water by 

lyophilization.  Tg= 101 
o
C; at pH 4, Hav

AFM
 = 1.5 nm; Lav

AFM
 = 32 nm; at pH 9, Hav

AFM
 = 

1.5 nm; Lav
AFM

 = 58 nm; Dav
TEM

 = 68 nm;  IR: 2917, 2849, 1718, 1560, 1542, 1458, 1259, 

1195, 1131, 1076, 800 cm
-1

; 
1
H NMR (300 MHz, DMSO-d6, ppm) δ 14.10-15.70 

(COOH), 4.60-4.72 (CHSC(S)S), 3.80-4.20 (CH2OC(O)), 3.30-3.40 (CH2SC(S)S), 2.05-
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2.40 (polymer backbone protons), 0.70-1.95 (polymer backbone protons and 

C(S)SCH2C11H23); 
13

C NMR (75 MHz, DMSO-d6, ppm) 35.0-39.0, 41.3-43.5, 176.2. 

RAFT-based synthesis of α-norbornenyl poly(methyl acrylate) macromonomer 

To a 25 mL Schlenk flask with a stir bar, NB-TTC (0.3750 g, 0.801 mmol) and methyl 

acrylate (5.0 mL, 55 mmol) were added, followed by the addition of AIBN (as a freshly-

prepared stock solution in 2-butanone, 1.3 mg/mL, 5.0 mL, 0.040 mmol).  After 4 cycles 

of freeze-pump-thaw, the polymerization was conducted in a 51 
o
C oil bath.  At every 

hour, an aliquot was withdrawn and analyzed by 
1
H-NMR spectroscopy to determine the 

extent of monomer conversion.  At 7 h, the reaction was quenched by freezing the 

reaction mixture in a liquid nitrogen bath.  The reaction mixture was then precipitated in 

pentane 3 times and the polymer (NB-PMA macromonomer) was collected.  Yield: 1.2 g, 

(85% based on the conversion of MA).  Mn
NMR

 = 2618 Da, Mn
GPC

 = 2420 Da, Mw/Mn = 

1.11; Tg = 5 
o
C. 

 

RAFT-based synthesis of α-norbornenyl polystyrene macromonomer, NB-PS, 2.  To 

a 10 mL Schlenk flask with a stir bar, NB-CTA (0.2070 g, 0.442 mmol), followed by the 

addition of AIBN (as a freshly-prepared stock solution in styrene, 2.5 mg/mL, 5.0 mL, 6 

mol%).  After 4 cycles of freeze-pump-thaw, the polymerization was conducted in an oil 

bath at 50 
o
C.  After 18 hours, the reaction was quenched by freezing the reaction mixture 

in a liquid nitrogen bath.  The reaction mixture was then precipitated in methanol 3 times 

and the polymer (NB-PS macromonomer) was collected.  Yield: 1.6 g.  Mn
NMR

 = 4630 Da, 

Mn
GPC

 = 4560 Da, Mw/Mn = 1.08; Tg: 93 
o
C; IR: 3082, 3059, 3025, 3001, 2924, 2851, 
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1943, 1869 1802, 1725, 1601, 1583, 1541, 1493, 1452, 1371, 1266, 1181, 1154, 1110, 

1068, 1028, 906, 757, 698, 667 cm
-1

; 
1
H NMR (300 MHz, CD2Cl2, ppm) δ 6.36-7.50 

(styrenyl protons), 6.00-6.10 (norbornenyl alkene), 4.60-4.90 (CHSC(S)S), 3.50-3.80 

(CH2OC(O)), 3.30-3.40 (CH2SC(S)S), 2.60-2.90 (allylic protons of norbornenyl groups), 

1.12-2.40 (backbone protons and C(S)SCH2C10H20CH3), 0.80-0.90 (backbone protons 

and C(S)SCH2C10H20CH3); 
13

C NMR (75 MHz, CD2Cl2, ppm) δ 145, 128, 126, 42.5-46.0, 

40.0-41.8.  Elemental analysis.  Anal. Calcd for C344H362O2S3, C, 89.4; H, 7.8; O, 0.7; S, 

2.1.  Found, C, 89.4; H, 7.8; O, 0.7; S, 2.0. 

ATRP-based synthesis of α-norbornenyl poly(methyl methacrylate) macromonomer 

NB-ATRP (0.5463 g, 2.000 mmol), methyl methacrylate (20.0 mL, 194 mmol), CuCl 

(0.200g, 2 mmol) and 20 mL anisole were added to a 100 mL flask.  After freezing the 

solution by liquid nitrogen, CuCl2 (13.6 mg, 0.1 mmol) and TMEDA (0.65 mL, 4.3 mmol) 

were added.  Five cycles of freeze-pump-thaw were performed to remove oxygen and the 

polymerization was conducted in a 60 
o
C oil bath.  An aliquot was withdrawn during the 

polymerization and analyzed by 
1
H-NMR spectroscopy to determine the extent of 

monomer conversion.  At 14 h, the reaction was quenched by freezing the reaction 

mixture in a liquid nitrogen bath when the monomer conversion was 20%.  The reaction 

mixture was then precipitated in pentane 3 times and the polymer (NB-PMMA 

macromonomer) was collected.  Yield: 3.1 g (79% based on the conversion of the 

monomer).  Mn
NMR

 = 3950 Da, Mn
GPC

 = 3420 Da, Mw/Mn = 1.24.   
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Figure 2-4.  
1
H-NMR spectrum of PtBA macromonomer. 
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Figure 2-5.  
1
H-NMR spectrum of PtBA molecular brush. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6.  
1
H-NMR spectrum of molecular brushes before (B) and after (A) hydrolysis.  
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Chapter 3 

Hetero-grafted diblock molecular brushes 

 

[Portions of this work have been published previously as Zhou Li, Jun Ma, Chong Cheng, 

Ke Zhang, and Karen L. Wooley, Macromolecules, 2010, 43(3), 1182-1184.] 

 

Synthesis of hetero-grafted amphiphilic diblock molecular 

brushes and their self assembly in aqueous medium 

 

 

ABSTRACT 

A facile and efficient ―grafting through‖ strategy was developed to synthesize hetero-

grafted diblock molecular brushes with precisely controlled structure, by utilizing the 

orthogonality and livingness of ROMP and RAFT polymerizations.  These diblock 

molecular brushes were chemically transformed to amphiphilic nanostructures, whose 

aqueous solution self-assembly were studied.  Characterizations of both preliminary and 

secondary nanostructures revealed that ca. 60-80 unimers were assembled to a more 

complicated nanostructure.   
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INTRODUCTION 

Self assembly of synthetic macromolecules, inspired by the organization of biomolecules 

in nature, is a powerful approach for fabricating novel nanostructures, whose potential 

applications in nanomedicine are of significant interest.
(1, 2)

  Using amphiphilic linear 

copolymers as building blocks, various supramolecular architectures have been 

constructed, whose compositions, sizes and morphologies are all tunable.
(3-5)

  In spite of 

that, those nanostructures, made from synthetic macromolecules, are still primitive, 

compared with those from biomolecules, which exhibit high complexity developed by 

evolution for millions of years.  Our interest to attain nanostructures with higher 

complexities, approaching those of biological systems, drives our design of more types 

and sizes of macromolecular and nanoscopic building blocks, extending beyond simple 

linear block copolymers. 

 

RESULTS AND DISCUSSION 

Our initial targets are hetero-grafted diblock molecular brushes,
(6, 7)

 in which two 

different types of polymeric side chains are grafted sequentially along a backbone.  These 

structures are designed as nanoscopic molecular frameworks having defined three-

dimensional shape and control over the entire compositional profile, to mimic some 

features of the globular shape and compositional heterogeneities of protein building 

blocks.  Hetero-grafted diblock molecular brushes may be synthesized by ―grafting from‖ 

and ―grafting onto‖ strategies.
(8-11)

  Although effective, these two strategies suffer from 

significant steric effects, leading to side reactions and less control over the structures.(6)  
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The ―grafting through‖ strategy,(12-15) in which pre-synthesized side chains with 

polymerizable chain ends are polymerized to afford the final brush structure, can 

eliminate these side reactions and thus provide better structure control.  To polymerize 

the highly-diluted chain end groups of the side chains, ring opening metathesis 

polymerization (ROMP) is often applied.(12, 15)  Herein, by exploiting the orthogonality 

and livingness of reversible addition-fragmentation chain transfer (RAFT) 

polymerization
(16)

 and ROMP,
(17-19)

 we have developed a facile and efficient ―grafting 

through‖ strategy to synthesize hetero-grafted diblock molecular brushes with precisely-

controlled architecture.  These structures were transformed into amphiphilic diblock 

molecular brushes, which were then investigated as nanoscopic building blocks for the 

assembly of supramolecular nanostructures in aqueous medium. 

The amphiphilic hetero-grafted diblock molecular brush was produced by a highly 

efficient, one-pot ―grafting-through‖ process, involving the sequential ROMP of 

norbornenyl-terminated macromonomers, followed by a deprotection reaction (Scheme 

3-1).  α-Norbornenyl poly(t-butyl acrylate) (NB-PtBA) (1) and α-norbornenyl 

polystyrene (NB-PS) (2) macromonomers were first synthesized by selective RAFT 

polymerizations of t-butyl acrylate and styrene, respectively, from a norbornenyl-

functionalized chain transfer agent (NB-CTA).
(12)

  In order to suppress reaction of the NB 

group, reduce bi-radical coupling and control the RAFT polymerizations, moderate 

temperature (50 ºC) and low feed amount of the radical initiator, 2,2-

azobisisobutyronitrile (AIBN) ([NB-CTA]0/[AIBN]0 = 20 : 1) were employed.  The well-

defined structures of 1 and 2 were verified by 
1
H NMR spectroscopy and gel permeation 

chromatography (GPC).  Little to no side reaction of the NB group during the RAFT 
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polymerizations was confirmed by 
1
H NMR spectroscopy, based on the integral ratio of 

the NB alkenyl protons (6.02-6.10 ppm) to the RAFT agent chain end CH2SC(S)S 

methylene protons (3.33-3.53 ppm) being ca. 1 : 1.  As analyzed by GPC, both 1 and 2 

had mono-modal molecular weight distributions with polydispersities (PDIs) less than 

1.12.  The number-averaged molecular weights (Mn) calculated from 
1
H NMR 

spectroscopy (Mn
NMR

) agreed well with those from GPC (Mn
GPC

) (1, Mn
NMR

 = 4950 Da, 

Mn
GPC

 = 4670 Da; 2, Mn
NMR

 = 4630 Da, Mn
GPC

 = 4560 Da), further supporting the 

controlled nature of the selective RAFT polymerizations. 

