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On Control Systems of the Brain:  
A Study of Their Connections, Activations, and Interactions 

by 

Haoxin Sun 

Doctor of Philosophy in Biomedical Engineering 
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Professor Steven E. Petersen, Chair 

 
 

Implementation of daily functions in humans crucially relies on both the bottom-up 

moment-to- moment processing of relevant input and output information as well as the top-down 

controls that instantiate and regulate goal-directed strategies. The current dissertation focuses on 

different systems of brain regions related to task control. We are interested in investigating, in 

detail, some of the basic activity patterns that different control systems carry during simple tasks, 

and how differences in activity patterns may shed new insight onto the distinctions among the 

systems’ functional roles. In addition, carefully coordinated interactions between brain regions 

specialized for control-related activity and regions specialized for bottom-up information 

processing are essential for humans to adeptly undertake various goal-directed tasks. Hence, 

another goal is to explore how the relationships among regions related to control and regions 

related to processing will change as result of top-down control signals during tasks.  

In Chapter 2, we applied the graph theory method of link communities onto the brain’s 

resting-state intrinsic connectivity structure to identify possible points of interactions among the 
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previously defined functional systems, including various control systems.  In Chapter 3, we 

conducted a meta-analysis of tasks to examine the distinct functional characteristics of control 

systems in task activation. Using a data-driven clustering analysis, we identified two distinct 

trial-related response profiles that divided the regions of control systems into a right 

frontoparietal and cinguloopercular cluster, which may be engaged in fine-tuning task parameters 

and evaluating performance, and a left frontoparietal and dorsal attention cluster, which may be 

involved in timely updates of trial-wise parameters as well as information processing. In Chapter 

4, we explored the changes in functional relationships among selected systems during individual 

trials of a goal-direct task and found the presence of complex and dynamic relationships that 

suggest changes among the various functional systems across a trial reflect both continuous as 

well as momentary effects of top-down signals. Collectively, the studies presented here both 

contributed to as well as challenged previous frameworks of task control in an effort to build 

better understanding of the basic organization and interactions among the brain’s functional 

systems.
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CHAPTER 1: INTRODUCTION 

  

Decades of PET and fMRI experiments have observed co-activation in consistent sets of 

distributed brain regions during certain types of tasks (Pardo, Fox, & Raichle, 1991; Petersen, 

Fox, Posner, Mintun, & Raichle, 1988; Posner, Petersen, Fox, & Raichle, 1988). Given the 

evidence gathered from many carefully designed experiments hypothesized to elicit specific 

types of mental operations, it was suggested that these individual sets of brain regions, or 

functional systems, may carry different cognitive operations (Corbetta & Shulman, 2002; 

Dosenbach et al., 2006; Raichle et al., 2001).  

However, until the body of work that examined spontaneous fMRI signals, the identities 

of the functional systems were dependent upon sets of task paradigms, and the early task-based 

approaches were not sufficient for answering whether the functional systems reflected a 

fundamental organization of the brain, or whether they were just some transient and specific 

effects of task. Through the study of spatial pattern within spontaneous fMRI signals, it had been 

observed that there exist highly correlated spontaneous fluctuations among selected sets of 

regions of the brain that appear to correspond to task-driven functional systems (Biswal, Yetkin, 

Haughton, & Hyde, 1995; Dosenbach et al., 2007; Fox, Corbetta, Snyder, Vincent, & Raichle, 

2006; Fox et al., 2005; Greicius, Krasnow, Reiss, & Menon, 2003). More recent analyses of the 

whole-brain spontaneous fluctuations provided further understanding of the intrinsic functional 

organization of the human brain (Power et al., 2011; Yeo et al., 2011), forming the basis for 

subsequent investigations regarding the functional roles played by each system as well as the 

interactions among different systems during task.   
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The current dissertation focuses on functional systems related to task control. Exercising 

control is an essential cognitive ability that allows us to navigate flexibly and successfully 

through everyday tasks. Here we are interested in investigating, in detail, some of the basic 

activity patterns that different control systems carry during simple tasks, and how differences in 

activity patterns may shed new insight onto the systems’ functional roles. In addition, given the 

intrinsic functional structure of the brain, we describe how the relationships among regions of 

different functional systems will change as result of certain control demands during tasks.  

I.  Resting-State Functional Connectivity and Functional Systems of the Brain 

 The method of Functional Magnetic Resonance Imaging (fMRI) measures the relative 

changes in the blood oxygenation level dependent signals (BOLDs) during the performance of a 

task to infer which areas of the brain are activated. Although the exploration of task-driven 

activation of the brain has been fruitful, one of the major challenges in neuroimaging is to have 

the ability to examine the entire set of brain's functional systems without being constrained by an 

a priori hypothesis. In response to this, resting-state fMRI (rs-fMRI) developed as a valuable 

adjunct for addressing the challenge.     

Rs-fMRI focuses on a spontaneous slow but large amplitude fluctuations occurring in the 

frequency range of 0.01 to 0.1 Hz. The functional significance of these fluctuations was first 

revealed in imaging of the brain during rest. In 1995, Biswal and colleague reported that, at rest, 

the fluctuations in the low frequency BOLD signals are temporally correlated across functionally 

related areas (Biswal et al., 1995). In this study, during the resting-state acquisitions, subjects 

were instructed to refrain from any cognitive, language, or motor tasks. Using a seed region in 

the left somatosensory cortex that was determined by separate acquisitions of task-based fMRI 
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scans in which subjects performed bilateral finger tapping, the authors found, after correlating 

the time-course of the seed region with the time-courses of other regions of the brain, that the 

seed region was highly correlated with the homologous area in the contralateral hemisphere. In 

subsequent studies, the existence of synchronous fluctuations between primary somatosensory 

areas and other movement related regions, such as in supplementary motor areas, the thalamus, 

and the cerebellum, were further confirmed, and similar findings were reported in primary and 

higher-level visual and auditory regions, as well (Cordes et al., 2001; Lowe, Mock, & Sorenson, 

1998). The correlation in resting-state BOLD fluctuations is referred to as “functional 

connectivity”.    

Over the years, studies using rs-fMRI has made significant progress on identifying 

several intrinsic functional systems in the human brain. It has been found that regions of higher-

level cortical areas that often activate or deactivate together during tasks also showed greater 

correlated functional connectivity. For example, one of the principal higher-level functional 

systems is the default-mode system, first identified by Raichle and colleagues using PET 

(Raichle et al., 2001).  Its regions (e.g. posterior cingulate and ventral anterior cingulate cortex) 

are deactivated during performance of cognitive tasks. More importantly, similar to the visual 

and motor systems, default-mode regions display selective synchronization during resting-state, 

suggesting, among them, an intrinsic cohesiveness (Greicius et al., 2003).  Subsequent systems 

of higher function that were identified by resting-state fMRI include attention systems (Fox et 

al., 2006) and executive control systems (Dosenbach et al., 2007).  
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Large Scale Functional Network 

 In order to efficiently and comprehensively explore the overall functional architecture of 

the human brain, a variety of methods (e.g. seed-based analyses, ICA, clustering) have been 

applied to rs-fMRI data (Beckmann, DeLuca, Devlin, & Smith, 2005; Smith et al., 2009; Yeo et 

al., 2011). One of the most powerful approaches is the usage of graph theory concepts (Bullmore 

& Sporns, 2009; Rubinov & Sporns, 2009). Graph theory is the study of networks. It models a 

complex system as a mathematical object composed of a set of elements (nodes) and the pair-

wise relationships between the elements (edges). Many real world networks that have been 

subjected to the studies of graph theory include the worldwide web, social networks, ecosystems, 

and airline infrastructure.  Given that, at various physiological levels (i.e. neurons, circuits, 

neural networks, functional areas, and functional systems, (Churchland & Sejnowski, 1991)), the 

brain can be thought of as an interactive network, graph theory, consequently, seems to be an 

appropriate tool for exploring the properties of the brain network. Pertinent topics in graph 

theory range from identification and characterization of substructures to analyses of hubs and 

critical components within a network.   

 It is important to note that, for fMRI, its spatial and temporal resolution limit us to the 

study of brain network only at the level of function areas and systems. To appropriately model 

the brain network using rs-fMRI data, putative functional brain areas, which can be defined by 

either functional connectivity boundary maps (Cohen et al., 2008; Gordon et al., 2014), or 

battery of fMRI activation studies (Dosenbach et al., 2007), or a conjunction of both, are 

depicted as nodes while the measured functional connectivity between the areas are depicted as 

edges (Power et al., 2011).    
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 As mentioned before, much like the person-person interactions of a social network that 

results in formations of groups and organizations, distributed sets of brain regions harmonize and 

correlate among themselves as systems (e.g. visual, motor, and default mode system) of a bigger 

network to support specialized functions. Groupings of close-knit nodes in a network are called 

communities. Communities are often considered as having rather dense internal relationships but 

few between group connections, and there is a family of methods (community detection 

algorithms) that utilize this characteristic to optimize the search for sub-structure within a large 

network, such as the brain (Fortunato, 2010). For example, Infomap is a community detection 

method that applies the general concepts of coding theory to explore the regularities in a given 

network (Rosvall & Bergstrom, 2007). This method seeks a way to encode how information 

flows through the network by simulating the path of a random walker. A group of highly 

connected nodes will likely trap the random walker since they allow quick and easy flow among 

themselves. This scenario can be contrasted with regions that are between two modules: these 

regions likely have less interconnected edges resulting in fleeting visits from the random walker. 

Thus, Infomap uses the trajectory of a random walker to detect distinct communities. This 

method computes the fraction of time that a random walker dwells in a certain place by 

observing how often the walker visits each individual location. After a few iterations, possible 

partitions result from the frequency of visits. Overall, the algorithm derived brain communities 

are attractive because they appeal to the initial challenge in neuroimaging as they allow for fairly 

comprehensive identification of substructures within the functional organization of the brain 

without a priori hypotheses.    

               Power and colleagues sought whole-brain systems by applying Infomap on two types of 

brain-wide graphs: one composed of 264 putative functional areas and the other a modified 
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voxelwise network that eliminated the potentially noisy short-distance relationships between 

neighboring voxels. Overall, the two graphs revealed similar substructures within the brain 

network that resembled well-known functional systems based on previous fMRI studies. These 

include the visual, motor, auditory, frontoparietal, cinguloopercular, salience, dorsal attention, 

ventral attention, and the default mode system. Other substructures (e.g. sets of memory related 

regions) lack established descriptions, but they are corroborated by subsequent analyses of 

existing task-based fMRI studies (Gilmore, Nelson, & McDermott, 2015; Nelson, Cohen, et al., 

2010). Beyond determining the identity of different functional systems, Power et al. also used 

graph theory measures (i.e. participation coefficient, local efficiency, and motifs) to suggest 

possible functional characteristics for each system. For example, control systems always held a 

central position within the brain network such that they are much more integrated with each 

other and with other processing systems (e.g. visual and auditory). This may reflect the idea that 

control systems must maintain a diverse set of relationships with the processing systems in order 

to operate efficiently during tasks. On the other hand, processing systems are more internally 

connected such that they have more dense connections within the systems than between the 

systems, suggesting that they are involved in somewhat isolated and compartmentalized 

functions. Other novel observations include the default mode system showing similar degree of 

compartmentalization as other processing systems. Although the functional roles of the default 

system is still an area of debate, the graph analyses indicate the default mode system may act 

more as a processing system than a control system. 

Continuing Explorations 

 Combining graph theory and rs-fMRI data provided many novel perspectives on the 

functional structure of the brain and inspired many more new avenues for future explorations. 
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For one, similar to various real-world systems, the brain is a complex network, and substructures 

within the network interact with each other and may even overlap (Yeo et al., 2014). Most of the 

current community detection algorithms assume communities are neatly divisible. Evans and 

Lambiotte devised a method of partitioning the edges of a network in order to observe the 

possible overlapping structures of complex networks (Evans & Lambiotte, 2010). Ahn et al. also 

applied the same concept to several real-world social networks, metabolic networks, and word 

association networks. They were able to identify relevant sets of relationships that reveal 

additional interactions within the networks (Ahn, Bagrow, & Lehmann, 2010).  

 In Chapter 2, we applied the idea of edge-based communities to rs-fMRI data in attempt 

to observe possible interactions among the previously defined functional systems. With this 

method, we observed not only networks with strong resemblance with previously known 

functional systems but also several notable distributed regions of the brain that might be 

significant to the integrity of inter-community connections. Furthermore, through quantifying the 

extent of overlaps, the results provided insight onto the level of association between different 

functional systems, an aspect that is not easily appreciated from conventional methods. 

 Further, the network-based framework of the brain can be especially useful because it 

allows for quantitative descriptions that comprehensively characterize the overall network, 

portions of the network, and individual nodes of the network. A growing number of studies have 

used these characterizations at different physiological levels to explore changes in the brain’s 

functional structure due to pathological conditions or over the course of development (Chen et 

al., 2011; Church et al., 2009; Greene et al., 2014; Lerman-Sinkoff & Barch, 2016; William W. 

Seeley, Crawford, Zhou, Miller, & Greicius, 2009). 
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II. Task Control and Control Systems 

 From complex tasks to simple errands, timely and accurate performance requires 

collaborative interactions of many brain regions. Several of the resting-state functional systems 

introduced in the previous section are thought of as the source of control signals. These signals 

may be related to top-down configurations as well as performance reporting and feedback 

processes. Together, they presumably allow humans to initiate, retain, and adjust configurations 

needed for satisfactory task implementations.   

General Concepts of Control    

 Seminal psychological theories for mechanisms that account for the selection and 

implementation of appropriate mental operations distinguish subordinate moment-to-moment 

processes that can be configured and reconfigured to carry out infinite sets of tasks, through 

control processes that “program” the moment-to-moment processes. Therefore, as we enter 

distinct tasks, depending on task instructions, the moment-to-moment processes will operate on 

incoming input (e.g. sensory information) and transformations of the input to output, while the 

control processes will regulate the order of operations that moment-to-moment processes need to 

carry out in service of the task demands.   

 As the advent of noninvasive neuroimaging techniques using PET and fMRI revealed sets 

of anatomical areas that appear to be common across task performance, Petersen and Posner 

outlined the anatomical basis of control processes. Although the original framework has been 

elaborated and expanded in the years following the initial publication, the three fundamental 

principles that they first identified continue to help navigate behavioral, systems, cellular and 

molecular approaches to common exploration of attention research. The first basic concept of 
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systems related to control processes is that they should be anatomically separate from systems 

related to "data processing " (i.e. regions that involved specific moment-to-moment 

transformation of information stages of a task) such as sensory and motor regions. Second, 

control processes are carried out by a network of anatomical areas. Partly drawn from lesion 

studies of Mesulam 1981, no single region is responsible for control processes, neither is the 

entire brain. Third, distinct systems of control carry out different cognitive operations in context 

of attention or executive function. As a consequence of this proposed anatomical configuration, 

systems of control processes can maintain their own functional identity while directing the 

moment-to-moment flow of information carried out by data processing systems.    

 The original and updated framework of Petersen and Posner described systems of control 

processes and their corresponding cognitive operations under three attention-related domains: 

alerting, orienting, and detecting (executive control, Petersen and Posner 2012). Particularly, 

accounts of orienting and executive systems have become the one of the major foci of the current 

thesis.    

 Orienting, at least in the visual system, refers to the ability to prioritize sensory input by 

biasing attention to the location of the target. A behavioral effect of orienting is the improvement 

in efficiency of subjects' responses to events occurred at the attended location while a 

physiological effect is the increased discharge rate in neuron's responses when subject attends to 

the location within the neuron's receptive field than when subject attends elsewhere.    

 Executive control, originally outlined primary as function of target detecting, refers to 

control (e.g. initiating, maintaining, and adjusting) of cognitive processing. Previous studies with 

complex fMRI designs have identified (at least) four distinct types of control signals at both the 
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task set level as well as the trial level (Donaldson, Petersen, Ollinger, & Buckner, 2001; Logan & 

Gordon, 2001; Meiran, 1996). The task set level control signals include (1) start-cue signals, 

which may be related to the initial loading of the task parameters, and (2) sustained signals, 

which may be related to stable maintenance of established parameters across portions or trials of 

a task. The trial level control signals include (3) trial-wise cueing signals, which may be related 

to moment-to-moment update of trial-related parameters, and (4) performance-related signals, 

which maybe related to performance reporting and feedback (e.g. signals affected by errors, 

ambiguity, conflict, etc.). Under the previously mentioned framework of control systems, these 

signals should characterize the functional role of control regions across a wide variety of tasks.    

Characterization of Orienting Systems   

            Related to orienting, Corbetta and Shulman identified two independent control systems: 

the dorsal and ventral attention systems of parietal and frontal regions (Corbetta & Shulman, 

2002). The dorsal attention system (DAN) is composed primarily of the intraparietal cortex (IPS) 

and frontal eye fields (FEF), and it plays a crucial role in voluntary maintenance of spatial 

attention and has been implicated in preparatory as well as in action selection, or response, 

aspects of visual attention tasks. Traditionally, the ventral attention system (VAN) is primarily 

composed of right lateralized temporal parietal junction (TPJ) and ventral frontal cortex (VFC). 

It is thought to have functions for reorientation of attention and detection of task-relevant stimuli 

occurring at unexpected locations. For example, regions in the ventral attention system showed 

greater evoked responses during target periods of invalid trials than during target periods of valid 

trials during a Posner task (Corbetta, 1998). Moreover, due to its weak evoked responses during 

cue, the ventral attention system is typically described as not involved in generation or 

maintenance of top-down attentions but in bottom-up disengagement of attention (Power & 
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Petersen, 2013). In addition, Fox et al. 2006 used resting-state seedmaps of four regions in IPS, 

FEF, TPJ, and VFC and demonstrated that the anatomical distinctions between dorsal and ventral 

attention systems persist in the absence of external task.   

Characterization of Executive Control Systems   

 Using a meta-analysis of 10-task fMRI dataset, Dosenbach and colleagues looked for 

regions of the brain that carried the start-cue, sustained, and error-related executive control 

signals. Although the tasks in the dataset differed in their input as well as their output modalities, 

and they required a variety of task demands and moment-to-moment operations, the control 

signals that were present across them could not be modality or task specific. Overall, 39 regions 

of interest that responded to either one or more control signals were identified. Specifically, 

regions in the dorsal anterior cingulate (dACC)/medial superior frontal cortex (mdFC) and 

anterior insula (aI)/frontal operculum (fO) demonstrated all three controls signals and were 

considered as the core system for task implementation. Another set of regions that include the 

dorsal lateral prefrontal cortex (dlPFC), intraparietal sulcus (IPS), and inferior parietal lobule 

(IPL) showed start-cue and error signals but lacked sustained signals. Hence, they were set apart 

from the core regions and were thought to play a more transient role that support the instantiation 

of task set parameters.    

 To find the underlying organization to these 39 regions, in a follow-up study, Dosenbach 

and colleague employed resting-state functional connectivity. As mentioned in the previous 

section, resting-state functional connectivity (RSFC) has shown to be able to reveal systems of 

highly related regions without the need of overt tasks. In addition, to test the possibility of 

multiple systems against the previously proposed “core” system of control (Dosenbach et al., 

2006; Duncan, 2001), graph theory approaches were applied by modeling the connectivity of the 
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39 regions as a network composed of nodes (the regions) and edges (pairwise connections). As a 

result, it was discovered that the control regions appeared to organize into two distinct systems. 

One system, the cinguloopercular system (CO), primarily consisted of dACC/msFC and aI/fO. 

Similar to the “core” regions, CO displayed start-cue and error signals in addition to sustained 

activity. The other system, the frontoparietal system (FP), contained mostly regions in the frontal 

and parietal cortex (e.g. dlPFC, mCC, and IPS), and it exhibited only start-cue and error signals. 

It is important to note that these two systems may operate at different time-scales, with CO 

showing more sustained activity related to maintenance of task set over longer period of time and 

FP showing more transient activity related to the loading/adapting the of task set parameters.    

 As the distinctness of CO and FP has been bolstered by other resting-state as well as 

lesion studies (Nomura et al., 2010; W. W. Seeley et al., 2007; Vincent et al., 2007), extant 

characterizations of these two control systems have expanded by more recent studies of CO and 

FP activation across a variety of tasks. A re-analysis of tasks included in the original Dosenbach 

meta-analysis revealed that tasks driven mainly by perceptual information do not elicit sustained 

activity in CO regions (Neta et al., 2015). Follow-up experiments revealed that sustained signals 

are not driven by task difficulty (perceptual difficulty does not drive sustained activity; Dubis, 

2015). Rather, tasks that require top-down information related the overall task set, such as the 

need of abstracted representations beyond perceptual information (e.g. extraction of semantic 

information from living/nonliving judgment) and tasks that require maintenance of sequential 

operations seem to fulfill the criteria for recruitment of sustained activity. Hence, this finding 

refined the functional role of CO in subset of tasks. Furthermore, besides the sustained signal, 

CO responds separately to various performance-related signals (e.g. conflict and ambiguity in 

addition to error), suggesting additional role in task feedback when adjustments in performances 
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are required. Moreover, while CO and FP both show error-related and cue-related responses, 

they are characterize by different error response time scales and cue types (Neta et al., 2015; 

Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015), which imply dissociable implementations of 

these events.    

Continuing Explorations    

 While most distinctions of different control systems uphold their unique functional 

identities that involve initiating, maintaining, and/or assessing a set of “task rules” that direct the 

moment-to-moment operations carried out by data-processing systems, there is also support for 

trial-level processes that does not fit the identified control signals (Gratton et al., 2016; Nelson, 

Dosenbach, et al., 2010). In a meta-analysis of decisions-making tasks, Gratton et al. 2016 

showed that right FP, left FP, and CO regions displayed separate functions in relation to 

moment-to-moment decisions-making. Particularly, the left FP displayed an “accumulator-like” 

response that suggest a role more related to information processing rather than control. Hence, in 

an effort to explore how these trial-related activation contribute to top-down control, Chapter 3 

focus on a meta-analysis of goal-direct tasks that allows for observation of the interplay among 

different control regions in the context of both control and ongoing information processing.  

III. Task-State Functional Connectivity     

 As control systems act as the source of multiple control signals that direct each moment-

to-moment process during task, successful instantiation and implementation of goal-directed 

behaviors rely on the careful orchestration and coordination of both top-down control systems 

and bottom-up processing systems. Past electrophysiology as well as fMRI research has shown, 

especially in the field of visual spatial attention, modifications of neural processing in visual 
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cortex due to spatially oriented attention (likely originated from control-related regions). 

However, the relative timing as well as the likely durations of the interactions, during task, 

between control and processing systems remain unclear.     

Modulations in Visual Processing Due to Attention    

 Convergent evidence from nonhuman primate electrophysiology and human functional 

imaging studies has indicated that attention affects neural processing in the visual cortex. In 

single cell recording studies, animals might alternate between covertly (without explicit eye 

movements) directing its attention to a stimulus within a visual neuron's receptive field versus 

directing attention to elsewhere, away from the receptive field. It has been demonstrated that 

neural responses to an attended object within the receptive field are enhanced compared to the 

alternative when animal attends to outside of the receptive field. Such phenomenon is present for 

neurons in V1, V2, as well as in ventral extrastriated area V4 (Connor, Gallant, Preddie, & 

VanEssen, 1996; Luck, Chelazzi, Hillyard, & Desimone, 1997; Motter, 1993), and the effect 

increases with task difficulty (Spitzer, Desimone, & Moran, 1988), suggesting that increased 

attention increases the responsiveness of the neuron towards processing an attended stimuli.     

