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ABSTRACT OF THE DISSERTATION 

Identification of Genetic and Epigenetic Risk Factors for Psoriasis and Psoriatic 
Arthritis 

 
by  

 Ying Liu  

Doctor of Philosophy in Biological and Biomedical Sciences 

Human and Statistical Genetics Program 

Washington University in Saint Louis, 2011 

Dr. Anne M. Bowcock, Chair 

Dr. Nancy L. Saccone, co-Chair 

 

Psoriasis (PS) is a common incurable inflammatory skin disease affecting 2–3% 

of the European population. ~10–30% of patients develop psoriatic arthritis (PsA). 

Genetic variation in the major histocompatibility complex (MHC) increases risk of 

developing PS. However, only ~10% of individuals with this risk factor develop PS, 

indicating that other genetic effects and environmental triggers are important. In order to 

identify novel susceptibility genes of PS and PsA, I performed the first large scale 

genome wide association scan for psoriasis susceptibility loci using 233 cases and 519 

controls. It revealed that genes of the immune system and of the barrier are associated 

with psoriasis. The MHC (psoriasis susceptibility 1 or PSORS1) conferred the strongest 

risk factor for PS and PsA. The study also confirmed recently identified associations with 

interleukin-23 receptor and interleukin-12B in both PS and PsA. Novel loci with modest 

effect were also identified, including a region on chromosome 4q27 that contains genes 

for interleukin 2 and interleukin 21 that has been implicated in other autoimmune 
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diseases, and seven additional regions that included chromosome 13q13 and 15q21. A 

follow-up study, aimed to identify potential functional SNPs in the PSORS1 region, 

implicated an allele-specific repressor role of SNP rs10456057 via binding to nuclear 

transcriptional factors. Further study with additional PSORS1 SNPs identified “enhancer” 

activity of the risk allele of SNP rs13191343 in differentiating keratinocytes, and the 

presence of the PSORS1 risk allele is correlated with CDSN (corneodesmosin) 

expression, which would affect skin barrier formation.  Finally, this thesis also describes 

the first genome-wide study of altered CpG methylation in psoriatic skin. The study 

determined the methylation levels at 27,578 CpG sites in skin samples from individuals 

with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. Involved skin 

differed from normal skin at 1,108 CpG sites at adjusted p-value < 0.05. Twelve of those 

CpG sites mapped to the epidermal differentiation complex close to genes that are highly 

up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially 

methylated sites accurately separated all psoriatic skin samples (involved and uninvolved) 

from normal skin. Methylation at 12 CpG sites was significantly correlated with 

expression levels of a nearby gene.  Taken together, the thesis reveals that the genetic and 

epigenetic risk factors of psoriasis lead to alterations in genes of skin barrier and immune 

system which act together to trigger the pathogenesis of the disease. 
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1.1 Introduction 

Psoriasis (PS) is a common chronic inflammatory skin disease that affects 2–3% of the 

Caucasian population. It is less common in individuals of Asian descent (0.1% or less), 

and is exceedingly rare in Africa [1]. It frequently develops in early adulthood in 

individuals in their twenties, although individuals of all ages can be affected [2].  The 

disease is characterized by thickened, scaly skin patches or psoriatic plaques, caused by 

abnormal keratinocyte proliferation and infiltration of inflammatory cells into the dermis 

and epidermis.  Patients have a natural history of outbreaks (flares) followed by 

temporary remissions. Approximately 10–30% of psoriatic patients also develop psoriasis 

arthritis (PsA), which affects joints and surrounding tissues, markedly impacts mobility 

and can cause irreversible joint destruction [3]. Some of the earliest changes in the 

pathogenesis of psoriasis are thought to be mediated by an array of environmental 

triggers, including HIV infection [4], use of drugs such as lithium, beta-blockers, or anti-

malarials, and the withdrawal of corticosteroids [5]. Although these are diverse stimuli, 

all might be viewed as trigger factors that can activate cellular immunity, either through 

innate or acquired pathways. Psoriasis is believed to be a T-cell mediated ‘Type-1’ 

autoimmune disease [6]. Gene expression changes in psoriasis lesions have been well 

documented, and strongly support an important role for tumor necrosis factor and 

interferon gamma signal pathways in its pathogenesis [7,8]. One theory for the 

development of psoriasis is that T cells and dendritic cells elaborate inflammatory 

cytokines and chemokines to create an environment in the skin that stimulates 

proliferation of resident keratinocytes and endothelial cells in genetically susceptible 

individuals, producing a pattern of growth recognized as psoriasis. It is expected that 
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knowledge of predisposing variants in susceptible individuals and exposure to 

environmental triggers will eventually explain the numerous changes that exist in 

psoriatic skin. PS and PsA are serious but poorly understood diseases. There are no cures 

and they require sophisticated medical care and treatments. Moreover, having psoriasis 

increases the risk of heart disease and stroke [9,10].  
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1.2 Genetics of Psoriasis and Psor iatic Ar thr itis 

Although psoriasis often appears sporadically, the existence of a genetic contribution of 

psoriasis is well accepted.  It is a complex disease that includes familial components. 

Individuals with an affected family member are at increased risk of developing the 

disease, and siblings of an individual with psoriasis have a 4–6-fold increased risk of 

developing psoriasis compared to the general population [1]. Previous twin studies in 

psoriasis report that concordance of the disease in monozygotic twins is much higher than 

in dizygotic twins, being approximately 72% and 15–23%, respectively, for northern 

European individuals. These results indicate that genetic components play a role in 

predisposition to the disease, and it is estimated that the heritability for psoriasis is 

between 60% and 90% [11]. Recent developments in genetic analysis have provided 

better understanding of the fundamental biological pathways in disease susceptibility. 

Currently, few genes for psoriasis have been conclusively identified, although genome-

wide linkage/association scans have revealed over 20 candidate loci during the past years 

[12] (Table 1.1).  

 

1.2.1 MHC (PSORS1) and Psoriasis Susceptibility 

Among the reported psoriasis susceptible loci, the locus in the major histocompatibility 

complex (MHC) class I region on chromosome 6p21.3, known as PSORS1 (psoriasis 

susceptibility 1) consistently identified in both linkage and association genome-wide 

scans, accounting for one-third to one-half of the genetic liability to psoriasis. Over 30 

years ago, this region was found to harbor human leukocyte antigen (HLA) genes that 

associated with autoimmune diseases [13]. Psoriasis was found to be associated with 
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HLA-C and several HLA-B alleles; however, the association with HLA-B was later 

determined to be due to strong extended haplotypes and linkage disequilibrium with 

HLA-C [14]. This region was subsequently identified by linkage analysis in 1997 [15,16] 

and replicated in numerous populations. The strong association of HLA-Cw6 allele in 

this locus with psoriasis was first reported in the Finnish population over 26 years ago 

[13]. In these early studies, which were performed in Northern European populations, the 

frequency of HLA-Cw6 was ~46% in cases with psoriasis vulgaris and 7.4% in controls. 

However, the exact location of PSORS1 gene remains controversial owing to extensive 

linkage disequilibrium across this region. Two candidate genes lying just telomeric to 

HLA-C were appealing and have been intensively studied with respect to their role in 

psoriasis susceptibility. One is HCR (helix coiled coil rod homolog) [17]; the other is 

corneodesmosin (CDSN). CDSN is expressed in terminally differentiated keratinocytes 

and in the inner root sheath of hair follicles [18,19,20]. It localizes to the modified 

desmosomes of keratinocytes in the stratum granulosum and stratum corneum. The serine 

and glycine-rich terminal domains of CDSN that are essential for cell adhesion are 

sequentially cleaved during skin desquamation [21,22]. Apart from the skin, CDSN 

mRNA is only detected significantly in the placenta and in the thymus [23]. Several 

studies indicate that PSORS1 is likely to lie very close to HLA-C, and distinct from the 

region harboring CDSN and HCR. Two single-nucleotide polymorphisms (SNPs) (SNP9 

rs10456057 and SNP7 rs12208888), lying 5.7 and 10 kb, respectively upstream from 

the start site of HLA-C exhibit stronger association with psoriasis than any other SNP in 

the region [24]. A study from our group looking at both SNPs and classical HLA alleles 

revealed that haplotypes harboring HLACw*0602 and HLA-Cw*1203 were over-
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transmitted to affecteds, suggesting that a variant or combination of variants exclusive to 

these haplotypes were predisposing [25]. Interestingly, one of these variants leads to 

acquisition of an additional site for the transcription factor RUNX, within intron 7. This 

is highly correlated with SNP9 (rs10456057) and SNP7 (rs12208888) polymorphisms 

(r2=1).  

 

1.2.2 Chromosome 17q25 (PSORS2) and Psoriasis Susceptibility 

Although PSORS1 is the only locus for psoriasis identified in all genetic studies to-date 

and is generally understood to confer the most risk for psoriasis, harboring HLA-Cw6 

was not sufficient to develop disease, and the penetrance of this allele was estimated to be 

only 10% [11], indicating that other genetic/environmental factors may also contribute to 

the liability of the disease. Numerous non-MHC susceptibility loci also have been 

identified by linkage/association approaches. Approximately 10 genome-wide linkage 

scans, primarily with polymorphic microsatellites, have been conducted in psoriasis. This 

has led to the identification of over 20 possible linked regions [26]. Table 1.1 lists the 

identified psoriasis susceptibility loci and gene candidates, along with the literature 

reference. PSORS2 on chromosome 17q25 (autosomal dominant) was the first identified 

as non-MHC locus that confers susceptibility to psoriasis [27].  Our group initially 

identified this region by genome-wide linkage scan on eight Caucasian affected families, 

among which PS1 family (19 affected and 12 unaffected members) showed strong 

linkage to D17S784 marker with a maximal two point logarithm of the odds (LOD) score 

of 5.33, with high penetrance [27].  Evidence from a recent linkage study on a single 

large-pedigree in Taiwan replicated our linkage findings, mapping this psoriasis 
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susceptibility locus to the distal end of chromosome 17q [28,29]. Subsequent sequencing 

of 78 genes within this region identified a c.-625A>C mutation in ZNF750, a putative 

C2H2 zinc-finger protein, resulted in a 42% reduction of the promoter activity [30]. 

Overall, the mutation accounted for 1.7% of the psoriasis in the Chinese population 

although recent evidence suggests that it is a rare variant that is unrelated to disease 

susceptibility. In addition, a third independent PSORS2-linked Israeli Jewish Moroccan 

family was also recently identified [31]. The disease in this family was linked to 

D17S928 (maximum multipoint LOD score of 8.79 at θ=0) and segregates with a frame-

shift mutation in ZNF750. Although mutations in ZNF750 could contribute to psoriasis 

susceptibility, the general applicability of their impact in the common form of psoriasis 

remains to be elucidated.  

Finally, a five-marker variant in a region on chromosome 17q25 harboring 

SLC9A3R1 and NAT9 was identified with association mapping [32]. One psoriasis-

associated allele from this five marker haplotype leads to loss of a putative site for the 

RUNX family of transcription factors. This is of interest as RUNX1 and RUNX3 play a 

major role in hematopoietic development and thymic selection, and alterations of RUNX 

binding sites have also been reported as susceptibility variants for systemic lupus 

erythematosus and rheumatoid arthritis [33,34].  

 

1.2.3 Other non-MHC loci and Psoriasis Susceptibility 

Other known potential non-MHC loci include SLC12A8, (solute carrier family 12 

(bumetanide-sensitive Na-K-Cl co-transporters), member 8, known as PSORS3), 

epidermal differentiation complex (EDC, known as PSORS4) region on chromosome 
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1q21, as well as PSORS9 on chromosome 4q28-q31, and so on (Table 1.1). SLC12A8 

was the first gene proposed to be associated with psoriasis susceptibility [35], and it has 

been replicated in a recent study [36]. This gene is a member of the cation-chloride-

coupled cotransporter gene family [37], although the substances it transports are 

unknown. Finally, chromosome 1q21 region (PSORS4) harbors a cluster of genes, named 

as the epidermal differentiation complex (EDC), spanning over 2 Mb. Evidence of 

linkage to this region was first described in Italian families [38], although suggestive 

evidence for linkage was seen at the same time in our cohort of multiplex families from 

the US, and was replicated in our cohort of affected sibship pairs [1]. 

 

1.2.4 Genetics of Psoriatic Arthritis 

Moll and Wright were the first to demonstrate familial aggregation of PsA, and estimated 

the recurrence risk ratio in first-degree relatives (λ1) to be 55 [39], compared with 

estimates ranging from 5 to 10 in cutaneous psoriasis, implicating a strong genetic basis 

in PsA. A more recent study  has estimated the λ1 to be 47 in a British population [40]. 

HLA antigens were identified as prognostic factors in patients with PsA, and 

polymorphisms in the genes coded in the HLA region on chromosome 6p have been 

shown to be associated with PsA [41]. Karason et al. published their genome-wide 

linkage study in PsA, obtaining a LOD score of 2.17 on 16q, which is close to PSORS8 

locus for psoriasis. Other associated loci for PsA outside the MHC region were also 

reported elsewhere [42,43,44], such as the IL-1 gene cluster on chromosome 2q and KIR 

(Killer cell Immunoglobulin-like Receptors) genes on 19q13.4.  KIR genes encode a 

family of inhibitory and activating receptors expressed by most natural killer (NK) cells 
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and small subpopulations of T cells. There are two groups of KIR gene-family haplotype, 

known as A and B.  Whereas the group A KIR haplotype mainly encodes inhibitory KIRs, 

the group B KIR haplotypes encode more activating KIRs. It has been recognized that 

various combinations of MHC class I molecules and KIRs are dominant in the regulation 

of human NK cells and thus correlate with susceptibility to autoimmune diseases [45].  

 

1.2.5 Current Challenges 

As with all complex diseases, linkages and associations with psoriasis have not always 

been replicated in other cohorts. This can be due to low effect size of individual genetic 

variation, ascertainment bias, gene–environment interactions and other confounding 

factors. Besides, the functional relationship between predisposing genetic variation and 

the mechanism of interaction between environmental trigger factors and genetic effects 

still remain unknown, which, however, provides further evidence for the complex basis 

of this disease. A more systematic approach, with the capability of integrating and 

analyzing different sources of biological information, i.e. phenotype/genotype data, gene 

expression profiling and epigenetic changes, is described in this dissertation as a means 

of attempting to understand the pathogenesis of the disease better (Figure 1.1).  
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1.3 Epigenetics of Common Diseases 

1.3.1 Overview of Epigenetics 

It has been widely recognized that classic genetics alone is not sufficient to explain the 

diversity of phenotypes within a population. Nor does classic genetics explain how, 

despite their identical DNA sequences, monozygotic twins or cloned animals can have 

different phenotypes and different susceptibilities to a disease [46,47]. The concept of 

epigenetics offers a partial explanation of these phenomena. It focuses on non-sequence 

mediated forms of gene regulation and heredity. The term epigenetics is derived from epi 

(above and beyond) and genetics, and is commonly used to describe heritable biological 

information that is not encoded in the DNA sequence. Epigenetic mechanisms have many 

layers of complexity, including DNA methylation by DNA methyltransferases (Dnmts), 

histone modifications such as methylation, acetylation, and phosphorylation, structural 

modifications of chromatin, and microRNAs as well as other noncoding regulatory RNA 

[48]. Epigenetic changes are crucial for the development and differentiation of the 

various cell types in an organism, as well as for normal cellular processes such as X-

chromosome inactivation in female mammals [49]. However, epigenetic states can 

become disrupted by environmental influences or during aging, and the importance of 

epigenetic changes in the development of cancer and other common diseases is 

increasingly being appreciated.  

 

1.3.2 Epigenetics alterations and Common Diseases 

The best-known epigenetic marker is DNA methylation, the addition of a methyl group to 

DNA at the 5-carbon of the cytosine pyrimidine ring. It has critical roles in the control of 
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gene activity and the architecture of the nucleus of the cell. In humans, DNA methylation 

commonly occurs in cytosines that precede guanines; these are called CpG dinucleotides 

[50]. Approximately 70-80% of the CpG dinucleotides in the human genome are 

methylated, predominately in areas harboring repetitive sequences [51]. However, 

regions rich in CpGs, termed CpG islands (CGIs) are also found in promoters of more 

than 70% of annotated genes [52,53]. These islands are usually not methylated in normal 

cells [54,55]. The methylation of particular subgroups of promoter CpG islands can, 

however, be detected in normal tissues.  

It has been well accepted that DNA methylation acts in concert with other 

epigenetic mechanisms, such as histone modification, to regulate normal gene expression 

and facilitate chromatin organization within cells. Such regulation may be part of normal 

developmental or differentiation processes but can also be triggered by environmental 

factors [56,57,58,59,60]. These and other demonstrations of how epigenetic changes can 

modify gene expression have led to human epigenome projects and epigenetic therapies 

[61,62,63]. Bell et al. recently reported that methylation of CpG dinucleotides is 

inversely correlated with gene expression in the human genome [64]. By comparing 

methylation levels to estimates of gene expression, the authors found a significant 

negative correlation (mean rank correlation r = -0.454) between methylation and gene 

expression levels across 11,657 genes in HapMap cell lines [64].  In addition, the drop in 

methylation levels near to the transcriptional start site (TSS) was only observed in highly 

expressed genes.  

On the other hand, aberrant DNA methylation patterns are often observed in 

human common diseases [65], especially for cancer development [66,67]. Such events 



12 
 

are often accompanied by alterations in chromatin structure at gene regulatory regions. It 

is believed that during carcinogenesis, epigenetic switching and reprogramming result in 

the aberrant hypermethylation of CpG islands, reducing epigenetic plasticity of critical 

tumor suppressor genes, and rendering them unresponsive to normal stimuli. One of the 

first epigenetic alterations found in human cancer was the global hypomethylation of 

DNA in human tumors as compared with the level of DNA methylation in their normal-

tissue counterparts [68].  A recent large-scale study of DNA methylation with the use of 

genomic microarrays has detected extensive hypomethylated genomic regions in gene-

poor areas [60].  During the development of a neoplasm, the degree of hypomethylation 

of genomic DNA increases as the lesion progresses from a benign proliferation of cells to 

an invasive cancer [69]. Moreover, another major event in the origin of many cancers is 

hypermethylation of the CpG islands in the promoter regions of tumor-suppressor genes 

[70]. These changes occur at different stages in the development of cancer and can affect 

genes involved in the cell cycle, DNA repair, the metabolism of carcinogens, cell-to-cell 

interaction, apoptosis, and angiogenesis, all of which are involved in the development of 

cancer [67,71]. Recent studies on the profiles of microRNA (miRNA) expression 

suggested a third possible mechanism of epigenetic lesion in tumorigenesis. DNA 

hypermethylation in the miRNA 5’ regulatory region may account for the inactivation of 

miRNA in tumors [72,73].  

One new frontier in the study of the epigenetics of human diseases is to establish 

its potential role in common non-neoplastic human diseases, especially the autoimmune 

diseases [74]. Epigenetic mechanisms are essential for the function of immune system. 

Moreover, a failure to maintain epigenetic homeostasis in the immune response due to 
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factors including environmental influences, leads to aberrant gene expression, 

contributing to immune dysfunction and in some cases the development of autoimmunity 

in genetically predisposed individuals. For instance, aberrant hypomethylation is found in 

T cells of patients with systemic lupus erythematosis, including in genes such as 

lymphocyte function-associated antigen-1, which is overexpressed in lupus T cells [75].  

Another study on epigenetic changes in the blood of systemic lupus erythematosus 

patients revealed altered methylation of several genes contributing to T-cell autoreactivity, 

B-cell overstimulation and macrophage killing [76].  Compared to many other 

autoimmune diseases, psoriasis is more tractable due to the accessibility of its target 

organ: the skin. There have been a few reports of altered methylation within promoters of 

single genes of psoriatic skin. For example, the SHP-1 (PTPN6) promoter is reported to 

be demethylated in psoriatic skin but not in Atopic Dermatitis (AD) or normal skin [77].  

However, global methylation changes in psoriasis have not been described. 
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1.4 Aims of the Dissertation 

The aims of the present dissertation are threefold as shown in Figure 1.1. Aim 1 was to 

perform a genome-wide association study (GWAS) of psoriasis and psoriatic arthritis. 

This is described in Chapter 2 where the major findings of this aim are highlighted. 

Unlike many Mendelian disorders in which the disease alleles are rare and of catastrophic 

effect with high penetrance, the alleles underlying complex genetic disorders, like those 

of psoriasis, are relatively common and make low to  modest  contributions to disease 

risk, rendering them difficult to identify by linkage study [78]. In this setting, tests of 

association are much more powerful than tests of linkage, provided causal variants or 

proxies for them can be genotyped [79]. With the advent of HapMap project, millions of 

genetic markers, or single nuclear polymorphisms (SNPs), have been identified 

throughout genome [80].  By comparing the allele frequencies of each marker in cases 

and controls, association with a polymorphism can be established, allowing more precise 

localization of a risk variant for further sequence analysis [81]. This was being done for a 

number of common diseases, where linkage analysis had not been fruitful [82].  In this 

GWAS, we scanned more than 300,000 SNPs in the genomes of 223 psoriasis patients, 

including 91 who had psoriatic arthritis. We compared the DNA variations in people with 

psoriasis to those found in 519 healthy control patients, looking for specific differences 

that may be linked to the disease. The initial findings were further confirmed in an 

independent replication study with larger set of patients and healthy controls.  

The Aim 2 of this thesis was to perform follow up functional analyses to identify 

the PSORS1 variant. Chapter 3 describes a systematic approach for screening the 

PSORS1 genetic variants for enhancer activities by transfecting the construct plasmid 
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that contains the different alleles of these SNPs into keratinocytes. This approach allowed 

us to investigate the regulatory activity of PSORS1 risk alleles in both proliferating and 

differentiating keratinocytes (see Methods in Chapter 3). Since psoriasis is a defect of 

differentiation, we hypothesized that the PSORS1 allele would show a difference in 

differentiating keratinocytes. In addition, correlations of PSORS1 risk alleles with 

expression levels of nearby candidate genes were also analyzed and reported.  

Finally, Aim 3 of this thesis was to perform a global study of altered CpG 

methylation in psoriatic skin.  Since the genetic variants only account for about 60% of 

phenotypic variance of psoriasis [11], we hypothesized that both genetic and 

environmental can modify the epigenetic changes in psoriatic skin, which in turn are 

attributable to the pathogenesis of the disease. Chapter 4 describes profiling of global 

changes of methylation in involved psoriatic skin versus uninvolved and normal skin by 

querying 27,578 CpG sites with Illumina bead arrays. Significant methylation changes at 

certain CpG sites were identified and well characterized. Hierarchical clustering analyses 

of the top 50 differentiating loci were used to classify the lesion and normal samples. The 

correlations of methylation level at specific CpG loci with expression levels of a nearby 

gene were further examined, and finally, global changes in methylation and expression 

status as a consequence of treatment with a TNF-alpha inhibitor were assessed and 

reported in Chapter 4. In Chapter 5, I provide an overall conclusion of my findings and 

discuss future directions. The flow diagram showed in Figure 1.1 outlines the integrative 

approach that was used in this dissertation to explore both genetic and environmental effects 

through epigenetic modifications of psoriasis.  
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Table 1.1 Locations of psoriasis susceptibility (PSORS) loci and gene candidates in each interval. 

