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ABSTRACT OF THE DISSERTATION 

Focusing Light Inside Scattering Media with Optical Phase Conjugation 

by 

Yan Liu 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2016 

Professor Lihong Wang, Chair 

  

 

In scattering media such as biological tissue, the heterogeneous refractive index distribution 

causes light to scatter, which makes the media look opaque and prevents us from focusing light 

beyond ~1 mm deep inside the media to achieve optical imaging and manipulation. Hence, the 

ability to focus light deep inside scattering media is highly desired, and it could revolutionize 

biophotonics by enabling deep-tissue non-invasive high-resolution optical microscopy, optical 

tweezing, optogenetics, micro-surgery, and phototherapy. 

To break the optical diffusion limit and focus light deep inside scattering media, optical phase 

conjugation based wavefront shaping techniques, such as time-reversed ultrasonically encoded 

(TRUE) optical focusing, are being actively developed. In this dissertation, I will describe our 

efforts to improve the performance (speed, focusing quality and focusing depth) of optical phase 

conjugation for future in vivo applications. Remarkably, we have focused light through tissue-

mimicking phantoms up to 96 mm thick, and through ex vivo chicken breast tissue up to 25 mm 

thick.  
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Chapter 1: Introduction 

1.1 Background and Motivation 

In biomedicine, light focusing plays a critical role in imaging molecules with high resolution and 

sensitivity [1-3], and in delivering optical energy precisely at a targeted position to perform 

optical manipulation [4], stimulation [5], micro-surgery [6] and therapy [7]. However, in 

biological tissue, photons are scattered by wavelength-scale refractive index inhomogeneities. As 

a result, it becomes infeasible to use a lens to focus light beyond ~1 transport mean free path (lt’, 

corresponding to ~1 mm in human skin) [8-11], which fundamentally limits the imaging depth of 

conventional optical microscopy (e.g., confocal microscopy, two-photon microscopy, optical 

coherence tomography and optical-resolution photoacoustic microscopy) and the operating depth 

of non-invasive optical manipulation and therapy. Hence, it is highly desired to focus light deep 

inside scattering media such as biological tissue, which could revolutionize biophotonics. 

To focus light through or inside highly scattering media, various wavefront shaping approaches 

are being actively developed [12-14], including feedback-based wavefront shaping [15], 

transmission matrix measurement [16, 17], and optical time reversal/optical phase conjugation 

(OPC) [18-20]. Among these techniques, OPC is most promising for in vivo applications, 

because it achieves the shortest average mode time [21] (the average operation time per degree 

of freedom) by determining the optimum wavefront globally instead of stepwise. 
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Figure 1.1 Illustration of optical phase conjugation. (a) A narrow beam illuminates a scattering medium and is 

scattered inside the medium.  The distorted wave coming out of the medium is intercepted by a phase conjugate 

mirror. (b) The phase conjugate mirror generates the phase conjugated light, which retraces the original path back 

through the scattering medium and recovers the narrow incident beam. 

 

Figure 1.1 illustrates a typical OPC experiment. In part (a), a narrow incident beam is scattered 

and broadened by a scattering medium. The distorted wave coming out of the medium is 

intercepted by a phase conjugate mirror (PCM) that performs optical phase conjugation. In part 

(b), the PCM produces the phase conjugate of the intercepted light in part (a). Since phase 

conjugation is equivalent to time reversal, the phase conjugated light retraces the original path 

back through the scattering medium and recovers the narrow incident beam. To achieve OPC, 

two types of PCMs have been developed. Analog PCMs employ nonlinear-optics-based static 

holography, four-wave mixing, or stimulated Brillouin scattering to generate the phase 

conjugated field [22, 23]; digital PCMs first employ a digital camera to measure the wavefront of 

the scattered light with digital holography, and then use a spatial light modulator (SLM) to 

reconstruct the conjugate wavefront of the scattered light [19, 20]. Although analog PCMs can be 

fast [24], however, the fluence reflectivity is low – the phase-conjugated light is much weaker 

than the scattered light impinging on the PCM. In comparison, digital PCMs [19, 20] have much 

higher fluence reflectivities (~105), and is capable of synthesizing a light field [21, 25-28], thus 

becoming more useful and powerful.  
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To focus light inside a scattering medium with OPC, a PCM is used to phase conjugate the 

scattered light emitted from a guide star located deep inside the medium (Fig. 1.2) [13]. Time-

reversed ultrasonically encoded (TRUE) optical focusing is one technique that employs focused 

ultrasound as a guide star, and it achieves optical focusing by ultrasound-guided optical phase 

conjugation [29-31]. Specifically, a PCM phase conjugates the ultrasound-modulated light 

emitted from an ultrasonic focus, thereby achieving optical focusing at the ultrasonic focus. 

TRUE focusing techniques using analog PCMs and digital PCMs are called analog TRUE 

focusing and digital TRUE focusing, respectively. 

 

Figure 1.2 Focusing light inside scattering media with guide star based optical phase conjugation. (a) A guide star 

located deep inside the scattering medium emits light, whose wavefront is distorted by the scatterers inside the 

medium during light propagation. (b) A phase conjugate mirror measures the wavefront of the scattered light exiting 

the medium, and then phase conjugates the scattered light back to the guide star.  

 

1.2 Dissertation outline 

In Chapter 2, we used the hyperboloid-based Monte Carlo simulation method to quantitatively 

study the effect of light scattering on the quality of optical focusing inside scattering media [10]. 

To focus light deep inside living biological tissue, we need to improve the speed of TRUE 

focusing, because, otherwise, the motion of the scatterers inside tissue would break the time-

reversal symmetry. In Chapter 3, we developed high-speed TRUE focusing using a fast 

responding photorefractive crystal (Sn2P2S6:Te 1%) [24], a lock-in camera [32, 33], a 
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ferroelectric liquid-crystal based spatial light modulator and a binary wavefront measurement 

method. To improve the quality of the focus achieved by OPC, in Chapter 4, we developed full-

polarization digital OPC [34] and employed sub-Nyquist sampling of speckle grains [35]. In 

Chapeter 5, we improved the focusing depth of OPC by using a laser with a long coherence 

length and an optimized digital OPC system that can safely deliver more light power. We 

focused 532 nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through 

ex vivo chicken breast tissue up to 2.5 cm thick [36].  
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Chapter 2: Monte Carlo simulation of optical 

focusing inside scattering media 

In this chapter, we quantitatively study the effects of light scattering on the quality of optical 

focusing inside scattering media.  

2.1 Methods 

A Monte Carlo method [37] is often used to calculate the optical fluence distribution inside 

scattering media. The traditional way to simulate optical focusing with the Monte Carlo method 

is geometric focusing, in which the initial propagation direction of a photon packet launched on 

the tissue surface is simply toward the geometric focus of the beam [11]. This method cannot 

simulate the diffraction limit of the fluence distribution on the focal plane to study the 

broadening of the focal spot size due to scattering, because the fluence at the focal point is 

always much larger than the fluence at the grid points next to the focal point [38]. Instead, we 

used the hyperboloid focusing method to simulate optical focusing [39, 40] and we derived the 

formulae that can be directly used in standard a Monte Carlo simulation [8, 37].  

 

Figure 2.1 Illustration of the hyperboloid focusing method. A hyperboloid of one sheet whose focal constant is 

0 12 log / 2  (sampled from the Gaussian distribution with a 1/e2
 characteristic length of

0 ) is shown (in blue). 

The position and the two possible propagation directions of a photon packet launched on the tissue surface are 

shown as a red dot and two red arrows. r, x, y are the radial position and the coordinates of the photon packet. 1  is a 

random number that is uniformly distributed between 0 and 1. 
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In order to simulate the fluence distribution of a Gaussian beam focused into a scattering 

medium, we can construct the incident Gaussian beam by a set of hyperboloids of revolution of 

one sheet with different focal constants. A hyperboloid of one sheet is a doubly ruled surface, i.e., 

through each point there are two distinct lines that lie on the surface (Fig. 2.1). When the position 

of a photon packet launched on the tissue surface is generated in the Monte Carlo simulation, the 

two lines passing through this point while lying on the hyperboloid can be described by their 

direction cosines:  

Line 1: 
2 2

ˆ ˆ ˆ ˆ( ) ( )
, , ,

ˆ ˆ( 1) ( 1)

f f f f f

x y z

f f

z z x y z x z y z
u u u

z L z L L

  
  

 
                             (2.1) 

Line 2: 
2 2

ˆ ˆ ˆ ˆ( ) ( )
, , ,

ˆ ˆ( 1) ( 1)

f f f f f

x y z

f f

z z x y z x z y z
u u u

z L z L L

   
  

 
                           (2.2) 

where zf is the depth of the focal plane, 
0

ˆ f

f

z
z

z
  is the normalized zf, 

2

0
0z




  is the Rayleigh 

range, 

2 2

2

2

ˆ

ˆ 1

f

f

f

z r
L z

z
 


is a normalization factor to make ( , , )x y zu u u u a unit vector, 0

1

NA





 is 

the beam waist of the Gaussian beam [41] if the fill factor of the back aperture of the objective is 

1, r is the radial position of a photon packet and x, y are the coordinates of a photon packet. Here, 

we set up a Cartesian coordinate system (Fig. 2.1). The x-y plane is on the surface of the 

scattering medium, and the z axis is the normal of the surface, pointing to the scattering medium 

[8]. The initial propagation direction of a photon packet is chosen from the two directions 

described by Eqs. (2.1) and (2.2) with equal probability. When there is no scattering, the 

trajectories of photon packets generated with the same r  form a hyperboloid of revolution of one 

sheet. By samplin r  according to the Gaussian distribution, we can generate a set of 
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hyperboloids of one sheet. The resulting fluence distribution can perfectly reproduce the 

intensity distribution of a Gaussian beam when the medium is clear. In summary, we generate 

the position and the propagation direction of a photon packet launched on the surface of a 

scattering medium using the following steps:  

   1) Generate the radial position of a photon packet by  2

0 1
ˆ1 log / 2fr z    . 

   2) Generate the x, y position of the photon packet from r  by 22 , cos( ), sin( )x r y r      . 

   3) Generate a random number 3 . If 30 0.5  , the propagation direction of the photon packet 

is set according to Eq. (2.1); if 30.5 1  , the propagation direction is set according to Eq. (2.2). 

In 1)-3), , 1,2,3i i  is a random number that is uniformly distributed between 0 and 1. The rest of 

the procedure is similar to that in a standard Monte Carlo simulation [8, 37]. Thus, by using Eqs. 

(2.1) and (2.2) that we derived and following the above three steps for photon launching, the 

hyperboloid focusing method can be easily integrated into standard software packages such as 

MCML [37].  

In our simulations, we assumed the following tissue optical parameters [8]: the scattering 

anisotropy g = 0.9, the scattering coefficient µs = 100 cm-1, and the absorption coefficient µa = 

0.1 cm-1. As this work targets on studying the effects of light scattering on optical focusing, we 

used the refractive-index-matched boundary condition (i.e., the refractive indices of both the 

tissue and the water are 1.33) to avoid the effect of aberration caused by the mismatch in 

refractive index between the tissue and the ambient medium. The numerical aperture (NA) of the 

optical objective lens in air is 0.1 [42]. The optical wavelength was 570 nm, which was an 

isosbestic point for oxy- and deoxy-hemoglobin molecules. We chose a grid size dr = 0.1 µm 

along the radial direction, which is more than 10 times smaller than the optical focal spot size 
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(full width at half-maximum (FWHM) spot size = 1.6 µm, and the radius defined by 1/e2 of the 

peak value = 1.36 µm). We chose a grid size dz = 1 µm along the z direction. From the optical 

properties of the scattering medium, we could obtain the mean free path lt = 1/(µs+µa) ≈ 100 µm 

and the transport mean free path [8] lt’ = 1/(µs(1-g)+µa) ≈ 1 mm. 

2.2 Results 

The fluence distributions on the focal plane at varied zf are shown in Figs. 2.2(a) and (b), from 

which we can see that the shoulder of the distribution rises with the increase of zf, due to 

scattering. When zf is close to 1 lt’, the FWHM of the distribution is not broadened much (2% 

when zf = 0.9 lt’ and 14% when zf = 1.1 lt’), compared with the case of no scattering. When zf is 

greater than 1 lt’, the shoulder of the distribution rises very quickly with increasing zf. When zf = 

1.7 lt’, the fluence at 50 µm radial distance away from the focal point is 93% of that at the focal 

point, which shows that optical focusing is very weak. Due to the lack of computing power, we 

did not simulate the case for larger zf by directly using the Monte Carlo method. Instead, we used 

the diffusion theory [8] to compute the fluence distribution when zf = 3 lt’, and we can see from 

Fig. 2.2(a) that no optical focusing can be discerned. The number of scattering events (Ns) for the 

field points on the focal plane at varied zf is shown in Fig. 2.2(c). Within the depth of 1 lt’, Ns is 

close to zero for field points inside the optical focal spot. When zf is greater than 1 lt’, Ns 

increases quickly. When zf = 1.7 lt’, Ns at the focal point is greater than 40. We can also see that 

for a given zf, Ns for the field points outside the optical focal spot is always larger than that for 

the field points inside the focal spot. The on-axis fluence distributions corresponding to different 

zf are shown in Fig. 2.2(d). The fluence at the focal point decays exponentially with the increase 

of zf when zf is smaller than 1.3 lt’. The decay rate is 9.93 mm-1, close to t s a     = 10.0 mm-1, 

which agrees with Beer’s law. Beyond 1.3 lt’, the fluence at the focal point decays more slowly. 
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When zf is greater than 0.9 lt’, the on-axis fluence near the surface of the scattering medium 

becomes stronger than that on the focal plane.  

 

Figure 2.2 Fluence distribution and number of scattering events at different depth of the focal plane. (a) The fluence 

distribution on the focal plane at varied zf. (b) A close-up of the region denoted by the dashed box in (a). (c) The 

number of scattering events for the field points on the focal plane at varied zf. (d) The on-axis fluence distributions 

corresponding to different zf. 

 

Figure 2.3 shows the two dimensional fluence distributions at four different zf  (from 100 µm to 

1300 µm). We can see the contrast of the focus becomes poorer and poorer with increasing zf, 

and we can barely observe a focus when zf = 1.3 mm.  
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Figure 2.3 Two-dimensional fluence distributions at four different zf  (from 100 µm to 1300 µm). 

 

2.3 Discussion and Conclusion 

Focusing light deep inside scattering media is highly desired in optical imaging, sensing, therapy 

and manipulation. The transport mean free path, lt’, indicates the mean propagation distance that 

it takes for photons to lose memory of the initial propagation direction they had before entering 

the scattering medium [9]. Thus, optical focusing beyond one lt’ is generally regarded as 

infeasible. However, the lateral resolution when zf = 1 lt’ and how it decays with depth have not 

been studied sufficiently, either theoretically or experimentally. In this work, we found that when 

zf is close to 1 lt’, the FWHM of the corresponding fluence distribution is not broadened much 

(2% when zf = 0.9 lt’ and 14% when zf = 1.1 lt’), compared with the case of no scattering. This 

seems somewhat surprising, yet agrees with the simulation results by Hayakawa et al. [43]. 

When zf is greater than 1 lt’, the shoulder of the fluence distribution rises very quickly with 

increasing zf. When zf = 1.7 lt’, the fluence at 50 µm radial distance away from the focal point is 

93% of that at the focal point, which shows that optical focusing is already very weak at this 
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depth. Experiments to validate these results are expected to be done in future work. Our 

simulation results show that it is not possible to focus light deep inside scattering media using 

just a lens. This motivates us to develop wavefront shaping techniques such as TRUE focusing to 

focus light deep inside scattering media.  

From the on-axis fluence distribution in Fig. 2.2(d), we can see that when zf is greater than 0.9 lt’, 

the fluence near the surface of the scattering medium becomes stronger than that on the focal 

plane, which degrades the image contrast of two-photon microscopy and is known as the 

fundamental limit of the maximum imaging depth of this image modality and other nonlinear 

optical microscopy [44]. 

It is important to note that the Monte Carlo method only describes the transport of energy, 

therefore it is incapable of modeling coherent phenomena. This limitation also applies to the 

hyperboloid-focusing-based Monte Carlo method. Although an imperfect method to simulate 

optical focusing in a scattering medium, it has been validated by some models and experiments. 

In the original paper that described this method [39], the heterodyne efficiency factors and the 

transverse intensity distribution simulated by the hyperboloid-focusing-based Monte Carlo 

method agree with those simulated by the extended Huygens-Fresnel (EHF) model [45], which is 

a widely-acknowledged model in OCT and has been validated experimentally. Good agreement 

between the heterodyne efficiency factors obtained by the Monte Carlo simulation and by 

experiments was also reported [46]. Moreover, two-photon fluorescence signals were simulated 

by the hyperboloid-focusing-based Monte Carlo method, and the result agreed well with the 

experiments [47].  
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The hyperboloid focusing method used in the Monte Carlo simulation provides a way to simulate 

optical focusing. However, when the grid size is small (e.g., dr = 0.1 µm and dz = 1 µm were 

used in this work), in order to obtain an acceptable statistical error in the result, 2×1010 photon 

packets with a cut-off weight of 10-4 were used to simulate the fluence distribution when zf = 0.9 

lt’, and 4×1012 photon packets were used when zf = 1.7 lt’. Thus, graphics processing units (GPU) 

are highly recommended to accelerate the Monte Carlo simulation [48].  
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Chapter 3: Improving the speed of time-

reversed ultrasonically encoded (TRUE) 

optical focusing 

TRUE optical focusing have been confined to experimentation with static scattering media, such 

as ground glass diffusers, translucent tapes, tissue-mimicking phantoms, and ex vivo biological 

tissue, whose speckle correlation times are greater than 1 s. None has been applied to focusing 

light inside dynamic scattering media or living biological tissue. This restriction is due to the 

requirement that the deterministic property of light propagation in the scattering medium must be 

maintained during the entire time-reversal (optical phase conjugation) process (including both 

the measurement of the wavefront and the playback of the wavefront). In living biological tissue, 

the displacement of scatterers due to blood flow, heartbeat, breathing, and Brownian motion 

causes the speckle pattern (a random interference pattern formed by coherent light after 

propagating through a scattering medium) to decorrelate, reducing the speckle correlation time to 

the order of 1 ms [24, 49, 50], which further depends on the depth of interrogation. However, the 

speeds of previous TRUE focusing implementations were limited to no greater than 1 Hz, thus 

preventing them from in vivo applications. Figure 3.1 illustrates the influence of the response 

speed of a phase conjugate mirror during wavefront measurement on the quality of TRUE optical 

focusing. If the PCM does not respond fast enough, a blurred hologram will be recorded [Fig. 

3.1(b)]. When this blurred hologram is read, no optical focus can be formed at the ultrasonic 

focal position [Fig. 3.1(d)]. Therefore, in order to achieve optical focusing inside dynamic 

scattering media, the PCM must respond sufficiently fast, so that hologram recording and 

reading can be completed within the speckle correlation time [Figs. 3.1(c) and 3.1(e)]. 
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Figure 3.1 Influence of the response speed of a phase conjugate mirror (PCM) during wavefront measurement on the 

quality of TRUE optical focusing. (a) Illustration of the TRUE focusing concept. Laser light S with a frequency of 

0 af f  illuminates a scattering media and a portion of the diffuse light traversing the acoustic focus is frequency-

down-shifted to 0f  (the frequency of the acoustic wave is af ). A PCM records the wavefront of these ultrasonically 

modulated light 0S ( )f  in a hologram and then phase conjugates the light back to the ultrasonic focus, thereby 

forming a focus. Dashed arrows indicate time-reversed light. Plane A denotes the x-z plane intersecting the acoustic 

axis. (b)−(c) Simulated recorded holograms in a slow (b) and fast (c) PCM. Hologram blurring is clearly visible in 

(b) as a reduction in speckle contrast. (d)−(e) Simulated light intensity distribution on plane A by reading the 

hologram recorded in the slow (d) and fast (e) PCM. No focusing can be observed in (d). All the images in (b)−(e) 

were normalized by their own maximum values. Abbreviations: S, sample light; S , frequency-down-shifted sample 

light (signal light); *S
, time-reversed signal light; TRUE, time-reversed ultrasonically encoded. 

 

3.1 High-speed analog TRUE focusing based on a 

Sn2P2S6:Te 1% crystal 

3.1.1 Methods 

Here, we present a solution to overcome the optical focusing challenges in non-static scattering 

media, by developing a high-speed TRUE focusing system with a 1% tellurium-doped tin 

thiohypodiphosphate (Sn2P2S6:Te 1%) photorefractive crystal [51-53] as the PCM. The crystal is 

sensitive to light around 790 nm wavelength, making it particularly suitable for focusing light 
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deep inside biological tissue, since the attenuation of near-infrared light in tissue is weaker than 

that of visible light [54]. More importantly, the crystal responds on the order of milliseconds 

under moderate light illumination (e.g., 7 ms at 1 W cm−2 and 1.3 ms at 10 W cm−2), which is 

potentially fast enough to overcome the rapid speckle decorrelation caused by living tissue. 

Through direct visualization of the time-reversed light pattern, and by imaging an absorptive 

target embedded inside a dynamic scattering medium, we evaluated the TRUE focusing 

performance of our system at various speckle decorrelation rates. We confirm that our system is 

able to focus light inside a dynamic scattering medium having a speckle correlation time as short 

as 5.6 ms. Then, we achieved the first optical focusing of diffuse light inside a scattering medium 

containing living biological tissue.  

Experimental set-up 

The experimental set-up for imaging the absorptive target with TRUE light is schematically 

shown in Fig. 3.2. The light source was a 1.6 W continuous-wave Ti:Sapphire laser (MBR 110, 

Coherent, USA) operating at 793 nm, pumped by a 532 nm continuous-wave laser (Verdi 10, 

Coherent, USA). A TRUE focusing procedure consisted of recording and reading a hologram. In 

the recording phase, the laser output was switched to horizontal polarization by an electro-optic 

modulator (EOM, 350-80-LA-02, Conoptics, USA) to transmit through the first polarizing 

beamsplitter (PBS1). The residual light reflected from PBS1 was completely blocked by a 

mechanical shutter MS2 (Uniblitz LS3, Vincent Associates, USA). The transmitted light was 

split into a sample beam and a reference beam by PBS2, with a splitting ratio controlled by the 

second half-wave plate (HWP2). The sample beam S passed through two acousto-optic 

modulators (AOM, IntraAction AOM-802AF1) to achieve a frequency shift to 0 af f f  , 
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where 0f  was the laser frequency and af  (3.5 MHz) was the frequency shift due to the two 

AOMs (shifted by 75  MHz, and 71.5  MHz, respectively). A function generator (33250A, 

Agilent, USA) sent a 150 mVpp sinusoidal wave with a frequency of af  to a 50 dB gain RF 

power amplifier (325LA, ENI, USA) to drive the spherically focused ultrasonic transducer 

(A381S 3.5 MHz, Panametrics, USA). Due to the acousto-optic effect, a small portion of the 

light traversing the acoustic focus was frequency-shifted to 0f  and 0 a2f f . Only the frequency-

down-shifted (i.e., at 0f ) sample light (also called signal light) S
 and the reference beam R 

contributed to a stable hologram in the Sn2P2S6:Te 1% crystal (6×6×6 mm3). When interfering 

with R, the sample light at frequency 0 af f   (or 0 a2f f ) formed a beat with a frequency of af  

(or a2 f ), which was too fast for the crystal to respond to and the hologram was washed out. The 

R and S beams illuminated the PRC at about ± 11 degrees from the normal of the PRC surface 

for 10 ms and 5 ms in the dynamic phantom and the living tissue experiments, respectively. In 

the hologram reading phase, the laser light was switched to vertical polarization by the EOM and 

reflected by PBS1 to form the reading beam R*, which was phase-conjugated to R. The residual 

horizontally polarized light transmitted through PBS1 was blocked by the shutter MS1. When the 

3.4 W cm−2 R* beam illuminated the PRC, the time-reversed signal light *S  was generated and 

converged back to the acoustic focus. A portion of *S  was then reflected by a beamsplitter (BS) 

and detected by a photodiode (PDA36A, Thorlabs, USA) with a 70 dB gain. The signal was 

digitized by an oscilloscope (TDS 5034, Tektronix, USA) running in fast frame mode and sent to 

a PC via a GPIB cable and a GPIB-USB controller. The ultrasound was off during the hologram 

reading phase. Although R* was on for 2 ms (the minimum exposure time determined by the 

mechanical shutter), the maximum signal amplitude was detected by the photodiode immediately 
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after the shutter MS2 was opened since the signal decayed quickly as the hologram was being 

washed out by the reading beam. The intralipid-gelatin phantom was mounted on a linear stage 

(462-X-M, Newport, USA) driven by a motorized actuator (CONEX-TRA25CC, Newport, USA) 

to control the movement speed. The timing of the EOM, shutters, and function generators was 

controlled by a pulse delay generator (DG645, Stanford Research Systems, USA) which was 

externally triggered by a multifunction DAQ (NI USB-6008, National Instruments, USA) 

controlled by a PC. 