 Additionally, fMRI studies from Kastner and colleagues revealed response differences in 

visual cortex related to attention directed to multiple competing stimuli versus noncompeting 

stimuli (Kastner, De Weerd, Desimone, & Ungerleider, 1998). The experimental design included 

four complex images that were presented in nearby locations. The stimuli were presented under 

two different conditions: sequentially or simultaneously. In addition, two attentional conditions 

were also examined: during the attended condition, subjects were instructed to attend to a 

specific stimulus and to count its number of occurrences while in the unattended condition 

subjects' attention was directed away from the stimuli. The results showed that while the same 
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areas of the visual cortex were activated under both the attended and unattended condition, the 

attended condition evoked more activated volumes in V4, TEO, and MT. Furthermore, in single-

cell recordings, it has been demonstrated than when two competing stimuli were simultaneously 

presented within a neuron's receptive field, the magnitude of the neuronal response is a weighted 

average of the responses to the individual stimuli when presented alone. This suggested a 

possible mutual suppressive influence of the stimuli. However, when attention was directed 

towards one of the two stimuli, the neural response was as large as when the stimulus was 

presented by itself (Moran & Desimone, 1985; Reynolds, Chelazzi, & Desimone, 1999). Here, 

under the attended condition, the directed attention led to greater activation to simultaneously 

presented stimuli than for sequentially presented stimuli, indicating that attention enhances the 

processing of the attended stimuli and filters out competing but unwanted information.    

 Furthermore, the effects of attention do not depend on the presence or absence of 

exogenous stimulation. Luck et al., demonstrated when the animal was cued to covertly attend to 

a location within the neuron's receptive field, before any stimulus was presented, the spontaneous 

firing rate of the neuron increased 30% - 40%. This has been interpreted as the effect of top-

down signals from high-order areas (Luck et al., 1997).  However, what is the mechanism for 

which the top-down signals bias the relevant information and suppress other superfluous 

information?    

Modulations in Task-based Functional Connectivity    

 Al-Aidroos and colleague proposed such strengthening in representation of prioritized 

data is through enhancing functional connectivity, the correlation of the spontaneous BOLD 

signals, between the relevant brains regions (Al-Aidroos, Said, & Turk-Browne, 2012). Past 

studies have primarily observed the correlations in BOLD signals during resting-state, when 
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subjects are not actively engaged by external stimulation. If two regions show highly correlated 

fluctuation in BOLD signals, they are presumed to be more related to each other in function than 

if their BOLD signal fluctuations were not correlated. To interpret BOLDs correlations between 

two regions when the subject is actively engaged in attention related tasks is complicated by any 

evoked responses as result of stimulus presentation. Any regions whose responses are time-

locked to the presentation of stimuli will correlate highly together, but this stimulus-driven 

correlation does not inform us about the relatedness of the regions. Hence, to observe functional 

connectivity during task, first-order stimulus-evoked BOLD activity need be removed from the 

task-runs. Since spontaneous and task evoke BOLDs are linearly superimposed, it is possible to 

use general liner model (GLM) to regress out evoked activity from task time-series (Fair et al., 

2007) and to extract the spontaneous BOLD signals.   

 By regressing out task evoked activity, Al-Aidroos et al. showed that extrastriate visual 

area V4 and ventro-temporal visual association regions (i.e., the fusiform face area and 

parahippocampal place area) will flexibly increase their BOLD correlations based on the task at 

hand (e.g., attend to faces or attend to scenes). This perhaps demonstrates that attention may 

increase functional relationship, at least between higher and lower areas of the visual cortex, in 

service of prioritizing goal-directed information. In addition, it has been shown that long-range 

modulation between control-related regions (e.g., prefrontal cortex, intraparietal sulcus) and 

processing related regions (e.g. visual association regions) can be enhanced or suppressed based 

on concurrent attentional goals as well (Chadick & Gazzaley, 2011; Gazzaley et al., 2007; 

Spadone et al., 2015), providing added evidence that control related regions may be the source of 

modulatory attentional signals.    
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 However, these past studies leave open the exact timing for how control and processing 

regions interact, and it remains unknown whether control systems maintain the enhance 

connection with processing systems throughout the whole task, or just during preparatory periods 

when task goals are specified. Hence in Chapter 4, we test these two hypotheses using a standard 

Posner task with cue-target paradigm that temporally separate the preparatory portion of each 

trial from the target execution portion. In attempt to understand the dynamic interactions between 

control and processing regions, we will directly compare the region-to-region correlations 

between control and processing systems during preparatory portion to those during the target 

execution portion.  

IV. General Summary 

 This thesis describes the contributions of different control systems to different types of 

top-down trial-level control signals (i.e. trial-wise preparatory and response-related control 

signals) in the contexts of activation response profiles as well as task-based connectivity 

changes. Complementary to the system classification in the works of Power et al. 2011 and 

Gordon et al. 2015, we begin by detailing a study that explores the resting-state connectivity of 

control systems as part of a whole-brain network.  In Chapter 2, we applied the concept of link 

communities, which allowed the description of overlapping functional systems, and compared 

the results from link communities to previous results from conventional methods. The link-based 

scheme suggests that regions in control-related systems, such as the frontoparietal, 

cinguloopercular, and dorsal attention systems, have multiple assignments that are widely 

distributed among a diverse set of networks while sensory-related networks show restricted 

overlaps. In Chapter 3, we conducted a meta-analysis of three distinct goal-directed tasks with 

trial-wise implementations to examine whether distinct systems show separable response patterns 
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that reflect unique functional roles at trial-level. We identified two distinct trial-related response 

profiles that divided the regions of control systems into a right frontoparietal and 

cinguloopercular cluster and a left frontoparietal and dorsal attention cluster. Further analyses of 

the controls regions’ response characteristics presented new insight onto their unique roles 

regarding to trial-wise controls as well as implementations during goal-directed tasks. Finally, in 

Chapter 4, we use a Posner paradigm to compare cue- and target-related changes in functional 

connectivity between control (e.g., frontoparietal and dorsal attention) and processing (e.g. visual 

and motor regions) systems. This study is complementary to both Chapter 2 and Chapter 3 in that 

it brings together the task-evoked as well as the intrinsic aspects of control systems. Overall, the 

study reveals the presence of complex dynamics among the functional systems as a result of 

signals related to goal-directed attention and control. Together, the studies presented in the 

current dissertation demonstrate that the control systems of the brain maintain their own 

identities during rest and assume primarily distinct functional roles during task, and they interact 

with other processing systems in service of goal-directed tasks. 
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CHAPTER 2: OVERLAPPING FUNCTIONAL 
SYSTEMS ORGANIZATION IDENTIFIES INTER-

COMMUNITY RELATIONSHIP 
 

 

I. Abstract 

The brain can be thought of as a large interactive network of distributed functional areas. 

Recent studies using resting state fMRI data and graph theory methods have identified various 

functional systems of the brain. However, although we know that the brain is a complex network 

and that functional systems interact, current network-based methods for studying the brain lack 

description of inter-systems connections and assume that functional systems are neatly separable. 

Here we applied the concept of link communities to detect functional systems with regions that 

potentially participate in multiple systems.  By comparing the results from link communities with 

previous results using conventional node-based methods, we observed several notable 

interactions among the functional systems. The link-based scheme suggests that regions in 

control-related systems, such as the frontoparietal, cinguloopercular, and dorsal attention 

systems, have multiple assignments that are widely distributed among a diverse set of networks 

while sensory-related networks show restricted overlaps. By assessing regions of system-

overlaps using other graph theoretical measures, we found that these regions converge with 

regions that may be significant to the integrity of inter-community connections.  Finally, our 

results provided insight onto the level of association between two functional systems by 
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quantifying the extent of overlap between them and providing a more detailed representation of 

the relationship between different systems. 

II. Introduction 

The brain can be studied as an interactive network of functional areas.  

At the systems level, the brain can be thought of as a large interactive network of 

distributed functional areas. Much like the person-person interactions of a social network that 

results in formations of communities and organizations, distributed sets of brain regions 

harmonize and correlate among themselves as sub-systems of a bigger network to support 

specialized higher level functions (Goldman-Rakic, 1988; M.-M. Mesulam, 1981; Power et al., 

2011; Yeo et al., 2011). Hence, an appropriate tool for studying interactive networks of all 

scales-- graph theory-- has recently gained popularity in the field of neuroscience, and it has been 

used extensively to explore the properties of the brain network and the identities of its functional 

sub-systems (Bullmore & Sporns, 2009; Meunier, Lambiotte, & Bullmore, 2010; Power et al., 

2011; Rubinov & Sporns, 2009; Sporns, 2013; Wig, Schlaggar, & Petersen, 2011).  

Previous works have described a whole-brain network using resting-state functional 

Magnetic Resonance Imaging (rs-fMRI) data and modeled either individual voxels or putative 

functional areas of the brain as the units or nodes of the network. The nodes' pair-wise 

relationships, which can be measured by correlations in the blood oxygen level dependent 

(BOLD) fMRI signals, are modeled as the edges or links of the network (Buckner et al., 2009; 

He et al., 2009; Meunier, Lambiotte, Fornito, Ersche, & Bullmore, 2009; Power et al., 2011; van 

den Heuvel, Stam, Boersma, & Hulshoff Pol, 2008). Systems of the brain are then identified 

through the usage of data-driven community detection algorithms (Fortunato, 2010; Newman, 
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2006) that look for communities of nodes that are significantly correlated with each other. 

Examples of detected functional sub-systems include sensorimotor systems (e.g., the visual 

system, the motor system), control systems (e.g., frontoparietal and cinguloopercular systems, 

dorsal and ventral attention systems), and the default mode system (Corbetta & Shulman, 2002; 

Dosenbach et al., 2007; Greicius, Krasnow, Reiss, & Menon, 2003; Power et al., 2011; M E 

Raichle & Snyder, 2007; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). 

The functional sub-systems of the brain may not be neatly divisible from each other 

 
However, despite successes in the identification of individual functional sub-systems of 

the brain, details about the relations between these sub-systems remain uncertain. A major 

question that the current report explores is whether the brain’s functional sub-systems are neatly 

divisible from one another, or whether some regions effectively belong to more than one system.  

In many real-world complex networks, the identities of communities at the node level are 

not always easily separated (Palla, Barabasi, & Vicsek, 2007; Palla, Derenyi, Farkas, & Vicsek, 

2005). For instance, in the context of social networks, a person often belongs to more than one 

social group, e.g. to a family, a company, and a club. Hence there is overlap in the membership 

of many communities. More importantly, because of these overlaps in community membership, 

integration of functions in society can be obtained. The brain may also function as a complex 

network with overlapping functional sub-systems works. For example, (Fox, Corbetta, Snyder, 

Vincent, & Raichle, 2006) reported that even though the dorsal and ventral attention networks 

are considered to be two separate attention-related networks, there are regions in the prefrontal 

cortex that correlate strongly with both systems. Fox’s study provided early evidence that 

suggests the presence of overlaps in known functional sub-systems. Moreover, the study further 
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speculated that the regions of overlap might serve to mediate interactions between the dorsal and 

ventral attention systems. A more recent study from (Yeo, Krienen, Eickhoff, et al., 2014) 

explored possible overlaps in brain systems by applying Independent Component Analysis (ICA) 

and Latent Dirichlet allocation, which permit a brain region to belong to multiple systems but 

require a priori estimates of number of systems. The study found that several notable association 

regions (e.g. lateral temporal cortex, medial prefrontal cortex, and posterior parietal cortex) 

belong to at least two functional systems and might serve as points of interactions. Hence, 

understanding how sub-systems are interconnected with each other provides insight into the 

cooperation and mediation among functional sub-systems.  

While past investigations into functional brain organization using various methods (e.g. 

seed-based correlation and ICA) suggest the presence of overlaps among functional systems (Fox 

et al., 2006; Yeo, Krienen, Eickhoff, et al., 2014), network-based exploration of overlapping 

functional systems of the brain has been limited. The network-based framework can be 

especially useful because it allows for quantitative descriptions that comprehensively 

characterize the overall network, portions of the network, and individual nodes of the network. 

However, many current graph-based community detection algorithms are restricted by their 

underlying assumptions that are tailored to identify only separable communities. In other words, 

many of the most effective algorithms are unsuitable for the task of observing communities with 

overlapping regions as they only permit nodes to belong to a single community. As a result, 

while sub-systems like the default mode, frontoparietal, and ventral attention systems have been 

highlighted by current community detection algorithms as separate entities, their intercommunity 

relationships in the context the brain network remain murky.  
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Use link communities to explore the brain’s overlapping functional sub-systems 

The current work models the brain’s large-scale functional networks as comprised of 

overlapping sub-systems by adopting a new approach proposed by (Evans & Lambiotte, 2009) 

and (Ahn, Bagrow, & Lehmann, 2010) called link communities. In the example we introduced 

before of a social network, an individual (modeled as a node) can belong to multiple 

communities: school, family, karate clubs, etc. However, Ahn et al. observed that connections 

(modeled as links) between individuals from each of these groups usually exist for one specific 

reason (i.e. family ties, coworkers, classmates, etc.). This specificity makes network links more 

separable into communities than network nodes. Thus, within this framework, unique social 

relationships are embodied by groups of links that are organized into communities, and 

communities based on links show lower overlap compared with communities based on nodes. 

Hence, discrete communities like the link communities are more compatible for many of the 

current community detection algorithms. More importantly, this method allows a node to 

participate in more than one community, as determined by the communities assigned to its 

connected links.  

A previous study by (de Reus, Saenger, Kahn, & van den Heuvel, 2014) explored the 

overlapping community structure of structural connections in the human brain based on a link 

community analysis of diffusion tensor imaging data. Here, we propose to introduce the link 

community method to analyze functional data and to observe overlapping functional systems of 

the brain based on fMRI data from a large sample of healthy individuals. Furthermore, we use 

node-based brain networks generated from Power et al. 2011 for direct comparison with our link-

based brain networks. Since the two methods provide two different perspectives on the same 
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network, this allows us to ask how the identified functional sub-systems compare. Our results 

show that, although the identities of the functional sub-systems are similar between the two 

methods, the method of link communities is able to elucidate which members of a functional 

sub-system are closely connected to other systems and how interconnected two functional 

systems are by their amount of shared memberships as a result of network overlaps.  

II. Methods 

Subjects 

120 healthy young adults (60M/60F; 24.7 ± 2.4 years old) were recruited from the 

Washington University campus and the surrounding community. All subjects were native 

English speakers, were right-handed, and reported no history of neurological or psychiatric 

disease, and none were on psychotropic medications. All subjects gave informed consent and 

were compensated for their participation. All data were acquired with the approval of the 

Institutional Review Board at Washington University. 

Data Acquisition 

All subjects were scanned in a Siemens MAGNETOM Trio, a Tim System 3T scanner 

with a Siemens 12 channel Head Matrix Coil (Erlangen, Germany). A T1-weighted sagittal MP-

RAGE was obtained (TE = 3.06 ms, TR partition = 2.4 s, TI = 1000 ms, flip angle = 8°, 127 

slices with 1 × 1 × 1 mm voxels). A T2-weighted turbo spin echo structural image (TE = 84 ms, 

TR = 6.8 s, 32 slices with 2 × 1 × 4 mm voxels) in the same anatomical plane as the BOLD 

images was also obtained to improve alignment to an atlas. Functional images were obtained 

using a BOLD contrast sensitive gradient echo echo-planar sequence (TE = 27 ms, flip angle = 

90°, in-plane resolution = 4 × 4 mm; volume TR = 2.5 s). Whole brain coverage for the 
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functional data was obtained using 32 contiguous interleaved 4 mm axial slices. The number of 

volumes obtained in our cohort was 336 ± 121 (range 184–724). 

Data Processing 

Functional images underwent standard fMRI preprocessing to reduce artifacts. These 

steps included: (1) sinc interpolation of all slices to the temporal midpoint of the first slice, 

accounting for differences in the acquisition time of each individual slice; (2) correction for head 

movement within and across runs; and (3) within-run intensity normalization to a whole brain 

mode value (across voxels and TRs) of 1,000. Atlas transformation of the functional data was 

computed for each individual via the MP-RAGE scan. Each run was then resampled in atlas 

space on an isotropic 3 mm grid combining movement correction and atlas transformation in a 

single interpolation. 

To reduce spurious variance unlikely to reflect neuronal activity, additional preprocessing 

steps were executed for resting-state data as recommended in (Power, Mitra, et al., 2014). Two 

iterations of resting-state preprocessing were performed. In addition to demeaning and 

detrending, the first iteration included a multiple regressions of nuisance variables from the 

BOLD data and a temporal band-pass filter (0.009 Hz < f < 0.08 Hz). Nuisance variables 

included (1) whole-brain, ventricular plus white matter signals, and (2) motion parameters 

derived by Volterra expansion (Friston, Williams, Howard, Frackowiak, & Turner, 1996).  

Before the start of the second iteration, temporal masks were created to identify motion-

contaminated frames. Head motion can cause spurious yet systematic changes in BOLD 

correlations that affect group comparisons (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; 

Van Dijk, Sabuncu, & Buckner, 2012). Motion-contaminated volumes were defined as having 
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frame-by-frame displacement (FD, described in (Power, Mitra, et al., 2014)) greater than 0.25 

mm. High motion volumes in addition to uncensored segments of data lasting fewer than 5 

contiguous volumes were flagged for removal. The procedure retained 1239±403 volumes of 

usable data per subject for task-residuals and retained 215±37 volumes of usable data per subject 

for resting-state.  

Steps of second iteration of processing were similar to the initial processing stream but 

incorporated the temporal tasks described previously to censor motion-contaminated data. 

Finally, the data were interpolated across censored frames using least squares spectral estimation 

of the values at the censored frames. Finally, data with interpolated frames were passed through 

a band-pass filter (0.009 Hz < f < 0.08 Hz). However, even following this processing stream, 

censored frames were still ignored in the time-series used to calculate correlations. 

Node definition 

Our current brain network is composed of 264 regions of interest (ROIs) that represents 

the centers of putative functional areas. These ROIs were obtained by meta-analytic ROI 

definition and by fc-Mapping ROI definition (see Power et al. 2011 for further details). Briefly, 

for the meta-analytic ROI definition, a set of 151 ROIs were identified by searching from a large 

fMRI database for brain regions that reliably showed significant activity as result of higher-level 

task-related operations (e.g. cue and error responses) or expected behavioral responses (e.g. 

button-press and verb generation). For the fc-Mapping ROI definition, fc-Mapping technique 

from Cohen et al. 2008 (Cohen et al., 2008) was applied to the entire cortical surfaces of 40 

young adults (separate from the 120 cohort), and 193 ROIs were identified. After combining the 

results from the two methods and eliminating redundant regions, a final set of 264 ROIs is 
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produced, and each of the 264 ROIs is modeled as a sphere with diameter of 10mm around the 

center of the ROI 

Edge definition 

For each subject, the averaged resting-stated BOLD time-course in each of the ROIs was 

extracted, and the pairwise Pearson correlation coefficients between the ROI time-series was 

calculated to form a 264 by 264 correlation matrix. Short-distance correlations can often be 

distorted by data processing (e.g., blurring, reslicing) and from head motion (Power, Mitra, et al., 

2014) In order to reduce the effects of such distortion on network structure, short-distance 

correlations (Euclidean distance <20 mm) were excluded.  

Node-based Brain Network 

A node-based network of the brain was constructed using the node and edge definitions 

described above; the averaged correlation matrix across all subjects was used for all analyses. 

Several modifications were made to the correlation matrix to suit graph analyses. First, because 

negative correlations carry ambiguous meanings for many graph theoretical measures, we only 

retained positive correlations and set the negatives to zero. Furthermore, correlations close to 

zero may be either insignificant or dominated by noise; hence, we eliminate them by choosing a 

positive threshold such that only correlations above the chosen threshold are retained. However, 

in choosing a threshold, there is not an absolute and correct value. Therefore, multiple thresholds 

are chosen to generate networks with different percentages of possible positive correlations (edge 

density). We chose a range of thresholds from r = 0.18 to 0.34 to generate the corresponding 

networks of 10.0 to 2.0 percent edge densities. 
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Link-base Brain Network  

The method of link communities uses a link matrix to describe the relationship one edge 

has with every other edge of the network. Hence, a link matrix is an edge x edge matrix, with 

elements equals to the similarity between the two edges, for example, Eik, the edge between node 

k and node i, and Ejk, the edge between node k and node j. Following Ahn et al. 2010, the 

similarity between Eik and Ejk is calculated based on the neighbors of node i and node j, written 

symbolically as ni and nj. For a weighted network such as the brain network, the Tanimoto index 

(S) can be used as the similarity measure of the two sets of neighbors. The Tanimoto index is 

used in statistics to compare the similarity between two sample sets by looking at the ratio 

between the weighted sum of their shared elements and the weighted sum of the combined 

elements. To compare edges Eik and Ejk, the similarity measure, S, is: 

 

This construction of the link matrix is applied to the correlation matrix at each edge density (i.e. 

10% to 2%) examined.  

Community Detection 

Infomap is implemented to detect communities of both node-based and link-based brain 

networks. For more comprehensive understanding of this method, please see (Rosvall & 

Bergstrom, 2007). Essentially, Infomap applies the general concepts of coding theory to explore 

the regularities in a given network; it seeks a way to encode how information flows through the 

network by simulating the path of a random walker; the way a walker flows through a network 

should provide information about how the network structure relates to its behavior. A group of 
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highly connected nodes will likely trap the random walker since they allow quick and easy flow 

among themselves. This scenario can be contrasted with regions that are between two modules: 

these regions likely have less interconnected edges resulting in fleeting visits from the random 

walker. Thus, Infomap uses the trajectory of a random walker to detect distinct communities. 

This method computes the fraction of time that a random walker dwells in a certain place by 

observing how often the walker visits each individual location. After a few iterations, possible 

partitions result from the frequency of visits. 

For clarity, the term link-based functional sub-system will be used to refer to the 

communities detected through the link matrix while node-based functional sub-system will be 

used to refer to the network described by the filtered correlation matrix.  

Construction of Consensus 

By applying Infomap to our link-based version of the brain network at 9 different edge 

densities, we are able to observe edge-density dependent changes in the functional sub-systems; 

however, it is often helpful to obtain a summary for each node’s membership assignment(s) 

across all edge-densities. Therefore, we constructed a consensus assignment that summarized the 

most consistently observed link-based communities from all of the analyzed edge densities.  

