
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2011

Identification of Genetic and Epigenetic Risk
Factors for Psoriasis and Psoratic Arthritis
Ying Liu
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Liu, Ying, "Identification of Genetic and Epigenetic Risk Factors for Psoriasis and Psoratic Arthritis" (2011). All Theses and
Dissertations (ETDs). 206.
https://openscholarship.wustl.edu/etd/206

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/206?utm_source=openscholarship.wustl.edu%2Fetd%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


  
 
  

WASHINGTON UNIVERSITY IN ST. LOUIS  
  

Division of Biology and Biomedical Sciences  
 

Program in Human and Statistical Genetics 
 
 

Dissertation Examination Committee:  
Anne M. Bowcock, Ph.D., Chair 

Alison M. Goate, D.Phil. 
Ted H. Hansen, Ph.D.  
Michael Lovett, Ph.D. 

John P. Rice, Ph.D.  
Nancy L. Saccone, Ph.D. 

 
 
 
 
 

IDENTIFICATION OF GENETIC AND EPIGENETIC RISK FACTORS FOR 
PSORIASIS AND PSORATIC ARTHRITIS 

 
 

by  
  

Ying Liu  
  
  
  
  
  

A dissertation presented to the  
Graduate School of Arts and Sciences  

of Washington University in  
partial fulfillment of the  

requirements for the degree  
of Doctor of Philosophy  

  
  
  

May 2011  
  

Saint Louis, Missouri 



ii 
 

ABSTRACT OF THE DISSERTATION 

Identification of Genetic and Epigenetic Risk Factors for Psoriasis and Psoriatic 
Arthritis 

 
by  

 Ying Liu  

Doctor of Philosophy in Biological and Biomedical Sciences 

Human and Statistical Genetics Program 

Washington University in Saint Louis, 2011 

Dr. Anne M. Bowcock, Chair 

Dr. Nancy L. Saccone, co-Chair 

 

Psoriasis (PS) is a common incurable inflammatory skin disease affecting 2–3% 

of the European population. ~10–30% of patients develop psoriatic arthritis (PsA). 

Genetic variation in the major histocompatibility complex (MHC) increases risk of 

developing PS. However, only ~10% of individuals with this risk factor develop PS, 

indicating that other genetic effects and environmental triggers are important. In order to 

identify novel susceptibility genes of PS and PsA, I performed the first large scale 

genome wide association scan for psoriasis susceptibility loci using 233 cases and 519 

controls. It revealed that genes of the immune system and of the barrier are associated 

with psoriasis. The MHC (psoriasis susceptibility 1 or PSORS1) conferred the strongest 

risk factor for PS and PsA. The study also confirmed recently identified associations with 

interleukin-23 receptor and interleukin-12B in both PS and PsA. Novel loci with modest 

effect were also identified, including a region on chromosome 4q27 that contains genes 

for interleukin 2 and interleukin 21 that has been implicated in other autoimmune 
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diseases, and seven additional regions that included chromosome 13q13 and 15q21. A 

follow-up study, aimed to identify potential functional SNPs in the PSORS1 region, 

implicated an allele-specific repressor role of SNP rs10456057 via binding to nuclear 

transcriptional factors. Further study with additional PSORS1 SNPs identified “enhancer” 

activity of the risk allele of SNP rs13191343 in differentiating keratinocytes, and the 

presence of the PSORS1 risk allele is correlated with CDSN (corneodesmosin) 

expression, which would affect skin barrier formation.  Finally, this thesis also describes 

the first genome-wide study of altered CpG methylation in psoriatic skin. The study 

determined the methylation levels at 27,578 CpG sites in skin samples from individuals 

with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. Involved skin 

differed from normal skin at 1,108 CpG sites at adjusted p-value < 0.05. Twelve of those 

CpG sites mapped to the epidermal differentiation complex close to genes that are highly 

up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially 

methylated sites accurately separated all psoriatic skin samples (involved and uninvolved) 

from normal skin. Methylation at 12 CpG sites was significantly correlated with 

expression levels of a nearby gene.  Taken together, the thesis reveals that the genetic and 

epigenetic risk factors of psoriasis lead to alterations in genes of skin barrier and immune 

system which act together to trigger the pathogenesis of the disease. 
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1.1 Introduction 

Psoriasis (PS) is a common chronic inflammatory skin disease that affects 2–3% of the 

Caucasian population. It is less common in individuals of Asian descent (0.1% or less), 

and is exceedingly rare in Africa [1]. It frequently develops in early adulthood in 

individuals in their twenties, although individuals of all ages can be affected [2].  The 

disease is characterized by thickened, scaly skin patches or psoriatic plaques, caused by 

abnormal keratinocyte proliferation and infiltration of inflammatory cells into the dermis 

and epidermis.  Patients have a natural history of outbreaks (flares) followed by 

temporary remissions. Approximately 10–30% of psoriatic patients also develop psoriasis 

arthritis (PsA), which affects joints and surrounding tissues, markedly impacts mobility 

and can cause irreversible joint destruction [3]. Some of the earliest changes in the 

pathogenesis of psoriasis are thought to be mediated by an array of environmental 

triggers, including HIV infection [4], use of drugs such as lithium, beta-blockers, or anti-

malarials, and the withdrawal of corticosteroids [5]. Although these are diverse stimuli, 

all might be viewed as trigger factors that can activate cellular immunity, either through 

innate or acquired pathways. Psoriasis is believed to be a T-cell mediated ‘Type-1’ 

autoimmune disease [6]. Gene expression changes in psoriasis lesions have been well 

documented, and strongly support an important role for tumor necrosis factor and 

interferon gamma signal pathways in its pathogenesis [7,8]. One theory for the 

development of psoriasis is that T cells and dendritic cells elaborate inflammatory 

cytokines and chemokines to create an environment in the skin that stimulates 

proliferation of resident keratinocytes and endothelial cells in genetically susceptible 

individuals, producing a pattern of growth recognized as psoriasis. It is expected that 
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knowledge of predisposing variants in susceptible individuals and exposure to 

environmental triggers will eventually explain the numerous changes that exist in 

psoriatic skin. PS and PsA are serious but poorly understood diseases. There are no cures 

and they require sophisticated medical care and treatments. Moreover, having psoriasis 

increases the risk of heart disease and stroke [9,10].  
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1.2 Genetics of Psoriasis and Psor iatic Ar thr itis 

Although psoriasis often appears sporadically, the existence of a genetic contribution of 

psoriasis is well accepted.  It is a complex disease that includes familial components. 