 

Figure 3.2 Schematic of the experimental set-up for imaging an absorptive target inside a dynamic scattering 

medium with TRUE optical focusing. Abbreviations: AOM, acousto-optic modulator; AT, absorptive target; BB, 

beam block; BC, beam condenser; BE, beam expander; BS, beamsplitter; EOM, electro-optic modulator; f0, 

frequency of the laser light; fa, frequency detuning applied by AOMs, which was also the frequency used to drive the 

ultrasonic transducer; GD, ground glass diffuser; HWP, half-wave plate; IP, intralipid-gelatin phantom, mounted on 

a motorized linear stage; L, lenses; LS, linear stage; M, mirror; PBS, polarizing beamsplitter; PD, photodiode; PRC, 

photorefractive crystal; R, reference beam; R*, reading beam, phase conjugate to R; S, sample light; S , frequency-

down-shifted sample light (signal light); *S , time-reversed signal light; MS, mechanical shutter; UT, ultrasonic 

transducer. 
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Measurement of the speckle correlation time of the sample 

To measure the speckle correlation time ( c ) of the dynamic phantom, we used a CMOS camera 

(208 fps, 320×108 pixels, global shutter, exposure time = 0.062 ms, FMVU-03MTM, Point Grey, 

Canada) to record the speckle patterns magnified by an objective (40×, NA = 0.65, tube length = 

160 mm, Leica E1 ACHRO). The NA of the objective was chosen to be greater than the image 

space NA of lens L (0.23), so that it did not restrict the NA of the system. Otherwise, c  cannot 

be measured correctly since it is inversely proportional to the NA of the objective when NA < 

0.23, which was proved in theory and verified by our experiments using objectives with different 

NA (data not shown). 

To measure c  of the living tissue, we illuminated the left mouse ear (sandwiched between a 

cover slip (thickness = 0.17 mm, VWR 48393-172) and a microscope slide (thickness = 1 mm, 

Corning 2947-75×25)) with a beam 5.0 mm in diameter; the large vessels in the center were 

covered by the beam. The other mouse ear was bent downward and taped to the home-built 

animal holder to avoid blocking the light. During the experiment, the mouse (15-week-old, 

Female, Hsd:Athymic Nude-Foxl NU, Harlan Co., USA) was held on a heating pad (SRFG-

104/10, Omega, USA) whose temperature was set to 37 °C by a controller (YO-89802-52, Cole-

Parmer, USA) to maintain the mouse’s body temperature. This temperature was crucial to keep a 

normal blood flow speed. The mouse was held steady with a home-machined hard palate fixture 

and kept still by using a breathing anesthesia system (E-Z Anesthesia, Euthanex, USA). All 

experimental animal procedures were carried out in conformity with the laboratory animal 

protocol approved by the Animal Studies Committee at Washington University in St. Louis. At 

first, a CMOS camera (30 fps, 344×216 pixels, global shutter, exposure time = 0.062 ms, 
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FMVU-03MTM, Point Grey, Canada) was used to record the speckle patterns magnified by an 

objective (60×, NA = 0.80, tube length = 160 mm, Nikon, Japan). Then, a faster sCMOS camera 

(pco. Edge, PCO AG, Germany) was used to record speckle patterns at a higher frame rate (2271 

fps, 160×38 pixels, global shutter, exposure time = 0.010 ms), from which we obtained c  of a 

living-mouse ear. We shifted the positions of the objective and the camera to record the speckle 

patterns at 5 different locations on the mouse ear. To block the blood flow, a metal bar pressed 

the ear against a stiff acrylic wall. We monitored the speckle patterns from 20 seconds till 12 

minutes after blocking the blood flow, and no fast-decorrelating (on a time scale of 1–10 ms) 

speckle patterns were observed. 

Determination of the image resolution 

Since the one-dimensional (1D) point spread function of the system can be approximated by a 

Gaussian function 2 2PSF( ) exp( / 2 )x A x   , and the transmission of the object (whose 

boundary positions are specified by 1x  and 2x  ) can be approximated by a rectangular function 

 1 2o( ) u( ) u( )x B x x x x     , the 1D image of the object can be written theoretically as a 

convolution: 1 2y( ) PSF( ) o( ) erf( ) erf( )
2 2

x x x x
x x x C

 

  
    

 
, where A, B, C are constants, 

u(x) is the step function, and 
2

0

2
erf( ) exp( )

x

x t dt


   is the error function. By fitting the 

experimental data with 1 2y( ) erf( ) erf( )
2 2

x x x x
x C D

 

  
   

 
, we obtained  , which was 

related to the image resolution (defined as the full-width at half maximum (FWHM) of the 

Gaussian profile) as in FWHM 2 2ln2 . 
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Measurement of the optical thickness of a living-mouse ear 

We illuminated the living-mouse ear perpendicularly with a collimated laser beam (beam width ~ 

1.5 mm) and measured the power of the transmitted ballistic light at two meters away [8, 31] 

from the ear using a photodiode (PDA36A, Thorlabs, USA) to be (2.8 ± 0.3) × 10−8 of the power 

of the incident light. Thus, the optical thickness of the mouse ear, defined as the negative natural 

logarithm of the fraction of unscattered light, was measured to be 17.4 ± 0.1 (for 6 mice). All 

mice were under anesthesia during the measurement. 

Blocking blood flow in a living mouse 

To study the origin of the fast speckle decorrelation, we measured the speckle patterns of light 

passing through a living mouse ear, before and after blocking its blood flow. A metal bar was 

used to press the mouse ear against a stiff acrylic wall to block its blood flow (Fig. 3.3). 

 

Figure 3.3 A photo of the set-up to measure the speckle correlation time after blocking the blood flow in a living 

mouse ear. 
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Sample preparation 

The intralipid-gelatin phantom was made from intralipid (Intralipid® 20%, Fresenius Kabi, 

Sweden), porcine skin gelatin (10% by weight, #G2500-1kG, gel strength 300, Sigma-Aldrich, 

USA) and de-ionized water [55] with a lipid concentration of 1.5 g ml−1. The reduced scattering 

coefficient s '  was measured by a home-built oblique incidence reflectometer [56] to be 9.8 

cm−1. Acrylic spacers with a thickness of 1.5 mm were sandwiched between two acrylic sheets to 

accurately control the thickness of the intralipid-gelatin phantom to be 1.5 mm (equivalent to 1.5 

lt’). The clear gelatin-gel layer was made from porcine skin gelatin (10% by weight) and de-

ionized water. The optical absorptive target (3.9 mm   1.3 mm   20.0 mm along the x, y and z 

direction) was made from black ink, gelatin, and distilled water. The absorption coefficient of the 

target was 0.80 cm−1, as measured by a spectrophotometer (Cary Eclipse, Varian, USA). The 

diffuser (DG20-120, Thorlabs, USA) was embedded inside the gelatin gel to position it closer to 

the absorptive target (distance = 8.0 mm) and the intralipid-gelatin layer (distance = 22.1 mm) 

without blocking the ultrasonic waves.  

Simulation methods 

Here we describe the simulation methods to obtain the results shown in Fig. 3.1. Inside the 

scattering media, the 2-dimensional (2D) light field on the x-z plane intersecting the acoustic axis 

(denoted as plane A, see Fig. 3.1(a)) was represented by a random complex matrix 0A  

(dimension = 4040), whose elements followed a circular Gaussian distribution [57]. Upon 

ultrasonic modulation, the light field became  0 USA A I , where “ ” represents element-wise 

multiplication, and USI  is the 2D acoustic intensity distribution on plane A, approximated by 
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where NA is the numerical aperture of the transducer, and   is the acoustic wavelength. A was 

then reshaped to a column vector a with a dimension of 1600  1. Propagation of the 

ultrasonically encoded light through the scattering medium and the free space was simulated by 

multiplying a with a transmission matrix T (dimension = 16001600) [16]. In our experiment, 

the number of modes on the PRC was much smaller than the total number of output modes. 

Under this condition, the elements of T obeyed a circular Gaussian distribution . The signal light 

field on the PRC was calculated by b Ta . To simulate dynamic scattering media, we generated 

51 independent random matrices iT  (i = 0, 1, 2,⋯, 50, representing the scattering medium at the 

time of i ms), whose elements followed the circular Gaussian distribution and ˆ†

i iT T I  , where 

“ † ” denotes conjugate transpose and Î  is the identity matrix. Since different matrices iT  were 

uncorrelated, i ib = Ta  were uncorrelated, so the speckle correlation time c  was smaller than 1 

ms. The signal light ib  interfered with a reference beam R (whose electric field was represented 

by a vector R (dimension = 16001) in which all elements were 1), and formed an interference 

pattern 
2

i iI = b  R  on the PRC. The hologram recorded on the PCM at time t can be calculated 

by56 r
0

( ) ( )exp( / )
t

t t d     h I , where r  is the response time of the PCM. We let r_f  and 

r_s  denote the response times of a fast PCM and a slow PCM, and assumed r_f  ≪ c   and r_s

 ≫ c . So, at t = 50 ms, the hologram recorded in a slow PCM (shown in Fig. 3.1(b)), sh , was 

approximately proportional to (and simulated by) 
50 50

2

i 0 i 0 

  i iI b  R (since 
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50 ms

r_s
0

( )exp( / )
t

t d   


  sh I ), and the hologram recorded in a fast PCM (shown in Fig. 

3.1(c)), fh , was approximately proportional to (and simulated by) 50I  = 
2

50b  R (since 

50 ms

r_f
0

( )exp( / )
t

t d   


  fh I ). 

In the time-reversal step, the holograms sh  and fh  were read by R* (whose electric field was 

represented by a vector *R ) at t = 50 ms, and the −1st order diffracted light was proportional to 

50

i 0

 *

ib , and *

50b , respectively. At this time, the dynamic scattering medium IP was represented by 

the transmission matrix 50T , so on plane A, the light field distribution 
50

0

T

i

 * *

s 50 ia T b  for the slow 

PCM, and T * * *

f 50 50a T b a  (since 
†

5 5
ˆ0 0T T I ) for the fast PCM, where the superscript “ T ” 

denotes matrix transpose. It can be seen that *

fa  resembles the perfect time-reversed light field 

.a  The intensity distributions shown in Fig. 3.1(d)−(e) were calculated by 
2

*

sa  and 
2

*

fa  with 

bicubic interpolation. 

3.1.2 Results 

Tissue-mimicking phantom experiments 

Here, we demonstrated TRUE optical focusing inside a dynamic scattering medium composed of 

an intralipid-gelatin phantom (IP, thickness = 1.5 mm, reduced scattering coefficient = 0.98 

mm−1) and a ground glass diffuser. An absorptive target was sandwiched between the two 

scattering media to mimic an optical heterogeneity, such as a tumor, inside tissue. By translating 

the IP at different speeds, speckle patterns with different speckle correlation times ( c ) were 

created. The set-up illustrated in Fig. 3.4(a) was used to characterize the dependence of the 
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speckle correlation time on the phantom movement speed. As shown, the diffuse light passing 

through the diffuser and the IP was collected by a lens L, and concentrated onto the 

photorefractive crystal (PRC). To measure the speckle patterns on the front surface of the PRC, 

light was reflected by a mirror and directed to a finite-conjugate objective whose object plane 

was a mirrored plane of the surface of the PRC. When the IP was moved at different speeds 

along the x-axis, the corresponding speckle patterns were magnified by the objective and 

recorded on a CMOS camera (see Methods). Then, we calculated the correlation coefficients 

between the first and each of the ensuing frames of the recorded patterns. By fitting the speckle 

correlation coefficient versus time using a Gaussian function [58, 59], we obtained c , defined as 

the time during which the correlation coefficient decreased to 1/e2  or 13.5%, at a given phantom 

movement speed. As an example, Fig. 3.4(b) shows the speckle correlation coefficient as a 

function of time when the phantom was moved at v = 0.010 mm s−1, from which c  = 60 ms was 

determined. The relationship between the speckle correlation time and the phantom movement 

speed is shown in Fig. 3.4(c). Theoretically, c b /d v  , where bd  is the expected size of the 

speckle grains back-projected from the camera to the surface of the IP through lens L and the 

objective. From its definition, b 1 2/ ( )d d M M , where 1M  (= 2.8, simulated by Zemax, Zemax, 

LLC, USA) and 2M  (= 40) are the magnifications of L and the objective, respectively, and d is 

the expected speckle size on the camera ( /d l D , where   is the optical wavelength, l (150 

mm) is the distance between L and the PRC, and D (75 mm) is the aperture size of L). From the 

fitted curve in Fig. 3.4(c), bd  = 0.56 ± 0.01 µm (R2 = 0.999), which is close to its theoretical 

value of 1/ ( )l DM  = 0.57 µm. The value of c  at different speeds can therefore be estimated 

from c 0.56 / v   [ms] (the unit of v is mm s−1), especially when v > 0.040 mm s−1 (for those 
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speeds, it was impossible to measure c  accurately with the current set-up, since the frame rate of 

the camera was limited to 208 frames per second (fps)). 

 

Figure 3.4 TRUE optical focusing inside a dynamic scattering medium containing a tissue-mimicking phantom. (a) 

Schematic of the set-up for characterizing the relationship between the speckle correlation time ( c ) and the 

phantom movement speed. The front surface of the crystal and the object plane of the objective were mirrored 

planes. (b) The speckle correlation coefficient as a function of time when the phantom was moved at 0.010 mm s−1. 

c  = 60 ms was determined for this speed. (c) The relationship between the speckle correlation time and the 

phantom movement speed. Error bar shows the standard error of c  measured when light illuminated three different 

locations on the intralipid-gelatin phantom. (d) Schematic of the set-up for evaluating the quality of the time-

reversed light at various sample decorrelation rates. (e–g) The time-reversed light pattern when the intralipid-gelatin 

phantom was static ( c  > 300 s, (e)), moved at 0.100 mm s−1 ( c  = 5.6 ms, (f)), and at 0.200 mm s−1 ( c  = 2.8 ms, 

(g)). (h)  No time-reversed light was observed when the frequency of S was shifted by 100 kHz ( c  = 0.01 ms). All 

the images in (e–h) were normalized by their own maximum values. (i) Schematic of the set-up for imaging an 

absorptive target with TRUE light. The target was scanned along the x-direction. (j) One dimensional images of the 

target acquired under different conditions. The circles, squares, and diamonds denote experimental data. The solid 

and dashed lines denote curve fitting of the experimental data. The dotted line denotes the 4-point moving average 
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of the experimental data. Abbreviations: AT, absorptive target; BS, beamsplitter; GD, ground glass diffuser; GG, 

gelatin gel; IP, intralipid-gelatin phantom; L, lens; LT, lens tube; M, mirror; Obj, Objective; PD, photodiode; R, 

reference beam; R*, reading beam, phase conjugate to R; S, sample light; S , frequency-down-shifted sample light 

(signal light); 
*S , time-reversed signal light; SPS, Sn2P2S6:Te 1% photorefractive crystal; TRUE, time-reversed 

ultrasonically encoded; US, ultrasound; UT, ultrasonic transducer. Scale bar, 1 mm. 

 

To evaluate the limiting speed of our system in achieving optical phase conjugation, we used the 

set-up illustrated in Fig. 3.4(d) to directly visualize the time-reversed light patterns at various 

sample decorrelation rates. The diffuse sample light S passing through the scattering medium 

interfered with a reference beam R (plane wave, with the same optical frequency as that of S) for 

10 ms and wrote a volumetric hologram inside the PRC. Then, S and R were blocked, and a 

reading beam R*, conjugate to R, was applied to illuminate the PRC for 2 ms, generating a phase 

conjugated copy of S, i.e., the time-reversed light S*, which was monitored by a CMOS camera 

in real time. The intensity distributions of S* when the IP was static ( c  > 300 s), moved at v = 

0.100 mm s−1 ( c  = 5.6 ms), and at v = 0.200 mm s−1 ( c  = 2.8 ms) are shown in Figs. 3.4(e)−(g). 

To quantify the phase conjugation quality, we calculated the ratio IR  between the averaged light 

intensities within (
inI ) and outside (

outI ) the targeted region of the phase conjugated light (the 

region was determined when c  > 300 s, as shown in Fig. 3.4(e)). To determine the limiting 

speed of our system in achieving optical phase conjugation, we identified the shortest speckle 

correlation time at which 
in out out3 ( )I I I   was satisfied (where out( )I  is the standard 

deviation of the background light intensity outside the targeted region). Phase conjugation could 

be achieved when c  = 5.6 ms [Fig. 3.4(f)], although at a degraded quality ( IR  = 114) compared 

with that when c  > 300 s [Fig. 3.4(e), IR  = 287]. In contrast, when c  = 2.8 ms [Fig. 3.4(g)], 

IR  dropped to 5. Compared with the phase conjugated light pattern when c  = 5.6 ms, the 

diffracted light was much less localized when c  = 2.8 ms, and it was coupled into a stronger 
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background, suggesting that the PRC could not produce time-reversed light with good fidelity. 

When the frequency of S was detuned by 100 kHz (by using acousto-optic modulators, 

corresponding to c  = 0.01 ms), no time-reversed light was observed [Fig. 3.4(h), IR  = 0.7]. 

This result was expected, since the interference pattern decorrelated at a speed (100 kHz) greater 

than the response speed of the PRC and the hologram was washed out. The shortest speckle 

correlation time our system could tolerate defined with 
in out out3 ( )I I I   was between 2.8 ms 

and 5.6 ms. 

We further demonstrated that TRUE focusing and imaging could be accomplished when c  = 5.6 

ms using the set-up illustrated in Fig. 3.4(i). In this experiment, light S with a frequency of 

0 af f  ( 0f  was the laser frequency and af  (3.5 MHz) was a frequency detuning applied by 

acousto-optic modulators) illuminated the scattering media (see Methods). The frequency of a 

portion of the diffuse light traversing the ultrasonic focus was down-shifted to 0f  due to the 

acousto-optic effect [60, 61] (the frequency of the ultrasonic wave was af  = 3.5 MHz). These 

photons (the frequency-down-shifted sample light S , also called signal light) contributed to a 

stable hologram in the PRC by interfering with R, whose frequency was also 0f . Thereby, the 

recorded hologram corresponded to a wavefront emanating from the ultrasonic focus. When the 

hologram was then read by R*(with a frequency of 0f ), the time-reversed signal light *S  was 

generated and converged back to the acoustic focus. A photodiode was used to sample *S  that 

came out of the diffuser, and the photodiode outputs corresponding to *S  light diffracted from the 

holograms that were recorded when the focused ultrasonic modulation was on and off are shown 

in Fig. 3.5, when the IP was moved at v = 0.100 mm s−1 ( c  = 5.6 ms). The positive difference 
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between the maximum signal amplitudes at the on and off states confirmed effective TRUE 

focusing when c  = 5.6 ms. Such a positive difference could no longer be observed repetitively 

when the frequency of the focused ultrasonic modulation was down-shifted by 100 kHz to a 'f  = 

3.4 MHz (see Fig. 3.5(b)). This result was expected, since the interference pattern of the 

ultrasonically encoded light and the reference beam decorrelated too fast (at S Rf f 

 0 a a 0( ) 'f f f f    a a 'f f  = 3.5 MHz   3.4 MHz = 0.1 MHz, and  S Rf f 

 0 a a 0( ) 'f f f f    a a 'f f  = 3.5 MHz + 3.4 MHz = 6.9 MHz, where S 0 a a( ) 'f f f f     

and S 0 a a( ) 'f f f f     are the down-shifted and up-shifted frequencies of the sample beam due 

to the focused ultrasonic modulation at a 'f ), which caused the hologram to be washed out. We 

further validated TRUE focusing by imaging an absorptive target, which was sandwiched 

between the two scattering media and scanned along the x-direction with a step size of 0.2 mm. 

At each scanning position, to make sure that we indeed obtained signals from TRUE light instead 

of from R* light that was randomly scattered by the PRC due to beam fanning, a signal was 

obtained by taking the difference between the peak photodiode outputs corresponding to the two 

hologram recording states (i.e., focused ultrasound on and off) [62-64]. At each scanning 

position, 20 TRUE focusing procedures (ultrasonic modulation on and off alternately 10 times 

during hologram recording) were performed to obtain a 10-time-averaged signal, and the TRUE 

focusing procedures were operated at a repetition rate of 20 Hz. In each TRUE focusing 

procedure (50.0 ms long), 10.0 ms was used in hologram recording, 0.6 ms was used for 

completely shutting off the writing beams, 2.0 ms was used in hologram reading, and the 

remaining 37.4 ms was idle (i.e., ultrasound was turned off, and shutters were closed) to protect 

the ultrasonic transducer from over-heating by reducing its duty cycle. One dimensional images 
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of the target are shown in Fig. 3.4(j), when the IP was static ( c  > 300 s) and when it was moved 

at a speed of 0.100 mm s−1 ( c  = 5.6 ms). The dips in the images represent the absorptive target 

since it absorbed part of the TRUE light. The image qualities for c  = 5.6 ms and c  > 300 s are 

comparable in terms of target position, dimension, contrast and resolution, demonstrating that 

focusing was achieved inside a dynamic scattering medium with a speckle correlation time as 

short as 5.6 ms. The resolution of the image obtained from curve fitting was 0.90 mm (see 

Methods), which was in agreement with the theoretical value of 0.87 mm, as determined by the 

focal width of the ultrasonic transducer (3.5 MHz, numerical aperture (NA) = 0.25). As a control, 

when the frequency of the focused ultrasonic modulation was down-shifted by 100 kHz relative 

to its correct value, the target could not be imaged, as expected.  

 
Figure 3.5 Photodiode signal amplitudes of the detected 



*S  light diffracted from the holograms that were recorded 

when the focused ultrasonic modulation was on and off. The frequency of the focused ultrasonic modulation was 3.5 

MHz (equal to the difference between the frequency of the light that illuminated the sample and the frequency of the 

reference beam) in (a), and shifted to 3.4 MHz in (b). A constant offset was subtracted in both figures. 

 

Living tissue experiments 

The capability of our system to tolerate fast speckle decorrelation ( c  ≥ 5.6 ms) paves the way to 

achieving TRUE optical focusing even when the scattering medium is living tissue whose 

speckle correlation time is on the order of 1 ms, depending on the depth of interest. A 350-µm-
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thick living-mouse ear (which comprises two skin layers that are fed by separate blood and 

lymphatic circulations, with a cartilage layer sandwiched in the middle) was used in our 

experiments. The optical thickness of the mouse ear, defined as the negative natural logarithm of 

the fraction of unscattered light, was measured to be 17.4 ± 0.1 (see Methods), so the power of 

the ballistic light component is negligible compared with the total light power (ratio < 2.8 × 10−8). 

In addition, no optical focus could be observed by directly focusing light through a living-mouse 

ear with a microscope objective (Fig. 3.6).  

 

Figure 3.6 Light intensity distributions on the focal plane of an objective (Obj1) before and after a living-mouse ear 

was inserted as a scattering medium. (a) The experimental set-up. The focal plane of objective 1 (AC080-020-B-

ML, Thorlabs Inc., USA. Working distance = 18 mm, NA = 0.2) was imaged by objective 2 (Leica, E1 ACHRO, 

10×, NA = 0.25) and a CMOS camera (FMVU-03MTM, Point Grey, Canada). (b) The light intensity distribution on 

the focal plane of objective 1. The full width at half maximum focal spot size was 2.4 µm on the object plane, which 

was close to the diffraction-limited focal spot size (2.0 µm). (c) A living-mouse ear (E) was inserted between 

objective 1 and its focal plane. The distance between the mouse ear and the focal plane was 14 mm, which was the 

same as the distance between the mouse ear and the ultrasonic focus in the TRUE focusing experiment illustrated in 

Fig. 3.7(c). (d) The light intensity distribution on the focal plane of objective 1. The focus in (b) could no longer be 

observed due to scattering of the mouse ear. Abbreviations: E, mouse ear; IMP, image plane; Obj, objective; OBP, 

object plane. Scale bar, 1 mm. 

 

We first measured the speckle correlation time of the ear of a living mouse under normal 

anesthesia (see Methods). A sequence of speckle patterns was recorded at 30 fps, from which the 
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speckle correlation coefficient was computed and is shown as a function of time in Fig. 3.7(a). 