Generally, we focused on communities that were observed across 4 or more consecutive 

thresholds, and assigned community memberships to ROIs that had a particular assignment for 4 

or more consecutive thresholds, as well. One exception to this criterion is the ventral 

somatosensory-motor network (vSM), as it only appeared at the threshold of 2% and 3% edge 

density. However prior work has demonstrated that this division of the motor system is indeed 

reasonable (Burton, Sinclair, Wingert, & Dierker, 2008; Power et al., 2011); hence, we included 

vSM in our consensus.   
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Graph Theoretical Measures 

Modularity 

In graph theoretical analyses, the quality of community structure is defined by the 

Newman modularity measure (Girvan & Newman, 2002). A good community tends to have 

more intra-community connections than inter-community connections; for a particular partition, 

the modularity measure compares the ratio of these two types of connections against the case if 

the network were to be randomly partitioned. 

Similarity Measures 

A graph theoretic measure of similarity between two sets of network assignments is the 

normalized mutual information (NMI), which measures the amount of information one set of 

network assignments shares with another. NMI values range from 0 to 1, where values of 1 

indicate identical assignments and values of 0 indicate no shared information. We use NMI to 

test the stability of our link-based network assignments across different thresholds as well as the 

similarities in assignments for link-based and node-based brain communities.  

Participation and Overlapping Memberships 

For node-based, or non-overlapping, communities, the metric for diversity of a node’s 

intercommunity connections is the participation coefficient. Introduced by Guimera et al., 2005 

(Guimerà, Mossa, Turtschi, & Amaral, 2005), the participation coefficient evaluates the variety, 

rather than the mere number, of connections that stem from each node. Specifically, the 

participation coefficient of a network node spans from 0 to 1, where an index of 0 indicates that 

all of the node’s connections are within one single community, while and index of 1 indicates 
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that none of the node’s connections are within the same community. For a given node, the 

participation coefficient is calculated as:  

 

where  is the number of edges the node  has that connect to nodes in community s, and  is 

the total degree of node .  

For overlapping communities, we use the number of link community memberships as a 

proxy to evaluate the diversity of a node. However two nodes with the same number of 

community membership do not necessarily show similar level of diversity.  One node with 1 out 

of 10 edges belonging to another community may play a different role than a node with 5 out 10 

edges belonging to another community. Here we adopted a similar calculation as participation 

coefficient that indicates the link-based diversity of a node: for a given node the link community 

participation is calculated as:  

 

where is the number of edges of node  that belongs to link community , and  is the total 

degree of node .  
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IV. Results 

Figure 2.1 describes the steps of deriving link-based communities from an averaged (120 

subjects, 60M/60F, 24.7 ± 2.4 years old) connectivity matrix of 264 ROIs that represent the 

putative functional areas of the human brain. The current study observes the 264 x 264 

connectivity matrix under several edge densities (i.e. we threshold the connectivity matrix so 

only the top 10% to 2% of the edges remain). For each thresholded connectivity matrix, we 

convert it to a link matrix, which is an edge x edge matrix with the elements equal to the 

similarity measures of pairs of edges.  Finally, link communities are formed by detecting 

communities of highly similar edges using the Infomap graph community detection algorithm 

(see methods). Once the links are sorted into communities, the nodes are sorted into the 

corresponding communities as well by following the community assignments of the links 

connected to them. Here, by applying the method of link community to our brain network, we 

are able to derive communities that resemble various functional systems. These functional 

systems have overlapping memberships (e.g. many ROIs have memberships from multiple link-

based functional systems) and we will explore such overlaps in the following sections. 

Specifically, we will look at two insights derived from link communities of the brain: (1) link 

communities provide information about whether a specific ROI shows diverse inter-community 

connections (e.g. a ROI has multiple community assignments versus singular community 

assignment), and (2) link communities provide information about whether a system (i.e. the 

dorsal system) shows high level of self-containment (most of the regions within system have 

singular membership) or integration (i.e. most of the regions within system have multiple 

memberships). 
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Figure 2.1.  Deriving Link-based Communities of the Brain 
In deriving link-based communities of the brain, the current study observed the 264x264 
connectivity matrix under several edge densities. Here, the 5% edge density is shown as an 
example. For each thresholded connectivity matrix, we fist convert it into a link matrix, which is 
an edge x edge matrix with the elements equal to the similarity measures of the corresponding 
pairs of edges. Link communities are then formed by using the Infomap graph community 
detection algorithm to detect communities of highly similar edges. Once the links are sorted in 
communities, the nodes are sorted in to the corresponding communities as well by following the 
community assignments of the links connected to them. 
 

Link-based communities are well-clustered and robust communities 

The strength of the network’s division into communities is evaluated through the 

modularity measure. For our averaged network of 120 subjects, link communities derived from 

2% to 10% edge density correlation matrices have high modularity measures ranging from 0.627 

to 0.745. This is comparable to the node-base communities derived from the same edge densities. 

The modularity measures for node-based communities ranged from 0.59 to 0.72.  
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Repeatability of results suggests stability. We compared link community assignments 

between two sub-groups of 60 subjects. At each edge density, we took the links that two groups 

have in common and calculated the normalized mutual information (NMI) of those links’ 

community assignments. The average NMI between the two groups across all edge densities is 

0.787±0.0235, Supplemental Figure 2.2.  

Link-based functional systems  

In order to observe consistently detected communities and their overlapping regions, we 

used a consensus community assignment that summarized the results across all analyzed 

thresholds (see Methods). The communities roughly fall into two categories, those that resemble 

control systems and those that resemble sensory systems. The control-like communities detected 

include a frontoparietal network (regions in middle frontal gyrus and inferior parietal lobule), a 

dorsal attention network (DAN, regions in the frontal eye field and posterior parietal cortex), and 

a ventral attention network (VAN, regions in the temporal parietal junction and ventral frontal 

cortex). Two distinct cinguloopercular (CO) networks were found: one spans the regions of 

anterior insula and dorsal anterior cingulate while the other spans regions in the posterior insula 

and mid-cingulate. The sensorimotor communities identified include a visual (VS), an auditory 

network, and two networks in somatosensory and motor (SM) regions. Other communities 

include a subcortical/thalamic network, a cerebellar network, and the default mode network. 

Figure 2.2 provides visualization of the nodes within each link-based network; for visualization 

of the edges of link-based networks, see Supplemental Figure 2.1.   

Through inspection, we see that our link-based brain network resulted in similar 

communities as that of the node-based brain network ((Power et al., 2011); Figure 2.3). Figure 

2.4 shows the NMI values between the link-based and node-based consensus communities. The 
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two versions of DMN, visual, auditory, as well as FP, VAN showed especially good 

correspondence.  

Despite the overall similarities, there are notable differences between link-based and 

node-based communities. For example, rather than having distinct divisions among the dorsal 

SM, ventral SM, and posterior insula regions that previously corresponded to hand/body SM, 

mouth/face SM, and auditory node-based networks (Power et al., 2011; Yeo et al., 2011), the 

link community approach is able to highlight both the separable as well as the overlapping 

natures of these systems. Three link-based networks were associated with SM and auditory 

regions: a larger network (light blue) that is composed of dorsal and ventral SM regions, a 

smaller community (orange) that is composed mostly of ventral SM regions and regions in the 

posterior insula, and a third network (pink) that was composed of auditory regions in the 

posterior insula.  Among these three link-based communities we observed overlap between the 

SM (blue) and ventral SM (orange) networks and between the ventral SM and auditory (pink) 

networks. Given the ventral SM roughly corresponds to face/mouth portion of the motor strip, 

the overlap with the larger SM network suggests an association with other motor regions while 

overlap with auditory network may be driven by functional relatedness between ventral SM and 

auditory regions, e.g., by a history of coactivation during aural/oral communication. Instead of 

forming a distinct node-based community, subcortical regions (composed of regions of basal 

ganglia and the thalamus) share substantial link-based community assignment with regions in the 

anterior insula, which also belong to the cinguloopercular system. Previous studies of anatomical 

and functional connections between subcortical (basal ganglia and thalamus) regions revealed 

diverse cortical associations (Augustine, 1996; Greene et al., 2014; Riva-Posse et al., 2014). 

Especially, it has been shown that the cinguloopercular system correlates highly with portions of 
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the putamen and palladium, even after regressing out the signals from cortical regions adjacent to 

the basal ganglia (Greene et al., 2014).  Hence, shared link-based community among the anterior 

insula and subcortical ROIs may reflect the close relationships and communications between 

subcortical regions and cortical functional systems. 

Two link-based networks (purple and black) were identified that encompass regions in 

the insula, operculum, and dorsal anterior cingulate. Comparatively, the purple network occupies 

more anterior regions of the insula and cingulate in addition to regions in the frontal gyrus, while 

the black sub-graph occupies the posterior portion of the insula and cingulate in addition to parts 

of the supramarginal gyrus. The purple and black link-based networks collectively resemble the 

distributed cinguloopercular and the salience systems described by Dosenbach et al., 2007 

(Dosenbach et al., 2007), and Seeley et al., 2007 (Seeley et al., 2007) respectively. In addition, 

these link-based networks are comprised of similar ROIs as the node-based cinguloopercular and 

salience networks indicated by (Power et al., 2011). However, neither link-based network 

corresponds precisely with the node-based networks. Here, we tentatively refer to the purple 

link-based network as the anterior-cinguloopercular and the black link-based network as the 

posterior-cinguloopercular.         
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Figure 2.2. Consensus Link-based Communities 
Familiar functional systems were detected in the link-based communities. Here, we show a 
consensus of the most stable link-based networks across all thresholds. Most of the link-based 
networks were very similar to the node-based networks from Power et al. 2011, shown in Figure 
2.3. However, some of the familiar networks encompass additional ROIs that have alternative 
network assignments. For example, the subcortical link-based network is composed of 
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subcortical regions in addition to regions in the insula that also belong to the cinguloopercular 
network. 

       

Figure 2.3 Consensus Node-based Communities (Power et al., 2011) 
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Figure 2.4. Similarity Between Node- and Link-based Communities 
The similarity between the node- and link-based communities is quantified here, where it shows 
the normalized mutual information (NMI) values between sub-graphs from link-based and node-
based systems. 

Link communities provide information about whether a specific ROI show diverse inter-
community connections 
 

The consensus community assignment shows that a large majority of regions (175/264 

ROIs) have singular membership while 89 ROIs have two or more memberships. We believe that 

the overlapping regions identified by link communities indicate that these regions may be areas 

of inter-systems communication. To identify ROIs with diverse inter-system connections based 

on link-based community assignments, we calculated the average link community participation 

index for each node (see methods) across a number of thresholds (2%-10% edge density). In 

Figure 2.5A (left), increasingly warm colors indicate ROIs with more diverse overlapping 

memberships. As can be seen, ROIs in the anterior insula, mid-cingulate, and dorsal parietal 

regions have high diversity of community memberships while ROIs in the precuneous, 

supramarginal gyrus, and calcarine sulcus regions have low diversity of community 

memberships. ROIs with diverse memberships tend to belong to control related systems such as 

the cinguloopercular, frontoparietal, and dorsal attention systems, and ROIs with more uniform 

and low diversity memberships tend to belong to the default-mode and visual systems. 

We also compared the ROIs’ link community participation indices with their 

participation coefficients derived from node-based communities. In Figure 2.5A (right), warmer 

colors indicate high average participation coefficients. Overall, ROIs’ link community 

participation indices correlate with their node-based participation coefficients, see Figure 2.5B. 

The Spearman’s rank correlation coefficient between the averaged (across different edge 

densities) participation coefficients and averaged link community participation indices is high 
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(rho = 0.719, p<0.001). To highlight regions with particularly diverse connections, Figure 2.5C 

shows twenty ROIs with the both high link community participation indices and high 

participation coefficients. These ROIs are contrasted with twenty regions with low link 

community participation indices and participation coefficients.  

 

Figure 2.5. Node- and Link-based Participation Measures 
The link community participation of an ROI is correlated with its participation coefficient from 
the node-based communities.  (a) The cool to warm colors indicate the spectrum of low to high 
values of link community participation (LCP) and participation coefficients (PC). (b) The scatter 
plot illustrates the Spearman’s rank correlation between the averaged LCP and PC across 9 
thresholds. Each point in the scatter plot corresponds to an ROI. The Spearman rank correlation 
coefficient is high (rho = 0.72). The line indicates the theoretical scenario if PC and LCP 
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rankings were the same and provides comparison for our result. (c) Illustrates the 20 ROIs (red) 
with highest combined PC and LCP values and the 20 ROIs (blue) with the lowest combined PC 
and LCP values. For coordinates and the network assignment(s) for these ROIs, see 
Supplementary Table 2.1. 

Link communities provide information about functional systems’ levels of 

interconnectedness with each other 

Link-based communities allow us to directly assess the diversity of connections for a 

functional network. In particular, with link communities we can assess (1) the distribution of 

single-membership ROIs versus multi-membership ROIs within a link-based community (e.g. 

how many ROIs assigned to FP network only have one community assignment versus how many 

have two or more community assignments), and (2) the diversity of memberships that exist 

within a particular link-based community (e.g. what are the other community memberships 

assigned to the ROIs in FP network).  

Figure 2.6 illustrates the distribution of single-membership ROIs versus multi-

membership ROIs among the consensus link-based communities. In the DMN, visual, 

cerebellum, as well as the VAN, the majority of their ROIs have only one membership, 

indicating that the majority of ROIs in these systems are more likely to communicate with each 

other than members of another system. On the other hand, the FP, DAN, aCO, pCO, and ventral 

SM have most of their members shared with 2 or more other communities. Having a higher 

amount of multi-memberships ROIs suggest that these systems may play more interactive roles 

with other systems.    

Figure 2.7 details the identities of the other networks each link-based network overlaps 

with. In Figure 2.7 the extent of pair-wise overlap between systems is displayed as a percentage 

of the (row) community’s size. For example, the majority of ROIs in DMN (73.6%) only have 
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one community membership. The other 26.4% of ROIs in DMN are distributed among several 

other functional systems: 12.5% are shared with the link-based FP system while 5.6% are shared 

with the link-based CO system. Less than 5.0% of ROIs in DMN overlap with link-based VAN 

and visual network. The majority of its ROIs (86.90%) in link-based DAN network, on the other 

hand, participate in other link-based communities. Specifically, DAN ROIs share their 

memberships strongly with the link-based SM (39.1%), FP (21.7%), and pCO (34.5%), and 

weakly with visual (17.4%) and aCO (13.0%). Overall, link community descriptions provide 

information regarding not only whether a community is interconnected with others but also the 

extent of such interconnections between two communities, an aspect that is not readily provided 

by previous node-based methods. 

 

 

Figure 2.6. Distribution of Number of Network Assignments 
Link community reveals how networks are interconnected with each other. Here, we assess the 
network interconnectedness as the distribution of single-membership ROIs versus multi-



48 
 

membership ROIs within a link-based network. Specifically, this reveals that ROIs in networks, 
such the default (DMN) and the visual (Vis) network, are generally localized within single 
networks, but ROIs in the dorsal attention network (DAN) show more distributed assignments.  

 

 

 

Figure 2.7 Network Overlaps 
Each row is the seed network of focus, and the columns are the other networks with which the 
seed network might overlap. The elements of the matrix indicate the percentage of ROIs in the 
primary network that share network assignment with the secondary network. The matrix is not 
symmetrical because the same number of shared ROIs can constitute different percentages from 
different communities. The percentage of each row adds up to be more than a hundred percent 
because some of the ROIs in are shared amongst more than two networks. Combined with 
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Figure 2.6, the amount of overlap between to networks may provide insight into the degree of 
their interconnectedness. 

V. Discussion 

Current network-based methods for studying the brain do not allow regions to participate 

in more that one system, despite the knowledge that the brain is a complex network and that 

functional systems interact. Hence, the currently study used the concept of link communities to 

detect regions that participate in multiple functional systems. By comparing the results of link 

communities with results of conventional node-based methods, we gained new insights onto the 

intercommunity relationships among the various functional systems of the brain.  

Link communities provide an overlapping view of the functional systems 

Our link-based functional sub-systems show high convergence with the node-based 

network identities described in previous work (Power et al., 2011). The majority of regions that 

grouped together with traditional node-based methods were also grouped together by the method 

of link communities. When we map link communities onto the brain, Figure 2.2A, we see 

networks resembling the default network (red), frontoparietal network (yellow), cinguloopercular 

network (purple), and dorsal and ventral attention networks (lime green and teal) that have been 

introduced and identified in previous functional MRI studies (Corbetta & Shulman, 2002; 

Dosenbach et al., 2007; Greicius et al., 2003; Power et al., 2011; M. E. Raichle et al., 2001; 

Vincent et al., 2008; Yeo et al., 2011). The similarity is not only confirmation that the link 

community approach identifies biologically plausible systems (i.e., see Power et al., 2011 (Power 

et al., 2011)), but also provides converging evidence for the identity of the brain’s major 

functional networks. Of note, however, there are several differences between the node-based and 

link-based description of the functional networks. For example, our link-based description 
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includes an additional cinguloopercular network (black) that encompasses posterior insula 

regions in addition to some canonical cingulooperacular regions in the anterior insula and mid-

cingulate. Overall, the differences between node-based and link-based network descriptions 

warrant further investigation.  

Importantly, link communities improve upon the current network-based methods by 

allowing us to observe overlapping functional systems of the brain. A recent study from Yeo et 

al., 2014 (Yeo, Krienen, Chee, & Buckner, 2014) explored similar ideas. However, instead of a 

network approach, they used latent Dirichlet allocation and Independent Component Analysis to 

find overlapping clusters of voxels that represent functional systems. Similar to the results from 

Yeo et al. 2014, we observed that overlaps in functional systems occurred mostly in the 

association cortex such that systems associated with control and attention (e.g. dorsal attention 

system) often participated in multiple systems. A critical difference between Yeo et al. 2014 and 

the current study is that instead of using voxels as units of brain organization, we used a 

previously derived set of ROIs to represent our best estimates of the functional units of the brain 

(see Methods). This discrepancy may contribute to observations of different functional systems 

and levels of overlaps. For example, we did not detect addition divisions within the default mode 

system that contributed to its regions participating in multiple systems. A result, we concluded, 

in contrast with Yeo et al. 2014, that the default mode system is self-contained with most of its 

regions localized within the system. Nonetheless, we find that a major strength of our study is 

that, under the network framework, we are able to use other graph-theoretical measures, such as 

the participation coefficients, to provide additional quantitative descriptions to regions of 

overlaps (see following discussions).  
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Participation coefficient and link community membership 

Previous studies emphasized a combination of measures such as centrality and multi-

network participation to indicate a region’s functional significance (Albert, Jeong, & Barabasi, 

2000; Jeong, Mason, Barabasi, & Oltvai, 2001; Jeong, Tombor, Albert, Oltvai, & Barabasi, 

2000; Power, Schlaggar, & Petersen, 2014). The link-community approach provides new utilities 

to evaluate the role of nodes within the network. Both participation coefficient and link 

community participation provide information regarding the diversity of a node’s connections in 

the graph. For our brain network, information derived from participation coefficients of the 

node-based scheme and link community participation indices of the link-based scheme 

converged: there was high correlation between an ROI’s participation coefficient and link 

community participation, which suggests that having regions with multiple community 

memberships is not simply a byproduct of the link community method, but rather is a reflection 

of the underlying network structure. Together, these measures identify locations where the 

functional border between two or more functional systems is blurred, and a point of articulation 

and integration among these systems may occur (Power, Schlaggar, Lessov-Schlaggar, & 

Petersen, 2013). These regions may be particularly significant for the flow of information that is 

crucial to the functional integrity of the brain. Figure 2.4 shows 20 regions with both high 

participation coefficients and link community participations. Examples include bilateral anterior 

insula (aI), posterior parietal cortex (PPC), and posterior middle frontal gyrus (pMFG). Recent 

evidence demonstrates that focal brain lesions to some of these regions produced severe 

impairments in a wide range of cognitive domains (Warren et al., 2014) and to measures of 

functional networks (Gratton, Nomura, Perez, & D'Esposito, 2012), compared with lesions to 

regions that have low participation in multiple networks, such as anterior medial frontal cortex 
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(amPFC). Such variation in level of impairments suggests the possible importance of these 

regions’ functional role in multi-system communications.  

Although the number of overlapping memberships correlates with participation 

coefficient, it does not simply replicate the information provided by participation coefficients. 

The aIns, pMFG, and PPC all have high participation coefficient, but link community assignment 

also indicates that aIns participates with the FP and CO executive control systems, and 

occasionally, the DMN (at some network thresholds). The PPC has high correlations with nodes 

in the FP, DAN, and visual systems, while pMFP participates with FP and DAN. Overall, the 

link community method provides additional insight into high participation ROIs and their 

functions by describing how these regions are related to a set of joined functional systems. For a 

comprehensive list of the overlapping network assignments of these regions, see Supplemental 

Table 2.1.  

Network Overlap 

Understanding the interactions between functional systems is important to studies of 

cognition and behavior (Akam & Kullmann, 2010; Buschman, Denovellis, Diogo, Bullock, & 

Miller, 2012; de Pasquale et al., 2012; Fornito, Harrison, Zalesky, & Simons, 2012; Spreng, 

Sepulcre, Turner, Stevens, & Schacter, 2013; Spreng, Stevens, Chamberlain, Gilmore, & 

Schacter, 2010; Yeo, Krienen, Eickhoff, et al., 2014).  The link community approach adopted 

here provides information regarding how different functional systems interact with each other 

(see Figure 4). The link-based scheme suggests that the majority of ROIs in control-related 

systems, such as the frontoparietal, cinguloopercular, and dorsal attention systems, have multiple 

assignments that are widely distributed among a diverse set of networks. As an example, 80% of 

the dorsal attention network members overlapped with both other control-related networks (i.e. 
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the cinguloopercular and the frontoparietal networks) as well as sensory-related networks as well 

(i.e. SM and visual networks). This is consistent with previous evidence that regions in the dorsal 

attention system, such as the intraparietal sulcus, post parietal sulcus, and frontal eye fields, serve 

as critical points for integration of information (Goldman-Rakic, 1988; M. M. Mesulam, 1998; 

Petersen & Posner, 2012). Sensory-related networks, instead, show multiple profiles: some, such 

as the visual network, only participate in single networks, while others, such as auditory and 

ventral SM networks, participate in a few. The overlaps in sensory-related networks are 

generally not as diverse as overlaps in control-related networks, and most of the overlaps with 

somatomotor-related networks are confined to the SM network that corresponds to hand/body, 

the ventral SM network that corresponds to face/mouth, and the auditory network. This is 

partially consistent with the idea that sensory-related regions preferentially participate in local 

networks (Power et al., 2011; Sepulcre et al., 2010; Yeo, Krienen, Eickhoff, et al., 2014), but 

networks with high likelihood of co-activation (i.e. aural/oral communication) may have 

substantial link-based overlaps.  

