
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Biology Faculty Publications & Presentations Biology 

4-2002 

Chromosome and expression mechanisms: a year dominated by Chromosome and expression mechanisms: a year dominated by 

histone modifications, transitory and remembered histone modifications, transitory and remembered 

Jerry Workman 

Sarah C.R. Elgin 
Washington University in St. Louis, selgin@wustl.edu 

Follow this and additional works at: https://openscholarship.wustl.edu/bio_facpubs 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Workman, Jerry and Elgin, Sarah C.R., "Chromosome and expression mechanisms: a year dominated by 
histone modifications, transitory and remembered" (2002). Biology Faculty Publications & Presentations. 
204. 
https://openscholarship.wustl.edu/bio_facpubs/204 

This Article is brought to you for free and open access by the Biology at Washington University Open Scholarship. It 
has been accepted for inclusion in Biology Faculty Publications & Presentations by an authorized administrator of 
Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/bio_facpubs
https://openscholarship.wustl.edu/bio
https://openscholarship.wustl.edu/bio_facpubs?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/bio_facpubs/204?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


127

Current Opinion in Genetics & Development 2002, 12:127–129

0959-437X/02/$ — see front matter
© 2002 Elsevier Science Ltd. All rights reserved.

Chromosomes and expression mechanisms
A year dominated by histone modifications, transitory 
and remembered
Editorial overview
Sarah CR Elgin and Jerry L Workman

Sarah CR Elgin

Department of Biology, CB 1229, 
Washington University, One Brookings Dr,
St Louis, Missouri 63130, USA; 
e-mail: selgin@biology.wustl.edu

Sarah Elgin is Professor of Biology
and Professor of Education at
Washington University in St. Louis.
Work in her lab concerns the role of
chromatin structure in maintaining
gene silencing and regulating 
expression, using the heat-shock
gene hsp26 in Drosophila
melanogaster as a model system; 
the organization and packaging 
of heterochromatic domains is a 
particular interest. 

Jerry L Workman

Howard Hughes Medical Institute, 
Department of Biochemistry and Molecular
Biology, 306 Althouse Laboratory, 
The Pennsylvania State University, 
University Park, Pennsylvania 16802, USA; 
e-mail: jlw10@psu.edu.

Jerry Workman is Paul Berg
Professor of Biochemistry at
The Pennsylvania State University,
and an Associate Investigator of the
Howard Hughes Medical Institute. 
He heads a laboratory studying gene
activation, in particular analyzing the
interplay of histone modification and
nucleosome remodeling complexes in
promoter targeting, emphasizing work
in yeast.

Abbreviations
ChIP chromatin immunoprecipitation
FACT ‘facilitates chromatin transcription’ factor
HP1 Heterochromatin Protein 1
LCR locus control region 
RNAi RNA interference

In recent years, the study of gene regulation has changed dramatically, as the
complete genome sequences of many model organisms have become avail-
able, allowing assessment of genome-wide patterns of transcription. Genome
data bases and advances in mass spectroscopy have allowed rapid identifica-
tion of protein complexes that modify chromatin and regulate transcription.
(For new strategies to identify protein complexes, see [1–3].) The finding 
that many transcription co-activators and co-repressors are linked to histone 
modifications has placed chromatin structure at the center of gene regulation.
Histone acetylation, phosphorylation and methylation are all utilized in the
control of transcription; histone variants have also been implicated. Studies of
the protein complexes that either generate or recognize modified histones are
revealing sophisticated pathways of information exchange, modulation, and
memory. The surface of the chromosome now appears to be similar to the sur-
face of the cell: studded with ligands and receptors controlling the receipt and
response to environmental signals. Comparable to signaling networks used in
the cytoplasm, a linked sequence of histone modifications appears to function
in signal transduction. Deepening appreciation of how histones — and 
complexes that act on them — generate, read and maintain epigenetic marks
is revealing the molecular basis of epigentics. The study of gene regulation
has been revitalized with new tools, new players, and a newly discovered code
of signals decorating the chromatin.

