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ABSTRACT OF THE THESIS 
 
 

Activity Preservation of Plasmonic Biosensors  

with a Metal-Organic Framework 

by 

Lu Wang 

Master of Science in Materials Science 

Washington University in St. Louis, 2016 

Research Advisor:  Professor Srikanth Singamaneni 

 
 
Antibody-antigen recognition enables antibody-conjugated nanostructures to serve as plasmonic 

biosensors with tunable specificity. However due to the instability of antibodies, these biosensors are 

susceptible to changes in the environment such as heat and aridity, leading to constraints on the 

transportation and handling of these sensors. Here we establish a method using a metal-organic 

framework crystal to preserve biosensor activity under severe environmental conditions, including 

exposure to high temperatures, an organic solvent and a proteolytic agent. After zeolitic imidazolate 

framework-8 (ZIF-8) crystals formed for 12 hours on a biosensor of gold nanorods conjugated with 

a model antibody, rabbit IgG, 80% of the antibody activity is successfully retained after incubation at 

60 °C for 24 hours. We investigated the change of preservation ability with respect to the growth of 

ZIF-8 film. Furthermore, in comparison with silk fibroin films, which showed similar function in 

previous studies, ZIF-8 films demonstrate stronger preservation ability in various conditions.  
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Chapter 1 

 

Background 

 

Antibody-based plasmonic biosensors have been considered a powerful and cost-efficient sensing 

tool with potential applications in clinical and military settings [1]. The use of antibody-antigen 

recognition ensures high accuracy of sensing, and the plasmonic resonance of conjugated metal 

nanoparticles pushes the resolution and sensitivity of these sensors to the single-molecule level [1,2]. 

However, the nature of the antibody on these metal nanoparticles makes conjugated biosensors 

susceptible to changes in the environment such as temperature rise, leading to the loss of sensing 

capability in harsh conditions [3]. Successful preservation of the sensing activity would significantly 

expand potential applications of these biosensors. This chapter will review the fundamental science 

that led to this study of activity preservation for plasmonic biosensors. 

1.1 Antibody-Antigen Recognition 
 
Higher vertebrates can respond to the invasion of various foreign substances, including viruses, 

bacteria, or even molecules. This defense mechanism is known as immune response, and the foreign 

substances that can elicit immune responses are called antigens. Proteins that are generated by an 

organism and can adaptively bind to antigens are known as immunoglobulins, and the secreted 

immunoglobulins are called antibodies [4]. Each antibody monomer consists of four polypeptide 

chains that covalently form a Y-shape structure. The peptide chains are linked with disulfide bridges 

(-S-S- structures), and each tip of the Y shape possesses a specific binding site for the 

complementary antigen, as shown in Figure 1.1 [4,5].  

Immunoglobulin G (IgG) is the most abundant group of antibodies in the human circulatory 

system, representing approximately 75% of serum antibodies [4]. Thus it is often used as a model 

antibody in immunology and diagnostics. When antibodies from one vertebrate are introduced into 

the circulation system of another species, they can also elicit immune responses as an antigen, and 

the new antibodies produced are known as secondary antibodies. Secondary antibodies are widely 

used for signal amplification in bioassays such as enzyme-linked immunosorbent assay (ELISA) and 
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immunoblotting [6,7]. In this study, rabbit IgG and its secondary antibody (anti-IgG) in goat are 

used as antibody-antigen pair for the model biosensor. 

 

               

Figure 1.1 General structure of IgG, with different components  
and specific antigen binding sites labeled. 

 

However, natural antibodies exhibit poor stability under change of pH, in nonaqueous media, at 

elevated temperature, and when exposed to proteolytic agents [8-10]. Thus despite their high 

accuracy and signal amplification potential, antibody-based biosensors have limited application due 

to their tendency to lose functionality in various conditions, especially at high temperatures. 

Therefore an extensive refrigerated distribution network, also known as a “cold chain”, is often used 

to transport, store and handle antibody-based products [3]. This cold chain is expensive and heavily 

energy-consuming, and thus it greatly restricts the use of these biosensors in resource-limited areas, 

such as the developing countries and battle fields [11]. 
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1.2 Localized Surface Plasmon Resonance 
 

Surface plasmon resonance (SPR) is a coherent oscillation of the surface conduction electrons 

excited by electromagnetic radiation, e.g. light radiation [12]. Plasmonic materials, which are 

materials exhibiting this particular light-matter interaction, have been used in various applications in 

biological and chemical sensing [13,14]. In the case of localized surface plasmonic resonance (LSPR), 

a phenomenon widely observed in nanoscale metallic particles, light interacts with particles much 

smaller than its wavelength, leading to local oscillation of nanoparticles as shown in Figure 1.2. This 

local oscillation causes a change in the electric field of the incident light. The extent of this 

phenomenon is reflected in the extinction spectrum of light, which accounts for both absorption 

and scattering by the metal nanoparticles [12]. Extinction peak wavelengths largely depend on the 

size and shape of nanoparticles, and can be easily affected by the local changes in the dielectric 

environments. Therefore the extinction spectra of nanoparticles shifts due to adsorption of large 

molecules, such as polymers, on the particle surface [15,16]. By tuning the nanoparticle surface for 

specific adsorption of certain molecules, we can achieve chemical and biological sensing by analyzing 

the extinction spectra, which are typically obtained with an ultraviolet-visible (UV-vis) spectrometer. 

 

                    

Figure 1.2 Localized surface plasmon resonance (LSPR) of spherical metal nanoparticles. Local vibration of 
nanoparticles causes a change in the electric field of the incident electromagnetic wave. 
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Among all metal nanoparticles, elongated gold nanorods (AuNRs) have shown great potential in 

plasmonic sensing considering that their LSPR wavelengths are easily tuned in large amounts by 

changing their overall size and forming sharp corners that function as electromagnetic hotspots [17-

19]. When metal nanoparticles are not spherical, multiple extinction peaks result from the vibrational 

modes along different directions. In the case of an AuNR, the two most apparent extinction peaks 

can be attributed to the longitudinal and transverse dipole resonance, as shown in Figure 1.3. The 

peak positions are linearly dependent on the aspect ratio, which is the ratio between the longitudinal 

and transverse dimensions (length and diameter) [15]. For AuNRs with the same size and shape, the 

peak extinction values mainly depend on the concentration of particles, while the peak positions 

shall not change. In this study, AuNRs with average aspect ratio of around 4 were used to generate 

LSPR, with their largest peak position at around 810 nm in solution.  

 

 

Figure 1.3 Example extinction spectrum of AuNRs in solution, with two LSPR peaks  
related to vibrational modes along different directions as illustrated.  
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1.3 Metal-Organic Framework 
 

Metal-organic frameworks (MOFs) are inorganic-organic hybrid compounds that form microporous 

crystalline structures [19,20]. Their high surface areas and structural diversity allow these compounds 

to be applied in various fields such as gas separation and heterogeneous catalysis [22,24]. Among the 

MOFs, zeolitic imidazolate framework-8 (ZIF-8) is one composed of zinc ions and 2-

methylimidazolate groups. Each zinc ion is coordinated by four methylimidazolate rings. ZIF-8 can 

form cubic crystals, or truncated octahedral crystals as shown in Figure 1.4. The ZIF-8 crystals are 

extremely stable in high heat and intrinsically biodegradable, making them an optimal material in 

biomedicine [22 – 25]. 

