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The lack of per-flow bandwidth reservation in today’s Intgriimits the quality of service
that an information service provider can provide. This @litsgion introduces the reserved
delivery subnetwork (RDS), a mechanism that provides steisi quality of service by
implementing aggregate bandwidth reservation. A numbeesign and deploymentissues
of RDSs are studied.

First, the configuration problem of a single-server RDS isialated as a minimum con-
cave cost network flow problem, which properly reflects theneeny of bandwidth ag-
gregation, but is also an NP-hard problem. To make the RD3igtoation problem
tractable, an efficient approximation heuristic, largeshdnds first (LDF), is presented and
studied. In addition, performance improvements with I@egrch heuristic is investigated.
A traditional negative cycle reduction and a new negatiegdie reduction algorithms are
applied and evaluated.

The study of RDS configuration problems is then extended tti+server RDSs. The
configuration problem can be similarly formulated as thglgirserver RDS configuration
problem; however, the major challenge of multi-server RDSfiguration is the optimal
server locations. A number of server placement algorithias@aluated using simulations.
The simulation results show that a class of greedy algostpravide the best solutions. In
addition to configuration problem, the dynamic load redistion mechanism is studied to
improve the tolerance to server failures. A configuratiagoathm to build redistribution
subnetworks is proposed and evaluated to deal with singlesé&ilures in a group of
servers.



Besides the exclusive bandwidth access, there are pdsaatifurther improve end-to-end
performance in an RDS because end hosts can utilize the kdgelabout the underlying
networks to achieve better performance than in the ordihagrnet. These improve-
ments are illustrated with a source traffic regulation tegha to resolve the unbalanced
bandwidth utilization problem in an RDS. A per-connectiom @n aggregated regulation
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Chapter 1

Introduction

1.1 Motivations

The Internet has become an information infrastructure weaincreasingly depend on in
our daily life. However, the Internet in its current stateid capable of meeting the needs
of mission critical applications. One key deficiency of théelnet is the lack of effective
per-flow bandwidth reservation mechanisms. As a resultpth@rity of today’s Internet
traffic is best-effort traffic, and guaranteed services ateendily available. Because of the
best effort nature of today’s Internet, there is no way tainligiish between transaction-
oriented mission critical data traffic and traffic from cdusab browsing. All different
traffic sources have to compete equally for the bandwidthue®, making it it difficult to
provide guarantees for mission critical applications. ddition, the Internet is vulnerable
to malicious attacks, such as denial of service (DoS) ananmattacks. For example, in
January of 2003, the Internet “slammer” worm attack leftuends of bank customers
without ATM access, and dozens of flights grounded [16]. Ta@dommunication be-
tween the servers at the bank and airline companies headrgpiand the terminals on
ATMs and in the airports was severely affected when the mettegot heavily congested
with traffic generated by the worms. Clearly, the currenginét is an insufficient informa-
tion infrastructure, and needs great improvements to geogonsistent and stable services
comparable with traditional information infrastructuseich as telephone networks.

In order to make the Internet a better information infrastnee, various per-flow bandwidth
reservation techniques have been proposed to improvecssraf the Internet. However,
they are not widely deployed as expected. The major hurakesha concerns about the
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costs of upgrading and maintaining the per-flow reservatiecshanisms from the network
service providers, because it is widely believed that theflpes reservation is too expen-
sive to be practical, especially in the core networks.

On the other hand, the idea of aggregate bandwidth resenvegtiwidely accepted. In-
stead of reserving bandwidth for individual flows, aggredstindwidth reservation reserves
bandwidth for an aggregate of flows. Aggregate bandwidtarvasion can be easily im-
plemented in the existing network service providers’ bacidnetworks as long as the
backbone routers are capable of efficient packet classifitahd support different queues
for different flows. As these two functions are quite staddartoday’s routers, it makes
aggregate bandwidth reservation a more viable option teafigw reservation.

In this dissertation, we introduce a new aggregate bantwikervation based network
service calledReserved Delivery Subnetwo(RDS) as an alternative solution for provid-
ing more consistent quality of service in today’s Interdet.RDS is provided by a network
service provider (such as a telecommunication carrieg jadesigned for information ser-
vice providers who need to delivery consistent quality ot/®e to their customers even
under very extreme network conditions, such as worm atta®k®DS provides a subnet-
work for an information service provider to connect from atcal location to the access
routers at different locations where customers of the médron service are found. The
links in an RDS are carefully provisioned with sufficient bandth so that traffic from the
source node can flow through to the sinks without contentiomfother traffic sources,
improving quality of service. Although it is difficult to pvde quality of service for in-
dividual flows in the current Internet, RDSs give servicevers a way to address the
quality of service issue on an aggregate basis. In addibandwidth limits on reverse
paths provide a protection mechanism against malicioaslst

An ideal reserved delivery subnetwork must be configureabdexe two main goals: first,
it must satisfy the demand of all customers at differenttiocs; second, the network re-
source must be utilized efficiently so that more serviceslEprovided. In addition, the
end hosts in an RDS should be able to leverage the RDS infcaiste to achieve better
performance than in the ordinary Internet. In this dissienta a number of issues in the
configuration and operation of reserved delivery subndisvare studied. Specifically, the
configuration problem for a single-server RDS is first stddiehe results are then extended
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to the configuration problem for larger RDSs with multiplevess. The fault tolerance is-
sues in a multi-server RDS is also investigated, and anigthgoto configure redistribution
subnetworks for server failures and overloading is preskrftor the operation of an RDS,
the end-to-end performance improvements inside an RDSded, and a source traffic
regulation technique is introduced to leverage the undegyIRDS.

1.2 Applications

A number of network services and applications can benefit tiee deployment of reserved
delivery subnetworks.

One of the most direct applications is web content delivArweb site or an Internet con-
tent provider (ICP), such as CNN, can purchase such a sdreicethe physical network

service provider, such as SBC. An RDS can be set up that isdadtthe access router
where the ICP servers reside, and connect to all locatiorsenne majority of user de-
mands are found. The ICP can deliver consistent servicedasers with some degree of
bandwidth guarantee, even under extreme network condition

Another RDS application can be found in enterprise virtualgte networks (VPNSs). For
example, in a bank or an airline company that depends heanite time-critical deliv-
ery of transaction-oriented data, the company headqgastar subscribe to a customized
reserved delivery subnetwork such that data communicatibmot be interrupted even
when the network is under attack. It is possible that a serovider and the end users are
located in different network domains run by different plogsinetwork service providers.
Instead of negotiating a multilateral service level agreenwith each individual network
provider, a special type of service provider can be involvéé can call such a service
provider as &Reserved Delivery Subnetwork Providgran RDSRP. An RDSP provides re-
served delivery service to a customer by constructing an RD8 the customer to their
end users. The subnetwork may span multiple network domaiasording to the cus-
tomer requirements, the RDSP purchases reserved bandwidthbnetwork links from
each individual network provider, and gains service reesrftom the customers that sub-
scribe to the service from it.
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RDSs could extend their applications to grid computing [48} traditional studies of
grid computing problems, the focus has been mostly put omebeurce management on
the nodes of a computational grid. Less attention was patthédbandwidth resource
management of the interconnecting networks. Howeverjshaas important aspect of grid
computing because inefficient use of the bandwidth resomage limit the performance
of a computational grid application. Traffic flows inside adgran also benefit from the
economy of bandwidth aggregation, thus, an RDS can help gedoandwidth resource in
a grid efficiently and effectively its performance.

Multimedia traffic flows have greater demands for consistemidwidth availability to
make the playout smooth. An RDS can improve multimedia siieg services by reserv-
ing aggregate bandwidth for a streaming server so that tharatng traffic is not affected
by other best effort traffic. The burstiness of certain typemultimedia streams is gen-
erally bounded by their encoding standards, and can be meshand represented with
standard methods. Therefore, an RDS provisioned for a medtia streaming server could
effectively achieve higher bandwidth efficiency than an RB:Syeneral data traffic.

1.3 Contributions

The main contributions of the work presented in this disgem are:

e This dissertation proposes an alternative solution tdflparbandwidth reservation
using aggregate bandwidth reservation to provide moreistemsg quality of service
and circumvent the deployment hurdles in today’s Interfibis new network service
can be easily implemented with existing facilities in theldi@one networks of the
network service providers without drastic changes.

e This dissertation formulates the RDS configuration probésna minimum concave
cost network flow problem. The edge cost function in our peabformulation is a
concave function that reflects the bandwidth economy ofegagion more accurately
than a linear edge cost function.

e This dissertation presents an efficient approximationrétym for the NP-hard RDS
configuration problem. It produces solutions closer to dimeged lower bound with
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much less time complexity than exhaustive search, andtaldaifor large networks
with hundreds of nodes.

e This dissertation evaluates our approximation algoritilsimgilocal search heuristics
based on negative cost cycle and bi-cycle reduction. Iniatdb the traditional neg-
ative cycle reduction, the special subgraph structuresufi+tycles are discovered
in a network with concave edge cost function. This discoveagls to the negative
bicycle (extensible to multi-cycle) reduction algorithm.

e This dissertation formulates the configuration problemnfauiti-server RDSs sim-
ilarly as a minimum cost network flow problem, and identifirattthe key to the
configuration problem is the server placement problem. Almemof server place-
ment are evaluated using simulations. A class of greedesptacement algorithms
are found to produce the best solutions.

e This dissertation develops a configuration algorithm falisibution subnetworks
in a multi-server RDS, which improves fault tolerance by ayncally redirecting
traffic flows from a faulty server to other servers.

e This dissertation demonstrates the potential end-to-entbmance improvements
in an RDS by proposing a source traffic regulation technigueesolve the unbal-
ance bandwidth utilization problem. It shows that by legang the information of
the underlying RDS, better end-to-end performance can bieasd. A number of
regulation algorithms that can be implemented in variovgenments and platforms
are proposed and evaluated.

1.4 Organization

The rest of the dissertation is organized as follows: therkesl delivery subnetwork (RDS)
architecture is formally introduced in Chapter 2. In Chafethe configuration problem
for single server RDS is described. The problem is formdlaga minimum concave cost
network flow problem, and an efficient approximation aldoritis presented and evaluated.
In addition, the local search heuristics based on negatiseaycle and bicycle reduction
is also investigated, and the results from simulation stsidire presented. In Chapter 4,
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the study is extended to deal with RDSs with multiple servére configuration problem
is similarly formulated as a minimum concave cost networl flwoblem, however, the
unknown server locations make the configuration for a nadtiver RDS more complicated
than the configuration for a single-server RDS. An study scdbed to evaluate a number
of server placement algorithms in order to identify an gooldtson for multi-server RDS
configuration. The improvements to fault tolerance to seflaitures in a multi-server RDS
are also investigated, and a configuration algorithm forréaéstribution subnetworks to
redirect traffic for the faulty servers is presented. In Gbap, the source traffic regulation
technique is presented to improve end-to-end performapdeveraging the underlying
RDS. Chapter 6 concludes this dissertation with an outlingome future work that can
expend from our work presented in this dissertation.



Chapter 2
Reserved Delivery Subnetworks (RDS)

This chapter formally introduces the reserved delivenyneilvork (RDS) as a new network
service to provide more consistent service in today’s hekerWe also outline a number of
design issues related with the configuration and operaficeserved delivery subnetworks.

2.1 Formal Definition

A reserved delivery subnetwork (RDS) is a semi-private oekwnfrastructure used by
an information service provider to allow it to deliver morensistent performance to its
customers. Thendpointof an RDS include &ource nodand a potentially large number
of sink nodedistributed within a fixed network infrastructure. Sink sdare typically
routers within metropolitan areas where customers of tf@nmation service are found.
A network provider selects a set of links within the networiddalimensions bandwidth
reservations on those links in order to accommodate expécttic flows from the server
to the various sink nodes. This allows traffic from the sourcde to flow through to the
sinks without contention from other traffic sources, impngwquality of service.

An example RDS is illustrated in Figure 2.1. In the backboetwork of an information
service provider, there is a server and a large number of wdehe server information
at different locations in the backbone network. An RDS (sh@s the highlighted sub-
network) is set up to connect the server to these sink lagsiwaith user demands. For
each location with user demands, there must be an RDS pathtifre® source, and the re-
served bandwidth on that path must be sufficient to satisatrerage total user demands
of that location. The RDS must be set up in such a way that invaet the demands of the
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customers of an information service provider, and it utdizhe reserved link bandwidth
efficiently such that more such services can be accommodathd backbone network to
maximize the service revenue of the network service pravide

2.2 RDS Configuration

There are two major tasks when we configure an RDS. The filsigde pick the links in
the subnetwork such that there is a path from the server grdllocations. The second
task is to determine how much bandwidth should be reserved salected links. The pro-
visioning of reserved bandwidth in an RDS is crucial its ®ssC If insufficient bandwidth
is reserved on a path from the server to a sink location, us@dds at the location will
not be fulfilled completely. On the other hand, if too muchdbaidth is reserved on links,
the bandwidth resource of the backbone network will not ieiehtly utilized, driving
up costs. Therefore, an optimal solution must reserve battkun the most efficient way
such that the sink overloading probability is minimized] &éime network service provider’s
revenue is maximized for providing more RDS services.

Because we reserve aggregate bandwidth for a large numierrstly flows for a large
number of users in an RDS, we must be able to handle traffiavesi gracefully. To allow
for variability in the traffic volume at sink nodes, resergat are dimensioned based on
the mean and variance of the expected traffic. The mean arahgarof sink traffic can be
derived from long term traffic measurement and appropriatéd modeling [19, 9, 54, 89,
10, 88, 68].

Links that carry large traffic volumes are generally morecidfit than links that carry small

traffic volumes, since the amount of bandwidth that must berked to accommodate traf-
fic variability becomes a smaller fraction of the total affitavolume grows. For example,

if we take a closer look at the intermediate routers of thergda RDS in Figure 2.1, we

can notice that as traffic flows diverge to reach differerksithe total reserved bandwidth
on the “downstream links” will generally be larger than tkeeerved bandwidth on the up-
stream link (or links). This economy of aggregate bandweltlct can be illustrated in the
following example and analysis.
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Figure 2.1: Reserved Delivery Subnetwork.
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Figure 2.2: Aggregation of bursty flows.

Assume there is a large number of independent bursty ondefsfas shown in Figure 2.2,
and each bursty flow source has a peak to average ratio of @& Want to dimension the
reserved bandwidth for these bursty flows on a link such thabterloading probability
of the aggregate traffic is beloW. We show the overloading probability of the aggregate
flows of different sizes in Figure 2.3. When there are 100 sadkpendent bursty flows,
we must reserve at least 2.2 times the total average flow bdtitte keep the overloading
probability below 1%; while when there ait®, 000 independent flows, we only need re-
serve 1.14 times the total aggregate bandwidth to get the s&erloading probability. It
shows that we need almost twice as much as the reserved lathgber flow for the small
flow aggregate (100 flows) as the larger flow aggregeie000 flows).

When there is a large number of statistically similar flowsaimaggregate flow, we can
treat the bandwidth of each individual flow as a independamdom variableX; and the
bandwidth of the aggregate flow as another random varigbl& = >  X;. The mearu

and the standard deviatiei? of the aggregate flow grows linearly to the sum of the mean
(>, i) and the sum of the standard deviation (¢7) of the individual flows; thus, the
variance of the aggregate flowgrows as the square root to the sum of the standard de-
viation, o = (3°, 02)'/2. Because the majority of the aggregate bandwidth are wittgn

range of the sum of the total average and some multiple (3&y,tBe variance, o + 3o,
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Figure 2.3: Bandwidth economy of aggregation.
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Figure 2.4: State transition diagram for the number of adliows on a link.

areserved aggregated bandwidthuat 30 is sufficient to maintain a low overloading prob-
ability for the aggregate flow. Therefore, the reserved egage bandwidth that maintains
a fixed overloading probability grows more slowly as the nemdf flows increases. This
makes the necessary reserved aggregate bandwidth a cdanatien' of the number of
flows.

If a link is viewed as carrying a large number of individualiee data sessions, the dimen-
sioning of the reserved bandwidth for the aggregate flow @eamhbhde based on random
number of active sessions. Assume all active sessionganithh exponential inter-arrival
time with mean interval of /\, and sessions have exponential duration with mean duration
of 1/7, as illustrated in Figure 2.4. Assuming a stand&fd\/ /oo queueing system, then
the probability oft active sessions on a linkijg = (p*/k!)e=*, where the average number
of active sessions is = \/7. The variance®®> = (>_,., k*px) — p>. Substituting and
expandingy, then )

S K o= Y Kt KNe "

k>1 k>1

= e lo+p) kT (k1)

k>2

= pe LY (k=1p" (k=1 ) o (k= 1))

E>2 E>2
= ple P+ D k(e + > (pF /R)e ]
k>1 k>1
= p(1+p)
= p+p’

The unit incremental value of a concave functipfr) grows smaller as the value increases. For

zo <1 < o, (f(z1) — f20))/ (21 — 20) > (f(22) — f(20))/ (22 — 20).
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So,6% = p, and the standard deviation= p'/2. This result is consistent with the approxi-
mate standard deviation used for the aggregate flows. Téistlie from a specific source
model, but it can apply to more generic source models suchrasgsources.

Because of this effect of bandwidth economy of aggregattas,beneficial to group to-
gether flows going from the source to sinks that are close@monther as long as possible,
even though this may cause traffic to follow a longer routa tih& shortest path.

The bandwidth economy of aggregation depends only on thepirdlence of traffic in
different flows. The effect of aggregation should not be asetl with the issue of self-
similarity and long range dependence of network traffic acdeed in [59, 48, 49]. The
self-similarity characteristics of network traffic reféosthe phenomenon that network traf-
fic exhibits similar burstiness patterns over many diffetgne scalesthus can not be prop-
erly modeled by a Poisson process. The self-similarity attaristics is not related to the
bandwidth economy of aggregation, which shows the that éin@nce of aggregate traffic
differs with different sizesof flow aggregates.

2.3 RDS Scalability

For large information service providers, such as CNN, tle@ge number of users may be
distributed in many vastly separated geographical areasndle-server RDS may not be
sufficient to serve such a user because of the cost of maimgamany high-bandwidth
long-haul links and the reduced performance caused by tigetdatency. To meet the
demands of large number of customers in distributed looatithe service providers are
motivated to install multiple servers at separate locatiorreduce the cost and improve the
end user quality of service. In this case, the informationise provider must scale an or-
dinary RDS with a centralized server to one that has mulspleers. From the customers’
perspective, a multi-server RDS reduces the transmisatendy and hence increases the
perceived quality of service. From the information provisl@oint of view, the additional
server replicas eliminate the single point of failure in RIS, and release the bandwidth
tied up on the long haul connections from a single serveritioua remote locations. These
benefits of improved quality of service and bandwidth efficiecan offset the cost of de-
ploying the server replicas.
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The configuration of a multi-server RDS is more complicatehtthe configuration of a
single-server RDS. The complexity comes from two additisaaproblems that are unique
in multi-server RDS, namely, the server placement and sanktipning. Server placement
determines where should the replicated servers be plaocedsiak partitioning decides
which sinks should connect to which servers. Both servargmeent and sink partitioning
are critical to the optimal configuration of a multi-servéd &

2.4 RDS Fault Tolerance and Recovery

A multi-server RDS provides better quality of service witioger latency and improved
fault tolerance to single point failure than a single-sei®®S. However, when a server
fails or becomes overloaded, users with demands servedebgftiicted server will still
suffer from reduced service quality. To handle such a sanat redirection subnetwork
can be set up that allows other unaffected servers to takdlw/oad on the affected server.
The redirection subnetwork should be flexible to handleesavverload on any server with
minimum bandwidth overhead. In addition, the redistribntsubnetwork should incur
minimum communication overhead. The configuration probdéitine redirection subnet-
works for dynamic load redistribution in a multi-server RB&nother important issue for
an information service provider.