Locus Chrom 
Location 

Candidate Genes References 

PSORS1 6p21.3 HLA-C, CDSN, HCR, HERV-K, HCG2, 
POU5F1, TCF19, CCHCR1, LMP, 
SEEK1, SPR1  

[16,83,84,85,86,87,88,89,90,91] 

 

PSORS2 17q25 RUNX1, RAPTOR, SLC9A3R1, NAT9. 
TBCD 

[27,32,92,93,94,95] 

PSORS3 4q34 IRF-2 [96,97] 

PSORS4 1q21 S100 genes and late cornified envelope 
within EDC, Loricrin, Filaggrin, 
Pglyrp3,4 

[38,98,99,100,101,102,103,104] 

PSORS5 3q21 SLC12A8, cystatin A, zinc finger protein 
148 

[35,36,105,106] 

PSORS6 19p13 JUNB [107,108,109,110] 

PSORS7 1p13 

1p32.1-31.2 

PTPN22 

IL23R 

[111,112] 

PSORS8 16q13 CX3CL1/CX3R1, NOD2/CARD15 [113,114] 

PSORS9 4q31.2 IL-15 [115,116] 

PSORS10 18p11  [117,118] 
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Figure 1.1 Flow diagram illustrating the integrated approach used in this thesis to identify genetic/epigenetic risk factors for 
psoriasis. Abbreviation: GWAS, genome-wide association study.  
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CHAPTER 2 

GENOME-WIDE ASSOCIATION STUDY OF PSORIASIS 

AND PSORIATIC ARTHRITIS 
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2.1  Introduction 

Psoriasis (PS) is a chronic inflammatory disease of the skin affecting 2-3% of the 

population [119]. Approximately 25% of patients also develop psoriatic arthritis (PsA), a 

common, debilitating auto-immune disease belonging to the family of spondyloarthritides 

[120,121]. The recurrence risk (λS) of PsA is high, and estimates of 27-47 have been 

proposed [40,122].  This is much higher than the estimated λS of PS which is estimated to 

be between 4 and 11 [1].    

PS and PsA are interrelated disorders, and the prevalence of PS is 19 times higher 

among first degree relatives of probands with PsA compared with the general population 

[123]. The pathogenesis of PS and PsA is complex, involving both genetic and 

environmental risk factors. Strong association of PS with the MHC class I region 

(PSORS1 or psoriasis susceptibility locus 1) was demonstrated in the 1970s [124] and has 

been confirmed in numerous subsequent studies [16,125,126]. However, the genetics of 

PsA is not as clear-cut and association with alleles of the HLA class I region is not 

reported to be as strong with PsA as with PS [123]. Hence, it has not been clear if PsA is a 

clinical phenotype that is distinct from PS without psoriatic arthritis and if is due to 

different predisposing genetic factors.  

A number of regions in the genome have been reported to be associated with PS 

[8,32,35,119], and some have been convincingly replicated. This includes the 3’UTR of 

interleukin 12B (IL12B) [127,128] and two non-synonymous SNPs of interleukin 23 

receptor (IL23R) [128]. One of these (R381Q) was also shown to be associated with 

Crohn’s disease [129]. However, together with the PSORS1 locus, the combined effect of 

these loci is unable to account entirely for genetic susceptibility to PS.  
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In order to systematically search for other susceptibility loci, we undertook a 

genome wide association scan (GWAS) to identify genetic factors predisposing to PS and 

PsA. Besides detecting strong association with the HLA class I region in the combined 

and PsA cohort, and replicating the recently reported associations with IL23R and IL12B, 

we identified a number of novel associations. These include a region on chromosome 

13q13 harboring LHFP and COG6, a region on chromosome 15q21 harboring USP8-

SPPL2A-TNFAIP8L3, association with the LCE cluster of genes on chromosome 1q21 

from the PSORS4 locus, and a region of chromosome 4q27 recently reported to be 

associated with several other autoimmune diseases and associated with PsA and 

potentially PS.  
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2.2 Materials and Methods 

2.2.1 Subjects  

The cohorts for the discovery and replication phases of this study are all of European 

descent and are described in Table A1.1, Appendix I. The discovery cohort consisted of 

223 Caucasian individuals with PS or PsA from the US. Cases were ascertained through 

Texas Dermatology (Dallas, TX) and the dermatology clinics at the University of 

California, San Francisco (UCSF). 89 of the PsA cases had a first degree relative with 

psoriasis and were members of affected sib pair families, described elsewhere [130]. All 

except for two of these PsA cases also had PS. These cases were from affected sib pair 

families with psoriasis and both of these cases had several first degree relatives with PS.  

Genotypes of 519 European controls obtained following hybridization to the 

Illumina HumanHap300 array were from the New York Cancer Project (NYCP) [131] 

and were downloaded from http://intragen.c2b2.columbia.edu/.  These were random 

controls and there was no specific information about autoimmune/inflammatory disease. 

Recent large genome-wide association studies using controls of this type have been 

shown to be successful, leading to only a modest effect on power unless the event of 

misclassification bias is substantial [132]. Informed consent was obtained from all 

participants. Protocols were approved by the local institution review boards of all 

participating institutions. All subjects over 18 years of age gave written informed consent, 

filled out a clinical questionnaire and received a skin examination by the study 

dermatologist, who confirmed the diagnosis of plaque PS and graded PS severity. All 

adults with PsA satisfied the inclusion criteria of having both clinically documented 

http://intragen.c2b2.columbia.edu/
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inflammatory synovitis and PS, confirmed by a rheumatologist and dermatologist 

respectively.  

Blood samples were obtained by venipuncture for all subjects, and genomic DNA 

was isolated from whole blood by standard procedures. 

Replication cohorts were from both the U.K. and the U.S. The U.K. cohort 

consisted of 576 PsA patients from the UK and are described elsewhere [133]. In brief, 

PsA patients under active follow up by hospital rheumatologists were recruited from 

throughout the UK although the majority came from the North-West region of England. 

All patients satisfied the inclusion criteria of having both clinically documented 

inflammatory synovitis and PS. Each patient was assessed by a trained research nurse, 

who undertook a standardized clinical history and examination. Detailed demographic 

and clinical information was obtained and whole blood was taken for DNA extraction 

and subsequent genetic analysis. Control samples (n = 480) were obtained from blood 

donors. All patients and controls were white and of UK descent. They were recruited with 

ethical committee approval (MREC 99/8/84) and provided written informed consent.  

The replication cohort from the U.S. for cases consisted of 577 patients with PS 

(94 of these were also diagnosed with PsA), ascertained at the University of California, 

San Francisco, CA or at Texas Dermatology, Dallas, TX The replication cohort for 

controls consisted of 479 unrelated Caucasian individuals from the University of 

California, San Francisco, ascertained as a set of healthy controls, for cardiovascular 

studies. A separate cohort of 258 controls was ascertained in Texas. The latter controls 

were all > 40 years of age and were ascertained on the basis of not having PS, PsA, or 

any other inflammatory or autoimmune disease. Table A1.1 in Appendix I also provides 
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information on how well the cases and controls were matched in terms of age and gender. 

It can be seen that the gender proportions and ages are similar in cases and controls, for 

both discovery and replication studies. 

 

2.2.2 Genotyping Methods 

DNA was normalized to a concentration of 100 ng/µl (diluted in 10mM Tris/1mM 

EDTA). Samples were quantitated with a Nanodrop Spectrophotometer (ND-1000). For 

the discovery phase, approximately 1 µg of genomic DNA was used to genotype each 

sample on the Illumina HumanHap300v2A Genotyping BeadChip. This was performed at 

the Robert S. Boas Center for Genomics and Human Genetics at The Feinstein Institute 

for Medical Research, Manhasset, NY. This assay relies on allele specific primer 

extension and the use of a single fluorochrome. Samples were processed according to the 

standard Illumina Infinium II automated protocol. This involved whole genome 

amplification, fragmentation, precipitation, resuspension in hybridization buffer and 

hybridization to the Illumina Bead Chips for a minimum of 16 h at 48ºC. After 

hybridization the BeadChips were processed for the single base extension reaction, 

followed by staining and imaging on an Illumina Bead Array Reader. Normalized bead 

intensity data were loaded into the Illumina Beadstudio 2.0 software which converted 

fluorescence intensities into SNP genotypes.  

Genotyping for all the replication studies was performed with the Sequenom 

MassArray system (iPlex assay). This involves primer extension chemistry and mass 

spectrometric analysis described at our web site http://hg.wustl.edu/info/ 

Sequenom_description.html.  

http://hg.wustl.edu/info/%20Sequenom_description.html
http://hg.wustl.edu/info/%20Sequenom_description.html
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2.2.3 Quality Control 

Before analysis, we performed quality filtering of both samples and SNPs to ensure 

robust association tests. Based on previous criteria [134], we required that all samples 

used for the discovery phase pass a 93% genotyping call rate threshold, and that all SNPs 

pass a 95% call rate threshold.  

In the case of the replication studies, 57 individuals from the total of 2370 

individuals in the replication study were removed because of low genotyping (i.e. when 

over half of the genotypes for a sample were missing). SNPs with < 75% call rates were 

also excluded from analysis to obtain an average genotyping rate of 0.902. Genotypes 

were also evaluated for departure from HWE in the controls and SNPs with P < 0.001 

were removed from further analysis. After pruning, 244 SNPs remained. 

A total of 463 ancestry informative SNPs (AIM) present on the Illumina 

HumanHap300v2A Genotype BeadChip were used to check for possible confounding 

population substructure in the discovery sample with STRUCTURE software [135].  For 

this analysis, genotypes at these SNPs were analyzed for all 742 samples (223 PS cases 

and 519 controls).  

To investigate other biases [136] that could be introduced with shared controls we 

assessed the potential effect of substructure with the genomic-control method [137] and 

with EIGENSTRAT [138].  

 

2.2.4 Statistical Analysis for Association  
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The Cochran-Armitage Test for trend was conducted with Purcell’s PLINK program 

(http://pngu.mgh.harvard.edu/~purcell/plink).  However, several SNPs in the current 

study that exhibited significant differences in cases/controls, were also different when 

allele frequencies in controls were compared with those from European CEPH typed for 

SNPs in the HapMap project. NYCP participants are quite diverse with respect to 

European origin, and many SNPs are reported to show differences among European 

subgroups [139]. These were identified by a comparison of SNP allele frequencies in 

European CEPH individuals typed for the HapMap project and were not selected for 

follow-up studies. 

Measures of linkage disequilibrium, D’ and r2, and allele frequencies were based 

on pre-computed scores from the International HapMap website or were computed 

locally from HapMap genotypes or from our own case and control genotypes with 

Haploview 3.2 (http://www.broad.mit.edu/mpg/haploview/).  Power calculations for 

association were calculated at: http://pngu.mgh.harvard.edu/~purcell/gpc/. Association 

localization plots were generated with an R code modified from snp.plotter 

(http://cbdb.nimh.nih.gov/ ~kristin/snp.plotter.html) and Regional Association Plot 

(http://www.broad.mit.edu/ diabetes/scandinavs/figures.html). Family based association 

tests on 271 nuclear families were performed with the Pedigree Transmission 

Disequilibrium Test [140] as described elsewhere [32,126,141]. 

 

2.2.5 Immunohistochemistry 

Tissue sections were fixed with acetone and stained with 10ug/mL purified mouse anti-

human monoclonal antibodies to IL-2 (R&D, clone 5334.21), IL-21 (R&D, J148-1134), 

http://pngu.mgh.harvard.edu/~purcell/plink
http://www.broad.mit.edu/mpg/haploview/
http://cbdb.nimh.nih.gov/%20~kristin/snp.plotter.html
http://www.broad.mit.edu/%20diabetes/scandinavs/figures.html
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COG6 (Abnova, H00057511-M01) and SPPL2A (Abgent, AP6312a). Biotin labeled 

horse anti-mouse antibodies (Vector Laboratories) were amplified with avidin-biotin 

complex (Vector Laboratories) and developed with chromogen 3-amino-9-ethylcarbazole 

(Sigma Aldrich).  
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2.3  Results 

2.3.1 Genome-Wide Association Scan 

For our “discovery” phase, 223 PS cases (132 cases with PS without arthritis and 

91 PS cases with arthritis (PsA) were typed on the Illumina HumanHap300 arrays. We 

compared case data to publicly available genotype data of 519 European controls from 

the New York Cancer Project [142] collected with the same platform.  The number of 

cases used for this scan is smaller than that used in many recently described genome wide 

association scans. However, the 91 cases of PsA had at least one first degree relative with 

PS and were expected to be enriched for genetic factors. Power calculations based on 223 

cases and 519 controls indicated that using a threshold of P < 5 × 10-5, we had 70% 

power of detecting a locus with a genotype relative risk (GRR) of 2.0, and over 99% 

power to detect a locus with a GRR of 3.0 such as the MHC (see below).  However, 

many replicated associations have small GRRs [132] and we had only 10% power to 

detect a locus with a GRR of 1.5.  

Following the genotyping of samples, stringent quality control measures were 

implemented. We required that all samples used for the discovery phase passed a 93% 

genotyping call rate threshold, and that all SNPs passed a 95% call rate threshold. 

Justification for this threshold is based on the evaluation of empirical distributions 

(Appendix I, Figure A1.1).  With sample call rates ≤93%, there was an elevation in 

observed sample heterozygosity, i.e. deviation from Hardy-Weinberg equilibrium, 

suggesting possible genotyping errors (e.g., sample contamination or allele drop-out). 

Likewise, there was a significant discrepancy of missingness between case and control 

groups when the SNP success rate was <95%.   
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For the discovery phase, a total of 311,398 SNPs were pruned to 305,983 SNPs 

after filtering for low call rate, minor allele frequency < 0.01 and deviation from Hardy-

Weinberg equilibrium (P < 0.001). Quality control also led to the removal of 29 samples, 

leaving 218 cases for further analysis. The average genotyping rate in the remaining 

individuals was 0.995.  

To investigate other biases [136] that could be introduced with shared controls, 

we assessed the median distribution of test statistics using the genomic-control factor λGC 

[137]. With a set of 463 ancestry informative SNPs (AIMs), λGC = 1 indicating no 

inflation). We also performed analysis on the same set of AIM SNPs with STRUCTURE 

software [143]. Under the assumption of two population clusters, there was no 

association between the most likely inferred cluster and case/control status and the 

average allele frequency difference between clusters was less than 2.5%. These results 

showed that population substructure is unlikely to be confounding our results. However, 

analysis of all markers used in the discovery study yielded λGC=1.101 before correction. 

A similar value was obtained with EIGENSTRAT [138] where  λ=1.107. Examining 

stratified subsets of cases (PS without arthritis or PsA) with all markers also yielded 

similar λ values (PS without arthritis: λGC=1.07; PsA: λGC=1.05).  Following adjustment 

of P values with the genomic control method, λ=1. The discovery P values adjusted by 

the genomic control method as implemented in PLINK [144] are presented in the tables 

and figures.  

To detect associations, we first performed a preliminary analysis with a Cochran-

Armitage trend test. Figure 2.1 illustrates negative logarithm of the P values obtained 

across the genome, considering all cases and all controls (Figure 2.1A) and considering 
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only the 91 PsA cases and all controls (Figure 2.1B). Results were then rank ordered on 

the basis of P values. 84 SNPs in 35 genomic regions were associated with P < 5 × 10-5; a 

level that we would informally expect to observe by chance roughly 15 times in this scan 

given the number of tests performed if all SNPs were independent. A subset of SNPs 

from 120 regions were investigated further. Criteria for selection included the strength of 

the discovery P value, particularly when several SNPs from a single region showed 

evidence for association, a possible biological role of a gene harboring a SNP with some 

evidence for association, or localization of SNPs with moderate evidence for association 

to a known psoriasis susceptibility locus (e.g. PSORS4). We also included the previously 

reported associated SNPs in IL23R and IL12B [128].  

An independent cohort of 577 PS cases from the U.S. and 737 U.S. controls were 

used for the replication stage; 94 of these cases had also been diagnosed with PsA. To 

examine the potential role of variants upon PsA susceptibility specifically, 576 PsA cases 

from the UK and 480 controls from the UK were also employed. An alternative 

genotyping technology (iPlex; Sequenom) was used for the replication phase. The 

platforms used for the discovery and replication phases gave very similar results:  

Concordance rates on the basis of 116 samples and 301 SNPs typed with both platforms 

was 98.74%.  

Our 100 top ranked SNPs with any cohort (PS, PS without arthritis, or PsA) are 

listed in Table S2 of the article website (http://www.plosgenetics.org/article/info:doi 

/10.1371/journal.pgen.1000041#s4) to facilitate future attempts to replicate our findings. 

A total of 289 SNPs, including SNPs from the MHC, and two previously reported 

http://www.plosgenetics.org/article/info:doi%20/10.1371/journal.pgen.1000041#s4
http://www.plosgenetics.org/article/info:doi%20/10.1371/journal.pgen.1000041#s4
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associated SNPs within IL12B and IL23R [128] were genotyped in the replication 

analysis.  

 
2.3.2 Association with MHC Region 

The MHC, and in particular, the HLA class I region, is the only region that has been 

shown to be consistently associated with PS. The first nine top-ranking SNPs were from 

the MHC and seven were significant, even when adjusted with the Bonferroni correction 

for multiple tests. Overall, 32 SNPs from the MHC had adjusted P values < 5 × 10-5 

(Figure 2.2). The most significant association was with rs10484554 (adjusted P = 7.8 × 

10-11, GWA scan; P = 5.61 × 10-28, replication; P = 9.772 × 10-38, combined) (Figure 2.2, 

Table 2.1). This SNP lies 34.7kb upstream from the transcriptional start site of HLA-C.  

Strongest association with this region is consistent with previous results from our group 

and others [16,125,126].  The rs10484554*T allele had frequencies of 0.325 in U.S. cases 

and 0.15 in U.S. controls (OR: 2.8 (95% CI: 2.4 – 3.3). To determine the relationship of 

this allele with the classical HLA-C allele strongly associated with psoriasis (HLA-

Cw*0602), we investigated the transmission of this allele with classical HLA-C alleles in 

~250 nuclear families with psoriasis that we have reported elsewhere [126].   The 

rs10484554*T allele was detected on nearly all haplotypes with HLA-Cw*0602 or HLA-

Cw*1203 alleles (results not shown), and was also strongly correlated with the previously 

described highly associated PSORS1 SNP n9*G [24,126] (rs10456057*G) allele. We 

have previously shown that SNPs upstream from HLA-C are more strongly correlated 

with PS than HLA-Cw*0602 is, and that these risk alleles are also correlated with HLA-

Cw*1203 [126]. Hence, rs10484554*T may be a good proxy for the PSORS1 variant.  
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In the case of the U.K. PsA replication samples, rs10484554 was again highly 

significant (P = 6.86 × 10-11) (Table 2.2), although the frequency of the rs10484554*T 

allele exhibited population differences when frequencies in the U.K. and U.S. were 

compared. In the U.K. the rs10484554*T allele was found at a lower frequency in cases 

and controls (0.19 and 0.07 respectively; OR: 2.4 (95% CI: 1.8 - 3.1)).   

A second SNP from the HLA class I region lying between MICA and MICB 

(rs2395029) was highly associated with PS and PsA. This SNP results in the G2V 

polymorphism of the class I gene HCP5 (HLA complex P5) which encodes an 

endogenous retroviral element. For this SNP, PS was associated with a combined P = 

2.13 × 10-26 in the U.S. cohort and 1.86 × 10-10 in the U.K. PsA cohort (Table 2.1, 2.2).  

The OR of the rs2395029*C allele with both PS and PsA was higher than with any other 

SNP tested (4.1 and 3.2 with PS and PsA respectively). This allele was found at a 

frequency of ~0.12 in cases and 0.04 in controls and did not exhibit the population 

frequency differences of rs10484554. The LD relationship between rs2395029 and 

rs10484554 is not strong (r2 = 0.33 in European CEPH HapMap samples and r2 = 0.23 in 

our U.S. case/control cohort). Conditioning upon rs10484554, the P value for rs2395029 

was still significant (P = 7 × 10-10), hence effects from this SNP are likely to be 

independent.  

HCP5 is expressed primarily in cells of the immune system such as spleen, blood 

and thymus (http://smd-www.stanford.edu/), consistent with a potential role in 

autoimmunity. This allele was recently shown to explain 9.6% of the total variation in 

viral set point following HIV-1 infection [145]. This is of interest, since psoriasis can be 

triggered by infection with HIV and other viruses. Hence, it is possible that HCP5-C 

http://smd-www.stanford.edu/cgi-bin/source/
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carriers mount a strong immune reaction to viral infection, but that in genetically 

susceptible individuals, this reaction leads to excessive inflammation in skin and joints. 

Overall, our observations indicate that MHC class I region SNPs are more highly 

associated with both PS and PsA than any other SNPs.  

 

2.3.3 Association with IL23R  

A recent global association scan using a set of pooled PS samples and controls against a 

set of 25,215 genecentric SNPs confirmed a previously reported association with IL12B 

(rs3212227 in its 3’ UTR) [127] and identified a second region of association 60kb 

upstream from its mRNA start site (rs6887695) [128]. An analysis of additional genes 

encoding components of the IL12B pathway lead to the identification of associations with 

Il23R (R381Q: rs11209026 and L310P: rs7530511) [128]. These SNPs were proposed to 

mark a common psoriasis-associated haplotype. Rs11209026 is also the SNP within 

IL23R reported to be associated with Crohn’s disease [129].  

In our discovery cohort, the most significant association in the IL23R interval was 

obtained with a different SNP (rs12131065) from that described previously as being 

associated with PS (rs11209026). This SNP rs12131065 has P = 0.0039 in the discovery 

cohort (Table 2.1) and has not previously been reported to be associated with PS. The 

LD relationship between rs12131065 and the previously associated rs11209026 SNP is 

low (r2 = 0.031 in HapMap CEPH European samples; 0.009 in cases; 0.026 in controls). 

Conditioning upon rs11209026, the P value for rs12131065 was 0.013. Hence, effects 

from this SNP may be independent of rs11209026 and its association with PS should be 

investigated in other cohorts.  
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SNP rs12131065 lies downstream from IL23R (63kb from rs11209026) and 

4.041kb upstream from the gene for interleukin 12 receptor B2 (IL12RB2) (Figure 2.3). 

IL12RB2 is involved in IL12 dependent signaling, is upregulated by gamma interferon in 

Th1 cells and plays a role in Th1 differentiation [146]. Association with a SNP closer to 

IL12RB2 than IL23R is of interest since animals where IL12RB2 is inactivated develop 

autoimmune disease [147]. 

Association with the previously reported IL23R associated SNP rs11209026 in 

the discovery cohort was not significant (adjusted P = 0.081). Genotyping of rs11209026 

and rs12131065 in the U.S. replication cohort yielded combined P values of 1.4 × 10-4 

and 0.001 respectively (Table 2.1) consistent with replication of this locus with respect to 

previous studies. In the case of these two SNPs, the protective T and A alleles were found 

at frequencies of  ~0.04 and 0.2 in cases versus ~0.07 and ~0.24 of controls respectively. 

In the U.K. replication PsA cohort, association with rs11209026 was consistent with 

replication (P = 8.3 × 10-4), with the rs11209026*T allele being found at frequencies of ~ 

0.04 in cases and ~0.08 in controls (Table 2.2).  

 

2.3.3 Association with IL12B  

Although the associated IL12B SNPs rs3212227 and rs6887695 were not interrogated by 

the Illumina screening panel of SNPs used here, typing of these SNPs in our replication 

U.S. case/control cohorts yielded P values of 0.021 and 5 × 10-5 and replicated previously 

reported associations (Table 2.1). In the U.K. PsA cohort, association with rs6887695 

was also consistent with replication (P = 0.0013) (OR: 0.69; 95% CI: 0.56 - 0.85)) (Table 

2.2).  
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2.3.4 Association with Novel Psoriasis Loci 

In the discovery cohort, there were four SNPs from 13q13 where P < 5 × 10-5 (adjusted P 

< 2 × 10-4). These were: rs1186468, rs4514547, rs4569133 and rs7993214. These SNPs 

lie within a region on chromosome13q13 that encodes the conserved oligomeric golgi 

complex component 6 (COG6) gene and a lipoma HMGIC fusion partner (LHFP) [148].  