In previous studies, ZIF-8 has shown great potential in preserving the structural integrity and 

physiological function of biological macromolecules including proteins and deoxyribonucleic acids 

(DNAs) [25]. In an aqueous solution of zinc ions and 2-methylimidazole molecules, those biological 

macromolecules can efficiently induce the formation of ZIF-8 crystals on their surfaces. With a ZIF-

8 protective layer, a model enzyme protein, horseradish peroxidase (HRP), can maintain its catalytic 

function under exposure to a proteolytic agent, high heat, and a boiling organic solvent [25]. The 

preservation mechanism is attributed to the small pore size of ZIF-8 and coordination interactions 

between the carbonyl groups of the protein backbone and the Zn cations of ZIF-8, providing 

proteins with tight encapsulation [25,26]. This led to our idea that ZIF-8 might also preserve the 

function of antibody-based plasmonic biosensors. However, HRP is reported with higher thermal 

stability than that of antibodies [8,27]. Moreover, activity of some antibodies could dramatically 

change when binding to a surface from an aqueous solution [28]. Antibodies conjugated on AuNRs 

are especially unstable, even when refrigerated at 4 °C [29]. Therefore, activity preservation is a 

greater challenge for plasmonic biosensors, which are built with antibodies tethered on the surfaces 

of metal nanoparticles.   
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Figure 1.4 Truncated octahedral crystal structure of ZIF-8, the metal organic framework used in this study. 
Each zinc cation (gray dot) is linked with four nitrogen atoms in four 2-methylimidazolate residues (blue 

lines), together forming a crystal structure similar to zeolite crystals. 

 

1.4 Silk Fibroin Film 
 

Silk of domesticated silkworms (Bombyx mori) has been widely recognized for its strength and luster. 

The major component of B. mori silk is a protein called fibroin [30,31]. 94% of the silk fibroin amino 

acid sequence is composed of glycine-X (Gly-X) repeats, which then form β-sheet secondary 

structure with each other through hydrogen bonds. The strictly alternating Gly-X sequence allows 

the β-sheets to densely pack on one another via Gly/Gly or X/X contacts, which lead to the 

impressive mechanical strength of the B. mori silk [34]. The packed domains are also known as the 

crystalline domains of silk fibroin.   

In recent years, silk fibroin has drawn great attention in the field of biomedicine, due to its 

biocompatibility, mechanical strength, cost-efficient extraction process and controllable degradation 

[30-33]. It has been widely applied in tissue engineering, wound healing, drug delivery and many 

other biomedical researches [33]. Previous studies have shown that silk fibroin film is a good 

candidate for preserving activity of plasmonic biosensors [35]. Therefore in this study, the 

preservation ability of silk fibroin film is discussed as a comparison. 
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1.5 Methodology Overview 
 

This study focuses on the preservation of antibody-based plasmonic biosensors with a film made of 

ZIF-8 crystals. The plasmonic biosensors are constructed by conjugating IgG onto the surface of 

AuNRs, and further localizing this conjugated structure on glass slides. Using the antibody proteins 

as nucleation sites, ZIF-8 can form a rigid crystal layer on the surface of these plasmonic biosensors, 

as shown in Figure 1.5. This layer can later be easily removed by solution with low pH. Because 

ZIF-8 has high thermal stability, we proposed that by growing a film of ZIF-8 on the surface of 

antibody-based plasmonic sensors, the chemical structure of antibody proteins on the sensors can be 

retained under harsh conditions that would normally destroy the secondary interactions but not 

covalent bonds. This protection of structure integrity should lead to preservation of the sensing 

ability for these biosensors. This method, as illustrated in Figure 1.5, could potentially replace the 

expensive “cold chain” that is required for transportation of these biosensors.  

 
Figure 1.5 Method of activity preservation for antibody-based plasmonic biosensors proposed in this  

study. After ZIF-8 growth on biosensors, the biosensors retain their activity without refrigeration.  
Once ZIF-8 is removed, the biosensors should be ready to use. 

 

We examine the stability of this proposed method for preserving biosensor activity under different 

conditions that would destroy the sensor function, including exposure to high temperatures (40 °C, 

60 °C, 80 °C and 120 °C), an organic solvent (dimethylformamide) and a proteolytic agent (protease 

from Streptomyces griseus). The sensor function is characterized by the LSPR shift in its extinction 

spectrum. The outline of all experiments in this study is shown in Figure 1.6. Characterization of the 

biosensors surfaces is done with X-ray diffraction (XRD), transmission electron microscopy (TEM) 

and atomic force microscopy (AFM) between different steps. Preservation of the biosensor activity 

with silk film is explored as a comparative study.  
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Figure 1.6 Procedure outline of experiments in this study. After fabrication of the biosensors and formation of 
the protective layers (ZIF-8 or silk films), the biosensors then go through treatments and their activities are 

assessed afterwards. Surface characterization techniques are used to further understand the interactions 
between protective layers and the biosensors surfaces.  
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Chapter 2 

 
Methods 

 

This chapter describes different techniques and methodologies used in this study. Here, plasmonic 

biosensors were fabricated by conjugating rabbit IgG on the surface of AuNRs, which were then 

localized on glass substrates. The recognition ability of rabbit IgG was shown by successful binding 

of its secondary antibody, goat anti-rabbit IgG. Each additional layer of protein on AuNRs causes a 

shift in their LSPR peaks. Therefore successful preservation of biosensing ability was shown by 

retained binding activity of IgG to anti-IgG, which can be studied by analyzing the extinction 

spectra of the plasmonic sensors. Various characterization techniques were also utilized to study the 

ZIF-8 film and silk fibroin film used in biopreservation. 

2.1 Materials 
 

Cetyltrimethylammonium bromide (CTAB), chloroauric acid (AuCl4), sodium borohydride (NaBH4), 

ascorbic acid, (3-mercaptopropyl)-triethoxy-silane (MPTES), zinc acetate dihydrate, 2-

methylimimdazole, protease from Streptomyces griseus (Type XIV), dimethylformamide (DMF) 

potassium phosphate monobasic (KH2PO4), potassium phosphate dibasic (K2HPO4) and 10× 

phosphate buffer saline (PBS) were purchased from Sigma-Aldrich. Silver nitrate (AgNO3) was 

purchased from VWR international. 1-Ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC), N-

hydroxysuccinimide (NHS), Rabbit IgG and Goat anti-Rabbit IgG (Mw = 150 kDa) were purchased 

from Thermo scientific. Poly(ethylene glycol) 2-mercaptoethyl ether acetic acid (SH-PEG-COOH, 

Mw = 5000g/mol) was purchased from Jenkem Technology. All chemicals were used as received, 

without further purification. 
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2.2 Fabrication of Antibody-Based Plasmonic 
Biosensors 

 
Antibody-Based plasmonic biosensors are fabricated through three steps: synthesis of the gold 

nanorods (AuNRs), conjugation of IgG on AuNRs, and adsorption of AuNR-IgG conjugates on 

glass substrates. This section will introduce the fabrication of these plasmonic biosensors in detail. 

2.2.1 Synthesis of Gold Nanorods 
 

AuNRs were synthesized according to an established seed-mediated approach with some 

modifications [18,37]. All aqueous solutions in this procedure were prepared with nanopure water 

(18.2 MΩ cm). To prepare the seed solution for AuNR growth, 9.75 mL of 0.1 M CTAB and 0.25 

mL of 10 mM AuCl4 were mixed in an aqueous solution and kept under stirring at 800 rpm at room 

temperature. Then we prepared 10 mM NaBH4 aqueous solution and stored it at 4 °C for more than 

20 minutes. Once taken out of the refrigerator, 0.75 mL of ice-cold 10 mM NaBH4 solution was 

rapidly injected into the mixture solution while the stirring continued. The resulting seed solution 

should show a brown color.  