2.5 RDS End-to-end Performance

An RDS can provide more consistent quality of service to sigéth exclusive access to
reserved aggregate bandwidth for a large number of usessd&ethe benefit of exclusive
aggregate bandwidth access, there are other potentialstte@f improve the end-to-end
performance in an RDS because the end hosts can utilize tveléalge about the under-
lying networks to achieve better performance than in thénarg Internet. As Savage et
al. [70] pointed out, the transport protocols in today’shet are highly conservative, be-
cause they have to deal with the underlying network as a dagkand effectively probe

the network repeatedly in order to determine a safe opgratnt. On the other hand, if

some information about the underlying network is availabie end-to-end performance
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can improve tremendously. We should be able to leverage aindntages to further im-
prove the end-to-end performance in an RDS by enabling somresfof informed transport
functionalities.
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Chapter 3

Configuration of Single-Server Reserved
Delivery Subnetworks

This chapter discusses the configuration of a basic siregdes RDS. The RDS configu-
ration problem is covered in three sections. Section 3/hddates the RDS configuration
problem as a minimum cost maximum flow problem in a networkwincave link costs,
which reflects the bandwidth economy of aggregation in reédvark operations. Because
the minimum concave cost network flow problem is an NP-haablem, and the exist-
ing search-based exact algorithms are impractical for odsvwith hundreds of nodes,
an efficient approximation algorithm with reasonably goollison quality is proposed in
Section 3.2. The Largest Demands First (LDF) algorithm scdbed in this section, and its
performance is studied using simulation. To further imprthe solution quality and study
the optimality of an algorithm for the RDS configuration plerh, the application of local
search heuristics is studied in Section 3.3. The traditinegative cost cycle reduction as
well as a new negative bicycle reduction are used to improgesolutions obtained from
LDF as well as other algorithms, and the improvements fragridbal search heuristics are
studied. Section 3.4 summarizes this chapter.

3.1 Problem Formulation

In order to formulate the configuration problem for a singlever RDS, we start with an
elementary observation. If the traffic on a link consists tdrge number of independent
and statistically similar streams, the mean and the vagiafiche aggregate traffic scales
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directly with the number of flows. So, we let;:) = au'/? denote the standard deviation
of an aggregate traffic flow with mean wherec is a parameter. Note that when= o2,
o(u) = p. Thatis,a? is the mean traffic rate for which the mean and standard dewiat
are the same. Given a traffic flow with mearand standard deviation(x), a suitable
choice for the reserved bandwidthyis- ko (1) = p + kap'/?, wherek is a small constant
(say 3). With these preliminaries, we can now proceed withriaél statement of the RDS
configuration problem.

We are given a directed graph (or netwofk)= (V, E') and two real-valued functiori$:)
andb(-) defined onE. We refer tol(e) as thelengthof edgee andb(e) as itsbandwidth
We also define a real-valuegtige capacity:(e), which represents the mean rate of the
largest reservation that can be carried by edg€he edge capacity satisfies the equation

c(e) + kac'/?(e) = b(e) and is equal tC<—k0z + k2a? + 4b(e))2 /4.

We are also given source node € V' and a set obink nodesS C V, with each sink node

s having a mean demands). The minimum cost RDS that satisfies the mean demands,
while respecting the capacity limits on the network links ¢ found by solving a min-
imum cost flow problem, in which the flow into each sink is givgnits mean demand,
and the total flow on each link is bounded by:(e). For an average aggregated flow of
r, the cost ofr on an edge: is defined to bé(e)(x + kax'/?). The second factor in this
expression corresponds to the amount of bandwidth that peustiserved to accommodate

a flow of magnituder. Note that the cost function is concave. Given a minimum ftost

that satisfies the demand, the optimal RDS is the subgraphdafined by the edges with
non-zero flows. The cost of the subnetwork is the sum of thisadshe flows on its edges.

In the minimum cost maximum flow problem, we seek a flow funttfoon the edges

of the given network. For any node that is not a source or a, shrksum of the flows
on the incoming edges must equal the sum of the flows on themgig@dges. The flow
must satisfy the given capacity constraints on the edgeswmstisatisfy the given demands
required by the sinks. Among all such flows, we seek one ofmminn cost. For each edge
(u,v) in the original graph, the residual graph has an gdge) if f(u,v) is less than the
capacity of(u, v) and it has edgév, u) if f(u,v)is greater than zero. Thiesidual capacity

of the edgdu, v) is the difference between the capacity and the current fldwe. résidual
capacity of(v, u) equalsf(u, v). An augmenting path is just any path in the residual graph
from the source to a sink on which more flow can be added. Foedgge in the original
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graph, the cost of carrying units of flow one is i(e)(z + kax/?). We letd;(e, A) be
the change in cost caused by addidgunits of flow on the edge in the residual graph,
assuming thai\ is no larger than the residual capacityeoff A is larger than the residual
capacity,ds(e, A) is defined to be infinite. We refer (e, A) as theincremental cosof
the edges, with respect to the incremen. The incremental cost of a path, with respect to
anincrement, is defined as the sum of the incremental costs of its edgesnydlow and
incrementA, we can define a treg;(A), which is a shortest path tree rooted at the source
in the subgraph of the residual graph defined by the edgegegitiual capacity no smaller
thanA. The path costs iff” are defined with respect to the incremental ca§ts;, A). As
A is increased from zero, we get a finite sequence of tfg€s,, . . ., T,,. For each tref;
in this sequence, there is a corresponding raligef values ofA. Theincremental cost
per unit flowof an augmenting pathis §¢(p, A)/A, whereA is the amount of flow needed
to saturate.

Note that when there are no limits on edge capacities, theRi®S is always a tree. We
expect that in practice, network link capacities will ofteot be a limiting factor, so that
the best RDS may typically be a tree. Even when link capacétre limited, we may wish
to constrain the form of the solution so that all traffic gotoga single sink is constrained
to use the same path, in order to simplify the routing of tafitr (note that in this case,
the RDS need not be a tree).

3.2 Largest Demand First (LDF) Algorithm

3.2.1 Algorithm Design Issues

As we noted previously, the edge cost function is a concanetiion of the currently car-
ried amount of flow. Thus, when we aggregate more flows on ativ&kover-provisioned
bandwidth, that is necessary to accommodate traffic vanafidecreases, resulting in more
cost efficient networks. So, we prefer a configuration atparithat rewards flow aggre-
gation. However, it is possible that if we favor aggregatiom strongly, longer paths may
be selected while shorter and cheaper routes exist. Thuseee also to restrict the path
selection within a reasonable region.
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When we select a path from the root to a sink, we can either kétepaffic to the sink
on a single path, or split it among a number of paths leadirthpecsink, some of which
may not have enough capacity for the sink by themselves. dheave edge cost function
suggests that keeping the traffic flows together is more dbsiedt than splitting them.
However, such a strategy is not always able to satisfy akssin networks with limited
link capacities, which leads to higher demand blockingoréhe ratio of unmet demands to
the total demands) than an algorithm that splits flows. Thesewhen we design an RDS
configuration algorithm, we need to consider the tradedfiioo¥ splitting and aggregation,
and try to reduce the cost while minimizing the possibilityimk blocking.

3.2.2 Algorithm Description

One of the classical methods for solving minimum cost flowbgms is the minimum
cost augmenting path method. This method iteratively sekminimum cost augmenting
pathfrom the source to a sink that has unmet demand and adds flog #iat path until
either the demand has been satisfied or the capacity limitroésedge on the path has been
reached. While this method can find an optimal flow when thé¢ gesunit flow on each
edge is constant, it cannot be directly applied to the RDSigoration problem, since the
relative costs of two different paths can change dependmthe magnitude of the flows
added to those paths. That is, it may cost less tozaddits of flow to a pathp than to an
alternative patly, but it may cost more to adelr units of flow top than toq.

Although we cannot use the minimum cost augmentation dlgardirectly in the RDS
configuration problem, we can apply similar ideas to comsian approximation algorithm
that does not require an enumerative search of the problacesgn the minimum cost
augmenting path algorithm, at each step we choose an augupgrath from the source
to the sink in theresidual graphfor the current flow. It is well known [2] that when the
cost per unit flow is constant, we can construct a minimum ftost by finding a succes-
sion of minimum cost augmenting paths asaturatingeach one in turn (that is adding
as much flow to the path as allowed by the capacity constrantthe unmet demand at
the sink, whichever is smaller). To apply the minimum cogjraantation strategy to the
RDS problem, we seek an augmenting path from the source tikdlsit has the smallest
incremental cost per unit floamong all augmenting paths. In principle, this can be done
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by constructing each of the distinct shortest path treessafetting the best augmenting
path found in all the trees. A computationally simpler altgive is to choose a small set of
increments, construct the tree corresponding to eachrireang and find the best augment-
ing path from among this smaller set of trees. While this dabmples” the set of trees,
and hence will not always find the best path, it does at legsbapmate the minimum cost
augmentation strategy. There are various strategiesaotsbke set of increments. Because
our goal is to schedule flows to the sinks, we should seleceiments related to the sink
demands. In order to make such a selection, we can ordemtkeisia specific order, and
use the remaining unmet demand as the increment valesIf a path is found within
T¢(A), we can then augment the flow along the path. Note that the figmantation can
also be implemented with various strategies, resulting®R with different costs. The
following pseudo code shows the generic framework of ouordtigm. Depending on the
sink sorting and path augmentation strategies, differgatrthms can be obtained.

Order the sinksy, - - - , s, according to a certain sorting strategy
for i € [1,m]

Augment flow to satisfy demand & with a certain augmentation strategy
end

Each iteration of the algorithm requires the computatioa sfiortest path tree and possibly
a bottleneck shortest path tre®oth of these computations can be implemented to run in
O(m + nlogn) time, wherem is the number of edges amdthe number of nodes.

The Largest Demand Firs(LDF) algorithm orders the sinks by their demands such that
for sinks; € {s1,82,- -, Sm}, i > pir1- LDF establishes paths to the sinks with the
largest demands first. Therefore, the flows on existing patigarge, and the cost benefits
of sharing a path to the root by subsequent sinks are highetiwarks with ample link
capacity, each iteration fully satisfies the demand at sanke so the number of iterations
equals the number of sinks. However, in networks with lishitcapacity, it is possible that
some sink demands will not be satisfied after the same nunifiterations.

The Single Flow Augmentation (SFA) algorithm always triesatigment a flow to a sink
in a single path. If no such path can be found while there IEwstmet demand, then
the algorithm fails. In networks with ample link capacitgcé iteration fully satisfies the
demand at some sink, so the number of iterations equals théerof sinks. This leads
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to an overall running time af)(s(m + nlogn)), in the case of ample link capacities. For
arbitrary link capacities, the number of iterations stijuals the number of sinks, but there
are sinks whose demands cannot be satisfied, resultingakibpsituations. In addition,
SFA results in lower cost network when the link capacity isabmiting factor because it
avoid the “penalty” of splitting flows. The obvious drawbaslblocking in more congested
networks.

3.2.3 Evaluation

To evaluate the LDF algorithm we compared the cost of thetisoiyproduced to that of
an easily computed lower bound. The lower bound is compuyesoiting the sinks in
increasing order of their distance from the root and thenragggy that each sink is reached
by a path of this minimum length, and that the path can be dhaith all sinks at greater
distances from the root. We evaluated the algorithm on twewaorks. The firstis a5 x 15
torus (each node is connected to four neighbors forming @mgalar grid with “wrap-
around edges” linking the top and bottom rows and the leftrand rightmost columns).
Link lengths were uniformly distributed, with the longeisiks being ten times longer than
the shortest. The demands for the sinks were uniformlyiligtd, all with the same mean
demand.

The second network, shown in Figure 3.13, includes a nodedt ef the fifty largest
metropolitan areas in the United States; the link length®wbhosen to be equal to the ge-
ographic distances between the locations, and the demasréscivosen to be proportional
to the populations of the metropolitan ares. The locatidnsoarces and sinks were se-
lected randomly, with every node having the same probglafiselection. For the results
reported here, unbounded link capacities were used in betthanks. An example RDS
computed by the LDF algorithm is shown in Figure 3.1. The seudor this example is
in Chicago and there are ten sinks at various locations drttuem country (the sinks are
designated by small squares on the map). The cost of this@oig about 1.34 times the
cost of the lower bound.

Figure 3.2 shows how LDF performs on the torus. The first cttastvs the ratio of the cost
of the solution produced by LDF to the lower bound, as the renobcities increases from
1 to 50, whilea? is fixed so that(D) = D, whereD is the average demand per sink. Each
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Figure 3.1: Example RDS computed by the LDF algorithm

data point represents the average of results from 100 imdigjoe problem instances. For
large numbers of cities, the LDF algorithm produces sohgicosting no more than about
1.6 times the lower bound. The curves labeled LB*(2), LB*§B)d LB*(4) are related to
the lower bound and provide evidence (although no proof)ftrdarger numbers of cities
the lower bound is fairly loose. LB*(2) is computed by firsviding the sinks into two
sets, those to the “left” of the source and those to the "tighthe source. Each of these
subsets is then sorted by distance from the source and edehisiassumed to share its
path to the source with all nodes in the same subset that @neater distance from the
source. LB*(3) (and LB*(4)) is computed similarly, by firsivitling the sinks into three
(respectively four) sets of nodes defined by “pie-shapegibres centered on the root, then
sorting the subsets by distance from the root and assumegnéximum possible sharing
of paths among nodes in the same set. For larger numbersadmdy distributed cities,
it's reasonable to expect LB*(2), LB*(3) and LB*(4) to be narger than the cost of an
optimal solution, although they do not constitute true lob@unds. Note that for 50 sinks,
LDF produces solutions that average about 1.3 times LB*(3).

The second chart in Figure 3.2 shows how the performance &f ddies in comparison
to the lower bound as? is varied so that(D)/D varies from .2 to 5, while the number
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of sinks is fixed at 25. For small values®fD)/ D, there is less to be gained from sharing
paths, so LDF performs better, relative to the lower bourat.|&ger values o (D) /D,
there is much more to be gained by sharing paths, so the gapd&ethe lower bound and
LDF gets larger. Whemr (D) is five times the average demand per sink, the cost of the
solutions produced by LDF increases to about 2.05 timestherlbound.

Figure 3.3 shows how LDF performs on the national network.néte that LDF performs
generally better in this case, than for the torus, but theggrcharacter of the results re-
mains the same. We speculate that the improved performaises dargely because the
national network spans a greater east-west distance tham-swuth, and that the large
numbers of cities are near the coasts meaning that ofterotiiésrnear one of the coasts,
which makes it relatively easy for LDF to produce solutiorithiarge amounts of shar-
ing. The wide variance in the link lengths in the torus networay also contribute to
the reduced performance in that case (some links in the tetygork violate the triangle
inequality, preventing them from being used in any solytion

3.3 Improving Solution Quality with Local Search Algo-
rithms

The configuration problem for a single-server RDS can be eoiently formulated as a
minimum concave cost network flow problem (MCCNFP) as descrearlier in this chap-
ter. However, it is well known that MCCNFP is NP-hard [30]dahe existing exact algo-
rithms are all search-based algorithms with some intalligaumeration methods [31, 32].
However, these algorithms do not scale well for network$ witen moderate numbers of
nodes, and thus are impractical in real applications. leioral provide solutions for MC-
CNFP in practice, a number of approximation algorithms Haeen studied and proposed.
Among these approximation algorithms, local search allgors for MCCNFP has enjoyed
tremendous success in solving large and complex problemsatice. Given an existing
solution, a local search algorithm examines the “neighbodi of the existing solution,
and identifies a solution that is locally optimal within theetighborhood”. The “neigh-
borhood” is defined as a set of solutions that are reachate &n existing solution with
a simple operation. In the case of MCCNFP, it is known thatdpgmal solution is an
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extreme flow, which is a tree in an uncapacitated network. d@yngy advantage of this
property, a local search algorithm finds a local optimal sotufrom an extreme flow by
examining the adjacent extreme flows reachable from théiegisxtreme flow with a sim-
ple operation, although it may be trapped in a local optirohltton different from a global
optimal one.

In the rest of this chapter, the existence of negative codtiHaycles is observed in a net-
work with concave edge costs. That is, even though there rsegative cost cycle, there
could exist a set of cycles with a common path that has a nvegtatial cost. Based on this
observation, the cycle reduction algorithm in [27] is ndeab include all adjacent extreme
flows, and therefore is limited and incomplete. Towardsmd, an improved local search
algorithm is proposed with bicycle reduction method to edesboth negative cost single
cycles and bicycles. Both the original and improved locarele algorithms are applied to
networks with a simple concave edge cost function in our expnts, and demonstrate
the improvement of solution quality. Although we focus omatve cost bicycles in this

chapter as they are the most likely negative cost multiesjave also show that the bicycle
reduction algorithm can be generalized to handle othertivegeost multi-cycles too.

Section 3.3.1 briefly discusses the local search algoritigitegy cycle reduction strategy,
and explains why a naive cycle reduction approach fails ietavark with concave edge

costs. The local search algorithm with cycle reduction rmétbroposed by Gallo and So-
dini [27] is reviewed in Section 3.3.2. We also describe & patmpression technique to the
original algorithm, reducing the number of shortest patlesrcomputations. We illustrate
in Section 3.3.3 that how a local minimum can be sub-optineahblnse of the existence of
negative cost bicycles. In Section 3.3.4, we describe thmrared local search algorithm
with bicycle reduction to identify and remove negative dasycles. Section 3.3.5 outlines
the simulation environment and analyzes the simulationlt®s Section 3.3.6 discusses
the more general case of negative cost multi-cycles andrgkes the bicycle reduction

algorithm to handle negative cost multi-cycles.

3.3.1 Local Search Algorithms Using Cycle Reduction Stratgy

Local search [1] is a well-known approximation method tlsaapplicable to almost all
combinatorial optimization problems. Although it can netermine if the best solution
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found so far is optimal, local search has enjoyed tremendoasess in solving large and
complex combinatorial optimization problems in practio®hen a local search method
is applied to a problem, a simple operation is employed tesfam an existing feasible
solution to a neighboring feasible solution, and a neigimgpsolution with lower cost is
chosen and further explored until no further improvementlmamade. For minimum cost
network flow problems, a local search method searches fowanflth the least cost among
all neighboring feasible flows obtainable from an existiagdible flow with a simple op-
eration. As for the choice of the simple operation in a loearsh algorithm, the negative
cost cycle reduction method is a natural candidate. Thetivegapst cycle reduction works
by “pushing” flows along a negative cost cycle to transfornexisting feasible flow to an-
other feasible flow with lower total cost. This operation xaetly what we expect for a
local search algorithm. In addition, the negative costeyetuction method can form the
basis of efficient algorithms for the minimum cost networkvleroblems in networks with
linear edge costs [2].