The movie shows a fast-decorrelating speckle pattern on top of a slowly-decorrelating 

background speckle pattern (see Supplementary notes for a detailed analysis). The background 

speckle pattern, presumably mainly formed by photons not scattered by blood, translated 0.64 

µm back and forth every 800 ms with a duration of 65 ms, due to the breathing of the mouse. 

The fast-decorrelating speckle pattern, on the other hand, was possibly mainly formed by 

photons scattered by blood. To validate this hypothesis, we recorded speckle patterns before and 

after blocking the blood flow in the mouse ear and employed a faster sCMOS camera (with a 

frame rate of 2271 fps at 160×38 resolution) to measure the speckle correlation time. The speckle 

correlation coefficients for five different locations on the mouse ear were computed from movies 

and are shown as a function of time in Fig. 3.7(b). The value of c  determined thereby ranges 

from less than 0.44 ms (limited by the camera’s frame rate) to 10 ms, depending on the 

measurement position. Given that c  can be estimated by [58, 65] c / v  , where   is the 

wavelength of light and v is the blood flow speed, the range of c  is in accordance with the fact 

that the flow speed in a mouse ear can range from 0.11 mm s−1 in capillaries [66] to 5.0 mm s−1 

in arteries [67]. Once the blood flow was blocked by pressing the ear against a stiff acrylic wall 

with a metal bar (Fig. 3.3), c  became much larger (> 500 ms, see the top, almost flat curve in 

Fig. 3.7(b)), confirming that the fast speckle decorrelation was due to the light scattered by blood. 
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Figure 3.7 TRUE optical focusing inside a dynamic scattering medium containing a living-mouse ear. (a) The 

speckle correlation coefficient as a function of time for a living-mouse ear. Three speckle decorrelation 

characteristics were identified. (b) The speckle correlation curves measured at five locations on the mouse ear. The 

speckle correlation time ( c ) determined from the curves ranged from less than 0.44 ms to 10 ms. When the blood 

flow was blocked, c  became much larger. (c) Schematic of the set-up for imaging an absorptive target placed 

between a living-mouse ear and a diffuser. The target was scanned along the x-direction. Inset: a photo showing the 

right ear of a mouse used as a dynamic scattering medium. The left ear was bent downward to avoid blocking the 

light. Aluminum foil tapes were used to block the light that did not pass through the right ear. (d) One dimensional 

images of the absorptive target. The circles and diamonds denote experimental data. The solid line denotes curve 

fitting of the experimental data. The dotted line denotes the 4-point moving average of the experimental data. 

Abbreviations: AT, absorptive target; BS, beamsplitter; GD, ground glass diffuser; GG, gelatin gel; L, lens; LME, 

living-mouse ear; PD, photodiode; R, reference beam; R*, reading beam, phase conjugate to R; S, sample light; S , 

frequency-down-shifted sample light (signal light); 
*S , time-reversed signal light; SPS, Sn2P2S6:Te 1% 

photorefractive crystal; TRUE, time-reversed ultrasonically encoded; UT, ultrasonic transducer. 

 

TRUE optical focusing was further demonstrated by imaging an absorptive target embedded 

between the living-mouse ear and a ground glass diffuser [Fig. 3.7(c)]. By scanning the target 

along the x-direction and monitoring the transmitted TRUE light power at each scanning position, 

a one-dimensional image of the target was obtained, as shown in Fig. 3.7(d). The target is clearly 
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revealed as a dip with an image resolution of 1.1 mm determined from the curve fitting, which is 

reasonably close to the size of the ultrasonic focus. As a control, when the frequency of the 

focused ultrasonic modulation was down-shifted by 100 kHz relative to its correct value, the 

target could not be imaged, as expected. In these experiments, we applied the same averaging 

scheme as in the phantom experiments. To push the imaging speed, TRUE focusing procedures 

were operated at 132 Hz at each scanning position, and the transducer ran at a much higher duty 

cycle than it ran in the experiments with phantoms. The shutters were operated in burst mode. In 

each TRUE focusing procedure (7.6 ms), 5.0 ms was used in hologram recording, 0.6 ms was 

used for completely shutting off the writing beams, and 2.0 ms was used in hologram reading. 

The intensity of the reference beam was 1.0 W cm−2 in the dynamic phantom experiment and 1.8 

W cm−2 in the living tissue experiment. In both cases, the intensity of the sample light on the 

crystal was about 7 times weaker. We tested different power splitting ratios between the sample 

beam and the reference beam, and determined the optimum intensity ratio (1:8) by maximizing 

the time-reversed signal strength. So far, we have not found a satisfactory theoretical explanation 

of the optimum intensity ratio. 

 

3.1.3 Discussion and Conclusion 

Optical focusing at depths beyond one transport mean free path inside living biological tissue is 

one of the most challenging goals in biomedical optics. The focusing speeds of previous 

wavefront shaping systems are far too low for in vivo applications where the fast speckle 

decorrelation caused by living tissue needs to be overcome. In this study, we improved the speed 

of focusing light deep inside scattering media by one to two orders of magnitude, and provided 

the first demonstration of using TRUE light to focus inside a dynamic scattering medium 
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comprising living tissue. Since our system uses a near-infrared wavelength, it has the potential to 

focus light deep inside tissue due to the weaker optical attenuation. 

The speckle size on the PRC in the dynamic phantom experiment was measured to be 1.6 µm, so 

the number of optical modes accommodated by the PRC was estimated to be (A/d)2 = 

(6×103/1.6)2 = 1.4×107 (where A = 6 mm is the area of the front surface of the PRC and d = 1.6 

µm is the speckle size on the PRC), which is 22 times more than that can be accommodated by a 

state-of-the-art SLM (1920×1280 pixels) used in digital TRUE focusing systems or wavefront 

shaping techniques. The large number of optical modes, N, controlled by our system, enables a 

more complete phase conjugation [30] and a focus with a higher peak to background ratio [15, 

31, 63] (PBR = (N+1)/M, where M is the number of optical modes inside the focus) under the 

same experimental condition. It will take ~1.9×103 s to handle the same number of optical modes 

even using the fastest implementations demonstrated in wavefront shaping [68, 69] (although the 

number of pixels in a digital micromirror device (DMD) [68] or a micro-electro-mechanical 

systems (MEMS) deformable mirror [69] is far less than 1.4×107), which is 1.5×105 times less 

than the focusing speed of our system. A large N is desired to achieve a sufficient PBR in deep 

tissue because M can be as large as ~  
2

a / ( / 2 / )n   = [150 µm/(0.8 µm/2/1.33)]2 = 2.5×105  in 

the acoustic-wave-guided wavefront shaping (assuming a 10 MHz ultrasonic wave whose 

wavelength a  is 150 µm, an optical wavelength   of 0.8 µm in vacuum, a refractive index n of 

1.33 for water in biological tissue, and fully-developed speckles).  

In the dynamic phantom experiment, we determined the optimum hologram writing time (10 ms) 

by maximizing the signal-to-noise ratio when c  = 5.6 ms. The shorter speckle correlation time 

seems to contradict the fact that time-reversal could still be achieved, which, however, can be 
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explained as follows. Although the recorded hologram was partially blurred, it could be 

decomposed into a correct hologram and an incorrect one. The correct hologram generated a 

TRUE focus, while the incorrect one produced a background. For the background, light energy 

was broadly distributed in space so that the intensity was much lower than that in the TRUE 

focus. Since the hologram writing time was only 79% longer than c  and 43% longer than the 

response time of the PRC [51, 70] (7 ms at 1 W cm−2), the correct hologram still prevailed, 

forming a TRUE focus (see the simulation results in Fig. 3.8 and Supplementary notes). 

In the experiment with living tissue, the light intensity on the mouse ear was 0.42 W cm−2, which 

is close to the American National Standards Institute (ANSI) safety limit around 793 nm (0.30 W 

cm−2). No apparent damage was observed in the tissue after the experiment. It is also worth 

noting that the ANSI safety limit is usually 10 times below the real damage threshold. 

Nevertheless, we could further decrease the light intensity on the tissue to meet the standard. 

By recording the speckle patterns of the light passing through the living-mouse ear, we found 

that some part of the pattern (mainly formed by blood-scattered light) decorrelated fast ( c  

ranged from less than 0.44 ms to 10 ms), while the rest (mainly formed by non-blood-scattered 

light) decorrelated slowly ( c  > 60 s, when the motion of the ear due to breathing was suppressed 

by a home-made immobilization set-up, which gently pressed the ear using two microscope 

slides). Since the response time of the PRC is inversely proportional to the illuminating light 

intensity and the intensity was higher on the PRC in the living tissue experiment than that in the 

dynamic phantom experiment, we expect our system to have achieved TRUE focusing when c  

was less than 5.6 ms in the living tissue experiment. Considering the range of c  of a living-

mouse ear, we reasoned that most of the non-blood-scattered photons and part of the blood-
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scattered photons impinging on the PRC were time-reversed back to the acoustic focus. Cui et al. 

reported light transmission through (as opposed to focusing inside) a living rabbit ear by optical 

phase conjugation and measured the speckle correlation time to be 1.5 s [71]. Considering the 

speed of their system, we believe they time-reversed only the photons that were not scattered by 

blood, which formed a quasi-static speckle pattern on the camera. For thicker tissue, however, 

the number of photons that are not scattered by blood becomes smaller, and the photons that are 

multiply-scattered by blood tend to result in a faster decorrelating speckle pattern [72]. In order 

to achieve TRUE focusing in these situations, higher speed is needed. To this end, one may boost 

the reference beam intensity to further decrease the PRC’s response time, which, however, may 

decrease the TRUE signal amplitude due to a non-optimum intensity ratio between the reference 

beam and the signal beam on the PRC, once the intensity of the sample beam is limited by the 

ANSI safety limit. Alternatively, one may employ faster PRCs, such as GaAs [73]. 

In the future, to achieve TRUE focusing inside thick tissue, we plan to implement the system in a 

reflection configuration [62], where light is illuminated and detected on the same side of the 

tissue. For applications such as phototherapy or multi-photon imaging, where large energy or 

power deposition is needed, it is important to add gain to the TRUE light. Nevertheless, even 

without gain, it has been shown that there is enough TRUE light to achieve single-photon 

fluorescence imaging [63] deep inside scattering media.  

To conclude, we focused diffuse light inside a dynamic scattering medium containing either a 

tissue-mimicking phantom or living tissue. Our system can tolerate rapid speckle decorrelation 

on the scale of 5.6 ms. Because the demonstrated focusing speed approaches the tissue 

decorrelation rate, this work is an important step toward in vivo deep tissue optical imaging, 

manipulation, optogenetics and phototherapy. 
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3.1.4 Supplementary notes 

Remarks on the speckle patterns formed by light passing through a living-mouse ear. 

The light intensity at each position on the camera has contributions from both blood-scattered 

photons and non-blood-scattered photons. So, the output of each pixel of the camera, ( , )V r t , can 

be expressed as:  

/2 /2 22

s d
/2 /2

( , ) ( , ) ( )exp( ) ( , )exp( )
t T t T

t T t T
V r t E r d E r i E r i d     

 

 
      . 

Here, s( )E r  is the complex amplitude of the net electric field (E-field) of non-blood-scattered 

light at position r , which does not change over time; d( , )E r   is the complex amplitude of the 

net E-field of blood-scattered light at position r  and time  ;   is the frequency of the laser 

light; and T is the camera’s exposure time. The intensities of the bright speckle grains in the 

seemingly-static background pattern fluctuate over time at small amplitudes, which can be 

explained as follows. In these speckle grains, the phasor s d( , ) ( ) ( , )E r t E r E r t   is a vector sum 

of a large constant vector in the complex plane and a small vector which rotates randomly over 

time and changes its length. Since s ( )E r  is much larger than d ( , )E r t , the resulting amplitude 

of the phasor ( , )E r t  can be approximated by s ( )E r , thus the intensity ( , )I r t  appears to be 

constant in these speckle grains. 

Simulation of TRUE optical focusing inside a dynamic scattering medium with a speckle 

correlation time of 5.6 ms.  

Similar to the procedures described in Methods, the E-field of the ultrasonically encoded light on 

the PRC can be calculated by b Ta , where T is the transmission matrix (dimension = 625
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625) and a is the ultrasonically encoded light field (dimension = 625  1) on the x-z plane 

intersecting the acoustic axis (denoted as plane A, see Fig. 3.1(a)). In our phantom experiment, 

since the speckle pattern 
2

b  had a speckle correlation time ( c ) of 5.6 ms when the phantom 

was moved at 0.100 mm/s, we simulated 11 transmission matrices iT  (i = 0, 1, 2,⋯ , 10, 

representing the scattering medium at the time of i ms), whose elements  
jkiT  were correlated 

because they were sampled from 9-point moving averaging of a sequence of random complex 

numbers. Specifically, 
4

4

[ ] [ ] / 9
p i

jk jk
p i

 

 

 i pT M  (i = 0, 1, 2,⋯, 10), where 
pM  (p = 4, 3, ⋯, 14) 

are 19 independent random matrices whose elements follow the circular Gaussian distribution, 

and † ˆp pM M I  , where “ † ” denotes conjugate transpose and Î  is the identity matrix. The 

speckles at different time, i ib = Ta , were correlated with a c  = 5.2 ms (see Figs. 3.8(a)–(b)), 

similar to the measured value ( c  = 5.6 ms) in our experiments. ib  interfered with a reference 

beam R (whose E-field was represented by a vector R (dimension = 625  1) in which all 

elements were 1) and formed an interference pattern 
2

i ibI = + R . The hologram recorded 

within the writing time ( wt  = 10 ms) was proportional to a weighted summation of iI  (see Fig. 

3.8(d)) as in: 

1010 ms 2

w r
0

0

( 10 ms) (t )exp( / )d ,i

t

i

wt t    




      wt ih h I b  R   

          r(10e p / .)xi iw     

Here, r  = 7 ms is the response time of the PRC at 1 W cm−2. If the response time of the PRC 

was much shorter than c , h(t = 10 ms) ≜ Correcth  10I  (see Fig. 3.8(c)). It can be seen that 
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although 
wt

h  was partially blurred compared with 
Correcth , it was still highly correlated with 

Correcth  (r = 0.74). 
wt

h  could be further decomposed into 
cτ

h and Wrongh . 
10

2

5
i

i

w


 cτ ih b  R  

was the hologram integrated over a duration of c  starting at time w ct  . Compared with 
wt

h , 

cτ
h  was expected to resemble Correcth  more closely due to reduced blurring (r = 0.81, see Fig. 

3.8(e)). Wrongh
4

2

0

 ib  R
i

iw  was the hologram integrated from time 0 to 
w ct  . Since ib  (i = 

0 – 4) was poorly correlated with 10b , 
Wrongh  was expected to be poorly correlated with Correcth  (r 

= 0.12, see Fig. 3.8(f)).  

In the time-reversal step, the hologram 
wt

h  was read by a reading beam R* (whose E-field was 

represented by a vector *R ) at t = 10 ms, and the −1st order diffracted light was generated, which 

was proportional to 
10

0
i

i

w


 *

ib . At this time, the dynamic scattering medium (i.e. the intralipid-

gelatin phantom) was represented by the transmission matrix 10T , and the light field distribution 

on plane A in Fig. 3.1(a), 


wta , was proportional to 
10

0

T

i
i

w


 *

10 iT b  (see Fig. 3.8(h) for the intensity 

distribution 
2



wta  ), where the superscript “T ” denotes matrix transpose. If Correcth  was read, the 

field distribution on plane A, 

Correcta , was proportional to T *

10 10T b a  (assuming 
† ˆ10 10T T I ), 

representing the ideal TRUE focus (see Fig. 3.8(g) for 
2

Correcta ). The background in 
2

Correcta  

was due to partial time-reversal2 (i.e. not all the output modes were detected and time-reversed). 

Compared with 
2

Correcta , there was a stronger background in 
2



wta . This elevated background 
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could be better understood by studying the readout of the hologram 
cτ

h  and 
Wrongh  

(   
w ct τ Wrongh h h ), simulated by 

10

5

T

i
i

w 



 cτ 10 ia T b  and 


Wronga  
4

0

T

i
i

w



 10 iT b , respectively (see 

Figs. 3.8(i)−(j) for the intensity distributions 
2



cτ
a  and  

2

Wronga ). It can be seen that the little-

blurred hologram 
cτ

h  generated a TRUE focus with good fidelity, while the incorrect hologram 

Wrongh  generated a background 
2

Wronga  with no focus. For the background 
2

Wronga , the energy 

of light was broadly distributed in space so that the intensity at each position was much lower 

than the intensity in the TRUE focus in 
2



cτ
a . Because of this, the background in 

2


wta  is only 

slightly stronger than the background in 
2

Correcta , and thus the quality of the TRUE focus in 

2


wta  is comparable with that in 
2

Correcta  (r = 0.93). 

 

Figure 3.8 Simulation of TRUE optical focusing inside a dynamic scattering medium with a speckle correlation time 

of 5.2 ms. (a) The correlation coefficients between different speckle patterns. The ith speckle pattern is the speckle 
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pattern on the PRC (formed by signal light S ) at the time of i ms. (b) The correlation coefficients between the 

speckle pattern at 0 ms, and each of the ensuing speckle patterns, from which c  = 5.2 ms was determined. (c) The 

correct hologram formed by the interference between S  and the reference beam R at 10 ms. The partially blurred 

hologram within the hologram writing time (10 ms) (d) can be decomposed into a partially blurred hologram within 

c  ((e), formed by the integration of the interference patterns between the S
 and R at 5 – 10 ms) and an incorrect 

hologram ((f), formed by the integration of the interference patterns between S
 and R at 0 – 4 ms). (g)–(j) The light 

intensity distributions on Plane A (i.e., the x-z plane intersecting the acoustic axis in Fig. 3.1(a)) when the 

corresponding holograms in (c)−(f) were read. (k) The ultrasonic modulation efficiency distribution. All the images 

were normalized by their own maximum values.  

 

3.2 High-speed digital TRUE focusing based on a lock-in 

camera with improved bit-efficiency  

3.2.1 Introduction 

In previous digital TRUE focusing systems, a conventional camera records four interference 

patterns that are transferred to a computer to calculate the wavefront of ultrasonically tagged 

light (a method known as phase-shifting holography [74]). The conventional camera is highly 

inefficient in its use of bits and limits the speed of wavefront measurement, which can be 

understood as follows. To measure the wavefront of ultrasonically tagged light using phase-

shifting holography, a camera records the light patterns formed by a planar reference beam (R), 

ultrasonically tagged light (T), and untagged light (U) at a frame rate of 4fb [Figs. 3.9(a), (b)], 

when T and R beat at a frequency of fb. The averaged light intensity recorded by each camera 

pixel can be expressed as R T U( , ) ( ) ( )I r t I I r I r    R T b T R2 ( )cos 2 ( ( ) )I I r f t r     . Here, RI , 

TI  and UI  are the intensities of R, T, and U, respectively; T  and R  are the phases of T and R. 

In general, when a scattering sample is dynamic, TI , UI , and T  also depend on time. They can 

be treated as time-independent quantities, however, if the measurement is done before the 

speckle decorrelates, ( , )I r t  can also be decomposed as DC AC( , ) ( ) ( , )I r t I r S r t   [Fig. 3.9(c)], 

where DC R T U( ) ( ) ( )I r I I r I r    and AC( , )S r t  R T b T R2 ( )cos 2 ( ( ) )I I r f t r     . AC( , )S r t  is 
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related to the phase map T( )r  that we want to measure, and it oscillates at a frequency of fb, 

while DC( )I r  is a static background that does not contain useful phase information. Therefore, 

the signal-to-background ratio (SBR), or modulation depth, can be expressed as SBR 

AC DC R T R T U= amp( ) / 2 ( )S I I I I I I   , where amp(∙) denotes taking the amplitude.  When the 

targeted focusing location is deep inside a scattering medium and a high-frequency ultrasonic 

transducer is used for a small focal volume, due to the large amount of untagged light compared 

with tagged light, the SBR can be extremely low. For example, in a simulation of focusing 10 

mm deep inside chicken breast, using a 50-MHz transducer and 800-nm laser illumination, the 

SBR was found to be ~10−4 [75]. So, to measure the phase map T ( )r  using phase-shifting 

holography, a high dynamic range camera has to be used. When the SBR is lower than 10-4, even 

with a 16-bit analog-to-digital converter (ADC), no more than 3 bits of a pixel value can be used 

to represent the signal (SAC), while most of the bits are wasted in representing the informationless 

background (IDC). Besides this low efficiency in the use of bits, all 16-bit data, including both the 

signal and the background, are transferred to a computer, which increases the data transfer load 

[Fig. 3.9(d)]. Even worse, phase-shifting holography needs to record and transfer at least four 

frames of images to calculate the phase map on a computer, so the speed of wavefront 

determination is severely limited by the low frame rates of conventional cameras (typically < 700 

Hz with 300 × 300 pixels) and the heavy load during data transfer. When averaging is needed, 

even more frames need to be recorded and transferred, so it takes seconds to acquire a phase map 

(with 1920 × 1080 pixels) before time-reversed focusing can be performed in previous works [30, 

31, 76, 77]. To apply this technique in vivo, systems with higher speeds are strongly desired to 

accommodate the fast speckle decorrelation (on a time scale from 0.1 ms to 1 ms) primarily due 

to blood flow [24]. 



43 

 

 

Figure 3.9 A comparison of using a conventional camera and using a lock-in camera to achieve TRUE optical 

focusing. (a) Illustration of different components of light that are detected by a camera. f0, laser frequency; fa, 

frequency of ultrasonic transducer; fb, beat frequency between R and T; OP, the object plane imaged by a camera to 

measure the wavefront of ultrasonically tagged light; R, reference beam; S, sample beam; SM, scattering medium; 

T, ultrasonically tagged light, which has a frequency of f0 + fa + fb; UST, ultrasonic transducer; U, untagged light, 

which is not modulated by ultrasound and whose frequency is f0. (b) The light intensity patterns on plane OP at 

various times. (c) Light intensity as a function of time for the pixel denoted by the red square in (b). A small AC 

signal (with a frequency of fb) sits on a very large DC background. (d) A comparison between using a conventional 

camera and using a lock-in camera to achieve TRUE focusing. The wavefront of ultrasonically tagged light is 

measured by phase-shifting holography or our lock-in method, then the conjugate phase map is displayed on a 

phase-only spatial light modulator (SLM) to phase conjugate the ultrasonically tagged light T back to the ultrasonic 

focus. PC, personal computer. 

 

3.2.2 Methods 

Here, we developed a wavefront measurement method based on a lock-in camera [78, 79] 

(heliCam C3, Heliotis; 300 × 300 pixels; 40 µm pixel size), in which each pixel performs analog 

lock-in detection and outputs only the information of the AC signal (SAC) at up to 3800 frames 

per second to an on-chip memory. Specifically, the lock-in circuitry generates the in-phase 

( I ( )S r  R T T R2 ( )sin ( ( ) / 4)I I r r     ) and the quadrature ( Q( )S r

 R T T R2 ( )cos ( ( ) / 4)I I r r     ) components of the AC signal oscillated at the frequency of fb, 

which are then digitized by a 10-bit ADC. Since only the information of the AC signal, not that 
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of the DC background, is digitized, the lock-in camera tremendously increases the bit efficiency 

by using all the bits to represent the signal, and it enables the use of inexpensive low-resolution 

ADCs. Moreover, compared with the previous method that needs to record and transfer 4 frames, 

our approach can obtain the desired phase map after only a single frame of measurement taken 

within 0.3 ms. It also reduces the amount of data to transfer by transferring only one frame of the 

information of the signal, instead of 4 frames of raw images composed of both the signal and the 

background. 

The lock-in camera has two related output modes [Fig. 3.9(d)]. In Mode A, SI and SQ for each 

pixel are transferred to a computer via a USB 2.0 interface. In Mode B, the desired phase map, 

T R( ) / 4r    , calculated by an on-chip field-programmable gate array (FPGA) is directly 

transferred to a computer using the same interface. Compared with Mode A, Mode B minimizes 

the amount of data to transfer and removes the need for a computer to calculate the phase map, 

therefore it is ideal for high-speed TRUE focusing systems. However, since our camera is 

designed for full-field optical coherence tomography applications, Mode B outputs some other 

data irrelevant for our applications, transferring more data than Mode A. Because the speed is 

currently limited by the data transfer rate of USB 2.0, we chose to use Mode A. In all our 

experiments, a planar reference beam was shined normal to the surface of the camera, so R was 

approximately a position-independent constant. fb was experimentally optimized to 70 kHz for 

maximum sensitivity. The lock-in camera locked-in 20 cycles of the beat signal at frequency fb, 

and output one frame of data comprising SI and SQ for each pixel. The phase map was calculated 

on a computer by T ( )r = arg(SI/SQ) based on the data from a single frame measured within 0.3 

ms. Here, arg(∙) denotes taking the argument, and the uniform phase offset R / 4    has been 

dropped. 
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3.2.3 Results 

We tested the lock-in camera by measuring two standard wavefronts. A continuous-wave laser at 

532 nm (Verdi V5, Coherent) was used in all our experiments. For a plane wave with an 

incidence angle of −5’ relative to the z axis [Fig. 3.10(a)], the measured phase map is shown in 

Fig. 3.10(b), which represents a plane wave at oblique incidence. For a spherical wave generated 

by lens focusing [Fig. 3.10(c)], the measured phase map shows concentric rings, as expected [Fig. 