Individuals with an affected family member are at increased risk of developing the 

disease, and siblings of an individual with psoriasis have a 4–6-fold increased risk of 

developing psoriasis compared to the general population [1]. Previous twin studies in 

psoriasis report that concordance of the disease in monozygotic twins is much higher than 

in dizygotic twins, being approximately 72% and 15–23%, respectively, for northern 

European individuals. These results indicate that genetic components play a role in 

predisposition to the disease, and it is estimated that the heritability for psoriasis is 

between 60% and 90% [11]. Recent developments in genetic analysis have provided 

better understanding of the fundamental biological pathways in disease susceptibility. 

Currently, few genes for psoriasis have been conclusively identified, although genome-

wide linkage/association scans have revealed over 20 candidate loci during the past years 

[12] (Table 1.1).  

 

1.2.1 MHC (PSORS1) and Psoriasis Susceptibility 

Among the reported psoriasis susceptible loci, the locus in the major histocompatibility 

complex (MHC) class I region on chromosome 6p21.3, known as PSORS1 (psoriasis 

susceptibility 1) consistently identified in both linkage and association genome-wide 

scans, accounting for one-third to one-half of the genetic liability to psoriasis. Over 30 

years ago, this region was found to harbor human leukocyte antigen (HLA) genes that 

associated with autoimmune diseases [13]. Psoriasis was found to be associated with 
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HLA-C and several HLA-B alleles; however, the association with HLA-B was later 

determined to be due to strong extended haplotypes and linkage disequilibrium with 

HLA-C [14]. This region was subsequently identified by linkage analysis in 1997 [15,16] 

and replicated in numerous populations. The strong association of HLA-Cw6 allele in 

this locus with psoriasis was first reported in the Finnish population over 26 years ago 

[13]. In these early studies, which were performed in Northern European populations, the 

frequency of HLA-Cw6 was ~46% in cases with psoriasis vulgaris and 7.4% in controls. 

However, the exact location of PSORS1 gene remains controversial owing to extensive 

linkage disequilibrium across this region. Two candidate genes lying just telomeric to 

HLA-C were appealing and have been intensively studied with respect to their role in 

psoriasis susceptibility. One is HCR (helix coiled coil rod homolog) [17]; the other is 

corneodesmosin (CDSN). CDSN is expressed in terminally differentiated keratinocytes 

and in the inner root sheath of hair follicles [18,19,20]. It localizes to the modified 

desmosomes of keratinocytes in the stratum granulosum and stratum corneum. The serine 

and glycine-rich terminal domains of CDSN that are essential for cell adhesion are 

sequentially cleaved during skin desquamation [21,22]. Apart from the skin, CDSN 

mRNA is only detected significantly in the placenta and in the thymus [23]. Several 

studies indicate that PSORS1 is likely to lie very close to HLA-C, and distinct from the 

region harboring CDSN and HCR. Two single-nucleotide polymorphisms (SNPs) (SNP9 

rs10456057 and SNP7 rs12208888), lying 5.7 and 10 kb, respectively upstream from 

the start site of HLA-C exhibit stronger association with psoriasis than any other SNP in 

the region [24]. A study from our group looking at both SNPs and classical HLA alleles 

revealed that haplotypes harboring HLACw*0602 and HLA-Cw*1203 were over-
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transmitted to affecteds, suggesting that a variant or combination of variants exclusive to 

these haplotypes were predisposing [25]. Interestingly, one of these variants leads to 

acquisition of an additional site for the transcription factor RUNX, within intron 7. This 

is highly correlated with SNP9 (rs10456057) and SNP7 (rs12208888) polymorphisms 

(r2=1).  

 

1.2.2 Chromosome 17q25 (PSORS2) and Psoriasis Susceptibility 

Although PSORS1 is the only locus for psoriasis identified in all genetic studies to-date 

and is generally understood to confer the most risk for psoriasis, harboring HLA-Cw6 

was not sufficient to develop disease, and the penetrance of this allele was estimated to be 

only 10% [11], indicating that other genetic/environmental factors may also contribute to 

the liability of the disease. Numerous non-MHC susceptibility loci also have been 

identified by linkage/association approaches. Approximately 10 genome-wide linkage 

scans, primarily with polymorphic microsatellites, have been conducted in psoriasis. This 

has led to the identification of over 20 possible linked regions [26]. Table 1.1 lists the 

identified psoriasis susceptibility loci and gene candidates, along with the literature 

reference. PSORS2 on chromosome 17q25 (autosomal dominant) was the first identified 

as non-MHC locus that confers susceptibility to psoriasis [27].  Our group initially 

identified this region by genome-wide linkage scan on eight Caucasian affected families, 

among which PS1 family (19 affected and 12 unaffected members) showed strong 

linkage to D17S784 marker with a maximal two point logarithm of the odds (LOD) score 

of 5.33, with high penetrance [27].  Evidence from a recent linkage study on a single 

large-pedigree in Taiwan replicated our linkage findings, mapping this psoriasis 
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susceptibility locus to the distal end of chromosome 17q [28,29]. Subsequent sequencing 

of 78 genes within this region identified a c.-625A>C mutation in ZNF750, a putative 

C2H2 zinc-finger protein, resulted in a 42% reduction of the promoter activity [30]. 