However, we must be careful when we apply the negative cdsicteon method in a net-
work with concave edge costs. The difficulty of applying negeacost cycle reduction in
networks with concave edge costs can be illustrated in ampbeain Figure 3.4. We show

a small network in Figure 3.4(a) with the capacity, lengtid aurrent flow of each edge
in the labels. In this simple network,is the source vertex that supplies the sink vertices
andc. Currently, there is a unit flow on edgés b) and(a, ¢). For this example, we adopt

a simple concave edge cost function: the epgt) of an edge: with an average flow of:

is defined as. (1) = Iu'/?, wherel is the length of the edge. Thus, the existing flow has a
total cost of8. The incremental cost on= (u, v) with a flow increment ofA is

I(vu+ A — /) ifthereis no flow on reverse edge, )
Ace(A) = I(u—A— /n) ifthereis flow on reverse edde, u), andA < p
I(vVA —p—/p) ifthereis flow on reverse edde, u), andA > p

Figure 3.4(b) shows the corresponding residual graph afuhrent flow when a unit of flow
will be changed on all edges. The incremental costs for aflovitincrement are shown
on the labels of Figure 3.4(b). Clearly, Figure 3.4(b) has¢megative cycles: namely,
{(a,¢), (c,a)}, {(a,b),(b,a)}, and{(a,b), (b,c), (c,a)} with cost of —2.34, —2.34 and
—1.34, respectively. With the negative cost cycle reduction rdtlwe attempt to redirect
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Figure 3.4: Problems of negative cost cycle reduction intevok with concave edge
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flow along a negative cost cycle such that the negative cas ¢y removed and the total
cost is lowered after the flow redirection. If we choose {ke, b), (b,¢), (c,a)} cycle,
and push a unit flow along it, we could get a new flow with a lowestmf6.656, and
there is no more negative cost cycle in the residual grapgu(gi3.4(c)). However, if the
{(a,¢),(c,a)} cycle is picked, and flow is redirected this cycle, it wouldtiner remove
the negative cost cycle, nor lower the total flow cost (Figdwgd)). In fact, any edge in
an existing flow has a two-edge negative cycle in the resigitzgdh in such a network with
concave edge costs. If any of such two-edge negative cycloisen by the cycle reduction
algorithm, the local search algorithm is stalled. This isssd by the concavity of the
edge cost function because on such an edge the absolutengrad costs of increasing
and decreasing the same amount of flow are different, catisgngsymmetric incremental
costs and a “false” negative cycle in the residual graph. dmtrast, in a network with
linear edge costs, the absolute incremental costs of theywosite edges are the same, but
with different signs. So, there is no negative cost cycldwitly two edges in a network
with linear edge cost. Thus, we can not implement negatia cycle reduction in a
local search algorithm if we can not distinguish two-edgegatiee cost cycles from other
legitimate negative cost cycles. In particular, we can nok pn arbitrary negative cost
cycle and push flow along it in a network with concave edgescofhere are a number
of efficient negative cycle reduction algorithms for minimeost flow problems, such as
the Minimum Mean Cycle Canceling algorithm [29] and the mfuepful cycle canceling
algorithm [4]. However, because they provide no efficienywa characterize the two-
edged negative cycles that we want to avoid, these negatoke 2duction algorithms are
not good candidates for local search for MCCNFP.

3.3.2 Local Search Algorithm with Cycle Reduction
Gallo-Sodini Cycle Reduction Algorithm

The local search algorithm for uncapacitated networksepriesl in [27] provides an effec-
tive way to implement negative cost cycle reduction thataserefficient than an algorithm
that searches for all negative cycles. An extreme flow in arapacitated network is a
feasible flow in a network for which the edges with non-zerwftmnstitute a tree with the
source vertex at the root of the tree and all sink verticebatdaves. The Gallo-Sodini
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cycle reduction algorithm is based on the idea that an extriéonv 2’ is adjacent to an
existing extreme flow: if and only if all edges that are i’ but not inxz constitute a path
connecting only two vertices im. Therefore, for each pair of vertices in an existing ex-
treme flow, the undirectional path between the two verticeba path consisting only of
edges not in the existing extreme flow form a cycle. If the floeated by redirecting flow
between the two vertices along this cycle has a lower costttioriginal flow, this cycle
is a negative cost cycle. A simple but inefficient way to findjaieve cost cycles in an
extreme flow is to check all pairs of vertices individuallyhieh is very slow. The Gallo-
Sodini algorithm provides a quick and systematic way to fimeégative cost cycle without
a complete enumeration of all possible cycles.

Figure 3.5 and Figure 3.6 illustrate the basic operationtt®iGallo-Sodini algorithm for
finding a neighboring extreme flow from an existing extremevfl@he original extreme
flow f is shown as a tree in Figure 3.5(a).

One vertex in the existing flow is processed in each iteratfaihe algorithm, denoted as
the current vertex. First, assuming the existing flow int® ¢hrrent vertex is completely
redirected, the incremental cost to another target ventéixa existing flow is computed as
if the flow is redirected along the undirectional path frora turrent vertex to that target
vertex.

In the specific example in Figure 3.5(a), for a current vettexith an incoming flow of
f(z,u) in the tree defined by the existing flow, first find the undireatil pathr;, from u
to any other tree vertex that is not in the subtree rooted«at Notice thatr, could be
composed of two directed paths: one from the nearest commmestore of v andw to
u, and the other frona to w. Compute the incremental cast of addingf(x, v) units of
flow on~}, ascl, = costy(—f(pr(u),u), paths(u, w))+ costs(f(pr(u), w), paths(w,u)),
wherecost ¢(x, p) is the incremental cost of addingunits of flow along patp, relative to
existing flowf, ps(u) is the parent of. in the tree defined by, andpath(u, w) is the path
from the nearest common ancestorcdndw to « in the tree defined by. For example,
the path fromu to w (7},,) is shown in Figure 3.5(a) as well as a directed non-tree path
from w to u that connects two tree verticesandu.

For the current vertex, although there is only one undioecti path from it to another
vertex in the existing flow, there is a large number of possgaths between them outside



31

T[kuw

Al . i
Q-4
f(x,u) t
Path with no in-tree vertices

(a) Original extreme flow.
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(b) The neighboring extreme flow obtained.

Figure 3.5: Original cycle reduction algorithm.
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Edges to
tree vertices

cost($ ,t)=cost(-A,path(t;,t))
+cost(A, path(t;,t))

by non-tree vertices,
excluding edges incident

cost(u,v)=cos(A,(u,v
into tree verticesnot on pathd? (uv) (A.(u.v)

Figure 3.6: Finding the best solution for “targef, wherecost ¢(x, p) = the incremental
cost of addingz units of flow along patp, relative to existing flowf, A = f(py(t;), ;) is
the flow intot;, ps(u) = the parent of: in the tree defined by, andpath(t;,t;) = the
path from the nearest common ancestot; @nd¢; to ¢, in the tree defined by. Note, for
the original cycle reduction algorithn#,,;, is only the vertex;. For the improved
algorithm with compressed pathg,, is the longest “non-branching” in-tree pathtto
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the existing flow. It is highly inefficient and slow to exhawusty check all these paths
individually for the possible negative cost cycles. Indt@ha complete enumeration of
all possible cycles, a shortest path tree is built usingiseemental cost computed in the
previous step to quickly determine the least incrementat cgcle, which is a negative
cycle if there is one.

In the specific example in Figure 3.5(a), a new network isveerifor a specific tree
vertext,, as shown in Figure 3.6. In this transformed network, a psesaioce ver-
tex s’ is introduced, and’ connects to every tree vertex defined by the existing flow
with a direct edge(s’,¢;), except fort;. All original tree edges are removed, and all
non-tree edges incident to any existing tree vertex extegte removed too. It we de-
fine A = f(ps(ps(t:),t;) to be the flow intot;, an edge(s’,¢;) is assigned a length of
cost(s',tj) = ¢, = costy(—A, pathy(t;, t;))+costy (A, pathy(t;, t;)), and a non-tree edge
(u,v) is assigned a lengttvst(u, v) the same as the incremental cost of addignits of
flow on that edgegost(u, v) = costf(A, (u,v)). We then find the shortest path frorito

t; in the transformed network. After the shortest path is deiteed, the last vertex) on
the path froms’ to ¢; is identified, and\ units of flow is redirected along the undirectional
pathr;,, and then along the directed patly,,. The resulting flow is a neighboring extreme
flow to the original flow, as shown in Figure 3.5(b). If the mioetl flow has a lower cost
than the original flow, the above procedure is repeated tafiod/er cost neighboring flow
of the new flow. Otherwise, the original flow is restored.

The Gallo-Sodini cycle reduction algorithm can be brieflysctéed by the following
pseudo code:

Find an extreme flow?.
Repeat
For each tree vertex with an incoming flow ofA.
For each tree verte # t,
Compute the incremental cost
for redirectingA units of flow
along the undirectional tree patf , .
For each non-tree edge, v),
Compute incremental cosf, of addingA units of flow.
Let G’ = (V’, E’) be the subgraph induced by non-tree edges.
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Vi —V'u{s},
E' — E'U{(s,v)|vis atree vertex, and # ¢;}

—{(w,v)|vis a tree vertex, and # ¢;},
For each edgés’, t;) € £, assign a length of;j,

for any other edgéu, v) € E’, assign a length af,,.
Find the shortest path fromito¢; in G.
Let edge(s’, w) be on the shortest path froshto ¢;.
RedirectA units of flow alongr; , andr,,;,, and obtain an updated flaw.
If the updated flowt’ has a higher cost than the current flow,

restore the original flow.

until no flow with lower cost can be obtained.

Note that this algorithm transforms the flow to the first imgd neighboring extreme flow
found. An alternative is to check all neighboring extremavicand then transform to
the best neighboring extreme flow. However, as suggestelebgrpirical results in [31],
transforming to the firstimproved neighbor generally regs5 — 40% fewer shortest path
computations than the best neighbor algorithm, and yiedslts of comparable quality.

Complexity Analysis Letn andm be the numbers of vertices and edges in the network,
for each flow, the cycle reduction algorithm may need to ch@¢k) vertices before it can
determine if a neighboring extreme flow with lower cost ex@st]. For the tree defined
by an existing flow withk(k < n) vertices, we need to solvenearest common ancestor
problems, each takin@(k) time. We also need to compu?é? incremental path costs.

In addition, we need makk shortest path tree computation. The checking procedure is
dominated by the single source shortest path computatiowe ldenoteS(n,m) as the
time complexity of a single source shortest path algorithia graph withn vertices andn
edges, then the time complexity for finding a neighboring flath lower cost in the cycle
reduction algorithm i) (nS(n, m)), or O(n(n + m)logn) if the single source shortest
path algorithm is implemented efficiently.

It is easy to see that the cycle reduction algorithm redulsescost by redirecting flow
along negative cost cycles. This local search algorithmgraatly improve the quality
of solutions obtained from LDF. Take the network in Fig. 3o¥ €éxample. The source
connects to alkh sinks with unit demand. LDF picks only the direct links fronto all
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Figure 3.7: A simple network that will benefit from the cycégluction algorithm.

sinks, resulting in a suboptimal solution with no bandwidttaring. The cycle reduction
algorithm identifies the negative cycles in the LDF solutiadirects the flow along these
cycles, and eventually finds the single path» 1--- — n — 1 — n as the solution, which
is the optimal solution in this case. With a smalithe improved solution i§)(n) times
better than the original one.

Performance Improvement in Cycle Reduction Algorithm with Compressed Paths

The original cycle reduction algorithm by Gallo and Sodiasho check every tree vertex
for negative cost cycles. If there akevertices in the tree defined by the existing flow,
it requiresk shortest path tree computation. However, as Guisewite andaf®s noted
in [31], it is not necessary to check every tree vertices.tebs, we can check all the
vertices on a non-branching path in the tree simultaneodsgure 3.8 shows some non-
branching paths in the tree defined by an existing flow. In filgisre, z and v are two
branching vertices in the tree, amds a sink vertex.u andx are possible sink vertices
too. To determine the best alternative path into a tree xgittés sufficient to construct a
shortest path tree for every non-branching path in the teéieeld by the existing flow. For
the example in Figure 3.8, instead of computing a shortekttpee for every vertex on the
xr — u andu — y paths, we only need to compute two shortest path trees. Beca@
consider all vertices on a non-branching path simultangows refer to this improvement
heuristic as path compression. If there aresink vertices, we only need to compute at
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Figure 3.8: Path compression in the cycle reduction allgorit
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most2m — 1 shortest path trees because there are at taost 1 non-branching paths in
atree. In contrast, if there aretree vertices, the original cycle reduction algorithm tas t
compute all: shortest path trees to find the local optimal. It is easy tdlsa& > 2m — 1,
and the performance improvement could be very substanittes. following pseudo code
outlines the improved cycle reduction algorithm with patimpression:

Repeat
For each leaf or branching tree vertgxvith an incoming flow ofA,
For each tree verte # t,,
Computec; the incremental cost of redirectinly units of flow
along the undirected tree pazt;ltj.
For each non-tree edde, v),
Compute incremental cost, of addingA units of flow on(u, v).
Let b(t;) be the nearest branching ancestor.
G’ = (V', E') is the subgraph induced
by non-tree edges and edges on the non-branching p@th ¢;).
Vi~ V'uU{s}
E' — E'U{(s,v)|vis atree vertex, and # ¢;}
—{(w,v)|vis atree vertex, and ¢ (b(t;),t;)},
For each edgés’, t;) € £, assign a length of;j;
For any other edgéu, v) € E’, assign a length af,,,,.
Find the shortest path fromito¢; in G'.
Let edge(s’, w) be on the shortest path froshto ¢, in G'.
RedirectA units of flow alongr; , andr,;,, and obtain an updated flaw.
If the update flowr’ has a higher cost than the current flow,
restore the original flow.
until no flow with lower cost can be obtained.

Complexity Analysis Letn be the number of vertices in the network, @nlde the num-
ber of sink vertices. The improved cycle reduction algenitbnly needs to compute at
most2k — 1 shortest path tree for the non-branching paths in the triéeadkby the exist-
ing flow to find the local minimal, as in contrast withshortest path computations in the
original cycle reduction algorithm. This improvement sgeep the search for each flow
derived from the initial flow, and therefore the whole locaasch procedure. Because the
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shortest path tree computation is the dominating factonetime complexity of the cycle
reduction algorithm, the path compression heuristic gyaatproves the performance of
the local search.

These local search algorithms essentially enumerate iglhbering extreme flows reach-
able from an existing extreme flow by redirecting flows alongegative cost cycles. In a
network with linear edge costs, the resulting flow has nomgging flow that has lower

cost because negative cost cycles are sufficient to find mu#hal in such a network.

However, in a network with concave edge costs, such as an RB$esult from the origi-

nal cycle reduction algorithm does not necessarily inchltieossible neighboring extreme
flows with lower costs as we demonstrate in the next section.

3.3.3 Negative Cost Bicycles in Concave Cost Networks

In this section, we show that the cycle reduction algorittam lose sub-optimal in a network
with concave edge costs. Consider the example network slowigure 3.9(a). The
source vertex: connects tan sink vertices with edges of length » also connects to
an intermediate vertex with an edge of lengtlf that is slightly shorter thah w also
connects to each sink vertex with an edge of length. oEach sink vertex is associated
with a demand ofA. For simplicity, we still adopt the simple concave edge ¢osttion
cost(x, (u,v)) = I(u,v)z? of a flow 2 on an edgdwu, v) with a length ofl(u,v). With
this cost function, the optimal cost é\'/?m + I'(Am)*/2, while the result based on the
shortest path tree (which is the local optima) has a co$t\6f?m. So, ife < I/m!/?,
the cost ratio of the two solutions is no less thah'?/2, which can be arbitrarily large.
This example suggests that reduction on negative costabtge does not guarantee a
results with sufficient quality, and better solutions camdsched by redirecting flow along
subgraphs with special structures. For the example netindfigure 3.9(a), we notice that
we can reach a neighboring flow with lower cost by addidgunits of flow along(r, w),
andA units of flow along(w, s1), (s1,7), (w, s2), and(sy, 7). The paths we redirect flow
on constitute a subnetwork with special structures that vileexplore in this section.

In a network with concave link costs, there could exist niegdticycles such as the one
in Figure 3.9(a) that could transform an existing flow to a fleith lower cost. We define
anegative cost bicyclas a pair of directed cycles that share a common segmenttheith
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(b) A general negative cost bicycle.

Figure 3.9: A simple negative cost bicycle example.
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remainder of the cycles edge disjoint. When we add flow albwegtwo cycles, the total
cost of the resulting flow is lower than the original flow. A geal negative cost bicycle
is illustrated in Fig. 3.9(b) that has a pair of vertieceandb. There is a common path,
from a to b, and two pathg’; and P, from b to a. The sum of the cost of all these path is
negative. Letl, be the length of the common segment of the negative costlbicgedd;
andd, be the length of the disjoint segments. Then, the incremheasd of adding a unit
flow along the bicycle could be expressed(ast €)dy + d; + da, where) < e < 1. If
e = 1, the cost of the bicycle is equal to the sum of the cost of bgthes with the usual
definition of flow costs. It = 0, the bicycle is only charged once for the shared segment.
Any other0 < ¢ < 1 would result in a cost falls in between, showing the benefifsath
sharing. It is easy to see that negative cost bicycle is jnstsubnetwork structure that
can lead to lower cost neighboring flows. However, we firsugoon finding negative cost
bicycles only, because they are more likely to appear in &tieg flow, and therefore have
greater effects on final costs. We will generalize to deahwiibre complex subnetwork
structures than bicycles in a later section. However, tts¢ lwenefits could be offset by the
computational complexity of exploring more complicatedistures.

For a general negative cost bicycle in a network with the &mpncave edge cost function
as defined in the example network, when we push flowlong the negative cost bicycle,
we add2A flow on the common segment of the bicydlg andA on the disjoint path$’
andP;. Thus, the incremental coéty for a flow incrementA can be expressed as

Car = Zli(\/ﬂiﬂLQA—\/E)

1€Py

= D U=V = d)+ Y (Vi d = V)
i€P; iept

= D U=V =28 d) + Y (V28— d = i)
i€Py ie Pyt

whered is the flow added on the path, P, is the set of links in pattP; that have flows

in the same direction aB;, and P; is the set of links in pathP, that have flows in the
opposite direction of’; P,” and P, are the sets similarly defined di. Because this is a
negative cost bicycle,’s < 0 for someA. We must identify these negative cost bicycles
with specific flow incremenf\ to reduce the cost of an existing flow.
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3.3.4 Bicycle Reduction Algorithm

As we described previously, an adjacent extreme flow withelogost can be reached by
redirecting flow along a negative cost bicycle. Thus, in otdeextend the cycle reduction
algorithm, we must efficiently identify these negative doisycles after the negative cost
single cycles are all removed by the original cycle redurcttgorithm.