Furthermore, link communities allow us to quantify the level of association between two 

functional systems (an aspect that is not easily appreciated from node-based communities) by 

calculating the extent of overlap between them. The quantification of network overlaps may be a 

particularly interesting feature because it may indicate functional relatedness and the likelihood 

of co-activation during task. In the previous example of ventral SM network, more than 70% of 

ROIs in ventral SM network share network assignment with the SM network, suggesting ventral 

SM is more closely associated with the rest of SM regions than with the auditory network.  Other 

examples of specific overlaps between two networks indicated by link-based networks include, 

(a) between the frontoparietal and cinguloopercular networks, and (b) between the dorsal 
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attention network and motor and visual networks, see Supplemental Figure 2.3. Previous 

literature has pointed to close functional relationships among these networks, such as the 

frontoparietal and cinguloopercular systems are associated with various executive control 

signals, and they work in tandem in control of working memory (Church, Bunge, Petersen, & 

Schlaggar, 2016; Dosenbach et al., 2006; Dubis, Siegel, Visscher, & Petersen, 2014; Gratton et 

al., 2016; Ihnen, Petersen, & Schlaggar, 2015; Neta et al., 2015; Wallis, Stokes, Cousijn, 

Woolrich, & Nobre, 2015). Our results noted that several regions, especially in the bilateral 

anterior insula and medial frontal cortex, overlapped the two systems, providing possible 

candidate regions for allowing between-system interactions. Additionally, although regions in 

the visual and motor systems tend to be more localized within their respective systems, they do 

show overlaps with the dorsal attention system, for example in regions of MT, posterior parietal 

cortex, and premotor cortex.  Similar findings were reported in Yeo et al. 2014 (Yeo, Krienen, 

Chee, et al., 2014), and such overlaps among visual, motor, and dorsal attention systems may 

perhaps be involved in the transformation of visual information from primary visual cortex to the 

configuration of decisions in regions of premotor cortex. Additionally, the link-based 

frontoparietal network indicates substantial (>20%) overlap with the default mode network. 

Previous literature has pointed to a close association (although the nature of such relationships 

are mostly negative) between the frontoparietal and default mode systems during task (Fox et al., 

2005; Spreng et al., 2010; Zalesky, Fornito, & Bullmore, 2012). Here, our current result provides 

additional evidence for interaction between the two systems and suggests that particular 

interactions might take place near regions in the superior frontal gyrus and temporal cortex that 

have been implicated in memory retrieval (Nelson et al., 2010). Other theories suggest that these 

regions are more likely to be involved in cognitive control operations that orient the focus of 
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attention between internal and external environment (Spreng et al., 2013). Overall, a link 

community description provides a comprehensive and a quantitative view of system overlaps; 

however, future research is needed to elucidate further the functional nature of these overlaps.       

VI. Conclusions and Future Direction  

The link community method allows us to view the brain as an integrative network of 

overlapping functional systems. The link-based approach groups of region-to-region connections 

that are similar to each other, and through these networks of links we are able to observe several 

interesting qualities about functional network organization on both the regional level and system 

level. However, future work is needed to clarify the functional significance of the overlaps and 

how they are manifested during tasks.  
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IX. Supporting Information  

 

 

 

Supplemental Figure 2.1: A Visualization of the Edges of Link-based Networks  
A visualization of the edges of link-based networks derived from our consensus. The link-base 
networks are colored and label similarly to Fig 2, which provides visualization of the nodes 
within each network. 
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Supplemental Figure 2.2: Reliability of Link-based Communities  
In order to test for repeatability of the link-based communities, we compared the link 
communities’ assignments between two groups of 60 subjects, cohort 1 (C1) and cohort 2 (C2). 
Links assignments from three thresholded connectivity matrices (10%, 6%, and 2% edge 
densities) are shown. The ordering of the links is identical for the comparisons. Normalized 
mutual information (NMI) indicates highly similar patterns across the cohorts (NMI = 1: 
identical information; NMI = 0: no shared information) 
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Supplemental Figure 2.3: Examples of Network Overlaps  
Examples of specific overlaps between two networks indicated by the method of link 
communities. Networks are color-coded according to Supplemental Figure 2.1 
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Regions with the highest combined measures: 
 

 Regions with the lowest combined measures: 
 

 X Y Z Assignments  X Y Z Assignments  
1 -16 -5 71 SSM, aCO, DAN  8 48 -15 Default  
2 54 -28 34 SSM, DAN, pCO  65 -12 -19 Default  
3 65 -33 20 pCO, Aud  6 54 16 Default  
4 -30 -27 12 Subcortical, vSSM  6 64 22 Default  
5 13 -1 70 aCO, DAN, pCO  -7 51 -1 Default  
6 49 8 -1 aCO, pCO  9 54 3 Default  
7 -51 8 -2 aCO, pCO  -3 44 -9 Default  
8 7 8 51 aCO, DAN, pCO  -44 -65 35 Default  
9 37 1 -4 aCO, pCO, Subcortical  13 55 38 Default  
10 46 -59 4 Visual, DAN  -20 45 39 Default  
11 40 18 40 Default, aCO  -20 64 19 Default  
12 -34 3 4 Default, FP  6 67 -4 Default  
13 36 10 1 aCO, pCO, Subcortical  46 16 -30 Default  
14 -35 20 0 FP, aCO  -21 -22 -20 Unassigned  
15 36 22 3 FP, aCO  65 -24 -19 Unassigned  
16 25 -58 60 Visual, DAN  -68 -23 -16 Default  
17 22 -65 48 Visual, FP, DAN  -58 -26 -15 Unassigned  
18 32 14 56 Default, FP  17 -28 -17 Unassigned  
19 -33 -46 47 FP, DAN  27 16 -17 Unassigned  
20 -32 -1 54 FP, DAN  -31 19 -19 Unassigned  
           

Supplemental Table 2.1: List of Regions with Highest and Lowest Participation Measures  
Lists of regions of interest (ROIs) that have the highest and lowest combined measures of 
participation coefficient and link community participation measures. Link communities provide 
additional insight into ROIs by describing how the regions are related to a set of joined 
functional systems. For ROIs with high combined measures, they generally participate in 
multiple control systems. On the other hand, for ROIs with low combined measures, they mostly 
only belong to the default system. 
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CHAPTER 3: DISTINCT RESPONSE PATTERNS 
IN FUNCTIONAL SYSTEMS DURING GOAL-

DIRECTED TASKS 
 

 

I. Abstract 

The executive control systems of the human brain are presumably sources of signals that 

allow for the implementation of daily tasks. Previous task-based as well as resting-state studies 

have identified distinct types of control signals (on both task set-level as well as trial-level) and 

multiple systems of brain regions that are involved in expressing such signals. Although extant 

characterizations of control systems have indicated separable roles for distinct control systems at 

task set-level, the contributions of control systems to different types of trial-level signals (i.e. 

trial-wise preparatory and response-related control signals) have not been extensively explored. 

Hence, we conducted a meta-analysis of three cue-target tasks that exhibit various trial-wise 

control and moment-to-moment processing signals to examine whether distinct systems show 

separable response patterns that reflect unique functional roles at trial-level. Overall, we 

identified two distinct trial-related response profiles that divided the regions of control systems 

into a cluster of right frontoparietal (FP) and cinguloopercular (CO) region and a left FP and 

dorsal attention system (DAN) cluster. The right FP/CO regions show late cue onset and strong 

error responses, suggesting roles in fine-tuning of task parameters and re-evaluation of 

performance. The left FP/DAN regions, instead, had early cue onset and strong activity for target 
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execution, suggesting that they are engaged in moment-to-moment updates of trial-related 

parameters and also possibly in moment-to-moment target processing itself. These 

heterogeneous but compact profiles provide evidence for separable contributions, and interplay, 

of different control systems during trial-wise, goal-directed, tasks.   

II. Introduction 

The executive control systems of the human brain are sources of control signals that 

allow for the implementation of daily goals and tasks (Dosenbach, Fair, Cohen, Schlaggar, & 

Petersen, 2008; Dosenbach et al., 2007; Power & Petersen, 2013; Shulman & Corbetta, 2011]. 

Previous task- and rest-based fMRI research has suggested that multiple systems of distributed 

brain regions are involved in expressing various control signals at both the task set level (i.e. 

establishment and maintenance of task parameters) as well as the trial level (i.e. moment-to-

moment update of trial-related parameters and performance reporting) (Donaldson, Petersen, & 

Buckner, 2001; Logan & Gordon, 2001; Meiran, 1996]. Included in these systems is a 

cinguloopercular (CO) system, composed, in main, part of dorsal and anterior cingulate 

cortex/medial superior frontal cortex (dACC/msFC) and bilateral anterior insula/frontal 

operculum (aI/fO). Another is a frontoparietal (FP) system, composed of large portions in the 

dorsal lateral prefrontal cortex (dlPFC), midcingulate cortex (mCC), and intraparietal sulcus 

(IPS) (Dosenbach et al., 2008; Dosenbach et al., 2007; Dosenbach et al., 2006; Wallis, Stokes, 

Cousijn, Woolrich, & Nobre, 2015]. Other systems also likely contribute to executive control, 

including dorsal and ventral attention systems (DAN, VAN; (Corbetta & Shulman, 2002)), and a 

separate salience system (Seeley et al., 2007]. These control systems are thought to be distinct 

from “data-processing systems” (i.e. regions exhibiting activity that involves specific moment-

to-moment transformation of information across stages of a task), which include sensory, 



68 
 

perceptual, premotor and motor regions, as well as more complex systems (e.g. a set of memory-

related regions in parietal cortex) (Gilmore, Nelson, & McDermott, 2015; Petersen & Posner, 

2012; Posner & Petersen, 1990].  

Extant characterizations of control systems have generally argued for different control 

systems maintaining their own functional identity that involves initiating, maintaining, and/or 

assessing a set of “task rules” that direct the moment-to-moment flow of information carried out 

by data-processing systems. For example, the CO system is thought to emphasize stable set 

maintenance activity across an entire task epoch, while the FP system supports more transient 

and adaptive cueing activity related to loading of preparatory parameters at the beginning of a 

task (Dosenbach et al., 2007; Dubis, Siegel, Visscher, & Petersen, 2014; Sadaghiani & 

D'Esposito, 2015; Sestieri, Corbetta, Spadone, Romani, & Shulman, 2014]. Additionally, the 

DAN system has been implicated in controlling spatial attention and biasing of pertinent sensory 

stimuli while the VAN system seems specialized for the reorienting of attention when 

unexpected but relevant stimuli appear (Corbetta & Shulman, 2002]. Moreover, these control 

systems consistently segregate during rest (Dosenbach et al., 2008; Power et al., 2011; Seeley et 

al., 2007; Yeo et al., 2011] and they show relevant and independent effects to focal lesions 

(Nomura et al., 2010; Shulman & Corbetta, 2011], further supporting the control systems’ 

distinct functional identities.  

Besides evidence for control systems making separate contributions to overall task set 

control, there is also support for dissociation at the trial-level. Previous analyses of control 

regions’ blood oxygen level dependent (BOLD) signal time-course profiles indicated that regions 

across CO and FP showed dissociable response patterns in moment-to-moment decision-making 

and error-related activity (Gratton et al., 2016; Neta et al., 2015]. Overall, regions from different 
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control systems are consistently active across trials of many tasks (Nelson, Dosenbach, et al., 

2010), but how do these trial-specific activations relate to different types of top-down control? 

Complex fMRI designs have identified several trial-related control signals, which include, (1) 

trial-wise preparatory signals that set up trial parameters (e.g., cues), and (2) trial-wise response-

related control signals (e.g., errors) that reflect performance reporting and feedback processes 

(Church, Bunge, Petersen, & Schlaggar, 2016; Corbetta, Kincade, Ollinger, McAvoy, & 

Shulman, 2000; Donaldson et al., 2001; Hopfinger, Buonocore, & Mangun, 2000; Neta et al., 

2015; Neta, Schlaggar, & Petersen, 2014]. However, in contrast with task set level signals, the 

contributions of separate control systems to different types of trial-level control signals have not 

been extensively explored. Hence, unlike previous studies, in which only isolated processes were 

examined (i.e. error and moment-to-moment processing related to decision making; (Gratton et 

al., 2016; Neta et al., 2015]), here we use data from three separate goal-directed tasks to contrast 

the systems' roles in aspects of preparatory- and response-related control (i.e. error) in 

combination with trial-wise processing.  

We focused on goal-directed tasks with a cue-target paradigm because this paradigm 

temporally dissociates the trials into cue periods, which include the trial-wise preparatory signal 

(trial-wise control signal 1), and target implementation periods, which include activity related to 

correct target execution (trial-wise processing), as well as error signals (trial-wise control signal 

2) (Hopfinger et al., 2000; Kastner, De Weerd, Desimone, & Ungerleider, 1998; Ollinger, 

Corbetta, & Shulman, 2001]. We used a meta-analytic approach to identify regions of the brain 

that are active across three separate cue-target tasks with varying input and output modalities. 

We then analyzed the regions’ activity associated primarily with trial-wise cueing, correct target 
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processing, and error-related feedback during incorrect target response to test whether regions 

within separate control systems show distinct neural responses to various trial-wise signals. 

 

Figure 3.1: The Three Task Conditions Used in the Meta-analysis 
Three task conditions are used in the meta-analysis. Task 1 is a switching 2-choice task where 
subjects are asked to identify either the color or the identity of the cartoon character.  Task 2 is a 
Posner cueing task where subjects are asked to perform target detection. Task 3 is a memory 
retrieval task. Subjects are asked to member whether an item had been previously studied with a 
picture or a sound. Notably, unlike stimuli in Task 1 and Task 2, the stimuli used for Task 3 are 
auditory instead of visual. Subjects responded for all three tasks by pushing a button.  
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III. Methods 

Task Descriptions 

The meta-analysis utilized 3 separate cohorts of subjects; each cohort performed a 

different cue-target task, see Figure 3.1. The goal here was not to focus on how regions of the 

brain are activated specifically to a particular task. Instead, the purpose of the current study is to 

examine regions’ response across several tasks and to determine how their patterns of activity 

inform us of their functional roles in relation to trial-related control and processing.  

Task 1 consisted of a cue-switching 2-choice paradigm (Church et al., 2016].  Thirty 

adults between the ages of 21 to 30 years (12 females, average age is 25.6) participated in the 

experiment. Subjects performed 6 runs of the task that asked them to identify either the color or 

the identity of the cartoon characters. The 6 runs were grouped into 3 sets of 2, and for each task 

pair, the subject learned 2-button choice mappings for a pair of colors and cartoon characters. 

Subjects were instructed on a trial-by-trial basis to use one of two visually presented task cues 

(the word “COLOR” or “CARTOON”) to make the appropriate response to the following target 

stimulus (a colorful cartoon figure) using the button choices learned previously. Trials were 

arranged for analysis in a rapid event-related design where cues were presented for one TR, and 

targets were presented in the subsequent TR. Inter-trial intervals were randomly distributed 

between 0, 1, and 2 TRs. In addition, approximately 21% of the trails had only a cue and no 

target to allow separation of the cue signals from the target signals (i.e., catch trials). For these 

trials, the subjects were instructed to forget the cue and wait for the next trial.  

Task 2 was a visual attention task that resembled the Posner cueing paradigm. Thirty-five 

adults between the ages of 21 and 30 years (16 females, average age is 24.32) were asked to 
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perform target detection via button press. The target was presented as a set of Gabor patches. A 

preparatory visual cue in the form of an arrow indicating the likely location of the target was 

presented at the beginning of each trial; however, only 80% of these cues correctly predicted the 

location of the target. At 800 or 1600ms post stimulus onset, one of the patches would shift 

orientation to which the subject would be required to respond. Trials were arranged for analysis 

in a rapid event-related design where cues were presented for 1 TR, and targets were presented in 

the subsequent TR. Inter-trial intervals were randomly distributed between 1, 2, and 3 TRs. 

Approximately 20% of the trials had only cues and no targets (i.e., catch trials).  

 Task 3 was a memory retrieval task that entailed a study phase and a retrieval phase. 

Subjects were scanned only at the retrieval phase (Wheeler et al., 2006]. Twenty-three subjects 

between the ages of 18 and 32 years (14 females, average age is 23.6) were instructed to study 

240 auditory words that were paired with either pictures (color or grey-scaled) or sounds (long or 

short duration) during the study phase. The next day, subjects performed a memory task in the 

scanner. Subjects were asked to remember if the memory probe (word) had been paired with a 

color or grey-scale picture, or with a long or short sound. Trials were arranged for analysis in a 

rapid event-related design. A preparatory auditory cue, indicating whether the memory probe had 

been studied with a picture or a sound, was presented at the beginning of each trial, prior to the 

memory probe; however, only 75% of these preparatory cues correctly predicted the modality of 

the probe. In addition, 20% of the trials had only a preparatory cue and no subsequent memory 

probe (i.e., catch trials). Inter-trial intervals were randomly distributed between 1, 2, and 3 TRs.  

Data Acquisition 

For Tasks 1 and 2, data were acquired on a Siemens MAGNETOM Tim Trio 3.0T 

Scanner with a Siemens 12-channel Head Matrix Coil (Erlangen, Germany). Head movements 
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were limited by using a thermoplastic mask fitted to individual subject’s head at each entry into 

the scanner. For Task 3, data were acquired on a Siemens 1.5T Vision System (Erlangen, 

Germany). Head movements were restricted for each subject using foam pillows and 

thermoplastic facemasks. For all 3 tasks, a T1 sagittal MP-RAGE structural image was acquired 

for each subject. Both Task 1 and Task 2 used the following parameters: TE = 3.06ms, TR-

partition = 2.4s, TI = 1000ms, flip angle = 8°, 176 slices with 1x1x1mm voxels. Task 3 used TE 

= 4.0ms, TR = 9.7ms, TI = 300ms, and flip angle = 12° (Wheeler et al., 2006). In addition, Task 

1 and Task 2 also acquired a T2-weighted turbo spin-echo structural image (TE = 84ms, TR = 

6.8s, 32 slices with 2 x 1 x 4 mm voxels) in the same anatomical plane as the BOLD images to 

improve alignment to an atlas.  

Functional images for Tasks 1 and 2 were collected using a BOLD contrast sensitive 

gradient echo echo-planar sequence (volume TR = 2.0s for Task 1 and volume TR = 2.5s for 

Task 2, TE = 27 ms, flip angle = 90, in-plane resolution = 4x4 mm, 32 contiguous interleaved 

4mm axial slices). In Task 1, each task run comprised 144 volumes (288.0 s), and in Task 2, each 

task run comprised 217 volumes (542.5 s). For both, the first 4 frames were dropped at the 

beginning to allow for signal intensity acclimation. Functional images for Task 3 were obtained 

using an asymmetric spin-echo echo-planar sequence sensitive to BOLD contrast (T2*, volume 

TR = 2.36s, TE = 37ms, in plane resolution 3.75 x 3.75 mm, 16 contiguous interleaved 8 mm 

axial slices). Each run comprised 167 volumes (394.1s), and the first 4 frames were dropped at 

the beginning of each run.  
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Preprocessing 

Functional images were first processed to correct for (1) odd versus even slice intensity 

differences introduced by the acquisition of interleaved slices, (2) head motion within- and 

across-run using a rigid body rotation and translation algorithm (Snyder, 1996], and (3) within-

run intensity normalization to a whole-brain mode-voxel value of 1000 to facilitate across 

subject comparison (Ojemann et al., 1997]. For all tasks, each subject’s data was resampled into 

2mm isotropic voxels and transformed into the stereotactic space of Talairach & Tournoux 

(1988). In both Tasks 1 and 2, atlas transformation of the functional data was computed for each 

individual via the MP-RAGE scan. In Task 3, the participants’ data were resampled and 

transformed into stereotaxic atlas space via the T1-weighted images (Talairach & Tournoux, 

1988].  

Moreover, for Tasks 1 and 2, root-mean-square realignment estimates (RMS 

movements), were calculated from realignment parameters (rotational estimates converted to 

translational at radius of 50mm). Subjects with more than 3 runs with RMS movement above 

1.0mm were excluded. All subjects from Task 1 met processing criteria, and 5 subjects from 

Task 2 were excluded, resulting in a final set of 30 subjects (15 females) for Task 2. For Task 3, 

from the 23 subjects, a total of five runs of MRI data with excessive movements were discarded 

from four participants, one run was discarded for three of the participants, and two runs for one 

participants, for more detailed description, see Wheeler, 2006. 

Using the GLM 

Preprocessed data from all 3 tasks were combined and further analyzed (through FIDL, 

in-house software written in IDL) at the voxel level. A general linear model (GLM) approach 
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was used to model the BOLD response in each subject for each event of each task. Mainly, the 

trial-wise cues, correct target implementations, and incorrect target implementations were coded 

according to the same principles across all task conditions. The 3 types of event-related signals 

were modeled using delta functions immediately following the onset of each event. The use of 

both cue-only trials and random inter-trial interval durations allowed for sufficient number of 

independent linear equations to separately estimate the BOLD response for both cue and target 

events. Overall, this particular approach made no assumption about the shape of the BOLD 

response but did assume that all events included in a category were associated with the same 

BOLD response. The shape the BOLD response for each event was estimated from 9 time-points 

included in the design matrix of the GLM (Miezin, Maccotta, Ollinger, Petersen, & Buckner, 

2000]. These 9 time-points denoted the magnitude of each event’s response waveforms at 9 

successive frames (TRs). In addition, for each BOLD run, the baseline (modeled as a constant) 

and trend-effects (modeled to account for the linear change in signals across a run) were included 

in the GLM. Event-related effects were described in terms of percent signal change, which was 

defined by signal magnitude divided by the constant term.  

 Cue and target main effect of time were computed from the GLM using voxel-wise 

repeated measures ANOVA. This approach produced a statistical (z-score) image indicating 

voxels whose hemodynamic responses deviated from flat across the modeled 9 time-points. In 

other words, through the statistical map of main effect of time, we can identify voxels that 

showed significant activity during cue or target.  In addition, an accuracy x time repeated 

measure ANOVA was performed to produced a statistical (z-score) image highlighting voxels 

whose time-courses for incorrect targets differed significantly from the time-courses of correct 

targets. Brain surface visualizations were created using the Connectome Workbench software 
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and the Conte69 surface-based atlas (Marcus et al., 2011; Van Essen, Glasser, Dierker, Harwell, 

& Coalson, 2012].  

Regions of Interest 

To obtain regions of interest (ROIs) that demonstrated a variety of signals, we selected 

cortical and subcortical regions that independently demonstrated significant activity regarding to 

cue, correct target implementations, or error (error activity is determined by contrasting activity 

of incorrect and correct targets).  

 We defined cue- and target-related ROIs from peak voxels in the cue and target main 

effect of time map, respectively, corrected for multiple comparison correction using Monte Carlo 

simulation and a score of z > 3.5. We defined error-related ROIs from peak voxels in the target 

accuracy x time interaction map, also corrected for multiple comparison correction using Monte 

Carlo simulation and z > 3.5. Functional regions of interest volumes were then defined by 

growing spheres (10mm-diameter) around these peak voxels using algorithms developed by 

Abraham Snyder (Wheeler et al., 2006]. This procedure resulted in 56 cue ROIs, 80 target ROIs, 

and 39 error ROIs. However, a straightforward combination of these 175 ROIs resulted in many 

that were close together or overlapping. In order to eliminate repeated regions in future analyses, 

for any pair of ROIs that were within 10 mm of each other, we randomly selected one and 

deleted the other to form our final set of 98 ROIs.  