AuNR solution was made by mixing the following aqueous solutions in sequence: 38.0 mL of 0.1 M 

CTAB, 2.0 mL of 10 mM HAuCl4, 0.40 ml of 10 mM AgNO3, 0.22 mL of 0.1 M ascorbic acid and 

48 µL of the seed solution. After adding each solution into a 50 mL centrifuge tube, we gently shook 

the centrifuge tube for 10 sec to ensure blending. Mixed solution was then completely covered with 

aluminum foil and left overnight for AuNR growth. 

After observing a pink color in the AuNR solution, we stopped AuNR growth by centrifuging the 

solution at 8000 rpm for 20 min. The supernatant was discarded, and the precipitates were re-

dispersed in nanopure water for storage. Extinction spectra of AuNR solution were obtained to 

monitor shape changes during the AuNR growth, and the amount of water added after 

centrifugation was controlled to ensure a longitudinal extinction peak value around 2.0. To remove 

excessive CTAB, the AuNR solution was centrifuged again at 8000 rpm for 20 min before usage.   
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2.2.2 Antibody Conjugation  
 

The model antibody, IgG, was modified with SH-PEG-COOH and conjugated on AuNRs 

according to a previous study [16]. Aqueous solutions of 37.5 µL of 20 µM SH-PEG-COOH, 150 

µL of 5 µM EDC, 60 µL of 12.5 µM NHS were mixed with 202.5 µL nanopure water and gently 

shaken for 1 hr. The pH of the reaction mixture was adjusted to 7.4 by adding 10× concentrated 

phosphate buffer saline (PBS). The mixture was then added with 10 µL of 75 µM IgG solution, and 

incubated at room temperature for 2 hr. The mixture was filtered using a centrifuge tube with a 50-

kDa filter to remove any byproduct. The final SH-PEG-IgG conjugate solution was obtained after 

rinsing the mixture with PBS buffer (pH 7.4) twice through centrifuging at 7000 rpm for 5 min. 

The IgG conjugated AuNR (AuNR-IgG) solution was prepared by adding 15 µL of SH-PEG-IgG 

solution to 1 mL of twice-centrifuged AuNR solution. The SH-PEG-IgG solution was added in 

smaller amounts (5µL) for multiple times, and the extinction spectrum of AuNR solution was 

checked after each addition to ensure successful conjugation. Successful conjugation was marked by 

a red shift of ~10 nm in the longitudinal peak of the extinction spectrum.  

2.2.3 Adsorption of AuNR-IgG on Glass Substrates  
 

Plasmonic biosensors were fabricated by adsorbing AuNR-IgG conjugates on glass substrates [35]. 

Glass substrates were cut into approximately 1 × 2 cm rectangular slides, and cleaned by immersing 

in piranha solution (3:1 (v/v) mixture of H2SO4 and 30% H2O2) for 40 min, followed by extensive 

rinsing with nanopure water. The clean glass substrates were then modified with MPTES for better 

adsorption of AuNR-IgG, by exposing their surfaces to 1% (m/v) MPTES in ethanol for 1 hr. 

Excessive MPTES was rinsed off by immersing the substrates in ethanol for 20 min, followed by 

extensive rinsing with nanopure water. The MPTES-modified glass substrates were then blow-dried 

and stored at 4 °C for at least 1 hr before use. 

AuNR-IgG conjugates were adsorbed on glass substrates by exposing MPTES-modified glass 

substrates to AuNR-IgG solution for 1.5 hr at 4 °C. The adsorption time may increase to ensure a 

longitudinal extinction peak value of larger than 0.02. Excessive loosely-bound AuNR-IgG 

conjugates were rinsed off with nanopure water. 
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2.3 Formation of Protective Films 
 

Protective films formed on top of the freshly fabricated plasmonic biosensors. Steps were 

performed immediately after one another to achieve maximum preservation. 

2.3.1 ZIF-8 Protective Film 
 

ZIF-8 protective film was constructed according to an established method [36]. To grow ZIF-8 

protective film on a plasmonic biosensor, we placed the biosensor in a disposable cuvette. Precursor 

aqueous solutions of 80 mM 2-methylimidazole and 20 mM zinc acetate were prepared and slowly 

added onto the biosensor in sequence. After gently mixing the solution with a micropipet, we sealed 

the cuvette and soaked the biosensor in the mixture solution at 4 °C for 3 hr, 12 hr or 24 hr for ZIF-

8 growth. The IgG molecules acted as nucleation centers for ZIF-8, and thus a film of ZIF-8 crystal 

grew on the biosensor. The ZIF-8 films can later be rinsed off with an aqueous solution of pH 

lower than 6. Here we used a potassium phosphate solution of pH 5.5. 

2.3.2 Silk Protective Film 
 

Silk fibroin was extracted in solution from Bombyx mori silkworm cocoons and used to form 

protective films following reported protocols [30,35]. To prepare the silk fibroin solution, B. mori 

cocoons were cut into small pieces (around 1 cm in diameter) and peeled into thinner sheets. 

Remains of the worm were carefully removed from the silk pieces. After boiling the silk pieces in 1 

L of 0.02 M sodium carbonate aqueous solution, we obtained the dispersed silk fibroin fibers. The 

fibers were then removed with a spatula, rinsed with 1 L of nanopure water for 20 min three times, 

and dried overnight in a fume hood. Then we dissolved the dried fibers in 9.3 M lithium bromide 

(LiBr) at 60 °C for 4 hr, with a ratio of 1 g silk to 10 mL LiBr solution. The silk-LiBr solution was 

dialyzed with nanopure water in a capped dialysis tube (SnakeSkin 68700, Thermo Scientific) for 48 

hr. We changed the water for dialysis six times within 48 hours. Then we removed the impurities in 

the dialyzed solution by centrifuging it twice at 9000 rpm at 4 °C, each time for 20 min. The 

supernatant was kept as the final silk fibroin solution and stored at 4 °C. The weight percentage of 

silk fibroin solution was determined by drying 200 µL of solution in a small weighing boat made 
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with aluminum foil (around 1 cm×1 cm×1 cm) at 60 °C, and weighing the dried film. The solution 

can later be diluted to lower concentrations. 

To form the protective silk film, 120 µL of roughly 1% (m/v) silk solution was added onto the side 

of a plasmonic biosensor with AuNR-IgG, and spun-coated at 3000 rpm for 60 sec with a spin-

coater (model WS-400, Laurell Technologies Corporation). The silk film can later be removed by 

gently shaking in nanopure water for 15 min.  

2.4 Characterization  
 

Characterization of AuNR extinction spectra and samples surfaces in this study was achieved 

through ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), transmission electron 

microscopy (TEM) and atomic force spectroscopy (AFM). 