In the original cycle reduction algorithm, for a vertexn the existing flow, we find another
vertexv in the existing flow, where the undirectional path in the exgsflow 7, and the
path,, not used by the existing flow form a minimum cost cycle. If inisegative cycle,
a neighboring extreme flow with lower cost can be reached tyaeting flow along this
cycle.

In contrast to a negative cost single cycle, a negative dogtle consists of two cycles
with a common path segment. Therefore, in order to find a hegebst bicycle, we start
with two vertices,x andy, neither of which is a non-branching vertex in the tree define
by the existing flow. We then search for a third tree vertethrough which there is a pair
of directed non-tree paths, andr.,. We definez as theoptimal split point In addition,
there is another vertex on both undirectional tree pathg, from z to z andn;, fromy

to z. We definew as theoptimal merge pointThe tree path . is the common segment of
the bicycle, and the two cycles are;,,, 7., 7..) and(r;,,, 7., 7., ). Figure 3.10(a) and
Figure 3.10(b) show two example negative cost bicycles. fl.etnd f,, be the amount of
flow into x andy respectively in the existing flow, after redirectirig units of flow along
(mh s Th . T22) @nd f, units of flow along(~,,, 7., 7., ), the adjacent extreme flows are

Tw? " wz? Yyw?r Cwz)

shown in Figure 3.11(c) and Figure 3.11(d).

Given such a pair of verticesandy in a tree defined by an existing flow, we first observe
that the optimal split point can not be on the undirectional tree patf) betweenz and

y. Because i is on;, , the optimal merge point must be the same vertex as This
means that there is no common path segment in the two cyefesr..) and(r;_, 7.,),

and thus not a bicycle. In addition, it is clear that the oplisplit point can not be in the
subtrees rooted at neithenory, because it will not lead to a bicycle either. Based on these
observations, we limit our search for the optimal split pamthe vertices of the existing

flow that are neither in the subtree rooted-atr y nor on the undirectional pat, .
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f(pi(y),y) in-tree vertices

(a) Original extreme flow.

Paths with no
in-tree vertices

(b) Original extreme flow.

Figure 3.10: Bicycle reduction algorithm.
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(c) The neighboring extreme flow obtained.
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(d) The neighboring extreme flow obtained.

Figure 3.11: Bicycle reduction algorithm.
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If we define the nearest common ancestar ahdy asc as in Figure 3.10 and Figure 3.11,
the bicycle reduction algorithm can be described as follows

First, compute the incremental cost of redirectifygunits of flow fromz and f, units of
flow from y to all potential split points in the existing flow as followfsr each tree vertex
u that is either in the subtree rootedzabr y or on the undirectional path; , define the
incremental cost; to beoco. For any other tree vertex, if « is in the subtree rooted at
¢, letv be the nearest ancestorwobn 7}, . Letc;, be the incremental cost of redirecting
f- units of flow along the undirectional pattf, from x to v, ¢;, be the incremental cost
of redirectingf, units of flow along the undirectional pattj, from y to v, andc;, be the
incremental cost of redirectingy + £, units of flow along the undirectional pattj, fromv
tou. The total incremental cos}, for u is defined as;, = ¢}, +¢;, + ¢;,. If wis notin the
subtree rooted at let ¢ be the incremental cost of redirectirfg units of flow along the
undirectional pathr;,. from x to ¢, c;, be the incremental cost of redirectiigunits of flow
along the undirectional patt], from y to ¢, andc;, be the incremental cost of redirecting
fx + f, units of flow along the undirectional pattf, from c to . The total incremental
costc;, for u is defined ag), = c;. + ¢;. + ¢z,

Next, make two copie&,, = (V, E,) andG, = (V, E,) of the network with existing flow
G = (V,E). In G, remove the following edges: all tree edges, all non-tregeedhat
incident into any tree vertex other thanand all non-tree edges originated from any tree
vertex in the subtrees rooted ator y, or from any tree vertex on the undirectional tree
pathr;, . Compute the incremental cast, for an edge(u, v) in G, as addingf, amount

of flow on (u, v). Similarly remove edges frorf¥,, and compute the incremental cest

for an edggu, v) in G, as addingf, amount of flow onu, v). Then, compute the shortest
paths from all vertices idr,, to z, and shortest paths from all verticesGf) to y. This can

be achieved by running a single destination shortest pgtrithm (or a simple modified
single source shortest path algorithm) witbr i as the destination vertex. For each vertex
uin G, andG,, record the shortest paths, in G, andr,, in G, as well as the shortest
distance,, andc,,,. Figure 3.12 shows the transformed graphs from the exangpeonks

in Figure 3.10. In particular, Figure 3.12(a) shaWsand Figure 3.12 (b) shows, created
from the existing flow.

Atlast, for any tree vertex other thanc andy, define the final total cost,, = ¢, +c.,+c},.
Find the vertex with the minimum final total cost. This steplisstrated in Figure 3.12(c).



(@) G,.

cost(u,v)=cos(A,(u,v))

(b) G,.

cost(s$ ,t)=cost(-A,path(ti,t))
+cost(A,path(t;,t))

cost(u,v)=cos(A,(u,v))

(c) Combination of&, andG,.

Figure 3.12: Negative bicycle reduction algorithm.
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In particular, it is equivalent to first combine@, andG,, then adding a pseudo source
vertexs’, and connect’ to any vertex: in the combined graph wherg, andc,, are less
thanoco. An additional edges frond to a vertexu has the length equal 1@,. Thus, the
shortest edgés’, z) corresponds to the optimal split pointand the paths., andr,, are
already recorded i, andG,. (s', z) andr,, andr,, are highlighted in Figure 3.12(c).
After the optimal split point is identified, redirectf, amount of flow alongr., and~’,,
and f,, amount of flow alongr., andr;_. Compute the total cost of the updated flow. If the
updated flow has a lower cost than the original flow, recordifgated flow and repeat the

above procedure. Otherwise, restore the original flow amol st

The following pseudo code describes the bicycle reductmerations:

Repeat
For any two leaf or non-branching tree verticeandy
with incoming flows off, and f,, respectively.
For another tree vertex,
If « is on the undirected tree pattj,, or in the subtree rooted ator y,
c,, < 00.
else
Find the nearest common ancestaf = andy.
If wis in the subtree of,
Let v be the nearest ancestorwbn ;.
¢t < incremental cost of redirectinf. unit of flow onz, .

Tv

¢, < incremental cost of redirecting, unit of flow on~, .

¢, < incremental cost of redirecting. + f, unit of flow on~},.

Cy < Cyy T+ Cppy T+ Cyye
else
c;. < incremental cost of redirecting, unit of flow on~;..
¢, < incremental cost of redirecting, unit of flow on;...
i, < incremental cost of redirectinf, + f, unit of flow on~?,.
Cy < Cpe T Cye + Cpy-
CreateGy, = (V, E,) andG, = (V, E,) from G.
Find the shortest paths from all verticestan G, and toy in G,,.

For a tree vertex,
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¢y 1S the shortest distance fronto z in G,
cuy IS the shortest distance fromto y in G,,.
Cy  Cyg + Cyy + €.

Find the optimal split point that gives the minimun’,.

Redirectf, units of flow along paths, and~.,, andf, units of flow
along pathsr;, andr.,,

If the modified flowz’ has a higher cost than the original flow,
Restore the original flow.

until no flow with lower cost can be obtained.

Complexity Analysis Letn andm be the numbers of vertices and edges in the network,
andk be the number of sink vertices. For each flow, it may need telcbgk?) vertices
pairs before it can determine if a neighboring extreme flothwower cost exist through
flow redirection along a negative cost bicycle. It requirasisng k nearest common ances-
tor problems and computing:? incremental path costs. However, the checking procedure
is dominated by the shortest path tree computation. If wewe$(n, m) as the time com-
plexity of a single source shortest path algorithm in a gnagh » vertices andn edges,
then the time complexity of find a neighboring flow with lowerst in the bicycle reduc-
tion algorithm isO(n%S(n, m)), or O(n*(m + n?logn)) if the shortest path algorithm is
implemented efficiently.

3.3.5 Experimental Results and Analysis

In this section, we present the simulation studies of thgdbécreduction algorithm in
networks with a simple concave edge cost function. We stiilt tive description of the
problem instances we generate in our simulations on difteretwork topologies. Next, we
explain the two estimated lower bounds we use for performaocnparison. The results
from our simulation studies are then presented with amalysi
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Salt Lake City

Figure 3.13: National network configuration.

Simulation Setup

We evaluated the bicycle reduction algorithm on a numbeebkark topologies. The first
is alb x 15 torus (each node is connected to four neighbors forming @mgalar grid
with “wrap-around edges” linking the top and bottom rows #émalleftmost and rightmost
columns). We used two types of networks with different liekdths: links in aandom
torus were uniformly distributed, with the longest links beingy témes longer than the
shortest, while links in ainiform torushave a fixed length. Links in random torus are
restricted such that triangular inequality is observede @lamands for the sinks were uni-
formly distributed, all with the same mean demand.

The second network, shown in Figure 3.13, includes a nodedt ef the fifty largest
metropolitan areas in the United States; the link length®wbhosen to be equal to the ge-
ographic distances between the locations, and the demasréscivosen to be proportional
to the populations of the metropolitan ares [79]. The laraiof sources and sinks were
selected randomly, with every node having the same prababilselection.
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The vertices and edges of the third network are uniform ramggenerated inside a unit
square. The source node is located in the corner of the wmatreaas this choice creates ex-
treme flows with deeper trees and greater effect of flow aggi@y The sinks are uniform
randomly chosen in the unit square with uniform random sieldnds drawn from the
range off1, 10]. Such a network would result in extreme flow solutions regmésd in deep
trees, and thus would increase the running time of the laEaich algorithms. However,
it should be noted that such a network has a higher degreeafiéntal sharing”, and is
closer to the optimal solution already.

Besides these three network topologies, we also simulataitiycle reduction algorithm in
networks generated by a topology generator, Inet [82]. Resteidies showed that degree-
based topology generators creates networks that havedggmblance of the Internet even
though these generators do not consider the network steuspecifically [75]. The origi-
nal Inet is intended for large network with at least 3037iged. In our simulation studies,
we used a modified version of the Inet generator so that snratevorks could be gener-
ated. The networks we generated for our simulations havevéfiites, and the fraction
of degree one vertices is 0.3. Because it uses a seed fomtiemanumber generator, the
number of networks for a fixed number of vertices is at most®alus, each data point is
the average of results of 64 independent problem instaimtgsad of 100 instances as in
simulations in other topologies.

We measure the relative costs of flows generated by diffalgotithms with the estimated
bound. We first obtain an initial solution with thargest demand first (LDFalgorithm
we developed in our previous study of the RDS configuratiabiam in [62], and apply
the original cycle reduction algorithm as well as the bieyaduction algorithm to find
two local optimal solutions from the flow produced by LDF. Tinember of sinks is varied
to show the performance of different algorithms in a varietynetwork conditions. We
also measure the percentage improvements to the flows etitaynLDF after applying the
cycle reduction algorithm and the bicycle reduction alton.

Lower Bounds Comparison

In our previous study of the RDS configuration problem, weduse easily computed es-
timated lower bound for the performance evaluation [62].e Tdea is to assume all the
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sinks that are located in a certain geographical area shsirggke path to the source ver-
tex, and thus achieve maximum possible path sharing amadnigeasink vertices in that
area. In particular, estimated bound EB*(2) is computeddsy diividing the sinks into two
sets, those to the “left” of the source and those to the "tighthe source. Each of these
subsets is then sorted by distance from the source and edehi:xassumed to share its
path to the source with all nodes in the same subset that @neater distance from the
source. EB*(3) (and EB*(4)) is computed similarly, by firstiding the sinks into three
(respectively four) sets of nodes defined by “pie-shapediores centered on the source,
then sorting the subsets by distance from the source anchasgthe maximum possible
sharing of paths among nodes in the same set. For larger msimtb@ndomly distributed
sinks, it's reasonable to expect EB*(2), EB*(3) and EB*(@ )k no larger than the cost of
an optimal solution, although they do not constitute triveeiobounds.

A tighter lower bound for a network with a small number of smddes can be computed
as follows: define gartial solutionas a subtree rooted at the source along with a partition
of sinks among tree nodes. For instance, Figure 3.14(a)shgvartial solution in which
the sink vertices are divided among s€{s.5,, S3 andS,. We can get a lower bound with
partial solutions for a network: = (V, E') with s as the source vertex in the following
way: letT be a subtree aoff rooted ats with three edges. Partition the sink vertices such
that there is a subset of sink verticesfor each tree node. Compute the total cost of
T assuming each tree node has the demand equal to the totahdewiathe sinks in the
subset associated with that tree node. For each treetpadEmpute the lower bound cost
for supplying all sink vertices ity; from ¢;, assuming all sink vertices if; share a single
path tot; and the distance from to a sink vertex: is the same as the shortest path frgm
to z. Add all these costs associated with tree nodes to the c@stmbbtain an estimated
total cost value. The pseudo code for this is shown below:

Create a subtrée® rooted ats with three edges.
For each 4-partitionS;, S,, S3, S4) of sink vertices,
Associate each tree nodewith a subset of sink vertices.
Assign each tree node with a demand equal to the sum of allvsirniices
in the associated subset.
Compute the costs of all tree edges.
For each sink vertices subset



(b) Optimization with connected components.

Figure 3.14: Lower bound computation.
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Compute lower bound cost for supplying from
assuming shortest distance and maximum sharing.
Add all contributions.

If we iterate over all such partial solutions with three exigee get overall lower bound.
The trouble with is this is that the best lower bound is likedyinvolve large set at root;
however, if we iterate over all subsets of edges from the, mwetdon’t need to leave any
behind at the root.

We can speed up the computation by avoiding some sink vemiaditions that obviously
can not produce good lower bounds. This can be done by comgjgessignment of subsets
of sink vertices only to the tree nodes in the same conneaegbonent. In this case, we
consider the subtréE rooted at the source vertex with all the edges out of the sorertex.
For each leaf node in 7', if removing(s, u) creates a connected componéptwith some
sink vertices, then we only assign the subset of sink vextic&’, to «. If a connected
component' can only be created after removing multiple edge%’jrihen we apply the
original lower bound operation on the subgraph that incdudand all edges that connect
s andC. Figure 3.14(b) shows an example of this optimization. lis #xample, we
only assign subset of sink verticés;, z¢} to tree nodé, and{x;} to s. In the subgraph
that includes a connected component that is connectedhimugh (s, a) and (s, c¢), we
compute the lower bound by iterating the partitions of thek siertices of{xq, - - - , x4},
but this subgraph can be smaller than the original netwangroving the computation
time.

Similarly, if we can iterate over all depth two subtrees adiusd” subtrees where tree
nodes are within radiug (for each sink must consider smallest radius for its incamin
neighbors), we would get tighter lower bounds. We can algbyape similar optimization
operations with connected components to improve the peeoce too.

Figure 3.15 shows the comparison of the two lower bounds @mdamly generated net-
work with 32 vertices and a variant number of sink vertices. In this flog, relative cost

of a lower bound to the estimated lower bound when we assunse&lvertices share a
single path £B(1)). Each of the data point is the averagel6f problem instances. The
plot indicates that the tighter lower bounds fall mostlyvbetn £ B(2) and £ B(3), and
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gradually approacli B(3) as the number of sink vertices increases. This results stgyge
that £ B(3) and £ B(4) can serve as sufficient lower bounds for networks with |lasgees.

The performance of the above lower bound algorithms arehadgetermined by the parti-
tion enumeration method employed. Although these algmsthvoid a total enumeration
of possible partitions, they are exponential in the worsecarherefore, we compare the
estimated lower bounds and the tighter lower bounds dest@ove only for networks
with small number of vertices (less than 30) to show how agiprate the estimated lower
bounds are. We use the Bit-Vector Representation (BVR) ad urs [24] to efficiently
enumerate through the partitions for the connected comysnén particular, a subset of
vertices are represented as a number bits in a word, in whechtit bit is set to 1 if vertex
1 is in the subset and 0 otherwise. Thug:-partition is represented &sintegers that sum
to 2?— whered is the number of vertices in the connected component. Foe meneral
networks with larger numbers of vertices, we only compaeetdhal cost relative to the es-
timated lower bound with the assumption that the tighteiolounds maintain the similar
ratio to the estimated lower bounds.

Simulation Results and Analysis

Figure 3.16 shows how the initial solution may make a difiee2 We apply the original

cycle reduction algorithm to initial solutions obtainedhvihe largest demand first (LDF)
described in [62] and a minimum spanning tree (MST) algatiin random torus net-

works, and compare the results. Note that although we usesMBdur experiments, other
simple initial solutions such as random spanning trees biam#ar results. Figure 3.16(a)
shows the ratio of the cost of the solution produced by dffieéalgorithms to the estimated
lower bound, as the number of sink vertices increases from5Dt Each data point rep-
resents the average of results from 100 independent probksiances. As shown in the
charts, for large numbers of sink vertices, the improvedtsmbs obtained from the cycle
reduction algorithm are similar: improved solutions fronEWMsolutions are on average
2.75 times of the estimated lower bound, and the improvadtisols from the initial LDF

solutions are around 2.7 times the estimated lower boundveMer, they are both closer
to the initial LDF solutions obtained as they are no more thantimes of the estimated
lower bound, while the MST initial solutions are up to 3.8%i¢is of the estimated lower
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bound. Figure 3.16(b) shows the percentage improvemerttseofycle reduction algo-
rithm from the MST and LDF solutions with varied numbers afks. It shows that the
space for improvements from a MST solution is much largen th&.DF solution, as the
cycle reduction algorithm improves the MST solutions by esslthar26% and even up to
46% in Figure 3.16(b), while the improvements from LDF solusare all less thaB%.
Because it is closer to the local optimal solutions, theah#olutions obtained by LDF has
less negative cost cycles than those obtained by MST. Thtakds shorter time to reach
improved solutions when we use an initial solution obtaifrech LDF. When we start with
an arbitrary tree solution, the results are similar to theTM8se. This result indicates that
LDF algorithm provides solutions that are reasonablelgelm optimal.