Three of the top associated SNPs were tested in the U.S. replication cohort, and all 

showed evidence of replication at P < 0.05 (Table 2.3, Figure 2.4). Results were most 

significant with rs7993214 (adjusted P =10-4, GWA scan; P = 0.0033, replication; P = 2 × 

10-6, combined). Rs3812888, (adjusted P = 0.0017, GWA scan; P = 4 × 10-4, replication; 

P = 10-5, combined) was the only SNP where replication results would remain significant 

following the stringent Bonferroni correction for multiple tests (P = 0.048). The OR of 

the rs3812888*C allele was 1.38 (95% CI: 1.15-1.66).  The rs3812888*C allele was 

found at frequencies of 0.43 in cases and 0.35 in controls.  

COG6 is a component of the conserved oligomeric golgi (COG) complex and is 

involved in intracellular transport and glycoprotein modification[149]. The glycosylation 

pathways in the golgi apparatus must be intact for protein secretion to continue unabated. 

In C. elegans, a COG complex is required to glycosylate an ADAM protease (a 

disintegrin and metalloprotease) [150]. In humans, variants within some ADAM genes 

lead to inflammatory diseases. For example, ADAM33 is an asthma susceptibility gene 

whose catalytic domain undergoes glycosylation [151]. Recent genetic studies suggest 

that ADAM33 is a psoriasis susceptibility gene as well [152]. Hence, COG6 could be 

involved in glycosylation of ADAM33 or other ADAM proteases. Staining of skin 



35 
 

sections with a COG6 antibody revealed cytoplasmic staining in the epidermis as well as 

strong T-cell staining (Figure 2.5).  There was variable expression of the protein in non-

lesional skin samples, but there was uniformly strong expression in all lesional sections. 

Very little is known about LHFP. It is a subset of the superfamily of tetraspan 

transmembrane protein encoding gene. Expression analysis from SOURCE (http://smd-

www.stanford.edu/) indicates that highest levels are found in the ear and spinal cord.  

When the PsA discovery cohort (n=91) was analyzed separately, four SNPs from 

a region on chromosome 15q21 between ubiquitin specific protease 8 (USP8) and tumor 

necrosis factor, alpha-induced protein 8-like 3 (TNFAIP8L3) were associated with P < 5 

× 10-5.  In the case of the most highly associated SNP (rs4775919), adjusted P = 6.7 × 10-

6. Following replication genotyping, this and rs3803369 were associated with PS with P 

values consistent with replication (for rs3803369, adjusted P = 2.5 × 10-4, GWA scan; P = 

0.013, replication; P = 2.9 × 10-5 combined; Table 2.3, Figure 2.6). The rs3803369*A 

allele was found at a frequencies of  ~0.2 in cases and 0.15 in controls (OR 1.43, 95% CI: 

1.21-1.69). Other genes in this region include the transient receptor potential melastatin 7 

(TRPM7) [153], signal peptide peptidase like 2a (SPPL2A) [154] and AP4E1, a member 

of the heterotetrameric adaptor protein (AP) complexes (Figure 2.6). TNFAIP8L3 is a 

novel protein. It harbors a domain (DUF758) that is found in several proteins induced by 

tumor necrosis factor alpha (TNFA), but its function is unknown.  However, the most 

plausible candidate is SPPL2A that catalyzes the intramembrane cleavage of TNFA, 

triggering the expression of IL12 by activated human dendritic cells [155]. Staining of 

skin sections with an SPPL2A antibody (Figure 2.5) revealed profound staining of the 

epidermis, and staining of some dermal cells in both lesional and non-lesional skin. 
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This region is also of interest however, because a processed pseudogene for one 

of the genes in this region (USP8) is found upstream from HLA-C [24]. As discussed 

earlier, this region is one that is most likely to harbor the PSORS1 variant. To ensure that 

our observations were not due to cross-hybridization of chromosome 15q21 SNPs with 

PSORS1 SNPs, we investigated alignment of genes from this region of chromosome 

15q21 with the remainder of genome. We did not detect any significant identity with any 

other region, including the MHC. This, and the fact that chromosome 15 associated SNPs 

are in Hardy-Weinberg equilibrium indicate that our results are unlikely to be artifactual 

and due to amplification of PSORS1 sequences. The similarity between the PSORS1 and 

15q21 variants and their biological consequences need to be investigated further since it 

may provide important insights into the nature of the PSORS1 variant. However, it is 

worth noting that our PsA cases which provided strongest evidence for association with 

15q21 all had at least one first degree relative with PS, and association with this locus 

may be harder to detect in “sporadic” cases.  

We also observed association of PS with a region of the Epidermal Differentiation 

Complex (EDC), which harbors a previously established psoriasis locus (PSORS4) [156]. 

In this instance, rs6701216 yielded a combined P = 6.2 × 10-5 (OR 1.45) (Table 2.3). 

This SNP lies within the late cornified envelope 1C gene (LCE1C) [157], and is one of a 

family of genes that are transcribed very late in epidermal differentiation.  

There were two other regions selected for follow-up where P values were < 0.05 

in the PS replication cohort, and where evidence for association increased in the 

combined cohort (Table 2.3). One was an intergenic region located between granulysin 

(GNLY) and atonal (ATOH) on chromosome 2p11. The most highly associated SNP was 
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rs2164807 (adjusted P = 0.0015, GWA scan; P = 0.0039, replication; P = 1.6 × 10-5 

combined). For this SNP, the G allele was found at a frequency of  ~0.47 in cases and 

~0.39 in controls (OR: 1.35, 95% CI: 1.18-1.54). GNLY (Protein NKG5, Lymphokine 

LAG-2) is of considerable interest with respect to psoriasis. It is present in cytotoxic 

granules of cytotoxic T lymphocytes and natural killer cells, and is released upon antigen 

stimulation[158]. It has been shown to have antimicrobial activity against a broad range 

of microbes including Gram-positive and Gram-negative bacteria, fungi, and parasites 

including M. tuberculosis and other organisms.  Priming of granulysin in CD4 is 

dysregulated in the CD4+ T cells of HIV-infected patients [159].  

Other genes that should be evaluated in additional PS cohorts on the basis of 

replication P values < 0.05, and increased significance in combined cohorts (Table 2.3) 

are calponin-like transmembrane domain protein (CLMN) [160],  the gene for the catenin 

member, CTNNA2 [161], and a gene desert on chromosome 3q13.  

 

2.3.5 Association with Chromosome 4q27 

In the discovery cohort there were 3 SNPs from chromosome 4q27 with P < 5 × 10-5 

(adjusted P < 10-4). These were rs13151961, rs6822844 and rs6840978. The most 

significant of these was rs13151961, where adjusted P = 4 × 10-5 (Table 2.4). Association 

of this region with PsA was confirmed in an independent cohort of patients from the UK 

(for rs13151961, P = 0.003, Table 2.4), where the frequency of the associated T allele 

was ~0.25 in cases and ~0.31 in controls (OR: 0.64; 95% CI: 0.49-0.84). Association 

with additional SNPs in high LD with rs13151961 (rs6840978 and rs6822844), was also 

replicated in this cohort. Although association could not be replicated in our U.S. cohort 
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with a case/control approach, the trend in allele frequencies in cases versus controls was 

similar to that seen in the U.K. cohort (for rs13151961 the frequency of the T allele was 

~0.26 in U.S. cases and ~0.29 in our U.S. controls, Table 2.4).   

A recent study from the Wellcome Trust Case Control Consortium [132] 

identified this 4q27 region in a search for risk factors for type 1 diabetes (T1D). In a 

follow-up study [144], some support for this association with T1D was provided. In the 

latter study, association of this region with Grave’s disease (GD) was also tested, and 

some evidence for association with the complementary allele of rs17388568 to that seen 

in T1D was obtained. The same region was also reported to be associated with Celiac 

disease (CeD) [162]. Recent evidence is also provided for a role for this region in 

rheumatoid arthritis and T1D from the Netherlands [163]. In that study the rs6822844*A 

allele was reported to be a perfect proxy for a haplotype that is highly associated with 

autoimmune diseases [163] with frequencies of 0.13 in cases versus 0.19 in N. European 

controls.  

The risk alleles of rs13151961, rs13119723, rs6822844 and rs6840978 associated 

with PS and PsA in the current study are similar to those reported for CeD [162]. Overall, 

the risk alleles/haplotype of GD, CeD, PS and PsA appear to be the same, and of similar 

frequency. For example the frequency of the rs6822844*A allele is 0.14 in U.S. PS 

patients, ~0.16 in U.K. PsA patients, 0.14 in RA patients [163], ~0.13 in T1D patients 

from the Netherlands [163], 0.12 in Celiac Disease patients from the Netherlands [162], 

and ~0.14 in Irish CD patients [162]. This contrasts with frequencies of 0.19-0.20 in 

European control populations [162,163]. Although the frequency of the rs6822844*A 

allele was 0.14 in our PS cases and hence similar to frequencies seen in CeD, RA and 



39 
 

T1D cases, its frequency in our combined cohort of U.S. controls was 0.16 (Table 2.4). 

This is lower than that reported for European controls. However, it has been previously 

reported that geographic variability exists at this locus across Europe [162]. Our U.S. 

“European” controls are likely to be more disparate in origin, and are likely to account for 

our inability to obtain significant evidence for association with PS and 4q27.  

To explore association of this region in our cohort of U.S. PS cases, without the 

possible confounding influence of subtle geographic variability at this locus in Europeans, 

we performed family based association tests in our 242 psoriasis nuclear families which 

are described elsewhere [126,164]. This approach provided evidence for replication of 

association of PS with rs6822844 and rs6840978 (PDT P = 0.029 and 0.007 respectively). 

For these SNPs, the over-transmitted rs6822844*G and rs6840978*C alleles were also 

the risk allele from case/control studies. Haplotype studies in families also revealed 

association with the rs6822844*G/rs6840978*C haplotype (multipoint TDT P = 0.006). 

Hence, our findings support chromosome 4q27 as harboring a variant/haplotype for PsA 

and PS.   

As reported elsewhere the 4q27 locus that contains these associated SNPs 

corresponds to two closely correlated ~439kb and ~40kb haplotype blocks [162]. This 

extensive LD makes it very difficult to determine the predisposing variant. Chromosome 

4q is also the location of PSORS3, which is generally placed slightly more distally [165]. 

However, the locus identified here may contribute in part to the previous observations of 

linkage. The long region of LD at chromosome 4q27 contains several genes [162]: Testis 

nuclear RNA-binding protein (TENR), a gene encoding a protein of unknown function 

(KIAA1109), and genes encoding the interleukin-2 (IL2) and interleukin-21 (IL21) 
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cytokines. TENR is expressed primarily in testis and KIAA1109 transcripts are 

ubiquitous, hence their roles in autoimmunity are not particularly compelling. However, 

IL2 and IL21 are of particular interest with respect to PS. IL2 is considered to be a 

pathogenic cytokine for PS[166], and blockade of the IL2 receptor with therapeutic 

antibodies has induced disease resolution in some cases [167].  IL2 is a survival factor for 

T cells and promotes the differentiation of cytotoxic T-lymphocytes and NK cells. Both 

of these cell types are present in psoriasis lesions. Moreover, many IL2 receptor (IL2R) 

positive T-cells that fit the phenotypic definition of regulatory T cells (Tregs) are also 

present in psoriasis lesions. IL-2 may influence how a common precursor T-cell 

differentiates into either a Treg or a Th17 T-cell, since addition of IL-2 has been shown to 

suppress the differentiation of Th17 T-cells in mice [168]. IL-2 antibodies stain normal 

epidermis and psoriatic epidermis, with generally lower staining in the dermis (Figure 

2.5). The pattern of staining appears to be to dendritic cells (DCs) which are likely to be 

epidermal Langerhans cells. This pattern of IL-2 staining is probably due to DC 

activation and upregulation of IL2R. Cells with IL2 receptors include T-cells, B-cells, 

NK-cells, and dendritic cells.  

The epidermal staining for IL-21 is much lower than for IL-2 (Figure 2.5) and 

appears to be mainly on dendritic cells in the superficial dermis. IL-21 is a product of 

activated T cells (under conditions of Th17 polarization). It then acts in an autocrine or 

paracrine fashion on T-cells to up-regulate expression of the IL23 receptor which has 

already been implicated in psoriasis pathogenesis. IL23R sensitizes cells to IL-23 which 

stimulates IL17 synthesis and/or prolongs the survival of Th17 cells [169].  Blocking 

IL21 reduces the progression of lupus erythematosus [170] which is one of the 
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autoimmune diseases that is now being considered as a “Th17” mediated disease. 

Therefore IL21 may play a role in Th17 formation in this and other autoimmune diseases 

where these cells are pathogenic.  

Extensive resequencing of IL2 coding and flanking regions has already been 

performed in T1D samples and no coding or obvious regulatory/splice variants were 

identified [144]. As stated previously, this region needs to be resequenced thoroughly 

followed by comprehensive genotyping in larger numbers of samples to identify the 

autoimmune associated variants [144].  
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2.4 Conclusions 

The observed associations in the current study are of interest for several reasons. It is 

noteworthy that the strongest association is with the MHC.  Even in PsA, where 

associations are reportedly less than with PS (without PsA), associations with the class I 

region appear to be more significant than with any other region. We were also able to 

replicate previously reported associations with IL12B and IL23R and detected a 

potentially novel association upstream from IL12RB2. Novel associations within COG6 

and the region on chromosome 15q21 harboring USP8 and SPPL2A are of interest. These 

and other regions reported here are worthy of follow up in other cohorts. Moreover, the 

association with chromosome 4q27 provides further evidence that this region is a 

common locus for multiple forms of autoimmune disease.   

 A recent study reported the IL13/IL4 region from chromosome 5q31 as being 

associated with PS [171]. Overall, the risk contributed by the MHC, the IL13/IL4 region 

and the IL23R and IL12B variants was estimated to be 3.83.  With the COG6 and 

chromosome 15q21 loci described here, the risk would be increased. However, PS is a 

complex disease, and overlapping subsets of risk factors may be sufficient for 

susceptibility, so that risk effects cannot be computed in an additive manner. 

The ability to identify risk variants of modest effect for common diseases such as 

PS and PsA will be limited by the cohort size, and larger numbers of cases and controls 

will be necessary to identify the majority of genetic factors for these diseases.  Moreover, 

some of the SNPs with borderline discovery P values are also likely to be genetic risk 

factors for disease. It is worth noting that our discovery P value for the associated IL23R 

R381Q SNP did not reach significance (P = 0.057, adjusted P = 0.081) although allele 
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frequencies in the discovery dataset revealed a M.A.F. of 0.041 in cases and 0.065 in 

controls, which is similar to what has been reported in other studies [172,173]. Additional 

genome-wide association scans and replication studies are required to identify additional 

variants and to confirm some of those found in the current study. Such studies include a 

genome-wide scan for psoriasis variants from the Genome Wide Association Network 

(GAIN) consortium [133]. Genes such as these are important for determining the 

pathogenesis of PS and PsA and in identifying novel drug targets for these inflammatory 

diseases of the skin and joints. 
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Table 2.1 Summary of association with previously reported PS susceptibility loci (MHC, IL23R and IL12B) in U.S. PS cohort 
(810 cases, 1256 controls). 
 
 
Cyto. 
locn 

SNP Location 
(hg18) 

Gene/region Disc. P Disc. P 
(adj.) 

Rep. P Combined 
P 

Minor 
allele 

Freq. 
U.S. PS 
cases 

Freq. U.S. 
Controls 

OR US PS 
combined (95% 
C.I.) 

6p21 rs10484554 31382534 MHC 8.7×10−12 7.8×10−11 1.82×10−30 1.81×10−39 T 0.32 0.151 2.8 (2.4, 3.3) 
6p21 rs2395029 31539759 MHC 1.4×10−7 5.3×10−7 2.51×10−19 2.13×10−26 C 0.12 0.033 4.1 (3.1, 5.3) 
1p31 rs11465804 67475114 IL23R 0.4 0.42 ND 0.0072 G 0.044 0.065 0.67 (0.50,0.9) 
1p31 rs11209026 67478546 IL23R 0.067 0.081 0.0039 0.00014 T 0.039 0.066 0.56 (0.41,0.76) 
1p31 rs12131065 67541594 IL23R 0.0025 0.0039 0.074 0.001 A 0.197 0.243 0.78 (0.66,0.91) 
5q33 rs3212217 158687708 IL12B N.D. N.D. 0.012 N.D. G 0.158 0.199 N.D. 
5q33 rs6887695 158755223 IL12B N.D. N.D. 0.00005 N.D. C 0.221 0.294 N.D. 
 
Cyto. Locn: Cytogenetic location of SNP; Disc P: Trend P values for the GWA scan; Disc. P (adj.): Genomic control adjusted trend P values for the GWA scan; 
Rep. P: Trend P values obtained with the U.S. PS replication cohort; Combined P: Trend P values for U.S. discovery and replication cohorts combined ; Freq. 
U.S. PS cases: Frequency of the minor allele in U.S. psoriasis cases; Freq. U.S. Controls: Frequency of minor allele in the control population. OR: Odds Ratio; 
C.I.: confidence interval; N.D.: Not Done. 
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Table 2.2 Summary of association with previously reported PS susceptibility loci in U.K. PsA cohort (576 cases, 480 controls). 
 
 

SNP Gene/Region Trend P value Minor allele Freq. UK PsA cases Freq. UK PsA controls OR UK PsA (95% C.I.) 

rs10484554 MHC 6.86×10−11 T 0.19 0.07 2.4 (1.8, 3.1) 
rs2395029 MHC 1.86×10−10 C 0.12 0.04 3.2 (2.2, 4.6) 
rs11209026 IL23R 0.00083 T 0.043 0.079 0.52 (0.35, 0.77) 
rs12131065 IL23R 0.31 A 0.21 0.23 0.89 (0.72, 1.11) 
rs3212217 IL12B N.D. G N.D. N.D. N.D. 
rs6887695 IL12B 0.0013 C 0.213 0.28 0.69 (0.56, 0.85) 

     UK PsA: U.K. Psoriasis cases with arthritis; OR: Odds Ratio; C.I.: confidence interval; N.D.: Not Done. 
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Table 2.3 Potential novel loci from GWA scan. 
 
 

Cytogenet. 
location 

SNP Location 
(hg18) 

Gene/region Disc. P Disc. P 
(adj.) 

Rep. 
P 

Combined 
P 

Minor 
allele 

Freq 
cases 

Freq. 
Controls 

OR (95% C.I.) 

1q21 rs6701216 151045150 EDC 0.0034 0.0053 0.0069 0.00005 T 0.174 0.127 1.45 (1.21,1.75) 

2p11 rs2164807 85816062 GNLY-
ATOH8 

0.00084 0.0015 0.0039 0.000016 G 0.467 0.394 1.35 (1.18,1.54) 

2p12 rs11126740 79754603 CTNNA2 0.0018 0.0018 0.019 0.00014 T 0.311 0.37 0.77 (0.67,0.88) 

3q13 rs6804331 105237077 Gene desert 0.00073 0.0013 0.0455 0.0003 C 0.445 0.381 1.30 (1.13,1.50) 

13q13 rs3812888 39128294 COG6 0.001 0.0017 4×10−4 0.00001 C 0.43 0.35 1.38 (1.15,1.66) 

13q13 rs7993214 39248912 COG6 4.7×10−5 0.0001 0.0033 2×10−6 T 0.279 0.351 0.71 (0.62,0.82) 

14q32 rs2282276 94730882 CLMN 0.0096 0.014 0.047 0.0031 G 0.099 0.073 1.40 (1.12,1.76) 

15q21 rs4775912 49068271 USP8-
TNFAIP8L3 

0.00034 0.00065 0.0136 5.6×10−5 G 0.194 0.146 1.41 (1.19, 1.67) 

15q21 rs3803369 49163121 USP8-
TNFAIP8L3 

0.00012 0.00025 0.0138 2.9×10−5 A 0.195 0.145 1.43 (1.21,1.69) 

Trend P values from discovery, replication and combined analyses for U.S. PS samples (810 cases, 1256 controls) are shown. The minor allele, its frequency in 
cases and controls and its odds ratios and 95% C.I.s from the combined data-set are also shown. Abbreviations are described in footnotes to Table 2.1. 
 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274885/table/pgen-1000041-t001/
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Table 2.4 Association results at chromosome 4q27 in PsA and PS cohorts (U.S.: 810 PS cases, 1256 U.S. controls; U.K.: 576 
PsA cases, 480 controls). 
 
 
 
SNP Location 

(hg18) 
Disc. P Disc. P 

(adj.) 
UK 
PsA P 
value 

Minor 
allele 

Freq 
UK 
PsA 
cases 

Freq 
UK 
controls 

OR UK (95% CI) Rep. 
US 
PS P 
value 

Freq 
US 
PS. 
cases 

Freq 
US 
controls 

OR US PS 
cases.(95% CI) 

rs13151961 123334952 1.6×10−5 3.98×10−5 0.0016 G 0.121 0.175 0.64(0.49,0.84) 0.17 0.138 0.158 0.86 (0.71,1.04) 

rs7684187 123560609 1.6×10−4 3.3×10−4 0.001 T 0.247 0.313 0.72 (0.59,0.87) 0.52 0.259 0.298 0.82 (0.71,0.95) 

rs6822844 123728871 4.3×10−5 9.6×10−5 0.008 A 0.155 0.203 0.72 (0.56,0.92) 0.29 0.143 0.164 0.85 (0.71,1.03) 

rs6840978 123774157 2.9×10−5 6.6×10−5 0.013 A 0.192 0.236 0.77 (0.62,0.95) 0.87 0.172 0.204 0.81 (0.68,0.96) 

The minor allele, its frequency in cases and controls and its odds ratios and 95% C.I.s from the combined dataset are also shown. Abbreviations are described in 
footnotes to Table 2.1. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274885/table/pgen-1000041-t001/
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Figure 2.1.  Summary of genome-wide association scan results for all cases and the 
PsA subgroup. Negative LOG10 P values for the Cochran-Armitage test of trend for 
genome-wide association across the genome and by chromosome are shown. Trend P 
values were adjusted with the genomic control (GC) method. The spacing between SNPs 
on the plot is uniform and does not reflect actual physical distances. Adjacent 
chromosomes are shown in red and then in blue. The horizontal dashed lines display a 
cutoff of P = 5×10−5. A: Results obtained with all cases. B: Results obtained with the 
subgroup of 91 psoriatic arthritis cases (PsA). 
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Figure 2.2.  Association localization plots for the MHC following discovery and 
replication phases. Results for SNPs used in the discovery phase (adjusted for GC) are 
presented as diamonds. Negative LOG P values are provided on the Y axis. The X axis 
corresponds to the locations of SNPs. The P value for all samples (original GWA scan 
plus replication samples) are shown as circles. The P value obtained with the most highly 
associated SNP (from the original GWA scan plus the replication samples) is shown as a 
red circle. The SNPs shown as orange diamonds are in r2>0.8 (European HapMap CEPH 
(CEU) samples) with the most significant SNP identified in our study. The recombination 
rate based on the CEU HapMap is shown in light blue along the x axis (scale on the right). 
The LD relationship of Illumina discovery SNPs derived from CEU HapMap genotypes 
are shown below the graph. The most highly associated SNPs are indicated with an 
asterisk. The green arrows indicate the locations of select genes. 
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Figure 2.3.  Association localization plots for the ILI23R region on chromosome 1. 
Symbols are the same as those used in Figure 2.2. SNPs indicated with an asterisk are 
rs11465804, rs11209026 (R381Q) and rs12131065. 
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Figure 2.4.  Association localization plots for novel replicated region on chromosome 
13. Symbols are the same as those used in Figure 2.2. SNPs indicated with an asterisk 
are rs3812888 and rs7993214. 
 