These α-norbornenyl-functionalized macromonomers, NB-PtBA (1) and NB-PS (2), were 

readily used to synthesize hetero- grafted diblock molecular brushes (3) by sequential 

ROMP.  We and Grubbs‘ group
(12, 15)

 have reported that the modified 2nd generation 

Grubbs‘ catalyst
(20)

 is highly efficient for the synthesis of i  homo-grafted molecular 

brushes by ROMP using the ―grafting through‖ strategy.  In this study, we further 

explored the utilization of this Grubbs‘ catalyst in the sequential ROMP to synthesize 

hetero-grafted molecular brushes.  As shown in Scheme 3-1, brush copolymer PNB-g-

PtBA was synthesized by ROMP of 1 in CH2Cl2.  Without purification, a solution of 2 

was added into the living PNB-g-PtBA polymerization mixture to afford the diblock 

brush copolymer P(NB-g-PtBA)-b-P(NB-g-PS), 3, with regio-selective grafts.  During 

ROMP, small aliquots were withdrawn and measured by GPC.  As shown in Scheme 3-1, 

nearly quantitative conversions of NB-PtBA and NB-PS were observed, with little 

residual macromonomer at each stage of the ROMP process.  The well-defined structures  
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Scheme 3-1.  The ‗grafting through‘ synthetic route to hetero-grafted amphiphilic diblock 

molecular brushes by combined RAFT, ROMP, and chemical transformation. 
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of both PNB-g-PtBA and P(NB-g-PtBA)-b-P(NB-g-PS) were supported by GPC, with 

mono-modal molecular weight distributions and narrow PDIs (<1.20).  The successful 

incorporation of 2 to produce an overall diblock backbone structure is reflected by 

evolution of the GPC curve after the second ROMP reaction.  Synthesis of the diblock 

molecular brushes was accomplished in 6 min (3 min for growth of each block), 

indicating the fast and efficient ROMP reactions.(21)  The amphiphilic diblock molecular 

brush P(NB-g-PAA)-b-P(NB-g-PS) (4) was obtained after deprotection of 3 with 

trimethylsilyl iodide (TMSI) and hydrolysis of the intermediate TMS-esters.   

Supramolecular assembly of the nanoscopic, amphiphilic block graft copolymers was 

investigated by using phase-segregation micellization methods that are traditional for 

linear block copolymers.
(22)

  Dissolution of 4 in a common solvent for the entire  

Figure 3-1.  Images of the supramolecular micelles.  (A) Tapping-mode AFM height 

image; (B) Tapping-mode AFM phase image; (C) TEM image (80k); (D) TEM image 

(200k). 
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framework, N,N-dimethylformamide (DMF), was followed by dialysis against nanopure 

water to afford the aqueous micelle solution 5.  The assemblies were characterized by 

dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission 

electron microscopy (TEM). 

The data from DLS, TEM and AFM were compared and contrasted to evaluate the nature 

of the supramolecular structures 5, from the aqueous assembly of 4.  The number-

averaged hydrodynamic diameter (Dh,n) of 5 was 48 ± 5 nm, according to DLS, which, 

when compared with the size of the unimers 4 in DMF (Dh,n = 11 ± 2 nm), suggested 

aggregation of ca. 80 units of 4 to form supramolecular structures in water.  Similarly-

sized aggregates of globular shape were observed by both TEM and tapping-mode AFM.  

The TEM diameter of 5 was measured as 43 ± 7 nm; the unimers 4 were not observed 

well.  By AFM, however, two populations were observed from spin coating of an 

aqueous solution of 5 onto mica: an aggregate having an average diameter (Dafm) of 73 ± 

8 nm (not corrected for tip effects) and average height of 28 ± 8 nm, together with what 

appeared to be unimers having an average diameter of 47 ± 5 nm and average height of 

1.9 ± 0.4 nm.  The average diameter and height of unimers, obtained by spin coating a 

DMF solution of 4 onto mica, were 53 ± 5 nm and 1.6 ± 0.3 nm (Figure 3-1), 

respectively.  Taking into account the diameter as measured by TEM and the height as 

measured by AFM, the supramolecular assemblies underwent only low degrees of shape 

deformation upon adsorption onto the solid substrates.  If it is assumed that the AFM tip 

diameter is the difference between the TEM- and AFM-measured diameters, ca. 30 nm, 

then the diameter of the unimers was ca. 20 nm, giving an aggregation number of ca. 60 

of 4 within the assembled structures 5.  This aggregation number is in agreement with 
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that estimated from the DLS data, and is smaller than that of micelles typically from 

linear amphiphilic copolymers (usually a few hundred
(22)

).  It should be noted that both 

AFM and TEM showed that 5 had a broad size distribution, which may be explained by 

the large size of the building blocks relative to the assembled structure. 

In summary, we have demonstrated the synthesis of hetero-grafted diblock molecular 

brushes via a ―grafting through‖ strategy, based on the orthogonality of ROMP and 

RAFT polymerizations.  These diblock molecular brushes were converted to amphiphilic 

nanostructures, whose aqueous solution self-assembly behaviors were studied.  Further 

work ongoing in our group and the laboratory of Robert H. Grubbs (we acknowledge 

clever designs of block brush copolymers under study by Grubbs‘ group(23)) is expected 

to lead to advanced macromolecular-based building blocks that are capable of 

hierarchical supramolecular assembly into complex, functional nano- and microscopic 

objects. 

 

 

EXPERIMENTAL 

 

Characterizations. 

Infrared spectra were obtained on a Perkin-Elmer Spectrum BX FT-IR system using 

diffuse reflectance sampling accessories.  
1
H NMR spectra were recorded at 300 MHz on 

solutions in CDCl3, DMSO-d6, CD2Cl2, or THF-d8 on a Varian Mercury 300 

spectrometer with the solvent proton signals as standard.  
13

C NMR spectra were 
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recorded at 75 MHz on solutions in CDCl3, DMSO-d6, CD2Cl2 or THF-d8 on a Varian 

Mercury 300 spectrometer with the solvent carbon signals as standard. 

 

Gel permeation chromatography (GPC) was conducted on a Waters 1515 HPLC (Waters 

Chromatography, Inc.) equipped with a Waters 2414 differential refractometer and a 

three-column series PL gel 5μm Mixed C, 500 Å, and 104 Å, 300 × 7.5 mm columns 

(Polymer Laboratories Inc.).  The system was equilibrated at 25 °C in anhydrous THF, 

which served as the polymer solvent and eluent with a flow rate of 1.0 mL/min.  Polymer 

solutions were prepared at a known concentration (ca. 3 mg/mL) and an injection volume 

of 200 μL was used for every sample.  Data collection and analysis were performed, 

respectively, with Precision Acquire software and Discovery 32 software (Precision 

Detectors, Inc.).  The system was calibrated by a nearly monodispersed polystyrene 

standard (Pressure Chemical Co., Mw/Mn < 1.04). The differential refractometer was 

calibrated with standard polystyrene reference material (SRM 706 NIST), of known 

specific refractive index increment dn/dc (0.184 mL/g).  

 

Dynamic light scattering (DLS) analysis was performed using a Brookhaven Instruments 

Co. (Holtsville, NY) system consisting of a model BI-200SM goniometer, a model EMI-

9865 photomultiplier, and a model BI-9000AT digital correlator.  Incident light was 

provided by a model 95-2 Ar
+
 laser (Lexel Corp., Palo Alto, CA) operated at 514.5 nm.  

All measurements were made at 20 ± 1 °C in solvents.  Scattered light was collected at 90° 

angle.  The digital correlator was operated with 522 channels, a dual sampling time of 

100 ns, a 5 s ratio channel spacing, and a duration time of 6 min.  A photomultiplier 
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aperture of 400 μm was used, and the incident laser intensity was adjusted to obtain a 

photon counting rate between 200 to 300 kcps.  Only measurements in which the 

measured and calculated baselines of the intensity autocorrelation function agreed to with 

0.1% were used to calculate the particle size.  The calculation of the particle size 

distribution and distribution averages was performed with the ISDA software package 

(Brookhaven Instruments Co., Holstville, NY), which employed double exponential 

fitting, cumulants analysis, NNLS, and CONTIN particle size distribution analysis 

routines. 

 

Samples for atomic force microscopy (AFM) imaging were prepared by spin-casting ca. 

2.0 μL of the sample solution onto freshly cleaved mica plates (Ruby clear mica, New 

York Mica Co.).  AFM instrumentation was a Nanoscope IIIa system (Digital 

Instruments, Santa Barbara, CA), equipped with a J-type vertical engage piezoelectric 

scanner and operated in a tapping mode in air.  Tapping-mode imaging was carried out 

with high resolution probes (DP14/HI‘RES/Al BS, from μmash: L, 125 μm; normal 

spring constant, 5.0 N/m; resonance frequency, 160 kHz).  The average height and 

average diameter values were determined by section analysis, using the Nanoscope III 

software package. 

 

Elemental analysis was carried out by Midwest Microlabs, LLC.  

 

Samples for transmission electron microscopy (TEM) imaging were prepared by placing 

a 5μL drop of aqueous solution containing micelles (ca. 0.2 mg/mL) and allowing it to 
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incubate for 5 min on a carbon-coated copper grid.  After blotting off the extra solution, 

an equal volume of 1.0 wt % of phosphotungstic acid (PTA, a negative stain) was used to 

stain the grid for 1 min. TEM imaging was performed on a Hitachi H-7500 TEM. 

 

Glass transition temperature (Tg) determinations were performed by using differential 

scanning calorimetry (DSC) on a DSC822e instrument (Mettler-Toledo, Inc.) in a 

temperature range of −50 - 200 °C with a heating rate of 10 °C/min under nitrogen.  The 

data were acquired and analyzed with STARe software (Mettler-Toledo, Inc.).  The Tg 

values were taken at the midpoint of the inflection tangent, upon the third heating scans. 

 

Materials 

Unless otherwise noted, all solvents and reagents were purchased from Sigma-Aldrich 

Chemical Co. (St. Louis, MO) and used as received.  Dichloromethane (CH2Cl2, 99+%) 

were distilled over CaH2 before use.  tert-Butyl acrylate (tBA, 98%), styrene (S, 99%) 

were passed through a neutral alumina column before polymerization.  The norbornenyl-

functionalized RAFT chain transfer agent (NB-CTA) (Li, Z.; Zhang, K.; Ma, J.; Cheng, 

C.; Wooley, K. L. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5557-5563.) and the 

Grubb‘s catalyst (Choi, T. L.; Grubbs, R. H. Angew. Chem. Int. Edit. 2003, 42, 1743-

1746.) were prepared respectively following literature methods.  

 

Synthesis 

RAFT-based synthesis of α-norbornenyl poly(t-butyl acrylate) macromonomer, NB-

PtBA, 1.  To a 50 mL Schlenk flask with a stir bar, NB-CTA (0.6481 g, 1.38 mmol) and 
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t-butyl acrylate (10.0 mL, 68.3 mmol) were added, followed by the addition of AIBN (as 

a freshly-prepared stock solution in 2-butanone, 1.10 mg/mL, 10 mL, 5 mol%).  After 4 

cycles of freeze-pump-thaw, the polymerization was conducted in an oil bath at 51 
o
C.  