Hierarchical Clustering 

There are many ways in which a region can respond to cue, target, and error. Hence, a 

second level of analysis was conducted to determine possible groups of ROIs with distinct 

response shapes and patterns. We used a hierarchical clustering analysis (Cordes, Haughton, 
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Carew, Arfanakis, & Maravilla, 2002; Dosenbach et al., 2007 2015; Salvador et al., 2005] to 

objectively detect groups of ROIs that had similar response profiles with regard to trial-wise cue, 

correct target, and error responses. 

 To do this, for a single ROI, three time-courses were extracted by averaging the time-

courses of all the voxels in the ROI. The time-courses were: (1) the trial-wise cue response, (2) 

the correct target response, and (3) the error response, which was defined as the incorrect target 

response minus the correct target response. Each time-course consisted of 9 time-points. The 

three time-courses were then concatenated to form one 1 x 27 vector. These vectors were 

combined for each of the 98 ROIs in a 98 x 27 matrix. From this matrix, Pearson’s correlation 

coefficients (r) were calculated for all pairs of ROI time-courses, and we generated a 98 x 98 

correlation matrix where each column represented the similarities between a particular region’s 

time-courses and all the other regions’ time-courses. A “1-r” calculation was then performed on 

the correlation matrix to generate a distance matrix used for the hierarchical clustering. The 

hierarchical clustering method iteratively grouped similar sets of data points together based on 

their distance measures. A dendrogram was then made to visualize the resulted clustering of the 

ROIs. The algorithm used to build the dendrogram was the unweighted paired group method 

with an arithmetic mean (UPGMA; (Handl, Knowles, & Kell, 2005; Ploran et al., 2007]), which 

is included in the Statistics and Bioinfomatics Toolbox available in MATLAB 7.2 (MathWorks). 

This algorithm defined the distance between two clusters as the mean distance of all possible 

pairs of data points between the two clusters. To validate our results, we used the cophenetic 

coefficient as a measurement of correlation between the original distance of two observations 

and their intergroup distance once they are clustered together (Handl et al., 2005]. Finally, to 

objectively cut the dendrogram into distinct clusters, we calculated the modularity measure (Q, 
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(Newman, 2006]) for structures that contained anywhere from 1 to 30 total clusters, and the final 

set of 5 clusters comes from the structure that had the highest Q coefficient. 

 

Figure 3.2: Selecting Regions of Interest (ROIs) 
Cue main effect of time, correct target main effect of time, and accuracy x time interaction are 
used to select regions of interest (ROIs). (A-B) Z-score maps and peak ROIs for both cue and 
target main effect of time across all participants and all 3 tasks. (C) Z-score map and peak ROIs 
of accuracy x time interaction. (D-E) The final set of ROIs is obtained by combining the peak 
regions from all three maps, and they are projected onto inflated cortical surfaces to show their 
anatomical locations as well as their putative functional systems. 
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IV. Results 

The main effect of time for trial-wise cues and correct targets revealed several regions 

whose activity deviated significantly from zero (see Methods). Regions that showed significant 

cue activity (cue-related regions) included, but were not limited to, the dorsolateral frontal 

cortex, intraparietal sulcus (IPS), bilateral anterior insula and frontal operculum (aI/fO), dorsal 

midcingulate (dmCC), dorsal anterior cingulate (dACC), and right temporal parietal junction 

(TPJ), see Figure 3.2a. Many of these regions, such as the dorsolateral frontal cortex and aI/fO, 

had been previously associated with start-cue signals (Dosenbach et al., 2006). Regions that 

showed significant target activity (target-related regions) covered more cortex than cue-related 

regions. Target-related regions included, but were not limited to, the bilateral IPS, the frontal eye 

field (FEF), and regions of visual cortex, see Figure 3.2b. 

For error-related activity, the target accuracy x time repeated measure ANOVA revealed 

regions whose activity during incorrect and correct target periods differentiated significantly 

from each other across the 9 time-points. Regions that showed significant error activity (error-

related regions) included, but were not limited to, the right TPJ, dACC, aI/fO, IPS, and right 

DLPFC (see Figure 3.2c).  

Regions of Interest  

Cue and target main effect of time and target accuracy x time interaction produced 56, 

80, and 39 peak regions, respectively. We combined these sets of regions and consolidated them 

(see Methods) to a final group of 98 ROIs that was used in the following hierarchical clustering 

analysis (Figure 3.2d). To show the relationship between these regions and predefined 
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functional networks, Figure 3.2e overlays the 98 ROIs onto a brain surface showing functional 

networks.  

Figure 3.3: Hierarchical Clustering of ROIs 
Cue, correct target, and error (incorrect target - correct target) time-courses from 98 ROIs are 
clustered into separate, as well as overlapping, control- and processing-related regions. (A) The 
dendrogram displays the similarity between time-courses in terms of a distance measure, 1-r, 
where r is the Pearson correlation coefficient. Pruning the dendrogram at 1-r = 0.4 results in 5 
distinct clusters. (B) Within each cluster, the ROIs’ time-courses are averaged together, and each 
error bar represents the standard error across ROIs. The panels are color-coded based on the 
respective clusters in the dendrogram. In the target column, the solid line corresponds to correct 
target, and the dotted line corresponds to incorrect target. We additionally divided the magenta 
cluster into visual and non-visual regions (see Discussion for elaboration) 
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Figure 3.4: Projection of Color-coded ROIs Onto an Inflated Brain  
ROIs, color-coded according to their respective clusters, are projected onto an inflated brain to 
show their anatomical locations and their putative functional systems. 

  

Five distinct sets of time-course profiles showed varying cue, target and error responses 

In order to analyze and compare each region’s pattern of activity across cue, correct 

target, and error target responses, we conducted a hierarchical clustering analysis on the 

concatenated time-courses of our ROIs.  We then organized the results from our hierarchical 

clustering analysis in a dendrogram. From the selected ROIs, regions with more similar time-

course patterns were clustered closer together than regions with more divergent patterns. The 

cophenetic correlation coefficient for the dendrogram was r = 0.78, suggesting that the clustering 

followed hierarchical organization well. Pruning the dendrogram at 1 – r = 0.4 produced 5 

clusters (see Methods section), and the time-course patterns from each cluster were averaged 

across the ROIs.  
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Figure 3.3 displays the resultant clusters and their respective time-course profiles. One 

cluster (blue) had 19 ROIs that were mostly located in parts of the right FP (right frontal cortex 

and right dACC) and core regions of CO (bilateral aI/fO). Also included in this cluster were part 

of the salience system (left anterior cingulate) and two regions in the superior temporal gyrus. 

These ROIs collectively showed a positive cue response, a positive correct target response, and 

an error response effect (incorrect target - correct target) whose peak had a greater magnitude 

than that of the correct target.  Another cluster (magenta) had 49 ROIs that spanned most of the 

left FP (left frontal cortex and left middle frontal gyrus), the DAN (bilateral FEF and IPS), a 

small fraction of the CO (left dorsal midcingulate), and the visual system (occipital cortex). In 

addition to a very robust target response, this cluster showed a positive cue response and a 

positive error response whose peak magnitude was less than the peak magnitude of the correct 

target response.  A third cluster (green) had 16 ROIs that were located mostly in the auditory 

system (bilateral posterior insula) and along the paracentral gyrus. Its averaged time-course 

profile exhibited a negative response to cue, a positive response to correct targets, and an 

incorrect target response that was weaker than the corresponding correct target response.  

The rest of the ROIs were located within the default mode system and were grouped 

together at the highest level of the dendrogram. We identified two clusters (10 ROIs in red and 3 

ROIs in yellow) that both showed robust deactivation associated with trial-wise cues. The red 

cluster had a positive but weak correct target response in addition to a negative error response. 

The yellow cluster had a bimodal and negative (also weak) correct target response with a noisy 

but overall positive error response. 
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Time-course profiles in the blue and magenta cluster differ in their onsets and magnitudes 

Two clusters (magenta and blue) contained mostly regions in various control systems, 

and they had similar time-courses in that they both showed a positive cue response, a positive 

correct target response, and a positive error response. To characterize and contrast the control 

regions’ time-course profiles in a more detailed and quantitative fashion, the data processing-

related visual regions were first removed from the magenta regions (see Figure 3.3, Figure 3.4, 

and Discussion). Then, the onset time (the time at 50% of the peak magnitude is achieved) and 

the peak magnitude of the time-courses from the modified magenta cluster and the blue cluster 

were derived for further analyses. Cluster averages for peak magnitude and onset time were 

plotted in Figure 3.5.  For the cue response, there was no significant difference between the peak 

magnitudes of the magenta and the blue clusters (t(50) = 0.85, p > 0.05). However, the magenta 

cluster, on average, seemed to have the fastest onset time, and a t-test indicated that onsets were 

significantly earlier in magenta cluster than in the blue cluster (t(50) = 3.09, p < 0.01). For the 

correct target response, peak magnitudes were significantly higher for the magenta cluster than 

for the blue cluster (t(50) = 5.63 p < 0.001). In addition, a t-test showed that these clusters were 

not significantly different in their target onsets (t(50) = 1.09, p > 0.05). Finally, for the error 

response, the magenta cluster had significantly lower peak magnitudes than the blue cluster 

(t(50) = 4.73, p < 0.001), but there were no significant differences in the onset times (t(50) = 

0.77, p> 0.05).  
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Figure 3.5: Analyses of Control Regions’ Time-course Profiles  
(A) Time-course peak magnitudes and (B) onsets are extracted and plotted for the magenta 
cluster (left FP, DAN and visual ROIs) and the blue cluster (right FP, CO, and salience ROIs). 
The bars are color-coded according to their respective clusters shown on the dendrogram in 
Figure 3.3. Error bars indicate standard error across ROIs, and asterisks indicate significant t-test 
differences (p < 0.05).  

 

V. Discussion 

We conducted a small-scale meta-analysis of 3 fMRI tasks with cue-target paradigms that 

spanned multiple stimulus modalities. Unlike previous studies that focused primarily on the 

average magnitude of activation in control systems (Dosenbach et al., 2006; Woolgar, Afshar, 

Williams, & Rich, 2015; Woolgar, Thompson, Bor, & Duncan, 2011], the current study 
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emphasized the comparison of response shapes associated with cue-, correct target-, and error- 

related activity under goal-directed attention in an effort to understand how different control 

systems respond within trials in which there are a combination of preparatory control, responses-

related control (i.e. error), and moment-to-moment processing signals. 

To examine and characterize the time-courses of control systems during goal-directed 

tasks, we identified regions that showed reliable activation to cues, errors, and correct targets and 

objectively defined groups that showed unique response patterns. Overall, we found 5 clusters of 

regions that had distinct time-course profiles, indicating that they may differentially contribute to 

processes within a trial. These time-course profiles are largely consistent across tasks. 

Specifically, two clusters, one with regions in the left FP, DAN, and visual cortex (magenta, 

Figure 3.3) and another with regions in the right FP, bilateral aI/fO of CO, and anterior cingulate 

of salience system (blue, Figure 3.3), showed positive trial-wise cue-, correct target-, and error-

related responses. Interestingly, comparison of time-course parameters showed that, relative to 

the LFP/DAN/visual magenta cluster, the RFP/CO/salience blue cluster had delayed cue onsets, 

weaker correct target response magnitudes, and stronger error response magnitudes. These 

patterns suggest dissociable control-related roles, specifically in trial-wise cueing and feedback, 

for the right FP and CO compared with the left FP, DAN, and visual systems. Instead, the left 

FP, DAN, and visual systems appear to play a more prominent role in moment-to-moment-target 

processing (see following discussion for elaboration).  A third cluster (green, Figure 3.3) with 

regions in the posterior insula and paracentral gyrus exhibited correct target-related activation 

and no control signals related to cueing and feedback (error). Finally, two clusters (red and 

yellow, Figure 3.3) were composed of regions in the default mode system. Both clusters showed 

cue-related deactivation and negligible correct target responses, characteristics that did not 
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clearly fit into control or roles related to moment-to-moment transformation of stimulus 

information.  

 

Figure 3.6: Summary of Distinct Functional Roles of Control Systems  
Combining information from hierarchical clustering and time-course analysis, the diagram 
summarizes the hypothesized functional roles of the different control systems during goal-
directed tasks. Overall, the FP system is divided such that time-courses from left FP regions were 
more similar with those in DAN regions while time-courses from the right FP regions were more 
similar with CO. During the set-up portions of the trial (cue), the left FP and DAN group showed 
quick onset in contrast with the slow cue onset of the right FP and CO group. Error responses 
were significantly more prominent in right FP and CO regions; however, left FP and DAN 
regions showed greater activity for target-related processes. 

 

Dissociable roles of control systems 

Largely consistent with the idea that separate control systems make unique contributions 

to trial-related processes, we identified two distinct trial-related response profiles that divided the 

regions of control systems into a right FP and CO cluster and a left FP and DAN cluster.   
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Right FP and CO engaged in fine-tuning task parameters and evaluating performances 

The right FP and CO cluster was composed of regions in the right FP (the right frontal 

cortex and IPS), CO (bilateral aI/fO and IPL), a small portion of the salience system (Sal, 

anterior cingulate) and regions of superior temporal gyrus (STG). Together, they showed robust 

activation in response to both cues and errors. The cue response had a later onset compared to 

other clusters while error-related responses in these regions had among the highest peak 

magnitudes. 

Past evidence has suggested that regions of the CO and FP systems play a critical role in 

task control. The CO system, especially in its core regions (i.e. dACC and bilateral aI/fO), carries 

sustained signals, task-initiation signals and various aspects of performance feedback signals 

pertaining to accuracy, reaction time, and ambiguity (Dehaene, Posner, & Tucker, 1994; 

Dosenbach et al., 2006; Hester, Fassbender, & Garavan, 2004; Holroyd, Dien, & Coles, 1998; 

Neta et al., 2015; Neta et al., 2014; Ullsperger, Harsay, Wessel, & Ridderinkhof, 2010]. The FP 

system, in both right and left hemispheres, also carries task-initiation signals as well as error 

signals (Carp, Kim, Taylor, Fitzgerald, & Weissman, 2010; Dosenbach et al., 2006; Wessel, 

2012]. A meta-analysis of perceptual recognition tasks with a specialized “slow-reveal” 

paradigm (e.g. stimuli slowly revealed over time to dissociate aspects of the decision-making 

response) found that CO regions exhibited consistent control-related activity at the moment of 

decision while right FP regions exhibited activity in post-trial processing associated with 

performance re-evaluation (Gratton et al., 2016]. Additionally, other behavioral and lesion 

studies have found that CO (aI/fO) and right FP regions are critical for monitoring and detecting 

discrepancies between behavioral responses and task instructions, suggesting they help carry out 
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important performance evaluation and task adjustment signals (Stuss & Alexander, 2007; 

Vallesi, Shallice, & Walsh, 2007]. 

Other regions clustered with right FP and CO were associated with the salience system 

(left anterior cingulate) and regions in the superior temporal gyrus (STG). The salience system, 

although it appears to be dissociable in resting-state (i.e. BOLD signal correlations in the absence 

of a task), tends to co-activate with executive control systems, especially CO, during tasks 

(Power et al., 2011; Power & Petersen, 2013; Seeley et al., 2007].  Regions in the STG have high 

intrinsic functional connectivity with the ventral attention system (VAN). Regions of VAN have 

been shown to exhibit activity related to monitoring (strong activation in response to unexpected 

targets), and they are thought to be integral to reorientations of attention (Corbetta et al., 2000; 

Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; Serences et al., 2005]. 

Based on the current and past evidence, we propose that, for right FP and CO (along with 

components of the salience system and STG), the late cue onset and the strong response 

associated with error suggest possible involvement in the fine-tuning of task set-level parameters 

(Figure 3.5). Here, the delayed signature in cue is similar to right FP’s delayed post-decision 

processing signals shown across 5 perceptual recognition tasks (Gratton et al., 2016], as well as 

the right FP’s prolonged error responses shown across 12 tasks (Neta et al., 2015]. One 

possibility is that, during cue, rather than processes related to the immediate update of trial-wise 

parameters (see contrasting fast cue response profile in left FP and DAN), right FP and CO 

regions might be engaged in incorporating the updated information into the task set-level 

parameters. Relatedly, significantly greater error-related responses in right FP and CO cluster 

suggest that these regions are also engaged in performance-related control processes, which may 

include response evaluation and feedback for improvement of future performance.    
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Left FP and DAN engaged in updating trial parameters and processing target information 

Regions in left FP and DAN were originally grouped with regions of the visual cortex; 

however, due to visual region’s modality-dependent characteristics, we removed them from 

modality-general characteristics of the left FP and DAN control regions (see discussion on 

processing regions for more detail). Overall, the time-course profiles of the magenta cluster 

remained similar in shape and magnitude after the exclusion of visual ROIs. In left FP and DAN, 

we observed cue responses with early onset, moderate error responses (although the error 

responses were significantly weaker than those in the right FP/CO/Sal cluster), and strong target 

responses.  

Traditionally, left FP and DAN regions have been considered to be control-related. In 

previous studies, the left FP has been grouped with its right hemisphere homologues in 

association with trial-level control, such as start-cue/task-initiation signals and establishment of 

task-set parameters (Dosenbach et al., 2006; Wallis et al., 2015]. In addition, studies using theta-

burst transcranial magnetic stimulation to disrupt functions in regions of left FP (prefrontal 

cortex) have found decreased tuning of task-relevant representations within extrastriate visual 

cortex (Lee & D'Esposito, 2012; Miller, Vytlacil, Fegen, Pradhan, & D'Esposito, 2011], 

indicating a role in “top-down” control of visual processing for left prefrontal cortex. However, 

left FP regions may have more specialized roles in top-down control that are separate from the 

right FP. Specifically, lesion patients with localized damage in the left frontal cortex consistently 

showed more errors related to deficiencies in establishing contingent task-relevant rules than 

right frontal lobe lesion patients (Stuss & Alexander, 2007]. Relatedly, the DAN is thought to 

help prioritize, in top-down fashion, sensory inputs relevant to the task at hand (Bressler, Tang, 

Sylvester, Shulman, & Corbetta, 2008; Corbetta et al., 1998; Thompson, Biscoe, & Sato, 2005; 
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Vossel, Weidner, Driver, Friston, & Fink, 2012], and disruptions and lesions in DAN regions 

have been shown to lead to significant modulations of visual cortex activity (Ruff et al., 2008; 

Ruff et al., 2006; Vuilleumier et al., 2008). 

In this study, left FP and DAN regions had dissociable roles from right FP and CO 

regions related to preparatory (cue) and error-related control. Left FP and DAN regions showed 

an earlier cue onset. Combined with lesion evidence that indicated left FP’s role in setting of task 

rules (Stuss & Alexander, 2007), this suggests involvement in fast update of trial-wise 

parameters. Compared to the right FP and CO cluster in which the incorrect-target time-course 

deviated significantly from the correct-target time-course, the incorrect- and correct-target time-

courses in left FP and DAN regions appeared to have similar shapes and magnitude; 

consequently, the error response (incorrect target > correct target) had a significantly lower 

magnitude in left FP and DAN than in the right FP and CO regions. Taken together, left FP and 

DAN regions’ time-course characteristics suggest that they may be more associated with loading 

trial-wise parameters than performance feedback. 

Additionally, unlike right FP and CO control regions, we also found strong activity in left 

FP and DAN during correct target implementation. Extensive neurophysiological studies in 

monkeys and event-related fMRI studies in humans have recorded activity consistent with the 

left FP and DAN regions (i.e. dlPFC and frontal eye field, FEF) contributing during moment-to-

moment processing, such as encoding and maintaining stimulus information during working 

memory (Chafee & Goldman-Rakic, 1998; Constantinidis, Franowicz, & Goldman-Rakic, 2001; 

Druzgal & D'Esposito, 2003; Ester, Sprague, & Serences, 2015]. Although, it is difficult to 

dissociate signals related to control from signals related to stimulus processing during target 

implementation, previous perceptual decision studies conducted by our lab have shown that as 
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more perceptual information is presented, regions in the left frontal cortex, MFG, and IPS 

exhibited early onsets and gradual increases that peak at the time of decision, similar to 

processing-related decision-making neurons (i.e., the gradual integration of processed 

information towards a decision (Gold & Shadlen, 2007; Gratton et al., 2016; Ploran et al., 

2007]). Given that the left FP evidence accumulation regions from Gratton et al., 2016 show 

close correspondence with the left FP regions in the current study (the mean distance between 

the accumulator regions from Gratton et al., 2016 and the nearest corresponding left FP regions 

from current study is 8.80 ± 4.45mm, see Figure 3.7), we propose that left FP, together with 

DAN, are involved in processing of target information (Figure 3.6).  

However, an alternative is that the correct and incorrect target-related activity present in 

left FP and DAN regions may also reflect ongoing control-related top-down attention signals that 

modulate processing to facilitate performance (Curtis & D'Esposito, 2003; Gazzaley et al., 2007; 

Monosov, Trageser, & Thompson, 2008; Moore & Armstrong, 2003]. For example, left FP 

regions, specifically the left middle frontal gyrus, demonstrated strengthened interactions with 

regions of visual association cortex during cognitively demanding visual tasks (Gazzaley et al., 

2007]. Relatedly, in primate frontal eye fields (FEF, one of the most widely studied regions in 

the DAN), sub-threshold stimulations of retinotopically corresponding sites within the FEF have 

shown to produce enhanced visual responses in area V4 (Moore & Armstrong, 2003]. This 

evidence suggests a possible role that left FP and DAN regions may play in maintaining goal-

directed attention across a trial, and the activity during target implementation in this study could 

reflect this ongoing trial-level control.  
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Figure 3.7: Proximity Between Accumulator Regions and LFP/DAN Regions  
Accumulator regions from Gratton et al., 2016, and the closest LFP/DAN regions are projected 
onto inflated cortical surfaces to demonstrate their proximity. The mean distance between each 
accumulator region and its nearest corresponding left FP region from the current study is 
8.80±4.45mm. 

 

Asymmetries in the frontoparietal system reveal functional dissociation 

The hierarchical clustering of cue, correct target, and error responses produced two 

distinct clusters that separated the traditional FP system. The right FP regions’ delayed cue, 

moderate target, and strong error response suggested functional roles in re-evaluation of trial-

related parameters and performance feedback. In contrast, the left FP regions’ early cue, strong 

target, and moderate error responses suggested functional roles in update of trial-related 

parameters and target information processing. 

Past research has provided evidence supporting distinct functions in the left and right 

hemispheres of the FP system. Lesion studies have found laterality effects when examining 

patients with focal left prefrontal lesions and patients with focal right prefrontal lesions (Stuss & 
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Alexander, 2007]. Lesions in the left prefrontal cortex were linked with difficulty in discerning 

target versus non-target events. The increase of false alarm rate in left frontal lesion patients was 

interpreted as a deficiency in setting up proper task-set parameters. However this could also 

represent a poor mapping of task rules to data accumulation processes as might be expected in 

regions with “mixed” processing characteristics. Lesions to the right prefrontal cortex were 

linked with increased overall task errors including both false positive as well as false negative 

errors, suggesting that the right prefrontal cortex may play a more critical role in enforcing 

relevant performance-related rules. From our analysis, we propose that the delayed cue onsets 

together with the robust error responses in right FP regions are associated with task updating and 

performance feedback.   