 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274885/figure/pgen-1000041-g002/
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Figure 2.5. Immunostaining of normal, non-lesional and lesional skin for IL2, IL21, 
COG6 and SPPL2A proteins.  
 
 
 

 
 
 



53 
 

Figure 2.6. Association localization plots for novel replicated region on chromosome 
15. Symbols are the same as those used in Figure 2.2. SNPs indicated with an asterisk 
are rs4775912 and rs3803369.  
 
 
 
 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274885/figure/pgen-1000041-g002/
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CHAPTER 3 

IDENTIFICATION OF FUNCTIONAL GENETIC 

VARIATIONS IN THE PSORS1 REGION 
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3.1 Introduction 

3.1.1 Human genetic variations 

An individual’s physiologic response to environmental stimuli can be modulated by 

genetic variation. Millions of genetic alterations (or polymorphisms) occur at >1% in the 

human population and certain variants can have strong impact on disease susceptibility. 

Known genetic polymorphisms include tandem repeated segments, copy number variants, 

small segmental deletions/insertions/duplications, and single nucleotide polymorphisms 

(SNPs). SNPs, with an average of one SNP every 100–300 base pairs, are the most 

common genetic variations. The recent build of NCBI’s SNP database (dbSNP 127) lists 

over 11 million identified SNPs in the human genome, with over 5 million validated by 

multiple investigators. Although most of them have little or no effect on gene regulation 

and protein activity, there are many circumstances where base changes can have 

deleterious effects, and therefore affect the way an individual responds to the 

environment and modify disease risk. SNPs located within the coding region of genes, 

especially the non-synonymous SNPs, which cause amino acid codon alterations, have 

been extensively studied because of their obvious impact on protein activities. However, 

coding SNPs only cover approximately 1.5% of the human genome and in fact the vast 

majority of the SNPs found to be associated with diseases via GWAS analyses reside in 

non-coding and/or possibly uncharted regulatory regions of the genome, termed as 

regulatory SNPs (rSNPs). These variations have become more prevalent in recent 

literatures due to their potential effect on gene regulatory sequences such as promoters, 

enhancers, and silencers [174].  Indeed, there are numerous examples of rSNPs 

associated with disease susceptibility, including hypercholesterolemia, 
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hyperbilirubinemia, myocardial infarction, acute lung injury, and asthma 

[175,176,177,178,179,180].  

 

3.1.2 Genetic Variants in the PSORS1 Region 

PSORS1 (psoriasis susceptibility gene 1) is a well-confirmed major susceptibility 

locus for psoriasis on chromosome 6p21.3. It is so far the strongest susceptibility locus 

[181], accounting for about 30% to 50% of the genetic contribution to the disease. In 

1980, Tiilikainen et al. first reported a 20-fold increased risk of developing psoriasis in 

HLA-Cw6 carriers [13], providing the evidence that psoriasis is a T cell-mediated 

autoimmune disorder. By using HLA haplotype analysis, Schmitt-Egenolf et al found an 

association between psoriasis and the extended haplotype (EH) 57.1, with a 26-fold 

increased risk of developing early-onset psoriasis compared to EH-57.1-negative 

individuals [182]. And within EH-57.1, HLA class I antigens (Cw6-B57) were associated 

to a much greater extent with early-onset psoriasis than the HLA class II alleles. Since 

then, linkage disequilibrium (LD) mapping of the PSORS1 interval by using 

microsatellite markers were carried out by three independent research groups 

[91,183,184]. The objective was to identify the shortest ancestral haplotype segment that 

retains the PSORS1 disease allele. Although all of them reported extended LD pattern in 

PSORS1, the exact location and boundaries of the minimal critical PSORS1 region 

remain poorly defined. By examining a sample of 78 north European families by typing 

14 markers spanning the entire MHC, Balendran et al suggested a 285-kb critical region 

between the makers tn821 and HLA-C [183]. In a case/control study of Japanese 

population, Oka et al  obtained peaked signal within a 111 kb interval telomeric to HLA-

http://www.ncbi.nlm.nih.gov/pubmed/7387872
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C [184].  In 2000, Nair et al typed 62 markers in 478 psoriasis families and narrowed the 

candidate interval for PSORS1 to a 60-kb interval telomeric to HLA-C [91].  

To further break down the extensive LD and fine mapping of the genetic variation 

in the PSORS1 region, a more dense and high-resolution single-nucleotide 

polymorphism-based map is desired. In 2002, Veal et al re-sequenced a 150-kb region 

around HLA-C and identified a total of 59 high-frequency SNPs that were genotyped in 

171 independently parent-affected offspring trios  [24]. Family-based association study 

led to identification of strongest association at two SNPs (n. 7 and n. 9), 4 and 7 kb 

centromeric to HLA-C, respectively. Our lab also performed a comprehensive 

case/control and family-based association study by using microsatellite and SNP markers 

that spans a 772-kb segment of the HLA class I region. It pinpointed the location of 

the PSORS1 to a haplotype block harboring HLA-C that was distinct 

from CDSN and HCR [126].  Taken together, the extensive LD within this region has 

made it difficult to identify the true causative variant of PSORS1. A ~300 kb critical 

PSORS1 interval that contains HLA-C and at least 10 other biologically plausible 

candidate genes has been proposed to harbor PSORS1. Although recent studies suggested 

that HLA-Cw6 is the susceptibility allele [86,185], it alone cannot explain the full linkage 

evidence at the PSORS1 locus, implying that other risk alleles exist within the region 

[185].  

Among all the candidate PSORS1 genes, the HLA-C gene has been intensively 

investigated as it is well known to be involved in many autoimmune disorders [186].  The 

leading hypothesis involves its antigen-presenting capacity. Evidence showed that skin-

homing, CD8 T cells of HLA-Cw6-positive psoriatics respond more strongly to peptides 
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common to both keratin 17 and streptococcus than do CD8 T cells of HLA-Cw6-negative 

psoriatics [187]. A recent study also indicated a spatially distinct HLA-C expression 

pattern in psoriasis and eczema, implying a functional role of HLA-C in psoriasis-related 

immune response rather than a general feature of inflammation [188]. In addition to 

HLA-C, several other genes within the PSORS1 locus, including CDSN [189], HCR 

[190]and PSORS1C3 [191], also showed strong associations with psoriasis. Some of 

them are expressed in skin cells which made them very plausible candidates for the 

PSORS1 gene.  

As discussed earlier, the strong LD characteristic of this region has complicated 

the search for the true functional PSORS1 variant. To overcome this difficulty, functional 

studies of the known genetic variants within this region may shed light on this problem. 

The Aim 2 of this thesis was to perform follow-up functional analyses to identify the 

PSORS1 variant as described below. We hypothesized that the PSORS1 risk alleles in a 

regulatory sequence can alter transcription of a nearby gene. 

 

3.1.3 Experimental assessment of regulatory SNPs 

Successful mapping of functional rSNPs requires the steps of prioritizing putative 

regulatory sequences or motifs, the co-location of SNPs in these sequences, as well as 

predicting the allele-specific impacts of rSNPs on transcription factor (TF) binding. 

Computational methods for the identification of cis-regulatory sequences have been 

applied in yeast, worm and mammals [192]. While some methods were plagued by high 

false positive rates in mammals primarily because of the large quantity of intergenic 

sequence present, many recent new bioinformatics algorithms have improved prediction 
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[193,194,195].  

To validate the predictions of candidate rSNPs, we need an array of experimental 

approaches to quantitatively examine the molecular properties, i.e. polymorphic effect of 

rSNPs on gene transcription, binding affinity of a nuclear protein to TF binding sites and 

the impact of rSNPs in that region. Standard techniques such as luciferase reporter 

constructs [196] and Electrophretic gel-Mobility Shift Assay (EMSA) [197] are widely 

used to assess effects of rSNPs on binding and gene transcription [198]. In this study, 

functional rSNPs within the PSOSR1 region on chromosome 6 were identified and 

characterized by with these techniques in an attempt to identify the true PSORS1 variant.  
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3.2 Materials and Methods 

3.2.1. Plasmid Construction (Luciferase Assay) 

Oligos containing three tandem repeats of 31-bp genomic DNA fragments with the two 

different alleles (G or A alleles) of SNP9 (rs10456057) and (T or C alleles) of SNP7 

(rs12208888) were cloned into the Kpn1/BglII sites of pTA-Luc vector (Clontech). To 

verify the DNA sequence and orientation, the new constructs were sequenced from both 

forward and reverse directions (forward sequencing primer: 5’-

GTCCCCAGTGCAAGTG-3’; reverse sequencing primer: 5’-GGCGTCTTCCATGGTG-

3’).  

 

3.2.2 Transient Transfection and Measurement of Luciferase activity  

0.5 × 106 293 cells per well were seeded in 12-well plates and transfected with pTA-luc 

vector alone (control) or pTA-luc vector containing either the psoriasis-risk G and T 

alleles for SNP9-PS and SNP7-PS, respectively or the normal reference A and C alleles 

for SNP9-RF and SNP7-RF, respectively, by using TransIT-LT-1 reagent (Mirus). All 

transfections were carried out in triplicate and repeated in an independent assay. After 24 

hour of incubation, the transfected cells were collected, lysed and analyzed for luciferase 

activity by using the manufacturer’s recommended protocol (Luciferase Assay System, 

Promega).  

 

3.2.3 Electrophoretic mobility assay  

[32P]-labeled (Amersham) double-stranded oligonucleotide were incubated with Jurkat 

cell nuclear extract (Oncogene Research Products) at 25°C for 20 min using the Gel Shift 
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Assay System from Promega. We separated the reaction mixture by 4% PAGE and 

visualized the products by autoradiography. We added unlabeled oligonucleotide at 50-

fold molar excess to the reaction for competition. The sequences of the oligonucleotide 

probes are as follows: SNP9-PS: 5’-TTAGGAAATGCTTGTTATA-3’; SNP9-RF: 5’-

TTAGGAAATACTTGTTATA-3’; SNP7-PS: 5’-TCCAGAAATATTATTTGACCC-

3’ and SNP7-RF : 5’-TCCAGAAATACTATTTGACCC-3’. 

 

3.2.4 Luciferase Assay in Mouse Keratinocyte Cells 

In collaboration with Dr. Cristina Strong from NIH, normal and risk allele PSORS1 SNPs 

(Table 3.1) including respective 50-base-pair flanking sequences were cloned into the 

KpnI/Bgl II sites upstream of a keratinocyte-minimal Sprr1a promoter in pGL3 firefly 

luciferase plasmid (Promega).  Dual luciferase assays were performed as described  

previously [199].  Briefly, mouse keratinocyte cells (SP-1) transfected (Lipofectamine, 

Invitrogen) with either normal or risk allele SNP pGL3 plasmid were assayed for 

luciferase activity (Promega) under proliferating (0.05mM Ca2+) and differentiating 

(1.2mM Ca2+) conditions at 48 and 72 hours, respectively. Luciferase activity was 

normalized to Renilla luciferase activity and to promoter only vector control.   

 

3.2.5 Bioinformatic Evaluation of PSORS1 variants 

To predict possible functional relevance of the detected PSORS1 variants, we used 

different publicly available bioinformatic tools for predicting transcription factor binding 

sites in DNA sequences (http://www.gene-regulation.com). The programs use different 

approaches to utilize the library of mononucleotide weight matrices in the TRANSFAC® 

http://www.gene-regulation.com/
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[200] (http://www.gene-regulation.com/cgi-bin/pub/programs/match/bin/match.cgi) and 

Jaspar databases [201] (http://jaspar.genereg.net). 

http://www.gene-regulation.com/cgi-bin/pub/programs/match/bin/match.cgi
http://jaspar.genereg.net/cgi-bin/jaspar_db.pl?rm=browse&db=core&tax_group=vertebrates
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3.3 Results 

3.3.1 Allele-specific repressor activity of SNP9 

Associations with alleles from the HLA class I region on chromosome 6p21 (known as 

PSORS1, psoriasis susceptibility 1), particularly HLA-Cw*0602, were described over 20 

years ago. A variety of genes and regions from a 238-kb interval extending from HLA-B 

to corneodesmosin (CDSN) have been proposed to harbor PSORS1. However, the exact 

location of PSORS1 gene remains controversial owing to extensive linkage 

disequilibrium across this region. In order to identify the minimum block of LD in the 

MHC class I region associated with psoriasis, our group previously conducted a 

comprehensive case/control and family-based association study on 242 Northern 

European psoriasis families and two separate European control populations [126]. Results 

showed that association was the strongest with single markers and haplotypes from a 

block of LD harboring HLA-C and SNP9 (rs10456057). SNP9 is an intergenic SNP 

between HLA-C and HLA-B, lying 4 kb proximal to HLA-C, and SNP9-G allele had 

been previously reported to be the most highly associated with UK psoriasis families [24].  

These studies also highlighted another SNP, SNP7 (rs12208888), a non-coding SNP 

lying 7 kb proximal to HLA-C. Indeed, SNP7 and SNP9 are in complete LD (|D’|=1) and 

the T allele of SNP7 was always inherited with the G allele of SNP9 on an 

overtransmitted haplotype (HLA-Cw*0602, SNP9-G and SNP7-T) [24,126].  

In order to investigate the potential regulatory role of different SNP9 or SNP7 

alleles in nearby gene expression, I subcloned three tandem repeats of nucleotide segment 

around these SNPs into the pTA-Luc luciferase reporter vector, representing one of the 

two alleles, psoriasis-risk alleles (G for SNP9-PS and T for SNP7-PS) or normal 
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reference alleles (A for SNP9-RF and C for SNP7-RF) (Figure 3.1A). The constructs 

were then transiently transfected into human 293 cells. Figure 3.1B summaries the 

outcomes of report gene activities with respect to different allele constructs. Compared 

with empty vector controls, the allele-specific construct containing the SNP9-RF allele 

had a significantly decrease in reporter gene activity by approximately 80%, while the 

construct containing psoriasis-risk allele (SNP9-PS) completely reversed this effect 

(Figure 3.1B). Constructs for SNP7 alleles (PS or RF) has no effect on the reporter gene 

activity. The assay was repeated several times and same trend was observed. This result 

suggests potential allele-specific repressor activity of SNP9, while an A→G mutation 

may abolish this activity.  

 

3.3.2 Oligos containing SNP9 binds to nuclear extra proteins 

To further assess the differential transcriptional activity of SNP9 alleles, electrophoretic 

mobility shift assay (EMSA) was performed according to standard protocols [202]. 

Figure 3.2B showed an allelic-specific binding of nuclear extracts from a human T cell 

line (Jurkat) to the oligos containing SNP9-RF (Figure 3.2B, lane 8), while others failed 

to show binding activity to the nuclear extracts from Jurket cells (Figure 3.2B). Binding 

activity for the oligonucleotide containing SNP9-RF resulted in two distinct complexes 

(arrow heads, Figure 3.2B, lane 8). The specificity of binding was further confirmed by 

competing with 50-fold excess of unlabeled SNP9-RF oligonucleotides (Figure 3.2B, 

lane 9). Taken together, these results clearly suggested a potential allele-specific 

regulatory role of SNP9 (rs10456057) in nearby gene expression via binding to nuclear 

transcription factors.  
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3.3.3 Systematic evaluation of enhancer/repressor activities of potential rSNPs in 

PSORS1  

To systematically assess the enhancer activity of all candidate PSORS1 genetic variants,  

I expanded the list of SNPs of interest to include all nearby highly-correlated SNPs in 

PSORS1 region. . Figure 3.3A shows the schematic map of genomic locations of these 

SNPs as well as the surrounding known genes.  The LD structure of these SNPs were 

obtained by querying the SNAP (SNP Annotation and Proxy Search) database, where the  

pairwise LD was pre-calculated based on phased genotype data from HapMap project 

(http://www.broadinstitute.org/mpg/snap/ldsearchpw.php).  Figure 3.3B shows the 

pairwise LD either in Lewontin's |D'| or allelic correlation r2.  As expected, the plots 

showed strong LD among these SNPs.  

In collaboration with Dr. Cristina Strong from NIH, we further queried these 

risk SNPs for potential regulatory activity. Each of these SNPs (risk or non-risk alleles) 

along with the 19-bp flanking sequences on either side was cloned into pGL3i1 luciferase 

vector (Table 3.1). Each construct was then assayed for its ability to enhance/repress 

luciferase expression driven from mouse minimal Sprr1a keratinocyte promoter [199]. 

Interestingly, this study identified enhancer activity (> 2-fold luciferase activity) in the 

risk allele (T) of SNP rs13191343 compared to normal (C) (Figure 3.4).  This activity 

was observed under differentiating conditions (Figure 3.4B) and not during the cell 

proliferative (Figure 3.4A) state.  Notably, this SNP rs13191343, located 1.5 kb 

upstream of HLA-C (Figure 3.3A), was repeatedly reported to be highly associated with 

psoriasis and psoriatic arthritis in GWAS studies ( p=2.32×10−72, OR = 2.37 [2.16,2.61])  

[203,204], and it has strong LD (r2 = 0.95) with SNP rs10484554, the most significantly 

http://www.broadinstitute.org/mpg/snap/ldsearchpw.php
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associated variant described in our GWAS study described in Chapter 2 (Table 2.1).  

Together, this data suggests a gain in regulatory function in the risk allele of SNP 

rs13191343 that could likely play a role in the disease. 

  

3.3.4 Genotypes of SNP rs13191343 are associated with CDSN expression  

It is highly desirable to find out what gene(s) is affected by this polymorphism. Notably, 

CDSN, one of the candidate genes for psoriasis susceptibility, encodes the only 

PSORS1 transcript to be specifically expressed in terminally differentiated keratinocytes 

[22] and its dysregulation can lead to severe skin barrier defect [205]. It has been reported 

that its product, corneodesmosin, was up-regulated in the skin lesions of psoriatic patients 

[189]. Data from GAIN study [204] also confirmed that CDSN is differentially expressed 

when involved, uninvolved and normal skin are compared (Figure 3.5A) with the 

Kruskal-Wallis test (p-value = 2.82 × 10-5, significant after multiple comparison 

correction).  We further performed the association analyses for the genotypes (numbers 

of risk allele) of the PSORS1 SNP rs13191343 and 12 genes in the PSORS1 interval 

(C6orf15, CCHCR1, CDSN, HCG27, HLA-B, HLA-C, MICA, MICB, PSORS1C1, 

PSORS1C2, PSORS1C3 and TCF19). Interestingly, CDSN was the only gene whose 

expression level is significantly increased with PSORS1 risk alleles (Figure 3.5B, p < 

0.0001) after the Bonferroni correction for multiple test. The SNP rs13191343 lies ~1.5 

kb to the transcription starting site of HLA-C gene, and ~150kb apart from the CDSN 

gene. Based on the above evidence, a reasonable hypothesis is formulated: the PSORS1 

SNP rs13191343 may alter the expression level of CDSN gene in skin lesions of psoriasis 

patients via a long range effect. This might affect skin barrier formation; a process which 
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is disrupted in psoriasis. Interestingly, the expression level of another candidate gene in 

POSRS1 interval, MICA, was negatively associated with PSOSR1 risk allele (Figure 

3.5B, p=0.009). The MICA gene is located about 117 kb centromeric to HLA-C and it 

encodes the highly polymorphic MHC class I chain-related A, a 43 kDa cell-surface 

protein expressed in response to stresses such as heat, viral infection, inflammation and 

DNA damage. Recent studies further suggested that certain MICA alleles are associated 

with psoriasis and/or PsA in Asian and European populations [206,207,208]. Thus, we 

can’t exclude the possibility that PSORS1 risk alleles may also regulate the MICA gene 

expression. 

 

3.3.5 Bioinformatic Evaluation of PSORS1 Variants  

In order to examine whether any other known transcription factor(s) could bind 

preferentially to either of the two alleles (risk or non-risk) of rs10456057 (SNP9) and 

rs13191343, we queried the alleles of these two SNPs along with 5 bp or 9 bp flanking 

sequences on either side in the MATCH™ 1.0 database [209]. MATCHTM, closely 

interconnected with the TRANSFAC database, is a weight matrix-based tool for 

searching putative transcription factor binding sites in DNA sequences. By choosing the 

options of vertebrate matrix and of minimizing both false positive (minFP) and negative 

rates (minFN), we did not obtain any known binding for all of the queried sequences. We 

further examined these sequences in JASPAR CORE databases [201]. Again, no known 

binding site was obtained for all queried sequences with a cutoff value of relative profile 

score threshold= 80%.    
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3.4 Discussion 

Many DNA variants have been identified on more than 300 diseases and traits 

using Genome-Wide Association Studies (GWASs). Some have been validated using 

deep sequencing, but many fewer have been validated functionally. Functional studies 

primarily focused on those residing in coding regions, specifically non-synonymous 

coding SNPs (nsSNPs) that result in amino acid changes in proteins, as they are generally 

easy to interpret in terms of their obvious impact on protein activity. However, numerous 

SNPs that affect biological function are located outside the coding regions, i.e. in 

regulatory gene regions: promoters, enhancers, silencers, and introns. A recent study also 

suggested that synonymous coding SNPs and other non-coding SNPs shared similar 

likelihood and effect size for disease association with nsSNPs [210]. One appealing 

functional role for non-coding disease associated regulatory SNPs (rSNPs) is that they 

can alter the binding affinity of a transcription factor (TF) to the DNA, which in turn 

change the expression of certain genes, consequently contributing to the disease 

phenotype. Depending on localization, an SNP in a regulatory region may cause either 

complete elimination of the natural TF site [211], formation of a novel spurious TF site 

[212] or quantitative alteration in TF-binding efficiency [213].  

Finding these rSNPs is difficult, since they can be obscured by the potentially 

large number of SNPs present in a linkage-disequilibrium block. This chapter described 

our effort to interpret previous findings in association studies, i.e. to investigate the 

potential regulatory role of genetic variations in PSORS1 region. Interestingly, both the 

luciferase assay on human 293 cells and electrophoretic mobility shift assay indicated an 

allele-specific regulatory role of SNP9 (rs10456057) in nearby gene expression via 
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binding to nuclear transcription factors. Thus, it is highly desirable to find out what 

gene(s) could be affected by SNP9 or other potential regulatory SNPs. As discussed 

previously, the CDSN gene, over-expressed in psoriatic lesions, could be one of the 

candidates. It appears that, for many genes, the two alleles possessed by an individual 

may produce different amounts of transcript [214]. When such allelic differences in 

transcription are observed for some individuals but not others, a plausible explanation is 

genetic variation in the cis-acting elements that regulate the gene in question on the same 

chromosome [215]. Thus, it is possible that cis-regulatory effect of SNP9 operating on 

CDSN at long range from a position ~150 kb upstream of the target.  A number of novel 

methodologies have been proposed over past years to test such effect [216].  Recently, 

Forton et al. developed a new analytical approach, called the allelic transcript ratio 

(ATR), to allow them to calculate the ratio of the abundance of transcripts carrying 

different alleles within heterozygous individuals [217]. This method was considered 

relatively robust against environmental confounders, as allelic comparisons were only made 

within individuals. When applying it to the 5q31 chromosomal region of HapMap families, 

the authors successfully located a distal (~250kb upstream) highly significant cis-

regulatory element for IL13 (P = 2 × 10−6) [217].  Actually, complex mechanisms of gene 

regulation and three-dimensional chromatin configuration had been proposed previously 

[218]. Of course, we could not rule out the possibility that certain genetic variants play a 

role on the stabilization of RNA transcripts and thus altered the rate of mRNA decay. 