3.10(d)]. The less-obvious ghost rings surrounding the central rings are due to the spatial aliasing 

effect, since the widths of the concentric rings become narrower than the pixel size of the lock-in 

camera beyond a certain radius. 

 

Figure 3.10 Two standard wavefronts measured by the lock-in camera. (a) Schematic of the set-up to measure the 

wavefront of an oblique incident plane wave, and (b) the measured phase map. (c) Schematic of the set-up to 

measure the wavefront of a spherical wave, and (d) the measured phase map. BS, beamsplitter; f0, laser frequency; 

fb, beat frequency between R and S; R, reference beam, whose frequency is f0; S, sample beam, whose frequency is 

f0+fb. 

 

To characterize the phase sensitivity of the lock-in camera as a function of SBR, we used the 

camera to measure the spatial light modulator (SLM) encoded wavefront of a sample beam (S). 
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The intensity ratio between the sample beam (IS) and the reference beam (IR) was controlled by 

inserting neutral density filters with different transmittances in the sample beam [Fig. 3.11(a)]; 

SBR  S R S R2 I I I I  . The left half of the SLM displayed π/4, while the right half displayed 

−π/4. To remove the background in the measured phase map caused by the SLM’s curvature and 

the wavefront mismatch between the reference and the sample beams, the phase map measured 

when the SLM displayed all zeros was subtracted from the measured phase map. The phase maps 

measured when the SBR ranged from 6 × 10-3 to 6 × 10-5 are shown in Fig. 3.11(b). When the 

SBR was between 1 and 2 × 10-2, the measured phase maps resemble the phase map measured 

when the SBR = 6 × 10-3, so they are not shown. The phase sensitivity (defined as the standard 

deviation of the left half of the measured phase map) and the difference of the mean phase 

between the left and right halves of the phase map are shown as a function of SBR in Fig. 3.11(c). 

With decreasing SBR, the phase sensitivity degrades due to the decreasing signal-to-noise ratio 

(SNR), and the mean phase difference deviates more from the expected value of π/2 for the same 

reason. The phase sensitivity has reached 0.51 rad even when the SBR is 6 × 10-4. To obtain the 

data in Fig. 3.11(c), as the SBR decreased from 1 to 6 × 10-5, the light power at the image sensor 

was set to 1 mW, 1 mW, 4 mW, 8 mW, 17 mW, 44 mW, 120 mW, 120 mW, 120 mW and 120 

mW. Higher power was used to increase the SNR when the SBR was low, but the power did not 

exceed 120 mW, to avoid camera saturation. 
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Figure 3.11 Characterizing the phase sensitivity of the lock-in camera. (a) Schematic of the set-up. The lock-in 

camera was used to measure the SLM-encoded wavefront of sample beam S at different signal-to-background ratios 

(SBRs) controlled by different neutral density (ND) filters. BS, beamsplitter; f0, laser frequency; L, lens; R, 

reference beam; SLM, spatial light modulator. (b) The phase maps measured at different SBRs. (c) The phase 

sensitivity and the difference of the mean phase between the left and right halves of the phase map as a function of 

SBR. 

 

Based on the lock-in camera, we developed a TRUE focusing system [Fig. 3.12(a)] to focus light 

inside a scattering medium composed of two ground glass diffusers. Our focusing procedure 

included two steps. In the first step, the wavefront of ultrasonically tagged light T( )r  was 

measured using the lock-in camera with a Mach–Zehnder interferometer. After passing through 

an acousto-optic modulator (AOM, AOM-505AF1, IntraAction), the frequency of the planar 

reference beam (R) became f0+fa, where fa = 50 MHz, and f0 was the laser frequency. In the 

sample arm (S), after passing through a ground glass diffuser (D1, DG10-1500, Thorlabs), the 
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frequency of a portion of the diffuse light traversing the ultrasonic focus was shifted to f0 + (fa + 

fb), due to the acousto-optic effect, where fa + fb = 50 MHz + 70 kHz was the frequency of the 

ultrasound generated from an ultrasonic transducer (UST, V358-SU, Olympus; a customized lens 

with a 7.9 mm focal length and a 0.40 numerical aperture was attached to the surface of the 

transducer). The driving voltage to the transducer was 20 V, and the ultrasound was present only 

during the exposure time (0.286 ms) of the lock-in camera. The sample beam then passed 

through a second diffuser (D2, DG20-600, Thorlabs), collected by lens L5, and combined with R 

by 50/50 beamsplitter BS2. Then, the combined beams were reflected from an SLM (Pluto NIR-

II, Holoeye; pixel size 8 µm) and were further directed to the lock-in camera by 50/50 

beamsplitter BS3. The lock-in camera imaged the surface of the SLM by a 4f system (comprising 

lenses L6 and L7) with a magnification of 5/3, and each camera pixel imaged a super-pixel (3 × 

3 pixels) on the SLM. The lock-in camera locked in the beat frequency fb = 70 kHz and thus 

measured the phase map of the ultrasonically tagged light. In the second step, we achieved 

digital TRUE focusing by phase conjugating ultrasonically tagged light. In this step, the sample 

beam was blocked by a mechanical shutter, and we displayed the conjugate phase map T( )r  

on the SLM [Fig. 3.12(b)]. Upon reflection from the SLM, the reference beam R acquired a 

wavefront T( )r , thus becoming phase conjugated to the ultrasonically tagged light. After 

passing through diffuser D2, the phase-conjugated light converged to the original ultrasonic focal 

position (No ultrasound was applied in this step). To visualize the TRUE focus, we placed 10/90 

beamsplitter BS1 in between D2 and the ultrasonic focal position to produce a copy of the optical 

focus that was measured by a CCD camera outside the water tank WT.           
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Figure 3.12 Lock-in camera based TRUE optical focusing inside a scattering medium composed of two diffusers. (a) 

Schematic of the set-up. AMP, power amplifier; AOM, acousto-optic modulator; BB, beam block; BS, beamsplitter; 

D, diffuser; FG, function generator; HWP, half-wave plate; L, lens; M, mirror; PC, personal computer; SLM, spatial 

light modulator; PBS, polarizing beamsplitter; UST, ultrasonic transducer; WT, water tank, denoted by the dashed 

rectangle. (b) The conjugate wavefront of the ultrasonically tagged light, which was displayed on the SLM. (c) The 

observed TRUE focus when the SLM displayed the phase map in (b). (d) When the correct phase map was shifted 

leftward by 1 super pixel (3 SLM pixels), the TRUE focus disappeared.  

 

The observed TRUE focus is shown in Fig. 3.12(c), and it disappeared when the correct phase 

map on the SLM was shifted leftward by 1 super pixel (= 3 pixels) [Fig. 3.12(d)], as expected. In 

Fig. 3.12(c), the full width at half maximum (FWHM) focal spot size along the y direction was 

58 µm, which is close to its theoretical value of 47 µm, as determined by the measured acoustic 

focal spot size along the transverse direction. The FWHM focal spot size along the x direction 

(the acoustic axis direction) was 262 µm, which is smaller than the measured depth of focus of 

the acoustic focal zone (= 336 µm). The peak-to-background ratio (PBR), defined as the ratio 

between the average intensities within and outside the TRUE focus, was 12, which is about 30 



50 

 

times lower than its theoretical value [~ 3.6 × 102, as calculated by πN/(4M), where N (= 1.4 × 

104) is the number of speckles recorded on the lock-in camera during wavefront measurement, 

and M (= 38) is the number of speckles in the measured TRUE focus [80]]. The discrepancy 

between the measured and the theoretical PBR is probably due to imperfect alignment, and the 

exact reason is under investigation. In our experiment, the distance between diffuser D1 and the 

ultrasonic focus was 13 mm, and the distance between diffusers D1 and D2 was 60 mm. 

3.2.4 Discussion and Conclusion 

For thick biological tissue, the number of speckles in the TRUE focus (M) can be as big as 105, 

which is significantly larger than that in our experiment. To maintain a sufficient PBR in this 

case, we may reduce M by iterative TRUE focusing [76, 81, 82] or time reversal of variance-

encoded light (TROVE) [25], or increase N by increasing the pixel count of the camera. 

In our TRUE focusing experiment, the SBR was measured to be 6 × 10-3, which was comparable 

with the SBR achieved in previous TRUE focusing experiment using a sCMOS camera [76]. 

Currently, the sample arm was very lossy (only ~1/1000 of the light power incident on the 

sample arrived at the camera), which limited the available light power on the lock-in camera. To 

accommodate even lower SBRs for deeper penetration or more scattering samples by increasing 

the SNR, a stronger laser and a higher collection efficiency for the diffuse light are needed. 

Currently, even though the wavefront is measured within 0.3 ms, it takes ~12 ms to transfer the 

data from the lock-in camera to a computer, limited by the speed of the USB 2.0 interface (~250 

Mb/s). If a camera link interface is used (data transfer rate ~7024 Mb/s), which is commonly 

used with an sCMOS camera, the data transfer time can be reduced to 0.4 ms. Moreover, rather 

than outputting SI and SQ, the camera can also directly output a 16-bit phase map calculated by 
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the on-chip FPGA, which reduces the data to transfer by half and removes the need to calculate 

the phase map on a computer (currently, it takes 4.2 ms for data processing in Matlab). Since 

digital optical phase conjugation has a high tolerance for phase error [19], 8 bits rather than 16 

bits are sufficient to represent a phase value, so we can further decrease the data transfer time by 

half to 0.1 ms by using an 8-bit ADC. Currently, it takes ~30 ms to display a phase map on the 

SLM, which is the bottleneck of speed in our whole TRUE focusing procedure. Because SLMs 

with binary modulation, such as digital micromirror devices (DMDs) [21, 68, 80, 83, 84], are 

much faster than our gray-scale SLM, we plan to modify the FPGA program on the camera to 

output a binary phase map (1 bit per pixel) directly to a binary modulation SLM [Fig. 3.9(d)]. In 

this way, we can further decrease the data transfer load by 8 times. 

In conclusion, based on a lock-in camera, we developed a method to quickly measure the 

wavefront of light in a low SBR condition, and applied it to TRUE optical focusing inside 

scattering media. Since the lock-in camera digitizes only the signal after rejecting the 

background, our method is highly efficient in the use of bits, and has the potential to achieve a 

very large data reduction at an early stage to minimize the amount of data to transfer. Combined 

with a binary modulation SLM, our approach can potentially complete the whole TRUE focusing 

procedure within 1 ms, which will open the door to many in vivo applications that require light 

focusing deep inside tissue. Compared with other wavefront sensors, such as Shack-Hartmann 

sensor, our sensor has much greater resolution (300 × 300 pixels versus 11 × 11 pixels [85]). 

Moreover, our high-speed wavefront measurement method is readily applicable to other time-

reversal/optical-phase-conjugation-based techniques, such as time-reversed adapted perturbation 

focusing (TRAP [21, 26, 27]). Since the lock-in camera can also measure the amplitude of an AC 
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signal (= 2 2

I Q( ) ( )S r S r  ) for each pixel in parallel in a low SBR condition, it is an excellent 

choice for ultrasound-modulated optical tomography (also known as acousto-optic imaging) [33]. 

3.3 High-speed digital TRUE focusing based on a 

ferroelectric spatial light modulator and binary wavefront 

measurement 

3.3.1 Introduction 

Digital OPC (DOPC) and digital TRUE focusing has been limited by the low speeds of cameras, 

data transfer, data processing, and spatial light modulator. The low speeds prevent DOPC from 

being applied to thick living biological tissue, because the motion of the scatterers inside tissue 

causes the speckles on the phase conjugate mirror to decorrelate (on a time scale of 0.1 – 10 ms 

[24, 50, 80, 86], and breaks the time-reversal symmetry. Although a bit-efficient, sub-

millisecond wavefront measurement method was developed based on a lock-in camera [32], the 

net speed of the system was limited by the low speed of data transfer and wavefront modulation. 

Recently, a fast DOPC system controlling 1.3 × 105 optical degrees of freedom was developed, 

and it focused light through scattering media with an effective latency of 5.3 ms and a total 

system runtime of 7.1 ms [80]. The system employed a single-shot wavefront measurement 

method, a field programmable gate array (FPGA) for data processing, and a digital micromirror 

device (DMD) for fast modulation. However, the reported single-shot wavefront measurement 

method does not work when the goal is to focus light inside, instead of through, highly scattering 

media. For biomedical and many other applications, focusing light inside scattering media is 

much more useful and difficult than focusing light through scattering media. The use of a DMD 

also imposes several limitations, which will be explained in the next section. 



53 

 

Here, we develop a simpler but faster DOPC system that focuses light not only through, but also 

inside, scattering media. For the first time in the wavefront shaping field, we employ a 

ferroelectric liquid crystal based SLM to achieve binary-phase modulation for high speed and 

high focusing quality. To take full advantage of the SLM and further improve the speed of 

ultrasound-guided DOPC, we develop a double-exposure binary wavefront measurement method. 

The speed of our system is one to two orders of magnitude higher than that of previous 

ultrasound-guided DOPC systems [25, 30-32, 76, 77, 81, 82, 87], and our method achieves the 

fastest light focusing inside a scattering medium among all the digital wavefront shaping 

methods developed to date [12-14]. 

3.3.2 Methods 

Binary-phase modulation based high-speed wavefront shaping enabled by a ferroelectric 

liquid crystal based SLM 

DOPC focuses light through or inside scattering media by phase conjugating the scattered light 

emitted from a guide star. Specifically, a digital camera is used to measure the wavefront of the 

scattered light with digital holography. Then, an SLM, whose pixels are one-to-one matched with 

the pixels of the camera by a camera lens, is used to reconstruct the conjugate wavefront of the 

scattered light to achieve optical phase conjugation/time reversal. In most wavefront shaping 

experiments, nematic liquid crystal based SLMs (NLC-SLMs) are used for phase modulation [15, 

17, 19, 20]. However, the latency of NLC-SLMs (typically tens of milliseconds [21, 86], 

including the response time of the molecules and the data transfer time) is much longer than the 

speckle correlation time associated with living biological tissue. To increase the speed, digital 

micromirror devices (DMDs) have been employed to achieve high-speed wavefront shaping [68, 

80, 84, 88-91]. However, DMDs have several limitations for this application: a) They typically 
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achieve binary-amplitude modulation, which results in a lower focusing contrast compared with 

that of phase modulations. b) The optical fluence threshold causing DMDs to malfunction under 

pulsed laser illumination is usually lower than that of liquid crystal based SLMs [92]. c) The 

alignment of a DMD based DOPC system is significantly complicated by the oblique reflection 

angle of the DMD [80]. d) Although a loaded pattern can be displayed at ~23 kHz on a DMD, 

transferring a pattern from a PC or an FPGA board to the DMD can take 1.6 – 4.5 ms [80, 89, 

91], limiting the speed of a DOPC system.  

To overcome the above drawbacks of DMDs and NLC-SLMs, we developed a high-speed DOPC 

system using a ferroelectric liquid crystal based SLM (FLC-SLM, A512-P8, Meadowlark Optics, 

512 × 512 pixels, 15 µm pixel size), which has a net latency of ~1 ms including the data transfer 

time. Specifically, it takes ~0.6 ms to transfer a pattern from a PC to the SLM using a PCI 

Express ×4 interface, and the response time of the FLC molecules is ~0.45 ms. Unlike NLC-

SLMs that modulate the phase of the light field on each SLM pixel by a value between 0 and 2π, 

FLC-SLMs modulate the phase of the light field by only 0 or π (binary-phase modulation). Since 

in principle only one bit per pixel needs to be transferred to an FLC-SLM from a PC, while eight 

bits per pixel needs to be transferred to an NLC-SLM, the use of FLC-SLMs can reduce the data 

transfer load by eight times and thus increase the data transfer speed.  

Figure 3.13 shows a comparison of different wavefront modulation schemes. Without shaping 

the wavefront of the input light, the light field at a targeted location inside a scattering medium is 

a random phasor sum. In conventional wavefront shaping, an NLC-SLM rotates each phasor to 

align them, so that they constructively interfere and form a focus. A DMD, on the other hand, 

achieves wavefront shaping by binary-amplitude modulation – it turns off those “bad” phasors 

that destructively interfere with the net phasor formed by the rest of the phasors. In contrast, 
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instead of turning off the “bad” phasors, an FLC-SLM rotates the “bad” phasors by 180°, making 

them constructively interfere with the net phasor formed by the rest. In this way, FLC-SLMs 

double the focal peak-to-background ratio (PBR, which quantifies the focusing contrast), 

compared with DMDs [21, 93, 94] (see Supplementary notes for a derivation of the theoretical 

PBR for binary-phase modulation based wavefront shaping). Although the PBR achieved by 

FLC-SLMs is 40% of that achieved by NLC-SLMs that achieve full-phase modulation, the 

response time of FLC molecules (0.04 – 0.45 ms) is much shorter than that of NLC molecules, 

because FLC molecules have a spontaneous electric polarization, which enables them to respond 

quickly to an external electric field [95]. 

 

Figure 3.13 A comparison of different wavefront modulation schemes in wavefront shaping. PBR, peak-to-

background ratio. 

 

Figures 3.14(a) – (b) show how an FLC-SLM achieves binary-phase modulation. The SLM 

works in reflection mode. While the FLC layers act as a quarter-wave plate, the net result for 

round-trip light propagation is that each SLM pixel acts as a half-wave plate, whose optic axis 

orientation is electrically controllable between two states that are 2θ apart (θ = 22.5°, see e1 and 
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e2 in Fig. 3.14(b)). To achieve binary-phase modulation, the polarization direction of the incident 

light field bisects the two states of the optic axis, i.e., along the vertical direction. By reflection 

off an SLM pixel, the polarization of the light field is rotated to along either −45° or +45°, 

depending on the orientation of the optical axis. After passing through a linear polarizer whose 

axis is along the horizontal direction, the output electric field is either along −90° or +90° for the 

two optical axis states, with the same amplitude [Fig. 3.14(b)]. In this way, an FLC-SLM 

achieves binary-phase modulation. For reflection-mode FLC-SLMs, the linear polarizer is 

usually replaced by a polarizing beamsplitter [Fig. 3.14(a)]. It should be noted that the FLC-SLM 

requires vertically polarized incident light, while the output binary wavefront corresponds to 

horizontally polarized light. 
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Figure 3.14 Digital optical phase conjugation using a ferroelectric liquid crystal based spatial light modulator (FLC-

SLM). (a) Each FLC-SLM pixel acts as a half-wave plate. PBS, polarizing beamsplitter. (b) The optical axis 

orientation can be switched between two states (e1 and e2), to achieve binary-phase modulation of the incident light 

Ein. θ = 22.5°. (c) Schematic of the set-up during wavefront recording for DOPC based light focusing through 

scattering media. BB, beam block; BS, beamsplitter; CL, camera lens; DOPC, digital optical phase conjugation; 

HWP, half-wave plate; M, mirror; MLS, motorized linear stage; MS, mechanical shutter; PC, personal computer; 

PCIe ×4, peripheral component interconnect express interface with 4 lanes; SM, scattering medium; S, sample 

beam; Rr and Rp, reference beams for wavefront recording and playback. (d) Schematic of the set-up during 

wavefront playback for DOPC based light focusing through scattering media. (e) Schematic of the set-up for 

focusing light inside a scattering medium comprising two pieces with ultrasound-guided DOPC. A complete 

schematic can be obtained by replacing the components enclosed in the dashed box in Figs. 3.14(c) and (d) with the 

components enclosed in the dashed box in Fig. 3.14(e). The acousto-optic modulator (AOM) is used only during 

wavefront recording. During wavefront playback, to verify that light is focused to the ultrasonic (US) focus, a 

beamsplitter (BS) reflects the focal pattern onto Camera2 (Cam2). This configuration allows us to study the effect of 

medium decorrelation on the quality of the phase-conjugated focus. To control the speckle correlation time on the 

SLM plane, a motorized linear stage (MLS) moves the second piece of the scattering medium at different speeds 

during the entire DOPC process (including both wavefront measurement and playback). 
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B. Experimental set-up and methods for fast binary wavefront measurement 

Using an FLC-SLM, we developed a DOPC system to focus light through [Figs. 3.14(c) and (d)] 

or inside [Fig. 3.14(e)] scattering media. In Fig. 3.14(c), the output of a continuous-wave laser (1 

W, 532 nm, Verdi V10, Coherent) was split into a sample beam (S) and two planar reference 

beams (Rr and Rp, for wavefront recording and playback, respectively). S was first scattered by a 

scattering medium. Then, to measure the wavefront of the scattered light field along the 

horizontal polarization direction, we let the scattered light interfere with horizontally polarized 

Rr on Camera1 (pco-edge 5.5, PCO Tech, 500 µs exposure time). To obtain the binary phase 

map for focusing light through scattering media, we used the single-shot binary phase retrieval 

method [80]. Specifically, the interference pattern between S and Rr is written as  

   S R R S S R R R S S R( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( ) ,I r I r I r I r I r r r I r I r I r r r           

where IS and IR are the intensities of S and Rr impinging on each camera pixel at position r , and 

IR >> IS in this experiment; φS and φR are the phases of S and Rr, and φR is assumed to be a 

constant. R ( )I r  is not dependent on the dynamics of the sample and can be measured separately 

by blocking the sample beam before starting DOPC experiments. Then, the binary phase map of 

S is obtained by  

R

S

R

0,  if ( ) ( )
( ) ,

,  if ( ) ( )

I r I r
r

I r I r





 


 

where a constant phase offset φR is ignored. To achieve phase conjugation, a pre-calibrated 

binary phase map to compensate for the curvatures of Rr, Rp, and the SLM was added to the 

phase map S( )r  [96], and the resulting binary phase map was displayed on the FLC-SLM to 
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modulate the wavefront of Rp [Fig. 3.14(d)]. After reflecting off the FLC-SLM and passing 

through polarizing beamsplitter PBS4, Rp became phase conjugate to the horizontal component 

of the scattered light field S exiting the scattering medium. After propagating through the 

scattering medium, Rp became a collimated beam and was focused by lens L6 onto Camera2 

(GS3-U3-23S6M, Point Grey, exposure time = 1 ms). 

To focus light inside, rather than through, scattering media, focused ultrasound was used as a 

guide star for DOPC, and this ultrasound-guided OPC is known as time-reversed ultrasonically 

encoded (TRUE) optical focusing. Fig. 3.14(e) is a schematic of the set-up for focusing light 

inside a scattering medium comprising two pieces. A complete schematic can be obtained by 

replacing the components enclosed in the dashed box in Figs. 3.14(c) and (d) with the 

components enclosed in the dashed box in Fig. 3.14(e). During wavefront recording, the sample 

beam S was first frequency up-shifted by 50 MHz by an acousto-optic modulator (AOM-505AF1, 

IntraAction) before it illuminated the scattering sample. After being scattered by the first piece of 

the scattering medium, a portion of the light passing through the ultrasonic focus was frequency 

down-shifted by 50 MHz because of the acousto-optic effect (the frequency of the ultrasound 

was 50 MHz), and further scattered by the second piece of the scattering medium [Fig. 3.14(e)]. 