This issue of Current Opinion in Genetics & Development begins with a genome-
wide viewpoint, as Wyrick and Young (pp 130–136) discuss genomic tools for
deciphering gene expression regulatory networks in Saccharomyces cerevisiae.
They describe three approaches towards studying such global processes:
genome-wide expression analyses using DNA microarrays, genome-wide factor
location using chromatin immunoprecipitation (ChIP) products analyzed using
DNA microarrays, and DNA motif-finding algorithms that search for factor-
binding sites. The combined information can identify clusters of genes responding
to the same direct effectors, as well as indicate secondary interactions. New 
technologies for examining the kinetics and structure of effector–template 
interactions have also emerged. Fluorescence microscopy and photobleaching of
living specimens has allowed analysis of protein mobility in the cell nucleus. As
described by Hager, Elbi and Becker (pp 137–141), recent results indicate that
many factors involved in regulating gene activity move rapidly and exchange
quickly with their targets, raising interesting questions concerning the stability
of the effector complexes detected by ChIP assays. 



In an overview of histone modifications, Berger
(pp 142–148) describes the breakthrough discoveries —
many important coactivators and corepressors possess 
histone acetyltransferase or deacetylase activity, respectively.
Histone phosphorylation, methylation, and ubiquitination
have since been analyzed. Berger describes recent results
supporting the concept of the ‘histone code’, in which 
specific patterns of histone modification provide signals
indicating the intended transcription state of the locus.
Featherstone (pp 149–155) then details the functions of
coactivators in both chromatin modification and transcriptional
stimulation. Coactivators include general transcription 
factors, histone modifying complexes, and ATP-depen-
dent chromatin ‘remodeling’ complexes. The ordered
recruitment of these complexes may lead to a fluid choreo-
graphy of events resulting in alteration of chromatin
structure and activation of a gene. However, the dance may
not be precisely set — the ordered appearance of the
dancers appears to vary on different genes. Recent findings
have emphasized that coactivator function can be switched
by post-translational modification [4]. Elongating RNA
polymerase faces an array of nucleosomes ahead of it. As
Svejstrup (pp 156–161) describes, the polymerase might
either ride over a histone octamer, pass the octamer behind
it, or dissociate the octamer when it encounters a nucleo-
some. Elongation is facilitated by several accessory protein
complexes. Complexes such as FACT can bind histones
directly, and may hold some of the histones while the 
polymerase passes.

In addition to histone modification, histone variants are
used in important defined sub-populations of nucleo-
somes. A highly conserved histone H3 variant, CENP-A,
plays a critical role in centromere formation [5]. Here,
Redon et al. (pp 162–169) report on the conserved H2A
variants. H2AX is specifically phosphorylated in response
to double-strand breaks in DNA, and may play a role in
signaling DNA repair, whereas H2AZ appears to alter
nucleosome stability, impacting transcriptional regulation.
A third variant, macroH2A, is utilized in X inactivation 
(see Cohen and Lee [pp 219–224]). 

Histone modification patterns also play a role in 
defining chromatin domains. As reviewed by Bulger et al.
(pp 170–177), several — but clearly not all — gene loci,
including the β-globin locus, are generally enriched in
acetylated histones, in addition to peaks of hyperacetyla-
tion at transcribed genes and regulatory elements. It is not
known how increased acetylation across the domain is 
generated. Formation of the β-globin domain appears to
involve regulatory sequences beyond the LCR. The
mechanism behind β-globin LCR–promoter interactions
remains elusive; the transcription factor NF-E2, thought to
mediate such interactions, appears to associate with both
sequences independently.

A striking step towards definition of heterochromatic
domains came with recognition that such domains in higher

eukaryotes are marked by methylation of lysine 9 of 
histone H3 (reviewed by Grewal and Elgin [pp 178–187]).
This modification provides a recognition site for
Heterochromatin Protein 1 (HP1), a bifunctional protein
also able to form complexes with the modifying enzyme
SUV39. This provides a molecular mechanism for the
inheritance of the histone modification at a specific locus,
and a means of spreading the modified state. In
Schizosaccharomyces pombe, inverted repeats at the bound-
aries of the silent mating type locus appear to block
spreading. In S. cerevisiae, the spread of heterochromatin
appears to rely on histone hypoacetylation. Here, bound-
aries are characterized by a spike of histone acetylation due
to a strong promoter or a specific DNA binding protein
(reviewed by Dhillon and Kamakaka [pp 188–192]).
Silencing in S. cerevisiae is dependent on the Sir2p deacety-
lase, which is targeted by DNA binding proteins. Although
the means of targeting histone H3-lys9 methylation in
higher eukaryotes remains elusive, histone hyperacetyla-
tion may mark the ends of such silent domains in some
cases. The role of nuclear organization in gene silencing
during development is considered by Fisher and
Merkenschlager (pp 193–197), with special attention to
recent work on the immunoglobin genes.