In related work, Wang and colleagues recently observed that resting-state connectivity of 

the left and right hemisphere of the FP system preferentially coupled to different functional 

systems of the brain. The left hemisphere connected more strongly to the default system while 

the right hemisphere had stronger coupling with other control systems such as regions of CO 

(Wang, Buckner, & Liu, 2014]. The latter aspect of this result is consistent with our clustering 

analysis, which revealed that the right FP regions shared very similar cue, correct target, and 

error profiles with the core regions of CO (bilateral aI/fO). Other task-related fMRI studies have 

also demonstrated functional asymmetries within the FP system regarding, for example, error 

response profiles (Neta et al., 2015], attentional control during reading (Ihnen, Petersen, & 

Schlaggar, 2015], and trial-wise processes during decision-making (Gratton et al., 2016]. Here, 

our data provided additional evidence supporting specialized functions in the two hemispheres of 

the FP system. 
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Response profiles of data processing systems are distinct from control systems 

Regions in the auditory system (posterior insula) and parietal memory system 

(paracentral gyrus) were clustered together and displayed activity primarily during target 

implementation. Moreover, these regions showed a slight deactivation during cue, and 

comparison between correct and incorrect target responses indicated weaker peak magnitude for 

incorrect target responses, which is not consistent with activity seen for performance feedback. 

As such, regions of auditory and memory systems seem more processing-related. Furthermore, 

existing literature has attributed data-processing functions to these regions: the posterior insula is 

associated with auditory-processing (Bamiou, Musiek, & Luxon, 2003] and the paracentral gyrus 

is associated with processing during memory encoding and retrieval (Gilmore et al., 2015; Kim, 

2013; Nelson, Cohen, et al., 2010; Power et al., 2011; Shirer, Ryali, Rykhlevskaia, Menon, & 

Greicius, 2012; Yeo et al., 2011]. 

In our analysis, visual regions did not separate into their own distinct cluster. Instead, 

they showed robust responses to both cues and targets, grouping with the left FP and DAN 

regions. Given that some of these regions are in the primary visual cortex, we have good reason 

to believe that they are purely processing-related regions (Felleman & Van Essen, 1991; Hubel 

& Wiesel, 1959]. Two of the three tasks (Task 1 and Task 2) used visual cues and targets. 

Because we combined the tasks in the meta-analysis, even though Task 3 did not use any visual 

stimuli, the averaged time-course profile from visual regions across all three tasks showed strong 

activation for both cue and target conditions. In order to confirm that our visual regions were 

data processing- rather than control-related, we examined time-courses from each individual 

task. The visual regions showed robust cue and target activation specific to the visual stimuli in 
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Task 1 and Task 2 and not in Task 3 (where the cues and targets were auditory), corroborating 

that their activity was stimulus modality-driven. 

Regions of the default mode system are in a league of their own 

Lastly, the hierarchical clustering analyses produced two clusters (red and yellow in 

Figure 3.3) composed of 13 regions in the default mode system (DMN), including left posterior 

cingulate cortex, left medial prefrontal cortex, right retrosplenial cortex, bilateral IPL, and 

bilateral dorsal PFC. These clusters showed a time-course profile distinct from our original 

hypothesized categories: a robust, negative cue signal along with a much weaker (or negligible) 

target signal. The DMN has been widely reported to show task-related decreases in activity, 

especially during cognitively demanding tasks (McKiernan, Kaufman, Kucera-Thompson, & 

Binder, 2003]. In addition, regions within the DMN are highly intercorrelated both at rest and 

during tasks, and are negatively correlated with brain regions that show task-related increases in 

activity (Fox et al., 2005; Greicius, Krasnow, Reiss, & Menon, 2003; Greicius & Menon, 2004]. 

These findings suggest the presence of an inhibitory interaction, possibly through a third party 

(e.g. the thalamus), between positively activated regions and regions of DMN (Sherman, 2001]. 

As such, it is possible that, during task performance, especially during the cue phase, the robust 

deactivation in these 13 regions was modulated by other more active control-related regions. 

Future research will be needed to clarify the functional roles of the default system.  

VI. Conclusion  

Taken together, the current study characterized the relative roles of control systems in 

preparatory- and error-related control, along with target processing. We found a group of largely 

right FP and core CO regions that showed late cue onsets and large error responses, reflecting 
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roles in evaluation of trial-wise parameters and trial performance, respectively. Another group 

composed of left FP and bilateral DAN regions showed a prominent cue response with early 

onset and strong correct target activity, suggesting roles in establishing trial-wise parameters and 

information processing. Finally, other processing-related systems (i.e. auditory and memory 

regions) and the DMN showed unique response profiles separate from the control systems. In 

conclusion, our results demonstrate a set separable response profiles within various control 

systems that indicate differential contributions to the implementation of goal-directed tasks. 
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CHAPTER 4: COMPLEX AND DYNAMIC SYSTEM 
INTERACTIONS ACROSS DIFFERENT STAGES 

OF A GOAL-DIRECTED TRIAL 
 

 

I. Abstract 

Goal-directed attention tasks involve activity of top-down control and bottom-up sensory 

systems. However, how and when these systems interact remains unclear. Here, we use a Posner-

like cued attention paradigm to compare, within a trial, the cue- and target-related changes in 

functional connectivity (FC) between control (e.g., frontoparietal and dorsal attention) and 

processing (e.g. visual and motor regions) systems. We specifically ask whether the control 

systems interact with the processing systems throughout the trial, or just at the preparatory 

period, i.e. during the cue. Comparisons between resting-state and task-state as well as within 

task-state (cues versus targets) indicate that FC changed subtly but significantly. Compared to 

rest, cue-periods were related to enhanced integration of control systems both with sensory 

systems and with other control systems. While some control systems maintained their 

strengthened connectivity with processing systems throughout the task, others (i.e. the 

frontoparietal system) decrease their connectivity with the visual system during target 

processing. Overall, the results reveal the presence of complex and dynamic relationships that 

suggest changes among the various functional systems across a trial reflect both continuous as 

well as momentary effects of top-down signals. 
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II. Introduction 

Humans rely on both bottom-up moment-to-moment processing of relevant input and 

output information and top-down control to instantiate and regulate goal-directed behavior 

(Baddeley, 1996; Desimone & Duncan, 1995; Logan & Gordon, 2001; Miller & Cohen, 2001). 

Successful orchestration of these processing streams is presumed to require carefully coordinated 

interactions between brain regions specialized for control-related activity and regions specialized 

for bottom-up information processing.  

Early examples of such interactions come from nonhuman primate electrophysiology. 

Past studies have demonstrated that goal-directed attention from higher-level control regions 

affects neural processing in the visual cortex. When an animal covertly (without explicit eye 

movements) directs its attention to a stimulus within a visual neuron's receptive field, the 

neuron’s responses are enhanced compared to when animal attended elsewhere (Connor, Gallant, 

Preddie, & VanEssen, 1996; Luck, Chelazzi, Hillyard, & Desimone, 1997; Motter, 1993). This 

effect increases with task difficulty (Spitzer, Desimone, & Moran, 1988) and persists even in the 

absence of exogenous stimulations (Luck et al., 1997). Collectively, these findings have led to 

the proposition that response modulations in lower-level visual cortex is a result of top-down 

modulations that bias visual processing in favor of attended information (Kastner & Ungerleider, 

2000).  

An active area of study, then, is to understand how top-down signals interact with 

processing regions. Some insight into this question has come from using fMRI to examine how 

correlations in spontaneous blood oxygenation level-dependent signals (BOLDs) measured from 
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different brain regions are influenced by tasks (Al-Aidroos, Said, & Turk-Browne, 2012; 

Norman-Haignere, McCarthy, Chun, & Turk-Browne, 2012). This method has revealed specific 

influence of top-down attention on the correlation structure between control and processing 

regions (Al-Aidroos et al., 2012; Griffis, Elkhetali, Burge, Chen, & Visscher, 2015; Sali, 

Courtney, & Yantis, 2016; Spadone et al., 2015). For example, Al-Aidroos et al. have shown that 

extrastriate visual area V4 and ventro-temporal visual association regions (i.e., the fusiform face 

area and parahippocampal place area) will flexibly increase their BOLD correlations based on 

the task at hand (e.g., attend to faces or attend to scenes). In addition, long-range modulation 

between control-related regions (e.g., prefrontal cortex) and processing related regions (e.g. 

visual association regions) can be enhanced or suppressed based on concurrent attentional goals 

(Griffis et al., 2015; Spadone et al., 2015). Hence, attentional demands appear to alter the 

functional coupling between relevant control and processing regions. 

However, the dynamic nature of one form of these interactions, reflected by correlation in 

relevant regions’ intrinsic BOLDs fluctuations during a trial of a task, remains unknown. Do 

higher-level control regions send continuous top-down instructions to lower-level processing 

regions, or are they the result of a momentary top-down signal that establishes goal-relevant 

processing? Understanding this timing places important constraints on the mechanisms by which 

top-down control modifies basic processing. 

To address this question, our study first takes a system-level approach. Converging 

evidence has suggested that multiple functional systems of distributed brain regions act as 

sources of control signals (Corbetta & Shulman, 2002; Dosenbach et al., 2007; Miller & Cohen, 

2001; Petersen & Posner, 2012; Power & Petersen, 2013). Control systems include: (1) the 

cinguloopercular task maintenance system (CO, dorsal and anterior cingulate cortex/medial 
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superior frontal cortex and bilateral anterior insula/frontal operculum), (2) the frontoparietal 

adaptive control system (FP, dorsal lateral prefrontal cortex, medial cingulate cortex, and 

intraparietal sulcus), (3) the dorsal attention system for top-down attention (DAN, dorsal lateral 

prefrontal cortex and frontal eye field), and (4) ventral attention system for re-orienting (VAN; 

right lateral ventral frontal cortex and temporoparietal junction). On the other hand, bottom-up 

processing occurs in systems such as the visual, auditory, and somatomotor systems (Bamiou, 

Musiek, & Luxon, 2003; Felleman & Van Essen, 1991; Matyas et al., 2010; Penfield & Boldrey, 

1937), as well as higher order decision-making regions. 

To observe how top-down signals interact with bottom-up processing, we employed a 

Posner-like cued detection task to investigate how attention changes the intrinsic functional 

relationships among distributed brain regions. The cue-target paradigm temporally separates the 

trial into (1) preparatory periods (cues), when trial-wise parameters are delivered for the 

configuration of top-down attention, and (2) trial implementation periods (targets), when the 

execution of the trial instructions occur (Hopfinger, Buonocore, & Mangun, 2000; Kastner, De 

Weerd, Desimone, & Ungerleider, 1998; Ollinger, Corbetta, & Shulman, 2001). Using this task, 

we can ask how region-to-region correlations evolve over the trial period, compared to a resting 

state. Furthermore, unlike previous experiments that focused on small sets of regions, the current 

study uses a system-level approach based on system definitions from a prior whole-brain 

parcellation (Gordon et al., 2014). Thus, we can directly probe the properties of multiple putative 

systems related to top-down control and bottom-up processing (control-to-processing 

interactions). Additionally, to get a more complete understanding of the system-level interactions 

we examine how interactions change among different control systems (control-to-control 

interactions) and within task-relevant processing systems (within-processing interactions). 
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Figure 4.1: Task Paradigm  
Subjects were instructed to perform target detection under two different conditions: intermixed 
and consecutive. For the intermixed condition, a preparatory visual cue in the form of a 
horizontal arrow was presented at the beginning of each trial. For 80% of the time they correctly 
predicted the likely location of the following target. From this condition, only catch trials (trials 
with cues and not target) were analyzed in this study, to allow for isolation of the cue signals 
from the target signals. Approximately 20% of the trials were catch trials. In the consecutive 
condition, subjects were given similar instructions as in the intermixed condition. However, a cue 
(arrow) was shown only once at the start of the run to indicate the likely location of the following 
targets. No subsequent trial-wise cue was given, although extra fixation frames were included 
where the trial-wise cues would have fallen. From this condition, the trials excluding the start 
cue were analyzed in this study, to allow for isolation of the target signals.  
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III. Methods 

Subjects 

Thirty-five healthy adults between the age of 21 and 30 (16 females, average age is 24.32 

years) were recruited from Washington University in St. Louis and the surrounding community. 

All subjects participated for monetary compensation, and prior to scanning, each subject gave 

informed consent in accordance with the guidelines and approvals of the Washington University 

Human Study Committee. Subjects with less than 85% accuracy on the task or with excessive 

movements were excluded. In total, 28 (15 females) out of 35 subjects were retained after 

implementing the exclusion criteria.  

Task design 

The experiment was set up using a Posner-like paradigm (Figure 4.1). Subjects were 

instructed to perform target detection. Two cue-target conditions were presented: intermixed and 

consecutive. For the intermixed condition, a preparatory visual cue in the form of a horizontal 

arrow was presented at the beginning of each trial to indicate the likely location (80% validity) of 

the following target. The target display included two Gabor patches, one on the left and one on 

the right side of the screen. At either 800 or 1600ms post target stimulus onset, one of the 

patches would rotate. Subjects were then required to respond to the orientation change via 

pressing a button using their right index finger.  Cues were presented for 1 TR, and targets were 

presented in the subsequent TR. Durations of inter-trial intervals were randomly distributed for 

1, 2, or 3 TRs. From this condition, only catch trials -- trials with cues and no target -- were 

analyzed in this study, to allow for isolation of the cue signals from the target signals. 

Approximately 20% of the trials were catch trials; on these trials, subjects were instructed to wait 
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for the next trial. In the consecutive condition, subjects were given similar instructions as in the 

intermixed condition. However, a cue (arrow) was shown only once at the start of the condition 

to indicate the likely location of the following targets. No subsequent trial-wise cues were given, 

although extra fixation frames were included where the trial-wise cues would have fallen. From 

this condition, the trials excluding the start cue were analyzed in this study, as they allowed for 

isolation of the target signals. Overall, this task design allows us to isolate cue and target events 

for functional connectivity analyses without introducing prolonged delays or unwanted signals 

between cue- and target-related processes.  

Resting State 

Resting-state data were obtained from 25 out of 28 subjects during the same session as 

the task data. During the resting-state scans, subjects lay quietly in the scanner while passively 

viewing a fixation cross.  

Image Acquisition 

Data were obtained from a Siemens MAGNETOM Tim Trio 3.0T Scanner with a 

Siemens 12-channel Head Matrix Coil (Erlangen, Germany). Head movements were limited by 

using a thermoplastic mask fitted to individual subject’s head at each entry into the scanner. 

Functional images for task and resting-state runs were acquired using a BOLD-contrast sensitive 

gradient-echo echo-planar sequence with following parameters: TE = 27ms, volume TR = 2.5s, 

flip angle = 90o, in-plane resolution = 4x4 mm, and 32 contiguous interleaved 4 mm axial slices. 

For each subject, six to eight task runs and one to two resting-state runs lasting 217 volumes each 

were obtained. Additionally, a T1 sagittal MP-RAGE structural image (TE = 3.06ms, TR-

partition = 2.4s, TI = 1000ms, flip angle = 8°, 176 slices with 1x1x1mm voxels) and a T2-

weighted turbo spin-echo structural image (TE = 84ms, TR = 6.8s, 32 slices with 2 x 1 x 4 mm 
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voxels) were acquired for each subject in the same anatomical plane as the BOLD images to 

improve alignment to an atlas.  

Preprocessing 

Both task and resting-state functional images were first processed to reduce artifacts 

(Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000). Steps were included to correct for (1) 

odd versus even slice intensity differences, (2) head motion within- and across-run using a rigid 

body rotation and translation algorithm (Snyder, 1996), and (3) within-run intensity 

normalization to a whole-brain mode-voxel value of 1000 to facilitate across subject comparison 

(Ojemann et al., 1997). Using the MP-RAGE scan, atlas transformation of the functional data 

was computed for each individual. Each run was then resampled to an isotropic 3-mm grid, 

combining movement correction and atlas transformation in a single interpolation. For task runs, 

root-mean-square (RMS) realignment estimates were calculated from the realignment parameters 

(rotational estimates converted to translational at radius of 50mm), and subjects having more 

than 4 runs with RMS movement above 1.0mm were first excluded.  

Task Residual Calculation  

After preprocessing, first-order stimulus-evoked BOLD activity were removed from the 

task-runs. A general linear model (GLM) approach was applied to model the BOLD signals in 

each subject using in-house imaging software (FIDL). The GLM included linear and constant 

terms for each run to remove baseline and drift effects. Additionally, start cues, end cues, trial 

events by condition types (i.e. cues for the intermixed condition, targets for the intermixed 

condition, cues for the consecutive condition, and targets for consecutive condition), errors, and 

sustained task responses were modeled in the GLM. For the trial events, 9 time-points were 

modeled using delta functions immediately following the onset of each event to capture the full 
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hemodynamic response (Miezin et al., 2000). Overall, this approach makes no assumption about 

the shape of the hemodynamic response but does assume that all events included in a category 

were associated with the same response. Sustained responses for both intermixed and 

consecutive conditions were modeled as a block effect. All subsequent operations were 

performed on the residual time-series that were extracted by removing task-evoked activity from 

task time-series using the GLM. 

Functional Connectivity Processing 

To reduce spurious variance unlikely to reflect neuronal activity, additional preprocessing 

steps were executed for resting-state and task residual data as recommended in Power et al. 2014. 

The preprocessing steps include demeaning and detrending, a multiple regression of nuisance 

variables from the BOLD data, and a temporal band-pass filter (0.009 Hz < f < 0.08 Hz). 

Nuisance variables included (1) whole-brain, ventricular, and white matter signals, and (2) 

motion parameters derived by Volterra expansion (Friston, Williams, Howard, Frackowiak, & 

Turner, 1996).  

In addition, temporal masks were created to identify motion-contaminated frames. Head 

motion can cause spurious yet systematic changes in BOLD correlations that affect group 

comparisons (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Van Dijk, Sabuncu, & 

Buckner, 2012). Motion-contaminated volumes were defined as having frame-by-frame 

displacement (FD, described in Power et al. 2012) greater than 0.25 mm. High motion volumes 

and uncensored segments of data lasting fewer than 5 contiguous volumes were flagged for 

removal. The procedure retained 1239±403 volumes (3097±1007 s) of usable data per subject for 

task-residuals and retained 215±37 volumes (537±92 s) of usable data per subject for resting-

state.  
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After the temporal masks were incorporated into the processing steps to censor motion-

contaminated data, data were interpolated across censored frames using least squares spectral 

estimation of the values at the censored frames. Finally, data with interpolated frames were 

passed through a band-pass filter (0.009 Hz < f < 0.08 Hz). However, even following this 

processing stream, censored frames were still ignored in the time-series used to calculate 

correlations. 

 

Figure 4.2: Regions of Interest (ROIs) 
The 333 parcels from Gordon et al., 2014 are depicted here. The system assignment of each 
parcel is color-coded. For selecting regions of interest, we focused on previously defined areas in 
six functional systems. Some of these systems are chosen based on their roles in task control and 
orientation of attention; they include, frontoparietal, cinguloopercular, dorsal attention, and 
ventral attention systems. Other systems are chosen because of their relevant processing 
functions; they include the visual and the somatomotor systems. Regions in the selected systems 
are also modeled as 10mm-diameter spheres.  

 

ROI Definition and System Assignments 

We defined our regions of interest from a prior whole-brain parcellation (Gordon et al., 

2014). From Gordon et al. 2015, 333 parcels derived from a group averaged (n = 120) resting-

state functional connectivity boundary map that represented putative cortical areas (Gordon et 
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al., 2014). All 333 parcels were assigned to a set of 13 networks that reflect the functional 

systems of the brain. The current study adopted 196 parcels and their network assignments based 

on their control- and processing related properties. The networks are:  frontoparietal, dorsal 

attention, ventral attention, cinguloopercular, visual, and somatomotor systems, see Figure 4.2. 

Lastly, the 196 regions of interest (ROIs) were modeled as 10mm-diameter spheres fixed at the 

parcels’ geometric centers. 

Functional Connectivity Calculations  

To extract signals from cue-related periods, cue-related volumes were taken only from 

catch-trials within the intermixed condition, where no target stimulus appeared in the subsequent 

four to six TRs following the onset of the cue stimulus. Target-related volumes were taken from 

trials in the consecutive condition, where no trial-wise cue was present.  

To construct the rest-, cue-, and target-related correlation matrix for each subject, the 

averaged task-residual (cue and target) and resting-state BOLD time-series were extracted 

separately for each of the 196 ROIs. For cues and targets, post-stimulus segments (5 consecutive 

TRs after cue and target stimulus onset. Similar results were found using 4 consecutive TRs) 

were concatenated across all catch-cues and targets for each subject. For rest, time-series from 

resting-state runs were extracted and then matched in frame numbers with each task-related 

condition. Finally, for cue, target and rest separately, the Pearson correlation coefficients were 

calculated between the BOLD time-series of all possible pairs of the ROIs, forming 196x196 

correlation matrices. All correlation coefficients were normalized using Fisher’s r-to-z transform.  
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Comparing correlation matrices 

For statistical comparisons of the subjects’ correlation matrices derived from rest, cue 

and target, a single p-value was calculated to indicate significance of matrix differences using 

methods from the emerging field of object oriented data analysis (OODA, La Rosa et al., 2012). 

OODA is a multivariate method capable of finding patterns of differences in correlation 

matrices. It employs classical statistical approaches (e.g. hypothesis testing) by treating each 

correlation matrix as a data point. From each sample, the averaged matrix is computed under the 

assumption that matrices follow the Gibb’s distribution. Average matrices from different samples 

are then compared to each other by taking the Euclidean distance between them. To evaluate the 

statistical significance for the comparison, the Euclidean distance between the two sample means 

are compared to a distribution of distances generated by paired permutations (n = 1000) of the 

original samples. The OODA method reduces the need for substantial data reduction in the 

correlation matrices, but prevents the loss of power that comes from testing each connection 

separately.  

After the comparisons of whole-brain correlation matrices, additional post hoc 

comparisons of between-system and within-system connectivity were conducted to investigate 

which specific control-to-processing, control-to-control, and within-processing interactions 

drove the omnibus effect. For each comparison (i.e. rest versus cue, rest versus target, and target 

versus cue), subsets of system-to-system correlations (e.g., frontoparietal-to-visual, 

frontoparietal-to-dorsal attention, and within-visual) were extracted and compared using two 

approaches. (1) We further applied OODA to each set of within-system and between-system 

correlations. Individual system-to-system OODA were then subjected to false discovery rate 

(FDR) correction for multiple comparisons. (2) To identify which within- and between-system 
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relationships changed the most for each comparison, we extracted the mean and standard 

deviation from the absolute values of the entire difference matrix, as well as from the absolute 

differences in each system-to-system relationships. Then, we computed standard scores 

associated with each within- and between-system modulations to indicate their deviations from 

the average connectivity change. Although this method lacks a measure of statistical 

significance, its main purpose is to indicate which system-to-system relationships differed the 

most for each rest versus cue, rest versus target, and target versus cue comparison. 