Overall, the mutation accounted for 1.7% of the psoriasis in the Chinese population 

although recent evidence suggests that it is a rare variant that is unrelated to disease 

susceptibility. In addition, a third independent PSORS2-linked Israeli Jewish Moroccan 

family was also recently identified [31]. The disease in this family was linked to 

D17S928 (maximum multipoint LOD score of 8.79 at θ=0) and segregates with a frame-

shift mutation in ZNF750. Although mutations in ZNF750 could contribute to psoriasis 

susceptibility, the general applicability of their impact in the common form of psoriasis 

remains to be elucidated.  

Finally, a five-marker variant in a region on chromosome 17q25 harboring 

SLC9A3R1 and NAT9 was identified with association mapping [32]. One psoriasis-

associated allele from this five marker haplotype leads to loss of a putative site for the 

RUNX family of transcription factors. This is of interest as RUNX1 and RUNX3 play a 

major role in hematopoietic development and thymic selection, and alterations of RUNX 

binding sites have also been reported as susceptibility variants for systemic lupus 

erythematosus and rheumatoid arthritis [33,34].  

 

1.2.3 Other non-MHC loci and Psoriasis Susceptibility 

Other known potential non-MHC loci include SLC12A8, (solute carrier family 12 

(bumetanide-sensitive Na-K-Cl co-transporters), member 8, known as PSORS3), 

epidermal differentiation complex (EDC, known as PSORS4) region on chromosome 
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1q21, as well as PSORS9 on chromosome 4q28-q31, and so on (Table 1.1). SLC12A8 

was the first gene proposed to be associated with psoriasis susceptibility [35], and it has 

been replicated in a recent study [36]. This gene is a member of the cation-chloride-

coupled cotransporter gene family [37], although the substances it transports are 

unknown. Finally, chromosome 1q21 region (PSORS4) harbors a cluster of genes, named 

as the epidermal differentiation complex (EDC), spanning over 2 Mb. Evidence of 

linkage to this region was first described in Italian families [38], although suggestive 

evidence for linkage was seen at the same time in our cohort of multiplex families from 

the US, and was replicated in our cohort of affected sibship pairs [1]. 

 

1.2.4 Genetics of Psoriatic Arthritis 

Moll and Wright were the first to demonstrate familial aggregation of PsA, and estimated 

the recurrence risk ratio in first-degree relatives (λ1) to be 55 [39], compared with 

estimates ranging from 5 to 10 in cutaneous psoriasis, implicating a strong genetic basis 

in PsA. A more recent study  has estimated the λ1 to be 47 in a British population [40]. 

HLA antigens were identified as prognostic factors in patients with PsA, and 

polymorphisms in the genes coded in the HLA region on chromosome 6p have been 

shown to be associated with PsA [41]. Karason et al. published their genome-wide 

linkage study in PsA, obtaining a LOD score of 2.17 on 16q, which is close to PSORS8 

locus for psoriasis. Other associated loci for PsA outside the MHC region were also 

reported elsewhere [42,43,44], such as the IL-1 gene cluster on chromosome 2q and KIR 

(Killer cell Immunoglobulin-like Receptors) genes on 19q13.4.  KIR genes encode a 

family of inhibitory and activating receptors expressed by most natural killer (NK) cells 
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and small subpopulations of T cells. There are two groups of KIR gene-family haplotype, 

known as A and B.  Whereas the group A KIR haplotype mainly encodes inhibitory KIRs, 

the group B KIR haplotypes encode more activating KIRs. It has been recognized that 

various combinations of MHC class I molecules and KIRs are dominant in the regulation 

of human NK cells and thus correlate with susceptibility to autoimmune diseases [45].  

 

1.2.5 Current Challenges 

As with all complex diseases, linkages and associations with psoriasis have not always 

been replicated in other cohorts. This can be due to low effect size of individual genetic 

variation, ascertainment bias, gene–environment interactions and other confounding 

factors. Besides, the functional relationship between predisposing genetic variation and 

the mechanism of interaction between environmental trigger factors and genetic effects 

still remain unknown, which, however, provides further evidence for the complex basis 

of this disease. A more systematic approach, with the capability of integrating and 

analyzing different sources of biological information, i.e. phenotype/genotype data, gene 

expression profiling and epigenetic changes, is described in this dissertation as a means 

of attempting to understand the pathogenesis of the disease better (Figure 1.1).  
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1.3 Epigenetics of Common Diseases 

1.3.1 Overview of Epigenetics 

It has been widely recognized that classic genetics alone is not sufficient to explain the 

diversity of phenotypes within a population. Nor does classic genetics explain how, 

despite their identical DNA sequences, monozygotic twins or cloned animals can have 

different phenotypes and different susceptibilities to a disease [46,47]. The concept of 

epigenetics offers a partial explanation of these phenomena. It focuses on non-sequence 

mediated forms of gene regulation and heredity. The term epigenetics is derived from epi 

(above and beyond) and genetics, and is commonly used to describe heritable biological 

information that is not encoded in the DNA sequence. Epigenetic mechanisms have many 

layers of complexity, including DNA methylation by DNA methyltransferases (Dnmts), 

histone modifications such as methylation, acetylation, and phosphorylation, structural 

modifications of chromatin, and microRNAs as well as other noncoding regulatory RNA 

[48]. Epigenetic changes are crucial for the development and differentiation of the 

various cell types in an organism, as well as for normal cellular processes such as X-

chromosome inactivation in female mammals [49]. However, epigenetic states can 

become disrupted by environmental influences or during aging, and the importance of 

epigenetic changes in the development of cancer and other common diseases is 

increasingly being appreciated.  