2.4.1 Ultraviolet-Visible Spectroscopy 
 

UV−vis extinction spectra of AuNRs were collected with a Shimadzu UV-1800 UV−vis 

spectrometer. For nanoparticle solutions, a minimum of 400 µL was transferred into a disposable 

cuvette for testing. For plasmonic biosensors on glass slides, a slide was inserted into a disposable 

cuvette, tilted for stable placement, and tested for the extinction spectra. Cuvettes with either 

nanopure water or clean glass tilted in the same orientation were used as baseline references for the 

spectrometer, thus the output extinction spectra should characterize the conjugated AuNRs and the 

protective layers. UV-vis spectra were analyzed with Origin software and the peak positions were 

determined by curve-fitting two Gaussian distributions. 

2.4.2 X-ray Diffraction 
 

The molecular composition of ZIF-8 crystals was verified with XRD. ZIF-8 was grown on a silicon 

substrate with AuNR-IgG adsorbed instead of a glass substrate following the same procedure in 

Section 2.4.1. The silicon substrates had been cleaned with piranha solution using the same 

procedure as cleaning glass slides in Section 2.2.3. The data were processed with Origin software.  
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2.4.3 Transmission Electron Microscopy 
 

The sizes and shapes of AuNRs were verified through TEM. TEM graphs were collected and saved 

on a field emission microscope (JEOL JEM-2100F). Samples were prepared by drying a drop (~2 

µL) of concentrated AuNR solution on a hydrophilic carbon-coated grid that had been processed by 

glow discharge.  TEM images were analyzed with ImageJ 1.51h. 

2.4.4 Atomic Force Microscopy 
 

Surfaces of plasmonic sensors and protective films were characterized by AFM. An AFM image 

reflects relative height of a sample surface in bright or dark colors. We cooled the AFM samples to 

room temperature and blew dried samples to remove liquid and visible dust before scanning them 

with AFM. No other steps were taken for sample preparation. The images were obtained using 

Dimension 3000 (Digital instruments) AFM in light tapping mode. The tapping amplitude set point 

was varied until the sample surface was precisely captured. AFM images were processed with ImageJ 

1.51h.  

Thicknesses of protective films were also measured with AFM. A scratching tool with a sharp tip 

was used to create a step edge in the film on a glass sample. We carefully scratched the film so that 

the film was completely removed on the scratch site and that the glass substrate was not damaged. 

The area with the step edge of the film was examined with AFM in light tapping mode. The sample 

was oriented so that the scratch was on the top side, and perpendicular to the scanning direction of 

the AFM tip. The imaged area was selected so that no remains of the film could be seen at the 

bottom of the step, i.e. the bottom of the step was the top surface of the glass substrate. We 

obtained the average heights along the two sides of the step edge with the built-in software interface 

of the AFM machine. The film thickness was obtained from the average height difference between 

the top surface of the film and the top surface of the glass substrate. The data were processed with 

the software interface of Dimension 3000. 
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2.5 Activity Evaluation of Plasmonic Biosensors 
 

The activity of an AuNR-IgG plasmonic biosensor was characterized by the peak shift in extinction 

spectra of AuNRs after binding of goat anti-rabbit IgG (anti-IgG). After removal of protection films 

on sensors surfaces, this binding is achieved by exposing the side with AuNR-IgG on a plasmonic 

biosensor to anti-IgG solution (diluted in 1× PBS buffer to 24 µg/mL) at 4 °C for 2 hr. The 

extinction peak values after binding of anti-IgG on sensors were obtained following the same 

procedure described in Section 2.4.1.  

Within each batch of plasmonic biosensors, one or two samples were used as the internal references 

for this batch. The internal references were neither protected nor exposed to harsh environment, 

and they were directly exposed to anti-IgG to obtain the reference LSPR peak shift. If two samples 

were used as reference for the sample batch, we then set the average of the two peak shifts to be the 

reference value. All data were analyzed with Microsoft Excel and Origin.  

2.6 Treatments on Plasmonic Biosensors 
 

After protection film formed on the surface, the plasmonic biosensors experienced one of the 

following harsh environments. The internal references for every batch of plasmonic biosensors did 

not undergo any of these treatments. 

2.6.1 Temperature Cycles  
 

The plasmonic biosensors were placed in a glass or polystyrene petri-dish, with the side of AuNR-

IgG facing top. The petri dishes were marked so that biosensors could be distinguished, and then 

placed into an oven preset to 40 °C, 60 °C, 80 °C or 120 °C for 24 hr. A glass petri dish was used 

for 80 °C and 120 °C cycles. After temperature cycles, the protective films were rinsed off right 

before activity evaluation of the biosensors. 
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2.6.2 Organic Solvent  
 

Dimethylformamide (DMF) was used as to explore the effect of organic solvents on activity of 

plasmonic biosensors. A plasmonic biosensor was placed in a glass vial with ~10 mL of DMF for 2 

hr, with the side of AuNR-IgG facing top. We ensured that the glass vials were sealed and that all 

biosensors were completely soaked during the treatment. We gently rinsed the plasmonic biosensors 

with nanopure water after taking them out of DMF.  

2.6.3 Proteolytic Agent  
 

Protease from Streptomyces griseus (Type XIV) was dissolved in 1× PBS to 0.25 units/mL. The 

plasmonic biosensors were placed in a petri dish with the side of AuNR-IgG facing top, and 150 µL 

of the protease solution was added onto each plasmonic biosensor. The petri dish was then sealed 

and placed at 37 °C for 2 hr statically in an incubator (Labnet International 311DS). The biosensors 

were gently rinsed with nanopure water after the incubation ended. 
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Chapter 3 

 

Results and Analysis 

 

Activity of an AuNR-IgG plasmonic biosensor was characterized by the peak shift in extinction 

spectra of AuNRs after binding of anti-IgG. By comparing the peak shift after incubation in harsh 

environment with the peak shift of intact reference biosensors prepared in the same batch, we 

obtained the percentage retained activity. Comparison of retained activities illustrated whether the 

protective films had successfully preserved the activity of plasmonic biosensors. Characterization of 

samples can also correlate the preservation ability of ZIF-8 film with its progressive growth. 

3.1 Antibody-Based Plasmonic Biosensors 
 

To study the function of plasmonic biosensors, we first verified the shape of AuNRs used in this 

study through TEM, as illustrated in Figure 3.1.  

 

 

Figure 3.1 TEM image of AuNRs used in this study, with average aspect ratio of 3.9. 
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The length and diameter of these AuNR were found to be 54.5 ± 6.2 nm and 14.2 ± 1.7 nm 

respectively (N=30), and the average aspect ratio was calculated to be 3.9. These AuNRs showed 

extinction spectra with longitudinal peaks at ~830 nm in solution. 

Conjugation of IgG on AuNRs was performed by adding SH-PEG-IgG solution into twice-

centrifuged AuNRs solution in a cuvette several times. Every time, we added 5 µL of SH-PEG-IgG 

solution and checked the extinction spectrum of the result solution. Nanopure water was used as 

baseline reference for extinction spectra. After we added a total 15 µL of SH-PEG-IgG solution into 

the AuNR solution, there was a distinct red shift of ~9.2 nm in the longitudinal extinction peak 

(Figure 3.2), indicating successful conjugation of IgG onto the AuNRs.  

After adsorbing AuNR-IgG conjugates on glass substrates, we also checked the extinction spectra of 

the fabricated plasmonic biosensors. A glass substrate previously cleaned with piranha solution was 

used as the baseline reference for the spectrometer. The longitudinal extinction peak was at ~790 

nm, showing a blue shift compared to the extinction spectrum of AuNR-IgG solution.  