Figure 3.17 shows the simulation results on random torusaorks. The curve labeled
with LDF is the relative cost of the initial LDF solution, atide curves labeled LDF-CR
and LDF-BR are the results obtained by applying the bicyetkiction algorithm and the
original cycle reduction algorithm to the initial solutiarespectively. Figure 3.17(a) shows
the ratio of the cost of the solutions produced by differégdathms to the estimated lower
bound, as the number of sink vertices increases from 1 to 60laFge numbers of sink
vertices, the LDF algorithm produces solutions costing rawarthan about 2.8 times the
estimated lower bound. The cycle reduction algorithm (LOR) improves the solutions
from LDF to no more than 2.7 times the estimated lower bounke Bicycle reduction
algorithm makes some further improvements to the cycleatotualgorithm, but it is rel-
atively small. This is more clear in the percentage improsetsresults of both the bicycle
reduction and the original cycle reduction algorithms as lamber of sink vertices in-
crease in Figure 3.17(b). It shows that the original cyctiotion algorithm improvement
of the LDF solutions grows as the number of sink verticesease. When there are a
large number of sink vertices, the improvement is alibfto. The bicycle reduction al-
gorithm improves the cycle reduction results by up &/ in some cases, but the average
improvement is about.1%. A similar set of results obtained in uniform torus netwoeaks
shown in Figure 3.18. In these charts, when there are makysitices, the cycle reduc-
tion and bicycle reduction algorithms improved the avettag@ cost from about 2.5 times
of the estimated lower bound to about 2.4 times (Figure a))86r about.25% average
improvement (Figure 3.18(b)). The improvement grows astimaber of sinks increases
from 0 to2.5%. However, the improvement contributed from the bicycleuaibn algo-
rithm is noticeablely smaller than in the random torus neksoranging from 0 t®.05%
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with an average improvement 6f02%. This result indicates that negative cost bicycles
(or other negative cost multi-cycles) are less likely tosexn torus networks, especially
in uniform torus networks. The local optimal flows obtaingdtbe cycle reduction and
bicycle reduction algorithm have marginal difference, #mely offer only very small im-
provements to the LDF solutions, while the two local seatgbrithms have much higher
computation complexity. Thus, the LDF algorithm offersigans very close to local opti-
mal, while more time consuming local search algorithms wyttle and bicycle reductions
only provide marginal improvements.

Figure 3.19 shows the simulation results on the nationavowt topology. The curves in
the charts are similarly labeled as the previous chartsdiastnetworks. Figure 3.19(a)
shows the ratio of the cost of the solution produced by dffiéalgorithms to the estimated
lower bound, as the number of sink vertices increases from5Dt For large numbers of
sink vertices, the LDF algorithm produces solutions cagtio more than about 1.75 times
the estimated lower bound. Both cycle reduction algorithK-CR) and bicycle reduc-
tion algorithm (LDF-BR) improve the LDF solutions, but theycle reduction algorithm
offers very marginal improvements beyond the cycle reduacsiolutions, as this is more
clearly showed in Figure 3.19(b), the percentage improvesnef the bicycle reduction
algorithm over the original algorithm when the number oksmaries. First, it shows that
the improvements by the cycle and bicycle reduction algor# in the national network
(< 1.4%)are less than in the torus networks £.7%). It also shows that the cycle reduc-
tion algorithm improves the LDF solutions by an averageé%f and the bicycle reduction
algorithm does not offer further improvement in most caaad,very small improvementin
small number of cases. These results are largely becausatibaal network is very parse,
creating a greater degree of incidental path sharing. Ih awgparse network, the LDF al-
gorithm usually is sufficient to create solutions close tbropl, as the more complex local
search algorithms can not offer much improvements.

Figure 3.20 shows the simulation results on randomly geeérzetworks. The relative cost
results (Figure 3.20(a)) show that LDF produces result®@p8 times the estimated lower
bound when there are 50 sink vertices, while the cycle réalueind bicycle reduction al-
gorithm both improve the quality of the LDF results, and theyble reduction algorithm
provides more consistent improvement to the solutionsyred by the cycle reduction al-
gorithm. As Figure 3.20(b) shows more clearly that the cyetkiction algorithm improves
up to1.2% over the LDF solutions, and the bicycle reduction algorittan improve up to
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1.85% over the LDF solutions. In addition, the bicycle reductidgagithm offers up to
twice the improvement than the cycle reduction algorithnrmiost cases, the biggest im-
provement by bicycle reduction algorithm among the top@egimulated. This indicates
that there are more negative cost bicycles in the randomigmgged and relatively dense
networks than the more regular torus networks and sparsmahhetwork.

Figure 3.21 shows the cost comparison on the networks gexdrg the Inet topology gen-
erator [82]. It shows similar improvements of the cycle amytle reduction algorithms
as the number of sink vertices increases in Figure 3.21{gur& 3.21(b) shows that both
the cycle and bicycle reduction algorithms offer small ioy@ments € 1.2%) over the
LDF results, and the bicycle reduction algorithm only impe over the cycle reduction
results very marginally in a small number of cases. This isndication that the small
topologies generated by Inet with default parameters dagvely sparse, and thus contain
less negative cost cycles and even less bicycles.

3.3.6 Negative Cost Multi-cycles Reduction
Negative Cost Multi-cycles

Besides negative cost cycles and bicycles, in a networkamititave edge costs, there could
exist negative multi-cycles that could transform an erggfiow to flows with lower costs.
We define anegative cost multi-cyclas a group ofn directed cycles that share a common
segment, with the remainder of the cycles edge disjoint. Wie add flow along then
cycles, the total cost of the resulting flow is lower than thgioal flow. We refer to such a
multi-cycle as negative cost-cycle. For some special cases, when= 2, it is a negative
cost bicycle; whemn = 3, it is a negative cost tricycle. A general negative cost rrayitle

is illustrated in Fig. 3.22 with a pair of verticesandb. There is a common path, from a

to b, andm paths fromb to a. The sum of the cost of all these path is negative.d. &k the
length of pathP;. Then, the incremental cost of adding a unit flow along thetirayktle
could be expressed &+ €)dy + Y .-, d;, where0 < e < m — 1. If e = m — 1, the cost
of the multi-cycle is equal to the sum of the cost ofraltycles with the usual definition of
flow costs. Ife = 0, it is only charged once for the shared segment. Any dihere < 1
would result in a cost falls in between, showing the benefitsath sharing.
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Figure 3.22: Negative cost multi-cycles.

General Multi-cycle Reduction Algorithm

The bicycle reduction algorithm can be further extendedaondhe negative cost multi-
cycles. In particular, we can find the adjacent extreme floinancexisting extreme flow
by redirecting flow along a negative cost multi-cycle wittcycles and a common path
segment, or negative casicycle.

We pick k tree verticegvy, vo, - - -, v1), and search for the optimal split points inside the
existing flow to redirect flow through paths out of the existing flow. In particular, for each
of the k vertices, we first determine the undirectional paths to tatential split points

in the tree. These potential split points are similarly dadiras in the bicycle reduction
algorithm, namely, all tree vertices that are neither insihigtree of any one of thievertices
nor on the undirectional paths between any pair ofithertices.

For each of the potential split point, construct a subtre¢aw at that split point connecting

all k£ vertices, and sum up the total incremental cost of redingdtows originally into the
root of the subtree in a similar way to the computation in tloydie reduction algorithm.
Note that in this case, some of thevertices share some edges on their paths to the root.
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The flow increment on these edges is the sum of the flow int@tbeisset of vertices in the
existing flow. As a result, each potential split point has ssoaiated total incremental cost
from thek vertices.

Next, for rach of thek vertices, construct a subgraph from the subgraph inducetidoy

non-tree edges in the existing flow, in which edges into the trertices except the ones
into the chosen vertex are removed as well as the edges detingrtree vertices either in

the subtrees of thk vertices or on the paths between any pair of vertices irkthertices.

In the constructed subgraph, assign the incremental c@stdhg the flow into the chosen

vertex as the edge length on an edge. Apply the single déstinghortest path algorithm

in the subgraph to the chosen vertex, and record the shdit¢ahces and paths from all
the potential split points.

After all k vertices are processed, each potential split pointthsisortest paths to the
vertices. Pick the potential split pointwith the least total distance as the split point. Once
the split point is chosen, redirect the flow from thevertices tou along the paths in the
original tree, and also redirect flows to thevertices along the recorded paths recorded
in the constructed subgraphs. If the modified flow has a lowst than the original flow,
repeat the above procedure; otherwise, restore the origpmg and stops with the local
optimal solution.

This generalized multi-cycle reduction algorithm desesilthe cycle reduction algorithm
whenk = 1 and the bicycle reduction algorithm whén= 2. Clearly, it has much greater
complexity whenk grows larger for general multi-cycle reduction. Howeveroar sim-
ulation results indicate, the degree of quality improvetaénlimited even for bicycle re-
duction algorithm. As increases, we would expect more diminishing returns faeased
complexity. Therefore, we think bicycle reduction would qadficient for most practical
problems, while the general multi-cycle reduction aldurithas theoretical values but may
not be necessary for practical problems.
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3.4 Summary

This chapter studied the configuration problem for a basiSRiith a single server. The
configuration problem was formally defined and formulated asnimum cost flow prob-
lem. A concave link cost model is used in the problem formaikato capture the band-
width economy of aggregation. However, the concave link ats makes the configura-
tion problem an NP-hard problem. An efficient approximatdgorithm, Largest Demand
First (LDF), has been proposed based on the Least Cost Augti@malgorithm for prac-
tical network configuration problems with hundreds of nodes

The second part of this chapter studied local search hmgrist improve the quality of

an existing solution for RDS configuration problem, whicin & extended to the general
minimum concave cost network flow problem (MCCNFP). The ioagjcycle reduction
algorithm proposed by Gallo and Sodini [27] only searchesaftjacent extreme flows
reachable from an existing flow by redirecting flow along riegacost cycles. A path
compression technique was implemented to improve ther@igycle reduction algorithm
such that it only has to compute at mast shortest path trees, whereis the number of
sink nodes, compared with(n is the total number of vertices) shortest path tree computa-
tions in the original algorithm.

In addition, it is shown in this chapter that there exisegative cost multi-cycles a
concave cost network with an existing flow. By redirectingvflalong these multi-cycles,
more local optimal extreme flows can be reached. We presentlécycle reduction
algorithm by identifying the negative cost multi-cyclesdaredirecting flow along these
multi-cycles to get a local optimal extreme flow. Although feeus on the identification
of negative cost bicycles, we describe how it can be extetmadgative cost multi-cycles.
We study the performance of the bicycle reduction algoritisng simulations on different
topologies. The experimental results as well as our arsagygiw that the bicycle reduction
can improve the quality of results, but it would reach a poindiminishing return as the
quality improvement is limited but the computational coaxity grows when we attempt
to identify more general negative cost multi-cycles.
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Chapter 4

Multi-server RDS

The previous chapter studied the configuration problem fioRBS with a single server.

This chapter will study the issues that arise in an RDS witltipia servers. Such an RDS
uses multiple distributed replicated servers to reducéréimsmission latency and improve
service quality and reliability.

The first part of this chapter studies the configuration prwbfor multi-server RDSs.

Based on a similar problem definition as in our study of thglsiserver RDS, we show
that the configuration problem for a multi-server RDS canrhadformed into a single-

server RDS configuration problem with the introduction ofseeydo source. However,
what makes the multi-server RDS configuration problem moregicated than a single-
server RDS configuration problem is the selection of optiseaVer locations. Therefore, a
number of server placement algorithms designed for a yapietetwork applications are

surveyed and evaluated. A series of simulation studies@rducted in various networks,
and our simulation studies indicate that among all the sgylazement algorithms, one
class of greedy algorithms gives close to optimal results.

The second part of this chapter studies the configuratiobl@no for dynamic load redis-
tribution in order to improve the fault tolerance of a mudérver RDS. A redirection sub-
network topology is presented that handles any singleeséailure in a group of servers,
while minimizing the amount of additional bandwidth thatshbe reserved. An algorithm
is first presented to configure such a redirection subnetvaor&erver pairs so that if one
server fails, the other server can handle the traffic regicefrom the failed server. This
configuration algorithm is then extended to configure redioe subnetworks for groups
of four servers such that if any server fails in such a grole,ttaffic to the failed server
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will be redirected to the other three servers through theeetion subnetwork. Simula-
tion studies are conducted in a variety of network topolsgeeevaluate the redirection
subnetwork configuration algorithms. Our simulation restgveal that the proposed redi-
rection subnetworks can handle dynamic load redistributo single-server failures while
making efficient use of reserved bandwidth.

The chapter is organized as follows: Section 4.1.2 reviemsesrelated work with respect
to the server placement problem. Section 4.1.3 gives a metaled definition of the
configuration problem for a multi-server RDS, and formusdtes configuration problem as
a single source minimum cost network flow problem. Sectidrdsurveys and compares
a number of candidate server placement algorithms origindalsigned for other network
applications in the literature. Section 4.1.5 lays out taweation studies we conduct for
various server placement algorithms, and presents thdaimmuresults and our analysis.
In the second part of this chapter, Section 4.2.1 descriibad unbalance problemin a
multi-server RDS, and introduces the configuration prodi@nnedirection subnetworks to
handle these situations. A redirection subnetwork topokotd a configuration algorithm
are presented to find redirection subnetworks for the siwge of redirection server pairs
in Section 4.2.2. Section 4.2.3 extends the redirectionatinrk configuration algorithm
for server pairs to handle a single-server failure in groofofour servers. Section 4.2.4
shows the results of our simulation studies and Sectionuh8sarizes this chapter.

4.1 Multi-server RDS Configuration

4.1.1 Introduction

The previous chapters have introduced the concept of avexbeatelivery subnetwork
(RDS) as a new network service to allow an information seryimvider to deliver more
consistent quality of service to its customers. Until now, ave focused our attention on
the configuration problem for an RDS with a single centratserHowever, when there is
a large number of customers in many distributed areas fortaioeservice, an information
service provider may find it advantageous to place multipfgicas of the server at sepa-
rate locations. From the customers’ perspective, thisaeslthe transmission latency and
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hence increases the perceived quality of service. Frommfleennation service provider’s
point of view, the additional replicated servers elimintite single point of failure in the
RDS, and release the bandwidth tied up on the long haul ctionedrom a central server
to various remote locations. These benefits of improvedityuzl service and bandwidth
efficiency can offset the cost of deploying the replicateweses.

For a multi-server RDS, the configuration problem is sintibethat for a single-server RDS,
but clearly becomes more complicated as it involves two mexjialitional subproblems to
solve. First, we must determine where to put the servers taimbptimal performance,
whereas the server location is fixed for the single-serve® Rbnfiguration problem. Sec-
ond, after we determine the locations of the servers, we tweddcide how different loca-
tions should connect to a server to get good performance \@ralbcost efficiency, while

all locations connect to the one server in the single-seR2%. The choices for server
placement and sink partitioning strategies are vital todtwefiguration of a multi-server
RDS.

4.1.2 Multi-server RDS Configuration

Many network applications have to deal with some form of @haent problem similar
to the server placement problem in a multi-server RDS. Terd@he a suitable server
placement algorithm in a multi-server RDS, we surveyed eetyaof placement algorithms
developed for a broad range of network applications. Thismement algorithms serve as
a basis for our evaluation of our placement algorithm.

Qiu, Padmanabhan and Voelker [60] first studied a web seeyticas placement problem
that is similar to our server placement problem in a multixseRDS, although they looked
for a relatively dynamic placement solution for periods dftiburs, as in contrast to our
longer operation time frame for RDSs. They formulated trec@inent problem as an
uncapacitated<-median problem, and evaluated four algorithms (treedadgorithm,
greedy algorithm, random algorithm, and hot spot algorjtimsynthetic random graphs as
well as Internet topologies (derived from BGP routing imhation) with actual web server
trace data. Their simulation results showed that a greeglyrigthm that places replicas
based on distance and sink demands consistently deliveedzest performance across the
network topologies tested.
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Jamin et al [39] investigated a similar problem of consgdimirror placement in the
Internet. They studied the correlation between the numbemiwors (equivalent to the
replicated servers) in a limited number of sites and thegoer&nce improvement perceived
at both the server and client sides for different placemigrarathms. Their results showed
a diminishing return as the number of mirror sites increagasloslavov, Govindan, and
Estrin [66] later extended the evaluation of the fanoutebla®plica placement algorithm
with more accurate network topologies, and found similauits.

Jamin et al [38] described two instrumentation center preerg algorithms in a network
with known topology: a greedy algorithm based onitigerarchically well-separated trees
(I-HST) and an approximation minimuik-center algorithm. The first algorithm recur-
sively divides the graph into small partitions with deciegsartition radii, and places a
center for a partition that is sufficiently small. When theymulated the center placement
problem as a minimuni-center problem in a grap# = (V, £'), a2-approximate algo-
rithm finds the subgrap&? with K stars as the approximate solution, whéte= (V, £?)

is the graph that contains all the vertices such that thema Edggu, v) € E? if there are
no more than two hops betweerandv in £/, andF; is the set of edges with least cost in
an increasing order.

Shi and Turner [72] looked into the server placement proltenverlay networks. They
formulated the placement problem as a set cover problemcamgared the solutions by
both a linear programming relaxation and greedy heuristitis simulations on random
graphs as well as geographic graphs.

There has also been a substantial amount of research on wepgnd web cache place-
ment for more restricted network topologies. For exampleenvLi and his colleagues
investigated the optimal placement problem for web proxethe Internet in [50], they
assumed the underlying network topologies are trees, alvédsohe proxy placement
problem with a dynamic programming approach. Korupolux®®la and Rajaraman [42]
proposed a constant-factor approximation web cache placeaitgorithm that works for
hierarchical cooperative web caching. Although they fdated the placement problem as
a minimum cost flow problem, the algorithm only works for laierhical cache placement.

One common feature of all these server placement algoriiertisat they use a single
measurement metric for evaluating the solutions. Althoilnghmeasurement metric is the
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distance between a sink vertex and the server in most casesild also be other similar
metrics such as latency. However, the measurement meteis ot consider the traffic
loads on paths. As a result, they produce solutions that thiake advantage of the benefits
of traffic aggregation in practice. In our study of the confajion for a multi-server RDS,
we use the cost metric that incorporates both the distardtéraffic loads, just as the cost
metric used in the single-server RDS configuration.

4.1.3 Problem Definition and Formulation

With the existing notations from the preceding chapter, dbefiguration problem for a
multi-server RDS can be defined as follows: we are given aticegraphz = (V, F),
an integerk and a set of sink§" = {ty,ts,--- ,t,,} € V with each sinkt; having an
associated demangd. The objective is to partitioff’ into k& subsetd?, --- , T}, and find a
directed tree for each; with root s,;. The tree forl; should include all elements @f. The
cost of a tree is determined by the flow on its links neededtisfgahe sink demands.

This formulation of the multi-server RDS configuration pliexa resembles the formulation
of the configuration problem for a single-server RDS desdtiim the preceding chapter,
except that there is more than one possible location to plecservers, and the server lo-
cations are not specified in advance. Assuming that we aliteak thet: server locations,
we can apply the following transformation to convert the tinsgrver RDS configuration
problem into a single-server RDS configuration problem, evehtually a single-source
single-sink minimum cost network flow problem: first, we addseudo source vertex
and connect to all vertices corresponding to the server locations. Eaftted edge has a
length of 0 and capacity equal to the total sink demands.rAlftis step, the multi-server
RDS configuration problem is transformed into a single-seRDS problem, in which

is the root vertex. Next, add a pseudo sink verteand connect all sink vertices to
Each added edge has a length of O and capacity equal to thendemh@he connected
sink vertex. This transformation step is the same as in tigdesiserver RDS configuration
problem, after which the problem is transformed into a tradal single-source single-sink
minimum cost network flow problem. An optimal solution foettransformed minimum
cost network flow problem corresponds to an optimal solutawrthe original configura-
tion problem for multi-server RDS. Figure 4.1 shows the $farmation of a multi-server
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Figure 4.1: Problem transformation.
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RDS configuration problem into a single-source single-sietwork flow problem. In this
example, we are trying to place three servers in a network thitee sink vertices. The
original network is shown in Figure 4.1(a) with sink versamarked as$,, ¢, andts. After
the transformation, the network is shown in Figure 4.1(khain added pseudo sink vertex
t, an added pseudo source verte&and edges connectingto a chosen subset of server
verticess,, s, andss.