   

Figure 4.3: Rest-, Cue-, and Target-related Connectivity Organization  
The large-scale connectivity organization of the selected functional systems was similar between 
different trial conditions (cue and target) and resting-state. The Pearson’s correlation coefficients 
r = 0.94, r = 0.95, and r = 0.96 for rest versus cue, rest versus target, and cue versus target, 
respectively. 

IV. Results 

Task-state showed similar functional connectivity structure as resting-state 

Overall, the large-scale functional network organization of the 196 ROIs was similar 

between task and resting-state (see Figure 4.3). The correlation between averaged cue- and rest-
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related connectivity matrices is r = 0.90 while the correlation between averaged target- and rest-

related connectivity matrices is r = 0.91. Comparing cue and target conditions also indicates a 

largely similar underlying network organization, with a correlation between the averaged 

connectivity matrices of r = 0.95. 

 

Figure 4.4: Comparisons of Task Conditions 
(A) using paired OODA, we found significant differences between cue and rest, target and rest, 
target and cue. For the full matrix of all selected functional regions, we found significant 
differences between cue and resting-state (p < 0.001), target and cue (p < 0.05), and target and 
resting-state (p < 0.001). The resulting p-values (uncorrected) from post hoc block-wise paired 
OODA indicated which system-to-system connectivity are driving the overall effects. (B) For 
each cue versus rest, target versus cue, and target versus rest comparison, the standard scores 
associated with individual system-to-system connectivity indicated which ones changed the most 
compared to the mean absolute change of the full matrix.  

Connectivity changes are significant across different conditions 

Despite the overall similarity of network organization among cue, target and resting-state, 

there exist consistent differences between each state (Figure 4). Using object oriented data 
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analyses (OODA, see Methods), we found significant differences (p < 0.001) between cue and 

resting-state connectivity matrices as well as between target and resting-state connectivity 

matrices. Cue and target-related connectivity matrices also showed significant differences (p < 

0.05). 

Given the significant whole connectivity differences, we next sought to identify which 

within-system and between-system relationships were driving the overall effects. For each cue 

versus rest, target vs. rest, and target versus cue comparison, we applied post hoc OODA 

analyses to sets of system-to-system connectivity and calculated standard scores associated with 

their mean absolute difference to further characterize changes, especially in control-to-

processing, control-to-control, and within-processing interactions, across distinct portions of the 

trial (see Methods). Additionally, we investigated the changes in interaction as well. Figure 4.4 

shows, for each comparison, the resulting OODA p-values (uncorrected) and standard scores 

associated with individual system-to-system connectivity. Supplemental Figure 4.1 shows, for 

each comparison, the mean absolute correlation change associated with individual system-to-

system connectivity.  We will further describe these system-to-system changes in the following 

sections. 

Cue vs. Rest 

Figure 4.5 shows the difference in cue and resting-state matrices, as well as seedmaps of 

two example regions: one in a right frontal cortex region of the frontoparietal system (ROI1) and 

the other in a right posterior parietal region of the dorsal attention system (ROI2). These regions 

were chosen because, compared to resting-state, they showed some of the highest cue-related 

changes in connectivity. ROI1 in right frontal cortex showed cue-related increases with not only 

other regions of frontoparietal system, but also with bilateral superior parietal lobule (SPL) and 
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dorsal lateral prefrontal cortex regions of the dorsal attention system; the bilateral anterior insula 

and dorsal mid-cingulate regions of the cinguloopercular system; and right superior temporal 

gyrus and ventral frontal cortex of the ventral attention system. In addition, besides increases 

with most of the control systems, connectivity between ROI1 and lateral regions of the visual 

and motor systems also increased. Similarly, ROI2 in the right parietal region also showed 

largely increased connectivity with other control (e.g. regions in the frontal cortex and IPS of the 

frontoparietal system, regions in anterior insula and mid-cingulate of the cinguloopercular 

system) and processing (e.g. lateral visual cortex, motor cortex) regions. 

  These example patterns of system-to-system modulations in connectivity are 

representative of the overall changes seen in the comparisons between cue and resting-state. 

These connectivity changes are consistent across subjects, and they are supported by several 

comparison approaches. Significant post hoc block-wise OODA comparisons were observed in 

specific control-to-processing and control-to-control relationships. For control-to-processing 

system interactions, the most significant differences (OODA, p < 0.001, FDR corrected) were 

seen between frontoparietal-to-visual, and dorsal attention-to-visual correlations. These 

correlation changes were mostly cue-related increases, especially between right-lateralized FP 

regions and the visual system. Other control-to-processing modulations, such as ventral 

attention-to-visual, frontoparietal-to-motor, and cinguloopercular-to-motor were significant as 

well, albeit to a lesser degree (OODA, p<0.05, FDR corrected), and they largely showed cue-

related connectivity increases, except for connectivity between ventral attention system 

(especially regions in the left hemisphere) and visual system, which decreased. For control-to-

control system interactions, almost all relationships revealed significant differences. These 

control-to-control modulations were mostly cue-related increases, and, on average, had the 
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highest standard scores, suggesting that they predominantly drove the overall difference between 

cue and rest connectivity.  

 

Figure 4.5: Cue Versus Rest Comparison 
(A) the cue versus rest difference matrix is indicated by changes in Pearson’s correlation 
coefficient at individual region-to-region connections. The warmer colors indicate connections 
that are greater during cue than rest, and cooler colors indicate otherwise. The lower triangle 
shows the p-values of significant system-system blocks indicated by OODA, after FDR 
correction for multiple comparisons. Additionally, the thicker solid black line divides control-
related systems from processing systems to indicate connectivity differences within processing 
systems, within control systems, and between control and processing systems. The thin solid 
lines delineate individual systems, and the dashed lines divide regions in the left and right 
hemispheres. (B) Top: the cue versus rest contrast seedmap of an example ROI in the 
frontoparietal (FP) system. The FP seed revealed cue-related correlation increases with dorsal 
attention (DAN), ventral attention (VAN), and cinguloopercular control (CO) systems as well as 
with a few lateral visual regions. Bottom: the cue versus rest contrast seedmap of an example 
ROI in the DAN system. The DAN seed also revealed cue-related correlation increases with 
regions of FP, VAN, and visual systems. 
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Figure 4.6: Target Versus Cue Comparison  
(A) The target versus cue difference matrix is organized in similar fashion as Figure 4.5. The 
warmer colors indicate connections that are greater during target than cue, and cooler colors 
indicate otherwise. The lower triangle shows the p-values of significant and trend-level system-
system blocks indicated by OODA, after FDR correction for multiple comparisons. Specifically, 
within-visual connectivity showed target-related increase; within-frontoparietal connectivity 
showed target-related increase; and frontoparietal-visual connectivity showed mixed modulations 
such that right frontoparietal regions showed more target-related connectivity decreases with the 
visual regions. (B) Top: the target versus cue contrast seedmap of the same example ROI in the 
right frontoparietal system (FP) as in Figure 4.5. The FP seed revealed target-related correlation 
increases mostly with other regions of FP system. The FP seed also showed target-related 
decreases with visual and motor regions. Bottom: the target versus cue contrast seedmap of a 
visual seed in the right calcarine sulcus. Congruent with the pattern in the FP seed, here we see 
the expected target-related connectivity decreases with the right FP regions. In addition, the 
visual seed also revealed target-related connectivity increase within the visual system.  
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Target vs. Rest 

Modulation of connectivity between target and resting-state showed an overall similar 

pattern of changes as seen between cue and resting-state (Supplemental Figure 4.2). Most 

notably, control-to-control (e.g. frontoparietal-to-dorsal attention, dorsal attention-to-ventral 

attention) system changes not only revealed statistically significant differences (OODA, p < 

0.05, FDR corrected), they had the highest magnitude of target-related changes relative to rest. 

Additionally, similar control-to-processing changes as those seen in cue versus rest comparison 

were significant here as well (i.e. frontoparietal-, dorsal attention-, and ventral attention-to-

visual).  

Cue vs. Target  

Despite the largely similar cue- and target- related connectivity modulations relative to 

resting-state, there were consistent and specific differences between these two portions of the 

trial. Figure 4.6 shows the difference between target and cue seedmaps of the aforementioned 

frontoparietal region in the right frontal cortex (ROI1, see cue vs. rest) and a visual region in the 

right calcarine sulcus (ROI2). These regions were chosen because they show high absolute 

changes in connectivity, and they provided insight into both the control and processing systems 

of the brain. ROI1 in the right frontal cortex showed increases in target-related connectivity with 

other regions of the frontoparietal system (e.g. dlPFC) and dorsal attention system (e.g. bilateral 

frontal eye fields). However, ROI1 also showed target-related connectivity decreases with the 

visual and motor processing systems. Correspondingly, ROI2 in the right calcarine sulcus of the 

visual system showed primarily strong target-related decreases with a large subset of the 

frontoparietal regions, especially in the right frontal cortex. Increases in connectivity were also 

seen between ROI2 and other regions of the visual and motor cortex.                                                                                    
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The contrast between target- and cue-related full correlation matrices demonstrated 

similar patterns of modulations indicated by the examples (Figure 6). It is important to note that 

OODA comparison of the complete connectivity matrices revealed overall significant differences 

across cue and target portions of the trial. While only the within-visual block-wise OODA 

comparison passed FDR correction for multiple comparisons (OODA p = 0.042, corrected), 

frontoparietal-to-visual, and within-frontoparietal connectivity also demonstrated trend-level 

differences (OODA p = 0.084 corrected; OODA p = 0.063 corrected). On average, these specific 

system-to-system relationships modulated the most, as the corresponding standard scores 

suggest. Furthermore, target-related decreases were seen for control-to-processing connectivity, 

especially between right frontoparietal and visual regions (Supplemental Figure 2). Target-

related increases were seen within control (i.e. frontoparietal system) and processing (i.e. visual) 

system connectivity (Supplemental Figure 2). 

V. Discussion  

Top-down attention influences bottom-up processing in regions such as the visual cortex. 

Supported by evidence from single-cell recordings and neuroimaging studies, influential theories 

of attention, i.e., the biased competition model and the divisive normalization model, propose 

that top-down control signals instantiate an environment that allows for selective processing of 

relevant stimuli, perhaps via shrinking the neuronal receptive fields around the attended stimulus 

(Moran & Desimone, 1985), enhancing the neuronal response by a gain factor (Spitzer & 

Richmond, 1991), or increasing the neuron’s contrast gain by elevating the baseline activity 

(Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999; Ress, Backus, & Heeger, 2000). 

However, each of these models lacks descriptions for the temporal characteristics of top-down 

control; thus, our analyses hope to shed further insight.  
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The current study took a system-level approach and examined how the interactions 

among various control and processing systems differed across separate portions of a trial. By 

looking at the timing of the changes in functional connectivity and relating the observed changes 

to cue- and target-related processing, we examined functional connectivity modulations between 

control and processing systems, between control-related systems (control-to-control), and within 

processing-related systems (within-processing) to better understand trial-related dynamics among 

a selected set of functional systems. 

Our task used a specialized experimental design that allowed for the separation of cue 

and target events for connectivity analyses while retaining the respective cognitive aspects of 

each event. Overall, we found that, similar to the conclusions from previous task-related 

connectivity studies, connectivity patterns derived from cue and target periods were largely 

similar to resting-state (Cole, Bassett, Power, Braver, & Petersen, 2014; Yeo et al., 2014). 

However, across portions of a trial, we observed subtle changes among processing regions, 

mostly in the visual system, that were accompanied by additional complex and dynamic 

modulations in their connectivity with distinct control systems. Our results demonstrated a large 

cue-driven enhancement in control-to-processing as well as control-to-control connectivity that 

was generally maintained throughout the trial. However, this global increase was further 

accompanied by more specific target-driven reductions (from cue-related enhancements) in 

connectivity between some control and processing systems (i.e. frontoparietal to visual 

connections). Taken together, changes among the various functional systems across a trial reflect 

effects of top-down signals that are both continuous as well as momentary.  
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Control-to-processing interactions 

From rest to cue: Control systems engage with processing systems during the preparatory phase  

In comparison to resting-state, executive control- and attention-related functional systems 

all demonstrated statistically significant changes in their interactions with processing systems 

during the cue portion of a goal-directed trial. These specific control-to-processing interactions 

are likely to reflect the engagement (and in some cases disengagement) of relevant higher- and 

lower-level brain regions as a result of top-down attention.  

In support of this idea, past evidence has suggested that the frontoparietal, 

cinguloopercular, and dorsal attention systems are sources of top-down control signals. 

Specifically, the frontoparietal system (dorsal lateral prefrontal cortex, medial cingulate cortex, 

and intraparietal sulcus) is thought to emphasize initiating and adapting relevant parameters on 

both a task set level as well as a trial level, while the cinguloopercular system (dorsal and 

anterior cingulate cortex/medial superior frontal cortex and bilateral anterior insula/frontal 

operculum) might be engaged in stable maintenance of parameters across the task (Dosenbach et 

al., 2007; Neta et al., 2015). The dorsal attention system (intraparietal cortex and frontal eye 

fields) has exhibited activity related to trial preparation as well as action selection in goal-

directed tasks. Additionally, the DAN is thought to also play a crucial role in voluntary 

maintenance of spatial attention (Corbetta & Shulman, 2002).  

Recently, regions in the frontoparietal and dorsal attention systems have been implicated 

in selective attention operations through increasing their connectivity with visual association 

regions (Bressler, Tang, Sylvester, Shulman, & Corbetta, 2008; Gazzaley et al., 2007; Spadone et 

al., 2015). Previous studies using combined TMS and fMRI have directly investigated the 
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influence of control regions (e.g., prefrontal cortex, intraparietal sulcus, and frontal eye fields) on 

lower-level sensory regions (Lee & D'Esposito, 2012; Ruff et al., 2008; Ruff et al., 2006; 

Vuilleumier et al., 2008). Notably, disruption of PFC function has shown to decrease the tuning 

of extrastriate cortex responses and cause decrements in task performance (Lee & D'Esposito, 

2012). Although the current results also revealed FC enhancements between control and 

processing regions, here we emphasize the initiation of the top-down effects during the cue 

preparatory period.  

A fourth attention-related network, the ventral attention system (VAN) is specialized for 

reorientation of attention and detection of task-relevant stimuli occurring at unexpected 

locations. For example, during a Posner task, ventral attention regions show greater evoked 

responses during target periods of invalid trials than during target periods of valid trials 

(Corbetta, 1998). Due to its weak evoked responses during a preparatory cue, the ventral 

attention system is typically described as not involved in the generation or maintenance of top-

down attention, but is instead thought to be modulated by stimulus-driven attentional control 

(Corbetta & Shulman, 2002; Serences et al., 2005). Although traditionally described as right 

lateralized, the ventral attention system defined in the current study is composed of bilateral TPJ, 

superior temporal gyrus, and ventral frontal regions. Our results indicated significant overall 

decrease in connectivity between VAN and visual regions, especially in the left VAN regions. 

Perhaps consistent with the traditional descriptions, this initial decreased coupling between VAN 

and visual system seen in the current study is suggestive of VAN’s role outside of preparatory 

top-down regulation.  
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From cue to target execution: Some control systems showed target-driven decoupling with 
processing regions  

We observed that the functional connectivity estimated during target implementation was 

significantly different from the functional connectivity estimated during preparatory portions of 

the trials, suggesting variations in interactions among the functional systems as result of 

differences in cue- and target-related processing. One salient set of changes was the decreases in 

target-related correlation between visual and the right lateralized FP regions, suggesting a 

relative decoupling of functional connectivity across two systems. In combination with the 

observed increased connectivity seen from rest to cue, this "integrate then separate" relationship 

between FP and visual systems is surprising based on the body of literature that demonstrated 

enhanced long-range modulations between regions of the FP system and regions of processing 

systems (Gazzaley et al., 2007; Ruff et al., 2006). It is important to note that while our results 

showed connectivity fluctuations between FP to processing system within different periods of a 

task, connectivity between these systems was overall stronger during task than rest, which is 

consistent with previous observations. However, the data further suggest that FP regions do not 

provide a steady signal to relevant processing regions, such as the visual regions. We speculate 

that control regions in FP may specifically act to "update" attention bias signals at the beginning 

of the trial by transiently boosting connectivity with relevant processing regions and then 

attenuating connectivity to allow visual and motor regions to process target-related information 

efficiently.  

On the other hand, many control regions, especially in the CO system, also maintained 

relatively steady interactions with the processing systems across the cue and target portions of a 

trial. How distinct control systems maintain or alter their interactions with processing systems is 
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perhaps indicative of their functional specializations. Extant theoretical models of the task 

control have delineated dissociable control signals that operate on different time-scales 

(Dosenbach et al., 2007; Logan & Gordon, 2001). While signals, such as trial-wise cueing, are 

adapted on trial-by-trial basis, others, such as sustained signals, are maintained across an entire 

task set (Chawla, Rees, & Friston, 1999; Dosenbach et al., 2007; Dosenbach et al., 2006). Here 

we show that FP varies its interaction with processing systems based on the concurrent trial-

related operations, and perhaps this pattern of function connectivity change contributes to FP’s 

fast and adaptive activity in task control. In contrast, given the lack of significant changes in 

functional connectivity between cue and target, CO showed relatively steady interactions with 

the visual system, and we speculate that the continuous enhancement between CO and visual 

regions reflect the longer acting, across-trial, sustained signals from the CO system. 

Within-processing interactions 

FC also was modulated among processing regions during different periods of the task. 

Notably, FC within the visual system showed an initial trend-level decrease during the cue 

period that then transitioned into a significant increase back to baseline during the target. This 

effect is partly inconsistent with previous observations, which have reported connectivity 

decreases within the visual systems during movie viewing and visually cued tasks (Betti et al., 

2013; Spadone et al., 2015). However, it is possible that the decrease in within-visual coherence 

observed here, during cue, and in previous studies reflects the selective effect of top-down 

attention on subgroups of visual neurons, and the return to baseline coherence during target 

reflect visual processing of the trial stimuli.  
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Control-to-control interactions 

Control-related systems showed substantial integration during this goal-driven attention 

task. A comparison with resting-state showed significant connectivity increases between and 

within almost all control systems, and the increased connectivity was largely maintained 

throughout both cue and target periods of the task. This finding suggests that control systems 

become more interconnected in the presence of goal-directed attentional signals. Some of the 

increased connectivity may be at the service of exchanging executive control signals between 

frontoparietal and cinguloopercular systems during task implementation, such that the increases 

may reflect the ongoing communication between parameter updating, monitoring, and 

performance feedback signals necessary for task performance (Dosenbach et al., 2006; Gratton et 

al., 2016; Sadaghiani & D'Esposito, 2015; Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015). 

Although few studies have specifically examined changes in between-network interactions of 

control systems during task, studies using graph theory to examine network properties of brain 

regions have shown a high frequency of hub-like regions in frontoparietal, cinguloopercular, and 

dorsal attention systems (Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013; van den 

Heuvel & Sporns, 2011) These hub-like regions exhibit increased interactions specifically with 

other control systems during various tasks, and lesions in a hub region can result in disruption of 

the brain’s intrinsic functional organization and detrimental impairments in task performance 

across many neuropsychological and cognitive domains (Gratton, Nomura, Perez, & D'Esposito, 

2012; Warren et al., 2014). Here, we have provided additional evidence for increased 

connectivity among control systems as a result of both trial-related cueing and target 

implementation, further supporting the collective roles of the control systems during task 

performance. 
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VI. Conclusions 

In conclusion, the present study provides new insight into the subtle modulations of the 

brain’s functional structure during the implementation of goal-directed tasks. In particular, we 

found that trial-wise preparatory signals during cue periods produced enhanced connectivity in 

control-to-control and control-to-processing relationships. While we did observe substantially 

maintained changes in network interactions across cue and target processing, some momentary 

effects were present among various functional systems as well. Most notably, we observed 

decreases in between-system relationships (e.g. frontoparietal-visual) and increases in within-

systems relationships (e.g. frontoparietal, dorsal attention, and visual) during target processing, 

compared with the cue period. Future research will be needed to explore the association between 

task-induced alterations in functional structure and performance in order to broaden 

understandings of the significance and effects of task-based connectivity modulations. 
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VIII. Supporting Information 

 

Supplementary Figure 4.1: Averaged Connectivity Changes  
For each cue versus rest, target versus cue, and target versus rest comparison, to determine 
whether each between and within system fucntional connectivity increased or decreased, we 
calculated the mean correlation change within each system-to-system block. For example, under 
the cue versus rest colunn, the first panel indicates the mean correlation change between visual 
and every other selected functional system.  



137 
 

 

 

Supplementary Figure 4.2: Target Versus Rest Comparison 
 (a) The target versus rest difference matrix is depicted and organized in similar fashion as Figure 
4.5 and Figure 4.6. The warmer colors indicate connections that are greater during target than 
rest, and the cooler colors indicate otehrwise. The lower triangle shows the p-values of 
singificant system-system blocks indicated by OODA, after FDR correction for multiple 
comparisons. Overall the pattern of changes between target and restin-state is similar to that of 
between cue and resting-state. (b) The target versus contrast seedmap of the same example ROI 
in the right frontoparietal system (FP) as in Figure 4.5. The FP seed revealed target-related 
increases in connectivity mostly with other regions of FP, dorsal attention, cinguloopercular, and 
right ventral attention systems. However, unlike the cue versus resting-state comparison, here we 
see more target-realted decreases in connectivity between the seed region and medial visual 
regions as well as motor regions. 
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CHAPTER 5: CONCLUSIONS 
 

 

Implementation of daily functions in humans relies on both bottom-up moment-to- 

moment processing of relevant sensory information and top-down controls that instantiate and 

regulate goal-directed strategies. Carefully coordinated interactions between brain regions 

specialized for control-related activity and regions specialized for bottom-up information 

processing allow humans to adeptly undertake various goal-directed tasks. Past seminal 

framework that outlined the anatomical basis of task control proposed that, (1) systems related to 

control processes should be anatomically separate from systems related to "data processing "; (2) 

control processes are carried out by a network of anatomical areas; and (3) distinct systems of 

control carry out different cognitive operations in context of attention (Petersen and Posner, 

2012). The work contained in this thesis further address these propositions by focusing on 

characterizing control systems’ distinctness in the contexts of resting-state connectivity, task-

activation, as well as task-based connectivity.  

I. Summary of Results 

 In Chapter 2, using graph theory methods, we explored the resting-state intrinsic 

connectivity and system overlaps in various functional systems, including control systems. 

Specifically, resting-state fMRI studies in the past have modeled the brain as a large interactive 

network of distributed functional areas and employed complex graph theory methods to identify 

and characterize the brain’s various functional systems (Bullmore & Sporns, 2009; Rubinov & 
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Sporns, 2009). Despite knowing that the functional structure of the brain is extremely complex 

and that different systems interact, current graph-based methods used for studying the brain lack 

description of inter-system connections and assume that functional systems are neatly separable. 

Here, a major idea that the chapter explores is whether some regions of the brain effectively 

belong to more than one functional system. Motivated by this, we applied the concept of link 

communities, which allowed the description of overlapping functional systems, and compared 

the results from link communities to previous results from conventional methods. 