At time intervals, an aliquot was withdrawn and analyzed by 
1
H NMR spectroscopy to 

determine the extent of monomer conversion.  After 310 min, the reaction was quenched 

by freezing the reaction mixture in a liquid nitrogen bath.  The reaction mixture was then 

precipitated in 20% H2O-methanol 3 times and the polymer (NB-PtBA macromonomer) 

was collected.  Yield: 2.3 g.  Mn
NMR

 = 4950 Da, Mn
GPC

 = 4670 Da, Mw/Mn = 1.11; Tg: 43 

o
C;  IR: 2977, 2932, 1727, 1479, 1448, 1392, 1367, 1338, 1257, 1148, 1035, 908, 845, 

751, 705, 637, 471, 428 cm
-1

; 
1
H NMR (300 MHz, CDCl3, ppm) δ 6.05-6.10 

(norbornenyl alkene), 4.60-4.72 (CHSC(S)S), 3.80-4.20 (CH2OC(O)), 3.30-3.40 

(CH2SC(S)S), 2.60-2.90 (allylic protons of norbornenyl groups), 2.05-2.40 (polymer 

backbone protons) 1.00-1.95 (t-butyl protons, polymer backbone protons and 

C(S)SCH2C10H20CH3), 0.80-0.90 (C(S)SCH2C10H20CH3); 
13

C NMR (75 MHz, CDCl3, 

ppm) δ 174.3, 80.2, 41.5-43.5, 35.7-37.3, 28.0-28.2.  Elemental analysis.  Anal. Calcd for 

C269H462O72S3, C, 65.4; H, 9.4; O, 23.3; S, 2.0.  Found, C, 65.5; H, 9.1; O, 23.4; S, 2.1. 

 

RAFT-based synthesis of α-norbornenyl polystyrene macromonomer, NB-PS, 2.  To 

a 10 mL Schlenk flask with a stir bar, NB-CTA (0.2070 g, 0.442 mmol), followed by the 

addition of AIBN (as a freshly-prepared stock solution in styrene, 2.5 mg/mL, 5.0 mL, 6 

mol%).  After 4 cycles of freeze-pump-thaw, the polymerization was conducted in an oil 

bath at 50 
o
C.  After 18 hours, the reaction was quenched by freezing the reaction mixture 

in a liquid nitrogen bath.  The reaction mixture was then precipitated in methanol 3 times 
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and the polymer (NB-PS macromonomer) was collected.  Yield: 1.6 g.  Mn
NMR

 = 4630 Da, 

Mn
GPC

 = 4560 Da, Mw/Mn = 1.08; Tg: 93 
o
C; IR: 3082, 3059, 3025, 3001, 2924, 2851, 

1943, 1869 1802, 1725, 1601, 1583, 1541, 1493, 1452, 1371, 1266, 1181, 1154, 1110, 

1068, 1028, 906, 757, 698, 667 cm
-1

; 
1
H NMR (300 MHz, CD2Cl2, ppm) δ 6.36-7.50 

(styrenyl protons), 6.00-6.10 (norbornenyl alkene), 4.60-4.90 (CHSC(S)S), 3.50-3.80 

(CH2OC(O)), 3.30-3.40 (CH2SC(S)S), 2.60-2.90 (allylic protons of norbornenyl groups), 

1.12-2.40 (backbone protons and C(S)SCH2C10H20CH3), 0.80-0.90 (backbone protons 

and C(S)SCH2C10H20CH3); 
13

C NMR (75 MHz, CD2Cl2, ppm) δ 145, 128, 126, 42.5-46.0, 

40.0-41.8.  Elemental analysis.  Anal. Calcd for C344H362O2S3, C, 89.4; H, 7.8; O, 0.7; S, 

2.1.  Found, C, 89.4; H, 7.8; O, 0.7; S, 2.0. 

 

Sequential ROMP-based synthesis of hetero-grafted diblock molecular brush, 

P(NB-g-PtBA)-b-P(NB-g-PS), 3.  To a solution of Grubbs‘ catalyst in CH2Cl2 (4.1 

mg/mL, 100 μL, 1 equiv.) under argon in a scintillation vial capped with a septum was 

added a CH2Cl2 solution of 1 (104.1 mg/mL, 1000 μL, 50 equiv.) via an argon-flushed 

syringe.  The reaction was allowed to stir at room temperature for 3 min, and an aliquot 

of the reaction mixture (100 μL) was withdrawn (for the analysis of the first block).  

After that, a CH2Cl2 solution of 2 (100.1 mg/mL, 900 μL, 50 equiv.) was added to the 

living polymerization mixture immediately to allow for the second ROMP reaction.  

Another 3 min later, the polymerization was quenched by addition of a small amount of 

ethyl vinyl ether.  The final diblock molecular brush was obtained after precipitating the 

reaction mixture in methanol.  Yield: 178.1 mg.  Mn
GPC

(RI) = 197.8 kDa; Tg: 41 
o
C and 

91 
o
C;  IR: 3081, 3059, 3025, 2919, 2853, 1943, 1871 1802, 1732, 1601, 1583, 1542, 
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1493, 1479, 1453, 1392, 1367 , 1258, 1152, 1070, 1030, 966, 907, 854, 813, 738, 698, 

539 cm
-1

; 
1
H NMR (300 MHz, CD2Cl2, ppm) δ 6.36-7.50 (styrenyl protons), 4.60-4.72 

(CHSC(S)S), 3.30-3.40 (CH2SC(S)S), 2.05-2.40 (grafted chain backbone protons), 0.70-

2.00 (grafted chain backbone protons, t-butyl protons and C(S)SCH2C11H23); 
13

C NMR 

(75 MHz, CD2Cl2, ppm) δ 174, 145, 128, 126, 80.6, 40.5-47.5, 35.5-38.5, 28.0-30.0.  

Elemental analysis.  Anal. Calcd for C613H824O74S6, C, 77.0; H, 8.6; O, 12.4; S, 2.0.  

Found, C, 77.3; H, 8.4; O, 12.5; S, 2.0.   

 

Synthesis of amphiphilic diblock molecular brush, P(NB-g-PAA)-b-P(NB-g-PS), 4.  

Polymer 3 (20.1 mg, 7.34 × 10
-2

 mmol of t-butyl group) was dissolved in CH2Cl2 (5.0 mL) 

in a vial.  A solution of trimethylsilyl iodide (400 µL, 2.81 mmol, diluted by 1.0 mL 

CH2Cl2) was added.  The reaction was stirred at room temperature for 90 min, followed 

by the removal of the excess solvent and reagent under reduced pressure.  The residue 

was redissolved in THF and decolorized by the addition of Na2S2O3 (10 wt. %) aqueous 

solution.  The solution was then dialyzed against nanopure water for 5 days, followed by 

lyophilization to afford the final amphiphilic hetero-grafted diblock molecular brushes.  

Yield: 13.7 mg; Tg: 93 
o
C; IR: 3432, 3081, 3059, 3025, 2924, 2851, 1723, 1600, 1492, 

1452, 1366, 1255, 1168, 1026, 843, 757, 698, 666 cm
-1

; 
1
H NMR (300 MHz, THF-d8, 

ppm) δ 9.00-10.70 (COOH), 6.36-7.50 (styrenyl protons), 2.15-2.60 (grafted chain 

backbone protons), 0.70-2.00 (grafted chain backbone protons, and C(S)SCH2C11H23); 

13
C NMR (75 MHz, THF-d8, ppm) δ 176, 144, 128, 126, 41.5-47.5, 33.5-37.5. 
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Preparation of micelle solution, 5.  Amphiphilic hetero-grafted diblock molecular brush 

4 (4.7 mg) was dissolved in DMF (10 mL) and stirred at room temperature for 1 hour, 

and then dialyzed against nanopure water for 5 days, to afford a clear solution 5 (0.13 

mg/mL). 
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DLS results 

 

Figure 3-2.  Dynamic light scattering results of nanoparticles.  P(NB-g-PtBA)-b-P(NB-g-

PS), 3 (left); P(NB-g-PAA)-b-P(NB-g-PS), 4 (middle); micelles, 5 (right).   
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AFM results 

 

Figure 3-3.  AFM images of nanoparticles.  P(NB-g-PtBA)-b-P(NB-g-PS), 3 (left); 

P(NB-g-PAA)-b-P(NB-g-PS), 4 (middle); micelles, 5 (right).  Samples were prepared by 

spin-casting ca. 2.0 μL of the sample solution onto freshly cleaved mica plates.  The 

solutions were 0.02 mg/mL 3 in CHCl3, 0.04 mg/mL 4 in DMF and 0.13 mg/mL 5 in 

water, respectively.  

 

The aggregation number of unimers per micelle was calculated based on the following 

equation: 

     N=(
  

  
)
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Where R1 is the average radius of the micelles (21 nm), R2 is the average radius of the 

unimers (10 nm), H1 is the average height of the micelles (28 nm), and H2 is the average 

height of the unimers (2 nm). 
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Chapter 4 

Side chain block molecular brushes 

 

[Portions of this work have been published previously as Zhou Li, Jun Ma, Nam S. Lee 

and Karen L. Wooley, J. Am. Chem. Soc., 2011, 133(5), 1228-1231.] 

 

Dynamic Cylindrical Assembly of Triblock Copolymers by a 

Hierarchical Process of Covalent and Supramolecular 

Interactions 

 

ABSTRACT 

We have developed a hierarchical process that combines linear triblock copolymers into 

concentric globular sub-units through strong chemical bonds and is followed by their 

supramolecular assembly via weak non-covalent interactions to afford one-

dimensionally-assembled, dynamic cylindrical nanostructures.  The molecular brush 

architecture forces triblock copolymers to adopt some intramolecular interactions within 

confined framework and then drives their intermolecular interactions in the mixtures of 

organic solvent and water.  In contrast, the triblock copolymers, when not pre-connected 

into the molecular brush architectures, organize only into globular assemblies. 
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INTRODUCTION 

Nature has evolved a complicated process to create sophisticated functional materials 

through hierarchical self assembly of simple nanoscale motifs.(1-3)  With the broader 

development of nanotechnologies, much effort has been made to understand and mimic 

this process to construct artificial nanostructures from synthetic molecules in the 

laboratory.  Molecules with selective physical or chemical interactions are designed to 

drive the assembly processes, and various nanostructures with different functions have 

been obtained by tuning the properties of the synthetic molecules.(4-17)  Among those 

molecules, block copolymers are of great interest.(4, 5, 8, 13, 16, 18)  However, the 

complexities of nanostructures derived from block copolymers remain lower than those 

from Nature, possibly because their structures are usually simpler than those originating 

from biomolecules.  Herein, we demonstrate that dynamic hierarchical cylindrical 

assembly of triblock copolymers is achieved by stepwise application of covalent bonds 

and supramolecular interactions.  Linear ABC triblock copolymers were initially 

prepared, then linked together by selective reaction through a single chain end site on 

each polymer chain, to establish a covalent molecular brush architecture.  This process 

was followed by multi-molecular supramolecular assembly in water to afford dynamic 

nanocylindrical assemblies, whereas the linear triblock copolymer precursor was 

incapable of producing such a unique morphology. 