 
Figure 3.2 LSPR shift of AuNR solution after conjugation of rabbit IgG. An apparent shift of 9.2 nm  

in the longitudinal peak position is shown. 

 
We then checked the morphologies of AuNR-IgG conjugates by scanning the surface of a fabricated 

plasmonic biosensor with AFM, as shown in Figure 3.3. Since AFM reads the relative height of 

sample surface, the bright and dark color should outline the size of the particles. We observed that 

the shape of AuNRs had changed into dumbbells after IgG conjugation. A few spherical particles 
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were observed. The AFM images showed uniform adsorption of AuNR-IgG conjugates on the glass 

substrates. 

We verified the functionality of plasmonic biosensors through UV-vis spectroscopy. After exposure 

to anti-IgG solution, the plasmonic biosensors showed a roughly 30-nm red shift in the longitudinal 

extinction, as shown in Figure 3.4. This is quite significant compared to the 9.2-nm shift associated 

with IgG conjugation. 

 

 

               

Figure 3.3 AFM images of AuNR-IgG conjugates after adsorption onto glass substrates. Three sizes of scans 
are shown (A: 5×5 µm, B: 2×2 µm, C: 1×1 µm). 

A 
 
 
 

B 
 
 
 

C 
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Figure 3.4 Example of LSPR shift of AuNR-IgG after exposure to anti-IgG solution  
(24 µg/mL) at 4 °C for 2 hr. 

 

 

To explore the impact of ZIF-8 growth on the function of plasmonic biosensors, we explored how 

the extinction spectra changes after growth and removal of ZIF-8, as shown in Figure 3.5. Relative 

peak shifts were displayed in Figure 3.6. Upon formation of ZIF-8, the longitudinal extinction peak 

showed a red shift of 90 nm.  The blue shift associated with removal of ZIF-8 is slightly larger than 

the previous red shift, which probably comes from the removal of some loosely-bound IgG. After 

removal of ZIF-8, the blue shift associated with binding of anti-IgG was ~30 nm, similar to 

previous observations with intact plasmonic biosensors. 
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Figure 3.5 Extinction spectra of a plasmonic biosensor after 3-hr growth of ZIF-8 crystals, rinsing of ZIF-8 and 
anti-IgG binding. 

 

 
Figure 3.6 Typical LSPR shifts observed after 3-hr growth of ZIF-8 crystals, rinsing of ZIF-8 and anti-IgG 

binding. 
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We also checked the morphologies of AuNR-IgG conjugates after ZIF-8 growth and rinsing. After 

12 hr of ZIF-8 growth, we rinsed off the ZIF-8 crystals on a plasmonic biosensor, and scanned its 

surface with AFM. The results are shown in Figure 3.7. Comparing these AFM images to Figure 3.3, 

we can see that the distribution of AuNR-IgG conjugates remained uniform after ZIF-8 growth. 

The overall shape and size of AuNR-IgG conjugates also did not change.  

 

  

Figure 3.7 AFM images of AuNR-IgG conjugates after 12-hr ZIF-8 growth and rinsing of ZIF-8. Two sizes of 
scan are shown (A: 5×5 µm, B: 2×2 µm). 

 

3.2 Activity Preservation at Elevated Temperatures 
 

In each batch of plasmonic biosensors fabricated, we saved one or two sensors as the internal 

reference. We characterized the activity of a plasmonic biosensor by the red shift of its longitudinal 

peak position after anti-IgG binding. Therefore retained activity of a sample biosensor is calculated 

with the following equation:  

              𝑹𝒆𝒕𝒂𝒊𝒏𝒆𝒅 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑺𝒂𝒎𝒑𝒍𝒆 𝑳𝑺𝑷𝑹 𝒔𝒉𝒊𝒇𝒕

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑳𝑺𝑷𝑹 𝒔𝒉𝒊𝒇𝒕
× 𝟏𝟎𝟎%             (3.1) 

Note that the sample and reference always came from the same batch.  

After formation of ZIF-8 films for 3 hr, the protected plasmonic biosensors were incubated at 

different elevated temperatures for 24 hr, and the retained activities were assessed after the 

temperature treatment and removal of ZIF-8 films. A minimum of four samples were used for the 

A 
 
 
 

B 
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average of retained activity. We observed that these biosensors retained around 80% of their activity 

after removal of ZIF-8 films, at both 40 °C and 60 °C. At 80 °C, the average retained activity was 

60%. Still it is significant compared to that of biosensors without ZIF-8 protection, as shown in 

Figure 3.8. The differences between protected and non-protected biosensor activities for all 

temperatures were larger than 50%. 

 

 

 

Figure 3.8 Retained activities of plasmonic biosensors after 24-hr incubation at elevated temperatures, with or 
without ZIF-8 protection (N ≥ 4 for each group). In the groups with ZIF-8 protection, biosensors were soaked 

in precursor solutions for 3 hours for ZIF-8 growth. 
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3.3 Progressive Growth of ZIF-8 Film 
 

To understand the relationship between ZIF-8 crystal growth and its activity preservation function, 

we applied several characterization techniques on the ZIF-8 films. XRD was performed on ZIF-8 

grown on AuNR-IgG conjugates adsorbed on silicon substrates, with the same procedure of 

growing ZIF-8 on plasmonic biosensors described in Section 2.3.1. In a crystal, XRD peaks can be 

associated with the crystal planes. Therefore we compared the XRD pattern (Figure 3.9) with the 

characteristic XRD peaks for freestanding ZIF-8 crystals [38]. The crystal planes corresponding to 

XRD peaks that we obtained are marked in Figure 3.9.  

 

  

Figure 3.9 XRD data of ZIF-8 on AuNR-IgG. Peaks associated  
with crystal planes in pure ZIF-8 crystal are marked. 

 
 

AFM was used in tapping mode to characterize the surface morphology of progressively growing 

ZIF-8. By directly testing the ZIF-8 on plasmonic sensors, we obtained Figure 3.10 for different 

ZIF-8 growth time: 3, 12 and 24 hours. For all three different growth times, the ZIF-8 formed a 

uniform film of crystal on top of the plasmonic sensors. No AuNR-IgG could be observed on the 

surface. Comparing these images, we can see that the size of ZIF-8 particles on surface increases 

with the growth time.  

  



 

25 

  
 

    

  

Figure 3.10 AFM images of ZIF-8 Film on AuNR-IgG after different growth times  
(A1, A2: 3 hr; B1, B2: 12 hr; C1, C2: 24 hr). 
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We also performed scratch tests on samples with different ZIF-8 growth times to study the films 

thicknesses. The images were obtained with AFM, as shown in Figures 3.11. After AFM images 

were flattened, the film thicknesses were obtained from the average height difference between the 

two sides of a scratch edge. In the black boxes on the AFM images in Figures 3.11, heights were 

averaged over the length of the box. The red lines indicate the data points selected for obtaining the 

average height on each side of the scratch edge. These red lines were carefully chosen to avoid 

shattered pieces of ZIF-8 film, which would cause deviations in the height readings. The average 

height profiles are shown in the yellow boxes on the right of AFM images in Figures 3.11. The range 

of x-axis of plot in the yellow box corresponds to the width of black box in AFM images, and the 

red arrows point at the values averaged from the red lines. The difference between values 

highlighted by the red arrows on the same AFM image was recorded as the ZIF-8 film thickness, as 

shown in Table 3.1. 

 

 
Table 3.1 ZIF-8 film thicknesses after different growth times. 