Whereas H3 in inactive domains is methylated at lysine 9,
in active regions H3 is methylated at lysine 4, accompanied
by shifts in histone acetylation. The histone methyl-
transferases responsible are described by Kouzarides
(pp 198–209). Specific forms of methylated histones are
important in formation of alternative chromatin domains
and in both positive and negative regulation of specific
promoters. This seems a complex system, involving highly
specific modifying enzymes, positive and negative impacts
of prior modifications, and recognition of the modified
state by coactivators and corepressors. Interestingly,
whereas colocalization of HP1 with H3-mLys9 has been
found to play a role in repression of some euchromatic
genes, the complex involved in this case appears to remain
localized, rather than spreading. 

Simon and Tamkun (pp 210–218) describe evidence 
suggesting that histone modification states play a role in
the developmental maintenance of on/off decisions carried
out by the trithorax group and Polycomb group proteins.
Stability may be conferred by the ability of the Polycomb
complex to block chromatin remodeling, whereas the
BRM complex of trithorax group proteins promotes
remodeling. Changes in the histone complement, and 
patterns of histone modification, have been implicated in
maintaining the stable off state of the inactive X chromo-
some in mammals (Cohen and Lee [pp 219–224]). Recent
work argues that Xist RNA, expressed exclusively from
and bound to the silenced X chromosome, is the causative
agent for initiating assembly of the silent chromatin.
Methylation of H3 at lysine 9 is an early event, whereas
histone hypoacetylation and accumulation of macroH2A1
are late events in the process. This H3 methylation does
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not appear to involve enzymes that modify heterochromatin
nor result in HP1 binding, suggesting a distinct process.
Strikingly, Tamaru and Selker [6] have reported that 
histone H3 lysine 9 methylation is required for DNA
methylation in Neurospora. The same relationship could
occur in mammals where DNA methylation is a late event
in X chromosome inactivation.

Progress in delineating a completely different mechanism
for achieving gene inactivation, RNAi, is reviewed for us
by Hutvágner and Zamore (pp 225–232). Organisms as
diverse as nematodes, flies, plants, and fungi destroy 
specific RNA transcripts homologous to double-stranded
RNA in the cell. Whereas the mechanism is clearly used
for biological purposes, it is also valuable for reverse genetics.
Progress in identifying the components of the system is
leading towards an understanding of the mechanism. It has
been reported that RNAs can also trigger DNA methyla-
tion in plants; perhaps silencing is initially targeted to 
the repetitious sequences found in pericentric hetero-
chromatin through an RNA-based mechanism [7]. 

Our growing understanding of mechanisms of gene regulation
has suggested new approaches to manipulating gene activity
in humans (Reik, Gregory and Urnov [pp 233–242]).
Histone deacetylase and DNA methylase inhibitors show
promise in treating disease where activation of a silenced
gene is of therapeutic value (e.g. sickle cell anemia).
Designer transcription factors are being developed to 
target activating or repressive chromatin modifying com-
plexes to specific genes. Cloning also presents therapeutic
possibilities, but challenges due to loss of epigenetic
imprints. Clearly, the genome must be replicated in a 
manner that duplicates chromatin structures that encompass
epigenetic information. Interactions between the replica-
tion proteins and the chromatin assembly factors appears
critical to subsequent heterochromatin function (Gerbi
and Bielinsky [pp 243–248]). Chromatin structure can
influence the timing of replication origin use, with 
potential downstream consequences. 

In their Commentary, Kornberg and Lorch (pp 249–251) put
this progress into perspective, pointing out remaining gaps

in our understanding. What is the structure of the 
chromatin fiber in vivo? Without an established structure,
there is no assay for the affect of acetylation on that 
structure. What is the state of an active promoter? Is the 
histone core dislodged, or simply rendered impotent by
modification and remodeling? The answer may not be the
same for all promoters. Full reconstruction of an in vitro
gene activation system, coupled with genetic analysis, will
be essential to resolve these issues. 

Post-genomic tools are greatly enlarging our range of analysis,
from single genes to domains, chromosomes, and genomes
as a whole. Long-standing epigenetic phenomena are
yielding to detailed biochemical analyses. We now know
that the signals include both DNA sequence elements and
histone codes. This is a new era in the study of gene 
regulation, providing opportunities to gain a deeper under-
standing of chromosome biology. By providing a series of
timely reviews, we hope that this issue of Current Opinion
in Genetics & Development will illustrate the new connections
and novel concepts that will drive this field in the coming
years, and we thank the authors for their efforts.
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