 

RESULTS AND DISCUSSION 

Molecular brushes are non-linear macromolecules, in which many polymeric side chains 

are distributed along a backbone.(19, 20)  Generally, there are three strategies to 

synthesize molecular brushes:  ―grafting-from‖ (polymerization of side chains from 
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initiating groups along a backbone),(21-23) ―grafting-onto‖ (addition of previously 

synthesized side chains to a backbone),(24) and ―grafting-through‖ (polymerization of 

the chain end groups of previously synthesized macromonomers).(25-28)  Although 

molecular brushes with long backbones have been synthesized by ―grafting-from‖ and 

―grafting-onto‖ approaches, it has been difficult to control the side chain grafting density 

and ensure control over the final compositions by these two strategies, due to steric 

effects in the reactions involving multiple reactive sites in proximity.(19, 20)  The 

―grafting-through‖ strategy is favored for good control over both grafting density and 

side chain structures and has, in our research, allowed for dense grafting of well-defined 

triblock copolymers onto a central backbone chain 

The ―grafting-through‖ strategy is a highly-efficient process to synthesize block 

copolymer-based molecular brushes, for which we have developed a special case that 

combines four different polymer compositions, organized topologically within the 

macromolecular framework, by two controlled polymerization techniques:  Reversible 

addition-fragmentation chain transfer (RAFT) polymerization and ring opening 

metathesis polymerization (ROMP).(25, 28-30)  A molecular brush with polystyrene, 

poly(methyl acrylate) and poly(acrylic acid) triblock side chains grafted along a 

polynorbornene backbone was synthesized in three steps, including RAFT, ROMP and 

deprotection (Figure 4-1.A). 

In the first step, the triblock macromonomer, α-norbornenyl polystyrene-b-poly(methyl 

acrylate)-b-poly (t-butyl acrylate) (NB-PS-b-PMA-b-PtBA), was synthesized from a 

norbornene-functionalized chain transfer agent (NB-CTA) by sequential RAFT 

polymerizations.  Placement of the polymerizable norbornenyl unit at the polystyrene 
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chain terminus was done so that its polymerization into a molecular brush would present 

the hydrophobic materials within the inner region of the final supramolecularly-

assembled structures, after converting the t-butyl acrylate portion of the polyacrylate 

chain segments to poly(acrylic acid).  However, the reinitiation of polymerization is 

usually disfavored when growing polyacrylates from polystyrene macroCTAs.  Another 

challenge in this step is the participation of norbornenyl groups in the multiple radical 

polymerizations, which would destroy the defined macromolecular architecture and 

prevent later conversion into the molecular brush topology.  Therefore, the 

polymerization conditions (temperature, solvent, monomer conversion and initiator feed 

ratio) were tuned carefully.   
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The well-controlled structure of the macromonomer was confirmed by both 
1
H NMR 

spectroscopy and gel permeation chromatography (GPC), as shown in Figure 4-1.B.  

Obvious peak position shifts were observed after each chain extension and the 

corresponding peaks were all symmetric, indicating mono-modal molecular weight 

distributions with low polydispersity indices (PDIs).  The final macromonomer (NB-PS-

b-PMA-b-PtBA) had a molecular weight of 15,900 Da with a PDI of 1.20.  

The backbone of the overall molecular brush (PNB-g-(PS-b-PMA-b-PtBA)) was grown 

in the second step, by ROMP of the chain end norbornenyl groups of NB-PS-b-PMA-b-

PtBA.  ROMP has been widely used to polymerize bulky macromonomers to afford 

densely grafted polymers.(25-28, 31-34)  As shown in the GPC trace (Figure 4-1.B), a 

peak shift to lower retention time was observed with over 95% conversion of the 

macromonomers to brush structures and a residual peak at 21 – 22 min.(25, 28)  The 

resulting molecular brushes had a molecular weight of 1.52 × 10
6
 Da with narrow 

molecular weight distribution (PDI = 1.15), which, by the nature of the ―grafting-

through‖ procedure, had an even grafting density of side chains along the backbone.  

Finally, PNB-g-(PS-b-PMA-b-PtBA) was then converted to the concentrically-

amphiphilic block brush copolymer PNB-g-(PS-b-PMA-b-PAA) by deprotection of the 

acrylic acid groups by acidolysis of the t-butyl acrylate repeat units. 

In addition to providing control over the molecular brush structure and composition, the 

―grafting-through‖ strategy also offered the opportunity to isolate exact structural and 

compositional analogs of the linear triblock copolymer side chains.  By deprotecting the 

acrylic acid repeat units of NB-PS-b-PMA-b-PtBA, NB-PS-b-PMA-b-PAA was obtained, 

whose composition is consistent with the side chains of the molecular brush.  The 
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solution-state assembly behaviors of these two amphiphilic macromolecules—one being 

a complex molecular brush architecture and the other being a linear polymer chain—were 

then investigated and compared.   

When transitioned from N,N-dimethylformamide into water, the nanostructures from the 

triblock molecular brush copolymer and linear copolymer amphiphiles exhibited different 

morphologies, regardless of their compositional consistency.  As shown in the 

transmission electron microscopy (TEM) images, the linear amphiphilic macromolecules 

gave globular nanoscopic morphologies with overall diameters of 21 ± 2 nm (Figure 4-

1.E); while the molecular brushes exhibited cylindrical morphologies with diameters of 

18 ± 2 nm and lengths of 92 ± 21 nm (Figure 4-1.C).  The diameter of the cylinders was 

close to the diameter of the globules, suggesting that the core-shell micellar arrangement 

of PS-b-PMA-b-PAA polymer side chains in the molecular brushes was similar to that of 

those polymers, not connected by covalent bonds.  Under imaging by atomic force 

microscopy (AFM), it is obvious that the cylindrical nanoassemblies were composed of 

individual globular structures, presumably individual molecular brushes, arranged by a 

one dimensional assembly (Figure 4-1.D and Figure 4-4).  Assuming that the individual 

brushes were globular and their sizes did not change significantly when they were 

assembled, the average number of brushes per cylinder was around four-to-five.   

It was hypothesized that within the molecular brush framework, the rigid polynorbornene 

backbone limited the conformational freedom of the triblock copolymer grafted side 

chains, providing opportunities for interactions uni-directionally between individual 

molecular brushes, especially by interactions at the backbone chain ends where the 

density of chains would be minimized.  The linear amphiphilic triblock copolymer 
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requires multi-molecular interactions to remain as stable dispersions in water.  When 

confined through covalent bonds within the molecular brush architecture, aqueous 

dispersions of the discrete triblock copolymers would be stabilized by the PAA segments 

of surrounding chains, but only to a limited extent.  The extent of solution-state 

stabilization was not expected to be equal among the triblock copolymer side chains 

distributed along the polynorbornene backbone – those grafted at the ends of the 

backbone would be less stabilized because the chain packing density is expected to be 

lower than for those along the backbone.  Assembly through contacts between the 

hydrophobic interior (PS and PMA) counterparts from multiple molecular brushes would 

reduce the intrinsic energy and, thereby, retain their multi-molecular assembly tendency.  

By having lower density, less well stabilized and active end caps on the molecular 

brushes, one-dimensional assembly would be promoted, to afford the cylindrical 

nanostructures as observed. 
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To further study this proposed mechanism, the aqueous solution was heated at 70 
o
C for 3 

h.  Upon heating, it was found that the cylindrical morphologies were replaced by 

globular entities with a number-averaged diameter of 19 ± 2 nm, as observed by TEM, 

suggesting that disassembly of the cylindrical nanostructures into individual brushes had 

occurred (Figure 4-2.A).  The disassembly was further confirmed by dynamic light 

scattering (DLS) analysis of the PNB-g-(PS-b-PMA-b-PAA) aqueous solutions at 

different temperatures, which showed that the hydrodynamic sizes of the nanostructures 

decreased when the temperature was increased from 25 
o
C to 70 

o
C (Figure 4-6).  The 

disassembly can be explained by analyzing the forces in the cylindrical structures to bring 

the triblock copolymer chains together.  There were two interactions involved in the 

cylindrical nanostructures:  One was the strong covalent bonds which held the 

amphiphilic triblock copolymer onto the polynorbornene backbone; the other was the 

Figure 4-2.  (A) TEM images of the disassembled nanostructures after heating the 

aqueous solution of PNB-g-(PS-b-PMA-b-PAA) at 70 oC for 3 h.  (B) TEM images of the 

partially reassembled nanostructures after adding an equivalent volume of THF to the 

heated PNB-g-(PS-b-PMA-b-PAA) aqueous solution.  Scale bar: 100 nm. 
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weak intermolecular non-covalent interactions that assembled individual brushes into 

cylindrical structures.  Heating the solution provided sufficient energy to break the weak 

intermolecular interactions, but the strong covalent bonds were still conserved by this 

process.  The disassembly confirmed that the cylindrical nanostructures resulted from the 

self assembly of the amphiphilic molecular brushes via intermolecular interactions.  

Interestingly, cooling the heated solution at room temperature could not reproduce the 

cylindrical structures, even after concentrating the solution ten-fold to increase the 

frequency of intermolecular collisions between molecular brushes.  This result suggested 

that the interaction between the hydrophobic core domains of amphiphilic molecular 

brushes is a key parameter to their self-organization behaviors.  After being disassembled 

by heat, the individual brushes had to adopt conformations in which the inner 

hydrophobic cores were fully surrounded by hydrophilic shells to decrease the intrinsic 

energy.  As a result, the cores became inaccessible by other molecules, leading to 

incapability to interact with each other to reproduce the cylindrical nanostructure.   

Changing the environmental medium can change the conformations, conformational 

degrees of freedom, mobility and dynamics of individual brushes.  An equivalent volume 

of THF was added to the heated micellar solution, from which TEM images showed that 

shorter cylindrical nanostructures appeared, suggesting that the hydrophobic domains 

became accessible and interactive again after adding a common solvent, which led to 

attraction between individual molecular brushes (Figure 4-2.B).  Furthermore, the heated 

solution was lyophilized and the resulting powders were dissolved in DMF and dialyzed 

against water again to reproduce the cylindrical structures (Figure 4-5).  The results from 

TEM showed cylindrical structures with similar sizes to the original assemblies prior to 
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heating.  In addition to providing mechanistic insights, the thermally-driven disassembly 

and solvent-promoted re-assembly are interesting triggers to alter these unique 

morphologies. 

More insights into the mechanism of the self assembly of molecular brushes were 

obtained by comparing the molecular brush structures in organic solvent and after 

dialysis into water, to determine whether any pre-assembly occurred prior to the aqueous-

promoted assembly process.  DLS was used to characterize the samples before and after 

dialysis in bulk solution state.  At 25 °C, the number-averaged hydrodynamic diameter of 

the molecular brushes in DMF solution before dialysis was 20 ± 6 nm (Figure 4-7), while 

the number-averaged hydrodynamic diameter of the assembled structures after dialysis 

was 134 ± 38 nm (Figure 4-6).  These data indicate a transformation from individual 

molecular brushes in organic solvent to multimolecular assemblies in water.  

Furthermore, TEM was used to observe their morphologies in dry state, after drop 

deposition onto a carbon-coated copper grid and drying under ambient conditions 

(Figure 4-8 and Figure 4-9).  To avoid the possible side effects of water from the 

aqueous staining solution, RuO4 vapor was used.  Surprisingly, it was found that the 

samples dried from DMF solution showed long cylindrical structures that appeared to be 

branched and interconnected with each other, while those from the aqueous solution 

contained shorter, discrete cylinders.  When dried on the TEM grids, the highly flexible 

and mobile characteristics of the molecular brushes in DMF promoted interactions 

between them that were not necessarily unidirectional.  As a result, some branching sites 

were observed, facilitated by more than two contact points between one molecular brush 

and its neighbors.  Although the images of Figure 4-8 are essentially drying patterns, 
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they provide significant information regarding the intermolecular interactions and 

degrees of flexibility that are possible even for these densely-grafted triblock molecular 

brush copolymers.  In comparison, the dynamically-assembled structures were ―frozen‖ 

in water after dialysis, as suggested by both DLS and TEM.   