 

1.3.2 Epigenetics alterations and Common Diseases 

The best-known epigenetic marker is DNA methylation, the addition of a methyl group to 

DNA at the 5-carbon of the cytosine pyrimidine ring. It has critical roles in the control of 
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gene activity and the architecture of the nucleus of the cell. In humans, DNA methylation 

commonly occurs in cytosines that precede guanines; these are called CpG dinucleotides 

[50]. Approximately 70-80% of the CpG dinucleotides in the human genome are 

methylated, predominately in areas harboring repetitive sequences [51]. However, 

regions rich in CpGs, termed CpG islands (CGIs) are also found in promoters of more 

than 70% of annotated genes [52,53]. These islands are usually not methylated in normal 

cells [54,55]. The methylation of particular subgroups of promoter CpG islands can, 

however, be detected in normal tissues.  

It has been well accepted that DNA methylation acts in concert with other 

epigenetic mechanisms, such as histone modification, to regulate normal gene expression 

and facilitate chromatin organization within cells. Such regulation may be part of normal 

developmental or differentiation processes but can also be triggered by environmental 

factors [56,57,58,59,60]. These and other demonstrations of how epigenetic changes can 

modify gene expression have led to human epigenome projects and epigenetic therapies 

[61,62,63]. Bell et al. recently reported that methylation of CpG dinucleotides is 

inversely correlated with gene expression in the human genome [64]. By comparing 

methylation levels to estimates of gene expression, the authors found a significant 

negative correlation (mean rank correlation r = -0.454) between methylation and gene 

expression levels across 11,657 genes in HapMap cell lines [64].  In addition, the drop in 

methylation levels near to the transcriptional start site (TSS) was only observed in highly 

expressed genes.  

On the other hand, aberrant DNA methylation patterns are often observed in 

human common diseases [65], especially for cancer development [66,67]. Such events 
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are often accompanied by alterations in chromatin structure at gene regulatory regions. It 

is believed that during carcinogenesis, epigenetic switching and reprogramming result in 

the aberrant hypermethylation of CpG islands, reducing epigenetic plasticity of critical 

tumor suppressor genes, and rendering them unresponsive to normal stimuli. One of the 

first epigenetic alterations found in human cancer was the global hypomethylation of 

DNA in human tumors as compared with the level of DNA methylation in their normal-

tissue counterparts [68].  A recent large-scale study of DNA methylation with the use of 

genomic microarrays has detected extensive hypomethylated genomic regions in gene-

poor areas [60].  During the development of a neoplasm, the degree of hypomethylation 

of genomic DNA increases as the lesion progresses from a benign proliferation of cells to 

an invasive cancer [69]. Moreover, another major event in the origin of many cancers is 

hypermethylation of the CpG islands in the promoter regions of tumor-suppressor genes 

[70]. These changes occur at different stages in the development of cancer and can affect 

genes involved in the cell cycle, DNA repair, the metabolism of carcinogens, cell-to-cell 

interaction, apoptosis, and angiogenesis, all of which are involved in the development of 

cancer [67,71]. Recent studies on the profiles of microRNA (miRNA) expression 

suggested a third possible mechanism of epigenetic lesion in tumorigenesis. DNA 

hypermethylation in the miRNA 5’ regulatory region may account for the inactivation of 

miRNA in tumors [72,73].  

One new frontier in the study of the epigenetics of human diseases is to establish 

its potential role in common non-neoplastic human diseases, especially the autoimmune 

diseases [74]. Epigenetic mechanisms are essential for the function of immune system. 

Moreover, a failure to maintain epigenetic homeostasis in the immune response due to 
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factors including environmental influences, leads to aberrant gene expression, 

contributing to immune dysfunction and in some cases the development of autoimmunity 

in genetically predisposed individuals. For instance, aberrant hypomethylation is found in 

T cells of patients with systemic lupus erythematosis, including in genes such as 

lymphocyte function-associated antigen-1, which is overexpressed in lupus T cells [75].  

Another study on epigenetic changes in the blood of systemic lupus erythematosus 

patients revealed altered methylation of several genes contributing to T-cell autoreactivity, 

B-cell overstimulation and macrophage killing [76].  Compared to many other 

autoimmune diseases, psoriasis is more tractable due to the accessibility of its target 

organ: the skin. There have been a few reports of altered methylation within promoters of 

single genes of psoriatic skin. For example, the SHP-1 (PTPN6) promoter is reported to 

be demethylated in psoriatic skin but not in Atopic Dermatitis (AD) or normal skin [77].  

However, global methylation changes in psoriasis have not been described. 
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1.4 Aims of the Dissertation 

The aims of the present dissertation are threefold as shown in Figure 1.1. Aim 1 was to 

perform a genome-wide association study (GWAS) of psoriasis and psoriatic arthritis. 

This is described in Chapter 2 where the major findings of this aim are highlighted. 

Unlike many Mendelian disorders in which the disease alleles are rare and of catastrophic 

effect with high penetrance, the alleles underlying complex genetic disorders, like those 

of psoriasis, are relatively common and make low to  modest  contributions to disease 

risk, rendering them difficult to identify by linkage study [78]. In this setting, tests of 

association are much more powerful than tests of linkage, provided causal variants or 

proxies for them can be genotyped [79]. With the advent of HapMap project, millions of 

genetic markers, or single nuclear polymorphisms (SNPs), have been identified 

throughout genome [80].  By comparing the allele frequencies of each marker in cases 

and controls, association with a polymorphism can be established, allowing more precise 

localization of a risk variant for further sequence analysis [81]. This was being done for a 

number of common diseases, where linkage analysis had not been fruitful [82].  In this 

GWAS, we scanned more than 300,000 SNPs in the genomes of 223 psoriasis patients, 

including 91 who had psoriatic arthritis. We compared the DNA variations in people with 

psoriasis to those found in 519 healthy control patients, looking for specific differences 

that may be linked to the disease. The initial findings were further confirmed in an 

independent replication study with larger set of patients and healthy controls.  