4.1.4 Server Placementin a Multi-Server RDS

If the locations of thek servers are given in advance, it is clear that the configurati
problem for such a multi-server RDS is essentially equiviate the single-server case
because every sink connects to one of thgervers in the solution in the derived single-
server RDS configuration problem, and the subsets of the siolknected to the servers
defines a partition on the sinks. However, thgerver locations are unknown for the multi-
server configuration problem. Therefore, the key to the irsgltver RDS configuration
problem is to find good sets of servers.

Take the simple network in Figure 4.2 for example. There awe $inks (; throught,),
each with a unit sink demand. The link lengths are shown reegath link. Assume the
link costisf(u) = - (u+3u'/?), wherey is the flow on the link, andis the length of the
link. If we place two servers; ands, as in Figure 4.2(a), the total cost of the multi-server
RDS is 44. However, if the two servers are placed as in FigLd@) the total cost is only
28. Therefore, an optimal server placement is importarfténcbnfiguration of an optimal
multi-server RDS.

Placement problems are often encountered in many praegiaications such as facility
location and telecommunication network resource allocatiThey are normally formu-
lated as some forms of graph theoretic problems, such asmami/’-median problem
and minimumk -center problem, or some other non-graph problem, sucheasethcover
problem. Therefore, the solutions to these placement pnabhare often quite different. In
this section, we first survey a number of placement algostfon similar problems in the
literature, and compare them as potential placement &hgosi for server placement in a
multi-server RDS. In particular, we evaluated the web semreglica placement algorithms



(b) Good choice of server locations.

Figure 4.2: Comparison of different server placement.
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in [60], the constrained mirror placement algorithms in][26d the Internet instrumenta-
tion tracer placement algorithms in [38].

Candidate Server Placement Algorithms

Random placement algorithm is the simplest approach. It simply places replicated
servers ink randomly chosen locations. It is normally used for perfanogacomparison
with other placement strategies because of its simplicithrandom nature, as in the cases
of [60, 39, 66].

Transit node algorithm is another simple heuristic used in [39, 66]. It places cepéd
servers on candidate locations in descending order of tutdegrees. The goal of this
heuristic is to place replicated servers at locations thatreach the largest possible number
of sink vertices with small latency.

Hot spot algorithm was proposed and studied by Qiu, Padmanabhan and Voelker for
web server replica placement [60]. It tries to place repdidaservers near the sink vertices
that generate the largest bulk of traffic to the servers. @tididate vertices are first sorted

by their sink demands, and the replicated servers are theonpthek sink vertices with

the highest sink demands.

[-greedy algorithm was proposed by Jamin et al [39] for the constrained mirraced
ment problem. It first exhaustively checks each possibleexdn identify the vertex that
gives the least cost to cover all sink vertices! ¥ 0, it proceeds to check the rest of the
candidate vertices to find another vertex such that the netgxwand the previously se-
lected replicated server vertices together have the mimimmast to cover all sink vertices.
This special case greedy algorithm was studied by Qiu, Padbtean and Voelker [60] for
web server replica placement./lis non-zero, the algorithm allows féistep(s) backtrack-
ing by checking all the possible combinations of removingthe already placed replicated
servers and replacing them with- 1 new replicated servers.
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[-HST algorithm was presented by Jamin et al [38] for placing Internet imsgmtation
tracers for latency measurement. Starting with the whotevor as a single partition,
this algorithm tries to divides the network into overlapgpipartitions recursively in the
following way: pick an arbitrary vertex in the current (patepartition, a new (child)
partition with all the vertices within a random radius of ttfeosen vertex is created, and
the vertices in the newly created (child) partition are regdifor future partitioning in the
current (parent) partition. The mean diameter of the chéldifion is/ times smaller than
the diameter of the parent partition. This recursive proceds applied to all partitions
until all partitions have only one vertex. When it halts, ararchical tree of partitions is
formed in which the root node is the partition of the wholewwk and the leaves are all
single-vertex partitions. A virtual node is designateddach partition, and the virtual node
of a parent partition and the virtual node of its child pastis are connected using a link
with half the parent partition diameter. These virtual ntmgether form a hierarchical tree,
and is called a&-hierarchically well-separated treeHIST). The choice of a random radius
in each partitioning step makes the probability of a shogeedeing cut by partitioning
decrease exponentially as one climbs the tree. Thus, iskibepvertices close together in
the same partition in lower level of the tree.

In order to use-HST for server placement, a maximum partition diametermlol is
specified to limit the size of a partition. A greedy placenmedgorithm using-HST always
maintains a list of partitions sorted in the decreasing oad¢he partition diameter. The
greedy algorithm always removes the partition with thedatgliameter, and creates two
child partitions, one of which contains the vertices witraadom radius of a chosen ver-
tex, and the other one contains the rest of the vertices ipdhent partition. These child
partitions are then inserted in the sorted partition listfiwther processing. If the largest
partition of sink vertices has a diameter less than the maximpartition sizeD, the algo-
rithm halts, and a set of partitions each with a diametertdess D is obtained. A server
can be placed in a vertex of each partition of sink vertices.
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4.1.5 Evaluation

To evaluate candidate server placement algorithms foriysettver RDS, we simulate these
algorithms on three classes of networks: random networkistarus networks and a na-
tional network. In a random network, a fixed number of vetiaee randomly placed in
a unit square, and a fixed number of edges are randomly addeddrevertices to make
it a connected network. The number of edges is a random nubeeeen three and four
times the number of vertices. If the number of edges readteefixed edge limit but the
network is still not connected yet, an existing edge is ramgilanoved to connect two other
random vertices. Sink vertices are randomly selected arathvgrtices, each with a ran-
domly assigned demand in a range. In a unit torus network, eatex is connected to its
four neighbors, forming a rectangular grid with “wrap-andii edges linking the top and
bottom rows as well as the leftmost and rightmost column$eddies have a unit length.
The sink vertices are selected randomly with a random sinkaghel uniformly distributed
in arange. In the national network, we use the 50 largestapelitan areas in the United
States [79] as 50 vertices. A set of cities are randomly s&deas sink vertices, and each
city has a sink demand proportional to its population. Thgesdof the national network
are drawn based on the backbone networks of some nationabrrkeservice providers.
Some additional links are added to further increase theor&tdensity.

For simulations in random networks, we use random netwoiits 300 vertices and 100
sinks. For simulations in unit torus networks, we use 15 x &b torus networks with
100 sinks. For simulations in the national network, we ranijoselect 32 sinks in each
simulation. In addition, each data point in the simulatiesults represents the average
value of the results from 100 different problem instancek Wie same specific parameters
(network sizes, number of servers, and number of sinks).aVkeage total costs of RDSs
generated by different server placement algorithms aresuned and compared.

Simulation Results and Analysis

In Figure 4.3, we compare the total costs of subnetworkdedday different server place-
ment algorithms to a lower bound (LB) in a unit torus networikhmwno more than three
servers. Because of the small number of servers, we use skleasearch to obtain the
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lower bounds. As showed in the plot, all classes of greedgralgns achieve results very
close to the optimal solutions. In particular, the 2-greattjorithm produces the optimal
solutions for problems with no more than three servers, med is essentially conducting
exhaustive search just like the lower bound algorithm. Birly, the 1-greedy algorithm
produces optimal solutions for single server RDS. Thesedyr@lgorithms produce good
solutions because they go through different combinatiésskver locations to find a good
solution, and resemble the search-based algorithms wheoomes large. TheHST al-
gorithm has very good performance, next to the greedy dlgus. The Hot Spot algorithm
does not perform well for networks with smaller numbers of/ees, but the performance
improves when the number of servers increases. The Traodi Hlgorithm produces the
worst results that are comparable to the random placemgaoitidm. This is because the
outdegree of a vertex in a uniform torus network is always,fand the Transit Node algo-
rithm ends up picking up arbitrary server locations as inrttmelom placement algorithm.
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Figure 4.5: Server placement algorithms comparison withnagd solutions obtained by
exhaustive searches for smaller numbers of servers in titmmahnetworks.

In Figure 4.4, we compare the total costs of subnetworkdedday different server place-
ment algorithms to a lower bound (LB) in a random network with more than three
servers. The results are very similar to those in the unifiomms networks, except for the
results of the Transit Node algorithm. Specifically, theegiealgorithms have the overall
best solutions; thé&HST algorithms produces solutions better than other needy al-
gorithms, but its advantages over the Hot Spot algorithmaesd as the number of servers
increases; the Transit Node algorithm has performancesbiglytly better than the random
placement algorithm, showing that placing servers on nadgkdarge outdegrees does not
significantly reduce the cost of the network; the randomeataent algorithm has the worst
overall results.

In Figure 4.5, we compare the total costs of subnetworkdedday different server place-
ment algorithms to a lower bound (LB) in a national networkhwio more than three
servers. The results are similar to those in the random and tetworks.
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Figure 4.7: Comparison of server placement algorithmsnadoan networks.

Figure 4.6 shows the results of different server placemgotighms in a unit torus network
with up to 10 servers. The results are similar to those infeigu3. All greedy algorithms
get the best performance. Th&iST algorithm outperforms the other non-greedy algo-
rithm when there are less than eight servers. The Hot Spotitdgh does not perform well
when there are small numbers of servers, but the resultoire@s the number of servers
increases. The results improve more quickly than/thkST algorithm, and the Hot Spot
algorithm eventually produces better results when thezevare than eight servers. The
Transit Node algorithm still performs comparably with tleedom placement algorithm,
which has the worst performance.

Figure 4.7 shows the results of different server placemigotrighms in a random network
with up to 10 servers. The results are similar to those in feigu4. All greedy algo-
rithms get the best performance. TREIST algorithm outperforms the other non-greedy
algorithm when there are small numbers of servers, but theéSHot algorithm eventually
improves over it when there are more than seven servers. fEmsiT Node algorithm still
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Figure 4.8: Comparison of server placement algorithmsemidtional network.

performs relatively worse than other non-random algorghend the random placement
algorithm has the worst performance.

The results in the national network with up to 10 servers stbim Figure 4.8 reveal the
similar results as in Figure 4.5. All greedy algorithms det best performance. Thie
HST algorithm outperforms the other non-greedy algorithhnemwthere are small numbers
of servers, and the Hot Spot algorithm improves over it whesreg are more than eight
servers. The Transit Node algorithm still performs rekliiwvorse than other non-random
algorithms, and the random placement algorithm has thetywerformance.

These simulation studies indicate that thgreedy algorithms can produce solutions with
lower costs than the other server placement algorithms.ederybecause they use an ap-
proach approximating an exhaustive search in the solupanes they have high computa-
tional complexity wherd is greater than 2. On the other hand, solutions created bg&dy
and 1-greedy algorithms have lower cost than the solutioodyzed by the other server
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placement algorithms with low computational complexitiiefefore, these two greedy al-
gorithms are good choices for determining the server lonatfor the configuration of a
multi-server RDS when the number of servers is much smddéer the number of sinks.

4.2 Dynamic Load Redistribution in Multi-server RDS

4.2.1 Server Load Unbalance in a Multi-Server RDS

In an RDS, software or hardware failure can make a servepaiia of providing service
to its assigned sinks. In a single-server RDS, such serilardawill cause interruption
of quality of service to customers. In a multi-server RDS weha number of replicated
servers exist, the demands from the customers to the falegiscan be redirected with a
redirection subnetwork to other unaffected servers whalelsome extra capacity so that
the interruption to quality of service can be minimized. Wedy the configuration of a
redirection subnetwork infrastructure to provide imprdvelerance to server failures in a
multi-server RDS in the remainder of this chapter.

The redirection subnetworks improve the tolerance to séavleres, but they also increase
the communication cost because of the additional bandwaetterved on the links in the
redirection subnetworks that is not used under normal ¢mmgi. In particular, to con-

figure the redirection subnetwork that handles the failoreafspecific server, we can re-
move the potentially failing server vertex from the netwarkd rerun the multi-server RDS
configuration algorithm. The additional edges and extrarkesl bandwidth in the newly
created RDS constitutes the redirection subnetwork fardiiver. However, if we use this
method to deal with a potential failure ahyone of thek servers, we would end up with
k different redirection subnetworks. Each redirection sitwork will be used when the
specific server fails. It is unlikely that all these redirentsubnetworks will share many
of their edges and reserved bandwidth, and thus this coald imgh communication cost
overhead. Although this configuration can ensure that egessible server failure can
be handled effectively, the additional cost of the resetvaddwidth on the links in the

redirection subnetworks could be prohibitively high.
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An alternative solution is to set up a common redirectiomsivork shared by a group of
servers, instead of one redirection subnetwork for eackesdnat will fail potentially. If
one server fails, the demands of the sinks to the failed searebe redirected only to the
other servers in the same group through the redirectioneswlonk. Although this type of
redirection subnetwork limits the choice of the servers ti@fic can be redirected to, and
may have higher communication cost than an individual estion subnetwork dedicated
to a specific single server, it reduces the number of sepaditection subnetworks and the
total amount of reserved bandwidth in the redirection stboks, and can be expected to
have a lower cost than the collective total cost of all thevidaial redirection subnetworks
for individual servers in the group. We will focus on this &ypf redirection subnetwork in
our study in this chapter.

We must configure the redirection subnetworks with two goalsind: first, we must be
able to satisfy the demand of sinks affected by the failedesexrs much as possible. This is
largely determined by the amount of additional reservedibédith in the redirection sub-
network and the extra capacity of the healthy servers in\esgroup. Second, we must
keep the extra communication cost and bandwidth reservatmurred by the redirection
subnetworks as low as possible. The cost of a link in a retiimesubnetwork is deter-
mined with the same concave link cost function of the avetegféc on the link, as in the
RDS configuration problem. Thus, reusing the existing RD&sliwhen configuring the
redirection subnetworks would reduce the additional cuatiired by the extra bandwidth
in the redirection subnetworks.

In order to implement dynamic load redistribution, we firssign each server, an extra
capacityC" to handle extra demands from the sinks of failed servélscan be either a
fixed amount or a fraction of the original server capacity. Oy discuss the case with
fixed extra capacity't, = C, in this dissertation for simplicity.We also focus our atten
on the case of single server failure.

The two subsequent sections will study the configuratioorétyms for a redirection sub-
network for groups of servers of different sizes. We stathwine study of the simplest
redirection subnetworks for server pairs, and then extemdstudy to redirection subnet-
works for groups of four servers. Optimal redirection sutuoek solutions for server pairs
can be obtained efficiently because the amount of redirettadfic is fixed between two
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servers. When there are more than two servers, an approamagorithm is needed to
find a good solution efficiently for networks of practicalesz

4.2.2 Configuration of Redirection Subnetworks for Server Rirs
Problem Statement

We start with the configuration of the simplest redirectiobrgetworks in a multi-server
RDS. Specifically, we find a peer server for each server to farserver pair in a multi-

server RDS. If a server in this server pair fails, the sink deds for the affected server
will be redirected to the other server through a common eetion subnetwork for the pair
of servers. The additional communication cost is the coshefreserved bandwidth in
the redirection subnetwork for the server pairs. An oveyptimal redirection subnetwork
includes all the server pairs. We only consider the casesviem numbers of servers.

Using the existing notations from the early part of this deaghe redirection subnetwork
configuration problem for server pairs can be formally sfgettias follows: given a pair
of serverss;, s; and their subnetworks of the RD&; = (V;, E£;) andG,; = (V;, Ej).

A redirection subnetwork is defined by a bidirectional patiming s; ands; that can be
divided into three partsl’;, P and P;, whereFP; contains only vertices if;, P; contains
only vertices inV; and P contains only vertices that are in neitigrnor V;. LetG;; =
(Vi;, Ei;) be the graph formed by combinirg;, G; and this path. For each edge, v)
on the path, we require that the edge capacity equal the deofaall the sinks reachable
fromwv in the graph(V;;, E;; — {(v,«)}). An example illustrating these definitions appears
in Figure 4.9. The two original subnetworks shown in Figu®d) are connected with the
redirection subnetwork to form an augmented subnetworkvehin Figure 4.9(b). Note
that this changes some of the original capacities. The ddstks in G;; is determined
using the same cost function as for the original RDS configamgoroblem. The cost of
G; is the sum of its edge costs. The cost of pairpwith s; is cost ofG;; — ( cost ofG;+
cost of ;).

The redirection subnetwork configuration problem pantisithe set of servers into pairs,
with the objective of minimizing the overall cost and can lmdved optimally using a
weighted matching algorithm. We define a new complete grapiisting of only servers,
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Figure 4.9: An example redirection subnetwork for a senaér. p

and define the weight of an edge as the cost of pairing the twiaces on both ends of
the edge. A minimum weight maximum size matching on this deteggraph gives us the
least-cost way of pairing the servers.

The algorithm is described in the following pseudo code:

For any serves;
Compute incremental cost on all links
Compute the shortest path tree freprusing incremental costs as edge lengths
Derive a complete grapfi, of servers only,
with the least cost between two servers as edge lengths
Find the minimum weight maximum matchidg in G,
For each pair of matched servess, s;),
connects; to all sinks inG; with the paths in the shortest path tree
connects; to all sinks inGG; with the paths in the shortest path tree
end
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4.2.3 Configuration for Redirection Server Group

Problem Statement

Although redirection subnetworks for server pairs in a msdrver RDS are simple and
produces optimal solutions, it requires that every serugstine over-engineered by a factor
of 2 to handle the redirected traffic from the peer serversrsdrver pair. If we organize
larger groups of servers, we can still recover from any sisgkver failure, but each server
in the group requires less extra capacity and handles léss @gamand than a server in a
server pair. Specifically, If there are servers in each server group, a server only needs to
be over-engineered by a factorf/ (m — 1), and has extra capacity to handlgm — 1)
extra sink demand. However, when the groups of servers grmel, the optimal solution
can no longer be efficiently obtained because a solutionrdipen how the extra capacity
is distributed among the servers, which greatly increasessize of the solution space.
On the other hand, the search based exact algorithm is itngabfor real world network
configuration problems, which can have hundreds of sinkausTive study the efficient
solutions to configuration problem for redirection subrats for groups of more than
two servers using approximation algorithms. We limit owdstto groups of four servers
because it reduces the reserved extra server capacity3gnd is more practical in real
world applications.