Capon et al. demonstrated that a single synonymous SNP (CDSN*971T) in CDSN gene 

accounts for an observed increase in RNA stability. Compared with those transcribed 

from a neutral haplotype, mRNAs transcribed from risk haplotype bearing CDSN*971T 
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presented a 2-fold increase in stability [219]. Taken together, inspired by these findings, 

we proposed that variants in potential rSNPs, such as SNP9 or rs13191343, can result in 

dis-regulation of psoriasis-risk gene transcription. Future focus should be to apply 

validation techniques to assess the impact these polymorphisms on binding of regulatory 

machinery as well as functional consequences on transcription.  
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Table 3.1 Sequences of the plasmid constructs for luciferase assay in mouse keratinocyte cells.  
 

Plasmid_id SNP Chrom Position Allele Primer_seq(sense) 
PGL3i1_SNP1 rs10456057 6  31353513 Non-risk GGGGTACCCacttcgtaacttaggaaatActtgttatatgaactcaatGAAGATCTTC 
PGL3i1_SNP2 rs10456057 6  31353513 Risk GGGGTACCCacttcgtaacttaggaaatGcttgttatatgaactcaatGAAGATCTTC 
PGL3i1_SNP3 rs12191877 6  31360904 Non-risk GGGGTACCCtaagccaatcatctactcaCctatgatccagcaatagcaGAAGATCTTC 
PGL3i1_SNP4 rs12191877 6  31360904 Risk GGGGTACCCtaagccaatcatctactcaTctatgatccagcaatagcaGAAGATCTTC 
PGL3i1_SNP5 rs13191343 6  31349088 Risk GGGGTACCCctctctgcccctctcatccCtcacaccctctttccccttGAAGATCTTC 
PGL3i1_SNP6 rs13191343 6  31349088 Non-risk GGGGTACCCctctctgcccctctcatccTtcacaccctctttccccttGAAGATCTTC 
PGL3i1_SNP7 rs13191519 6  31373731 Non-risk GGGGTACCCtaacagtctcctaaatatgCctgtgtcctaatccctggaGAAGATCTTC 
PGL3i1_SNP8 rs13191519 6  31373731 Risk GGGGTACCCtaacagtctcctaaatatgTctgtgtcctaatccctggaGAAGATCTTC 
PGL3i1_SNP9 rs13200571 6  31379490 Risk GGGGTACCCggtgaagtgtgaagaatgaActgagagatgctagactgaGAAGATCTTC 

PGL3i1_SNP10 rs13200571 6  31379490 Non-risk GGGGTACCCggtgaagtgtgaagaatgaCctgagagatgctagactgaGAAGATCTTC 
PGL3i1_SNP11 rs13203895 6  31352061 Risk GGGGTACCCaggctgtaaaaactggttcCtttgctattcccagtatacGAAGATCTTC 
PGL3i1_SNP12 rs13203895 6  31352061 Non-risk GGGGTACCCaggctgtaaaaactggttcTtttgctattcccagtatacGAAGATCTTC 
PGL3i1_SNP13 rs13208617 6  31356798 Risk GGGGTACCCagctgccccgcaagacccaCcaaggcctgtgcaaggtggGAAGATCTTC 
PGL3i1_SNP14 rs13208617 6  31356798 Non-risk GGGGTACCCagctgccccgcaagacccaTcaaggcctgtgcaaggtggGAAGATCTTC 
PGL3i1_SNP15 rs2524074 6  31352000 Non-risk GGGGTACCCgcccattgcacaggacagtCttactttcccacttgaaaaGAAGATCTTC 
PGL3i1_SNP16 rs2524074 6  31352000 Risk GGGGTACCCgcccattgcacaggacagtTttactttcccacttgaaaaGAAGATCTTC 
PGL3i1_SNP17 rs7751729 6  31379915 Risk GGGGTACCCatgccaatccccgactttcCaggacccccagtaattttgGAAGATCTTC 
PGL3i1_SNP18 rs7751729 6  31379915 Non-risk GGGGTACCCatgccaatccccgactttcTaggacccccagtaattttgGAAGATCTTC 
PGL3i1_SNP19 rs9468933 6  31373036 Non-risk GGGGTACCCaaaagtatatttatgcataAtttgattgtttcatttcctGAAGATCTTC 
PGL3i1_SNP20 rs9468933 6  31373036 Risk GGGGTACCCaaaagtatatttatgcataTtttgattgtttcatttcctGAAGATCTTC 
PGL3i1_SNP21 rs12204500 6  31184376 Non-risk GGGGTACCCcggcctactcttaatttttAttttaagtgctcaagctaaGAAGATCTTC 
PGL3i1_SNP22 rs12204500 6  31184376 Risk GGGGTACCCcggcctactcttaatttttTttttaagtgctcaagctaaGAAGATCTTC 
PGL3i1_SNP23 rs12207756 6  31194661 Risk GGGGTACCCaggctaaagtgcaataacaCggtctcagctcactgtaacGAAGATCTTC 
PGL3i1_SNP24 rs12207756 6  31194661 Non-risk GGGGTACCCaggctaaagtgcaataacaTggtctcagctcactgtaacGAAGATCTTC 
PGL3i1_SNP25 rs3094214 6  31193361 Non-risk GGGGTACCCagaaacccgagaggccgatGactgagataaggcagaaagGAAGATCTTC 
PGL3i1_SNP26 rs3094214 6  31193361 Risk GGGGTACCCagaaacccgagaggccgatTactgagataaggcagaaagGAAGATCTTC 
PGL3i1_SNP27 rs3132555 6  31190889 Risk GGGGTACCCtctcttctaccttccagctCctcccacagaggaggaagaGAAGATCTTC 
PGL3i1_SNP28 rs3132555 6  31190889 Non-risk GGGGTACCCtctcttctaccttccagctGctcccacagaggaggaagaGAAGATCTTC 
PGL3i1_SNP29 rs3778640 6  31202099 Non-risk GGGGTACCCctgatgccagtggtgggcaCgaccgtgctgtatactttaGAAGATCTTC 
PGL3i1_SNP30 rs3778640 6  31202099 Risk GGGGTACCCctgatgccagtggtgggcaGgaccgtgctgtatactttaGAAGATCTTC 
PGL3i1_SNP31 rs6929464 6  31205897 Non-risk GGGGTACCCtttttttcctcctaactaaCtccacgttattggcttgagGAAGATCTTC 
PGL3i1_SNP32 rs6929464 6  31205897 Risk GGGGTACCCtttttttcctcctaactaaTtccacgttattggcttgagGAAGATCTTC 
PGL3i1_SNP33 rs12059256 1  150782055 Risk GGGGTACCCggaaaattcctgagcagatAagagtgggaaatggaaagtGAAGATCTTC 
PGL3i1_SNP34 rs12059256 1  150782055 Non-risk GGGGTACCCggaaaattcctgagcagatGagagtgggaaatggaaagtGAAGATCTTC 
PGL3i1_SNP35 rs6702463 1  150865335 Non-risk GGGGTACCCttgaaattaaaatcacattAtgtagacaatatataggtaGAAGATCTTC 
PGL3i1_SNP36 rs6702463 1  150865335 Risk GGGGTACCCttgaaattaaaatcacattTtgtagacaatatataggtaGAAGATCTTC 
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http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31349088-31349088
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31373731-31373731
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31373731-31373731
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31379490-31379490
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31379490-31379490
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31352061-31352061
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31352061-31352061
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31356798-31356798
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31356798-31356798
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31352000-31352000
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31352000-31352000
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31379915-31379915
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31379915-31379915
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31373036-31373036
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31373036-31373036
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31184376-31184376
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31184376-31184376
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31194661-31194661
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31194661-31194661
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31193361-31193361
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31193361-31193361
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31190889-31190889
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31190889-31190889
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31202099-31202099
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31202099-31202099
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31205897-31205897
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr6%3A31205897-31205897
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr1%3A150782055-150782055
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr1%3A150782055-150782055
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr1%3A150865335-150865335
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=137560203&db=hg18&position=chr1%3A150865335-150865335
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Figure 3.1 Repressor activity of SNP9 (rs10456057). 296 cells were transfected with 
luciferase reporter constructs containing either psoriasis-associated (SNP9-PS and SNP7-
PS) or untransmitted reference alleles (SNP9-RF and SNP7-RF) of SNP9. Luciferase 
activity (mean ± s.d., n = 6) is presented in relative luciferase units. Student T test yielded 
significant differing effects for the presence of reference allele A vs. psoriasis-associated 
G allele of SNP9 (p value = 5.37 × 10-10).  
 
 
A. 

 

 

B. 
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Figure 3.2.  Electrophoretic mobility shift and competition assays with Jurkat nuclear cell 
extract for allelic variants of SNP9 and SNP7. A. The19-bp oligonucleotide containing either 
A (SNP9-RF, normal reference allele) or G (SNP9-PS, psoriasis-risk allele) and 21-bp 
oligonucleotide containing either C (SNP7-RF) or T (SNP7-PS) were assayed with Jurkat cell 
extracts. The alleles were indicated in bold italic and underlined. B. Binding was present for the 
oligonucleotide containing SNP9-RF (lane 8), which resulted in two distinct complexes (arrow 
heads) that were competed by 50-fold excess of unlabeled SNP9-RF oligonucleotide (lane 9). 
 
 
 A. 
 

 

 

 

B. 

 

SNP9-RF(sense)       5’-TTAGGAAATACTTGTTATA-3’ 
SNP9-PS(sense)       5’-TTAGGAAATGCTTGTTATA-3’ 
SNP7-RF(sense)       5’-TCCAGAAATACTATTTGACCC-3’ 
SNP7-PS(sense)       5’-TCCAGAAATATTATTTGACCC-3’ 
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Figure 3.3  Scheme for candidate rSNPs and nearby genes in PSORS1 region. A. Highly correlated PSORS1 SNPs  are shown with their 
genomic coordinates and candidate associated genes in this region. . The top associated SNP identified in GWAS (Chapter 2) was indicated by red 
circle. B. LD patterns among PSORS1 SNPs in either |D’| (left panel) or r2 (right panel). 
 
A. 
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Figure 3.4  Reporter activity of PSORS1 alleles in keratinocytes.  Luciferase readings 
represent an average of two independent, duplicate experiments that were performed 
under proliferating (A) or differentiating conditions (B). The SNPs whose differential 
reporter activity for the two alleles passed the Bonferroni correction for multiple test 
were indicated by asterisk. 
 
A. 
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Figure 3.5 CDSN gene expression is associated with genotypes of PSORS1 SNPs. A. 
Boxplot panel shows the expression levels of 11 PSORS1 genes in psoriasis involved 
(PP), uninvolved (PN) and normal (NN) skin biopsies. The median values were indicated 
in black dots. Displayed p-values were derived from the non-parametric Kruskal-Wallis 
test for equality of medians between groups. B. Association of genotypes (number of risk 
alleles) of PSORS1 SNP with gene expression. P-values of testing the null hypothesis for 
slop of regression line equals zero were also shown.  
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CHAPTER 4 

GLOBAL METHYLATION CHANGES IN PSORIATIC 

SKIN 
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4.1 Introduction 

Psoriasis is a chronic, relapsing inflammatory skin disease affecting 2-3% of the U.S. 

population [6,220,221]. Outbreaks or flares can occur at any time throughout an 

individual’s lifetime, and typically follows a chronic cycle of remission and relapse. 

Flares can be exacerbated by stress, infection, or other environmental triggers [222]. In 

psoriasis, immune cell activation and altered epidermal differentiation are key pathogenic 

events [223,224] and these are correlated with major changes in the transcriptome 

[7,220,221,225,226,227,228].  

Epigenetic alterations, such as DNA methylation and histone modification are 

correlated with gene expression changes [49,229,230,231]. Such alterations may be part 

of normal developmental or differentiation processes but can also be triggered by 

environmental factors [56,57,58,59,60]. In mammals, DNA methylation commonly 

occurs at CpG dinucleotides [50]. Approximately 70-80% of the CpG dinucleotides in the 

human genome are methylated, predominately in areas harboring repetitive sequences 

[51]. However, regions rich in CpGs, termed CpG islands (CGIs), are also found in 

promoters of more than 70% of annotated genes [52,53]. Approximately half of CGIs are 

associated with annotated gene transcription start sites [51], while others can have 

discrete set of CpG sites within their promoters. The methylation of these sites has direct 

effects on transcriptional levels, where methylation levels typically demonstrate an 

inverse correlation with expression level [232].  

There have been only a few studies of epigenetic alterations in diseased tissue. 

Many of these have involved cancerous tissue where the methylation status of tumor 

genomes are compared to matched normal tissue [233,234,235,236]. However, studies of 
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methylation changes in the diseased tissues of patients with complex diseases, including 

those leading to autoimmunity, are limited since diseased tissue is often difficult to access. 

A study on epigenetic changes in the blood of systemic lupus erythematosus patients 

revealed altered methylation of several genes contributing to T-cell autoreactivity, B-cell 

overstimulation and macrophage killing [76]. Psoriasis is more tractable than many 

autoimmune diseases due to the accessibility of its target organ: the skin, and there have 

been a few reports of altered methylation within promoters of single genes in diseased 

skin. For example, the SHP-1 (PTPN6) promoter is reported to be demethylated in 

psoriatic skin but not in Atopic Dermatitis (AD) or normal skin [77].  However, genome-

wide studies of methylation changes in psoriasis have not been described. 

This chapter of the dissertation describes a stud on global changes of methylation 

in involved psoriatic skin versus uninvolved psoriatic and normal skin. This was 

performed by querying 27,578 CpG sites with Illumina bead arrays with DNA derived 

from skin of involved, uninvolved and normal skin. Hierarchical clustering of 50 of the 

top differentially methylated sites differentiated separated all psoriatic skin samples 

(involved and uninvolved) from normal skin. Methylation at 12 CpG sites was also 

significantly correlated with expression levels of a nearby gene. Research described in 

this chapter was accomplished in collaboration with Dr. Eli Roberson. 
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4.2  Materials and Methods 

4.2.1 Skin biopsy samples  

Three to six millimeter punch biopsies were obtained from the PP and PN skin of 

psoriasis patients and NN skin from healthy controls (Appendix II, Table A2.1). The 

transcriptomes of some of these samples were previously analyzed and are described 

elsewhere [7,228]. Skin biopsies were obtained from collaborating dermatologists at 

Washington University School of Medicine (Saint Louis, MO), Psoriasis clinic, Baylor 

Hospital (Dallas, TX) or from the University of California in San Francisco (CA). 

Informed consent was obtained from all individuals who donated skin biopsies. Protocols 

for obtaining patient biopsies were approved by Institutional Review Boards for the 

protection of human subjects.  

 

4.2.2 DNA methylation profiling using bead array 

Qiagen DNeasy Kits were used to isolate genomic DNA from skin biopsy samples 

according to the manufacturer's instructions. All samples were analyzed for DNA 

integrity, purity and concentration on a Nanodrop Spectrophotometer DN-100 (Nanodrop 

Technologies). The EZ DNA methylation kit (Zymo Research) was used for 

bisulfite conversion of all DNA samples (1µg) according to the manufacturer's 

recommendations [237]. Bisulfite-converted genomic DNA was then interrogated with 

the Illumina Infinium HumanMethylation27 Beadchip, with the recommended protocols 

provided by the manufacturer. After hybridization, the arrays were imaged with a 

BeadArray Reader scanner. Image processing, intensity data extraction and analyses were 

conducted with the BeadArray Reader. 
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4.2.3 Differential Methylation Analysis 

All methylation data was loaded into a single GenomeStudio project. Non-normalized 

values were exported for statistical analysis. Exported data were analyzed using the R 

(v2.12.0) Bioconductor (Biobase v2.10.0) methylumi (v1.4.0) and lumi (v2.2.0) packages 

[238,239,240,241]. The Cy3 and Cy5 color channels within each array were balanced 

using the ‘lumiMethyC’ function to quantile normalize the intensities. The color balanced 

data was normalized using simple scaling normalization via the ‘lumiMethyN’ function. 

In some tables we report β-values along with M-values. β-values are more intuitive, 

corresponding to percent methylation. M-values are used for statistical tests since they 

better approximate a homoskedastic distribution. Let the intensity of the methylated and 

unmethylated alleles be Imeth and Iunmeth, respectively. 

β-value calculation (percent methylation): 
unmethmeth

meth

II
I
+

=β  

M-value calculation (methylation ratio): 







=

unmeth

meth

I
I

M 2log  

Limma (v3.6.6) was used to fit linear models to each CpG region detected 

(detection p-value ≤ 0.01) in at least one sample [242]. After linear model fitting 

appropriate contrasts were defined for PP versus NN and PN versus NN. The log-odds of 

differential methylation was calculated from the linear fits for each CpG in each contrast 

using the ‘eBayes’ function. 

Paired PP/PN samples were treated differently. In this case the paired samples 

were extracted from the rest of the data and filtered to probes detected in at least one 

sample. Linear models were fitted to the data. Separate factor vectors were created to 

represent the sample class and the sample identifier. A design matrix was created 
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combining the two, and ‘eBayes’ function was used to calculate the moderated paired t-

test for the combination of the two factors. All p-values were adjusted for multiple tests 

using the false discovery rate method [243]. Power calculations were performed in R 

2.12.0 [244]. 

 

4.2.4 Selection of the top 50 group discriminating differentially methylated CpG 

sites 

Between-group analysis was used to determine a subset of CpG sites that most 

differentiate PP from NN skin. Normalized M-value data was reduced to CpG sites 

differentially methylated between PP and NN skin. Between-group analysis was 

performed using the reduced dataset and a training vector specifying the group 

membership of each sample with the ‘bga’ function of the MADE4 R package [245,246]. 

The discriminating method used was principal components analysis. The top sites were 

selected as the top 25 increased and top 25 decreased methylation sites on the first 

principal component axis. The top 50 sites were subsequently used to generate heatmaps 

showing the discriminatory power of these sites with Euclidean distance measures and 

complete hierarchical clustering on the axes. All heatmaps were generated using the 

Heatplus R package (v1.20.0) with a 50 color palette from the marray package maPalette 

function (v1.28.0).  Pathway and network analyses for the top 50 genes/sites were carried 

out using GeneGo MetaCore® software (GeneGo, Inc., St. Joseph, MI, USA). The 

significance of biological pathways is estimated through a variation of Fisher’s exact test 

as implemented in the MetaCore software package and adjusted for multiple testing using 

Benjamini-Hochberg FDR analysis.  
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4.2.5 Correlation with gene expression 

Pearson product-moment correlations coefficients (r) and their 95% confidence intervals 

were calculated to evaluate the strength of linear dependence between methylation at 

specific CpG loci and the level of expression of a downstream target. The FDR adjusted 

p-values were calculated to test the null hypothesis of zero correlation. All analyses were 

performed using R statistical programming language (v2.10.1).  

 

4.2.6 Pyrosequencing 

CpG methylation at and around sites flanking the statistically significant Illumina CpG 

locus upstream from target genes were further validated by using Pyrosequencing 

approach. This allowed us to quantify methylation at multiple CpG sites individually 

[247]. Sample bisulfite treatment, PCR amplification, pyrosequencing, and extraction of 

percent methylation were performed at EpigenDx (Worcester, MA). Sequences analyzed 

were promoter regions of IFI27, LGALS3BP, SERPINB4 and C10orf99 genes 

(Appendix II, Table A2.2). 
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4.3 Results 

4.3.1 Differential CpG site methylation in psoriatic skin 
 
We used the high throughput genome-wide bead-array (Infinium HumanMethylation27 

Beadchip, Illumina, Inc., USA) to obtain a global, quantitative measure of the 

methylation status of CpG sites in psoriatic involved (PP), psoriatic uninvolved (PN) and 

normal skin (NN). The array spanned 27,578 CpG loci selected from more than 14,000 

genes, including more than 1,000 cancer-related genes and the promoter regions of 110 

miRNAs. The vast majority of assayed CpG sites were located in the promoter regions of 

their cognate genes with an average distance of 365 bp (maximum ~1.5kb) from their 

transcription start sites.  

PP skin samples were defined as skin biopsies collected from the site of an active 

psoriatic lesion. Conversely, PN skin samples were biopsies collected from skin that was 

not part of an active lesion. NN skin biopsies were defined as those biopsies collected 

from healthy volunteers with no clinically apparent skin lesions and no self-reported 

history of outbreaks. Our study included 12 PP, 8 PN and 10 NN skin samples. The PN 

samples were all derived from a donor who also contributed a PP sample, hence there 

were 8 “paired” PP/PN samples and 4 additional PP samples without a matched PN 

sample. For each CpG target on each array we calculated both β- and M-values. The M-

value was calculated by taking the log2 ratio of detected signal intensities from 

methylated and unmethylated alleles after color channel balance and normalization 

(Methods). The percent methylation (β-value) was calculated by dividing the methylated 

allele intensity by the total intensity of alleles for each CpG, and therefore approximating 

percent methylation. Though more intuitive, the β values are quite heteroskedastic, 
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making them less appropriate for standard parametric statistical tests [248]. The M-values 

were used for statistical analysis since they are more homoskedastic (Appendix II, 

Figure A2.2). 

We defined a CpG as differentially methylated if it had a FDR corrected p-value 

significance threshold of 0.05. CpG methylation in PP versus NN skin differed at 1,108 

CpG sites, 88 of which demonstrated a greater than 2-fold change (Figure 4.1). The top 

differentially methylated sites for this comparison are shown in Table 1. A total of 27 

CpG sites demonstrated differential methylation in PP skin compared to PN skin from the 

same individual and 2 of those sites had a greater than 2-fold change in M-value (Figure 

4.1). Interestingly, PN skin compared to NN skin showed differential methylation at 15 

CpGs, 8 of which were greater than 2-fold (Figure 4.1).  

The largest number of methylation differences and the differences of the largest 

magnitude were seen in the comparison of PP skin compared to NN skin (Table 4.1). The 

observed alterations ranged from profound (≥ 20% difference) to more subtle (≤ 10% 

difference). A total of 96 genes had at least two CpG sites in their vicinity with a 

significant p-value. CCND1 and GATA4 had 4 significant sites each, while GPX3 and 

SFRP4 had 3 significant sites each. The most extreme change was found in cg16139316, 

which is lies ~400bp upstream from S100A9 (p-value < 0.00001) and within the 

epidermal differentiation complex, a region key to epidermal development [199]. For this 

CpG site, the raw β-value in PP skin was 0.46 ± 0.08, whereas the methylation level in 

NN skin was 0.84 ± 0.01. It has been shown that S100A9 are absent or are expressed at 

minimal levels in normal epidermis, but strongly overexpressed in the basal and spinous 

layers in psoriasis-involved tissue [100]. Our methylation data indicated a decreased 
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methylation level in psoriatic skin, which is consistent with its enhanced expression. In 

total, twelve differentially methylated CpG sites close to genes upregulated in psoriasis 

(S100A3, S100A5, S100A7, S100A12, SPRR2A, SPRR2D, SPRR2E, LCE3A) mapped 

to the EDC (Figure 4.2).  

 Differences in PP versus PN skin were subtle compared to those observed in 

transcript levels which contrasts with what is seen with expression analysis, where PP 

and PN skin are very similar [7,249]. Out of all significant differences, methylation levels 

typically different by less than 10%. The largest fold increases in PP compared to PN 

skin was in MCF.2 cell line derived transforming sequence-like (MCF2L; FC = 2.40; βPP 

= 0.45 ± 0.04; βPN = 0.26 ± 0.02) and laminin alpha 4 (LAMA4; FC = 2.58 ; βPP = 0.37 ± 

0.05; βPN = 0.19 ± 0.02). The largest fold decreases were in synaptopodin (SYNPO; FC = 

-1.91; βPP = 0.55 ± 0.04; βPN = 0.68 ± 0.03) and bone marrow stromal cell antigen 2 

precursor (BST2; FC = -1.76; βPP = 0.20 ± 0.03; βPN = 0.30 ± 0.03).  