The Aim 2 of this thesis was to perform follow up functional analyses to identify 

the PSORS1 variant. Chapter 3 describes a systematic approach for screening the 

PSORS1 genetic variants for enhancer activities by transfecting the construct plasmid 
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that contains the different alleles of these SNPs into keratinocytes. This approach allowed 

us to investigate the regulatory activity of PSORS1 risk alleles in both proliferating and 

differentiating keratinocytes (see Methods in Chapter 3). Since psoriasis is a defect of 

differentiation, we hypothesized that the PSORS1 allele would show a difference in 

differentiating keratinocytes. In addition, correlations of PSORS1 risk alleles with 

expression levels of nearby candidate genes were also analyzed and reported.  

Finally, Aim 3 of this thesis was to perform a global study of altered CpG 

methylation in psoriatic skin.  Since the genetic variants only account for about 60% of 

phenotypic variance of psoriasis [11], we hypothesized that both genetic and 

environmental can modify the epigenetic changes in psoriatic skin, which in turn are 

attributable to the pathogenesis of the disease. Chapter 4 describes profiling of global 

changes of methylation in involved psoriatic skin versus uninvolved and normal skin by 

querying 27,578 CpG sites with Illumina bead arrays. Significant methylation changes at 

certain CpG sites were identified and well characterized. Hierarchical clustering analyses 

of the top 50 differentiating loci were used to classify the lesion and normal samples. The 

correlations of methylation level at specific CpG loci with expression levels of a nearby 

gene were further examined, and finally, global changes in methylation and expression 

status as a consequence of treatment with a TNF-alpha inhibitor were assessed and 

reported in Chapter 4. In Chapter 5, I provide an overall conclusion of my findings and 

discuss future directions. The flow diagram showed in Figure 1.1 outlines the integrative 

approach that was used in this dissertation to explore both genetic and environmental effects 

through epigenetic modifications of psoriasis.  
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Table 1.1 Locations of psoriasis susceptibility (PSORS) loci and gene candidates in each interval. 

Locus Chrom 
Location 

Candidate Genes References 

PSORS1 6p21.3 HLA-C, CDSN, HCR, HERV-K, HCG2, 
POU5F1, TCF19, CCHCR1, LMP, 
SEEK1, SPR1  

[16,83,84,85,86,87,88,89,90,91] 

 

PSORS2 17q25 RUNX1, RAPTOR, SLC9A3R1, NAT9. 
TBCD 

[27,32,92,93,94,95] 

PSORS3 4q34 IRF-2 [96,97] 

PSORS4 1q21 S100 genes and late cornified envelope 
within EDC, Loricrin, Filaggrin, 
Pglyrp3,4 

[38,98,99,100,101,102,103,104] 

PSORS5 3q21 SLC12A8, cystatin A, zinc finger protein 
148 

[35,36,105,106] 

PSORS6 19p13 JUNB [107,108,109,110] 

PSORS7 1p13 

1p32.1-31.2 

PTPN22 

IL23R 

[111,112] 

PSORS8 16q13 CX3CL1/CX3R1, NOD2/CARD15 [113,114] 

PSORS9 4q31.2 IL-15 [115,116] 

PSORS10 18p11  [117,118] 
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Figure 1.1 Flow diagram illustrating the integrated approach used in this thesis to identify genetic/epigenetic risk factors for 
psoriasis. Abbreviation: GWAS, genome-wide association study.  
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CHAPTER 2 

GENOME-WIDE ASSOCIATION STUDY OF PSORIASIS 

AND PSORIATIC ARTHRITIS 
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2.1  Introduction 

Psoriasis (PS) is a chronic inflammatory disease of the skin affecting 2-3% of the 

population [119]. Approximately 25% of patients also develop psoriatic arthritis (PsA), a 

common, debilitating auto-immune disease belonging to the family of spondyloarthritides 

[120,121]. The recurrence risk (λS) of PsA is high, and estimates of 27-47 have been 

proposed [40,122].  This is much higher than the estimated λS of PS which is estimated to 

be between 4 and 11 [1].    

PS and PsA are interrelated disorders, and the prevalence of PS is 19 times higher 

among first degree relatives of probands with PsA compared with the general population 

[123]. The pathogenesis of PS and PsA is complex, involving both genetic and 

environmental risk factors. Strong association of PS with the MHC class I region 

(PSORS1 or psoriasis susceptibility locus 1) was demonstrated in the 1970s [124] and has 

been confirmed in numerous subsequent studies [16,125,126]. However, the genetics of 

PsA is not as clear-cut and association with alleles of the HLA class I region is not 

reported to be as strong with PsA as with PS [123]. Hence, it has not been clear if PsA is a 

clinical phenotype that is distinct from PS without psoriatic arthritis and if is due to 

different predisposing genetic factors.  

A number of regions in the genome have been reported to be associated with PS 

[8,32,35,119], and some have been convincingly replicated. This includes the 3’UTR of 

interleukin 12B (IL12B) [127,128] and two non-synonymous SNPs of interleukin 23 

receptor (IL23R) [128]. One of these (R381Q) was also shown to be associated with 

Crohn’s disease [129]. However, together with the PSORS1 locus, the combined effect of 

these loci is unable to account entirely for genetic susceptibility to PS.  
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In order to systematically search for other susceptibility loci, we undertook a 

genome wide association scan (GWAS) to identify genetic factors predisposing to PS and 

PsA. Besides detecting strong association with the HLA class I region in the combined 

and PsA cohort, and replicating the recently reported associations with IL23R and IL12B, 

we identified a number of novel associations. These include a region on chromosome 

13q13 harboring LHFP and COG6, a region on chromosome 15q21 harboring USP8-

SPPL2A-TNFAIP8L3, association with the LCE cluster of genes on chromosome 1q21 

from the PSORS4 locus, and a region of chromosome 4q27 recently reported to be 

associated with several other autoimmune diseases and associated with PsA and 

potentially PS.  
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2.2 Materials and Methods 

2.2.1 Subjects  

The cohorts for the discovery and replication phases of this study are all of European 

descent and are described in Table A1.1, Appendix I. The discovery cohort consisted of 

223 Caucasian individuals with PS or PsA from the US. Cases were ascertained through 

Texas Dermatology (Dallas, TX) and the dermatology clinics at the University of 

California, San Francisco (UCSF). 89 of the PsA cases had a first degree relative with 

psoriasis and were members of affected sib pair families, described elsewhere [130]. All 

except for two of these PsA cases also had PS. These cases were from affected sib pair 

families with psoriasis and both of these cases had several first degree relatives with PS.  