Given the observation that the molecular brushes were discrete, individual entities in 

DMF solution before dialysis, combined with the fact that the separated individual 

molecular brushes alone could not undergo intermolecular interactions in water, the self-

assembled structures were proposed to be created during dialysis, when the flexibilities of 

the triblock side chains were still in an appropriate range for intermolecular interactions 

and the mobilities of the molecular brushes were decreased significantly to avoid 

separation of the assembled structures.  Overall, a mechanism of the self assembly of 

PNB-g-(PS-b-PMA-b-PAA) into dynamic hierarchical cylindrical nanostructures was 

proposed, as shown in Figure 4-3.   
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The hierarchical process demonstrated here, which is developed from applying covalent 

and supramolecular interactions stepwise to amphiphilic linear triblock copolymers, has 

enabled the production of dynamic, one-dimensional, cylindrical assemblies.  Although 

originating from a symmetrical, concentrically-arranged molecular brush block 

copolymer structure, the relative chain densities along the primary molecular brush 

backbone provided for differentiation of accessibility to the core chain segments — 

greater at the backbone ends than the mid-segment, to produce these complex 

Figure 4-3.  Schematic illustrations of the morphologies of the PNB-g-(PS-b-PMA-b-

PAA) molecular brushes at different stages.  The molecular brushes were more flexible in 

DMF solution before dialysis, exposing the internal components to participate in 

intermolecular interactions.  The dynamic hierarchical cylindrical structures were 

―frozen‖ in aqueous solution after dialysis and they could undergo thermo-driven 

disassembly.  Due to the low degree of the flexibility in water, the disassembled 

molecular brushes could not re-assemble into cylindrical structures by simply cooling.  

Reproduction of the hierarchical cylindrical structures was achieved by lyophilizing the 

disassembled molecular brushes, dissolving them in DMF and dialyzing the solution 

against water. 
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hierarchically-assembled nanomaterials.  With all of the attention that is being placed 

upon the incorporation of chemically-distinct functionalities within polymer frameworks, 

this physically-induced asymmetry is an exciting new direction to take as a general 

methodology toward the preparation of other unique materials.  In fact, the combination 

of recent advances in synthetic polymer chemistry and solution-state assembly can be 

tuned individually, to influence their intra- and intermolecular interactions, and facilitate 

the arrangement of polymer building blocks into complex, functional materials, 

ultimately, approaching the sophistication of Nature. 
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EXPERIMENTAL 

 

Measurements 

Proton nuclear magnetic resonance (
1
H NMR) spectra were recorded at 300 MHz on a 

Varian Mercury 300 spectrometer with solvent proton resonance as reference.  Carbon 

nuclear magnetic resonance (
13

C NMR) spectra were recorded at 75 MHz on a Varian 

Mercury 300 spectrometer with solvent carbon resonance as reference.  Infrared spectra 

were obtained on a Perkin-Elmer Spectrum BX FT-IR system using diffuse reflectance 

sampling accessories.   

 

Gel permeation chromatograph (GPC) was conducted on a Waters 1515 HPLC (Waters 

Chromatography, Inc.) equipped with a Waters 2414 differential refractometer and a 

Model PD2040 dual-angle (15
o
 and 90

o
) light scattering detector (Precision Detectors, 

Inc.), and a three-column series PL gel 5μm Mixed C, 500 Å, and 104 Å, 300 × 7.5 mm 

columns (Polymer Laboratories Inc.).  The system was equilibrated at 35 °C in THF, 

which served as the polymer solvent and eluent with a flow rate of 1.0 mL/min.  Polymer 

solutions were prepared at a known concentration (ca. 3 mg/mL) and an injection volume 

of 200 μL was used.  Data collection and analysis were performed, respectively, with 

Precision Acquire software and Discovery 32 software (Precision Detectors, Inc.).  The 

system was calibrated using polystyrene standards.  

 

Differential scanning calorimetry (DSC) was conducted on a DSC822
e
 instrument 

(Mettler-Toledo, Inc.) at temperature range of −50 - 200 °C with a heating rate of 
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10 °C/min under nitrogen.  The data were acquired and analyzed with STAR
e
 software 

(Mettler-Toledo, Inc.).  The Glass transition temperature (Tg) values were taken at the 

midpoint of the inflection tangent, upon the third heating scans. 

 

Dynamic light scattering (DLS) measurements were conducted using Delsa Nano C 

(Beckman Coulter, Inc., Fullerton, CA) equipped with a laser diode operating at 658 nm.  

Size measurements were made in N,N-dimethylformamide (DMF) (n = 1.4282,  = 0.794 

cP at 25 ± 1 °C) or water (n = 1.3329,  = 0.890 cP at 25 ± 1 °C; n = 1.3293,  = 0.547 

cP at 50 ± 1 °C; n = 1.3255,  = 0.404 cP at 70 ± 1 °C).  Scattered light was detected at 

15° angle and analyzed using a log correlator over 70 accumulations for a 0.5 mL of 

sample in a glass size cell (0.9 mL capacity).  The samples in the glass size cell were 

equilibrated at the desired temperature for 60 minutes before measurements were made.  

The photomultiplier aperture and the attenuator were automatically adjusted to obtain a 

photon counting rate of ca. 10 kcps.  The calculation of the particle size distribution and 

distribution averages was performed using CONTIN particle size distribution analysis 

routines.  The peak average of histograms from intensity, volume or number distributions 

out of 70 accumulations was reported as the average diameter of the particles.  

 

Atomic force microscopy (AFM) was conducted on a MFP-3D-BIO system (Asylum 

Research, Santa Barbara, CA), operated in a tapping mode in air with high resolution 

probes (DP14/HI‘RES/Al BS, from μmash: L, 125 μm; normal spring constant, 5.0 N/m; 

resonance frequency, 160 kHz).  The average height and diameter values were 

determined by section analysis, using the IGOR Pro software package.  Transmission 
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electron microscopy (TEM) imaging was performed in high-contrast mode with a Hitachi 

H-7500 at 80 kV accelerating voltage. 

 

Materials  

Azobisisobutyronitrile (AIBN, 98%, Aldrich) was recrystallized from methanol before 

use.  Tert-butyl acrylate (tBA, 98%, Aldrich), methyl acrylate (MA, 99%, Aldrich), 

styrene (St, 99%, Aldrich), were passed through neutral alumina column before 

polymerizations.  Iodotrimethylsilane (TMSI, 97%, Aldrich) and sodium thiosulfate 

(Na2S2O3, 98.0%, Sigma-Aldrich) were used as received.  The Grubbs‘ catalyst and the 

norbornenyl-functionalized RAFT chain transfer agent (NB-CTA) were prepared by the 

methods reported.(19, 20)  Spectr/Por
®
 membranes (MWCO 3500 Da, Spectrum Medical 

Industries, Inc., Laguna Hills, CA) were used for dialysis. 

 

Synthesis of α-norbornenyl polystyrene (NB-PS).  

The polymer was prepared from the polymerization mixture of St (18.20 g, 175 mmol), 

NB-CTA (541 mg, 0.862 mmol), AIBN (1.6 mg, 1.0×10
-2

 mmol) at 50 °C.  The 

polymerization was quenched after 40 h when the monomer conversion was measured to 

be 10% by 
1
H NMR spectroscopy (the conversion was calculated by the integration ratio 

of aromatic protons and one alkenyl proton (6.32-7.40 ppm) to the other two alkenyl 

protons (5.7 ppm and 5.2 ppm)).  The isolated yield was 1.60 g (74 %, based on the 

conversion of St).  Mn
calc

 = 2740 Da, Mn
GPC

 = 3340 Da, PDI = 1.14.  Tg: 93 
o
C.  IR (cm

-1
): 

3150-2850 (strong), 1943 (medium-weak), 1869 (medium-weak), 1802 (medium-weak), 

1725 (medium-strong), 1601 (medium-strong), 1583 (medium), 1541 (weak), 1493 
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(strong), 1452 (strong), 1371 (medium), 1266 (medium), 1181 (medium), 1154 (medium), 

1110 (medium), 1068 (medium-strong), 1028 (medium-strong), 906 (medium), 757 

(strong).  
1
H NMR (300 MHz, CD2Cl2, ppm): δ 0.80-0.90 (-CH3 of the RAFT chain end 

and backbone protons), 1.10-2.50 (alkyl protons of RAFT agent and polystyrene 

backbone protons), 2.74-2.79 (>CH-CH=CH-CH<), 3.23-3.50 (-CH2SC(S)S-), 6.03-6.16 

(-CH=CH-), 6.32-7.40 (aromatic protons).  
13

C NMR (75 MHz, CD2Cl2, ppm): δ 40.0-

41.8, 42.5-46.0, 126, 128, 145. 

 

Synthesis of α-norbornenyl polystyrene-b-poly(methyl acrylate) (NB-PS-b-PMA).  

The polymer was prepared from the polymerization mixture of MA (8.60 g, 100 mmol), 

NB-PS as the macro-CTA (993 mg, 0.297 mmol) and AIBN (0.9 mg, 5.5×10
-3

 mmol) at 

50 °C.  The polymerization was quenched after 20 h when the monomer conversion was 

measured to be 8% by 
1
H NMR spectroscopy.  Yield: 1.18 g (70 %, based on the 

conversion of MA).  Mn
calc

 = 5560 Da, Mn
GPC

 = 5580 Da, PDI = 1.15.  Tg: 93 
o
C, 11 

o
C.  

IR (cm
-1

): 3100-2850 (medium-strong, multiple peaks), 1802 (weak), 1733 (strong), 1600 

(medium-weak), 1541 (weak), 1493 (medium), 1452 (medium-strong), 1388 (medium-

weak), 1253 (medium-weak), 1195 (medium), 1164 (medium-strong), 1110 (medium 

weak), 988 (weak), 906 (weak), 827 (medium-weak), 752 (medium).  
1
H NMR (300 

MHz, CD2Cl2, ppm): δ 0.80-0.90 (-CH3 of the RAFT chain end and backbone protons), 

1.10-2.50 (alkyl protons of RAFT agent and polymer backbone), 2.74-2.79 (>CH-

CH=CH-CH<), 3.23-3.30 (-CH2SC(S)S-), 3.55-3.75 (-OCH3 of MA units), 6.03-6.15 (-
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CH=CH-), 6.30-7.40 (aromatic protons).  
13

C NMR (75 MHz, CD2Cl2, ppm): δ 35.7-37.2, 

40.5-46.5, 51.6, 126, 128, 145, 175.   

 

Synthesis of α-norbornenyl polystyrene-b-poly(methyl acrylate)-b-poly(t-butyl 

acrylate) (NB-PS-b-PMA-b-PtBA). 

The polymer was prepared from the polymerization mixture of tBA (1.94 g, 15.1 mmol), 

NB-PS-b-PMA as the macro-CTA (385 mg, 0.0689 mmol), AIBN (0.6 mg, 3.7×10
-3

 

mmol) and 2-butanone (2.0 mL) at 50 °C.  The polymerization was quenched after 20 h 

when the monomer conversion was measured to be 35% by 
1
H NMR spectroscopy.  