These ultrasonically tagged photons formed a stable hologram on Camera1 when interfering with 

the reference beam Rr. The intensity recorded by Camera1 can be written as 

 R T U R T T R( ) ( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( )I r I r I r I r I r I r r r      , where IT and IU are the intensities of 

the ultrasonically tagged light and untagged light (IU >> IT for highly scattering media), and φT is 

the phase of the ultrasonically tagged light we want to measure. To use the single-shot wavefront 

measurement method [80] to obtain T , R T U( ) ( ) ( )I r I r I r  needs to be satisfied. However, 

this condition is generally not satisfied for highly scattering media without using an excessively 
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high RI , which would dramatically reduce the signal-to-background ratio and the signal-to-noise 

ratio [31, 32, 82]. Thus, the single-shot wavefront measurement method cannot be used here. To 

measure the phase map at maximum speed by minimizing the number of holograms recorded, we 

developed a double-exposure binary wavefront measurement method, which also works perfectly 

with FLC-SLMs that perform binary-phase modulation. Specifically, we record two frames when 

focused ultrasound was applied. However, in the second frame, the initial phase of the ultrasound 

was shifted by π. Mathematically, the intensities on each pixel of Camera1 recorded in the two 

frames can be written as  1 R T U R T T R( ) ( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( )I r I r I r I r I r I r r r       and 

 2 R T U R T T R( ) ( ) ( ) ( ) 2 ( ) ( ) cos ( ) ( ) .I r I r I r I r I r I r r r         Then, the binary phase map of 

the ultrasonically tagged light can be obtained by     

1 2

T

1 2
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where a constant phase offset φR is ignored. To generate two bursts of ultrasound that have a π 

shift in the initial phase, we used an RF switch (ZASWA-2-50DR+, Mini-Circuits) to 

sequentially enable the outputs of the two channels of a function generator. Each channel 

generated a 2.9 ms long burst of sinusoidal waves with an amplitude of 80 mVpp, and the initial 

phases of the bursts generated by the two channels differed by π (see Fig. 3). By using this 

approach, we avoided an unwanted amplitude change when using an RF phase shifter. The 

output of the RF switch was amplified by a power amplifier (25A250A, Amplifier Research) 

with a gain of 54 dB, to drive an ultrasonic transducer (V358-SU, Olympus, with a lab-made lens 

having a numerical aperture of 0.4). During wavefront playback, to verify that light was focused 

to the ultrasonic focus by phase conjugation, a beamsplitter was used to reflect the focal pattern 

onto Camera2 [Fig. 3.14(e)]. This configuration allowed us to study the effect of medium 
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decorrelation on the quality of the phase-conjugated focus, because we could move the scattering 

medium at different speeds during the entire DOPC process while monitoring the corresponding 

focusing quality. In our experiments, a program written in C/C++ calculated the phase map, and 

controlled the cameras, the FLC-SLM and a multifunction data acquisition card (PCIe 6363, 

National Instruments) for trigger generation.  

Total system runtime and effective system latency 

The total system runtime, defined as the time from when Camera1 starts recording to playback of 

the wavefront, is 4.7 ms for focusing light through scattering media with the single-shot binary 

phase retrieval method. The total system runtime is 7.7 ms for focusing light inside scattering 

media with the double-exposure binary phase retrieval method (see the workflow in Fig. 3.15). 

However, the effective system latency is shorter than the total system runtime [80], since a 

rolling shutter was used in Camera1 to achieve a higher frame rate during wavefront recording. 

With the rolling shutter, the top and the bottom halves of the image sensor expose and read out 

simultaneously in a row by row manner from the edge to the center of the sensor, and 

neighboring rows are exposed successively with a 9.17 µs delay in their start times. Since the 

central 520 rows on the sensor of Camera1 were used in our experiments, the effective system 

latencies, calculated from the average exposure start time to the playback of the wavefront, are 

3.5 ms and 6.5 ms for focusing light through and inside scattering media, respectively. The 

actual system latencies, defined as the time constants in the exponential relationship between the 

measured PBR and the speckle correlation time [80], were obtained by the experiments described 

in the next section, and were 3.0 ms and 6.0 ms for focusing light through and inside scattering 

media, respectively. It should be noted that by under-sampling speckle grains on Camera1 and 

the SLM [35], the number of optical degrees of freedom controlled by our system was 2.6 × 105, 
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limited by the SLM pixel count (512 × 512 pixels). Our number of optical degrees of freedom is 

two to three orders of magnitude more than that in feedback-based wavefront shaping [15] and 

conventional adaptive optics experiments [97]. 

 

Figure 3.15 Workflow of TRUE optical focusing inside scattering media. A rolling shutter was used for Camera1, 

i.e. neighboring rows are exposed successively with a 9.17 µs delay in their start times. The shutter for S (LS6, 

Vincent Associates) has a full-aperture transfer time of 0.8 ms, while the shutters for Rr (VSR14, Vincent 

Associates) and Rp (VS14, Vincent Associates) have full-aperture transfer times of 1.5 ms, because of their larger 

aperture sizes (14 mm). FG, function generator; Ch, channel; RF, radio-frequency.  
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Similar to what was done in Ref. [80], we quantified the OPC efficiency of our system by 

calculating the ratio between the experimental and the theoretical PBR of the focus achieved by 

focusing light through an opal diffuser with a 4π scattering angle (10DIFF-VIS, Newport). PBR 

was calculated by the ratio between the average intensity of the pixels in the focus whose 

intensities are above half the maximum intensity and the ensemble average of the mean intensity 

of the speckles when a random wavefront was applied. Fig. 3.16(a) shows the focus our DOPC 

system achieved when focusing light through the opal diffuser, and Fig 3.16(b) shows the focal 

intensity distribution along the vertical direction. The experimental PBR is 5.1 × 103 and the 

background intensity is calculated over an area of 1.2 × 1.2 mm2. The theoretical PBR is 

calculated by N/(2πM), where N is the number of optical degrees of freedom, M is the number of 

speckle grains in the DOPC focus, and the factor of 2 is due to the fact that the opal diffuser 

nearly completely scrambles the polarization and our system phase conjugates only a single 

polarization of the sample light [34] (see Supplementary notes). The speckle size on the FLC-

SLM was 7.6 µm, computed from the full width at half maximum (FWHM) of the 

autocovariance function of the speckle patterns measured by a camera with a pixel size of 3.45 

µm. Since the camera lens for Camera1 had a magnification ratio of 0.43, the speckle size on 

Camera1 was 3.3 µm, which was smaller than the pixel size of Camera1 (6.5 µm). We 

intentionally had Camera1 under-sample the speckle grains to increase the number of optical 

degrees of freedom [35], so N = 512 × 512. To compute M, we measured the area of the achieved 

focus on Camera2 (1.5 × 103 µm2) and the area of a speckle grain on Camera2 (8.1 × 102 µm2, 

computed from the speckle size). So, M = 1.9, and the theoretical PBR is N/(2πM) = 2.2 × 104. 

Thus, the experimental PBR is 23% of the theoretical PBR, and the discrepancy is probably due 
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to imperfect alignment and imperfect correction for the curvatures of the reference beams and the 

SLM.  

 

Figure 3.16 Focusing light through an opal diffuser. (a) Image of the DOPC focus after light passed through an opal 

diffuser with a 4π scattering angle. The peak-to-background ratio is 5.1 × 103. Scale bar, 100 µm. (b) Focal intensity 

distribution along the vertical direction. 

 

Focusing light through moving scattering tissue 

To measure the actual system latency, we used our DOPC system to focus light through a 

dynamic scattering medium with controllable speckle correlation times, achieved using a moving 

sample strategy [24, 68, 69, 80, 89]. The scattering sample was a 3 mm thick slice of fresh 

chicken breast tissue (scattering coefficient µs = 30 mm−1, scattering anisotropy g = 0.965 [80]), 

sandwiched between two microscope slides. To ensure the tissue was 3 mm thick, three 1 mm 

thick microscope slides were used as spacers between the two microscope slides. To minimize 

the change of tissue’s optical property, the sample chamber was sealed by aluminum foil tape to 

mitigate tissue dehydration, and all experiments were completed within 8 hours after the sample 

was prepared. To control the speckle correlation time on the SLM plane by controlling the tissue 

movement speed, the sample was mounted on a linear stage with a motorized actuator (LTA-HS, 
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Newport). To ensure the stage reached and maintained the preset speed, we started the wavefront 

measurement 10 seconds after the stage began to accelerate, and let the stage continue running 

for 10 seconds after the wavefront playback had finished (to avoid deceleration of the stage 

during measurement). 

To measure the speckle correlation time at a given tissue movement speed, we used a camera 

with a pixel size of 3.45 µm to record movies of speckle patterns (along the horizontal 

polarization direction, by adding a polarizer) on the SLM plane, as the tissue was moved. We 

could not use Camera1 for this task since the speckle grains were under-sampled on Camera1. 

Then, we calculated the correlation coefficients between the first and each of the ensuing frames 

of the recorded speckle patterns. By fitting the correlation coefficient 
IR  versus time, using [24, 

58] 2 2

I c( ) exp( 2 )R t t   , we obtained the speckle correlation time c , defined as the time 

during which the correlation coefficient decreases to 1/e2 (=13.5%) at a given tissue movement 

speed. As an example, Fig. 3.17(a) shows the correlation coefficient as a function of time when 

the tissue was moved at 0.01 mm/s, from which c  = 131 ms was determined. The relationship 

between the measured speckle correlation time c  and the preset tissue movement speed v is 

shown in Fig. 3.17(b). By fitting the experimental data with a theoretical model [24] c bd v  , 

we obtained c  = 1.3/v [ms] (the unit of v is mm/s), where db = 1.3 µm is the expected speckle 

size back-projected from the SLM plane to the sample plane through collection lens L5. Based 

on this equation, we were able to control the speckle correlation time by controlling the tissue 

movement speed. 
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Figure 3.17 Focusing light through moving scattering tissue. (a) The correlation coefficient between the speckle 

patterns as a function of time, when a 3 mm thick slice of chicken tissue was moved at 0.01 mm/s. Speckle 

correlation time c  = 1.3 × 102 ms was determined for this speed. (b) The relationship between the speckle 

correlation time and the tissue movement speed. Errors bars are not plotted due to their indiscernible lengths in the 

figure. (c) Images of the DOPC foci after light passed through the tissue, when the tissue was moved at different 

speeds. Scale bar, 100 µm. (d) The peak-to-background ratio as a function of the speckle correlation time. The error 

bar shows the standard deviation of three measurements. 

 

Figure 3.17(c) shows images of the DOPC foci observed on Camera2 after light passed through 

the moving tissue, when the corresponding speckle correlation time was varied from 1 ms to 
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greater than 1 s (corresponding to zero movement speed). A high-contrast focus was achieved 

when the speckle correlation time c  was no shorter than 2 ms. The PBRs for c  > 1 s, = 4 ms, = 

3 ms, and = 2 ms are 1076, 271, 166, and 12, respectively. As a control, when a random phase 

map was displayed on the SLM, no focus was observed. When c  = 1 ms, we could not observe a 

focus since the DOPC system was not fast enough. Because the PBR is proportional to the 

speckle correlation coefficient RI (see Supplementary notes for a proof, also see [86]), the 

experimental PBR as a function of the speckle correlation time c , shown in Fig. 3.17(d), can be 

fitted by a theoretical model PBR = 2 2

cexp( 2 )A B C   (see Supplementary notes). From the 

fitting, we obtain the time constant B = 3.0 ms, which is the actual system latency [80]. When c  

= B, the PBR reduces to ~1/e2 of the PBR achieved when the sample is static. 

Focusing light inside moving scattering tissue 

To quantify the actual system latency for focusing light inside scattering media, we used our 

DOPC system to focus light inside a dynamic scattering medium comprising two pieces of 

chicken breast tissue, each 20 mm × 25 mm × 1 mm along the x, y and z directions (see Fig. 

3.14(e) for the orientations of the axes). The second piece of tissue (the one in between the 

ultrasonic focus and the SLM) was moved at different speeds by a motorized stage to control the 

speckle correlation time on the SLM plane. Following the same procedure as described in the 

preceding section, we calibrated the relationship between the speckle correlation time and the 

tissue movement speed, and obtained c  = 1.5/v [ms] (the unit of v is mm/s). Fig. 3.18(a) shows 

Camera2 recorded images of the foci achieved by TRUE focusing at speckle correlation times 

ranging from 4 ms to longer than 1 s (corresponding to zero movement speed). The FWHM focal 

spot size along the y direction was 66 μm, which is close to the measured acoustic focal spot size 
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along the transverse direction (47 μm). The FWHM focal spot size along the x direction (the 

acoustic axis direction) was 324 μm, which is close to the measured depth of focus of the 

acoustic focal zone (336 μm). The PBR of the focus decreases with decreasing speckle 

correlation time. As a control, when a random phase map was displayed on the SLM, no focus 

was observed. In Supplementary notes, we mathematically prove that for a speckle field such as 

the case in TRUE focusing, the PBR is still proportional to the speckle correlation coefficient RI. 

Thus, the experimental PBR as a function of the speckle correlation time c , shown in Fig. 

3.18(b), can again be fitted by the theoretical model PBR = 2 2

cexp( 2 )A B C  . From the fitting, 

we obtain the time constant B = 6.0 ms, which is the actual system latency for focusing light 

inside scattering media. 

 

Figure 3.18 Focusing light inside a dynamic scattering medium comprising two pieces of chicken tissue. (a) Images 

of the foci achieved by TRUE focusing at different speckle correlation times ( c ). Scale bar, 500 µm. (b) The peak-
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to-background ratio as a function of the speckle correlation time. The error bar shows the standard deviation of three 

measurements. 

 

3.3.4 Discussion and Conclusion 

Currently, the speed bottleneck of our DOPC system is the low camera frame rate during 

wavefront measurement. Cameras with faster readout and data transfer will reduce the system 

runtime. Here, we used a camera exposure time of 0.5 ms, which is the minimum for this camera. 

By using a camera such as pco.edge 4.2, we can reduce the exposure time to 0.1 ms while 

roughly maintaining the frame rate. This change can reduce the system runtime by ~0.4 ms. For 

TRUE focusing, since the signal is often buried in a large background, it is ideal to use a lock-in 

camera to digitize only the signal after rejecting the background [32, 33, 98, 99]. We have used a 

commercial lock-in camera to measure the wavefront in TRUE focusing within 0.3 ms, but the 

data transfer of this camera takes longer than 10 ms, limited by the low data transfer speed of 

USB 2.0. To achieve better performance, the pixel count of the lock-in camera needs to be 

increased (currently there are 300 × 300 pixels), and the data transfer rate needs to be improved 

by using a faster interface. 

Because of its spontaneous electric polarization, ferroelectric liquid crystals respond to an 

external electric field much faster than nematic liquid crystals. Although the FLC molecules in 

the SLM we use have a response time of ~0.45 ms, FLC molecules with a much shorter response 

time (e.g., 0.04 ms) are available in other commercial FLC-SLMs (e.g., from Forth Dimension 

Displays). However, since these SLMs are mainly developed for display applications that do not 

require a speed as high as DOPC does, the net speed (<= 240 Hz) is currently limited by the data 

transfer speed of the display interface and needs to be increased. Also, for these FLC-SLMs, the 
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image transfer protocol that is designed for transferring 24-bit RGB images needs to be modified 

to enable high-speed transfer of a binary image. 

To obtain the phase map in TRUE focusing, our double-exposure binary wavefront measurement 

method reduces the phase computation load dramatically compared with the traditional phase-

shifting holography method [30, 31], since our approach needs only to compare two numbers to 

get the binary phase for each pixel, without the need to calculate the four-quadrant inverse 

tangent.  

In conclusion, we developed a high-speed DOPC system using a ferroelectric liquid crystal based 

SLM that achieves binary-phase modulation. Compared with DMDs that perform binary 

amplitude modulation, FLC-SLMs double the PBR, have a higher malfunction threshold for 

pulsed lasers, and simplify the alignment of a DOPC system (because FLC-SLMs do not have 

oblique reflection angles as DMDs do). To take full advantage of the FLC-SLM and improve the 

speed of TRUE focusing, we developed a double-exposure binary wavefront measurement 

method. Our system focuses light through and inside scattering media, with system latencies of 

3.0 ms and 6.0 ms, respectively. Since the demonstrated speed approaches tissue decorrelation 

rates, this work is an important step towards in vivo deep-tissue non-invasive optical imaging, 

manipulation, and therapy. 

3.3.5 Supplementary notes 

Peak-to-background ratio of binary-phase modulation based wavefront shaping 

Here, we derive the theoretical peak-to-background ratio (PBR) of the focus when the playback 

wavefront is achieved by a ferroelectric liquid crystal based spatial light modulator (FLC-SLM) 

that performs binary-phase modulation. For a thick scattering medium, the incident light field Ein 
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and the scattered light field ES are connected by a transmission matrix  ij N S
a


T , whose 

element ija  follows a circular Gaussian distribution. For an incident field 
1(1 0  0)T

SinE  that 

has only one nonzero element (one input mode [12]), the scattered light field is computed as 

 11 21 1   
T

Na a a S inE TE , where the upper case T stands for matrix transposition. After the 

scattered light field is measured, the playback field under binary-phase modulation takes the 

following form:       * * *

11 21 1BP( ) BP  BP   BP
T

Na a a *

P SE E , where * denotes complex 

conjugation, and the binary-phase operator  BP z x iy   is defined as 

 
0e 1,       if 0

BP .
1,    if 0

i

i

y
z

e y

  
 

 
                                                    (S3.1) 

After passing through the scattering medium in the backward direction, the phase conjugated 

field becomes TOPC PE T E . Among all the elements of OPCE , the first element represents the 

electric field at the focus, which can be calculated by  

 peak 1 1
1

BP .
N

m m
m

E a a


                                                        (S3.2) 

Thus, the intensity of the focus is calculated by 
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where  (·) is the Heaviside step function,    1

0

x tx t e dt


     is the gamma function, and   

denotes ensemble averaging. In the above derivation, we have converted the summation into an 

integration. Moreover, for the matrix element ija , we have used the fact that both its real part (x) 

and its imaginary part (y) obey the same Gaussian distribution with a mean of zero and a 

standard deviation of  .  

The remaining elements of EOPC represent the fields of the background, and are calculated by

 background 1
1

BP , 1.
N

mn m
m

E a a n


   Thus, the background intensity can be obtained by 

 

 

 

2

background 1
1

1

1

2

BP , 1,

             Var BP( ) ,

             Var( )Var BP( ) ,

             2 1

N

mn m
m

mn m

mn m

I a a n

N a a

N a a

N 


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


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

 

22 ,N                                                                         (S3.4) 

where  Var   sums the variances of both the real part and the imaginary part of a random 

variable. Combining the results given by Eqs. (S3.3) and (S3.4), we obtain the theoretical PBR of 

the focus achieved with binary-phase modulation: 

1 peak background

1
PBR .I I N


                                                  (S3.5) 

When there are M input modes, it can be proved that the theoretical PBR is scaled down by a 

factor of M:  

1
PBR .M

N

M
                                                             (S3.6) 
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When a scattering medium is sufficiently thick, polarization can be completely scrambled by 

scattering. However, DOPC systems, except the one presented in Ref. [34], phase-conjugates 

only a single polarization of the sample light. In this case, by using a vector transmission matrix 

in the derivation [34, 100], we can find that the PBRs derived in Eqs. (S3.5) and (S3.6) are 

reduced by half. Such a PBR reduction can be understood by considering the background 

elevation due to the field polarized orthogonally to the incident polarization direction. 

Relationship between the PBR and the speckle correlation time when there are multiple 

input modes 

For dynamic scattering media, the influence of speckle decorrelation on the PBR of a DOPC-

achieved focus was studied in Ref. [86]. However, only a single input mode was considered in 

the authors’ derivation. As time-reversed ultrasonically encoded (TRUE) optical focusing 

typically encounters a large number of input modes M, we extend the previous work to the case 

of M greater than 1. We also derive the relationship between the PBR and the speckle correlation 

time c . 

Consider an incident field 1 2 1( ) (     0  0)T

M St p p p inE  which has M non-zero elements. 

After passing through a scattering medium, the scattered light field  tSE  can be calculated by  
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Hence, the first-order correlation function of the light field of the i-th output mode can be 

calculated by  

 
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where 
t

  takes an ensemble average over time, and we assume the random process is stationary 

and ergodic. Since         0ij ik ij ikt t
a t a t a t a t     for any j k  , we have   
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where A  denotes the mean of random variable A, and  a t  denotes a random variable that 

follows a circular Gaussian distribution. For the second equality, we used the fact that 
2

p  and 

   *a t a t   are independent.  
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After passing through the scattering medium, the phase-conjugated light field at t  is 

computed as 

          *T
t t t      OPC SE T E  
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So, the i-th element of  t OPCE  can be calculated by 
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Then, we have  
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Thus, the ratio of the PBRs at time t and t   can be calculated by 
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Based on Eqs. (S3.9) and (S3.13), we get 
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On the other hand, the correlation coefficient IR  of two speckle patterns  ,I r t  and  ,I r t  , 

recorded at t and t  , is defined as 
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where 
r

  takes an average over all the pixels. We assume the random process is stationary, 

then, 
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where the last equal sign holds because      
2

, , ,
r r

r

I r t I r t I r t  
 

 for polarized fully 

developed speckles [101]. 

For a given output mode, the second-order correlation function of light is written as 
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Because of ergodicity, the ensemble average over time for the intensity of one output mode in Eq. 

(S3.17) can be calculated by averaging the intensities over all output modes (camera pixels). 

Then, from Eqs. (S3.16) and (S3.17), we have  

 (2)
I( ) 1.g R                                                          (S3.18) 

According to the Siegert relation, we have  

   
2

(2) (1) 1g g    ,                                                   (S3.19) 

where β is a constant depending on the experimental conditions. From Eqs. (3.18) and (3.19), 

we get  

 
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Based on the results in Eqs. (S3.14) and (S3.20), we obtain  
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 .                                                  (S3.21) 

Eq. (S3.21) shows that the PBR is proportional to the correlation coefficient RI of speckle 

patterns. From Eq. (S3.18), for polarized fully developed speckles, 

 (2) 2 2

I c c( , ) 1 exp( 2 )R t g t       [24, 58, 59], so we get 

  2 2

c cPBR , exp( 2 )t A t   ,                                           (S3.22) 

where  c=PBR 0A t   , and  cPBR 0t    is the PBR achieved when the system 

runtime is infinitely small compared with the speckle correlation time of the sample. 

  



78 

 

Chapter 4: Improving the quality of the focus 

achieved by optical phase conjugation (OPC) 

4.1 Full-polarization digital OPC  

4.1.1 Introduction 

When the scattering medium is optically thick, the polarization of the scattered light becomes 

spatially randomized and its representation on the Poincare sphere is distributed randomly and 

evenly. Thus, in any OPC experiment, it is ideal to first record all the information about the 

scattered light, including its phase, amplitude, and polarization at all positions. Next, to 

rigorously follow the time-reversal principle, scattered light needs to be phase conjugated with 

the original position-dependent polarizations maintained. Using a nonlinear crystal, a full-

polarization analog OPC system has been developed to restore images through multimode fibers 

[102]. However, in practice, the SLMs used in digital OPC (DOPC) systems can modulate only 

linearly polarized light along a fixed direction, and thus are incapable of faithfully phase-

conjugating scattered light with different polarization states. To address this problem, we have 

developed the first full-polarization DOPC system which is able to record and phase-conjugate 

light with random polarizations.  

4.1.2 Methods 

The process of full-polarization DOPC includes a recording step and a playback step (Fig. 4.1). 

In the recording step [Fig. 4.1(a)], as a concrete example, the incident light E(1)(x, y) is chosen to 

be a narrow collimated beam with a linear polarization. The light then passes through a scattering 

medium and evolves into a fully developed speckle pattern on the x’-y’ plane, with spatially non-

uniform polarizations. In order to record the information about scattered light with various 
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polarizations, the scattered light is decomposed into two components: EH
(2)(x’, y’) and EV

(2)(x’, 

y’), and both are recorded using phase shifting holography [74]. Here, “H” denotes the horizontal 

polarization and “V” denotes the vertical polarization, and they form complete orthogonal bases 

that can represent an arbitrary polarization state. This procedure is superior to existing DOPC 

approaches, where only one component (either “H” or “V”) is recorded and phase conjugated. In 

general, the speckle patterns corresponding to the two orthogonal polarizations bear little 

resemblance, and the polarizations at two arbitrary positions that are not within the same speckle 

grain, i.e., position 1 and position 2 [Fig. 4.1(a)], are completely uncorrelated in both amplitude 

ratio [|EH
(2)(x1’, y1’)| / |EV

(2)(x1’, y1’)| ≠ |EH
(2)( x2’, y2’)| / |EV

(2)(x2’, y2’)|] and relative phase [Δϕ1 = 

arg(EH
(2)(x1’, y1’)/EV

(2)(x1’, y1’)) ≠ Δϕ2 = arg(EH
(2)( x2’, y2’)) / EV

(2)( x2’, y2’))]. Here, |·| denotes 

taking the absolute value and arg(·) denotes taking the argument. Next, in the playback step [Fig. 

4.1(b)], both OPC fields, with orthogonal polarizations, are produced and directed to the 

scattering medium. After they pass through the scattering medium, an output collimated beam 

that is phase-conjugated to the input beam is obtained. 