 Primarily, the link-based functional systems showed high overall convergence with the 

traditional node-based network identities. For example, we see networks with strong 

resemblance with the default mode network, frontoparietal network, cinguloopercular network, 

and many others, which not only confirm that the resultant link-based communities are 

biologically plausible systems but provide converging evidence for the identity of the brain’s 

major functional systems. Additionally, we observed several notable interactions among the 

functional systems as result of the link communities approach. The link-based scheme suggests 

that regions in control-related systems, such as the frontoparietal, cinguloopercular, and dorsal 

attention systems, have multiple assignments that are widely distributed among a diverse set of 

networks while sensory-related networks show more restricted overlaps. The overlapping regions 

from link communities converge with regions that may be significant to the integrity of inter-

community connections, as assessed with other graph theoretical measures, such as participation 

coeffcient. Recent evidence also revealed that focal lesions to some of these articulation regions 

result in degradation in resting-state functional structure and also severe impairment in a wide 

range of neuropsychological domains (Gratton, Nomura, Perez, & D'Esposito, 2012; Warren et 

al., 2014).  Finally, our results provided insight onto the level of association between functional 
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systems. For example, our results noted that 15% of frontoparietal ROIs are shared with the 

cinguloopercular system. In addition, several regions, especially in the bilateral anterior insula 

and medial frontal cortex, overlapped the two systems. Taken together, by quantifying the extent 

of overlap and providing detailed descriptions of the relationship between different systems, link 

community descriptions provide a more comprehensive and quantitative view of system 

overlaps, an aspect that is not easily appreciated from node-based communities. 

In Chapter 3, we conducted a meta-analysis of tasks to examine the distinct functional 

characteristics of control systems in task activation. Studies in the past have made significant 

strides toward identifying and characterizing distinct types of control signals (on both task set-

level as well as trial-level) and multiple systems of brain regions involved in expressing such 

signals (Corbetta & Shulman, 2002; Dosenbach et al., 2007; Dosenbach et al., 2006). Although 

extant characterizations of control systems have indicated separable roles for distinct control 

systems at task set-level, the contributions of control systems to different types of top-down trial-

level signals (i.e. trial-wise preparatory and response-related control signals) have not been 

extensively explored. Motivated by this, we conducted a meta-analysis of three distinct goal-

directed tasks with trial-wise implementations to examine whether distinct systems show 

separable response patterns that reflect unique functional roles at the trial-level. 

The tasks in the meta-analysis all used a cue-target paradigm, which temporally 

dissociates each trial into a cue period and a target execution period, each containing distinct set 

of trial-level signals. Using a data-driven clustering analysis, we identified two distinct trial-

related response profiles that divided the regions of control systems into a right frontoparietal 

and cinguloopercular cluster and a left frontoparietal and dorsal attention cluster. Further 

analyses of the controls regions’ response characteristics presented new insights about their 
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unique roles regarding trial-wise control as well as its implementation during goal-directed tasks. 

The right frontoparietal and cinguloopercular regions, from their delayed response to cues and 

robust response to error, are thought to engage in fine-tuning task parameters (potentially for 

subsequent trials) and evaluating performance. On the other hand, the left frontoparietal and 

dorsal attention regions, from their early cue onset, were thought to engage in timely updates of 

trial-wise parameters. In addition, not only did left frontoparietal and dorsal attention regions 

have weak error signals, they showed strong activity related to correct target implementation. 

Taken together with previous results that suggested the left frontoparietal regions’ involvement 

in accumulation of perceptual information, an aspect that is not related to task control, we 

speculate that left frontoparietal and dorsal attention regions are also involved in processing of 

target information. The combination of our results with previous work provides a more complete 

description of various control systems’ function. Overall, this study delivers important 

implications for future understanding and characterizations of control systems. 

Finally, in Chapter 4, we explored (1) how the functional connectivity of selected 

systems changes during individual trials of a goal-direct task, and (2) how these connectivity 

changes further inform the functional roles of these systems. Previous influential theories of 

attention, such as biased competition theory and divisive normalization model, have proposed 

that, under interactions of control and processing systems, top-down signals, originating from 

control systems, may instantiate an environment for the processing systems to selectively process 

task-relevant stimuli. This is accomplished perhaps via increasing a processing neuron’s 

response by a gain factor (Spitzer, Desimone, & Moran, 1988) or via enhancing a processing 

neuron’s contrast gain by elevating its baseline activity (Kastner, Pinsk, De Weerd, Desimone, & 

Ungerleider, 1999; Ress, Backus, & Heeger, 2000). However, most of the models lack 
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descriptions for the temporal characteristics of top-down control. Hence, our analyses hope to 

shed further insight onto how and when control and processing systems interact.  

Using a Posner paradigm, we compared cue- and target-related changes in functional 

connectivity between a set of control and processing systems. By testing whether the control 

systems interact with the processing systems throughout the task, or just at the preparatory 

period, i.e. during the cue, the results provided new evidence regarding the subtle modulations of 

the brain’s functional structure during the implementation of goal-directed task. Notably, we 

found that trial-wise preparatory signals during cue periods produced enhanced connectivity 

among various control-related systems (e.g. frontoparietal, dorsal attention, and cinguloopercular 

systems) and between control- and processing-related systems, such as between frontoparietal 

and visual regions, dorsal attention and motor regions. We speculated that these specific control-

to-control and control-to-processing interactions likely reflect the engagement (and in some 

cases disengagement) of the task-relevant functional systems as a result of top-down attention. 

Furthermore, as most control systems (cinguloopercular and ventral attention systems) 

maintained their strengthened connectivity with visual and motor processing systems throughout 

the trial, the frontoparietal system, on the other hand, weakened its connectivity with the visual 

system during target processing.  Hence, we speculate that the control regions in frontoparietal 

system may specifically act to "update" attention biasing signals at the beginning of the trial by 

transiently boosting connectivity with relevant processing regions and then decreasing the 

connectivity to allow visual and motor regions to process target-related information efficiently. 

Lastly, the way that, e.g., the frontoparietal system, behaves differently from e.g., the 

cinguloopercular system, further instantiates their functional specializations. Taken together, the 

results reveal the presence of complex and dynamic relationships that suggest changes among the 
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various functional systems across a trial reflect both continuous as well as momentary effects of 

top-down signals. 

II. Future Directions 

The work described in this dissertation advances the field's understanding of the basic 

organization and interactions among the brain’s functional systems during rest as well as during 

tasks (although we have only focused on a limited set of tasks). Further work will be required to 

determine the mechanisms and importance of these interactions, perhaps via (1) perturbing the 

typical network organization and observing the resulting behavioral correlates, (2) designing 

experimental manipulations that isolate specific aspects of inter-systems communication, or (3) 

examining certain developmental changes and corresponding variations in behavior. In this 

section, we will discuss some possible future experiments/research.  

Functional significance of overlapping regions identified by link communities 

From current lesion literature, descriptions of focal lesions and the ensuing cognitive and 

behavioral deficits have provided great advances to our knowledge of localized functions of 

certain brain regions (i.e., Broca's area). However, in some cases, circumscribed lesions tend to 

have surprising cognitive effects that are far broader than would be predicted based on the 

lesions’ sizes and locations. This type of lesion has been thought to reflect the presence of 

interactions (typically through structural connections) between the affected and unaffected 

regions (Mesulam, 1990).  

Recently, the advent of non-invasive neuroimaging methods and graph-based network 

descriptions of the brain’s functional connectivity (such as the study described in Chapter 2) has 

provided a possible alternative explanation for these unusually damaging focal lesions (Power, 
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Schlaggar, Lessov-Schlaggar, & Petersen, 2013).  Previous studies emphasized using a 

combination of measures such as centrality and degree to indicate a region’s functional 

significance to the overall integration as well as the resilience of the brain network. “Hubs” is a 

term that describes the nodes of a network that often interact with many parts of the network to 

facilitate communication; however, when hubs are disrupted, they tend to cripple much of the 

entire network. In a modular network, like the brain, the measure of participation coefficient 

allows the assessment of a node’s hub-like qualities (Guimerà, Mossa, Turtschi, & Amaral, 

2005). Nodes with high participation coefficients have edges that are well distributed among 

different modules, which suggest integration of functions. Hence, it is possible that a brain 

region’s cross-system participation may help explain the variability in lesion outcomes.    

 In chapter 2, the link-community approach provided new utilities to evaluate the roles of 

different nodes within the network. Specifically, we used the number of link community 

memberships as a proxy to evaluate the diversity of a node and implemented a measure, the link 

community participation, to indicate the link-based diversity of a node.  From our study, 

information derived from participation coefficients of the node-based scheme and link 

community participation indices of the link-based scheme converged. Although several studies 

have examined the network effect as well as neurophysiological effect of lesions to hubs 

identified by participation coefficient, the results tend to focus more on large-scale perspectives.  

For example, Warren et al., 2013 found that damage to hub locations produced much greater 

cognitive impairment, in general, than damage to other locations (Warren et al., 2014). 

Additionally, Gratton et al., 2012 also observed that hub lesions have a widespread, nonlocal 

impact on brain network organization as a whole (Gratton et al., 2012). However, one of the 

potential benefits of link communities is that the method also specifies with which systems a 
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region acts as the point of integration. Hence a testable hypothesis would be that the information 

from link communities about the effected systems can further predict the magnitude of the 

network disruption as well as the likely domains of neurological impairments caused by the 

lesion.  

 Although 264 regions of interest (ROIs) used in Chapter 2 were obtained through 

combining the results from a task fMRI meta-analysis and a fc-Mapping technique to represent 

the putative functional areas of the human brain, their overall coverage, especially of the frontal 

cortex, is not ideal. Hence, before testing our hypothesis, an alternative link-based representation 

using a voxel-wise scheme could prove to be helpful either as a source of converging evidence as 

well as a possible solution to better spatial coverage. We plan to use the edge x edge matrix 

derived from the modified voxel-wise scheme similar to that described in Power et al., 2011. The 

modified voxel-wise version eliminates connections between voxels that are less than 20mm 

apart in hope to minimize the short distance correlations’ susceptibility to spurious inflation of 

magnitude due to motion. In addition, only the top percentages of the strongest voxel-to-voxel 

correlations are retained for the construction of the link matrix.  Here the link matrix will have 

elements that equal to the similarities between pairs of voxel-to-voxel edges.  By applying 

Infomap on the link matrix, we can detect communities within the link-based network and 

observe voxels with overlapping community assignments. 

 To test whether link communities can predict the size of network disruption, we will 

select regions with consistent system overlaps indicated by converging results from the 264 ROIs 

as well as the voxel-wise scheme, and observe whether lesions at these regions would produce 

disruptions to the systems in which the regions partake specifically. Adding to the observations 

in Nomura et al., 2010, which demonstrated that heterogeneous lesions in either frontoparietal or 
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cinguloopercular system generally produce altered connectivity only within the damaged 

network while leaving the other network preserved, we speculate that damages to regions, such 

as the anterior insula, that partake in both frontoparietal and cinguloopercular systems, will 

produce simultaneous disruptions to both systems.  Alternatively, it is also possible that damage 

to the anterior insula will leave the within-system functional structures intact while disrupting the 

between-system functional structure of the frontoparietal and cinguloopercular systems.  

Extending the example of frontoparietal and cinguloopercular systems, to test whether 

link communities can predict the domains of neurological impairments of certain lesions, we will 

compare the behavioral performance of patients with distinct frontoparietal or cinguloopercular 

focal lesions to patients with lesions at overlapping regions such as the anterior insula. Given 

what we know about the significance of frontoparietal and cinguloopercular systems, it is 

possible that patients with within-systems lesions will exhibit deficits pertaining to each system’s 

functional roles while patients with lesion locations that overlap the two systems, such as the 

anterior insula, will show many combined deficits exhibited by patients with within-system 

lesions. Furthermore, ideally, with this approach, we can provide confirmation to the functional 

significance of overlapping regions and gain additional understanding of how parallel systems 

integrate their activities to carry out complex cognitive processes.  

Further inquiries about the left frontoparietal regions 

 In Chapter 3, we have observed that the left frontoparietal regions showed dissociable 

roles from the right frontoparietal regions related to target processing. Extensive 

neurophysiological studies in monkeys and event-related fMRI studies in humans have recorded 

activity consistent with the left frontoparietal regions’ (i.e. dlPFC and frontal eye field, FEF) 

contributions during moment-to-moment processing, such as encoding and maintaining stimulus 
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information during working memory (Chafee & Goldman-Rakic, 1998; Constantinidis, 

Franowicz, & Goldman-Rakic, 2001 2001; Druzgal & D'Esposito, 2003; Ester, Sprague, & 

Serences, 2015 2015) as well as gradual accumulation of evidence during decision making 

(Gratton et al., 2016) However, due to the possible on-going control signals, such as maintenance 

and monitoring signals, it is unlikely that activity during target uniquely identifies processing-

related operations. Hence, further work is needed to elucidate the nature of the left frontoparietal 

regions’ functions. 

One way to see whether some of the left frontoparietal regions are related to data 

processing is perhaps by comparing their corresponding response patterns to different types of 

task-relevant sensory information. If these cortical regions encode different features related to 

the stimuli, then we can design an experiment, very much like early studies in visual cortex, in 

which we vary the color or location of the stimuli, and see whether there are magnitude or shape 

differences in a left frontoparietal region’s response profile. Previous studies have also used 

multivoxel pattern analysis of functional imaging data to demonstrate distinctions in the patterns 

of activation in frontoparietal regions (Woolgar, Afshar, Williams, & Rich, 2015; Woolgar, 

Thompson, Bor, & Duncan, 2011).  It has been found that frontoparietal activity may adjust to 

various aspects of task information, such as task complexity and task rules. Here additional 

experiments can be designed to distinguish the patterns of activity in frontoparietal regions 

regarding the stimuli’s sensory information. For example, a cue-target paradigm can be 

performed, in which only the shape of each cue provides task-relevant information.  However, 

we would vary the color of the cues as well and test whether the left frontoparietal activation 

patterns show distinctions regarding to similarly shaped cues with different colors. This way, as 
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we experimentally control for the effects of task rules and attentional controls, we can attribute 

differences in the responses to sensory-related data processing with greater confidence.  

However, another manifestation of the left frontoparietal cortical regions’ data-processing 

characteristics could lie in their task-based functional connectivity. Previous connectivity studies 

that looked at state-based variations in synchronization of blood oxygenation level dependent 

signals (BOLDs) within and between functional systems have observed reliable system-specific 

changes. Comparisons of the intrinsic functional structure during resting-state and task-state 

indicated consistent within-network correlation decreases especially in the visual system and, to 

a lesser extent, in other sensory systems (somatomotor, somatomotor lateral, and auditory) 

during different types of tasks. This uniform decrease in within-network correlations seems more 

specific to processing systems. Additionally, evidence from recent electrophysiology studies has 

demonstrated that correlated variability in sensory neurons tends to decrease due to increases in 

their activity, whether it is caused by the onset of a stimulus (Churchland et al., 2010; Huang & 

Lisberger, 2009; Kohn & Smith, 2005; Smith & Kohn, 2008; Snyder, Morais, Kohn, & Smith, 

2014), by directed attention to the receptive field of the neuron (M. R. Cohen & Maunsell, 2009, 

2011; Herrero, Gieselmann, Sanayei, & Thiele, 2013; Mitchell, Sundberg, & Reynolds, 2007, 

2009; Zenon & Krauzlis, 2012), or by increasing task difficulty (Ruff & Cohen, 2014). Taken 

together, although at different physiological scales, it is possible that the task-related decreases in 

within-system connectivity are linked with the findings at the neuronal level, indicating that 

attention decreases correlations among individual sensory or motor neurons to allow the neurons 

to partake in more specialized operations. If neurons of left frontoparietal regions are tuned to 

encoding, maintaining, and accumulating stimulus information, then this processing 

specialization may be demonstrated by significant task-related decrease in correlations among 
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these frontoparietal regions compared to resting-state. Of course, conclusions from such 

hypothesis would need to be further supported by evidence that suggest left frontoparietal 

regions show characteristically different connectivity profile when engaged in operations related 

to executive control (i.e. during updating of task parameters and reporting of performance 

errors).  

While we have predominantly focused on how left frontoparietal regions exhibited 

processing-like functions in addition to their traditionally associated control-related roles, these 

apparent mixed functional characteristics may come from a lack of good anatomical distinctions 

in these cortical regions. As outlined previously in the Introduction, one of the main concepts 

from Posner and Petersen reviews is that control-related functions are supposed to be 

anatomically separate from data processing operations (Petersen & Posner, 2012). It could be 

that there is a functional distinction within the left frontoparietal cortical regions, where some 

areas are important for control and others are responsible for data processing. To develop better 

anatomical description of the left frontoparietal regions (i.e. the frontal cortex and parietal 

cortex), we could divide left frontoparietal regions into presumptive functional areas, or 

substructures, by using (1) resting-state functional connectivity boundary mapping (A. L. Cohen, 

Nelson, Miezin, Schlaggar, & Petersen, 2009; Gordon et al., 2014) or (2) clustering or 

community detection algorithms. Then, we can further inspect and differentiate what types of 

operations are performed in these areas/sub-structures by applying them to the tasks used in 

Chapter 3 and look for control versus data-processing distinctions.  
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Relating task-based changes in functional connectivity to behavior and development  

 A limitation in our study of task-based connectivity changes across a goal-directed trial is 

that the task design only permitted a limited amount of usable data per subject for cue-related 

analyses. Despite the weakness in data quantity, the experimental paradigm provided a major 

advantage in that it allowed us to isolate cue and target events for functional connectivity 

analyses without introducing prolonged delays or unwanted signals between cue- and target-

related processes. Taken together, a simple improvement to the experimental design can come 

from having more catch trials and longer runs, especially in the intermixed condition, so that we 

can increase the quantity of data for better estimations of cue-related connectivity.  

Furthermore, the discussions and interpretations of the results in Chapter 4 are based on 

extrapolating changes in connectivity within a single trial through comparisons of isolated rest, 

cue, and target-related activity derived from separate task conditions. Alternatively, it is possible 

that the observed correlation changes are reflective of differences across the intermixed and 

consecutive conditions used in the study, and the results reveal distinctions in brain’s 

connectivity due to variations in types of cueing (i.e. trial-wise versus block-wise cueing). Thus, 

in order to observe connectivity changes related to differences between cue and target processes 

under the same task condition, a more carefully designed slow event-related cue-target paradigm 

that combines elements from both intermixed and consecutive conditions (i.e., mini-blocks of 

target stimuli (~20 seconds) each led by a cue (~ 6 seconds)) may be needed to temporally 

separate the slow BOLDs response related to cue from that related to target.  However, control 

experiments will also likely be needed to account for any additional signals introduced by the 

delays and longer intervals. 
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 Chapter 4 presented a study that provided new insight into the subtle modulations of the 

brain’s functional structure during the implementation of goal-directed tasks. In particular, we 

found that trial-wise preparatory signals during cue periods produced enhanced connectivity in 

between-system relationships among control systems, as well as between control and processing 

systems. Some of these changes in network interactions were substantially maintained across cue 

and target processing while others, most notably connections between frontoparietal and visual 

systems, showed decreases in between-system relationships during target processing, compared 

with the cue period.  This experiment motivates additional scientific questions relating task-

based changes to behavior. Specifically, will changes in functional connectivity track with 

performance (i.e. reaction time, accuracy)?  

 At the planning stage of our task-based connectivity study using the Posner paradigm 

(see Method in Chapter 4), we were aware of the behavioral effects attention has on one’s 

perception and processing of a given stimulus. In the classic experiment, Posner demonstrated 

that subjects can detect the relevant target faster if it appeared at an overtly as well as covertly 

attended location than if the target appeared at a non-attended location (Posner, Snyder, & 

Davidson, 1980). This improvement in the processing speed at the attended location may come 

from enhanced coupling between attention orienting control regions and visual processing 

regions, and increasing in coupling between control and processing regions may lead to more 

efficient and faster target detection. If such relationship exists, then perhaps we would see a 

strong negative correlation between reaction time and connectivity strength between, for 

example, dorsal attention and visual systems. Moreover, studying the association between task-

based functional connectivity change and task performance may give insight into the 

coordination and cooperation that various functional systems undergo to achieve satisfactory task 
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implementations. If a positive relationship exists, such that higher frontoparietal-to-

cinguloopercular correlation is associated with better task performance (provided that we have 

accounted for any possibility of third-party modulators), one could argue this as supporting 

evidence for these systems function in a “closed loop”, in which information may flow between 

the frontoparietal and cinguloopercular networks, rather than a parallel framework, in which each 

system operates on separate processing streams (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 

2008; Dosenbach et al., 2007). 

    Finally, developmentally, it has been well established that children do not perform as 

well as adults on multiple cognitive domains and task-control measures.  Previous research 

comparing children to adults has found that children are slower, less flexible during task 

switching, and have less efficient working memory capabilities (Chatham, Frank, & Munakata, 

2009; De Luca et al., 2003; Luna, Garver, Urban, Lazar, & Sweeney, 2004). Physiologically, it 

has been shown that stronger engagement of anterior cingulate, anterior insula, lateral prefrontal 

cortex, and the intraparietal sulcus were associated with adjustment of conflict processing in 

older than in younger subjects (Wilk & Morton, 2012). Relatedly, children exhibit weaker 

activation related to preparatory control while showing greater activity in target implementation 

compared to adults (Church, Bunge, Petersen, & Schlaggar, 2016). Hence the overall 

insufficiencies in children’s task performances are thought of as the consequence of delayed 

maturation in cognitive control implemented by various control systems.  

 A complementary line of thoughts to poorer task control in children is that being slower 

and less efficient may be caused by largely non-optimal cooperation across functional systems 

during tasks, particularly between various control systems and between control and processing 

systems. For example, perhaps stronger correlations among anterior cingulate, anterior insula, 
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lateral prefrontal cortex, and the intraparietal sulcus in addition to their strengthened activation in 

conflict processing contributed to the overall performance improvement in older children. 

Moreover, in Chapter 4, under the cue-target paradigm, we saw a relative decrease in 

connectivity strength between control and processing systems following an initial cue-related 

enhancement. Perhaps the reason children do not switch tasks efficiently could be related to 

deviation from these control-to-processing dynamics, which could result in (or from) control 

systems inefficiently disengaging with current processing, thus slowing down other subsequent 

operations. Overall, careful examination of adult’s and children’s between-system connectivity 

strengths associated with control-related systems while engaged in conflict processing or 

preparatory control may shed insight on the possible age-related shifts in task-based connectivity 

structure that contribute to improvement in cognitive abilities.  

III. Final Thoughts 

This thesis has investigated the characteristics of multiple control systems’ functional 

distinctness in the contexts of resting-state connectivity and task-activation. We also ventured 

into a newly explored territory of task-based functional connectivity to examine how control 

systems, with distinct functional signatures, cooperate with each other and with processing 

systems under specific task demands. To comprehend the underlying mechanisms of distributed 

functional systems allows one to appreciate how humans can adeptly undertake innumerable 

tasks. Although a great amount of work is still needed in service of this goal, the studies 

presented here both contributed to as well challenged previous hypotheses in an effort to build 

better understanding of the basic organization and interactions among the brain’s functional 

systems.  
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