Yield: 882 mg (83 %, based on the 35% conversion of tBA).  Mn
calc

 = 15400 Da, Mn
GPC

 = 

15900 Da, PDI = 1.20.  Tg: 93 
o
C, 43 

o
C, 11 

o
C.  IR (cm

-1
): 3100-2800 (medium-strong, 

multiple peaks), 1943 (medium-weak), 1738 (strong), 1601 (medium-weak), 1448 

(medium-strong), 1371 (strong), 1256 (medium-strong, broad), 1164 (strong), 845 

(medium), 757 (medium-weak).  
1
H NMR (300 MHz, CD2Cl2, ppm): δ 0.80-0.90 (-CH3 

of the RAFT chain end), 1.10-2.50 (alkyl protons of RAFT agent and polymer backbone, 

-(CH3)3C of tBA units), 2.74-2.79 (>CH-CH=CH-CH<), 3.23-3.50 (m, -CH2SC(S)S-), 

3.65 (-OCH3 of MA units), 6.03-6.15 (-CH=CH-), 6.30-7.40 (aromatic protons).  
13

C 

NMR (75 MHz, CD2Cl2, ppm): δ 28.0-29.0, 35.5-38.5, 40.5-47.5, 51.8, 80.4, 126, 128, 

145, 174, 176.   
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ROMP-based synthesis of molecular brushes with triblock side chains (PNB-g-(PS-

b-PMA-b-PtBA)).   

To a solution of Grubbs‘ catalyst in CH2Cl2 (4.2 mg/mL, 100 μL, 1 equiv.) under argon 

in a scintillation vial capped with a septum was added the NB-PS-b-PMA-b-PtBA 

solution in CH2Cl2 (73.1 mg/mL, 1000 μL, 100 equiv.) via a syringe.  The reaction was 

allowed to stir at room temperature for 1 h and the molecular brush product was obtained 

after quenching the reaction by ethyl vinyl ether (EVE) and precipitating the reaction 

mixture in methanol. Yield: 69.2 mg (95%).  Mn
calc

 = 1.59×10
6
 Da, Mn

GPC
 = 1.51 ×10

6
 Da, 

PDI=1.15.  Tg: 93 
o
C, 43 

o
C, 11 

o
C.  IR (cm

-1
): 3100-2800 (medium-strong, broad), 1943 

(medium-weak), 1738 (very strong, broad), 1601 (medium-weak), 1448 (medium-strong), 

1371 (strong), 1256 (medium-strong), 1164 (strong, broad), 845 (medium), 757 

(medium-weak).  
1
H NMR (300 MHz, CD2Cl2, ppm): δ 1.20-2.05 (polymer backbone 

protons), 1.25-1.60 (-C(CH3)3 of tBA), 2.10-2.58 (grafted side chain backbone protons), 

3.50-3.66 (-OCH3 of MA), 6.36-7.30 (aromatic protons).  
13

C NMR (75 MHz, CD2Cl2, 

ppm): δ 28.0-29.0, 35.5-38.5, 40.5-47.5, 51.7, 80.4, 126, 128, 145, 174, 176.  

 

Hydrolysis of NB-PS-b-PMA-b-PtBA to NB-PS-b-PMA-b-PAA.  

NB-PS-b-PMA-b-PAA (27.8 mg) was loaded into a vial and dissolved in CH2Cl2 (5.0 

mL).  A solution of TMSI (5.0 mL, 2.5 mL TMSI diluted by 15.0 mL CH2Cl2) was added.  

After 90 min, the excess solvent and reagent were removed in vacuo.  The residue was 

then redissolved in THF (7 mL) and decolorized by addition of an aqueous solution of 

Na2S2O3 to afford a colorless solution.  Dialysis of the solution against nanopure water 
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for 5 days cleaved the silyl ester bonds and gave the final amphiphilic NB-PS-b-PMA-b-

PAA, which was collected after removal of water by lyophilization.  Yield: 17.8 mg 

(89%).  Tg = 93 
o
C, 11 

o
C.  (Tg for PAA was not observed or overlapped with that of PS.)  

IR (cm
-1

): 3500-2750 (very strong, very broad), 1723 (medium), 1601 (medium-strong), 

1492 (medium-strong), 1452 (medium-strong), 1368 (medium-weak), 1168 (medium), 

1026 (weak), 825 (medium), 698 (medium).  
1
H NMR (300 MHz, THF-d8, ppm): δ 1.20-

2.58 (polymer backbone protons), 3.50-3.66 (-OCH3 of MA), 6.36-7.40 (aromatic 

protons), 10.80-11.60 (-COOH).  
13

C NMR (75 MHz, THF-d8, ppm): δ 33.4-37.5, 40.5-

47.5, 51.3, 126, 128, 144, 172, 174.  

 

Hydrolysis of PNB-g-(PS-b-PMA-b-PtBA) to PNB-g-(PS-b-PMA-b-PAA). 

PNB-g-(PS-b-PMA-b-PtBA) (27.4 mg) was loaded into a vial and dissolved in CH2Cl2 

(5.0 mL).  A solution of TMSI (5.0 mL, 2.5mL TMSI diluted by 15.0 mL CH2Cl2) was 

added.  After 90 min, the excess solvent and reagent were removed in vacuo.  The residue 

was then redissolved in THF (7 mL) and decolorized by addition of an aqueous solution 

of Na2S2O3 to afford a colorless solution.  Dialysis of the solution against nanopure water 

for 5 days cleaved the silyl ester bonds and gave the final amphiphilic PNB-g-(PS-b-

PMA-b-PAA), which was collected after removal of water by lyophilization.  Yield: 17.2 

mg (88%).  Tg= 93 
o
C, 10 

o
C.  IR: 3500-2750 (very strong, very broad), 1723 (medium), 

1600 (medium-strong), 1492 (medium-strong), 1452 (medium-strong), 1366 (medium-

weak), 1168 (medium), 1026 (weak), 845 (medium), 698 (medium).  
1
H NMR (300 MHz, 

THF-d8, ppm): δ 1.20-2.58 (polymer backbone protons), 3.50-3.66 (-OCH3 of MA), 6.36-
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7.38 (aromatic protons), 10.60-11.40 (-COOH).  
13

C NMR (75 MHz, THF-d8, ppm): δ 

33.0-37.5, 40.5-46.8, 51.2, 126, 128, 144, 172, 174. 

 

Self assembly of amphiphilic macromolecules to nanostrcutres. 

The general procedure was:  PNB-g-(PS-b-PMA-b-PAA) or NB-PS-b-PMA-b-PAA (10.0 

mg) was dissolved in DMF (2.0 mL) to afford a clear solution, which was then dialyzed 

against nanopure water for 5 days to afford the self assembled nanostructures.  Water was 

changed 3 times a day.  

 

General protocol for sample preparation for AFM imaging. 

A drop of the nanostructure solution (2 μL) was deposited directly onto a freshly cleaved 

mica and allowed to incubate under ambient conditions for 5 min.  After the extra 

solution was blotted off, the mica was dried at room temperature. 

 

General protocol for sample preparation for TEM imaging. 

A drop of the nanostructure solution (5 μL) was deposited directly onto a carbon-coated 

copper TEM grid and allowed to incubate under ambient conditions for 5 min.  After the 

extra solution was blotted off, the grid was dried at room temperature and stained by 

either 1.0% PTA solution or RuO4 vapor.   
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Figure 4-5.  TEM image of the re-assembled cylindrical nanostructures.  The sample 

solution was prepared from the disassembled PNB-g-(PS-b-PMA-b-PAA), which was 

collected by lyophilization and redissolved in DMF, and then dialyzed against water.  

The sample was stained with 1.0% PTA solution.  
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Figure 4-6.  DLS histograms of the dynamic hierarchical nanostructures of PNB-g-(PS-

b-PMA-b-PAA) in aqueous solutions at different temperatures (blue: 25 
o
C, green: 50 

o
C, 

and red: 70 
o
C).  (All the histograms are normalized and the values along the y axis do 

not reflect the real physical values). 

 

 

 

 

 

Figure 4-7.  DLS histograms of PNB-g-(PS-b-PMA-b-PAA) in DMF solution before 

dialysis. 
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Figure 4-8.  TEM image of the patterns dried from the DMF solution of PNB-g-(PS-b-

PMA-b-PAA).  The sample was stained with RuO4 vapor.  

 

Figure 4-9.  TEM image of the hierarchical structures self-assembled from PNB-g-(PS-b-

PMA-b-PAA) in aqueous solution.  The sample was stained with RuO4 vapor.  
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Chapter 5 

Random-grafted diblock molecular brushes 

[Zhou Li, Jun Ma and Karen Wooley, unpublished work] 

 

Synthesis of PPFS-POSS molecular brush copolymers with 

tunable PPFS/POSS ratios and study of their assemblies 

 

ABSTRACT 

We have synthesized a series of 9 PPFS-POSS molecular brush copolymers whose 

PPFS/POSS ratios are adjusted from 0.1 to 0.9 with an increment of 0.1 by an efficient 

and facile ―grafting through‖ strategy, and assembled them into complicated 

nanostructure in 9/1 acetone/methanol.  Characterization reveals that PPFS/POSS ratios 

in molecular brush architecture do not affect the sizes and morphologies of the resulting 

nanostructures, but can influence their mechanical properties significantly.  Decreased 

amount of PPFS content in molecular brush copolymers leads to flexible and looser 

nanostructures and increased amount PPFS content leads to rigid and stiff nanostructures.  

By comparison of nanostructures from molecular brush random copolymers and 

molecular brush block copolymers, it is found that proper arrangement of PPFS blocks 

and POSS blocks in the molecular brush architecture may enhance the intermolecular 

interactions among molecular brushes and leads to stiffer nanostructures. 
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INTRODUCTION 

Well-defined functional nanostructures are of great interest as tailor made materials 

which are important in many fields like materials science and biomedicine.(1-10)  

Polymers have been used to construct nanostructures whose physical properties can be 

adjusted to meet the practical requirements in various circumstances.  By tuning the 

polymer compositions and self assembly conditions, a variety of nanostructures with 

different properties have been prepared and studied.(11-14)  Among all the interesting 

properties of nanostructures, mechanical properties such as rigidity and flexibility have 

been rarely studied. 

Polyhedral oligomeric silsequioxanes (POSS) is regarded generally as the smallest 

possible silica nanoparticle with a diamter around 1.5 nm.(15, 16)  As an organic-

inorganic hybrid compound, POSS materials have been widely used to improve the 

mechanical and thermal properties of polymers and found wide applications in space 

shuttles, coatings, nanocomposities.(17-19)  Fluorine-containing polymers are important 

materials for anti-fouling applications as bulk surface materials and as discreate 

nanoscale objects.(20-25)  In this study, we have prepared a series of PPFS-POSS 

molecular brush copolymers with different PPFS/POSS ratios, and studied the 

mechanical properties of their nanostructures.   