The redirection subnetwork configuration problem for segreups can be similarly de-
scribed as follows: given four servess s;, s, s; and their subnetworks of a multi-server
RDS,G; = (Vi, Ey), G; = (V}, Ej), Gy, = (Vi, Ex), andG; = (V;, E;). A redirection for
the group of four servers is defined by a subgraph that censisa center vertex’ and
four bidirectional paths joining' and each of the four servers. Each path can be divided
into two parts: the path fror@' to s; can be divided int@;, and P;, whereP; contains only
vertices inV;, and P¢; contains only vertices not in any &f, V, V4, andV;. Similarly,
the path fromC' to s; is divided intoP; and P;, the path fromC' to s;, is divided intoF;,
and Py, and the path frond' to s; is divided intoF, and Pg,. LetGe = (Vi, E.) be the
graph formed by combining;, G;, G, G; and this subgraph. For each edgev) on the
path fromC to any of the servers, we require that the edge capacity ¢gealemand of
all the sinks reachable fromin the graph(Ve, Ec — {(v,u)}). For each edgéu,v) on
the path froms; to ¢, we require that the edge capacity equal to one third of thamam
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total demand ta;, s, ands; plus the demand of all the sinks reachable from the graph
(Vi, E; —{(v,u)}). The capacity on edges fros, s, ands; are similarly assigned. An ex-
ample illustrating these definitions appears in Figure 4Tl four original subnetworks
shown in Figure 4.10(a) are connected to a center vértexh the redirection subnetwork
paths to form an augmented subnetwork shown in Figure 410{bte that this changes
some of the original capacities. The cost of linksipis determined using the same cost
function as for the original RDS configuration problem. Tlestoof G is the sum of its
edge costs. The cost of connecting the four servers is cast.of ( cost ofG;+ cost of
G+ cost of G+ cost ofG;). The redirection subnetwork configuration problem pantisi
the set of servers into groups of four servers, with the dibjeof minimizing the overall
cost and can be approximately solved using an approximatgorithm.

Configuration Algorithm

The redirection subnetwork configuration for a group of fearvers starts with the redi-
rection subnetwork configuration for server pairs. Fitsg¢, optimal server pairs are found
using the configuration algorithm for server pairs. Thisuaab the number of four-server
combinations that have to be checked. Instead, only paitiseobptimal server pairs are
checked to determine the four-server groups. Specificaytake each pair of server pairs
obtained in the first phasés;, s;) and(sy, s;), and find the best redirection subnetwork for
this set of four servers. The best redirection subnetwarkhfe four servers is determined
by trying all possible center vertices for the four servarsd using the center vertex re-
sulting in the least cost redirection subnetwork. Whenhalhiest redirection subnetworks
for all server pairs are determined, use the cost of theegetilim subnetwork for the server
pair (s;, s;) and(sy, s;) as the weight joinings;, s;) with (s, s;) on a complete graph con-
sisting all server pairs from the first phase. We then find tih@mum weight maximum
size matching in this derived complete graph, and the riegufhatching corresponds to
the groups of four servers for the best redirection subnedsvo

When the groups of four servers are determined as pairs wérspairs, we then use the
center vertex for each matched pair of server pairs as therceade for the group of the
four servers in the pair of server pairs. The incremental tom the center node to each
server of the four subgraphsds, and the incremental cost from each of the four server to
the center node i€, /3. The total incremental cost for a specific group of four sexve
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the sum of total cost of the redirection subnetwork connedthe center node and all four
servers.

The following pseudo code describes the configuration dlguor

Run configuration algorithm for server pairs
For every pair of server pairs;, s;) and(sy, s;) produced in the first phase,
For each vertex,
Compute incremental cost with flow incrementf
betweerc and each o§;, s;,s;, ands;
Compute shortest path tree with incremental costs as edgéhe
Compute the cost of the resulting shortest path tree
Find the center nod€' for s;, s;,s;, ands; with the least cost
Create the complete grajgH of all server pairs
Find the minimum weight maximum matchidd in G’
For each group of the matched servers,
Connect the center node of the four server to the subgraphs
with appropriate reserved bandwidth
end

4.2.4 Experimental Results

We study our redirection subnetwork configuration algonitivith simulation studies on
three classes of networks: random networks, national m&gyand unit torus networks.
In a random network, a fixed number of vertices are randormdgegad in a unit square,
and a fixed number of edges are randomly added between geiticeake it a connected
network. The number of edges is a random number between #@medour times the

number of vertices. If the number of edges reaches the fixgd kahit but the network is

still not connected yet, an existing edge is randomly mowecbinect two other random
vertices. Sink vertices are randomly selected among atices; each with a randomly
assigned demand in a range. In a unit torus network, eacexvisrconnected to its four
neighbors, forming a rectangular grid with “wrap-aroundgyes linking the top and bottom
rows as well as the leftmost and rightmost columns. All edge® a unit length. The sink
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vertices are selected randomly with a random sink demaridranly distributed in a range.
In the national network, we use the 50 largest metropolitaasain the United States [79]
as 50 vertices. A set of cities are randomly selected as sirtices, and each city has a sink
demand proportional to its population. The edges of the ggagcal national network are
drawn based on the backbone networks of some national nesgorice providers. Some
additional links are added to further increase the netwerisdy.

For simulations in random networks, we use random netwoiits 300 vertices and 100
sinks. For simulations in unit torus networks, we use 15 x &b torus networks with
100 sinks. For simulations in the national network, we ranijoselect 32 sinks in each
simulation. For simulations in random and unit torus neksopwe use networks with 4, 8,
12 and 16 servers; while for simulation in the national nekyare use 4, 8 and 12 servers.
In addition, each data point in the simulation results repnés the average value of the
results from 10 different problem instances with the sanmexigip parameters (network
sizes, number of servers, and number of sinks). The errsribaéne results show the range
of these results. The unit of the network cost is Mpbiiles.

Figure 4.11 shows an example redistribution subnetworlkafserver pair in the national
network topology. In this example, there are two servershic&o and San Francisco
(marked with larger squares), each connecting to a set &b qimarked with smaller

squares) with certain traffic demands. The original RDSdiatke marked with thick solid

lines, and the redirection subnetwork links connectingtihe subnetworks through Las
Vegas and St. Louis are marked with thick dashed lines.

Figure 4.12 shows an example redistribution subnetworla fgroup of four servers in the
national network topology. In this example, the four sesvare in Chicago, New York
City, Orlando, and San Francisco (marked with larger s)aeach connecting to a set of
sinks (marked with smaller squares) with certain traffic deds. The original RDS links
are marked with thick solid lines. The center node is at Qiaa City (marked with a
large circle, and the additional redirection subnetwankdi are marked with thick dashed
lines.

Figure 4.13, Figure 4.14 and Figure 4.15 show the total afstse RDSs with and with-
out redirection subnetworks in random networks, natioretivorks and torus network,
respectively. The curves labeled “Base RDS” are the cosBDOfs with no redirection
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subnetworks, the curves labeled with “Server Pairs” aretsts of RDSs with redirection

subnetworks for server pairs, and the curves labeled “GojupServers” are the cost of
RDSs with redirection subnetworks for groups of four sesveéys these plots show, when
the number of servers increases, the costs of the RDSs dndptha additional cost of

redirection subnetworks is small, relative to the total camication cost of an RDS. They
also show that although redirection subnetworks for sgra@s can get optimal solution,
the additional communication cost incurred by the addélaaserved bandwidth is higher
than those of the subnetworks for groups of four servers.

4.3 Summary

This chapter studies two issues in a multi-server RDS, theigaration problem for a
multi-server RDS and the dynamic load redistribution in dtrraerver RDS. The config-
uration of a multi-server RDS can be similarly formulatedaasonfiguration problem for
a single-server RDS. However, the key issue of optimal phece of servers makes the
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multi-server RDS configuration problem complicated. A nemiif server placement algo-
rithms are evaluated using simulation studies. Our sinaraesults show that a class of
greedy server placement algorithms render the best sptutithe second part of this chap-
ter studies the configuration algorithm of redirection setlwrorks in a multi-server RDS
such that temporary server overloading can be resolved diyerging traffic to backup
servers in a group with extra capacity. We presented salsifior configuration of traffic
redirection subnetworks for server pairs and for group®of ervers.
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Chapter 5

Source Traffic Regulation in Reserved
Delivery Subnetworks

The previous chapters show that reserved delivery submeswWBDSs) can provide more
consistent quality of service to users by reserving banthwath an aggregate basis. Be-
sides the benefit of exclusive bandwidth access, there aer pbtentials to further im-
prove end-to-end performance in an RDS because the enddawstgilize the knowledge
about the underlying network to achieve better performdhaa in the ordinary Internet.
In this chapter, we propose a source traffic regulation teckento improve end-to-end
performance in the environment of an RDS. The basic idealisgolate the traffic from
a server to sink end hosts such that bandwidth usage doexceedcethe reserved link
bandwidth and overloaded sinks do not affect other well bethiasinks. We propose a
per-connection as well as an aggregated source trafficaggulalgorithm for both single
server and multi-server RDSs. We evaluate our algorithntis simulation studies in the
ns-2network simulator, and outline implementations on end$)gsbxies, and as loadable
modules on extensible routers.

The rest of the chapter is organized as follows: Section Beflyp discusses the motivation
for source traffic regulation in an RDS. Section 5.2 deserdred analyzes the unbalanced
bandwidth utilization problem in an RDS. In Section 5.3, wegent both per-connection
and aggregated source traffic regulation algorithms faglsiserver RDSs. These algo-
rithms are modified in Section 5.4 to suit an RDS with multipégvers. Details of our
simulation studies are presented in Section 5.5 along withlation results and analysis.
We discuss algorithm implementation options on variousf@las in Section 5.6. Sec-
tion 5.7 summarizes this chapter.
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5.1 Introduction

As we showed clearly in the preceding chapters, the exausandwidth access in an
RDS can improve end-to-end performance, especially duaxtiggme situations when the
network is under attack. In addition to the benefits of exekibandwidth access, we want
to show that there is potential for more end-to-end perfolceamprovements in an RDS.
As Savage et al. [70] pointed out, the transport protocol®day’s Internet are highly
conservative, because they have to deal with the underhy@tgork as a black box with
unknown characteristics. On the other hand, if some inftionaabout the underlying
network is available, end-to-end performance can be ingatov

Unlike the ordinary Internet, servers in an RDS have infdromeabout the underlying net-
work, including topology and reserved bandwidth. By uiiliz this available information,
we can make end-to-end performance improvements that aqgosseible in the ordinary
Internet.

One possible end-to-end performance improvement in an RIDHe found in solutions to
the unbalanced bandwidth utilization problem. In partecuin an RDS, when a sink node
is under sustained overload, traffic flows to the overloadekl sonsume more reserved
bandwidth from the source than its fair share of the resemnwaBecause all traffic flows
from the source node share the reserved bandwidth, flow$e&r sink nodes with lighter
loads also get blocked. In addition, links close to the siottes with light traffic loads suf-
fer from poor bandwidth utilization. This results in ineféat use of reserved bandwidth,
reduced service quality, and sink starvation problems iR@&. This situation can be mit-
igated by regulating the traffic flows at which the source neeteds to the overloaded sink
nodes so that these traffic flows do not interfere with flowsth@ounaffected sink nodes.

In this chapter, we present source traffic regulation tesqnes to improve end-to-end per-
formance in the context of an RDS. These techniques may lee@sd to general overlay
networks with reserved bandwidth. The idea of source tradfgulation was inspired by
the distributed queueing packet scheduling algorithmsatkpt switches [58]. In a packet
switch, when an output port is under sustained overloadgtieies at the intermediate
switch elements fill up, causing packet drops in the traffizv§ldo other sinks on other
output ports that should otherwise be unaffected. To ntiighis problem in a packet
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switch, the packets are scheduled in such a way that thectfiaffis to all output ports are
in accordance with the bandwidth available at the outpuisparoiding internal blocking.

Similar ideas can be applied to an RDS to improve the bandwitiization and thus end-
to-end performance. There are two goals: first, we want talaxcessive traffic flows on
the RDS links; second, we want to keep the bandwidth utibratigh so that the resources
are not wasted. We present a basic per-flow source regukgionthm and an aggregated
regulation algorithm. More general regulation algorithimsmulti-server RDSs are also
outlined. We evaluated the regulation algorithms with datian studies using the ns-
2 network simulator [80]. In addition, we describe the inmpéntation of the regulation
algorithms on end hosts, performance enhancing proxiesgxensible routers.

5.2 Unbalanced Bandwidth Utilization Problem in RDSs

In an RDS, when a sink node is under sustained overload, anddimand is kept on a
higher than average level, the traffic flow to such a sink veiigume more bandwidth than
it should on links in the path from the source. This bandwitbr-consumption will lead
to an undesirable situation where the other sinks sharingesaf the same upstream links
to the source receive less bandwidth than their fair shanes) though the links close to
these sinks have sufficient reserved bandwidth. As a résalteserved bandwidth on these
links is under utilized, and the users at the locations aétadfected sinks will experience
reduced quality of service.

Take a simple RDS in Figure 5.1 for example. There are thrées i, b, ¢), and the source

is s. Assume each sink has a number of connectiorsand the traffic on each connection
is a bursty on/off flow. Each traffic flow has an average bunstdn”) time of 0.5 seconds,
an average idle (or “off”) time of 9.5 seconds, and a burst cdt20 Mbps. The average
bandwidth of each flow is therefoteMbps. We use 1K bytes packets. If a flow uses a TCP
connection, the maximum window size is set to 250 packet®50KB. In the example in
Figure 5.1, each sink has 70 connections on average, ancgthagerage demand @6
Mbps.
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Figure 5.1: A simple single-server RDS example.

The reserved bandwidth to satisfy these sink demands agkethblong the links (in units of
Mbps) in the figure. The reserved bandwidth on a link is sectmamodate the average
traffic plus three times the standard deviation of the aggeefjow. For a link withn
flows on average, the aggregate standard deviation is aloQutpg, wherep = 0.95
andq = 0.05. Thus, link(r, a), (r2,b) and(ry, ¢) all get a reserved bandwidth of about
175 Mbps, link (1, r2) gets abouR80 Mbps, and link(s, r;) gets abouB90 Mbps. The
transmission delays on the links, r,), (1, a), (r1,72), (72, b), (12, ¢) are25 ms,25 ms, 50
ms,25 ms,75 ms, respectively. Thus, the round trip delay@® ms fora, 200 ms forb, and
300 ms forc. The queue length on a link is configured to be equal to thewalh-delay
product for the largest round trip delay through that link.

Initially, each sink has 100 flows, 30 more than its averaffer 80 seconds, sink sud-
denly has 200 more flows, indicating an overloading conditill traffic flows stop after
60 seconds. In theory, initially, all sinks should recei®é Mbps on average. After 30 sec-
onds, when the path i@becomes congested should get aboui8 Mbps. b andc¢ should
get78 Mbps and234 Mbps on average on links, ), respectively. Therefore, traffic to
andc will congest link(ry, 5). b will get 70 Mbps on average; will only get 210 Mbps on
average oriry, 72), and eventually an average b5 Mbps after link(rz, ¢).
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Fig. 5.2 and Figure 5.3 plot the total sink perceived banthwaf the three sinks in our
simulation run in ns-2, demonstrating the unbalanced batttwtilization problem in this
simple RDS. In the test results shown in Figure 5.2, we uséungty flows as described.
In comparison, in the test results shown in Figure 5.3, weassestant bit rate (CBR)
traffic to do the same tests. Each CBR flowl iMbps. In these tests, all connections are
UDP connections. As we can see, all sinks can get an averaghvizth of 100 Mbps
initially, but after 30 seconds, whenbecomes overloaded, and gets bandwidth close to
175 Mbps, which is the maximum bandwidth allowed by the reséowadn the last linkga
andb only get abou5 Mbps each on average, down 2y%. The effects are more clear
in Figure 5.3 when there is no burstiness. It actually cordiour estimated bandwidth.
These tests show thatandb can not get their fair share of reserved bandwidth because
over-consumes the reserved bandwidth by overloading ttieffgan the source, although
there is plenty of bandwidth on the last link &oand b. Ideally, « andb should not be
affected by the overload at and onlyc should be penalized for its excess traffic. However,
c uses more than its fair share of the reserved bandwidth¢iegithe quality of service to
a andb.

In addition, these results show that the bursty traffic floms$ @BR flows exhibit about the
same average bandwidth, but the bursty traffic makes thétsdsarder to interpret. We
will use only CBR traffic in the rest of this chapter.

A similar problem with all TCP traffic flows is shown in Figure45 We use the same
CBR traffic sources on all TCP (Reno) connections. In thigcamtially, all flows try to
acquire the maximum available bandwidth, causing bandwsdtges. When congestion
occurs, all sinks fall back to their fair share of bandwidtrabout100 Mbps. After 30
seconds, the received bandwidth éoandb drop to as low as abo6b Mbps and72 Mbps
respectively, while the additional new flows maksurge to about75 Mbps. Flows toa
andb eventually stabilize at aboab0 Mbps available bandwidth after about 12 seconds.
The received bandwidth atdrops to abou85 Mbps after congestion is encountered, and
eventually stabilizes at75 Mbps after 12 seconds.

Such an unbalanced bandwidth utilization problem on RDKslend reduced bandwidth
on affected sinks is similar to the blocking problem in a gackwitch with a sustained
overload at an output port. By applying similar ideas to ¢hosed in distributed queueing
algorithms for packet switches [58], these problems cam laésresolved in an RDS, and
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end-to-end performance improvements can be achieved. sEeatal idea of the solution
is to regulate the transmission rates of the source nodedingdo the data backlog to in-
dividual sinks in such a way that bandwidth utilization arks is balanced and maintained
at high levels, and the quality of service at a sink is not lbectééd by other overloaded
sinks.

5.3 Source Traffic Regulation in a Single Server RDS

5.3.1 Per-connection Traffic Regulation

We first present the source traffic regulation algorithm tlegulates the source traffic on
each individual connection. A transport protocol, such@®,lkeeps the status information
about an individual connection on hosts at both ends of tiheection (for example, the
socket, the Internet PCB and the TCP PCB data structures BCaiBiplementation). In
order to implement source traffic regulation, we need taudeladditional information for
each connection. Specifically, we need to keep track of hetwtlfee receiver is consuming
data from the source, how much data is waiting to be forwatdétk receiver at the source,
and how much data is to be transmitted to the receiver at tike 8y receiver, we mean
the user application that is consuming data at the sink etiteodonnection.

At the source, for each connection with a receivene define the input data backldy(z)

as the amount of data that the source has to send to the necethe output data backlog
B,(x) as the amount of data awaiting delivery to the receivet the sink, and the drain
rater(z), the rate at which the receiverconsumes data from the sink. The drain rate and
output data backlog for a connection can be constantly medsi the sink that monitors
the flows to end hosts. This information is then fed back tosthérce on a regular basis.
A virtual sink queugVSQ) is maintained for each connection at the source to keeg

of the input data backlog to the receiver at the other endettimnection. The VSQ is the
counterpart of airtual output queu€vVOQ) used on the input port of a router to keep track
of data to be forwarded to a specific output port [58].

The source regulates the transmission rate on each actireection based on its input
data backlog, its output data backlog and the receiver ded@) subject to the reserved
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Figure 5.5: Per-connection traffic flow regulation.

bandwidth constraints. To enforce the reserved bandwidttstcaint on all end-to-end
paths, the underlying RDS topology along with the resenaattividth on all links within
the RDS are kept at the source. The source keeps checkingtéhéransmission rates on
all links against the reserved bandwidth to ensure the tmésson rates do not exceed the
reserved bandwidth.