Genotypes of 519 European controls obtained following hybridization to the 

Illumina HumanHap300 array were from the New York Cancer Project (NYCP) [131] 

and were downloaded from http://intragen.c2b2.columbia.edu/.  These were random 

controls and there was no specific information about autoimmune/inflammatory disease. 

Recent large genome-wide association studies using controls of this type have been 

shown to be successful, leading to only a modest effect on power unless the event of 

misclassification bias is substantial [132]. Informed consent was obtained from all 

participants. Protocols were approved by the local institution review boards of all 

participating institutions. All subjects over 18 years of age gave written informed consent, 

filled out a clinical questionnaire and received a skin examination by the study 

dermatologist, who confirmed the diagnosis of plaque PS and graded PS severity. All 

adults with PsA satisfied the inclusion criteria of having both clinically documented 

http://intragen.c2b2.columbia.edu/
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inflammatory synovitis and PS, confirmed by a rheumatologist and dermatologist 

respectively.  

Blood samples were obtained by venipuncture for all subjects, and genomic DNA 

was isolated from whole blood by standard procedures. 

Replication cohorts were from both the U.K. and the U.S. The U.K. cohort 

consisted of 576 PsA patients from the UK and are described elsewhere [133]. In brief, 

PsA patients under active follow up by hospital rheumatologists were recruited from 

throughout the UK although the majority came from the North-West region of England. 

All patients satisfied the inclusion criteria of having both clinically documented 

inflammatory synovitis and PS. Each patient was assessed by a trained research nurse, 

who undertook a standardized clinical history and examination. Detailed demographic 

and clinical information was obtained and whole blood was taken for DNA extraction 

and subsequent genetic analysis. Control samples (n = 480) were obtained from blood 

donors. All patients and controls were white and of UK descent. They were recruited with 

ethical committee approval (MREC 99/8/84) and provided written informed consent.  

The replication cohort from the U.S. for cases consisted of 577 patients with PS 

(94 of these were also diagnosed with PsA), ascertained at the University of California, 

San Francisco, CA or at Texas Dermatology, Dallas, TX The replication cohort for 

controls consisted of 479 unrelated Caucasian individuals from the University of 

California, San Francisco, ascertained as a set of healthy controls, for cardiovascular 

studies. A separate cohort of 258 controls was ascertained in Texas. The latter controls 

were all > 40 years of age and were ascertained on the basis of not having PS, PsA, or 

any other inflammatory or autoimmune disease. Table A1.1 in Appendix I also provides 
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information on how well the cases and controls were matched in terms of age and gender. 

It can be seen that the gender proportions and ages are similar in cases and controls, for 

both discovery and replication studies. 

 

2.2.2 Genotyping Methods 

DNA was normalized to a concentration of 100 ng/µl (diluted in 10mM Tris/1mM 

EDTA). Samples were quantitated with a Nanodrop Spectrophotometer (ND-1000). For 

the discovery phase, approximately 1 µg of genomic DNA was used to genotype each 

sample on the Illumina HumanHap300v2A Genotyping BeadChip. This was performed at 

the Robert S. Boas Center for Genomics and Human Genetics at The Feinstein Institute 

for Medical Research, Manhasset, NY. This assay relies on allele specific primer 

extension and the use of a single fluorochrome. Samples were processed according to the 

standard Illumina Infinium II automated protocol. This involved whole genome 

amplification, fragmentation, precipitation, resuspension in hybridization buffer and 

hybridization to the Illumina Bead Chips for a minimum of 16 h at 48ºC. After 

hybridization the BeadChips were processed for the single base extension reaction, 

followed by staining and imaging on an Illumina Bead Array Reader. Normalized bead 

intensity data were loaded into the Illumina Beadstudio 2.0 software which converted 

fluorescence intensities into SNP genotypes.  

Genotyping for all the replication studies was performed with the Sequenom 

MassArray system (iPlex assay). This involves primer extension chemistry and mass 

spectrometric analysis described at our web site http://hg.wustl.edu/info/ 

Sequenom_description.html.  

http://hg.wustl.edu/info/%20Sequenom_description.html
http://hg.wustl.edu/info/%20Sequenom_description.html
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2.2.3 Quality Control 

Before analysis, we performed quality filtering of both samples and SNPs to ensure 

robust association tests. Based on previous criteria [134], we required that all samples 

used for the discovery phase pass a 93% genotyping call rate threshold, and that all SNPs 

pass a 95% call rate threshold.  

In the case of the replication studies, 57 individuals from the total of 2370 

individuals in the replication study were removed because of low genotyping (i.e. when 

over half of the genotypes for a sample were missing). SNPs with < 75% call rates were 

also excluded from analysis to obtain an average genotyping rate of 0.902. Genotypes 

were also evaluated for departure from HWE in the controls and SNPs with P < 0.001 

were removed from further analysis. After pruning, 244 SNPs remained. 

A total of 463 ancestry informative SNPs (AIM) present on the Illumina 

HumanHap300v2A Genotype BeadChip were used to check for possible confounding 

population substructure in the discovery sample with STRUCTURE software [135].  For 

this analysis, genotypes at these SNPs were analyzed for all 742 samples (223 PS cases 

and 519 controls).  