 

RESULTS AND DISCUSSION 

The macromonomers (NB-PPFS and NB-POSS) were synthesized by RAFT 

polymerization (26, 27) and chain end modification respectively.  Their well-controlled 

structures were confirmed by both 
1
H NMR spectroscopy and gel permeation 
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chromatography (GPC).  In 
1
H NMR spectrum of NB-PPFS, the integral ratio of the 

norbornene alkenyl protons (6.02-6.10 ppm) to the RAFT agent chain end CH2SC(S)S 

methylene protons (3.30-3.56 ppm) was 1:1.03, suggesting the suppression of 

participation of norbornene groups in radical polymerization.  GPC analysis revealed that 

NB-PPFS had mono-modal molecular weight distributions with polydispersity (PDI) of 

1.12.  In 
1
H NMR spectrum of NB-POSS, the signal that corresponds to alkenyl protons 

in maleimide moiety (6.68 ppm) almost disappeared and a new peak at 6.51 ppm showed 

up, which is assigned to oxo-norbornene alkenyl protons.  The ratio of these two peaks is 

0.02:1 in the product, indicating 98% incorporation efficiency of ROMP active functional 

groups to POSS macromonomers.   

 

Various PPFS-POSS molecular brush copolymers were synthesized parallelly from NB-

PPFS and NB-POSS macromonomers by copolymerizing them using ring opening 

metathesis polymerization (ROMP).(28-32)  The molar ratios of POSS to PPFS in the 

molecular brush architectures can be tuned easily from 0.1 to 0.9 with an increment of 0.1 

(Figure 5-1.A) by changing the feeding amounts of macromonomers in the 

polymerization while keeping all the other reaction conditions the same.  The molar raio 

of NB-POSS in the molecular brush is defined as x.  Within a hour, nine different PPFS-

POSS molecular brush copolymers were synthesized.  Figure 5-2.B shows the GPC 

profile from the synthesis of the PPFS-POSS molecular brush copolymers in which 

PPFS/POSS ratio was 3/7.  The macromonomer peaks at 23.5 -26.0 min were decreased 

and a new peak appeared at the low retention time region with PDI of 1.23, indicating 

that lmost all the macromonomers were converted into the molecular brush structure.  
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The residual peaks at 23.5 -26.0 min in the moleuclar brushe product can be explained by 

incomplete functionalization of macromonomers.  Some of the polymer chains were 

capped by moieties from the cleaved AIBN initiators in RAFT polymerization and the 

formation of oxo-norbornene functionalities by [4+2] cycloaddition from maleimide is 

not 100% quantitative.   

 

Figure 5-1.  A) Structures of PPFS-POSS molecular brush copolymers where x varies 

from 0.1 to 0.9 with an increment of 0.1.  B) GPC profile of [(PNB-g-PPFS)0.3-co-(PNB-

g-POSS)0.7]100 molecular brush copolymer.   

 

The solution state self assembly behavior of the nine PPFS-POSS molecular brush 

copolymers was studied in 9/1 acetone/methanol, which is a good solvent for PPFS block 

but a nonsolvent for POSS block.  All of the nanostructures exhibited globular 

morphology under transmission electron microscopy (TEM).  Their size distribution is 

broader than those nanostructures self-assembled from linear copolymers due to the 

relatively larger sizes of the building blocks.  The comparison of the diameters of these 

nanostructures indicates that their size difference is within their size variation range.  In 

the 9 PPFS-POSS molecular brush architectures, the lengths of PPFS and POSS blocks   
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Figure 5-2.  TEM images of nanostructures self assembled from various PPFS-POSS 

molecular brush copolymers.  From left to right, at the upper row, x = 0.1, 0.2 and 0.3; at 

the middle row, x= 0.4, 0.5 and 0.6; at the bottom row, x = 0.7, 0.8 and 0.9.  Scale bar: 

500 nm. 
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are unchanged while their relative volumes are altered.  The TEM observation agrees 

with the micellization theory that the size and morphologies of the self assembled 

nanostructures indicates that their size difference is within their size variation range.(33)  

In the 9 PPFS-POSS molecular brush architectures, the lengths of PPFS an POSS blocks 

are unchanged while their relative volumes are altered.  The TEM observation agrees 

with the micellization theory that the size and morphologies of the self assembled 

nanostructures are controlled mainly by the lengths of the homopolymer sub-units in the 

linear block copolymers.  The geometric regularity of those nanostructures reveals some 

information regarding to their intrinsic mechanical properties.  It was found that those 

nanostructures made from molecular brushes bearing high PPFS content tends to exhibits 

perfect spherical curvatures (x = 0.1 - 0.5).  When PPFS content of the molecular brush is 

lowered, irregular and uneven structures will dominate (x = 0.7 -0.9).  For example, 

―flower-like‖ nanostructures can be found in the sample where x =0.8.   

Several possible explanations can be proposed for this phenomenon.  First, π-π stacking 

of PPFS blocks may be the primary interactions which stabilize molecular brushes within 

the nanostructure framework, thus lowering the PPFS content decreases the interactions 

among molecular brushes and makes the structures loose.  Second, the low surface 

energy character of PPFS blocks may lead to strong expulsive forces between 

nanoparticles and the TEM grid surfaces, which is weakened by lowering PPFS content.  

Therefore, the low PPFS nanostructures are attached to the surface more attractively and 

deformation may occur to yield irregular structures.   

More insights regarding to the mechanical properties of the self assembled nanostructures 

can be provided by other features that were captured by TEM, along with the nano-
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spheres in Figure 5-2.  Some ―cup-like‖ nanostructures were noticed in TEM images of 

the samples prepared from PPFS-POSS molecular brush copolymer where x = 0.4 

(Figure 5-3.A).  Similar structures were also noticed in the samples in which x = 0.3 and 

0.5.  Those ―cup-like‖ structures may be from the fall-over of the nano-sphere particles, 

which were absorbed onto the grid surface initially.  During sample preparation, they 

may take a tumble and the previous contact surface of the nano-spheres and grid surface 

were exposed to form the ―cup-like‖ structures (Figure 5-3.C).  TEM samples where x = 

Figure 5-3.  A) ―Cup-like‖ features observed on the TEM images of nanostructures self 

assembled [(PNB-g-PPFS)0.6-co-(PNB-g-POSS)0.4]100 molecular brush copolymers.  B) 

―Fiber-like‖ features observed on the TEM images of nanostructures self assembled 

[(PNB-g-PPFS)0.1-co-(PNB-g-POSS)0.9]100 molecular brush copolymers.  C) Illustration 

of the formation of ―cup-like‖ features.  D). illustration of the formation of ―fiber-like‖ 

features.  
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0.9 exhibited some ―fiber-like‖ features with uneven characteristics (Figure 5-3.B), 

whose one end is darker and thicker than the other.  After being attached to the grid 

surface, nano-spheres moved a few micrometers from one location to another and left a 

trace while the nanostructures were deformed.  These phenomena indicated that the 

stiffness of the nanoparticles is highly influenced by the PPFS/POSS ratio and 

nanostructure with higher PPFS content is difficult to be destructed by external forces.  

Lower ratio of PPFS leads to looser nanostructures which can be deformed by the 

stronger nanostructure-surface attractive interactions.   

 

Figure 5-4.  A) Structures of [PNB-g-PPFS]10-b-[PNB-g-POSS]90 hetero-grafted diblock 

molecular brushes.  B) GPC profiles from the synthesis of [PNB-g-PPFS]10-b-[PNB-g-

POSS]90 (green: the first block of the molecular brushes; yellow: the total diblock 

molecular brushes).  

 

It is interesting to change the arrangement of PPFS and POSS side chains in the 

molecular brush architecture and study their self assembly behaviors.  To achieve this 

goal, hetero-grafted diblock molecular brushes were synthesized, in which  the NB-PPFS 

and NB-POSS macromonomers were distributed sequentially along the backbone 
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(Figure 5-4).  Like the procedure that has been described in Chapter 3, brush copolymer 

PNB10-g-PPFS was synthesized by ROMP of NB-PPFS in CH2Cl2 first, followed by 

addition of a solution NB-POSS into the living polymerization mixture without 

purification to afford the diblock brush copolymer [PNB-g-PPFS]10-b-[PNB-g-POSS]90 

with regio-selective grafts.  During ROMP, small aliquots were withdrawn and measured 

by GPC.  As shown in Figure 5-4.B, nearly quantitative conversions of NB-PPFS was 

observed during the construction of the first block of the brush polymer structure.  More 

NB-POSS macromonomer residuals were left after the second step ROMP, due to the 

high steric effect from the bulky POSS side chains.  Both PNB10-g-PPFS and [PNB-g-

PPFS]10-b-[PNB-g-POSS]90 have mono-modal molecular weight distributions and narrow 

PDIs (<1.20).  NB-POSS was introduced successfully to produce an overall diblock 

backbone structure, as demonstrated by the evolution peak shift by GPC.  The resulting 

hetero-grafted molecular brushes were assembled into nanostructures by the same 

technique used to assemble PPFS-POSS molecular brush copolymers before.  In 

comparison with nanostructures made from [(PNB-g-PPFS)0.1-co-(PNB-g-POSS)0.9]100 

molecular brush copolymers, those from [PNB-g-PPFS]10-b-[PNB-g-POSS]90 hetero- 

grafted diblock molecular brushes have more regular geometry (Figure 5-5) and no 

―fiber-like‖ features were observed, suggesting that proper arrangement of PPFS and 

POSS blocks enhanced the intermolecular interactions among molecular brushes and 

leads to stiffer nanostructures.  When PPFS/POSS ratio is low and PPFS side chains are 

distributed randomly in molecular brush architecture, it is different for molecular brushes 

to interpenetrate with each other so that all PPFS side chains encounter counterparts.  

Selectively accumulating PPFS block in specific regions of molecular brush architecture 



129 

 

increases this possibility and thus lead to strong intermolecular interactions among 

molecular brushes. 

 

 

Figure 5-5.  A) TEM image of nanostructures self assembled from [PNB-g-PPFS]10-b-

[PNB-g-POSS]90 hetero-grafted diblock molecular brushes.  B) TEM image of 

nanostructures self assembled from [(PNB-g-PPFS)0.1-co-(PNB-g-POSS)0.9]100 molecular 

brush copolymers.  Scale bar: 100 nm. 

 

In conclusion, a series of PPFS-POSS molecular brush copolymers have been synthesized 

by an efficient and facile ―grafting through‖ strategy, by which the PPFS/POSS ratio of 

the molecular brushes is adjusted simply by changing the feeding amounts of 

macromonomers.  Nanostructures built from these molecular brushes exhibited similar 

sizes and morphologies; however their mechanical properties varied with the PPFS/POSS 
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ratio.  Lower PPFS ratio leads to flexible and looser assembled nanostructures, while 

higher PPFS ratio leads to rigid and stiffer nanostructures.  At lower PPFS ratio, proper 

arrangement of PPFS and POSS blocks in the architecture may enhance the rigidity and 

stiffness of the nanostructures. 

 

EXPERIMENTAL 

Materials 

POSS
®
 Maleimide Isobutyl was purchased from Hybrid Plastics.  Azobisisobutyronitrile 

(AIBN, 98%, Sigma-Aldrich) was recrystallized from methanol before use.  2,3,4,5,6-

Pentafluorostyrene (PFS, 99%, Sigma-Aldrich), was passed through neutral alumina 

column before polymerizations.  The Grubbs‘ catalyst and the norbornenyl-functionalized 

RAFT chain transfer agent (NB-CTA) were prepared by the methods reported.(28, 29)   

Synthesis of α-norbornenyl polypentafluorostyrene (NB-PPFS).  