Methylation differences in PN compared to NN skin were similarly few in 

number and even more subtle (≤ 10%). The largest magnitude fold changes (≥ 2) were all 

increases in methylation in uninvolved skin. These included sites near GALR1, ZNF454, 

ZNF540, NEF3, RGS7, MLF1, FLJ42486 and NRIP2. The greatest decrease in 

methylation (-1.81 fold) was in a CpG site approximately 500bp upstream of the 

ZDHHC12 promoter.  

 

4.3.2 Validation of differential methylation with pyrosequencing 
 
We used a separate approach (pyrosequencing) to confirm methylation differences in 

CpG sites located in four genes (C10orf99, IFI27, LGALS3BP, SERPINB4) and to 
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investigate differential methylation at these regions further. By array analysis these sites 

had demonstrated decreased methylation of varying fold-change in PP skin compared to 

NN skin (C10orf99 = -1.35; LGALS3BP = -1.56; IFI27 = -2.74; SERPINB4 = -1.44). In 

all cases, the original CpG site determined to be differentially methylated with the 

Illumina bead assay was included in the pyrosequencing assay, along with nearby CpG 

sites.  

IFI27, which had the largest fold-change by methylation array, showed 

statistically significant decreased methylation at of PP compared to both PN and NN at 6 

of 9 sites with pyrosequencing (Figure 4.3). An additional site, CpG7, was significant 

only for PP compared to NN. Two sites, CpG6 and CpG9, did not show evidence of 

differential methylation. All three C10orf99 CpG sites demonstrated decreased 

methylation in involved skin, versus normal skin by pyrosequencing (Figure 4.4).  In the 

case of LGALS3BP only two of the seven CpG sites that were assayed (CpG3 and CpG4), 

showed any evidence for differential methylation of PP compared to PN (Figure 4.5). 

The single CpG site tested in SERPINB4 demonstrated significantly decreased 

methylation in PP compared to both PN and NN skin (Figure 4.6).  

 

4.3.3 Methylation levels correctly classify involved, uninvolved, and normal skin 
samples 
 
We hypothesized that methylation levels of differentially methylated CpG sites could be 

used to discriminate the different skin groups. Using between group analysis with 

principal component metrics we identified a subset of 50 sites (25 with increased 

methylation, 25 with decreased methylation) that differentiated PP from NN skin 

(Appendix II, Table A2.3). Data on an additional seven PP samples was obtained for 
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cross-validation of clustering validity.  A heatmap of normalized M-values at the top 50 

differentiating sites was generated with all PP, PN and NN samples (Figure 4.7). The 

confusion matrix showed in Figure 4.7B demonstrated excellent classifying power of 

hierarchical clustering by using these sites. Classification of psoriatic (PP or PN) versus 

NN were 100% accurate and 100% specific. PP clustered separately from both PN and 

NN skin, and performed better, with 100% sensitivity and 90% specificity. PN was 

classified with 75% sensitivity and 100% specificity. The lower sensitivity for PN 

samples was due to two PN samples (PN4, PN5) being classified as PP. Based on this 

dataset the classifying power of the global methylation data performed very well, 

especially at the classification of psoriatic versus normal, and may be as good a predictor 

of psoriasis as gene expression values.  

To examine whether gene expression data from skin sample would equally well 

predict and classify the skin samples, I reanalyzed a previously published gene 

expression dataset [7] including paired biopsies of involved and uninvolved skin from 16 

individuals. The expression values for each sample were normalized using simple scaling 

normalization via the ‘scale’ function in R package. Only the probe-sets with at least 2-

fold changes in expression levels when comparing PP, PN and NN samples were 

included for further analysis. Between-group analysis was used to determine a subset of 

genes that most differentiate PP from NN skin (same procedures as I did for methylation 

study). A heatmap of top 50 differentiating genes was shown in Appendix II, Figure 

A2.1. These differential genes demonstrated excellent classifying power of classification 

of psoriatic PP versus (PN, NN) samples. All PP clustered separately from both PN and 

NN skin except only one PN being classified as PP. This result indicates that similar to 
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the top 50 differential methylation sites, expression data of top 50 differential genes can 

equally well separate and predict psoriatic skin from normal ones.   

To identify functional relationships among the differentially methylated CpG sites 

and their cognated genes, I carried out pathway analysis using GeneGo MetaCore 

software. Table 4.3 lists the top 4 functional pathways (FDR adj. p < 0.10) identified 

using this software as well as the p-value associated with the number of differentially 

methylated genes in each pathway. As shown in Table 4.3, the most significantly 

affected pathway was the cell adhesion and extracellular matrix (ECM) remodeling 

pathway (p < 3.9×10-4). Of the 52 genes/proteins in this pathway, 3 genes exhibited 

increased methylation in PP skin. Interestingly, the ECM pathway is involved in 

physiological processes, such as cell motility and adhesion, wound healing, angiogenesis, 

as well as in disease processes, such as arthritis and metastasis. I also performed a 

network analysis by using all the top 50 differential methylated genes in the MetaCore 

database, which also incorporates canonical pathways in its algorithm. This resulted in a 

list of 15 signaling networks (not shown) ordered according to their significance. The 

most significant network (p<1.4×10-13) is shown in Figure 4.8. This network again 

highlights the interplay of two key processes: immune response (IL-13 signaling via 

JAK-STAT) and cell adhesion/ECM remodeling, implying that altered methylation levels 

in the genes of these processes may play an important role in the pathophysiology of 

psoriasis.  

Finally, we plotted these top 50 sites, separated by methylation change observed 

in involved skin and by sample group (Figure 4.9). The medians of the three groups for 

sites with increased and sites with decreased methylation were significantly different by 

http://onlinelibrary.wiley.com/doi/10.1111/j.1399-5618.2010.00882.x/full#t2
http://onlinelibrary.wiley.com/doi/10.1111/j.1399-5618.2010.00882.x/full#t2
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the Kruskal-Wallis rank sum test. The trend is apparent for both the raw β-values and the 

normalized M-values. We also observed that in the case of these top 50 sites, PN skin had 

a methylation level intermediate to that of the NN and PP skin (Figure 4.9). These 

intermediate methylation levels contrast with the expression levels of mRNA transcripts 

in uninvolved skin which are usually very similar  to that of normal skin [228]. These 

differences suggest that there are intrinsic epigenetic differences in uninvolved versus 

normal skin that may be reflective of a predisposition to psoriasis.  

 

4.3.4 Correlation of methylation with nearby gene expression 

Nine PP, five PN, and six NN samples used for methylation analysis had also been used 

for global transcriptome analysis with the Affymetrix U95 arrays [7]. We were therefore 

able to perform a direct correlation between methylation at specific CpG loci and the 

level of expression of a downstream target for these samples.  

Correlations between methylation score values and nearby gene expression levels 

were performed with R and p-values were reported based on an FDR corrected p-value 

cutoff of 0.05. There were 12 CpG sites that significantly correlated with gene expression 

levels (adj. p-value ≤ 0.05; Table 4.2). Among those, 9 demonstrated negative 

correlations and 3 showed positive correlations. These CpG sites were near the genes 

C10ORF99, OAS2 (3 sites), LGALS3BP, KYNU, GDPD3, IL1B, TRIM22, CCND1, 

TRIM14 and PHYHIP. Many of these genes (C10ORF99, OAS2, LGALS3BP, KYNU, 

IL1B, TRIM22) are highly up-regulated in psoriasis, and all of these exhibited negative 

correlation between expression and methylation [7], providing evidence of underlying 

methylation changes in the highly up-regulated genes in involved skin. 
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A consensus list of 890 down-regulated and 732 up-regulated genes in psoriatic 

skin determined across expression studies was recently published [220]. 128 

differentially methylated CpG sites in PP compared to NN were near 113 genes in that 

consensus list. For example, the genes CCL27, DDAH2, TNS1 and TRIM2 all showed 

consistent down-regulation in psoriatic skin and we found consistently increased 

methylation in and near these genes. By contrast, IFI27, KYNU, OAS2, S100A9, 

SERPINB3 and TNIP3 all showed significantly increased expression in psoriasis, and we 

found significantly decreased methylation for sites near them. One gene in the consensus 

set, FCGBP, is significantly down-regulated in psoriasis lesions, but we found 

significantly decreased CpG methylation approximately 430bp upstream of this gene at 

cg19103704. 

When correlations between gene expression and CpG methylation at the top 50 

discriminating genes were made, only two genes were significant with adj. P value. These 

were c10orf99 and KYNU, which were both negatively correlated (Figure 4.10). Failure 

to correlate some of the other genes might be due to lack of power or paucity of coverage 

by the Illumina bead arrays. However, some differentially CpG sites lie near genes not 

reported to be differentially expressed in psoriasis (e.g. MTSS1, MCF2L). These sites are 

of interest for future studies.  

Interestingly KYNU is one of a set of genes whose high transcriptional activation 

differentiates transcripts psoriasis from a second inflammatory disease such as atopic 

dermatitis [250]. This gene is upregulated ~100 fold compared to normal skin, and ~58 

fold compared to atopic dermatitis lesional skin [250]. Our observations indicate that 

methylation status at loci such as this would be as valuable a predictor of psoriasis as 
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expression alterations. 
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4.4 Discussion 

There have been many advances in our understanding of psoriasis histology, 

pathophysiology, genetics and molecular biology. Still, there are many questions yet to 

be answered, such as what triggers an initial outbreak and why do patients have a chronic, 

relapsing course? Relapses require either retreatment or persistent treatment in psoriasis 

patients. Those whose disease does not response well to standard treatments require 

biologic treatment, such as with adalimumab or etanercept, that can cost tens of 

thousands of dollars per year [251]. Improving the treatment of psoriasis patients and 

developing long-term, cost-effective treatments requires an understanding of the 

molecular basis of disease initiation and progression. Genetic variants that contribute to 

psoriasis risk and the transcriptome of PP skin have been relatively well studied. Global 

methylation in psoriasis, however, has not. Methylation status can directly influence 

transcription levels, so knowledge of global methylation in involved skin is an important 

step forward.  

Based on our analysis, there are extensive differences in global methylation in PP 

skin compared to NN. Furthermore, methylation differences, though fewer in number, are 

apparent between PP compared to PN skin as well as between PN compared to NN skin. 

The differentially methylated CpG sites that map to the epidermal differentiation 

complex (EDC) are particularly interesting, due to the critical role this region in the 

development and remodeling of the epidermis. The genes near the EDC differentially 

methylated sites, as well as genes near other differentially methylated CpG sites such as 

IFI27, OAS2 and KYNU have been shown to be highly upregulated in involved psoriatic 

skin [220,221,228,252,253]. Interestingly KYNU is one of a set of genes whose high 
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expression level differentiates psoriasis from other inflammatory skin diseases such as 

atopic dermatitis [250]. This gene is upregulated ~100 fold compared to normal skin, and 

~58 fold compared to atopic dermatitis lesional skin [250].  

The differential methylation of BST2 in PP compared to PN is particularly 

interesting, especially given its role in response to type-1 interferon signaling and 

location in a previously identified psoriasis susceptibility locus (19p13.11) [254]. Its 

product is an antiviral protein tetherin, also known as CD317, which is expressed on 

plasmacytoid dendritic cells. Tetherin inhibits virus budding [255] and also medicates the 

adhesion of monocytes to vascular endothelium [256]. Up-regulation of BST2 could 

therefore provide a mechanism to attract monocytes to psoriatic lesions that then could 

differentiate into macrophages and dendritic cells. In mouse, BST2 is mainly expressed in 

plasmacytoid dendritic cells initially, and in many other cells following stimulation with 

type-1 interferons [257]. The decreased methylation at this locus could reflect an 

increased expression of BST2 in response to the psoriasis TH1 phenotype, as well as an 

increase in plasmacytoid dendritic cells in psoriatic lesions.  

The large number of differentially methylated sites in PP versus NN contrasts 

with the relatively small number of sites identified by the PP to PN and PN to NN 

comparisons. One reason for this disparity may be lack of power to detect low percentage 

methylation changes (Appendix II, Figure A2.3). PP compared to NN typically had 

changes in methylation ≥ 10% with standard deviations of less than 5%. A two-sample t-

test (two-sided) with 8 samples in each group has 96% power to detect a difference of 

10%. Since most of the observed changes had similar dispersion but greater magnitude 

difference, this suggests that the PP to NN comparison is well-powered to detect the 



 98 

types of changes we observed. However, the PP to PN and PN to NN comparisons were 

testing methylation changes of much smaller percentage difference and reduced power. 

This in itself is interesting, however, since it reflects the intermediate methylation that PN 

skin exhibited compared to PP and NN skin. Since methylation status can be stably 

inherited, such differential methylation could persist even after resolution of symptoms, 

predisposing to recurrence of lesions at the same sites. Some of these intermediate 

methylation states were independently confirmed by pyrosequencing. Perturbations in 

methylation status may also account for the “pre-psoriatic” transcriptional signature 

which has been described in uninvolved psoriatic skin compared with normal skin. 

Furthermore, when methylation levels of the most significant 50 CpG sites were 

used to cluster genes and samples there was efficient classification of PP, PN and NN 

samples. In fact, Classification of psoriatic (PP or PN) versus NN were 100% accurate 

and 100% specific. This is similar to what we have described elsewhere with respect to 

mRNA transcripts [228]. Therefore, methylation status may be useful in the classification 

of samples, and expression changes in key genes may be linked to their underlying 

methylation status. 

In summary, the idealized future for psoriasis treatment would target the 

underlying molecular defect directly. There are many successful therapies from UV light 

treatment to biologic infusions. These treatments reduce symptoms but do not cure the 

disease. Based on the findings of this global methylation study, we may conclude that 

differential methylation could contribute to this chronic phenotype, and further study is 

warranted to elucidate the evolution and function of differential methylation in psoriasis 

pathogenesis.
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Table 4.1 CPG sites exhibiting two-fold differences in methylation status in involved versus normal/uninvolved and 
involved/uninvolved versus normal skin. 
 
 

    PP vs. NN PN vs. NN 
CpG_ID Symbol Chrom Positition_hg18 Fold Change FDR p-value Fold Change FDR p-value 

cg14826683 SPRR2D 1 151,280,454 -2.49 ≤ 0.001 -2.00 0.068 
cg06509239 OSR1 2 19,422,050 2.31 0.025 2.17 0.162 
cg03544320 CRMP1 4 5,945,592 3.54 0.019 2.94 0.179 
cg15433631 IRX2 5 2,804,541 2.23 0.014 2.10 0.127 
cg17820459 GPX3 5 150,380,724 2.14 0.032 2.54 0.077 
cg03355526 ZNF454 5 178,301,021 2.54 0.001 2.60 0.014 
cg18055007 DDAH2 6 31,806,205 2.05 0.008 2.20 0.057 
cg26521404 HOXA9 7 27,171,506 2.94 0.023 2.58 0.179 
cg23290344 NEF3 8 24,827,371 2.28 0.008 2.84 0.016 
cg08441806 NKX6-2 10 134,449,139 2.12 0.027 2.22 0.118 
cg05194726 NRIP2 12 2,814,741 2.72 ≤ 0.001 2.11 0.045 
cg22881914 NID2 14 51,605,897 2.64 0.022 2.59 0.137 
cg03734874 FLJ42486 14 104,142,427 2.64 0.001 2.71 0.017 
cg17861230 PDE4C 19 18,204,901 2.09 0.023 2.11 0.122 
cg26267310 DHRS10 19 54,032,405 2.61 0.001 2.03 0.114 
cg02440177 ZNF702 19 58,188,507 2.17 0.014 2.48 0.057 
cg24713204 ZNF471 19 61,711,185 2.33 0.004 2.06 0.104 
cg18074297 CLIC6 21 34,963,482 3.05 0.004 2.77 0.077 
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Table 4.2 CpG sites that correlated with expression levels. CpG sites with corresponding genes on the expression arrays were 
tested for correlation with gene expression. CpG ID: the Illumina CpG identifier. Chr & Position_hg18: the mapping information for 
the CpG site on build hg18. Gene: symbol of gene closest to the CpG site tested. TSS Distance (bp): the distance in base pairs of the 
CpG site to the transcriptional start site (TSS). Expression Probe: the Affymetrix identifier of the probe tested for correlation. Adj p-
value: the p-value corrected by false-discovery rate. Correlation: the calculated Pearson correlation coefficient between methylation 
(normalized M-values) and expression presented as mean ± 95% confidence intervals.  
 
 

CpG ID Chr Position hg18 Gene TSS Distance (bp) Expression Probe Adj p-value Correlation 
cg10045881 10 85,922,743 C10orf99 804 53747_at 0.0013 -0.749 ± 0.152 
cg04872689 12 111,900,901 OAS2 244 39263_at 0.0051 -0.772 ± 0.138 
cg23173910 17 74,487,605 LGALS3BP 51 37754_at 0.0066 -0.776 ± 0.136 
cg15836722 2 143,351,601 KYNU 64 40671_g_at 0.0113 -0.825 ± 0.108 
cg06131859 12 111,900,901 OAS2 244 39264_at 0.0135 -0.853 ± 0.091 
cg11134443 12 111,900,901 OAS2 244 90662_at 0.0187 -0.752 ± 0.150 
cg06806080 16 30,031,794 GDPD3 585 58504_at 0.0187 0.752 ± 0.312 
cg06131859 2 113,310,256 IL1B 571 1520_s_at 0.0187 -0.760 ± 0.146 
cg06131859 11 5,667,230 TRIM22 434 36825_at 0.0187 -0.743 ± 0.155 
cg18655915 11 69,170,515 CCND1 NA 2020_at 0.0274 0.755 ± 0.311 
cg00483154 9 99,922,197 TRIM14 888 33253_at 0.0274 0.778 ± 0.290 
cg05947740 8 22,145,723 PHYHIP 174 37191_at 0.0493 -0.792 ± 0.127 
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Table 4.3 Top functional pathways identified by MetaCore pathway analysis.   

 

Rank GeneGo Pathways P-value 
Differentially 

methylated genes 

Differentially 
methylated genes 

(n) 
Genes/proteins in 
the pathway (n)  

1 Cell adhesion_ECM remodeling 3.877E-04 KLK1, KLK2, LAMA4 3 52 

2 G-protein signaling_RhoA regulation pathway 3.986E-03  MCF2L, EFNA3 2 34 
3 Immune response_IL-13 signaling via JAK-STAT 6.903E-03 CCL17, SERPINB3 2 45 
4 Development_PEDF signaling 8.145E-03 CFLAR(L), CFLAR(S) 2 49 
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Figure 4.1 Venn diagram of the CpG sites exhibiting differential methylation for 
each of three contrasts using a significance cutoff of 0.05 for the adjusted p-value. 
The contrasts are PP compared to PN (paired t-test), PP compared to NN and PN 
compared to NN. For each set the upper number is a count of the number of CpG sites 
with increased methylation, and the lower number is the count of CpG sites with 
decreased methylation. The total count of unique sites showing increased or decreased 
methylation in at least one comparison is shown at the bottom right. 
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Figure 4.2 Differentially methylated CpGs that map to the epidermal differentiation complex (EDC). Genes of the EDC are 
critical to epidermal development. Twelve differentially methylated CpG sites in PP compared to NN map to this region of 
chromosome 1. The image was adapted from a postscript generated using the UCSC genome browser [258].  
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Figure 4.3 Pyrosequencing data in PP, PN and NN skin biopsies at 9 CpG sites in 
the gene IFI27. Methylation levels (%) with 95% confidence intervals are plotted for 
each CpG site by group. P-values calculated with a two-sample t-test. Methylation levels 
in PP samples were less than that of NN or PN samples. PN and NN skin had similar 
methylation levels. *, p-value < 0.05; **, p-value < 0.001. 
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Figure 4.4 Pyrosequencing data for C10orf99 in PP, PN and NN skin biopsies at 3 
CpG sites. Methylation levels (%) with 95% confidence intervals are plotted for each 
CpG site by group. P-values were calculated with a two-sample t-test. PN and NN 
biopsies were not separable, but both had increased methylation compared to PP. *, p-
value < 0.05; **, p-value < 0.001. 
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Figure 4.5 Pyrosequencing data for LGALS3BP in PP, PN and NN skin biopsies at 7 
CpG sites. Methylation levels (%) with 95% confidence intervals are plotted for each 
CpG site by group. There was no obvious trend for lower methylation in these involved 
samples with only two CpG sites demonstrating sufficient evidence of differential 
methylation in PP vs. PN. *, p-value < 0.05; **, p-value < 0.001. 
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Figure 4.6 Pyrosequencing data for SERPINB4 in PP, PN and NN skin biopsies. 
Methylation levels (%) with 95% confidence intervals are plotted for each CpG site by 
group. There was no obvious trend for lower methylation in these involved samples with 
only two CpG sites demonstrating sufficient evidence of differential methylation in PP vs. 
PN. *, p-value < 0.05; **, p-value < 0.001. 
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Figure 4.7 Heatmap showing PP, PN, and NN samples clustered using the top 50 
CpG sites that differentiate PP from NN skin. A. Image was generated using 
normalized M-values. Using only those sites resulted in clustering that performs well at 
separating PP from PN and NN, and further separates NN and PN. Red values indicate 
relatively increased methylation while green indicates relatively decreased expression. B. 
Confusion matrix of sample classification of hierarchical clustering.  
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Figure 4.8 The top scored network identified by using the top 50 differential 
methylation genes. Thick cyan lines indicate the fragments of canonical pathways; red 
circles indicate genes with decreased methylation and blue circles indicate genes with 
decreased methylation.  
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Figure 4.9 Boxplots of methylation levels in three sample groups. The top 50 sites that 
most differentiate involved from NN skin were determined by principal components 
analysis (see Methods). The upper panel shows the methylation levels for the top 25 CpG 
sites that show increased methylation, and the lower panel shows the top 25 CpG sites 
with decreased methylation. Displayed p-values were derived from the non-parametric 
Kruskal-Wallis test for equality of medians between groups. Dark lines represent the 
median of each group. The bottom and top borders of each box are defined by the first 
and third quartiles. Whiskers reach out to data points up to 1.5 times the interquartile 
range above or below the appropriate quartile. Data points outside of that range are 
considered outliers and are represented by circles. 
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Figure 4.10 Correlation between methylation level of CpG sites and expression of 
C10orf99 (A) and KYNU (B) genes. 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 
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5.1 Summary 

Psoriasis is a complex disease of the skin. A complete understanding of how it develops 

will require studies of both genetic and environmental factors. In this thesis I attempted to 

explore both genetic underpinnings of this disease through genome wide association 

studies to identify genetic risk factors, and the possible effects of the environment 

through epigenetic modifications. What is more challenging is how to integrate findings 

from the two studies. 

The GWAS study in Chapter 2 describes the first large scale genome-wide 

association scan for novel PS and PsA susceptibility genes. The study was conducted in 

two stages: the discovery stage was consisted of typing 233 cases (91 have PsA) and 519 

controls with a 300k SNP platform. For the replication stage, a subset of candidate SNPs 

from 120 regions were further validated on an independent cohort of 577 PS cases and 

737 controls, where 94 of these cases had also been diagnosed with PsA.  The results of 

this study revealed that the MHC is truly the most important risk factor for PS and that it 

plays a very major role in PsA. In addition, it also confirmed recently identified 

associations with interleukin-23 receptor and interleukin 12B in both PS and PsA, and 

identified new associations. These include a region on chromosome 4q27 that contains 

genes for interleukin 2 and interleukin and seven additional regions that include 

chromosome 13q13 and 15q21.  

In the last 3 years, with the advent of large-scale GWAS studies of psoriasis and 

psoriatic arthritis, several psoriasis risk factors that are common alleles in the general 

genetic variants, including SNPs [102,204,259,260,261,262] and CNVs (copy number 

variation) [263], have been identified and validated. The findings of these GWAS and 
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others are detailed below and summarized in Table 5.1. In general, these results provided 

important insights into the genetics of psoriasis and led to the discovery of new molecular 

pathways contributing to psoriasis and PsA.  