 

Figure 4.1 Schematic of the processes in full-polarization DOPC. (a) In the recording step, the scattered light is 

recorded along the horizontal (H) and vertical (V) polarization directions. (b) In the playback step, OPC fields along 
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the two orthogonal polarizations are produced and become phase-conjugated to the input light field after passing 

through the scattering medium.  

 

We theoretically studied full-polarization DOPC by extending the existing scalar-field-based 

random matrix theory [57]. The input light field E(1)(x, y) is expressed as a Jones column vector 

concatenated by two components EH
(1)(x, y) and EV

(1)(x, y): 

(1)

H(1)

(1)

V 2 1

( , )
( , ) ,

( , )
N

E x y
x y

E x y


 
   
 

E                                                            (4.1)                                                                          

where each component comprises N spatial modes and is represented by an N×1 column vector. 

Since light transmission through the scattering medium and the subsequent optics is represented 

by a vector transmission matrix T [100, 103], the scattered light field on the SLM 

(2)

H(2)

(2)

V 2 1

( , )
( , )

( , )
N

E x y
x y

E x y


  
       

E  can be calculated as  

(2) (1)( , ) ( , ).x y x y  E TE                                                             (4.2)                                                                                  

Specifically, the vector transmission matrix T has the following form: 

HH HV

VH VV 2 2

,
N N

 
  
 

T T
T

T T
                                                             (4.3) 

in which TAB (A, B = H, V) is an N-by-N matrix that connects the input field with B polarization 

and the scattered field with A polarization. By using singular value decomposition, each TAB can 

be further decomposed as TAB = UABtABVAB, where UAB and VAB are independent unitary 

matrices. Physically, UAB and VAB are transformation matrices converting between coordinates 

in Cartesian bases and eigenmode bases. tAB is a diagonal matrix with non-negative elements, 

and each element quantifies the transmission coefficient of each eigenmode. Thus, 
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 2

AB ABtr N  t represents the average power transmission from polarization B to polarization A, 

where tr(·) denotes taking the trace of a matrix. In practice, only a fraction of the transmitted 

light is measured. Under this condition, the elements in each TAB can be approximated by the 

corresponding circular Gaussian distributions [57].Thus, for scattering media that are sufficiently 

thick to randomize the polarization state, †

AB AB AB I,T T  where the symbol † represents the 

adjoint of a matrix and I is an identity matrix. The playback OPC field is phase-conjugated to the 

recorded field: 

*(3) (2)( , ) ( , ) ,x y x y      E E                                                          (4.4)                                                                   

where the symbol * denotes complex conjugation. This field is sent back to pass through the 

scattering medium again. Finally, the output field 

(4)

H(4)

(4)

V

( , )
( , )

( , )

E x y
x y

E x y

 
   
 

E   after scattering is 

estimated by 

(4) (3)( , ) ( , ),Tx y x y E T E                                                             (4.5)                                                                             

where the scattering matrix is modeled by the transpose of the forward transmission matrix. 

Combining Eqs. (4.1)-(4.5) yields 

(1) * (1) *

HH VH H VHH VVH V(4)

(1) * (1) *

HV VV V HHV HVV H

( )[ ( , )] ( )[ ( , )]
( , ) .

( )[ ( , )] ( )[ ( , )]

E x y E x y
x y

E x y E x y

 

 

    
           

M M
E

M M
             (4.6) 

Here, the first term on the right-hand side of Eq. (4.6) represents the phase-conjugated light, and 

the second term represents a background due to polarization coupling in partial OPC. 

Specifically, matrices *

ABC BC BA

TM T T  with A, B, C = H, V and A ≠ C describe the mapping from 

the input light with A polarization to the scattered light with B polarization, followed by the 

mapping from the scattered light with B polarization to the output light with C polarization. The 
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modulus of each element in MABC is O(1/N1/2). Physically, (τHH + τVH) and (τHV + τVV) are the 

total transmittances of the scattering medium when the incident light is purely horizontally 

polarized or purely vertically polarized, respectively. For most scattering media, these two values 

are very close. Therefore, E(4)(x, y) ≈ βE(1)(x, y)*, where β = (τHH + τVH) [or (τHV + τVV)]  is a 

positive number. So, the full-polarization DOPC process faithfully produces the phase-

conjugated field of the input light. However, if the DOPC process phase-conjugates scattered 

light only along the horizontal polarization direction (referred to as single-polarization DOPC), 

the output field is calculated as  

(1) *(1) *
VHH VHH H(4)

H (1) * (1) *

HV V HHV H

[ ( , )][ ( , )]
( , ) | .

[ ( , )] [ ( , )]

E x yE x y
x y

E x y E x y





  
      
   

M
E

M
                              (4.7)                                                 

Again, the first term on the right hand side of Eq. (4.7) represents the phase-conjugated light, 

while the second term corresponds to the background. In cases when τHH and τHV are not the 

same, the resultant field is not phase-conjugated to the input light field.   

To compare the performance of full-polarization DOPC and single-polarization DOPC, we 

performed numerical simulations based on the above matrix analysis. In the simulation, N was 

set to be 2500, and the input light was chosen to be horizontally polarized with the central pixel 

being 1 for the electric field amplitude and the other pixels being 0. Each element in the 

transmission matrix TAB was drawn from a circular Gaussian distribution with mean µ = 0 and 

variance σ2 = τAB. Specifically, τHH was varied from 0 to 1, and we assumed τVV = τHH and τHV = 

τVH = 1 − τHH. Figure 4.2 plots the peak-to-background ratio (PBR) normalized by N as a 

function of the polarization coupling coefficient α. PBR is defined as the ratio between the 

average intensities within and outside the targeted region of the phase-conjugated light; α 
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quantifies the average energy transfer between the two orthogonal polarizations, and is defined 

as 

VH HH VH/ ( ).                                                          (4.8) 

Figure 4.2 shows that the normalized PBRs for full-polarization DOPC are 1 for all values of α. 

In contrast, the normalized PBRs for single polarization DOPC change linearly with α. Such an 

observation is in accord with the theoretical expression of the normalized PBRs for single-

polarization DOPC (= 1 − α and α for horizontal and vertical polarization DOPC respectively, 

which can be derived by following the same procedures in [57] but using the vector transmission 

matrix). Specifically, when α approaches 0.5, the PBRs achieved by horizontal-polarization 

DOPC and vertical-polarization DOPC are the same, and they are half of the PBR achieved by 

full polarization DOPC. An intuitive explanation is that in the full polarization scenario, the peak 

intensity is enhanced by a factor of 4 due to constructive interference, while the background is 

doubled by summing the background intensities corresponding to the two orthogonal 

polarizations. When α approaches 0 or 1, if the correct polarization state is not chosen to record 

and phase-conjugate the scattered light, the PBR of single polarization DOPC can become 

extremely low. In practice, α ~ 1 corresponds to a strongly birefringent sample with a small 

optical thickness, such as the retina of the eye [104].  Based on the above analysis, it is highly 

desired to develop a full-polarization DOPC system. The performance of such a system is not 

sensitive to the properties of the scattering media, and the system can always achieve a higher 

PBR than that achieved by single-polarization DOPC systems. 
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Figure 4.2 The normalized peak-to-background ratio as a function of the polarization coupling coefficient α for three 

different DOPC schemes. Discrete data points are from numerical simulation results, while the lines are plotted 

using analytical expressions. 

 

Based on the positive results from the numerical simulations, we developed a full-polarization 

DOPC system schematically shown in Fig. 4.3. In the phase recording step, the input light was 

split into a planar reference beam (R) and a sample beam (S) by a polarizing beamsplitter (PBS); 

R was vertically polarized and S was horizontally polarized. Each beam was subsequently 

modulated by an acousto-optic modulator to induce a 12 Hz frequency difference between R and 

S. The polarization direction of R was then rotated by a half wave plate (HWP) to 45 degrees. In 

the sample arm, S illuminated an ex vivo chicken breast tissue slice, and its polarization state 

became spatially inhomogeneous after tissue scattering. Then, the two beams were combined by 

a 50:50 beamspliter (BS) for interferometry. Since the scattered light took various polarization 

states, we used a PBS to spatially separate it into components with horizontal and vertical 

polarizations. Each component then impinged on the surface of an SLM whose pixels displayed 

all zeros at this step. Both SLMs had a resolution of 1920×1080 pixels, and were imaged onto a 
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scientific complementary metal–oxide–semiconductor (sCMOS) camera (resolution 2560×2160) 

by a camera lens. Each pixel in the SLMs corresponded to one pixel on the sCMOS camera. To 

use a single camera to image both SLMs simultaneously, the SLMs were rotated 90 degrees 

clockwise. Since both SLMs could modulate light only with vertical polarization, HWP4 was 

inserted before SLM1 to rotate the polarization of the light to vertical direction.  The phase maps 

corresponding to the horizontally polarized scattered light and the vertically polarized scattered 

light were measured using phase-shifting holography [31, 74], made possible by making the 

camera run at a frame rate of 48 Hz (=4×12 Hz).  

 

Figure 4.3 Schematic of the full-polarization DOPC set-up. Polarization states are indicated by the red arrows. 

AOM, acousto-optic modulator (AOM-505AF1, IntraAction); BB, beam block; BS, beamsplitter; CCD, CCD 

camera (GS3-U3-50S5M-C, Point Grey; pixel size 3.45 µm); CL, camera lens; HWP, half wave plate; L, lens; 

Laser, Verdi V5, Coherent, 532 nm; M, mirror; MS, mechanical shutter; PBS, polarizing beamspliter; R, reference 

beam; S, sample beam; sCMOS, scientific CMOS camera (pco.edge 5.5, pco; pixel size 6.5 µm); SLM, spatial light 

modulator (Pluto NIR-II, Holoeye; pixel size 8 µm). 
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In the playback step, the conjugate phase maps were displayed on the respective SLMs. An 

experimentally determined constant phase offset was added to one of the phase maps to 

compensate for the difference between the path length from PBS3 to SLM1 and from PBS3 to 

SLM2. The sample beam was blocked by a mechanical shutter in this step, and the planar 

reference beam illuminated the two SLMs to acquire the conjugate phase map. The two branches 

of phase conjugated light were then combined by PBS3 and were directed to the scattering 

sample. After they passed through the sample, a bright focus was formed on the focal plane of 

lens L5. To observe the focus, a 10:90 BS was inserted to create a copy of the focus, which was 

captured by a charge-coupled device (CCD) camera.  

4.1.3 Results 

In our experiment, we used 2 mm and 4 mm thick chicken breast tissue as scattering samples, 

and α was close to 0.5 for both samples, which is expected for thick scattering media. Images of 

the focal spots achieved by single-polarization DOPC and full-polarization DOPC are shown in 

Fig. 4.4. Specifically, Figs. 4.4(a), (b), and (c) show the imaged foci when only horizontal 

polarization, only vertical polarization, and full polarization were used for DOPC through 2 mm 

thick chicken breast tissue. All three images are shown using the same intensity scale. The peak 

intensity of the focus achieved by full-polarization DOPC is ~ 4 times as high as that achieved 

by single-polarization DOPC. Moreover, the PBRs for the three images are 141, 135, and 262, 

respectively. This result illustrates that the PBR achieved by full-polarization DOPC is roughly 

twice that achieved by single-polarization DOPC, which is in good agreement with our 

theoretical predictions. To better visualize the shape of the focus, each image is zoomed in and is 

normalized by its own peak intensity, as shown in Figs. 4.4 (d), (e), and (f). It can be seen that all 

three foci maintain nearly circular shapes, which shows that when the sample is not too thick, 
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single-polarization DOPC can still achieve high OPC fidelity. For the 4 mm thick chicken tissue, 

the images of the foci achieved by horizontal polarization, vertical polarization, and full 

polarization DOPC are shown in Figs. 4.4 (g), (h), and (i), respectively. Again, the intensity of 

the focus achieved by full-polarization DOPC is roughly 4 times as high as that achieved by 

single-polarization DOPC. Due to the increased thickness, the PBRs for the three images are 

lower and are calculated to be 21, 18, and 37. However, full-polarization DOPC still 

approximately doubles the PBR achieved by single-polarization DOPC. Figures 4.4 (j), (k), and 

(l) show the enlarged images of the foci after normalization by their own peak intensities. 

Among all three foci, the one achieved by full-polarization DOPC has a nearly circular shape 

that most closely resembles the shape of the input focus. Such a result indicates that when the 

sample is thick, full-polarization DOPC can achieve higher OPC fidelity than that achieved by 

single-polarization DOPC [102]. We note that the increased size of the foci for 4 mm thick 

chicken tissue is due to different experimental conditions. 
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Figure 4.4 Images of the foci achieved by single-polarization and full-polarization DOPC. (a)-(c) Images of the foci 

through 2 mm thick chicken breast tissue when only horizontal-polarization, only vertical-polarization, and full-

polarization DOPC were employed. (d)-(f) Enlarged images of (a)-(c). To better visualize the shape of the focus, 

each image is normalized by its own peak intensity. (g)-(i) Images of the foci through 4 mm thick chicken breast 

tissue when only horizontal-polarization, only vertical-polarization, and full-polarization DOPC were employed. (j)-

(l) Enlarged images of (g)-(i). Again, to better visualize the shape of the focus, each image is normalized by its own 

peak intensity.  

 

4.1.4 Discussion and Conclusion 

Here, we briefly discuss the polarization states of the OPC field in our experiments. Currently, 

the two SLMs in the set-up modulate only the phase but not the amplitude of light. Thus, the 

SLM-generated OPC field before illuminating the sample does not have the same polarization as 

that of the scattered light. Nonetheless, compared with the ideal case when both phase and 

amplitude are modulated, due to the scrambling nature of the thick scattering medium, the phase-

modulated light still constructively interferes in the same polarization state as that of the 
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recording-phase input light (though the amplitude is reduced), while there is no constructive 

interference in the orthogonal polarization state. Thus, after the SLM-generated OPC field passes 

through the scattering medium, the polarization of the electric field at the focus is approximately 

the same as that of the input field. In our experiments, the input electric field at the focus was set 

to be horizontally polarized. Using a polarizer, we confirmed that the electric field at the focus 

achieved by full-polarization DOPC was also horizontally polarized.  

In conclusion, we developed the first DOPC system that can record and phase-conjugate the 

scattered light with various polarization states. When the scattering sample is optically thick, our 

system doubles the PBR achieved by single-polarization DOPC systems, improves the OPC 

fidelity, and maintains the polarization of the input light field. The method described here can be 

easily applied to existing DOPC systems to improve their performance.  

4.2 Sub-Nyquist sampling of speckle grains in digital OPC 

4.2.1 Introduction 

The pixel sizes of the digital cameras and SLMs constituting digital PCMs (several microns to 

tens of microns) are ~20 times larger than the wavelength of light, so speckle grains are under-

sampled (sub-Nyquist sampled) if a PCM is placed adjacent to the rear surface of a thick 

scattering medium to collect more scattered light from the sample [Figs. 4.5(a) and (b)]. Since 

the Nyquist sampling criterion [105] is not followed, the phase map of the measured wavefront 

[Fig. 4.5(b)] looks different from the real one in Fig. 4.5(a). Such an under-sampled wavefront 

cannot be exactly time reversed, because it is not a proper representation of the true wavefront. 

Therefore, in all previous time-reversal–based optical focusing experiments, speckle grains are 

magnified [Fig. 4.5(c)] and are well-sampled by PCM pixels [Fig. 4.5(d)], to correctly measure 
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the wavefront of the scattered light [26, 30, 80, 96, 106]. The measured wavefront is then used 

for phase conjugation. 

 

Figure 4.5 Sampling of speckle grains in optical time-reversal experiments. (a). Phase map of the scattered light on 

the rear surface of a scattering medium. (b). Phase map of the under-sampled speckle grains, which looks different 

from the real one in a. (c). Phase map of the 400× magnified speckle grains. (d). Phase map of the well-sampled 

speckle grains. (e). Magnifying the speckle size by an iris and a lens. (f). Magnifying the speckle size by two 

objective lenses. 

 

However, two problems exist with well-sampling speckle grains in time-reversal–based optical 

focusing experiments. First, the SLM pixels are not efficiently used, since multiple pixels are 

correlated to represent a single speckle grain. When speckle grains are well-sampled, it has been 

proved [30] that the peak-to-background ratio (PBR) of the focus (with one speckle inside) is 

expected to follow  

SPBR = ,N                                                               (4.9) 

where NS is the number of speckle grains intercepted by the PCM. The PBR is used to quantify 

the contrast of the focus and is defined as the ratio between the peak intensity of the focus and 

the average intensity of the speckles when a random wavefront is applied (background). Given 
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that 3×3 pixels to 5×5 pixels have usually been used to sample one speckle grain in previous 

experiments [26, 30, 80, 96, 106], NS is usually 9 – 25 times smaller than the pixel count of an 

SLM (NP). Ideally, the PBR should be increased to Np, so that all the degrees of freedom of an 

SLM can be utilized. Second, to ensure well-sampling speckle grains by magnifying the speckle 

size, a lens with an iris [82] [Fig. 4.5(e)], or two high-magnification objective lenses [20, 107, 

108] [Fig. 4.5(f)], are usually employed, and the PCM is always placed far from the rear surface 

of the scattering medium. Consequently, these two approaches detect only a tiny portion of the 

scattered light exiting the sample and thus have much reduced light collection efficiencies. 

Moreover, magnifying the speckle size by focusing light onto a scattering medium with an 

objective [Fig. 4.5(f)] works only for thin samples. 

In this work, we theoretically predict and experimentally verify that by under-sampling speckle 

grains, we can not only focus light through scattering media, but also significantly increase the 

PBR by 9 – 25 times, compared with that achieved with the conventional well-sampling 

conditions (3×3 to 5×5 pixels to sample one speckle grain on average). This discovery overturns 

the conventional belief that well-sampling speckle grains is required to achieve time-reversal–

based optical focusing [26, 30, 80, 96, 106]. Besides improving the PBR, since our method does 

not require magnification of speckle grains, we remove the need to use an iris or objective lenses 

in the set-up and improve the light collection efficiency. We also proved that under-sampling 

speckle grains improves the signal-to-noise ratio (SNR) by at least 3 times. 

4.2.2 Results 

First, by analyzing the time-reversal process, we present a relatively simple argument to show 

that the expected PBR can be increased to the SLM pixel count NP when speckle grains are 

under-sampled in optical time-reversal experiments. A rigorous proof can be found in 
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Supplementary notes. The incident light field Ein is represented by a vector with NI elements, 

whose first element is set to 1, and the rest of the elements are set to 0 for simplicity without 

losing generality. The scattering medium is described by a transmission matrix T  with 

dimensions of NS × NI, whose element ijt  is independently drawn from a circular Gaussian 

distribution [101]. Hence, the scattered light field intercepted by a PCM is computed as  

I
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S inE TE                             (4.10) 

Since speckle grains were well-sampled by a digital camera in previous digital optical phase 

conjugation experiments, each element of SE  can be accurately determined by phase-shifting 

holography [31, 74, 109]. However, when speckle grains are under-sampled, it is unclear what 

quantity is measured by phase-shifting holography and whether optical focusing using phase 

conjugation can still be achieved. In Supplementary notes, we first prove that when speckle 

grains are under-sampled, the reconstructed quantity of each pixel in phase-shifting holography 

is the summation of the electric fields of all the speckle grains within that pixel. As an illustration, 

Fig. 4.6(a) shows a case where 16 speckle grains are within one pixel. Each speckle grain is 

assumed to have the same size and shape for simplicity, and the amplitude and the phase of its 

electric field are represented by the length and the angle of an arrow (the phasor expression). The 

phase is also encoded by color for better visualization. Using phase-shifting holography, the 

reconstructed quantity for this pixel equals the summation of the electric fields of all 16 speckle 

grains [Fig. 4.6(b)]. We emphasize that it is this field summation, rather than intensity 

summation, that retains the field information of each speckle grain (although not resolved) and 
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makes optical focusing achievable. With the knowledge that phase-shifting holography measures 

the summation of the electric fields of all the speckle grains within one pixel, the experimentally 

measurable scattered field S,under-sampledE  has the following form when F speckle grains occupy 

one camera pixel on average: 
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By multiplying the backward transmission matrix TT  (the upper case T stands for matrix 

transpose) by the conjugated scattered field 
S,under-sampled

*E , the optical phase conjugated field OPCE  

exiting the scattering medium can be computed as T
S,under-sampled

*
OPCE T E . Each element of OPCE  

contains a summation of F×NS terms. Among the elements of OPCE , only the first element 

(corresponding to the peak) contains a constructive summation of NS terms 

(
s s

* * *
11 11 21 21 1 1N Nt t t t t t      ) plus a random summation (random phasor sum) of (F−1)×NS terms, 

while each of the rest of the elements (corresponding to the background) contains a random 

summation of F×NS terms. Thus, the theoretical PBR can be estimated by 
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                          (4.12) 
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We note that the estimated PBR in Eq. (4.12) is exactly the same as the PBR obtained from a 

rigorous mathematical derivation (see Supplementary notes). The above analysis considers using 

an SLM that achieves full-field (amplitude plus phase) modulation. When other types of SLMs 

are employed and when speckle grains are under-sampled, we prove that  

PBR 
P ,N                                                              (4.13) 

and   = π/4, 1/π, and 1/(2π) for phase-only, binary-phase, and binary-amplitude modulation 

SLMs, respectively (see Supplementary notes). The analytical results in Eqs. (4.12) and (4.13) 

are also validated by numerical simulations (see Supplementary notes). We conclude from the 

above results that, regardless of the wavefront modulation schemes, light focusing through 

scattering media can still be achieved even when speckle grains are under-sampled. Moreover, 

since 3×3 pixels to 5×5 pixels were typically used to sample one speckle grain in previous 

experiments, the PBR achieved by under-sampling is 9 − 25 times higher than the PBR achieved 

by well-sampling, and in this case all the degrees of freedom of an SLM are fully utilized.  

 

Figure 4.6 Physical meaning of the reconstructed quantity in phase-shifting holography when speckle grains are 

under-sampled. (a). An illustration of 16 speckle grains occupying one digital PCM pixel. A phasor expression is 

used to represent the electric field of each speckle grain. (b). The reconstructed quantity (the large gray arrow) is a 

vector sum of the 16 independent phasors (the small black arrows). 
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We then performed experiments to investigate time-reversal–based optical focusing through 

scattering media when speckle grains are under-sampled. The experimental set-up is 

schematically shown in Fig. 4.7. The output of a continuous-wave laser (Verdi V10, Coherent) 

was split into a reference beam (R) and a sample beam (S). Then, each beam was modulated by 

an acousto-optic modulator (AOM), to induce a fb =12 Hz frequency difference between R and S. 

After that, R was expanded by a lens pair, while S was scattered by a scattering medium (SM) 

composed of three ground glass diffusers (DG-120, Thorlabs). An iris was placed before 

collecting lens L3 to control the speckle size. S was then combined with R by a beamsplitter 

(BS), and their interference pattern was recorded by a camera (pco.edge 5.5, PCO-Tech) running 

at a frame rate of 4fb. In this way, we measured the wavefront of S using phase-shifting 

holography. In the playback process, S was blocked by a mechanical shutter (MS), and the 

conjugation of the measured phase map was displayed on an SLM (Pluto NIR-II, Holoeye, 1920 

× 1080 pixels) whose pixels were one-to-one matched with the camera pixels. Upon reflection 

off the SLM, R was wavefront shaped and was expected to become a collimated beam after 

passing through the scattering medium SM. To quantify the quality of time reversal, the light 

exiting the scattering medium was reflected by a 10:90 BS and focused by lens L4 onto another 

camera (Camera2, pco.edge 5.5, PCO-Tech).  

 

Figure 4.7 Schematic of the experimental setup for time-reversal–based optical focusing through scattering media. 

AOM, acousto-optic modulator; BS, beamsplitter; CL, camera lens; HWP, half-wave plate; L, lens; M, mirror; MS, 

mechanical shutter; PBS, polarizing beamsplitter; R, reference beam; S, sample beam; SLM, spatial light modulator; 

SM, scattering medium. 
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Two experiments were performed to investigate the effect of sampling speckle grains on the 

quality of time-reversal–based optical focusing through scattering media. In the first experiment, 

we varied the pixel size of the PCM through pixel binning (the same binning was performed for 

both Camera1 and the SLM), while fixing the speckle size on the PCM. Without binning, each 

speckle grain occupied 3.5×3.5 pixels on average. As the pixel size gradually increased by 

binning pixels, the sampling of speckle grains changed from well-sampled to under-sampled. 