To investigate other biases [136] that could be introduced with shared controls we 

assessed the potential effect of substructure with the genomic-control method [137] and 

with EIGENSTRAT [138].  

 

2.2.4 Statistical Analysis for Association  



25 
 

The Cochran-Armitage Test for trend was conducted with Purcell’s PLINK program 

(http://pngu.mgh.harvard.edu/~purcell/plink).  However, several SNPs in the current 

study that exhibited significant differences in cases/controls, were also different when 

allele frequencies in controls were compared with those from European CEPH typed for 

SNPs in the HapMap project. NYCP participants are quite diverse with respect to 

European origin, and many SNPs are reported to show differences among European 

subgroups [139]. These were identified by a comparison of SNP allele frequencies in 

European CEPH individuals typed for the HapMap project and were not selected for 

follow-up studies. 

Measures of linkage disequilibrium, D’ and r2, and allele frequencies were based 

on pre-computed scores from the International HapMap website or were computed 

locally from HapMap genotypes or from our own case and control genotypes with 

Haploview 3.2 (http://www.broad.mit.edu/mpg/haploview/).  Power calculations for 

association were calculated at: http://pngu.mgh.harvard.edu/~purcell/gpc/. Association 

localization plots were generated with an R code modified from snp.plotter 

(http://cbdb.nimh.nih.gov/ ~kristin/snp.plotter.html) and Regional Association Plot 

(http://www.broad.mit.edu/ diabetes/scandinavs/figures.html). Family based association 

tests on 271 nuclear families were performed with the Pedigree Transmission 

Disequilibrium Test [140] as described elsewhere [32,126,141]. 

 

2.2.5 Immunohistochemistry 

Tissue sections were fixed with acetone and stained with 10ug/mL purified mouse anti-

human monoclonal antibodies to IL-2 (R&D, clone 5334.21), IL-21 (R&D, J148-1134), 

http://pngu.mgh.harvard.edu/~purcell/plink
http://www.broad.mit.edu/mpg/haploview/
http://cbdb.nimh.nih.gov/%20~kristin/snp.plotter.html
http://www.broad.mit.edu/%20diabetes/scandinavs/figures.html


26 
 

COG6 (Abnova, H00057511-M01) and SPPL2A (Abgent, AP6312a). Biotin labeled 

horse anti-mouse antibodies (Vector Laboratories) were amplified with avidin-biotin 

complex (Vector Laboratories) and developed with chromogen 3-amino-9-ethylcarbazole 

(Sigma Aldrich).  

 



27 
 

2.3  Results 

2.3.1 Genome-Wide Association Scan 

For our “discovery” phase, 223 PS cases (132 cases with PS without arthritis and 

91 PS cases with arthritis (PsA) were typed on the Illumina HumanHap300 arrays. We 

compared case data to publicly available genotype data of 519 European controls from 

the New York Cancer Project [142] collected with the same platform.  The number of 

cases used for this scan is smaller than that used in many recently described genome wide 

association scans. However, the 91 cases of PsA had at least one first degree relative with 

PS and were expected to be enriched for genetic factors. Power calculations based on 223 

cases and 519 controls indicated that using a threshold of P < 5 × 10-5, we had 70% 

power of detecting a locus with a genotype relative risk (GRR) of 2.0, and over 99% 

power to detect a locus with a GRR of 3.0 such as the MHC (see below).  However, 

many replicated associations have small GRRs [132] and we had only 10% power to 

detect a locus with a GRR of 1.5.  

Following the genotyping of samples, stringent quality control measures were 

implemented. We required that all samples used for the discovery phase passed a 93% 

genotyping call rate threshold, and that all SNPs passed a 95% call rate threshold. 

Justification for this threshold is based on the evaluation of empirical distributions 

(Appendix I, Figure A1.1).  With sample call rates ≤93%, there was an elevation in 

observed sample heterozygosity, i.e. deviation from Hardy-Weinberg equilibrium, 

suggesting possible genotyping errors (e.g., sample contamination or allele drop-out). 

Likewise, there was a significant discrepancy of missingness between case and control 

groups when the SNP success rate was <95%.   
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For the discovery phase, a total of 311,398 SNPs were pruned to 305,983 SNPs 

after filtering for low call rate, minor allele frequency < 0.01 and deviation from Hardy-

Weinberg equilibrium (P < 0.001). Quality control also led to the removal of 29 samples, 

leaving 218 cases for further analysis. The average genotyping rate in the remaining 

individuals was 0.995.  

To investigate other biases [136] that could be introduced with shared controls, 

we assessed the median distribution of test statistics using the genomic-control factor λGC 

[137]. With a set of 463 ancestry informative SNPs (AIMs), λGC = 1 indicating no 

inflation). We also performed analysis on the same set of AIM SNPs with STRUCTURE 

software [143]. Under the assumption of two population clusters, there was no 

association between the most likely inferred cluster and case/control status and the 

average allele frequency difference between clusters was less than 2.5%. These results 

showed that population substructure is unlikely to be confounding our results. However, 

analysis of all markers used in the discovery study yielded λGC=1.101 before correction. 

A similar value was obtained with EIGENSTRAT [138] where  λ=1.107. Examining 

stratified subsets of cases (PS without arthritis or PsA) with all markers also yielded 

similar λ values (PS without arthritis: λGC=1.07; PsA: λGC=1.05).  Following adjustment 

of P values with the genomic control method, λ=1. The discovery P values adjusted by 

the genomic control method as implemented in PLINK [144] are presented in the tables 

and figures.  