First of all, most of these GWAS studies detected strong association in the 

vicinity of HLA-C, and additional signals in genes whose products are components of the 

IL-23 ligand-receptor complex (Table 5.1). Variants in or near genes that encode 

subunits of cytokines (IL12B, IL23A) or cytokine receptors (IL23R) are interesting given 

that the gene  product of IL12B, p40, is the target of a recently approved monoclonal 

antibody therapy for psoriasis (ustekinumab) [264,265].  Expression of IL12B and IL23A 

shows highly significant differences in expression between involved and uninvolved skin 

(p < 10-9) and IL23A is more highly expressed in the uninvolved skin of people with 

psoriasis than in the normal skin of controls (p < 0.0003) [204]. IL-23 signaling promotes 

cellular immune responses by promoting the survival and expansion of a recently 

identified subset of T cells expressing IL-17 that protects epithelia against microbial 

pathogens [266]. It is reasonable to speculate that aberrant IL-23 signaling renders certain 

individuals susceptible to inappropriate immune responses targeting epithelial cells, thus 

contributing to the chronic and relatively skin-specific inflammation seen in psoriasis 

(see Figure 3 in the reference [12]). Notably, inflammatory bowel disease has numerous 

clinical, immunologic, and genetic parallels to psoriasis. Psoriasis is more prevalent in 

patients with inflammatory bowel disease than in the general population and is thought to 

share common immunologic/inflammatory pathways, particular that of the Th17 pathway, 

in its pathogenesis. The same IL23R variant found in psoriasis has also been repeatedly 

associated with Crohn’s disease [129].  In addition, the nuclear factor kappa B (NF-κB) 
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pathway plays a central role in numerous processes in psoriasis [267]. Proteins 

modulating this pathway such as TNF-a-induced protein 3 (TNFAIP3) or A20 and 

TNFAIP3-interacting protein 1 (TNIP1) are also encoded by genes associated with 

psoriasis and are likely to enhance NF-kB activation [204]. A20, a cytoplasmic zinc 

finger protein encoded by TNFAIP3, can be rapidly induced by NF-kB activation, 

trigging A20’s de-ubiquitinating and ubiquitinating activities of key signaling molecules, 

ultimately preventing the activation of NF-kB.  In GWAS, an intronic polymorphism of 

TNFAIP3 was found to associate with psoriasis and PsA [204].  Polymorphisms in 

TNIP1, another inhibitor of TNF-induced NF-kB activation, were also identified in 

GWAS as being associated with both psoriasis and PsA [268].  A UK psoriasis 

population GWAS identified polymorphisms in yet another ubiquitin ligase, ZNF313, on 

chromosome 20q13 [269].  ZNF313, or zinc finger 313, is believed to regulate T-cell 

activation and expressed in skin, CD4+ T lymphocytes and dendritic cells.  

The GWAS studies also provided the evidence that compromised skin barrier 

function plays a role in psoriasis susceptibility. The epidermal differentiation complex 

(EDC), located on chromosome 1q21 within PSORS4, has long been an area of 

investigation for both psoriasis and atopic dermatitis. Many genes of the EDC are 

upregulated in psoriatic lesions suggesting underlying alterations in coordinate regulation 

of genes of this complex [228]. A deletion polymorphism of ~30 kb that removes LCE3B 

and LCE3C genes within the late cornified envelope (LCE) complex of this region have 

been found to be associated with psoriasis in both Europeans and in Chinese [102,103]. It 

has been suggested that the absence of intact LCE3C and LCE3B genes could lead to an 

inappropriate repair response following barrier disruption [103].  Further investigation of 
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LCE expression in skin revealed an increased expression of the LCE3 following tape 

stripping, suggesting a link between this CNV and the abnormal differentiation and 

epidermal hyperproliferation seen in psoriasis. 

Another set of genes with variations associated with psoriasis are the β-defensin 

cluster on chromosome 8p21. This region was recently found to harbor psoriasis-

associated CNV (increased copy numbers) of the genes that encode DEFB4, DEFB103, 

and DEFB104 [270]. These genes have been shown to stimulate keratinocytes to release 

IL-8, IL-18, and IL-20, all of which are pro-inflammatory cytokines with a role in 

psoriasis [271]. 

Taken together, identifying the genetic basis of psoriasis is a challenging task and 

further complicated by the fact that psoriasis clearly involves an interaction between the 

immune system and the skin, leading to the question about where the primary defect 

resides.  Recent GWAS has started to reveal genetic susceptibility factors of both 

immune and epidermis systems. This leads to the identification of a number of signaling 

pathways that are crucial to the formation of particular immune cells and skin barrier 

component in psoriasis lesions, and ultimately to the development of new forms of 

treatment. 

The next stage, which would be a more challenging task, is to pinpoint the 

causative variants highlighted by GWAS.  The third chapter of the thesis describes a 

follow-up study aimed to investigate the potential regulatory roles of certain genetic 

variations in PSORS1 region. The results implied a potential allele-specific regulatory 

role of one polymorphism (rs10456057) via binding to nuclear transcription factors. 

Further study with more SNPs in that region identified an “enhancer” activity in the risk 
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allele of another intergenic SNP rs13191343, which is highly associated with psoriasis 

and psoriatic arthritis. Interestingly, this activity was only observed under differentiating 

conditions of the transfected cells.  

It is highly desirable to find out what transcription factor(s) bind to these rSNPs 

and what gene(s) is affected by this polymorphism. Notably, CDSN encodes the only 

PSORS1 transcript to be specifically expressed in terminally differentiated keratinocytes. 

And its product, corneodesmosin, has been reported to be up-regulated in the skin lesions 

of psoriatic patients. Genotypes (numbers of risk allele) of PSORS1 rSNPs are associated 

with CDSN gene expression (Figure 3.5).  In addition, a mouse strain with a targeted 

epidermal deletion of CDSN has also been created [272]; this lead to detachment of the 

upper layers of the skin. When grafted onto immune-deficient mice, CDSN-deficient skin 

undergoes rapid hair loss together with epidermal abnormalities resembling psoriasis 

[272]. Based on the above evidence, a reasonable hypothesis is formulated: the PSORS1 

rSNPs may alter the expression level of CDSN gene at skin lesions of psoriasis patients, 

which in turn disrupts the skin barrier and trigger keratinocyte hyper-proliferation.  

It have been widely accepted that epigenetics offers an important window to 

understanding the role of the environment's interactions with the genome in causing 

disease. Despite increasing evidence for and interest in the role of epigenetics in human 

disease, virtually no epigenetic information is systematically measured at the genome 

level for psoriatic skin. The fourth chapter of the thesis described the first global study of 

altered CpG methylation in psoriatic (involved PP and uninvolved PN) and normal (NN) 

skin. We determined the methylation levels at 27,578 CpG sites in these samples. 

Involved skin differed from normal skin at 1,108 CpG sites, among which twelve mapped 
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to the epidermal differentiation complex close to genes that are highly up-regulated in 

psoriasis (S100A3/5/7/9/12, SPRR2A/D/E, LCE3A). Hierarchical clustering of 50 of the 

top differentially methylated sites 100% accurately separated all psoriatic skin samples 

(involved and uninvolved) from normal skin. Methylation at 12 CpG sites was 

significantly correlated with expression levels of a nearby gene. This included decreased 

methylation of sites at KYNU, OAS2, S100A12, and SERPINB3, whose strong 

transcriptional upregulation in psoriatic skin has previously been shown to be an 

important discriminator of psoriasis versus other inflammatory skin diseases such as 

atopic dermatitis. We also observed intrinsic epigenetic differences in uninvolved versus 

normal skin that may be reflective of a predisposition to psoriasis.  

In conclusion, this thesis reports the first large-scale genome wide association 

study of psoriasis and of altered CpG methylation in psoriatic skin and has led to the 

identification of both genetic and epigenetic risk factors for psoriasis. The MHC 

(PSORS1) conferred the strongest effect upon disease risk, while most of the non-MHC 

risk factors identified from GWAS have modest effects. These included genes of the 

immune system and of the skin barrier. Follow-up functional studies identified a risk 

allele in the PSORS1 region with enhancer activity in differentiating keratinocytes. It was 

correlated with CDSN expression, a candidate gene that is ~150kb apart from the variant 

location. Upregulation of CDSN in the presence of PSORS1 would affect skin barrier 

formation and could predispose to psoriasis following environmental triggers such as 

infection. The global methylation study identified 1,108 differential methylated CpG sites 

and 12 are mapped to the Epidermal Differentiation Complex region on chromosome 

1q21 which encodes genes involved in barrier formation. The top 50 differentially 
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methylation markers accurately clustered all psoriatic skin samples from normal skin and 

methylation at 12 CpGs was negatively correlated with nearby gene expression. 

Therefore, based on the these results, we conclude that genetic and epigenetic risk factors 

of psoriasis lead to alterations in genes of the barrier and immune system. These act 

together to trigger the disease.  
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5.2 Future Perspectives on the Genetics of Psoriasis 

In terms of psoriasis genetics, and more broadly chronic inflammatory disease genetics, 

there is much challenging work that lies ahead. First of all, as with most other complex 

diseases, studies of disease heritability strongly suggest a substantial genetic component 

of PS and PsA has not yet been identified. Although recent GWAS have provided insight 

into the genetic susceptibility component derived from common alleles having moderate 

effects, association signals can only account for a sibling recurrent risk of 1.35 (including 

1.25 due to HLA)  [204], where the overall recurrent risk has been estimated at between 3 

to 6 fold [11].  So, what accounts for the missing heritability of psoriasis? 

The recent work discovering and unraveling the rich structural variation/ 

rearrangements in the human genome may form the basis of the next wave of genome-

wide studies. In fact, a recent study reported that genomic copy number alterations at 

beta-defensin genes were susceptible to psoriasis [270].  Two other independent studies 

showed that deletion of the LCE3B and LCE3C genes, members of the late cornified 

envelope (LCE) gene cluster, was associated with increased risk of both psoriasis and  

rheumatoid arthritis [103,273]. Secondly, meta-analysis is a well-established method to 

synthesize results and draw conclusions from different studies for a set of related research 

hypotheses and can have greater impact than to other study designs [274]. When 

performed appropriately, meta-analysis may enhance the precision of the estimates of the 

effects of risk alleles, leading to reduced probability of false negative results. The 

increased availability of information can also lead to rejection of null hypotheses at lower 

levels of type I error, thus reducing the false discovery rate [275]. A successful example 

of such approach was reported in a recent study where the authors performed a meta-
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analysis to investigate the contribution of the deletion of genes LCE3C and LCE3B to 

psoriasis susceptibility in multiple populations [276]. In this study, the authors confirmed 

the deletion of LCE3C and LCE3B as a common genetic factor for susceptibility to 

psoriasis in European, Chinese and Mongolian populations (OR(overall)=1.21, 1.27 and 

1.34, respectively). The interaction analysis with HLA-Cw6 locus also highlighted 

significant differences in the epistatic interaction with the LCE3C and LCE3B deletion in 

some European populations, suggesting possible epistatic effects between these two 

major genetic contributors to psoriasis.  

Finally, although emphasis has been placed on mapping common variants, recent 

studies have demonstrated that rare variants also play an important role in complex trait 

etiology and their identification should have a greater impact on risk assessment, disease 

prevention, and treatment due to their large genetic effects [277]. The development of 

second-generation sequencing (NexGen) technologies has made it possible to identify the 

rare causative variants/mutations responsible for disease [278,279]. These efforts will 

lead to identification of new psoriasis susceptibility genes and associated signal pathways, 

which eventually pave the way for new therapeutic targets of the disease.   
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5.3 Future Perspectives on Epigenetic Study of Psoriasis 

Given that epigenetics is at the heart of phenotypic variation in health and disease, it 

seems likely that understanding and manipulating the epigenome holds enormous 

promise for preventing and treating common human illness. Epigenetics also offers an 

important window to understanding the role of the environment's interactions with the 

genome in causing disease, and in modulating those interactions to improve human health. 

Despite increasing evidence for and interest in the role of epigenetics in human disease, 

virtually no epigenetic information is systematically measured at the genome level. The 

current population-based approach to common disease relates common DNA sequence 

variants to disease status. Although this purely sequence-based approach is powerful, 

there is currently no conceptual framework to integrate epigenetic information. Bjornsson 

and colleagues recently proposed an hypothetical framework which integrated both the 

epigenetic and genetics factors in the etiology of common disease [280]. The common 

disease genetic and epigenetic (CDGE) hypothesis argues that in addition to genetic 

variation, epigenetics provides an added layer of variation that might mediate the 

relationship between genotype and internal and external environmental factors [280]. 

First of all, the epigenetic component in the model could potentially help to explain the 

marked increase in common diseases with age. A common characteristic of ageing is a 

time-dependent decline in responsiveness or adaptation to the environment, a form of loss 

of phenotypic plasticity. This loss of phenotypic plasticity could be mediated 

epigenetically if loss of the normal balance between gene-promoting and gene-silencing 

factors occurred across the genome. Secondly, epigenetic variation might also help to 

explain the quantitative nature of common disease phenotypes, which could show a 
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Gaussian distribution based on the quantitative nature of epigenetic variation (level of 

methylation at CpG loci). Finally, this hypothesis could also partially explain how the 

environmental risk factors interact with genetic predisposition to the disease. Thus, 

common diseases may involve phenotypic variants with both genetic variation and 

environmentally triggered epigenetic change that modulates the effects of DNA sequence 

variation. These epigenetic modifiers are, in turn, affected by variation in the genes that 

encode them, and environmental factors (hormones, growth factors, toxins and dietary 

methyl donors) influence both the genome and epigenome. This idea can be tested by 

incorporating an assessment of the epigenome into population epidemiological studies, 

rather than simply stratifying risk for environmental exposures as is done currently 

[281,282]. 

Finally, I would like to discuss the implications and prospects for epigenetic 

therapy. As epigenetic mechanisms for human disease are identified, epigenetic therapies 

become possible. One of the clinically relevant aspects of epigenetic alterations in diseases 

is the possibility of reversion by using various enzymatic inhibitors. Although this field is in 

its infancy, it carries great promise. Potential targets for drug development are histone 

modification and DNA methylating and demethylating enzymes [63]. In fact, some drugs 

that have an effect on the epigenome are already in widespread use, but their epigenetic 

effect has only recently been discovered. For example, valproic acid is used to treat 

various disorders, including seizures, bipolar disorder and cancer, and valproic acid was 

recently found to be a potent histone deacetylase inhibitor [283]. Some drugs have been 

tested in treatment of diseases specifically because of their known effects on the 

epigenome. Experimental evidence unequivocally shows that treatment with class I and 
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class II histone deacetylase (HDAC) inhibitors extends life span of several organisms 

[284]. Kypreou et al. [285] reported that treatment of peripheral blood 

phytohemagglutinin-stimulated lymphocytes from donors of different age groups (young, 

mid-aged, senior, and elderly) with trichostatin A (TSA), an HDAC inhibitor, resulted in 

hyperacetylation of histone H4 with increasing donor age. A recent study also indicated 

that in TSA-treated mice, the in vivo production and suppressive function of Foxp3+ 

CD4+ CD25+ regulatory T cells (Tregs) were increased [286].  Such knowledge has 

direct implications for the development of in vivo approaches to treat autoimmune and 

other inflammatory diseases.  

Although the most advanced set of drugs in clinical development are histone 

deacetylase (HDAC) inhibitors, the prevalence of tissue-specific dysregulation of DNA 

methylation in various human diseases, especially in cancer and autoimmune diseases, 

suggests that it should shift the focus from HDAC inhibitors to DNA 

methylation/demethyaltion inhibitors [63]. In fact, most attention has been directed at 

developing DNA methylation inhibitors. The driving force behind this effort was the idea 

that tumor suppressor genes are silenced in cancer by DNA methylation of their 

promoters. Therefore, blocking DNMT during DNA synthesis would result in passive 

demethylation in dividing cancer cells and reactivation of these genes triggering 

suppression of tumor growth [287]. For example, two classes of epigenome-modifying 

agent are currently in clinical trials for cancer. DNA methyltransferase inhibitors such as 

decitabine, was used for the treatment of myelodysplasia [62]. The overall response rate 

with decitabine in a phase III study showed a small but statistically significant difference 
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for myelodysplasia and half of the clinically responsive patients showed a cytogenetic 

response [288].   

The field of epigenetic pharmacology in autoimmune disease is still 

underdeveloped. Recent studies showed that DNA demethylation is critical for launching 

the changes in gene expression programming during differentiation of T cells into Th1 

and Th2 cells [289] and proposed that methylated binding protein 2 (MBD2) is possibly 

involved in demethylation in T cells in lupus [290]. The global methylation profiling 

study in this thesis implied persistent epigenetic alterations in psoriatic skin, despite the 

evidence of symptoms improvement after TNF-α blockade treatment for a month. These 

results pave a new way to identify potent epigenetic signatures of psoriasis, and therefore, 

may make it possible to gauge whether certain therapeutics could truly restore the 

abnormally regulated epigenomes to a more normal state through epigenetic 

reprogramming.  
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5.4 Integrated Genetic and Epigenetic Approach 

In summary, psoriasis is a complex disease with polygenic susceptibility. Recent GWAS 

studies have provided significant insight towards gene discovery and, to date, more than 

20 common variant loci have been associated with psoriasis and/or PsA (Table 5.1). 

Despite these significant advances, known genetic variants explain only a small portion 

of the heritable component of disease, and little is known about their contribution to 

etiology. Ongoing studies are attempting to explain this ‘missing heritability’ in complex 

diseases via the detection of rare and structural variants (NexGen sequencing for rare 

functional variations), interactions between discovery SNPs and causal variants, and 

identification of associated stable epigenetic modifications. The epigenomic approach 

described in Chapter 4 of the thesis provides insights into the epigenetic factors 

underlying the etiology of psoriasis. However, the relationship between specific 

epigenetic modifications and genomic features still is still poorly understood.  It is 

reasonable to hypothesize that genotype-epigenotype interactions may underlie the 

etiopathogenesis of psoriasis, and thus using a multi-dimensional integrative approach 

may reveal powerful insights into the molecular mechanisms of such interaction. The 

challenge, of course, is to combine these possibilities into a framework that is useful for 

considering these factors simultaneously to test particular hypotheses. By combining SNP 

genotype with DNA methylation data, for instance, potential novel genotype-epigenotype 

interactions within disease-associated loci could be uncovered to understand the sources 

of methylation variability. The flow diagram shown in Figure 5.1 illustrated an 

integrated genetic and epigenetic approach for this purpose. In this thesis, I have 

discussed examples of interplay between sequence variation and reporter gene expression 
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(SNP9 in Chapter 3) and inverse correlations between promoter methylation and 

expression levels of target genes (Chapter 4).  A successfully example of evaluating the 

cis-impact of genotype on methylation status was reported in a recent study on Type 2 

Diabetes [291], in which the authors assayed CpG methylation in 60 females, stratified 

according to disease susceptibility haplotype. Absolute methylation levels were then 

quantified across LD blocks. This led to identifying a 7.7 kb region of haplotype-specific 

methylation that had previously been validated as a long-range enhancer [291]. In fact, 

Bell et al. did a whole-genome survey on the CpG methylation levels from 77 HapMap 

Yoruba individuals, for which genome-wide gene expression and genotype data were also 

available [64]. They identified 180 CpG-sites in 173 genes that were associated with 

nearby SNPs that were within a distance of 5 kb.  Interestingly, there was also a 

significant overlap of SNPs that were associated with both methylation and gene 

expression levels. These results implied a strong genetic component to inter-individual 

variation in DNA methylation profiles, and there was an enrichment of SNPs that affect 

both methylation and gene expression, providing evidence for shared mechanisms in a 

fraction of genes. Thus, inspired by these findings, it is believed that an integrated 

approach will pave the way for the functional interpretation of mechanisms underlying 

association of genetic variants with psoriasis.  
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Table 5.1 Psoriasis-associated genes identified by GWAS studies. 

Gene 
Candidate 

Chrom 
Location 

Function Functional  
Category 

Pleiotropy References 

ADAM33 20p13 A disintegrin and metalloprotease 33, membrane-
anchored protein  involving cell-cell and cell-
matrix interactions 

Inflammatory Psoriasis 
Asthma 
COPD 

[152,292,293] 
[294,295,296,297] 
[298] 

CDKAL1 6p22 579-residue, 65-kD protein shares domain and 
amino acid homology with CDK5RAP1, an 
inhibitor of CDK5 (protein kinase), mRNA 
detected in human pancreatic islet and skeletal 
muscle 

 Psoriasis 
Diabetes mellitus type II 
Crohn’s 

[299,300] 
[299,301] 
[299,301] 

COG6 13q14.11 Component of oligomeric golgi complex 6, 
required for normal Golgi function 

 Psoriasis 
Juvenile idiopathic arthritis 

[181] 
[302] 

DEFB 8p23.1 Human β-defensin, antimicrobial peptides Inflammatory Psoriasis 
Crohn’s 
Atopic dermatitis 
Asthma 

[270] 
[303] 
[304] 
[305] 

HLA-C 6p21.3 Major histocompatibility complex, class I, C; 
involved in the presentation of foreign antigens to 
the immune system 

Inflammatory Psoriasis [181,204] 

IL12B 5q33.3 p40 subunit of IL-12 and IL-23 Inflammatory Psoriasis 
Psoriatic arthritis 
Atopic dermatitis 

[112,128,181,306,307] 
[181] 
[127] 

IL13 5q31.1 A Th2 cytokine Inflammatory Psoriasis 
Psoriatic arthritis 
Asthma 
COPD 

[204,308,309] 
[310] 
[311,312,313,314,315,316
] 
[317] 

IL15 4q31 Cytokine that affects T-cell activation and 
proliferation 

Inflammatory Psoriasis [318] 

IL2/ IL21 4q26-27 IL2 involved in regulation of T-cell clonal 
expansion; IL12, a cytokine promoting the 
transition between innate and adaptive immunity 

Inflammatory Psoriatic arthritis 
Rheumatoid arthritis 
Diabetes mellitus  
Ulcerative colitis 
Juvenile idiopathic arthritis 

[181] 
[163] 
[163,319] 
[320,321] 
[322] 

IL23A 12q13.2 p19 subunit of IL-23 Inflammatory Psoriasis 
Psoriatic arthritis 

[181,204] 
[181,204] 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=57511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=3107
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Table 5.1 (Continue). 

Gene 
Candidate 

Chrom 
Location 

Function Functional  
Category 

Pleiotropy References 

IL23R 1p31.3 IL-23 receptor Inflammatory Psoriasis 
Crohn’s 
Ulcerative colitis 
Ankylosing sponylitis 

[112,128,181,204,306,307
] 
[129,323,324] 
[325] 
[326,327] 

KIR2DS1/ 
KIR2DL1/ 
KIR2DL5 

19q34 Killer immune-globulin-like receptors, ligand is 
HLA-C, regulate NK cell response 

Inflammatory Psoriasis 
Psoriatic arthritis 

[328] 
[44] 

LCE 1q21 Late cornified envelope. LCE3C and LCE3B 
highly expressed in psoriasis after tape stripping 

Epidermal Psoriasis [102,103] 

PTPN22 1p13.2 Intracellular protein tyrosine phosphatase; 
expressed primarily in lymphoid tissues; involved 
in T cell receptor signaling 

Inflammatory Psoriasis 
Rheumatoid arthritis 
SLE 
Addison's disease 

[111,300,329] 
[330] 
[331] 
[332] 

SLC12A8 3q21.2 Cation/chloride cotransporter that may play a role 
in the control of keratinocyte proliferation 

Epidermal Psoriasis 
 

[36] 

SUMO4 6q25.1 SMT3 suppressor of mif two 3 homolog 4; 
encodes small ubiquitin-related modifiers that are 
attached to proteins and control the target proteins' 
subcellular localization, stability, or activity. This 
protein specifically modifies IKBA, leading to 
negative regulation of NF-kappa-B-dependent 
transcription of the IL12B gene. 

