The Effect of Katp

David Tyus

Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wuurd_vol13

Recommended Citation
https://openscholarship.wustl.edu/wuurd_vol13/210

This Abstracts S-Z is brought to you for free and open access by the Washington University Undergraduate Research Digest at Washington University Open Scholarship. It has been accepted for inclusion in Volume 13 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Cantu Syndrome (CS) is a rare, complex disease characterized by a wide array of cardiovascular features caused by mutations resulting in the overactivity of ATP-sensitive potassium (K$_{ATP}$) channels. K$_{ATP}$ channels are heteromeric complexes composed of pore-forming Kir6.x and regulatory SURx subunits. Currently, no cure exists for CS, but K$_{ATP}$ inhibitors are promising candidates for the treatment of the disease; however, the effect of CS mutations on drug sensitivity have yet to be established. The goal of this project was to test a range of inhibitors against K$_{ATP}$ channel mutations found in CS patients (Kir 6.1[V65M] and Kir 6.1[C176S]) to investigate their potential clinical benefit. K$_{ATP}$ activity in the presence or absence of inhibitors (glibenclamide, repaglinide [both SURx interacting], and terfenadine [Kir6.x interacting]) was determined by measuring the efflux of radioactive 86Rb$^+$ from CosM6 cells transfected with wild type or mutated channels. These results show that these mutations resulted in decreased sensitivity to inhibitors of diverse structural classes which bind to different channel subunits. These findings demonstrate the need for comprehensive studies to investigate the effects of CS mutations on inhibitor sensitivity. Furthermore, these results predict poor clinical outcomes of certain K$_{ATP}$ inhibitors for CS patients, which highlights the requirement for the development of novel inhibitors with new mechanisms of action.