ZIF-8 Growth Time Average Film Thickness 

3 Hours 13.4 nm 

12 Hours 16.4 nm 

24 Hours 19.3 nm 
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Figures 3.11 Thickness analysis of ZIF-8 films on AuNR-IgG after different growth times (A: 3 hr, B: 12 hr, C: 
24 hr). Film edge regions are marked with black boxes. Height profiles along short sides of black boxes are 
plotted on the right of AFM scans in the yellow boxes. Red lines and arrows highlight the points selected for 

calculating average heights, which is later used for thickness calculation. 
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We also studied the effect of growth time of a ZIF-8 film on its preservation ability. After ZIF-8 

growth on plasmonic sensors for different amounts of time (3 hr, 12 hr and 24 hr), the samples were 

incubated at 80 °C for 24 hours. The retained activity was calculated for each of the growth times, as 

shown in Figure 3.12. Without ZIF-8 protection, 10% of the biosensing activity was retained. The 

average retained activity increased to 60%, 76% and 78% after ZIF-8 growth for 3 hr, 12 hr and 24 

hr, respectively. The retained activity clearly increases with the ZIF-8 growth time. 

 

Figure 3.12 Change in preservation ability of ZIF-8 film with different growth time  
after incubation at 80 °C for 24 hr (N ≥ 4 for each group). 

 

As a comparison, we also investigated the preservation of biosensor activity with silk fibroin film at 

80 °C after 24 hr. The extinction spectra and LSPR shifts of a typical biosensor sample are shown in 

Figure 3.13 and Figure 3.14. These two figures show that the spin-coating of silk fibroin film on 

AuNR-IgG caused a red shift of ~120 nm. However after incubation of the samples at 80 °C and 

rinsing the silk with nanopure water, the blue shift of longitudinal peak associated with rinsing was 

only ~60 nm, indicating that the silk was not completely rinsed off. No anti-IgG binding was 

observed through LSPR shifts in the following step. 
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Figure 3.13 Extinction spectra of a plasmonic biosensor protected with silk fibroin films after silk film 
deposition, incubation at 80 °C for 24 hr, rinsing of silk and anti-IgG binding. The curve in dark green overlaps 

with that in blue. 

 

 
Figure 3.14 LSPR shifts of a plasmonic biosensor protected with silk fibroin films after silk film  

deposition, incubation at 80 °C for 24 hr, rinsing of silk and anti-IgG binding. 
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3.4 Activity Preservation at Extremely High 
Temperature 

 

We also examined the activity preservation of ZIF-8 at an extremely high temperature (120 °C). 

After 12-hr ZIF-8 growth, incubation at 120 °C for 24 hr, and rinsing of ZIF-8 films, we obtained 

the extinction spectrum of a biosensor (Figure 3.15). The longitudinal peak showed a 20-nm blue 

shift compared to the original extinction spectrum of AuNR-IgG before the high temperature 

treatment. This is a much larger shift than that shown in Figures 3.5 and 3.6. This large blue shift 

indicates a change in the AuNR-IgG conjugates, and thus failure of the plasmonic biosensor. In this 

case, the peak shift from anti-IgG binding is not comparable to the reference shift anymore, 

indicating failure of the biosensors. 

 
Figure 3.15 Extinction spectra of a plasmonic biosensor before and after 24-hr incubation at 120 °C  

plus rinsing of ZIF-8. ZIF-8 grew on the biosensor surface for 12 hr. 

 
 

To further study what happened to these biosensors, we scanned the surfaces of ZIF-8 protected 

biosensors with AFM after incubation at 120 °C for 48 hr (Figure 3.16) and after removal of ZIF-8 

(Figure 3.17). The ZIF-8 grew for 12 hr on the biosensors surfaces. Comparing Figure 3.16 to 

Figure 3.10-B2, the ZIF-8 crystals did not show a substantial morphology change after incubation at 

120 °C. We can still observe clearly defined round crystals in Figure 3.16, and the ZIF-8 coverage is 

still uniform. However as we removed the ZIF-8 layer, we can clearly see deformed AuNR-IgG in 
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AFM images, as circled in red in Figure 3.17. The general size and shape of AuNR-IgG in Figure 

3.17 are also not as uniform as that shown in Figure 3.3. 

 

 

 

Figure 3.16 AFM image of ZIF-8 on AuNR-IgG after 48-hr incubation at 120 °C, showing  
uniform coverage of ZIF-8. ZIF-8 grew on the biosensor surface for 12 hr. 

 
 

    

Figure 3.17 AFM images of AuNR-IgG protected with ZIF-8 after 48-hr incubation at 120 °C and rinsing of 
ZIF-8. ZIF-8 grew on the biosensor surface for 12 hr. Examples of deformed AuNR-IgG conjugates are 

highlighted in red circles. 
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3.5 Activity Preservation in Other Harsh 
Environments 

 
Next we tested the activity preservation of these biosensors under exposure to organic solvents and 

proteolytic agents. Right after exposure to DMF for 2 hr, there was a blue shift of ~80 nm in the 

extinction spectra of the biosensors (Figure 3.18), indicating ZIF-8 film may be partially removed 

from the biosensor surface before the rinsing step. Still the unprotected biosensors retained 38% of 

their activity, while the biosensors with 12-hr of ZIF-8 growth had 68%, as shown in Figure 3.19. 

We also observed that exposure to DMF for longer time (3 hr) would cause complete loss of 

biosensor activity regardless of whether a ZIF-8 protective layer existed or not.  

The silk fibroin, however, failed in protecting the plasmonic biosensors. After exposure to DMF for 

2 hr, the samples only showed a 20-nm blue shift after rinsing, as shown in Figure 3.20 and Figure 

3.21, which is minimal compared to the ~120-nm red shift after spin-coating of silk. This indicates 

that silk films could not remove from the biosensors surfaces after exposure to DMF. We also 

confirmed this hypothesis by AFM imaging. As shown in Figure 3.22, after rinsing the sample with 

nanopure water for 1 hr, the surface of the biosensor was still quite flat and we could not observe 

distinct AuNR-IgG conjugates in AFM scans.  

 

Figure 3.18 LSPR shifts of a plasmonic biosensor protected with ZIF-8 after ZIF-8 film formation for 12 hr, 
immersion in DMF for 2 hr, rinsing of ZIF-8 and anti-IgG binding. 
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Figure 3.19 Retained activities of plasmonic biosensors after immersion in DMF for 2 hr  
(N ≥ 3 for each group). ZIF-8 grew on the biosensor surface for 12 hr. 

 

  
Figure 3.20 Extinction spectra of a plasmonic biosensor after deposition of silk film, 

 and after immersion in DMF for 2 hr plus rinsing of silk. 
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Figure 3.21 LSPR shifts of a plasmonic biosensor after deposition of silk film, 

 and after immersion in DMF for 2 hr plus rinsing of silk. 

 

                          

Figure 3.22 AFM image of a biosensor protected with silk fibroin film after immersion in DMF  
for 2 hr and rinsing of silk for 1 hr 
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A protease solution of 0.25 units/mL (Protease from Streptomyces griseus, Type XIV) was used to 

explore the effect of proteolytic agents. To protect the biosensors, ZIF-8 grew on the biosensors 

surfaces for 12 hr, and silk was spun-coated on biosensors surfaces for 60 sec at 3000 rpm. The 

LSPR shifts for protected and unprotected biosensors after each experimental step are shown in 

Figure 3.23. After exposure to protease solution for 2.5 hr, the unprotected samples showed a blue-

shift after anti-IgG binding. Thus the retained activity can be treated as 0, as no successful binding 

of anti-IgG could be observed. The protected samples showed some red shift after anti-IgG 

binding. The average retained activities were 40% and 8% for samples protected with ZIF-8 and silk 

respectively (N ≥ 3 for each group).  