Inflammatory Psoriasis 
Diabetes mellitus  
 

[333] 
[334,335,336] 

TNFAIP3 6q23.3 Ubiquitin-editing protein A20 that dampens TNF-
induced NF-κB activation, inhibiting inflammation 

Inflammatory Psoriasis 
Psoriatic arthritis 
Crohn’s 
Rheumatoid arthritis 
SLE 
Diabetes mellitus type I 
Celiac disease 

[181,204] 
[181,204] 
[337] 
[338,339,340] 
[341,342,343] 
[344] 
[345] 

TNIP1 5q33.1 ABIN-1, down-regulating TNF-induced NF-κB 
activation 

Inflammatory Psoriasis 
Psoriatic arthritis 
SLE 

[181,204] 
[181,204] 
[346,347] 

ZNF313 20q13 Ubiquitin ligase, expressed in human skin Inflammatory Psoriasis [269] 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=84561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=387082
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Figure 5.1 An integrated genetic and epigenetic approach to psoriasis and PsA.  A schematic summary of how genetic and 
epigenetic factors as well as the interactions might contribute to psoriasis and PsA.  The sources of epigenetic variation (genetic, 
environmental and age) are also represented. SNP: single nucleotide polymorphism; CNV: copy number variation; eQTL: expression 
quantitative trait loci; meQTL: methylation quantitative trait loci.   
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Table A1.1 Summary of cases and controls used in discovery and replication stages. 
  

 
  Discovery Study 

(n = 742) 
Replication Study 

(n = 2370) 
  Cases Control Cases Control 
n  223 519 1153 1217 
Sex      
 Males 46.40% 44.51% 45.93% 48.64% 
 Females 53.64% 55.49% 54.07% 51.36% 
Age (years)      
 Mean ± SD 49.8 ± 14.6 46.0 ± 11.9 44.2 ± 16.4 56.5 ± 15.7 
 Range 12-92 21-81 2-94 20-94 
Site      
 USA 223 519 577 737 
 UK NA NA 576 480 
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Figure A1.1 Quality control measures for discovery study. A. Heterozygosity of 
sample versus genotyping call rate. B. Distribution of SNP success rate in the discovery 
study. 
 

A. 
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Table A2.1 Sample information. A list of the information for each sample used in the 
study along with group membership and plot identifiers. Paired With: for paired samples 
(such as pre-/post-treatment and paired PP/PN) the identifier listed in this column is the 
paired-sample for that ID. Group: the group the sample belonged to (PP, PN, NN). 
Contrast: contrasts in which this sample was tested for differential expression. For 
example, a sample listing the contrasts “Paired PP vs. PN; PP vs. NN” was used to test 
for differential methylation with the paired PP/PN samples, and was also used to test for 
differential methylation in the test of all PP samples versus all NN samples. 
 

ID 
Paired 
With Group Contrasts 

PP1 PN1 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP2 PN2 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP3 PN3 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP4 PN4 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP5 PN5 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP6 PN6 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP7 PN7 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP8 PN8 PP Paired Involved vs. Uninvolved; Involved vs. Normal 
PP9 NA PP Involved vs. Normal 

PP10 NA PP Involved vs. Normal 
PP11 NA PP Involved vs. Normal 
PP12 NA PP Involved vs. Normal 
PP13 NA PP Cluster 
PP14 NA PP Cluster 
PP15 NA PP Cluster 
PP16 NA PP Cluster 
PP17 NA PP Cluster 
PP18 NA PP Cluster 
PP19 NA PP Cluster 
NN1 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN2 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN3 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN4 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN5 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN6 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN7 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN8 NA NN Involved vs. Normal; Uninvolved vs. Normal 
NN9 NA NN Involved vs. Normal; Uninvolved vs. Normal 

NN10 NA NN Involved vs. Normal; Uninvolved vs. Normal 
PN1 PP1 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN2 PP2 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN3 PP3 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN4 PP4 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN5 PP5 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN6 PP6 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN7 PP7 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
PN8 PP8 PN Paired Involved vs. Uninvolved; Uninvolved vs. Normal 
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Table A2.2 Pyrosequencing assay information. The information in this table relates to the assays used for confirmatory 
pyrosequencing. Illumina ID: if the CpG tested was part of the Illumina array the Illumina identifier is listed in this column. Gene: 
the symbol for the gene nearest the tested CpG. CpG Site: which CpG site is tested. Chr & Location: the chromosome and 
position mapping for the CpG site on the hg18 human genome build. TSS: distance from the CpG to the transcription start site 
(TSS). Strand: the strand the target is located on. Sequencing Primer Name: the primer name assigned by EpigenDX. Sequence 
for analysis: the sequence around the CpG of interest. For sequences with multiple CpGs the correct site is listed in bold red and 
is underlined. 
 

Illumina ID Gene CpG 
Site Chr Location 

Distance 
to TSS 

(bp) 
Sequence for analysis 

cg06131859 KYNU CpG#1 2 143,351,601 64 ACAGTGGCTGGAGATTACCGATTGGTTAGGGGAGAGGAAGTAAAG 

 C10orf99 CpG#1 10 85,922,708 839 ATGCTGTGAGACAGTCACTTGTCTGCACAGCTTCCTCCACCAACAGGAGC
TCCTTGAGGCGAGGCACAGTGTCTTCTGTGTCCCTGGAGCCAAGCGCATG
GCTCAGCCCAGGTCACGTGTCCAGTGAATGGGTGGCATCTGAGC 

cg04126866 C10orf99 CpG#2 10 85,922,743 804 ATGCTGTGAGACAGTCACTTGTCTGCACAGCTTCCTCCACCAACAGGAGC
TCCTTGAGGCGAGGCACAGTGTCTTCTGTGTCCCTGGAGCCAAGCGCATG
GCTCAGCCCAGGTCACGTGTCCAGTGAATGGGTGGCATCTGAGC 

 C10orf99 CpG#3 10 85,922,764 783 ATGCTGTGAGACAGTCACTTGTCTGCACAGCTTCCTCCACCAACAGGAGC
TCCTTGAGGCGAGGCACAGTGTCTTCTGTGTCCCTGGAGCCAAGCGCATG
GCTCAGCCCAGGTCACGTGTCCAGTGAATGGGTGGCATCTGAGC 
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Table A2.2 (Continue). 

Illumina ID Gene CpG 
Site Chr Location 

Distance 
to TSS 

(bp) 
Sequence for analysis 

cg20161089 IFI27 CpG#1 14 93,647,267 435 ACTGAGCCAGATCGCGCTCCCTCATCTGTAACATGCGGAGGAGGAGGGT
CCCATCTTTTTCACGTTAGTGAGGAGATTACATAA 

 IFI27 CpG#2 14 93,647,269 437 ACTGAGCCAGATCGCGCTCCCTCATCTGTAACATGCGGAGGAGGAGGGT
CCCATCTTTTTCACGTTAGTGAGGAGATTACATAA 

 IFI27 CpG#3 14 93,647,290 458 ACTGAGCCAGATCGCGCTCCCTCATCTGTAACATGCGGAGGAGGAGGGT
CCCATCTTTTTCACGTTAGTGAGGAGATTACATAA 

 IFI27 CpG#4 14 93,647,317 485 ACTGAGCCAGATCGCGCTCCCTCATCTGTAACATGCGGAGGAGGAGGGT
CCCATCTTTTTCACGTTAGTGAGGAGATTACATAA 

 IFI27 CpG#5 14 93,647,351 519 CAGGCACCTCGCCTGCTGTATATGCCTTAAAAATGCGATTGGTTCTGATT
TCTTAGTTTTG 

 IFI27 CpG#6 14 93,647,377 545 CAGGCACCTCGCCTGCTGTATATGCCTTAAAAATGCGATTGGTTCTGATT
TCTTAGTTTTG 

 IFI27 CpG#7 14 93,647,421 589 TGCTCCGTGGAGAGATAAGGGAGTCCCGGAAGTGTCTAAGACATTGGCG
CTGGGACTTTCAGGAGAAAGAAAG 

 IFI27 CpG#8 14 93,647,442 610 TGCTCCGTGGAGAGATAAGGGAGTCCCGGAAGTGTCTAAGACATTGGCG
CTGGGACTTTCAGGAGAAAGAAAG 

 IFI27 CpG#9 14 93,647,463 631 TGCTCCGTGGAGAGATAAGGGAGTCCCGGAAGTGTCTAAGACATTGGCG
CTGGGACTTTCAGGAGAAAGAAAG 
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Table A2.3 Top 50 sites that best discriminate involved from normal skin. Sites listed were determined based on between-
group analysis with principal components, and were taken from the first principal component axis. CpG ID: Illumina CpG 
identifier. Chr & Position_hg18: the chromosome and position mapping for the CpG on build hg18. Gene: symbol for the gene 
near or overlapping the CpG sites. Direction PP: the direction of methylation change in PP skin compared to NN. PP vs. NN p-
value: the corrected p-value from the PP versus PN test of differential methylation. Unnormalized β-value: raw β-values for the 
CpG in the NN, PN and PP samples shown as mean ± 95% confidence intervals; shown due to ease of interpretation. Normalized 
M-value: the normalized M-values for the CpG in the NN, PN and PP samples shown as mean ± 95% confidence intervals. 
 

CpG ID Chr Position_hg18 Gene PP Direction 
Adj p-value 

PP v. NN 

Unnormalized β-value Normalized M-value 

NN PN PP NN PN PP 
cg24468890 1 32,529,881 HDAC1 DOWN 0.015 0.34 ± 0.01 0.31 ± 0.03 0.27 ± 0.01 -0.97 ± 0.08 -1.16 ± 0.21 -1.47 ± 0.09 
cg10045881 1 111,571,814 CHI3L2 DOWN ≤ 0.001 0.54 ± 0.03 0.46 ± 0.02 0.38 ± 0.03 0.23 ± 0.19 -0.21 ± 0.11 -0.68 ± 0.18 
cg00152644 1 151,334,860 SPRR2E DOWN ≤ 0.001 0.89 ± 0.00 0.86 ± 0.04 0.81 ± 0.03 3.03 ± 0.07 2.66 ± 0.36 2.15 ± 0.24 
cg03165378 1 151,596,506 S100A9 DOWN 0.004 0.79 ± 0.03 0.73 ± 0.05 0.57 ± 0.05 1.91 ± 0.24 1.45 ± 0.34 0.44 ± 0.32 
cg16139316 1 151,597,382 S100A9 DOWN ≤ 0.001 0.84 ± 0.01 0.75 ± 0.10 0.46 ± 0.08 2.35 ± 0.11 1.75 ± 0.72 -0.23 ± 0.51 
cg02813121 1 151,615,535 S100A12 DOWN ≤ 0.001 0.82 ± 0.01 0.80 ± 0.03 0.72 ± 0.02 2.23 ± 0.11 2.01 ± 0.22 1.35 ± 0.17 
cg06131859 2 143,351,601 KYNU DOWN ≤ 0.001 0.58 ± 0.03 0.48 ± 0.07 0.32 ± 0.04 0.49 ± 0.19 -0.13 ± 0.42 -1.12 ± 0.29 
cg18119407 2 201,688,749 CFLAR DOWN 0.004 0.48 ± 0.02 0.35 ± 0.05 0.36 ± 0.03 -0.11 ± 0.12 -0.89 ± 0.30 -0.84 ± 0.17 
cg20950277 4 122,304,691 TNIP3 DOWN ≤ 0.001 0.77 ± 0.03 0.71 ± 0.05 0.58 ± 0.05 1.80 ± 0.21 1.35 ± 0.38 0.47 ± 0.29 
cg22346765 6 41,115,500 UNC5CL DOWN 0.001 0.68 ± 0.02 0.60 ± 0.04 0.54 ± 0.02 1.08 ± 0.15 0.57 ± 0.22 0.21 ± 0.14 
cg01980222 6 41,238,895 TREM2 DOWN 0.005 0.50 ± 0.01 0.48 ± 0.04 0.41 ± 0.02 0.02 ± 0.06 -0.10 ± 0.25 -0.53 ± 0.14 
cg13784855 8 128,876,120 PVT1 DOWN 0.002 0.21 ± 0.02 0.16 ± 0.04 0.11 ± 0.02 -1.92 ± 0.15 -2.46 ± 0.47 -3.03 ± 0.27 
cg13351583 9 90,983,468 SHC3 DOWN ≤ 0.001 0.29 ± 0.02 0.26 ± 0.04 0.20 ± 0.02 -1.28 ± 0.13 -1.50 ± 0.27 -2.02 ± 0.14 
cg08427977 10 49,993,838 C10orf72 DOWN ≤ 0.001 0.46 ± 0.02 0.40 ± 0.03 0.35 ± 0.02 -0.24 ± 0.11 -0.61 ± 0.21 -0.91 ± 0.14 
cg04126866 10 85,922,743 C10orf99 DOWN ≤ 0.001 0.85 ± 0.01 0.77 ± 0.07 0.65 ± 0.04 2.53 ± 0.10 1.83 ± 0.51 0.95 ± 0.31 
cg13435792 12 14,983,701 C12orf46 DOWN ≤ 0.001 0.75 ± 0.03 0.62 ± 0.07 0.54 ± 0.04 1.59 ± 0.23 0.74 ± 0.43 0.21 ± 0.24 
cg12795208 12 51,132,205 KRT6B DOWN ≤ 0.001 0.68 ± 0.02 0.62 ± 0.03 0.57 ± 0.02 1.11 ± 0.16 0.71 ± 0.21 0.41 ± 0.14 
cg20161089 14 93,647,267 IFI27 DOWN ≤ 0.001 0.63 ± 0.02 0.51 ± 0.07 0.40 ± 0.04 0.77 ± 0.13 0.04 ± 0.41 -0.58 ± 0.27 
cg21432842 17 35,425,223 CSF3 DOWN 0.002 0.48 ± 0.01 0.46 ± 0.03 0.39 ± 0.02 -0.10 ± 0.06 -0.22 ± 0.19 -0.64 ± 0.13 
cg08611714 17 36,877,384 KRTHA2 DOWN ≤ 0.001 0.60 ± 0.02 0.56 ± 0.06 0.42 ± 0.04 0.61 ± 0.14 0.35 ± 0.35 -0.46 ± 0.26 
cg25979644 18 53,550,001 ATP8B1 DOWN ≤ 0.001 0.83 ± 0.02 0.73 ± 0.09 0.59 ± 0.05 2.36 ± 0.24 1.48 ± 0.56 0.56 ± 0.28 
cg10533434 18 59,480,206 SERPINB3 DOWN ≤ 0.001 0.71 ± 0.03 0.67 ± 0.07 0.51 ± 0.05 1.30 ± 0.18 1.04 ± 0.46 0.09 ± 0.29 
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Table A2.3 (Continue). 

CpG ID Chr Position_hg18 Gene PP Direction PP v. NN Adj p-value 

Unnormalized β-value Normalized M-value 

NN PN PP NN PN PP 
cg20583073 19 3,129,759 EDG6 DOWN 0.001 0.66 ± 0.02 0.65 ± 0.02 0.59 ± 0.01 0.95 ± 0.11 0.90 ± 0.15 0.51 ± 0.08 
cg19103704 19 45,132,803 FCGBP DOWN ≤ 0.001 0.42 ± 0.03 0.33 ± 0.04 0.27 ± 0.02 -0.45 ± 0.17 -1.02 ± 0.30 -1.47 ± 0.13 
cg07713361 22 34,979,090 APOL1 DOWN 0.006 0.20 ± 0.01 0.16 ± 0.02 0.14 ± 0.01 -2.02 ± 0.12 -2.45 ± 0.21 -2.68 ± 0.15 
cg11075745 1 42,978,563 CLDN19 UP 0.025 0.48 ± 0.01 0.52 ± 0.01 0.54 ± 0.01 -0.09 ± 0.07 0.09 ± 0.05 0.21 ± 0.06 
cg06641366 1 89,870,192 LRRC8C UP 0.008 0.53 ± 0.03 0.60 ± 0.06 0.73 ± 0.04 0.19 ± 0.18 0.62 ± 0.37 1.48 ± 0.27 
cg17582777 1 153,316,724 EFNA3 UP ≤ 0.001 0.68 ± 0.02 0.69 ± 0.02 0.79 ± 0.02 1.06 ± 0.14 1.19 ± 0.16 1.96 ± 0.17 
cg05781767 3 128,830,052 PODXL2 UP ≤ 0.001 0.30 ± 0.01 0.37 ± 0.04 0.48 ± 0.04 -1.26 ± 0.10 -0.77 ± 0.24 -0.14 ± 0.22 
cg14289461 6 112,682,622 LAMA4 UP ≤ 0.001 0.19 ± 0.02 0.25 ± 0.03 0.37 ± 0.05 -2.08 ± 0.16 -1.62 ± 0.23 -0.78 ± 0.35 
cg08626653 7 99,920,258 FLJ37538 UP ≤ 0.001 0.74 ± 0.02 0.80 ± 0.03 0.85 ± 0.02 1.50 ± 0.16 2.01 ± 0.24 2.51 ± 0.19 
cg22441882 8 20,084,934 SLC18A1 UP ≤ 0.001 0.18 ± 0.02 0.26 ± 0.04 0.31 ± 0.03 -2.20 ± 0.18 -1.57 ± 0.30 -1.17 ± 0.23 
cg14706739 8 21,972,301 EPB49 UP ≤ 0.001 0.60 ± 0.03 0.67 ± 0.06 0.78 ± 0.04 0.59 ± 0.19 1.06 ± 0.46 1.85 ± 0.30 
cg18939260 8 125,810,527 MTSS1 UP 0.010 0.49 ± 0.01 0.56 ± 0.07 0.62 ± 0.03 -0.08 ± 0.07 0.38 ± 0.47 0.69 ± 0.18 
cg12515371 8 145,692,804 PPP1R16A UP 0.001 0.55 ± 0.01 0.64 ± 0.02 0.68 ± 0.03 0.29 ± 0.09 0.81 ± 0.14 1.12 ± 0.20 
cg15983520 8 145,699,914 GPT UP ≤ 0.001 0.54 ± 0.02 0.57 ± 0.03 0.63 ± 0.01 0.23 ± 0.11 0.43 ± 0.17 0.75 ± 0.09 
cg00342530 9 129,066,841 GARNL3 UP ≤ 0.001 0.26 ± 0.01 0.34 ± 0.05 0.42 ± 0.05 -1.53 ± 0.11 -0.96 ± 0.32 -0.49 ± 0.29 
cg03699566 11 71,578,300 FOLR1 UP ≤ 0.001 0.43 ± 0.03 0.51 ± 0.04 0.66 ± 0.04 -0.42 ± 0.16 0.07 ± 0.23 0.97 ± 0.25 
cg05194726 12 2,814,741 NRIP2 UP ≤ 0.001 0.15 ± 0.01 0.28 ± 0.05 0.33 ± 0.05 -2.57 ± 0.18 -1.38 ± 0.38 -1.07 ± 0.31 
cg02192520 12 54,400,422 RDH5 UP ≤ 0.001 0.26 ± 0.03 0.35 ± 0.04 0.52 ± 0.06 -1.49 ± 0.19 -0.93 ± 0.27 0.13 ± 0.38 
cg03623878 13 112,703,561 MCF2L UP ≤ 0.001 0.19 ± 0.02 0.25 ± 0.05 0.35 ± 0.04 -2.09 ± 0.17 -1.62 ± 0.36 -0.88 ± 0.23 
cg11668844 13 112,703,623 MCF2L UP ≤ 0.001 0.26 ± 0.02 0.31 ± 0.05 0.45 ± 0.04 -1.53 ± 0.14 -1.21 ± 0.32 -0.28 ± 0.21 
cg09276451 16 4,361,604 SLITL2 UP 0.002 0.45 ± 0.02 0.51 ± 0.02 0.55 ± 0.02 -0.30 ± 0.13 0.08 ± 0.13 0.28 ± 0.13 
cg07634706 16 55,996,025 CCL17 UP ≤ 0.001 0.75 ± 0.01 0.79 ± 0.02 0.82 ± 0.01 1.59 ± 0.11 1.90 ± 0.22 2.24 ± 0.15 
cg20716119 16 67,329,264 CDH1 UP 0.005 0.08 ± 0.01 0.09 ± 0.02 0.13 ± 0.01 -3.43 ± 0.10 -3.38 ± 0.25 -2.72 ± 0.17 
cg02298612 16 74,085,960 CHST6 UP 0.001 0.58 ± 0.02 0.62 ± 0.02 0.69 ± 0.03 0.49 ± 0.10 0.69 ± 0.14 1.15 ± 0.17 
cg04049033 17 1,500,411 RILP UP 0.035 0.50 ± 0.01 0.49 ± 0.03 0.56 ± 0.02 -0.02 ± 0.05 -0.05 ± 0.19 0.33 ± 0.09 
cg26415633 19 56,019,168 KLK1 UP 0.020 0.34 ± 0.02 0.37 ± 0.02 0.46 ± 0.02 -0.97 ± 0.13 -0.78 ± 0.13 -0.25 ± 0.15 
cg14380517 21 17,907,632 BTG3 UP ≤ 0.001 0.11 ± 0.01 0.15 ± 0.02 0.21 ± 0.03 -3.05 ± 0.23 -2.54 ± 0.23 -1.91 ± 0.26 
cg13265003 21 42,792,092 SLC37A1 UP ≤ 0.001 0.60 ± 0.02 0.70 ± 0.03 0.72 ± 0.03 0.58 ± 0.09 1.20 ± 0.17 1.41 ± 0.19 
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Figure A2.1 Hierarchical clustering analysis of psoriatic skin samples. Heatmap 
showing PP, PN, and NN samples clustered using the top 50 genes that differentiate PP 
from NN skin. Image was generated using simple scaling normalized gene expression 
values. Red values indicate up-regulation while green indicates down-regulation of 
expression. The Affymetrix U95 microarray probeset ids and gene symbols were also 
shown at the right column.  
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Figure A2.2 Comparison of raw and normalized distributions for β- and M-values. 
Each panel of the figure shows a plot of the mean rank versus standard deviation. Data 
distributions with no mean/variance relationship are flat on this type of plot. The 
transformed raw beta (βtransformed = sqrt(β)) demonstrates severe heteroskedascity, that is 
somewhat improved with variance stabilizing normalization, where βnormalized = 
asin(sqrt(β)). The raw M values demonstrate a lower degree of heteroskedascity as 
compared to the beta values. However, the normalized M-values (background subtracted 
and normalized by simple scaling normalization implemented in the methylumi package) 
are flatter and more evenly distributed. The greater homoskedascity for the normalized 
M-values makes them more appropriate for parametric statistical analysis. 
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Figure A2.3 Theoretical power for detecting methylation changes. Two panels are 
shown. The upper panel is the power for a paired t-test, and the lower panel is the power 
for a two-sample t-test. Since we performed global unbiased analysis, all power 
calculations are for two sided t-tests. The x-axis is the true difference in methylation 
levels (β) between the sample groups. The y-axis is the power to detect the true difference. 
Three lines are shown in each plot, showing the power at 5% methylation standard 
deviation, 10% and 15%, represented as solid, dashed, and dotted lines. The paired t-test 
demonstrates great power compared to the two-sample t-test, as is expected. Large 
changes in methylation, on the order of 40%, are detectable even with large variance. The 
5% and 10% standard deviation lines are representative of the majority of sites as few 
had standard deviations of raw β as larger than 10%. 
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