Figure 4.8(a) shows the normalized PBR/NP as a function of the under-sampling factor F. As 

long as F is no smaller than 1 (speckle grains are under-sampled), PBR/NP remains close to a 

constant of 0.117, which is normalized to 1. When F is smaller than 1 (speckle grains are not 

under-sampled), the normalized PBR/NP is also smaller than 1, which shows an inefficient 

utilization of SLM pixels. These experimental results agree with our aforementioned theoretical 

analysis. In the extreme case when 15×15 pixels are binned to one pixel, corresponding to, on 

average, 19 speckle grains in one PCM pixel (the far right data point in Fig. 4.8(a)), a bright 

focus with a PBR ~1100 was achieved [Fig. 4.8(b)]. As a control, when a random phase map was 

displayed on the SLM, no focus was observed [Fig. 4.8(c)]. 

 

Figure 4.8 Experimental results obtained by varying the pixel size of a PCM while fixing the speckle size on the 

PCM. a. Plot of normalized PBR/NP as a function of the under-sampling factor F. The error bars show the standard 

deviations obtained from three realizations of the scattering medium. The blue dashed line indicates the theoretical 
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prediction based on Eqs. (4.9) and (4.13). b. Image of the achieved focus captured by Camera2 when the under-

sampling factor F was 19. The experimental PBR is ~1100 (theortical PBR is πNP/4/(15×15) ~ 7200). The PBR is 

~1100. Scale bar, 200 µm. c. No focus was observed when a random phase map was displayed on the SLM.  

 

In the second experiment, we varied the speckle size on the PCM while fixing the pixel size. 

Super-pixels binned from 5×5 pixels were used throughout this experiment to measure the under-

sampling factor when speckle grains were under-sampled. The speckle size was controlled by 

varying the aperture size of an iris. Although the number of photons reaching the camera sensor 

varied as we changed the aperture size of the iris, the SNR during wavefront measurement was 

always kept well above one. In this case, the PBR will not be affected by the variation in the 

number of photons reaching the camera (see Fig. 9 of Ref. [36]). When the iris was fully opened, 

a speckle grain occupied ~0.48 super-pixel on average, so it was under-sampled. By gradually 

closing the iris, the speckle size increased accordingly and finally surpassed the super-pixel size. 

Figure 4.9 shows the measured PBR of the focus (normalized by 9100) as a function of the 

speckle area. When the speckle area is smaller than the super-pixel area (speckle grains are 

under-sampled), the PBRs are around a constant value of 9100. This observation is consistent 

with Eq. (4.13), because the PBR is theoretically determined only by the fixed pixel count and is 

independent of the under-sampling factor. When the speckle area surpasses the super-pixel area 

(speckle grains are well-sampled), the PBR is inversely proportional to the speckle area. This 

observation indicates that the PBR is proportional to NS, which agrees with Eq. (4.9). Having 

checked all the PBRs obtained with different speckle areas, we note that higher PBRs were 

achieved when speckle areas were smaller than the super-pixel area, corresponding to under-

sampling speckle grains. Compared with the PBR achieved by using 4.2 × 4.2 super-pixels to 

well-sample speckle grains, the PBR was improved by 16 times with under-sampling speckle-

grains. When the speckle area was 0.48× the super-pixel area (the far left data point in Fig. 
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4.9(a)), a bright focus with a PBR of 9100 was achieved [Fig. 4.9(b)]. As a control, when a 

random phase map was displayed on the SLM, no focus was observed [Fig. 4.9(c)]. Using 

focused-ultrasound–guided digital optical phase conjugation (TRUE focusing), we focused light 

inside a scattering medium comprising two diffusers. Again, the PBR of the focus is higher with 

under-sampling compared with well-sampling (see Supplementary notes). 

 

Figure 4.9 Experimental results obtained by varying the speckle size on a PCM while fixing the pixel size. (a). Plot 

of normalized PBR as a function of speckle area. The horizontal and vertical axes are shown in the log scale. The 

blue dashed line indicates the theoretical prediction based on Eqs. (4.9) and (4.13). The error bars show the standard 

deviations obtained from three realizations of the scattering medium. (b). Image of the achieved focus when the 

speckle area was 0.48× the pixel area. The PBR is 9100. Scale bar, 200 µm. c. No focus was observed when a 

random phase map was displayed on the SLM. 

 

Here, we improved the focusing quality by pushing the upper limit of theoretical PBR to NP. 

Although great efforts have been made [96, 106], experimentally achieved PBRs were always 

lower than their theoretical values, due to misalignment of the system (including imperfect 

matching between the pixels of the camera and the pixels of the SLM, non-uniformity of the 

reference beam, imperfect perpendicularity between the reference beam and the SLM, etc.) and 

the surface curvature of the SLM. In our experiments, when speckle grains were under-sampled 
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and NP was 83000 (5×5 binning), the achieved PBR was 9100, which is still seven times lower 

than its theoretical value (πNP/4 ~ 65000).  

Besides improving the PBR, under-sampling speckle grains also improves the SNR of wavefront 

measurement. When speckle grains are under-sampled and the main noise source is shot noise, it 

is proved in Supplementary notes that the SNR of wavefront measurement is given by  

 SNR 2 NPS,under-sampled                                                      (4.14) 

where NPS is the average number of photoelectrons induced by the light exiting the sample per 

speckle grain. On the other hand, when speckle grains are well-sampled, it has been proved that 

the SNR is given by [75] 

SNR 2 NPP 2 NPS .G well-sampled                                           (4.15) 

Here, NPP is the average number of photoelectrons induced by the light exiting the sample per 

camera pixel, and 1G F describes the average number of pixels used to sample one speckle 

grain, which is larger than 1. When an iris is used to control the speckle size [Fig. 4.5(e)], both 

the light power and the total number of speckle grains intercepted by the PCM are proportional 

to the area of the iris aperture, so NPS is a constant, independent of the speckle size. Thus, from 

Eqs. (4.14) and (4.15), we conclude that under-sampling speckle grains increase the SNR of 

wavefront measurement by a factor of G , compared with well-sampling speckle grains. 

Considering that 3×3 pixels to 5×5 pixels have usually been used to sample one speckle grain in 

previous experiments, the SNR can be enhanced by 3 – 5 times with under-sampling speckle 

grains. 
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4.2.3 Discussion and Conclusion 

It was proved theoretically that feedback-based and time-reversal–based wavefront shaping find 

the same optimum wavefront [110]. However, before our work, the experimentally determined 

wavefronts by these two approaches were not the same. Since speckle grains were well-sampled, 

neighboring pixels were correlated in previous time-reversal–based wavefront shaping, while 

neighboring (super) pixels were uncorrelated in feedback-based wavefront shaping [15]. Under-

sampling speckle grains in time-reversal–based wavefront shaping bridges this gap between 

theoretical prediction and experimental observation, since neighboring pixels are not correlated 

any longer. 

Moreover, we note that when a scattering medium is thick, polarization can be completely 

scrambled by scattering. By using a vector transmission matrix in the derivation [34, 100], it is 

straightforward to see that all the conclusions we obtained in this work are still valid, except that 

all the PBRs are reduced by half. Such a PBR reduction can be understood by considering the 

enhanced background due to the field along a polarization direction orthogonal to the incident 

polarization direction. 

In acoustic time-reversal, Fink et al. stated that “the transducers can be spaced as far apart as half 

the smallest wavelength without impairing the quality of the reproduction” [111, 112], 

suggesting that well-sampling is preferred in acoustic time-reversal. Even though the pitch of a 

transducer array is two or three times larger than half the acoustic wavelength in some 

experiments [113, 114], it was unclear whether the ultrasonic wavefront was under-sampled in 

these experiments, since the ultrasonic wave exiting a scattering medium propagated some 

distance before reaching the array and the ultrasonic coherence area at the array location was not 

reported. Fink et al. later realized that “the best situation would be one in which all array 
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elements receive totally independent information” [115], however, he also stated that “this is not 

physically possible” [115]. Regardless, to the best of our knowledge, this paper is the first to 

point out and demonstrate that under-sampling the wavefront is better than well-sampling in 

optical time-reversal experiments. 

In summary, we theoretically and experimentally demonstrate that even when speckle grains are 

under-sampled, light can still be focused through or inside opaque scattering media. In fact, we 

proved that sub-Nyquist sampling can boost the PBR by more than ten times than conventional 

well-sampling conditions and also increase the SNR of wavefront measurement. Moreover, since 

our method does not require magnification of speckle grains, we remove the need to use an iris 

or objective lenses in the set-up and are able to place the PCM closer to the sample, thus greatly 

improving the collection efficiency of the scattered light. We anticipate that our discovery will 

transform the understanding of optical time-reversal and boost the performance of light focusing 

through opaque media for optical imaging, manipulation, therapy and communication.   

4.2.4 Supplementary notes 

The physical meaning of the reconstructed quantity in phase-shifting holography when 

speckle grains are under-sampled 

Phase-shifting holography has been widely used to measure the phase of scattered light. 

However, in all previous experiments, the speckle grains were well-sampled by camera pixels. 

When speckle grains are under-sampled, it is still unclear what quantity is measured by phase-

shifting holography and whether optical focusing through optical phase conjugation can still be 

achieved. We investigate this problem here. In one implementation of phase-shifting holography 

[31, 74, 109], a planar reference beam and a sample beam with a distorted wavefront beat at a 
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frequency of fb, and a digital camera records their interference pattern at a frame rate of 4fb. Four 

successive frames are used to reconstruct the phase and amplitude of the sample beam. When 

speckle grains are under-sampled, the light power on a single pixel of the camera in each frame 

can be written as 

       2 2

R S R S S
1 1

2 cos 1 2 ,  1,2,3,4.
F F

k j j j
j j

A A
P AE E r E E r r k k

F F
 

 

              (S4.1) 

Here, A is the area of one pixel; F is the number of speckle grains within one pixel, which 

corresponds to the under-sampling factor in the main text; RE  is the amplitude of the reference 

beam, and we assume that the phase of the reference beam is 0 for simplicity; and  S jE r  and 

 S jr  are the amplitude and phase of the electric field (along the polarization direction of the 

reference beam) of the j-th speckle grain located at jr within one pixel. Each speckle grain is 

assumed to have the same size. Since the camera samples the beat at 4× the beat frequency, the 

interference term in each successive frame has a π/2 phase shift, which is reflected in the cosine 

term. Based on Eq. (S4.1), the reconstructed quantity in phase-shifting holography can be found 

by  
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 

                      (S4.2) 

where C is a constant prefactor. From Eq. (S4.2), we conclude that when speckle grains are 

under-sampled, the reconstructed quantity on each pixel in phase-shifting holography is 

proportional to the summation of the electric fields of all the speckle grains within that pixel.  
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Derivation of peak-to-background ratios of optical time reversal under different speckle 

sampling conditions 

Here, we provide an analytical analysis of theoretical peak-to-background ratios (PBRs) of time-

reversal–based wavefront shaping when speckle grains are well-sampled and under-sampled. For 

simplicity without losing generality, the incident field inE  is set to be 1 for the first element and 

0 for the rest of the elements. The total number of elements in the incident field is NI. To model 

the scattering process, a transmission matrix T  that connects the incident field inE  and the 

scattered field SE  is introduced. The matrix elements ijt  satisfy a circular Gaussian distribution. 

That is to say, the real part (x) and the imaginary part (y) of each element are independent 

variables, and they satisfy the Gaussian distribution    2 22 20, 2
x

xf e


  


  ， 

   2 22 20, 2
y

yf e


  


  , with a mean of zero and a standard deviation of  . The 

dimensions of the matrix are set to be NS×NI, with NS < NI. The scattered field SE  intercepted by 

the phase conjugation mirror (PCM) can be computed as follows:  
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We note that each element in SE  describes the electric field of an independent speckle grain, and 

the total number of speckle grains on the PCM is NS.  

a. When speckle grains are well-sampled 
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We start by describing the wavefront measurement and wavefront reconstruction in the well-

sampling situation, because similar mathematics will be adopted in the description of the under-

sampling situation. When speckle grains are well-sampled, so that one speckle grain occupies 

multiple pixels, the experimentally measureable scattered field S,well-sampledE  is identical to SE : 
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S,well-sampledE                                                      (S4.4)                                             

By multiplying the backward transmission matrix TT  (the upper case T stands for matrix 

transpose) by the conjugated scattered field *
S,well-sampledE , the optical phase conjugated field OPCE  

exiting the scattering medium can be computed as 
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The first element of OPCE  corresponds to the electric field of the peak of the focus, and is 

calculated by 

S S
2*

peak 1 1 1
1 1

,
N N

m m m
m m

E t t t
 

                                                     (S4.6) 

By taking the absolute square of the electric field and then performing an ensemble average  , 

the peak intensity of the focus is  
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Here, the discrete summation is approximated by a continuous integration when NS is large; x+iy 

and rexp( i ) are the expressions of 1mt  in Cartesian and polar coordinates, respectively; and 

  1

0

x tx t e dt


     is the gamma function. The rest of the elements of OPCE  correspond to the 

fields of the background, and can be calculated as follows, based on Eq. (S4.5): 
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Thus, the background intensity is calculated by  
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To proceed, we define  
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where both mV  and U  have zero mean. Then, Eq. (S4.9) can be rewritten as 

 
2

background Var ,I U U                                                 (S4.11) 
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where      real imagVar Var Var      expresses the summation of the variance for both the real 

part and the imaginary part of a complex random variable. From the central limit theorem, the 

variance of U  is NS times the variance of mV , so we have 

     *

background S S 1Var Var Var .m mn mI U N V N t t                                 (S4.12) 

Since mnt  and *
1mt  are independent complex random variables with mean values of zero, it can be 

shown that the variance of their product equals the product of their variances. Thus, we have 
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                                           (S4.13) 

From the results in Eq. (S4.7) and Eq. (S4.13), the theoretical peak-to-background ratio (PBR) is  

peak background SPBR .I I N                                                    (S4.14) 

The same result when speckle grains are well-sampled has also been reported [30, 57]. Eq. 

(S4.14) shows that when speckle grains are well-sampled, the theoretical PBR of the focus is 

determined by the number of speckle grains intercepted by the PCM. Since 3×3 pixels to 5×5 

pixels were typically used to sample one speckle grain in previous experiments, NS is usually 9 − 

25 times smaller than the number of pixels (NP) of a spatial light modulator (SLM). 

b. When speckle grains are under-sampled 

Now, we investigate the situation when speckle grains are under-sampled with under-sampling 

factor S PF N N . In this case, multiple speckle grains are within one PCM pixel. With the 

knowledge that phase-shifting holography reconstructs the summation of the electric fields of all 
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the speckle grains within one pixel, the experimentally measurable scattered field ,S undersampledE  

has the following form: 
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By multiplying the backward transmission matrix TT  by the conjugated scattered field 
,

*

S undersampled
E , 

the optical phase conjugated field OPCE  exiting the scattering medium is computed as  
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    (S4.16) 

To simplify the mathematical calculation, we introduce a new set of variables ijb  (i = 1, 2, …, NP, 

j = 1, 2, …, NI): 
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                                       (S4.17) 

Since ijt  satisfies a circular Gaussian distribution, ijb automatically satisfies another circular 

Gaussian distribution. Using the above transformations, Eq. (S4.16) can be re-formulated as 
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OPCE                                     (S4.18) 

We note that Eq. (S4.18) shares the same mathematical form as Eq. (S4.5), except that NS 

becomes NP. Hence, following the same procedures described for Eqs. (S4.6) – (S4.14), the 

theoretical PBR when speckle grains are under-sampled can be found by 

PPBR .N                                                            (S4.19) 

Eq. (S4.19) shows that when speckle grains are under-sampled, the theoretical PBR equals the 

number of SLM pixels, which is usually 9 − 25 times higher than the theoretical PBR achieved 

when speckle grains are well-sampled. 

 

Derivation of peak-to-background ratios of optical time reversal using different wavefront 

modulation schemes when speckle grains are under-sampled 

To achieve a large pixel count or a fast modulation speed, many types of SLMs do not support 

full-field (amplitude plus phase) electric field modulation. For example, nematic liquid crystal 

based SLMs provide phase-only modulation, ferroelectric liquid crystal based SLMs provide 
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binary-phase modulation, and digital micromirror devices provide binary-amplitude modulation. 

Thus, it is important to investigate the performance of time-reversal–based wavefront shaping 

under various modulation schemes, especially when speckle grains are under-sampled. Here, we 

start by describing various modulation schemes in the well-sampled condition. We note that 

when speckle grains are well-sampled, the PBRs under different wavefront modulation schemes 

were reported in the literature [30, 57, 91, 93]. 

a. When speckle grains are well-sampled 

a1 Phase-only modulation 

Based on Eq. (S4.4), when only the phase of the electric field is modulated, the conjugated 

scattered field is 

S S
S

*

11 11

*

21 21*

*

1 1
1

.
 

N N
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t t
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t t


 
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 

  
 
 
 

S,well-sampled,phase-only
E                                                (S4.20) 

Thus, the optical phase conjugated field OPCE  exiting the scattering medium can be obtained by 

multiplying the backward transmission matrix TT  by *

S,well-sampled,phase-only
E . Specifically, the first 

element, which corresponds to the electric field of the peak of the focus, is computed as 

S S*

1
peak 1 1

1 11

.
N N

m
m m

m mm

t
E t t

t 

                                                     (S4.21) 

Thus, the peak intensity of the focus is computed by  
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The remaining elements of OPCE  correspond to the fields of the background, and can be 

calculated as 

S *

1
background

1 1

, 1.
N

m
mn

m m

t
E t n

t

                                                 (S4.23) 

Thus, the background intensity is expressed as                         

S
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t
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which can be computed by following the same procedures as for Eqs. (S4.9) – (S4.12): 
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                                          (S4.25) 

From the results in Eq. (S4.22) and Eq. (S4.25), the theoretical PBR for phase-only modulation is   

peak background SPBR .          (Phase-only modulation)
4

I I N


                    (S4.26) 

a2 Binary-phase modulation 
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When an SLM provides binary-phase modulation, the conjugated scattered field is 
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In the above equation, the binary-phase operator  BP z x iy  is defined as 

 
1,       if 0,

1,     if 0.

y
BP z
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 
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                                                      (S4.28) 

By multiplying the backward transmission matrix by 
 

*

S,well-sampled, binary phase
E , the optical phase 

conjugated field OPCE  exiting the scattering medium can be obtained. Again, the first element of 

OPCE  corresponds to the electric field of the peak of the focus, and it can be calculated as  

 
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Thus, the peak intensity of the focus is  
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              (S4.30) 

where     is the Heaviside step function. The remaining elements of OPCE  correspond to the 

fields of the background, and can be calculated as 



112 

 

 
S

background 1
1

,  1
N

mn m
m

E t BP t n


                                              (S4.31) 

Thus, the background intensity is expressed as                   
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which can be computed by following the same procedures as for Eqs. (S4.9) – (S4.12): 
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From the results in Eq. (S4.30) and Eq. (S4.33), the theoretical PBR for binary-phase modulation 

is   

peak background S

1
PBR .          (Binary-phase modulation)I I N


              (S4.34) 

a3 Binary-amplitude modulation 

When an SLM provides binary-amplitude modulation, the conjugated scattered field is 
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where the binary-amplitude operator  BA z x iy  is defined as 

1,      if 0,
( )

0,      if 0.

y
BA z
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
 


                                                    (S4.36) 
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By multiplying the backward scattering matrix TT  by *
S,well-sampled, binary amplitudeE , the optical phase 

conjugated field OPCE  exiting the scattering medium can be obtained. The electric field of the 

peak of the focus corresponds to the first element of OPCE , and can be calculated as  

 
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peak 1 1
1

.
N

m m
m

E t BA t


                                                       (S4.37) 

Thus, the peak intensity can be calculated as  
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The remaining elements of OPCE  correspond to the fields of the background, and can be 

calculated as 

 
S

background 1
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, 1.
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                                            (S4.39) 

Thus, the background intensity is expressed as               
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

                                        (S4.40) 

which can be computed by following the same procedures as for Eqs. (S4.9) – (S4.12): 
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From the results in Eq. (S4.38) and Eq. (S4.41), the theoretical PBR for binary-amplitude 

modulation is   

peak background S
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PBR .          (Binary-amplitude modulation)

2
I I N


          (S4.42) 

We note that when speckle grains are well-sampled, same results for the PBRs under different 

wavefront modulation schemes were also reported [91]. 

 

b. When speckle grains are under-sampled 

Using the transformations in Eq. (S4.17) and following the same procedures for Eqs. (S4.20) – 

(S4.42), when multiple speckle grains are within one pixel, the theoretical PBRs can be derived 

as 
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Numerical simulations of peak-to-background ratios of optical time reversal using various 

wavefront modulation schemes when speckle grains are under-sampled 
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To verify the analytical results in Eqs. (S4.19) and (S4.43), we performed numerical simulation 

based on random matrix theory. In the simulation, the pixel count of the PCM was fixed to be 

100, while the under-sampling factor F, which is the number of speckle grains within one pixel, 

was varied from 1 to 100 (F = S PN N ). Figure 4.10 shows the simulated PBR/NP as a function of 

F for different wavefront modulation schemes. We observe that PBR/NP remains close to a 

constant value independent of F, and the constant values are close to their theoretical values of 1, 

π/4, 1/π, and 1/(2π), for full-field, phase-only, binary-phase, and binary-amplitude modulation, 

respectively.  

 

Figure 4.10 Numerical simulation of peak-to-background ratios (PBRs) when speckle grains are under-sampled with 

different factors F (1 ≤ F ≤ 100). The black circles, blue squares, red diamonds, and green triangles denote PBR/Np 

for full-field, phase-only, binary-phase, and binary-amplitude modulation, respectively. Each data point was 

obtained by averaging 200 independent simulation results. Error bars are not plotted due to their indiscernible 

lengths in the figure. The black solid line, blue dashed line, red dotted line, and green dash-dot line denote 

theoretical values obtained from the analytical theory for full-field, phase-only, binary-phase, and binary-amplitude 

modulation, respectively. 

Under-sampling speckle grains improves the PBR of the focus when focusing light inside a 

scattering medium 
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Figure 4.11 Focusing light inside a scattering medium comprising two diffusers using TRUE focusing. (a). 

Schematic of the set-up for observing the focus. A beamsplitter creates a copy of the focus so we can measure it 

with a camera outside the water tank. (b). The observed focus when speckle grains were well-sampled (2.8 × 2.8 

pixels per speckle grain on average) during wavefront measurement. (c). The observed focus when speckle grains 

were under-sampled (F = 5) during wavefront measurement. The PBR of the focus was improved by 4 times 

compared with that in b. Because a 2.9-ms-long burst of ultrasound was employed, the focus was elongated along 

the x direction (the acoustic axis direction). BS, beamsplitter; R, reference beam; SLM, spatial light modulator; US, 

ultrasound (50 MHz, numerical aperture = 0.4). Scale bar, 200 µm. 

 

Signal-to-noise ratio (SNR) of wavefront measurement when speckle grains are under-

sampled 

To investigate the SNR of wavefront measurement when speckle grains are under-sampled, Eq. 

(S4.1) is converted into a representation of the number of photoelectrons:                                     

          R
R S S S

1 1
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                 (S4.44) 

Here, kN  is the number of photoelectrons per pixel in each successive frame,  2
R Rn AE t h  is 

the number of photoelectrons induced by the reference beam per pixel, 

     2

S S( )j jn r A F E r t h   is the number of photoelectrons induced by the j-th speckle grain, 

  is the quantum efficiency, t is the exposure time, h is Plank’s constant, and v is the frequency 
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of a photon.  Considering that  S jr  is uniformly distributed between 0 and 2π, the interference 

component    R
S S
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j j
j

n
n r r
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
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 
   is a random summation of F terms. Thus,  
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(S4.45) 

where NPS is the average number of photoelectrons induced by the light exiting the sample per 

speckle grain. Since the major noises during wavefront measurement are the shot-noise of the 

reference beam and the camera readout noise, the SNR can be estimated as  

 
R

2
2

R camera

2 NPS
SNR ,

n

n n





under-sampled                                          (S4.46) 

where ncamera is the readout noise of the camera sensor. When detection is shot-noise limited 

(
R cameran n ), the SNR can be further simplified as  

SNR 2 NPS.under-sampled                                                  (S4.47) 

This result indicates that when speckle grains are under-sampled, the SNR is determined only by 

the average photoelectron number induced by speckle grains, and is not directly related to the 

under-sampling factor F. 
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Chapter 5: Improving the focusing depth of 

OPC 

5.1 Introduction 

The thicknesses of samples used in previous OPC experiments were limited to only a few 

millimeters or several transport mean free paths (lt’), which is still relatively shallow for many 

pre-clinical and clinical applications. For example, the thickest biological tissue used in the 

feedback-based wavefront shaping was 5 mm thick chicken breast tissue [69]. In an analog OPC 

experiment based on a photorefractive crystal, 7 mm thick chicken breast tissue [71] was used. 