To detect associations, we first performed a preliminary analysis with a Cochran-

Armitage trend test. Figure 2.1 illustrates negative logarithm of the P values obtained 

across the genome, considering all cases and all controls (Figure 2.1A) and considering 
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only the 91 PsA cases and all controls (Figure 2.1B). Results were then rank ordered on 

the basis of P values. 84 SNPs in 35 genomic regions were associated with P < 5 × 10-5; a 

level that we would informally expect to observe by chance roughly 15 times in this scan 

given the number of tests performed if all SNPs were independent. A subset of SNPs 

from 120 regions were investigated further. Criteria for selection included the strength of 

the discovery P value, particularly when several SNPs from a single region showed 

evidence for association, a possible biological role of a gene harboring a SNP with some 

evidence for association, or localization of SNPs with moderate evidence for association 

to a known psoriasis susceptibility locus (e.g. PSORS4). We also included the previously 

reported associated SNPs in IL23R and IL12B [128].  

An independent cohort of 577 PS cases from the U.S. and 737 U.S. controls were 

used for the replication stage; 94 of these cases had also been diagnosed with PsA. To 

examine the potential role of variants upon PsA susceptibility specifically, 576 PsA cases 

from the UK and 480 controls from the UK were also employed. An alternative 

genotyping technology (iPlex; Sequenom) was used for the replication phase. The 

platforms used for the discovery and replication phases gave very similar results:  

Concordance rates on the basis of 116 samples and 301 SNPs typed with both platforms 

was 98.74%.  

Our 100 top ranked SNPs with any cohort (PS, PS without arthritis, or PsA) are 

listed in Table S2 of the article website (http://www.plosgenetics.org/article/info:doi 

/10.1371/journal.pgen.1000041#s4) to facilitate future attempts to replicate our findings. 

A total of 289 SNPs, including SNPs from the MHC, and two previously reported 

http://www.plosgenetics.org/article/info:doi%20/10.1371/journal.pgen.1000041#s4
http://www.plosgenetics.org/article/info:doi%20/10.1371/journal.pgen.1000041#s4
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associated SNPs within IL12B and IL23R [128] were genotyped in the replication 

analysis.  

 
2.3.2 Association with MHC Region 

The MHC, and in particular, the HLA class I region, is the only region that has been 

shown to be consistently associated with PS. The first nine top-ranking SNPs were from 

the MHC and seven were significant, even when adjusted with the Bonferroni correction 

for multiple tests. Overall, 32 SNPs from the MHC had adjusted P values < 5 × 10-5 

(Figure 2.2). The most significant association was with rs10484554 (adjusted P = 7.8 × 

10-11, GWA scan; P = 5.61 × 10-28, replication; P = 9.772 × 10-38, combined) (Figure 2.2, 

Table 2.1). This SNP lies 34.7kb upstream from the transcriptional start site of HLA-C.  

Strongest association with this region is consistent with previous results from our group 

and others [16,125,126].  The rs10484554*T allele had frequencies of 0.325 in U.S. cases 

and 0.15 in U.S. controls (OR: 2.8 (95% CI: 2.4 – 3.3). To determine the relationship of 

this allele with the classical HLA-C allele strongly associated with psoriasis (HLA-

Cw*0602), we investigated the transmission of this allele with classical HLA-C alleles in 

~250 nuclear families with psoriasis that we have reported elsewhere [126].   The 

rs10484554*T allele was detected on nearly all haplotypes with HLA-Cw*0602 or HLA-

Cw*1203 alleles (results not shown), and was also strongly correlated with the previously 

described highly associated PSORS1 SNP n9*G [24,126] (rs10456057*G) allele. We 

have previously shown that SNPs upstream from HLA-C are more strongly correlated 

with PS than HLA-Cw*0602 is, and that these risk alleles are also correlated with HLA-

Cw*1203 [126]. Hence, rs10484554*T may be a good proxy for the PSORS1 variant.  
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methylation changes in the diseased tissues of patients with complex diseases, including 

those leading to autoimmunity, are limited since diseased tissue is often difficult to access. 

A study on epigenetic changes in the blood of systemic lupus erythematosus patients 

revealed altered methylation of several genes contributing to T-cell autoreactivity, B-cell 

overstimulation and macrophage killing [76]. Psoriasis is more tractable than many 

autoimmune diseases due to the accessibility of its target organ: the skin, and there have 

been a few reports of altered methylation within promoters of single genes in diseased 

skin. For example, the SHP-1 (PTPN6) promoter is reported to be demethylated in 

psoriatic skin but not in Atopic Dermatitis (AD) or normal skin [77].  However, genome-

wide studies of methylation changes in psoriasis have not been described. 

This chapter of the dissertation describes a stud on global changes of methylation 

in involved psoriatic skin versus uninvolved psoriatic and normal skin. This was 

performed by querying 27,578 CpG sites with Illumina bead arrays with DNA derived 

from skin of involved, uninvolved and normal skin. Hierarchical clustering of 50 of the 

top differentially methylated sites differentiated separated all psoriatic skin samples 

(involved and uninvolved) from normal skin. Methylation at 12 CpG sites was also 

significantly correlated with expression levels of a nearby gene. Research described in 

this chapter was accomplished in collaboration with Dr. Eli Roberson. 
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Figure 4.3 Pyrosequencing data in PP, PN and NN skin biopsies at 9 CpG sites in 
the gene IFI27. Methylation levels (%) with 95% confidence intervals are plotted for 
each CpG site by group. P-values calculated with a two-sample t-test. Methylation levels 
in PP samples were less than that of NN or PN samples. PN and NN skin had similar 
methylation levels. *, p-value < 0.05; **, p-value < 0.001. 
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Figure 4.4 Pyrosequencing data for C10orf99 in PP, PN and NN skin biopsies at 3 
CpG sites. Methylation levels (%) with 95% confidence intervals are plotted for each 
CpG site by group. P-values were calculated with a two-sample t-test. PN and NN 
biopsies were not separable, but both had increased methylation compared to PP. *, p-
value < 0.05; **, p-value < 0.001. 
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