 

  
Figure 3.23 LSPR shifts of plasmonic biosensors with or without protective films after incubation  

in protease solution (0.25 units/mL) at 37°C for 2.5 hr.  

 
 

We also noticed that after incubation in protease solutions and rinsing of protective layers, we can 

observe a blue shift in the longitudinal peak position compared to the initial value, as seen in Figure 

3.23. This was not expected, and it may indicate a deformation of AuNR-IgG conjugates. To better 

understand this phenomenon, we scanned the biosensors with protective layers right after 

incubation in protease solution and very gentle rinsing. From Figure 3.24 we can see that as 

incubation time in protease solution increases, the outlines of ZIF-8 crystals became vague. After 

2.5-hr incubation, we could hardly see any round ZIF-8 crystals similar as those in Figure 3.10.  On 
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the other hand, the silk protective layer is completely removed after incubation in protease solution, 

as seen in Figure 3.25. 

 

  

Figure 3.24 AFM images of biosensors protected with the same ZIF-8 film after incubation in protease 
solution (0.25 units/mL) at 37°C for different incubation times (A: 1 hr, B: 2.5 hr).  

 

                

Figure 3.25 AFM image of a biosensor protected with silk after incubation  
in protease solution (0.25 units/mL) at 37°C for 2.5 hr. 
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Chapter 4 

 

Discussion 

 

ZIF-8 films showed the ability to preserve the activity of plasmonic biosensors, with their 

performance varying under different environmental conditions. This chapter will discuss the results 

from Chapter 3 in detail. 

4.1 Plasmonic Biosensors 
 
In this study, we fabricated plasmonic biosensors with IgG conjugated on AuNR, following a 

procedure similar to previously established methods [29,35,36]. Two batches of AuNRs with similar 

extinction peak values were used. The sizes of AuNRs used in this study are similar with the AuNR 

used in a previous study, with a larger aspect ratio and slightly larger standard deviation [35]. The 

difference in aspect ratio might attribute to the larger LSPR shift in extinction spectra after 

conjugation with SH-PEG-COOH, binding to anti-IgG and deposition of protective layers [37]. 

This can be related to the change in plasmon sensitivity. It has been reported that AuNRs with 

aspect ratios between 3 and 4 function better as plasmonic sensors. Therefore it is understandable 

that our AuNR with average aspect ratio of 3.9 would function better than the AuNR used in 

previous studies, which has an average aspect ratio of 2.8 [20,35,39]. In this case, the absolute values 

of signals from our plasmonic sensors, i.e. LSPR shifts, would be larger. However, the percent 

retained activity is always calculated with respect to a reference sample in the same batch. Therefore, 

the large absolute LSPR shift should not affect the assessment of efficiency for protective layers. 

Our data can be correlated with previous studies [35,36]. 

We verified the conjugation of SH-PEG-COOH on AuNRs with the change in extinction spectrum 

shown in Figure 3.2. The flexible PEG chains improved the accessibility of immobilized IgG, and 

the packed IgG layer reduced the potential nonspecific binding of proteins (including anti-IgG) on 

AuNRs surfaces, which can lead to errors in biosensor signals [16]. We observed a blue shift in the 

extinction spectra after AuNR-IgG conjugates adsorbed on the glass substrates. This shift is 

probably due to the significant change in refractive index of the environment [18]. From Figure 3.3, 
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we can see that AuNR-IgG conjugates were uniformly distributed on the glass substrates. Thus the 

extinction spectra obtained should reflect the average extinction from AuNR-IgG conjugates. 

Comparing Figure 3.3 and Figure 3.1, we can see that IgG conjugation did not greatly change the 

aspect ratio of the AuNRs, yet the shapes changed from simple rods to dumbbells. This was also 

observed in a previous study of plasmonic biosensors [35]. This may indicate preferential binding of 

SH-PEG-COOH at the two ends of an AuNR. Further investigation may proceed to understand the 

reason behind this phenomenon. 

We characterized the function of plasmonic biosensors by LSPR shift after exposure to anti-IgG. To 

make signal from a sample biosensor comparable to that of its reference, we controlled the 

concentration of anti-IgG solution (24 µg/mL), as well as the exposure time in the same batch of 

biosensors. It has also been shown in a previous study that this concentration (24 µg/mL) of anti-

IgG does not cause nonspecific binding of anti-IgG on bare AuNRs, and therefore we can attribute 

the LSPR shift to binding of anti-IgG to IgG [35]. 

4.2 Activity Preservation at Elevated Temperatures 
 
ZIF-8 films successfully preserved the activity of the biosensors at various temperatures (40 °C, 60 

°C and 80 °C), which satisfied our hypothesis that the porous and stable ZIF-8 crystals can protect 

biosensors at elevated temperatures. As the temperature increases, the retained activity of biosensors 

with ZIF-8 protection decreases. This may attribute to the thermal expansion of ZIF-8 increasing 

the pore size of the crystals, weakening the tight packing of crystals on IgG that makes activity 

preservation of antibodies possible [26,36]. While the retained activity of ZIF-8 protected plasmonic 

biosensors decreased at higher temperatures, the retained activity of control groups also lowered 

with increasing temperature. Thus more than 50% more of biosensor activity was retained with ZIF-

8 at each temperature as discussed in Section 3.2.  

Silk, however, failed to protect plasmonic biosensors at a relatively lower temperature of 80 °C for 

24 hr. The insufficient LSPR shift associated with rinsing of silk film indicates incomplete removal 

of the silk films. This may be caused by silk fibers crystallizing, transforming from a water-soluble 

form (silk I) to insoluble β-sheets (silk II), making it hard to remove the protective silk films [42,43].  

Further investigation may proceed to examine the protection of other antibody-based sensing 

systems with ZIF-8 crystals at extreme temperatures.  
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4.3 Progressive Growth of ZIF-8 Film 
 
From Section 3.3, it is clear that the growth time of a ZIF-8 film can affect its preservation ability. 

With AFM images in Figure 3.10, we can see that uniform coverage is achieved in the case of all 

three growth times: 3 hr, 12 hr and 24 hr. No significant change in film roughness was observed 

from the AFM images for different growth times. The major difference in characteristics from the 

variation of growth time was the film thickness. Longer growth time results in thicker films, and 

better preservation of biosensor activities at an elevated temperature (80 °C).  

This correlation may be caused by higher bulk-interface volume ratio for thicker materials. The 

preservation of biosensors activities is attributed to the small pore size of ZIF-8 and interactions 

between the carbonyl groups in protein backbone and the Zn cations of ZIF-8, providing proteins 

with tight encapsulation [26,36]. Therefore the interface between AuNR-IgG and ZIF-8 is mainly 

held by non-covalent interactions, which get substantially weaker at elevated temperatures. On the 

other hand, bulk ZIF-8 is thermally stable [23]. Thus, thicker rigid crystals may have provided better 

support to maintain the rigidity of interfacial regions.  

Future investigations may proceed to understand the molecular basis of protein activity protection 

with ZIF-8 crystals.  