Recently, 4 mm thick chicken breast tissue was used in a digital OPC experiment based on an 

electronic camera and spatial light modulators [116]. Although the principle of wavefront 

shaping does not impose an upper bound on the number of scattering events that can be tolerated, 

practical considerations such as an insufficiently strong light signal, a short speckle correlation 

time, and an inadequate laser coherence length can restrict the thickness of the sample through 

which light can be focused.  

Compared with analog OPC, digital OPC (DOPC) achieves a much higher fluence reflectivity, 

hence is able to deliver more energy to the focus. Here, using a laser with a long coherence 

length and an optimized DOPC system that can safely deliver more light power, we demonstrate 

focusing 532 nm light through ex vivo chicken breast tissue up to 2.5 cm thick and through 

tissue-mimicking phantoms up to 9.6 cm thick. Although multiple-centimeter depth has been 

reached by imaging modalities such as ultrasound-modulated optical tomography [117] and 

photoacoustic imaging [118], the nearly 10 cm (~100 lt’) penetration has never been achieved 

before by any optical focusing technique. 
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5.2 Methods 

A schematic of the DOPC set-up is shown in Fig. 5.1. A continuous-wave laser (Verdi V10, 

Coherent) with a coherence length longer than 100 m was used as the light source. A long 

coherence length is desired because OPC relies on constructive interference among different 

optical paths. Since the optical path-length difference is proportional to the square of the 

thickness of the scattering medium (as derived in Supplementary notes), the required coherence 

length increases quadratically with the thickness of the medium.  

5.2.1 Wavefront measurement 

The incident light was split into a reference beam (R) and a sample beam (S) by a polarizing 

beamsplitter (PBS), PBS2, with the splitting ratio controlled by a half-wave plate (HWP), HWP2. 

Two acousto-optic modulators (AOMs) shifted the frequency of R and S by 50 MHz + 12 Hz 

and 50 MHz, respectively. Thus, a beat with a frequency of fb = 12 Hz was generated between R 

and S. Then, a lens pair composed of L3 and L4 expanded the beam diameter of R to 25 mm, 

which is able to cover the entire surface of a spatial light modulator (SLM) (Pluto NIR II, 

Holoeye). For S, a mirror (M), M4, mounted on a motorized linear stage (MLS) was initially 

moved out of the light path to position 1 (see Fig. 5.1), and a lens pair composed of L5 and L6 

expanded the beam diameter of S to 34 mm. Because tissue damage is determined by the light 

intensity on the sample surface, a broad incident beam can safely deliver much more light power 

than a narrow beam, thus enhancing the signal-to-noise ratio (SNR) of wavefront measurement. 

In principle, to efficiently deliver power, there is an optimum illuminating beam size dependent 

on the property of each sample [119]. In practice, we chose a beam size that was reasonably 

good for most samples. The collecting lens L8, which was used in all previous OPC set-ups to 
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collect the scattered light, was removed in our set-up to avoid focusing the reading beam onto the 

tissue surface in the playback step, which might otherwise cause tissue damage. After passing 

through the sample, S was combined with R using a 50/50 beamsplitter (BS), BS2.  Their 

interference pattern on the SLM was imaged onto a scientific CMOS camera (sCMOS), 

sCMOS1 (Pco.edge 5.5, PCO-TECH), by a camera lens with a magnification of 1:1.23. To 

measure the phase map of S using heterodyne holography [31, 120] (see Supplementary notes for 

details), the camera took four successive measurements I1, I2, I3, I4 at a frame rate of 4 times the 

beat frequency fb (= 48 Hz). Based on these four measurements, the phase map of the sample 

beam ( , )S x y  was calculated by 1 3 4 2( , ) Arg[( ) ( )]S x y I I i I I     , where Arg[·] computes the 

principal value of the argument of a complex number. To make our technique applicable to 

future in vivo applications that need to accommodate the fast speckle decorrelation of living 

tissue (on a time scale of milliseconds [121]), the camera exposure time was set to 1 ms in all our 

experiments, and no averaging was used.   

 

Figure 5.1 Schematic of the digital optical phase conjugation system. AOM, acousto-optic modulator; BB, beam 

block; BS, beamsplitter; CL, camera lens; HWP, half wave plate; L, lens; M, mirror; MLS, motorized linear stage; 

PBS, polarizing beamsplitter; R, reference beam; S, sample beam; sCMOS, scientific CMOS camera; SLM, spatial 

light modulator. 
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5.2.2 Wavefront reconstruction 

To achieve OPC, in the playback step, the SLM displayed the conjugation of the measured phase 

map. In addition, S was blocked, and M4 was moved to position 2.  After reflection from the 

SLM, R was phase modulated and became the phase conjugated light S*. Passing through the 

sample again, S* became collimated, reflected by M4, and focused by lens L7 onto sCMOS2. To 

compensate for the aberrations in the wavefront of R and the substrate curvature of the SLM, we 

digitally added orthogonal rectangular polynomials [122] to the SLM display, using the 

calibration method described in Ref. [123]. It is estimated that the entire process, starting from 

the beginning of the wavefront measurement to the appearance of the focus on sCMOS2, took 

around 0.7 second (system runtime). 

5.3 Results 

5.3.1 Focusing light through chicken breast tissue 

We demonstrate focusing light through chicken breast tissue in Fig. 5.2. The side view of two 

chicken samples with 2.5 cm and 2.0 cm thickness is shown in Fig. 5.2(a). The effective areas in 

the left and right surfaces for light input and output were 7.2 cm × 7.2 cm, and all the other areas 

were masked with black aluminum foil tapes (T205-2.0, Thorlabs) to make sure that all the 

detected light had passed through the full thickness of the sample. All the experiments were 

performed within two days after sample preparation. The light intensity on the chicken tissue 

surface was 200 mW/cm2, which is the same as American National Standards Institute (ANSI) 

safety limit. Figure 5.2(b) shows images of the OPC foci after light passed through chicken 

samples with thicknesses ranging from 0.5 cm to 3.0 cm. With increasing sample thickness, the 

speckles in the background become more and more pronounced relative to the peak intensity of 
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the focus. When the sample was 3.0 cm thick, no focus was observed. We quantified the contrast 

of the focus by the peak-to-background ratio (PBR), defined as the ratio between the average 

intensities within and outside the focal spot (whose size is defined by the full width at half 

maximum). Figure 5.2(c) shows that the PBR decreases with increasing sample thickness. 

Theoretically, the PBR for phase-only OPC can be calculated by πN/(4M), where N is the 

number of optical modes intercepted by the SLM and M is the number of optical modes in the 

conjugated focus [30]. Since N/M was kept roughly the same during our experiments, the PBRs 

should, in theory, be a constant independent of the sample thickness.  

 

Figure 5.2 Focusing light through centimeter thick chicken breast tissue. (a) Side view of two chicken breast tissue 

samples with 2.5 cm and 2.0 cm thickness. A cubic beamsplitter with a side length of 2.0 cm is also shown for 

comparison. (b) Images of the OPC foci after light has passed through chicken breast tissue of various thicknesses. 

(c) Peak-to-background ratio (PBR) as a function of sample thickness. The error bar shows the standard deviation 

obtained from three samples of the same thickness. 
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To explain the observed PBR drop, we examined two possibilities. The first probability is an 

insufficient SNR during wavefront measurement. Since the light power transmitted through the 

sample decreases exponentially with increasing sample thickness (see Supplementary notes, Fig. 

5.6), when the transmitted light is too weak, errors in the measured phase map may become too 

large, which reduces the PBR. However, by using the numerical approach described in 

Supplementary notes, we found that even for the 2.5 cm thick sample, the reduction of PBR due 

to phase errors was only around 10%. Therefore, the PBR drop is not primarily due to 

insufficient SNR. The second possibility is a faster speckle decorrelation rate with increasing 

sample thickness. The thicker the sample, the more scattering events the photons experience, and 

thus the shorter the speckle correlation time is [124]. In theory, the speckle correlation time is 

inversely proportional to the square of the sample thickness [125]. In our experiments, for 

samples thicker than 1.0 cm, the speckle correlation times were shorter than the system runtime. 

That is to say, the wavefront changed rapidly with time, and the measured wavefront was 

different from the correct one at the moment of playback. In this case, the PBR reduces to    

PBRc, where PBRc is the PBR achieved by using the correct wavefront, and   is the PBR 

reduction coefficient, which, in the noise-free case, is determined by the absolute square of the 

correlation coefficient between the measured wavefront and the correct wavefront at the moment 

of playback [86]. The fast speckle decorrelation for chicken tissue is due to both the intrinsic and 

the laser-heating induced Brownian motion of scatterers. We note that although the SNR is not 

the primary factor that causes the PBR drop for the 2.5 cm thick chicken sample, it can become 

the dominant factor for samples thicker than 3.7 cm. It is shown in Supplementary notes that in 

the decorrelation-free case, the PBR reduction coefficient   starts to drop exponentially when 

the SNR becomes smaller than 1 (SNR = 1 when thickness = 3.7 cm). For 5.0 cm and 6.0 cm 
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thick samples,   drops to 0.017 and 0.0012, respectively, showing that insufficient SNR can 

significantly degrade the performance of DOPC. 

5.3.2 Focusing light through tissue-mimicking phantoms 

Since red blood cells in biological tissue absorb green light strongly, 532 nm is not an optimal 

wavelength for thick tissue [126]. To reduce the light absorption by the sample, we switched to 

widely-used tissue-mimicking intralipid-gelatin phantoms [55]. These phantoms have an 

absorption coefficient of 0.07 cm−1 at 532 nm, which is close to that of chicken tissue at 800 nm 

(0.08 cm−1), but their reduced scattering coefficient at 532 nm is larger than that of chicken tissue 

at 800 nm (10 cm−1 vs. 3.5 cm−1) [126]. Their scattering anisotropy g is 0.9. Compared with 

chicken tissue, the phantoms are more mechanically stable. Figure 5.3(a) shows two phantoms 

with thicknesses of 9.6 cm and 8.5 cm, along with a forearm of a 28-year-old male adult. It can 

be seen that our samples are even thicker than the human arm. In our experiments, the light 

intensity on the phantom surface was 1.2 W/cm2, six times as high as the ANSI safety limit. 

However, no damage was observed in the sample after the experiment. It is worth noting that the 

ANSI safety limit is usually more than 10 times below the observed damage threshold. Figure 

5.3(b) shows images of the OPC foci after light has passed through phantoms with thicknesses 

ranging from 0.8 cm to 10.0 cm. We could focus light through a sample even with a thickness of 

9.6 cm, although no focus was observed when the thickness was 10.0 cm. Focusing light through 

a 9.6 cm thick sample by DOPC is quite remarkable, because the transmitted photons have 

experienced on average at least 1000 scattering events, and moreover, only a tiny portion of the 

entire scattered wavefront is phase conjugated (The collected light power was only 10−9 of the 

incident power on the sample). Figure 5.3(c) shows the PBR as a function of sample thickness. 

When the thickness is no greater than 55 mm, the values of PBRs are very similar (~170). For 
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thicker samples, the PBR drops with increasing thickness, because the speckle correlation time 

becomes shorter than the system runtime for these samples. Since the transmitted light power for 

the 9.6 cm thick phantom is 23 times stronger than that for the 2.5 cm thick chicken sample, 

insufficient SNR is not a major factor that causes the PBR drop. 

 

Figure 5.3 Focusing light through centimeter thick tissue-mimicking phantom. (a) Side view of the intralipid-galetin 

phantoms with 9.6 cm and 8.5 cm thickness. A forearm of a 28-year-old male adult is also shown for comparison. 

(b) Images of the OPC foci after light has passed through phantoms of various thicknesses. (c) Peak-to-background 

ratio (PBR) as a function of sample thickness. The error bar shows the standard deviation obtained from three 

samples of the same thickness. 

 

5.4 Discussion and Conclusion 

Here, we discuss the limitations of our study and potential improvements to the DOPC system. 

First, the fast speckle decorrelation of thick samples is the major factor that prohibits us from 

focusing light through thicker samples. To reduce the system runtime, we can use a faster 
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motorized linear stage, and further optimize the data processing code. We may also use a digital 

micromirror device as a fast SLM, and employ single-shot phase measurement to speed up the 

wavefront measurement [80, 127]. Second, we note that πN/(4M) describes the PBR in which the 

background intensity is calculated from the average intensity within the focal spot after ensemble 

averaging over many illuminating wavefronts. However, when applying optical focusing in real 

applications, the ratio between the average intensities within and outside the focal spot is more 

relevant and useful, and we define this ratio as the PBR. In our definition of the PBR, the 

background intensity is calculated from the average intensity outside the focal spot when the 

incident wavefront is optimal, and it is higher than the background intensity ensemble averaged 

over many illuminating wavefronts (in our case it is ~5 times higher) [110]. Thus, the measured 

PBR is smaller than πN/(4M). For example, for a 0.8 cm thick phantom, πN/(4M) ~ 9.0 × 104, 

while the measured PBR is only around 200. The misalignment of the system also makes the 

measured PBR smaller than πN/(4M). Third, assuming that we have a perfectly aligned system 

and extremely stable samples, the ultimate limit on the thickness of the sample that we can focus 

light through by OPC is determined by the SNR in the wavefront measurement (see 

Supplementary notes) [75]. Therefore, when the SNR is limited by shot noise rather than laser’s 

technical noise, it is desirable to have a strong laser that delivers as much light as possible while 

keeping the intensity on the sample surface under the safety limit.  

In conclusion, using an optimized DOPC system, we focused 532 nm light through chicken 

tissue up to 2.5 cm thick and through tissue-mimicking phantoms up to 9.6 cm thick. The 9.6 cm 

(~100 lt’) penetration has never been achieved before by any optical focusing technique, and it 

shows the promise of OPC-based wavefront shaping techniques to revolutionize biomedicine 

with deep-tissue non-invasive optical imaging, manipulation, and therapy.  
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5.5 Supplementary notes 

5.5.1 Requirement of laser coherence length in OPC experiments 

Since focusing light through or inside scattering media by OPC relies on constructive 

interference of light that has propagated through different optical paths inside a scattering 

medium, a long laser coherence length is required. Ideally, the laser coherence length should be 

longer than the optical path-length difference among the various paths. Here, we develop an 

analytical model to estimate the path-length difference in a scattering medium. Based on 

diffusion theory for an infinite medium, under a first-order approximation, a pencil beam 

illuminating a scattering medium can be modeled as an isotropic source located one transport 

mean free path (1 lt’) beneath the sample surface [8, 128] (see Fig. 5.4(a)). At time t, the laser 

fluence rate at a distance r from the isotropic point source can be calculated by [8] 

2

3/2
( , ) exp( ),

4(4 )
act

c r
r t r c

DctDct



                                     (S5.1) 

where c is the speed of light in the scattering medium and D is the diffusion coefficient. D = 

1/[3(µa+ µs’)], where µa and µs’ are the absorption coefficient and the reduced scattering 

coefficient of the scattering medium. The point source is placed at the origin of the coordinate 

system. For mathematical convenience, we first assume that µa is zero. The effect of nonzero µa 

on the path-length difference will be discussed at the end of this section. At a given location r, 

Fig. 5.4(b) shows the normalized ( , )r t  with respect to the time delay t.  By setting the partial 

derivative with respect to t to zero, we find that the time delay for the maximum fluence rate is 

2

max 6t r Dc . That is to say, photons are most likely to spend time maxt  to reach position r. In 

order to allow photons to interfere efficiently at position r, the laser coherence time should at 
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least reach the full width at half maximum (FWHM) of the distribution. By multiplying the 

coherence time with c, the minimum laser coherence length is obtained. 

 

Figure 5.4 Path-length distribution of photons in scattering medium. (a) Schematic of photon paths to reach the 

location denoted by the red dot in a scattering medium. (b) Normalized photon fluence rate as a function of time 

delay t at a given position r.      

 

To determine the two moments leftt  and rightt  when the normalized fluence rate drops to 0.5, based 

on Eq. (S5.1) and 2

max 6t r Dc , we write the following equation:  

2
3/2max

max

3 1
( ) exp( )exp( ) ,

( ) 4 2 2

t r

t t Dct




                                          (S5.2) 

which can be re-written as  

2
3/2 3/2

max

1 1 1
( ) exp( ) ( ) .

4 2

r

t Dct et
                                                (S5.3) 

For equations in the format of 3/2(1 ) exp( )t a t b  , where a and b are constants, the solution is 

given by 

2/31 3 2
( ),

2 3
W ab

t a
                                                        (S5.4) 
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where W(·) is the multivalued Lambert-W function. After substituting 2 (4 )a r Dc  and 

3/2

max0.5( )b et   into Eq. (S5.4), we get  

max

2/3
.

[ 0.5 ]

t
t

W e
 


                                                          (S5.5) 

Thus,  
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                                   (S5.6) 

where W−1 and W0 are the two main branches of the Lambert-W function. So, in order to focus 

light to a location at a depth L beneath the sample surface, the laser coherence length should be 

greater than 
 

2'2
t

right left max( ) 2.701
2.2 2.2

L lr
c t t ct

D D


    . As an example, to focus light L = 10 cm 

deep inside a scattering medium (lt’ = 1 mm, D = 0.33 mm), the laser coherence length should be 

at least 13.5 m. Since the optical path-length difference is roughly proportional to the square of 

the thickness of the scattering medium, the required coherence length should increase 

quadratically with the sample thickness. 

When a nonzero absorption coefficient is taken into account, we numerically find that the 

FWHM time span shown in Fig. 5.4(b) becomes narrower. In general, the larger the absorption 

coefficient, the narrower the FWHM time span. This can be understood by the fact that a photon 

with a longer time of arrival is more likely to be absorbed by the scattering medium, compared 

with a photon with a shorter time of arrival. Therefore, absorption in the scattering medium can 

reduce the required laser coherence length. 
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5.5.2 Effects of phase errors in the measured wavefront on the quality of 

DOPC 

Here, we discuss the effect of the accuracy of the measured phase map on the quality of DOPC. 

To quantify the phase errors in the measured phase map, we start by describing the heterodyne 

holography method [31, 120] that we used to reconstruct the phase map. In our experiment, the 

reference beam and the sample beam beat at a frequency of fb (= 12 Hz), so the light intensity can 

be written as 

 2 2( , , ) ( , ) 2 ( , )cos 2 ( , ) ,R S R S b S RI x y t E E x y E E x y f t x y                    (S5.7) 

where RE  and ( , )SE x y  are the amplitudes of the electric fields of the reference beam and the 

sample beam, and R  and ( , )S x y  are the phases of the electric fields of the reference beam and 

the sample beam. The constant prefactor that converts the electric field to intensity is neglected 

here, and R  is assumed to be a constant value of 0 for simplicity. To determine ( , )S x y , the 

camera takes four successive measurements at a frame rate of 4 fb:  
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                   (S5.8) 

Based on these four measurements, the phase of the sample beam ( , )S x y  can be calculated by 

1 3 4 2( , ) Arg[( ) ( )],S x y I I i I I                                                 (S5.9) 

where Arg[·] computes the principal value of the argument of a complex number. 

When the scattering medium is thick, the intensity of the sample beam after passing through the 

scattering medium is orders of magnitude weaker than the intensity of the reference beam, so the 
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major noises in the above measurements are the shot noise of the reference beam and the readout 

noise of the camera. After converting Eq. (S5.8) into a representation of the photoelectron 

number, we express the SNR as 

                                        
2 2

camera

2
SNR ,

( )

R S

R

N N

N N



                                                   (S5.10) 

where NR, NS, and Ncamera are the number of photoelectrons corresponding to the reference beam, 

the sample beam, and the camera readout noise, respectively. By using a numerical method 

similar to that reported in Ref. [75], we estimated the phase errors in the measured phase map. 

As an example, we used the experimental data obtained from the 2.5 cm thick chicken tissue 

sample to set the parameters in the following simulation. For the sample beam, the average 

number of photoelectrons per pixel was 5.7 (exposure time = 1 ms). So, to mimic fully 

developed speckles, NS was drawn from an exponential distribution with a mean value of 5.7, 

and ( , )S x y was drawn from a uniform distribution ranging from 0 to 2π. For the reference beam, 

the average number of photoelectrons per pixel was roughly 6000, which satisfied a Poisson 

distribution [129]. To take the shot noise into consideration, NR was drawn from a Poisson 

distribution with a mean value of 6000 for each measurement. Ncamera was also added to each 

measurement by drawing from a normal distribution with a mean of 0 and a standard deviation of 

3.6. By substituting the above parameters into Eqs. (S5.8–S5.9), we obtained the phase map 

under the influence of noise. The phase errors, defined as the differences between the computed 

phase values and the preset phase values, were then calculated. 

Figure 5.5 shows the probability density function (PDF) of the phase errors for the 2.5 cm thick 

chicken tissue sample calculated from 106 data points in one simulated phase map. The standard 
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deviation of the phase errors was found to be 0.115π. Using this phase map in the playback, the 

focal peak-to-background ratio (PBR) can be calculated as   

6 6 2
10 10

c c1 1
PBR PBR 1 PBR ,ji

j j
e



 

                                   (S5.11) 

where PBRc is the PBR achieved by using the correct wavefront and η is the PBR reduction 

coefficient, which is determined by the absolute square of the correlation coefficient between the 

measured wavefront and the correct wavefront. Based on Eq. (S5.11), η = 90%, so the reduction 

of PBR due to phase errors was only around 10%. 

 

Figure 5.5 Probability density function of the phase errors calculated from 106 data points in one simulated phase 

map. The simulation parameters were chosen based on the experimental conditions with the 2.5 cm thick chicken 

tissue sample. 

 

We can further apply this numerical approach to predict the PBRs for chicken tissue samples 

beyond 3.0 cm. Figure 5.6 shows the experimentally measured transmitted light power 

(expressed in number of photoelectrons per camera pixel) for chicken tissue samples with 

thicknesses ranging from 0.5 cm to 2.5 cm. The transmitted light power decayed exponentially 

with a decay constant of 2.7 cm−1, which is close to the effective attenuation coefficient of 
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chicken tissue at 532 nm [126]. Through extrapolation, this exponential relation enables us to 

obtain the transmitted light levels for samples thicker than 3.0 cm, which are too small to be 

measured accurately. Although the average number of photoelectrons detected on each camera 

pixel corresponding to the sample beam can be well below unity for samples thicker than 3.0 cm, 

the heterodyne gain provided by the reference beam boosts the signal above the noise level of the 

camera. In this case, the measurement becomes shot-noise limited, rather than camera readout 

noise limited.  

 

Figure 5.6 Experimentally measured average transmitted sample light power detected on each camera pixel 

(expressed in number of photoelectrons) as a function of sample thickness. Based on curve fitting, the decay 

constant is 2.7 cm−1. 

 

Figure 5.7 shows the simulated PDFs of the phase errors for chicken tissue samples with 

thicknesses ranging from 3.0 cm to 6.0 cm. The phase errors become more and more uniformly 

distributed between −π and π with increasing thickness. In order to quantify how these phase 

errors affect the performance of DOPC, we used Eq. (S5.11) to calculate the PRB reduction 

coefficient η as a function of sample thickness, which is shown in Fig. 5.8. When the sample 

thickness is smaller than 3.7 cm, η is roughly a constant value close to 1. However, when the 
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samples are thicker than 3.7 cm, η starts to decrease exponentially. Thus, a turning point is 

observed around thickness L = 3.7 cm, which actually corresponds to the SNR being 1. Based on 

Eq. (S5.10), when the camera readout noise is much smaller than the shot noise, the expression 

for the SNR can be simplified to 2 SN . Since SN  decreases exponentially with increasing 

sample thickness, SNR also decreases exponentially with increasing sample thickness. When the 

sample is thicker than 3.7 cm, the SNR becomes smaller than 1, and η starts to drop 

exponentially and reaches 0.017 at 5.0 cm and 0.0012 at 6.0 cm. These small values of η beyond 

the turning point demonstrate that insufficient transmitted sample light power can significantly 

degrade the performance of DOPC when focusing light through samples thicker than 3.7 cm.  

 

Figure 5.7 Probability density functions of phase errors in the simulated phase maps for chicken tissue samples with 

thicknesses ranging from 3.0 cm to 6.0 cm.  

 

Figure 5.8 Peak-to-background ratio (PBR) reduction coefficient η and the SNR as a function of chicken tissue 

sample thickness.  
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