The polymer was prepared from the polymerization mixture of PFS (14.06 g, 72.4 mmol), 

NB-CTA (682.3 mg, 1.448 mmol), AIBN (11.2 mg, 6.8×10
-2

 mmol) at 55 °C.  The 

polymerization was quenched after 20 h when the monomer conversion was measured to 

be 30% by 
1
H NMR spectroscopy.  The final polymer was isolated by precipitating the 

polymer solution into methanol and washed by methanol three times.  The isolated yield 

was 3.12 g (74 %, based on the conversion of PFS).  Mn
calc

 = 3382 Da, Mn
GPC

 = 2800 Da, 

PDI = 1.12.  IR (cm
-1

): 2932, 2857, 2640, 2360, 2340, 1725, 1652, 1519, 1504, 1461, 

1418, 1367, 1304, 1219, 1132, 1085, 982, 961, 911, 873, 811, 737, 668, 653.  
1
H NMR 
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(300 MHz, CDCl3, ppm): δ 0.80-0.95 (-CH3 of the RAFT chain end and backbone 

protons), 1.00-2.80 (alkyl protons of RAFT agent and polypentafluorostyrene backbone 

protons), 2.74-2.79 (>CH-CH=CH-CH<), 3.23-3.50 (-CH2SC(S)S-), 3.50-4.00 (-

CH2OC(O)C(CH3)2), 5.30-5.50 (-C6F5CHSC(S)SC12H25), 6.03-6.16 (-CH=CH-).  
13

C 

NMR (75 MHz, CDCl3, ppm): δ 28.0-30.0, 31.0-32.5, 36.0-40.0, 114, 136, 139,143,146. 

Synthesis of α-norbornenyl POSS Isobutyl (NB-POSS).  

The chain end modification of POSS Maleimide Isobutyl was done by mixing furan (1.5 

g, 22.1 mmol), POSS maleimide isobutyl (10.0 g, 10.4 mmol) in 15mL toluene.  The 

reaction was stirred at 70 
o
C for 36 h.  After removing the excess furan by vacuum, the 

product was collected by precipitation in cold methanol three times.  Yield: 5.8 g (54 %).  

Mn = 1023 Da.  IR (cm
-1

): 2954, 2870, 1775, 1704, 1464, 1401, 1366, 1331, 1230, 1101, 

1038, 956, 920, 879, 838, 742, 649.  
1
H NMR (300 MHz, CDCl3, ppm): δ 0.52-0.70 (-

SiCH2CH(CH3)2 and -SiCH2CH2CH2-), 0.86-1.04 (-SiCH2CH(CH3)2), 1.56-1.76 (-

SiCH2CH2CH2-), 1.76-1.96 (-SiCH2CH(CH3)2), 2.80-2.86 (-C(O)CH(CH)-

CH(CH)C(O)-), 3.40-3.52 (>NCH2CH2CH2-), 5.22-5.26 (-CH-O-CH- of oxo-

norbornenyl groups), 6.48-6.56 (-CH=CH-). 

ROMP-based synthesis of PPFS-POSS molecular brush copolymers with varying 

PPFS/POSS ratio.   

Three stock solutions were prepared:  1) NB-PPFS solution (0.7327 g NB-PPFS polymer 

was dissolved in 5.00 mL CH2Cl2, 5.23 × 10
-2

 mmol/mL);  2) NB-POSS solution 

(0.2677g NB-POSS polymer was dissolved in 5.00 mL CH2Cl2,.5.23 × 10
-2

 mmol/mL); 3) 

Grubbs‘ catalyst solution (0.0076 g the modified 2
nd

 generation Grubbs catalyst was 



132 

 

dissolved in 1.95 mL CH2Cl2, 5.23 × 10
-3

 mmol/mL).  Nine PPFS-POSS molecular brush 

copolymers were synthesized from the same stock solutions by adjusting the feeding 

amount of NB-PPFS and NB-POSS.  To vial 1, 0.90 mL solution 1 and 0.10 mL solution 

2 were mixed; to vial 2, 0.80 mL solution 1 and 0.20 mL solution 2 were mixed…  By 

decreasing the volume of solution 1 by a decrement of 0.10 mL and increasing the 

volume of solution 1 by an increment of 0.10 mL, nine vials of mixtures of NB-PPFS and 

NB-POSS can be obtained.  To all the vials, 0.10 mL solution 3 was added to trigger the 

ROMP and all the reactions were quenched by ethyl vinyl ether after 2 h.  Nine PPFS-

POSS molecular brush copolymers can be obtained by precipitating the polymer 

solutions in methanol.   

ROMP-based synthesis of PPFS-POSS hetero-grafted molecular brush copolymers.   

To a solution of Grubbs‘ catalyst in CH2Cl2 (9.7 mg/mL, 1.8 mL, 1 equiv.) under 

nitrogen in a scintillation vial capped with a septum was added a CH2Cl2 solution of NB-

PPFS (99.6 mg/mL, 5.0 mL, 50 equiv.) via an nitrogen-flushed syringe.  The reaction 

was allowed to stir at room temperature for 3 min, and an aliquot of the reaction mixture 

(100 μL) was withdrawn (for the analysis of the first block) (PDI=1.08).  After that, a 

CH2Cl2 solution of NB-POSS (237.1 mg/mL, 6.2 mL, 50 equiv)  was added to the living 

polymerization mixture immediately to allow for the second ROMP reaction.  Another 3 

min later, the polymerization was quenched by addition of a small amount of ethyl vinyl 

ether.  The final diblock molecular brush was obtained after precipitating the reaction 

mixture in methanol. 
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Construction of nanostructures from molecular brush copolymers in 9/1 

acetone/methanol. 

Molecular brush copolymer solutions were prepared in CH2Cl2 first at a high 

concentration (100mg/mL).  100 μL of each solution was added to 9/1 acetone/methanol 

(10 mL) slowly to trigger the self-assembly of molecular brushes.  During the addition, 

the solution was kept stirring.  After that, all the self-assembled solutions were sealed and 

kept at RT for 3 days before TEM analysis. 
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Chapter 6 

Conclusions 

 

This dissertation focuses on the development of a new ―bottom-up‖ approach to prepare 

robust well-defined nanostructures with precise control over their structure, composite 

and dimensions, with the ultimate goal to assemble single small molecules to complicated 

structures by covalent bonds totally.  By taking advantage of recent advances in living 

polymerization techniques and combing them rationally, such as ring opening metathesis 

polymerization (ROMP), living/controlled radical polymerization (CRP), ring opening 

polymerization (ROP) and chain end modification, we have developed an efficient and 

facile ―grafting through‖ strategy to synthesize a variety of molecular brushes from 

different norbornenyl group functionalized macromonomers, including polystyrene, 

poly(4-acetoxystyrene), poly(pentafluorostyrene), poly(methyl acrylate), poly(t-butyl 

acrylate), poly(methyl methacrylate), poly(t-butyl methacrylate), polylactide, 

poly(ethylene glycol) and polyhedral oligomeric silsesquioxane (POSS).  Details about 

the design and realization of the ―grafting through‖ strategy can be found in Chapter 1 

and Chapter 2.  It should be pointed out that the types of macromonomers that are 

compatible with this strategy can go beyond this scope - by principle, all the functional 

groups that are compatible with the Grubbs‘ catalysts can be incorporated into molecular 

brush frameworks by our ―grafting through‖ method. 

The complexity of the resulting molecular brushes can be increased further by 

introducing block structures to either the backbone or side chains, using the ―livingness‖ 
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characters of the employed polymerization techniques.  Those block molecular brushes 

can be building blocks to construct more complicated nanostructures and push the self-

assembly of polymers from linear block copolymers to complex macromolecular 

architectures.   

In Chapter 3, the livingness of ROMP is utilized to achieve the one-pot synthesis of 

hetero-grafted diblock molecular brush structures by polymerizing different 

macromonomer sequentially using the modified 2
nd

 generation Grubbs‘ catalyst as the 

initiator.  The key parameter to this synthesis is the polymerization time to build the first 

block of the molecular brush.  Short polymerization time leads to incomplete conversion 

of the first block macromonomer, while long polymerization time leads to chain-end 

deaths.  A specific type of diblock brushes [P(NB-g-PtBA)-b-P(NB-g-PS)] was prepared 

from polystyrene and poly(t-butyl acrylate) macromonomers and then these diblock 

molecular brushes were chemically transformed to amphiphilic nanostructures, whose 

aqueous solution self-assembly study revealed that ca. 60-80 unimers were assembled to 

a more complicated nanostructure.   

In Chapter 4, molecular brushes with block structures along the side chains are 

synthesized and characterized.  ɑ-Norbornyl-polystyrene-b-poly(methyl acrylate)-b-

poly(t-tubyl acrylate) macromomonomers were synthesized from sequential RAFT 

polymerizations of respective monomers and then transformed into molecular brush 

frameworks by ROMP.  After converting both macromonomers and molecular brushes to 

amphiphilic structures, they were assembled into nanostructures by dialysis from 

common solvent to water.  Their compositional consistency was guaranteed by the 

―grafting through‖ strategy and enabled us to study the difference of their self assembly 
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behaviors which may be caused by molecular brush architecture only.  It was found that 

nanostructures from linear macromonomers showed globular structures, while 

nanostructures from amphiphilic molecular brushes exhibited cylindrical structures.  In 

this study, we have demonstrated a hierarchical process that assembles linear triblock 

copolymers into a complicated nanostructure.  They form concentric globular sub-units 

through strong chemical bonds first, followed by the supramolecular assembly via weak 

non-covalent interactions to afford one-dimensionally-assembled, dynamic cylindrical 

nanostructures.   

In Chapter 5, the efficiency of the ―grafting through‖ strategy is further utilized to 

synthesize PPFS-POSS molecular brush copolymers (9 polymers at one time), whose 

PPFS/POSS ratio from 0.1 to 0.9 with an increment of 0.1.  Nanostructures assembled from 

them exhibit similar sizes and morphologies, but different mechanical properties.  Lower 

PPFS/PPFS ratio leads to flexible and looser nanostructures and the arrangement of PPFS 

blocks and POSS blocks in molecular brushes may influence mechanical properties as well. 

It is hoped that this dissertation has conveyed the notion that a ―grafting through‖ strategy 

has been built up to construct molecular brushes with well-defined structures, whose 

compositions, structures and dimensions are all controlled precisely.  As an attempt to create 

nanostructures by ―bottom-up‖ methods, this ―grafting-through‖ strategy has been proven to 

be efficient, facile and versatile.  Besides the examples that have been listed in the chapters of 

this dissertation, molecular brushes with more complicated structures and more advanced 

functionality can be prepared from small molecular moieties that are compatible with 

metathesis reactions.  The increasing complexity of the molecular brush structures promises a 

great potential to apply them for the construction of more complicated hierarchical 
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nanostructures, which may meet the needs of complicated nanostructures to handle 

complicated issues in material science, catalysis and biomedicine.   
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