4.4 Activity Preservation at Extremely High 
Temperature 

 
At extremely high temperature of 120 °C, even though the temperature was not high enough to 

decompose ZIF-8 crystals, the blue shift in the extinction spectrum after removal of ZIF-8 indicates 

that the AuNR may have already deformed at this temperature, which would compromise the 

function of the plasmonic biosensors [23]. This is confirmed by the AFM images. The morphology 

of ZIF-8 did not show a significant change after incubation at 120 °C, yet the AuNR-IgG conjugates 

were clearly deformed. Some deformed AuNR-IgG conjugates showed that they might have been 

melted and re-joint together after cooling to room temperature. This phenomenon is coherent with 

previous studies in the thermal stability of AuNRs [40,41]. AuNRs can deform at temperatures 

much lower than the melting point of bulk gold to minimize its surface energy [41]. 
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4.5 Activity Preservation in Other Harsh 
Environments 

 
Compared to results in Section 3.2, the preserved activities of plasmonic biosensors are much lower 

in DMF and in protease solution, as shown in Section 3.4. The major reason behind this is probably 

dissociation of ZIF-8 in DMF and in water. Longer incubation time in either DMF or protease 

solution caused complete removal of ZIF-8 films from the biosensors surfaces. As the precursors of 

ZIF-8, zinc ions and 2-methylimidazole, may both exist in solution form in either DMF or water. 

Thus the stability of ZIF-8 may be lower in these media due to potential dissociation of the crystal. 

Silk fibroin films had an even poorer performance in DMF and protease solution. The failure in 

removing silk films after DMF treatments may attribute to the fact that silk crystallize into insoluble 

silk II form in some organic solvents [42,43]. 

Compared to the initial peak value, the blue shift after removal of ZIF-8 in protease solution was 

not expected. Since the biosensors retained some anti-IgG binding activity after removal of ZIF-8, 

this significant blue shift is probably due to the change of refractive index in the local environment, 

instead of the digestion of IgG. From the AFM images (Figure 3.24), we could see that in protease 

solution, the outline of ZIF-8 crystals gradually got vague. This may indicate that ZIF-8 is dissolving 

in protease solution, which may account for the unusual blue shift. Further research may be 

conducted to understand the reason why ZIF-8 crystals dissolve in protease solution at physiological 

pH. On the other hand, the low biosensor activity retained with silk in protease solution is 

understandable. Silk, being a protein itself, can naturally be digested by the protease solution, which 

contains several proteases targeting different positions in peptide chains. This is also supported by 

the AFM image (Figure 3.25). 

One thing worth noting is that after incubation in protease solutions, the unprotected plasmonic 

sensors showed a blue shift in extinction spectra, followed by another blue shift after exposure to 

anti-IgG. This phenomena may be explained by the fact that protease from Streptomyces griseus targets 

some specific positions in peptide chains of proteins. Complete digestion of proteins is achieved 

sequentially. The first blue shift should be associated with the cleavage and initial decomposition of 

IgG on AuNRs, while the second blue shift may reflect further dissociation of IgG fragments from 

AuNRs. Since IgG is already digested by the proteases, it is unlikely that anti-IgG would bind on the 

AuNRs and cause a red shift.  



 

41 

4.6 ZIF-8 Film and Silk Fibroin Film 
 
As discussed in Sections 4.2 and 4.3, ZIF-8 films proved to be a great material for activity 

preservation of plasmonic biosensors at elevated temperatures. Comparing Figure 3.3 and Figure 

3.7, we can see that the shape and distribution of AuNR-IgG conjugates on the surfaces of 

plasmonic sensors had not changed much during the formation and rinsing of ZIF-8 film. In 

previous studies, both silk fibroin films and ZIF-8 films successfully retained, with over 70% of 

retained activity reported for AuNR-IgG based biosensors at room temperature after 7 days [35,36]. 

Therefore we expected them to show similar preservation of biosensors in this study. Yet comparing 

the results of ZIF-8 films and silk fibroin films in Sections 3.2 and 3.4, ZIF-8 films show a 

significantly better preservation at elevated temperatures, in an organic solvent and in a protease 

solution. This may be partially due to the potential transformation of silk film from water-soluble 

Silk I to insoluble Silk II under various conditions, as discussed in Sections 4.2 and 4.4. Also silk is a 

protein just like the antibodies, which means silk would be unstable when exposed to proteolytic 

substances. 

We also noticed that ZIF-8 films showed better preservation ability at elevated temperatures than in 

protease solutions. This is probably because we did the temperature treatments with low humidity. 

Both ZIF-8 films and silk fibroin films cannot effectively protect the plasmonic biosensors in 

aqueous environments. ZIF-8 is not stable in aqueous solutions, especially at low pH [36]. Silk 

fibroin films may stay on the sensor surfaces longer due to its sticky nature. However, amorphous 

silk I can still dissolve in water, while crystallized silk II films are stable in solutions and very hard to 

remove. These phenomena may contribute to the fact that preserved activities for both films are 

much higher in dry conditions [35]. The protection ability of both methods may be impaired by a 

change in humidity. In dry conditions, ZIF-8 is a great material for protecting plasmonic biosensors.  
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4.7 Activity Preservation of Plasmonic Biosensors 
 
With ZIF-8 films, we can successfully preserve the activity of antibody-based plasmonic biosensors 

at elevated temperatures in dry environments. This preservation procedure is not only energy-

efficient, but also easy to operate. Thus, it can largely expand the potential applications of these 

plasmonic biosensors in resource-limited settings such as urban and rural clinics, developing 

countries with low-moderate incomes, and disaster struck regions where refrigeration and electricity 

may not be accessible. Similarly, we can possibly use ZIF-8 to protect other biological substances 

that are susceptible to changes in temperature, such as clinical samples, vaccines and medicines. 

Future researches may proceed in this direction.  
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Chapter 5 

 

Conclusions 

 

In this study, we investigated a new method of activity preservation for antibody-based plasmonic 

biosensors using ZIF-8 films. ZIF-8 films can successfully grow on the biosensors, protect the 

biosensor activity in various conditions, and easily get removed before analyte detection. With ZIF-8 

films, the biosensors can retain 50% more of their activity than the unprotected cases at elevated 

temperatures of 40 °C, 60°C and 80 °C. At 40 and 60 °C, around 80% of the biosensors activities 

can be retained. With longer growth time for ZIF-8 crystals, thicker films form on the plasmonic 

biosensors, and their preservation abilities improve.  By increasing the growth time from 3 hr to 24 

hr, the average retained activity of plasmonic biosensors at 80 °C can improve from 60% to 78%. 

This preservation is lost at an extremely high temperature of 120 °C due to the instability of AuNRs. 

Activity preservation of plasmonic biosensors using ZIF-8 was also explored in an organic solvent 

(DMF) and a proteolytic agent (protease from Streptomyces griseus). However, ZIF-8 crystals tend to 

dissolve in these two conditions, which limit its activity preservation to a very short period. Further 

investigation may proceed to understand the reason behind the instability of ZIF-8 films in these 

two environments. Still ZIF-8 films show a greater capability of activity preservation for antibody-

based biosensors than silk fibroin films in all three kinds of harsh conditions: at high temperatures, 

in an organic solvent and in a protease solution.  

 

Further study may proceed to investigate the preservation of protein or antibody function using 

ZIF-8 crystals in other environments such as UV radiation and sonication, and the mechanism 

behind this activity preservation. 
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