Figure 5.5 shows an example per-connection traffic flow @eggun scenario. In this exam-
ple, there are three sinks, and five end-to-end connectioingetreceivers (1 through 5) at
different sinks. The total reserved bandwidth allocatedHe source i€, and the reserved
bandwidth on the other links arg,, Cs, C3, and(Cy, as labeled on the diagram. Assume
the source assigns a transmission fate) to each receiver. These transmission rates are
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subject to the reserved bandwidth constraints:

R(3) < G

R(1)+ R(2) < C;

R(4)+R(5) < C4

R(1)+ R(2)+R(3) < (4

R(1)+ R(2)+R(3)+ R(4)+ R(5) < C

If all the constraints above are enforced, none of the baditivweservation is exceeded.

The source traffic regulation algorithm determines thesmaission rate on each active con-
nection, based on the data backlogs on both server and siedk as well the draining rates
on individual connections. It always tries to allow the aetconnections with the shortest
time to drain their output data backlogs to transmit firstaduse these connections are not
overloaded, and should not affected by other overloadedestions. In addition, when all
the output backlogs are all relatively small, then the actignnections with smaller input
data backlogs will transmit first to avoid overloaded conioes. Therefore, the active con-
nections that are least likely overloaded are given theipyito transmit first, thus limiting
the impacts of overloaded connections.

If we denoteT" as the scheduling interval (the interval between two updateéhe output
data backlog and drain rate information from the sinks),stverce can regulate traffic at
each intervall’ using the following algorithm:

For each active connection with receiver
Output draining timé(x) = By(x)/r(z)
For all active connections with draining time 7',
Sort these connections by input backlBg in an increasing order
For each active connection with receivefin sorted order)
Transmit atR(x) = min{ B;(z)/T, R.(z)},
whereR,(x) is the min. available bandwidth on the end-to-end path to
If R,(x) >0
For all active connections with draining time T,
Sort these connections by receiver draining tiifag in an increasing order
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For each active connection with receivefin sorted order)
Transmit atR(x) = min{B;(x)/T, R.},
end

This algorithm attempts to clear the data backlogs that easiréined quickly first by sort-
ing the connections by the estimated drain time in an inangasrder. For a connection
with the shortest estimated drain time, compare its inptd 8acklog with the traffic al-
lowed by the remaining reserved bandwidth along the path fiee source to the sink. The
remaining reserved bandwidth is the difference betweerotiggnal reserved bandwidth
and the bandwidth already used by the connections with eshestimated drain time. If
the input data backlog is greater than the amount of datevatldy the remaining reserved
bandwidth on the path, then send data to use up the remaesegved bandwidth. If the
remaining bandwidth allows for more data to be transmitheohtthe input data backlog,
then let the input data backlog be cleaned out before theupadte interval, and update
the remaining reserved bandwidth along the path accondiriglthere is still remaining
reserved bandwidth after cleaning out an input data backhan try to allocate remaining
reserved bandwidth to the other connections to the sametisatkhave longer estimated
drain time, starting with the connection with the shortestineated drain time. Repeat the
procedure until all input data backlogs are cleared, oreskrved bandwidth is consumed.

5.3.2 Aggregated Traffic Regulation

Although the additional per-connection information does incur excessive amounts of
memory, the per-connection traffic regulation may requikeessive computation when
there are many active flows. Therefore, we present an aggcegaurce traffic regula-
tion algorithm that reduces the overhead and maintainsfticeeacy and effectiveness for
large number of connections. In particular, a VSQ in the eggte regulation algorithm

is maintained for eackinkinstead of each connection, and each sink only maintains an
aggregated output data backlog &k connections that pass through, instead of one back-
log for each connection. Similarly, the sink measures ttgregate estimated drain rate
for all connections. All connections to the same sink share the sgmebacklog, output
backlog and drain rate. Besides these differences of datddys, the traffic regulation
algorithm works the same way. Figure 5.6 shows a simplifiadm@im of aggregate traffic
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Figure 5.6: Aggregated traffic flow regulation.

flow regulation in contrast to the per-connection traffic fl@gulation algorithm.

The aggregate traffic regulation algorithm works in the Emavay as in the per-connection
regulation algorithm. We first sort the sinks by their estiadadrain time in increasing
order. Then, we pick the VSQ with the shortest estimatechdieie, and check if it is
sufficient to drain the aggregate input data backlog. If trtafjsmit as much as allowed by
the reserved bandwidth. Otherwise, clear out the input bat&log to that sink, and use
the remaining bandwidth for the other sinks with the shodesining time first.

Besides the per-connection and aggregate regulatiorh@mniotermediate option is to as-
sign active flows to one aof: queues per sink, using a hash function. The semi-aggregate
traffic regulation algorithm treats each of thequeues individually as if each queue has
one individual active connection. This intermediate doluthas less overhead than the
per-connection regulation, and has more precise regualatiandividual flows than the
total aggregate regulation.

It should be noted that source traffic regulation is coarséngd because rates are deter-
mined based on past information that lags by at least onedrtsi;delay. The higher the
frequency of the control messages, the more accurate iggjugation, but with a tradeoff
of higher overhead.
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5.4 Source Traffic Regulation in a Multi-server RDS

In an RDS with multiple sources, traffic flows from differemtusces could compete for
reserved link bandwidth. It is clear that as the number ofe®modes increases, more
nodes are likely to be affected by overloaded sink nodese Nbthe reserved bandwidth
is exclusively for an individual source node, the problemaseal by an overloaded sink
is limited to flows from the same source. In this case, thelsitrgffic flow regulation is
sufficient. However, in a multi-server RDS with shared resdbandwidth among different
sources, more complicated traffic flow regulation algorghshould be used to account
for the additional sources. The major challenge is to coatei the transmission rates
from different sources to the same sink without causing lamzed bandwidth utilization
problems.

As shown in Figure 5.7(a), when there is more than one datecs@ending to a set of
sinks, one source has to consider other sources to the sakeken determining its

transmission rates. In particular, a source with a largeutithacklog to a sink should get
higher transmission rate than the ones with smaller inpcklbgs. The traffic regulation

should also consider the output backlog and drain ratesratdosingle source case. In
addition, the reserved bandwidth constraints along alg&bm a source to a sink should
be observed.

We need to modify our previous definitions to handle multgd@rce nodes. One tricky
thing about multi-source traffic regulation is how a sourae get information about input
backlogs of other peer sources. One solution is to let thefiect source data backlog
information from all sources, and feeds it back to all therses. Thus, a source not only
receives data backlog information from its sinks, but aksuds out its input backlog to all
its sinks. A sink gathers this information and sends backltecairces. Another option is
to fully connect all sources and regularly exchange inpta 8acklog information among
all sources. However, this requires another subnetworkngntioe peer servers, and does
not take advantage of the existing RDS infrastructure.

In this basic multi-source regulation algorithm, becausewace needs to multicast its input
backlog to all its sinks or other sources, the control messagrhead doubles, making
it less effective and less efficient when there is a large remal flows. In this case,

an aggregate multi-source traffic regulation algorithm trenfavorable as it reduces the
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control overhead. In the aggregate regulation algoritlirwei use the sinks to “bounce”
back the data backlog of the peer sources, a source sendgitsgate backlogs to all
sinks. A sink sends back its own aggregate backlog and agigrelyain rate along with
the source data backlog gathered from all the sources itemgrack to these sources.
If we use a dedicated subnetwork among sources to exchaatgdacklog, the source
aggregate the input data backlog information, and sendtitéoother sources. Sources
can use this aggregate information to limit their use of sti@esources to prevent overuse.
Figure 5.7(b) shows an RDS with aggregate multiple traffisvflegulation. As in the
single source case, a single queue is maintained for all floms a sink node to all end
hosts connected, and only aggregate drain rates are fedd#uk source nodes.

5.5 Simulation Studies and Analysis

The evaluation of traffic regulation in an RDS was conductedugh simulation studies
using the network simulator (ns-2) [80]. New regulationsskes are introduced in ns-2
to implement the source traffic regulation algorithms. Wawdate the web traffic by as-
signing a traffic generator with CBR traffic. We choose CBHfittdbecause it shows the
average bandwidth more clearly. Similar results can beimddawvith bursty traffic flows,
but the CBR results make the effects of source traffic reguiahore apparent. In our sim-
ulations, each CBR flow has a rate of 1 Mbps. The link transomsiatency of the links
(s,m1), (r1,a),(r1,m2), (re,b), (r2, ¢) are 25 ms, 25 ms, 50 ms, 25 ms, 75 ms, respectively.
Therefore, the RTT to sinks, b, ¢ are 100 ms, 200 ms, and 300 ms, respectively. All in-
termediate routers are using drop-tail queues, and theegeegth is equal to the product
of reserved bandwidth and maximum round trip delay. Thelegmgun interval is set to the
maximum round trip delay 300 ms.

5.5.1 Simulations

In our ns-2 simulations, we first implement the infrastruetof the basic RDS that enforces
the bandwidth reservation on links in the subnetwork. Thenimplement the traffic regu-
lation algorithm as a special regulator application thgtitates the traffic generator at each
traffic source. The traffic source is modified to allow the tatpr to control the output.
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A collector is introduced as an application to gather thd side data backlog informa-
tion, and feed them back to the regulator. The implementaligtails are illustrated in
Figure 5.8. As we can see, the traffic generator includes aregwation control after the
original packet queue. This regulation control is regylaghdated after each regulation
interval by the regulator to control the rate of a traffic smubased on the regulation algo-
rithm implemented in the regulator. The regulator has thia dacklog information at both
ends of each connection, as well as the topology and resbaretividth of the underlying
RDS. At each regulation interval, the regulator updatesuent® in the regulation control,
and the attached TCP or UDP agent is only allowed to transisiaimount of data before
the next regulation interval. The collector sends back thke data backlog information
also once every regulation interval.

5.5.2 Experimental Results and Analysis

We use the same simple network as in Figure 5.1 for our simukafor single-server RDS
regulation. In particular, each of the three sinks iniyidias 100 connections, and each
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connection with a CBR traffic generator at the source. Afis8conds, sink adds an
additional 200 CBR flows, each with the same traffic generalibe total sink perceived
bandwidth is measured and plotted with and without the sotnaffic regulation. We
simulate both cases of all TCP flows as well as all UDP flows.

Figure 5.3 and Figure 5.4 in Section 5.2 show the resultdife/2P and all TCP flows with
no source traffic regulation. In the all-UDP flow simulati@sults in Figure 5.3, the total
bandwidth to the overloaded sinkis limited (175 Mbps) by its access link reservation.
Sinksa andb should not be affected, but their received bandwidth dragdevi their fair
share of bandwidth1(0 Mbps), resulting in reduced service quality. In the all-T{Zfv
simulation results in Figure 5.4, although all sinks get dipéimal bandwidth allocation
eventually, it takes more than 10 seconds to adapt to thenaptiandwidth, during which
the sink bandwidth drops to below the fair share of resensdltvidth. When we enable
source traffic regulation, we expeciandb will not affected byc and getlt00 Mbps along
their path froms, andc will get 175 Mbps along its path from.

Per-connection Regulation in a Single-server RDS

Figure 5.9 shows the effects of the source traffic regulatowrthe all UDP flow case.
Because the source now determines the transmission raged ba the data backlogs on
source and sink sides, the sinks with normal loadar{db) are not affected by the over-
loaded sink:, and can still get their fair share of reserved bandwidthwifie path from

s to ¢ becomes congested. Thus, even after 30 secanasdb still maintain about 00
Mbps bandwidth, while: is still limited to 175 Mbps by its access link. After 60 seconds,
when traffic stops in all connections, input data backlogsdadb are quickly cleared out,
while ¢ takes about 22 seconds to clear out its backlog.

Figure 5.10 shows the effects of the source traffic reguigto the all-TCP flow case. At
the beginning, all flows try to find the maximum rates they dmsed during the TCP slow
start phase, causing the surges. They soon get to theihfaie f the reserved bandwidth
of 100 Mbps. Whenc becomes overloaded after 30 seconds, the TCP congestitnolcon
mechanism causes all flows to reduce their transmissios Bezause we now have source
traffic regulation, it takes less time (3 to 4 seconds, as @vatpto 12 seconds in Figure 5.4
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Figure 5.11: Simulation with aggregated source traffic lsgon for UDP flows.

without source traffic regulation) for all the sinks to retdo their fair shares of reserved
bandwidth.

Aggregated Regulation in a Single-server RDS

Our simulations with aggregate source traffic regulatiawstihat normally the aggregated
source traffic regulation has the same effects on the tatél lsandwidth results as the
per-connection regulation, especially for all-UDP flows saown in Figure 5.11 (all-UDP
flows) and Figure 5.12 (all-TCP flows). One major differenaedll-TCP flows is that the
received bandwidth af drops to a lower level afterbecomes overloaded, and that it takes
a andb about 4 more seconds to returnit@) Mbps, and the bandwidth fluctuation is much
smaller than the the case with no traffic regulation. In addjtthe received bandwidth of
c reduces gradually instead of sharply as in Figure 5.10.
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Figure 5.13: Maximum and minimum bandwidth in individual Bllows to each sink
with per-connection regulation.

These differences are caused by the different ways thesalgeothms regulate the flow
transmission rates. The per-connection regulation dlyorreduces the transmission rates
on all connection when the end-to-end path gets congestéiae sources of all connections
transmit at about the same lower rate. Thus, the overalluiicin caused by the TCP
congestion control mechanism on individual flows is smallecontrast, when congestion
occurs, the aggregate regulation algorithm still allowsratividual source to send as fast
as it can as long as the total transmission rate is reducedit 8ssentially reduces the
number of flows transmitting at high rates, and increasestineber of flows that are “on
hold” from transmission. Therefore, the overall fluctuateaused by TCP is higher.

The differences of the two regulation algorithms are moeady depicted in Figure 5.13
through Figure 5.16. In these figures, we show the maximumanohum individualac-
tive flow bandwidth among all flows to a sink measured every secatidbeth regulation
algorithms for both all-UDP and all-TCP flows. For example tnaximum individual flow
bandwidth to sink: is labeled as “a-max”, and the minimum individual flow bandthito
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Figure 5.15: Maximum and minimum bandwidth in individual F@ows to each sink

with per-connection regulation.
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a is labeled as “a-min”. Figure 5.13 and Figure 5.15 use paneotion regulation, and
Figure 5.14 and Figure 5.16 use aggregate regulation. &3 and Figure 5.14 are for
all-UDP flows, and Figure 5.15 and Figure 5.16 are for all-TiloRs.

Figure 5.13 shows that flows on connections to all sinks areosi the same. Before
¢ becomes overloaded, the maximum and minimum individual th@ndwidth is about
1Mbps, which means all flows are transmitting at the the maximuowadble rates. After

c becomes overloaded after 30 seconds, the maximum and mmindividual flow band-
width drops to about.6 Mbps. This is because wherbecomes overloaded, all flows have
60% (roughly175 Mbps out 0f300 Mbps) of time transmitting each second, and all flows
have equal opportunities to transmit.

In contrast, Figure 5.14 shows that the maximum and minimuodividual bandwidth
among flows ta: andb is still aboutl Mbps, but the maximum individual flow bandwidth
to c is much higher after becomes overloaded. Wherandb are still transmitting before
the 62nd seconds, the individual flow maximum bandwidth gge# 8.4 Mbps and has
an average of aboitMbps, and the individual flow minimum bandwidth drops to ed¢s

0. This indicates that some flows transmit more often thawwthers when using aggregate
regulation because it does not attempt to regulate indalitlaws to avoid overloading
each receiver. So, some flows are allowed to transmit as nauties can as long as the
aggregate backlog at the sink is not too high and the aggrege¢ived bandwidth is below
its fair share of reserved bandwidth. Note that we only mesathe active flows, which is
less than 300. So the total bandwidthctdoes not exceed the reserved bandwidthf
Mbps on the bottleneck link. Afte# andb stop their transmission at about 62th second,
the individual flow maximum bandwidth jumps up to and stayakaiut25 Mbps. The in-
dividual flow minimum bandwidth also increases to ab&8tMbps. This is because after
a andb finish transmission, more reserved bandwidth is available &ndc can transmit
more data on the individual flows. So, the individual flow nmaxim bandwidth increases.
in addition, because some flows get more chances to tranarfigresome of these flows
already cleared out their input backlog, and have no datatsiit. So, the total number
of flows decreases, more flows with large accumulated badiégin to transmit, and the
individual flow minimum bandwidth increases.

Figure 5.15 shows that the individual flow maximum and mimmisandwidth ta: andb
is 1 Mbps. Among flows ta, the individual flow maximum and minimum bandwidth is
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1 Mbps before’ becomes overloaded at the 30th second; aftercomes overloaded, the
individual flow maximum bandwidth drops to an fluctuating raenno less thaf.6 Mbps,
and the individual flow minimum bandwidth drops to an fluctoghumber no greater than
0.6 Mbps. The fluctuation of the individual maximum and minimuanbdwidth roughly
complements each other. This indicates that there areedttivs on all connection when
is overloaded. It also shows that not all flows get the sanmsingssion rate every second;
some flows get more data to transmit while other flows get abaue less amount of data
to transmit. These effects are caused the regulation ofichal flows.

Figure 5.16 shows that although there are several “spikeg™dips”, the individual flow
maximum and minimum bandwidth o andb is aboutl Mbps. Among flows ta:, the
individual flow maximum and minimum bandwidthlisvibps before it becomes overloaded
at the 30th second. After becomes overloaded and befereandb stop receiving data
around the 62nd second, the individual flow maximum bandwiittreases to about66
Mbps, and the minimum individual flow bandwidth drops to n@af his shows that some
flows are allowed to transmit more data while other flows orllgvaed to transmit very
little data by the aggregate regulation algorithm. Theedédhce is not as large as in the all-
UDP flows though. After: andb clear out their data backlog and stop receiving data from
the source, the maximum and minimum individual flow bandiwidbth increases. The
maximum individual flow bandwidth jumps to up 38 Mbps and the minimum individual
bandwidth jumps up to abodt5 Mbps after 83 seconds. This is because more reserved
bandwidth is available to, and more flows can transmit more data to clear up their data
backlog. As the data backlogs are cleared out on more cdonscteven more flows can
transmit at a higher rate.

TCP Fairness

When two overloaded sinks have different round trip tramssion delays to the server, the
TCP congestion control mechanism will favor the sink witk g8horter RTT. This band-
width unfairness to different sinks is shown in Figure 5.Tfis figure shows a simulation
run on a simple network similar to the network we used presligexcept that linKrs, b)
has a transmission delay of 100 ms in this network. This mBRé&sfrom s to b 300 ms.
Specifically, in this simulation, all three sinks start with0 TCP flows, each with a CBR
source with 1 Mbps bandwidth. After 30 secondsindb have an additional 50 flows, and
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Figure 5.18: Improved TCP fairness with source traffic ragah.

¢ has an additional 30 flows. Thus, the ;) becomes the only congested link, anend

b are competing for the bandwidth on the congested link. lei§ut7 shows that receives
about 145 Mbps of bandwidth aridonly gets about 130 Mbps, although they both have
the same total traffic demands.

Figure 5.18 shows the results of the total received sink Wadtt when we enable source
traffic regulation. We only show the result of the per-corimgcregulation algorithm; the
aggregated regulation produces similar results. Figur@ 8early shows that when traffic
regulation is enabled, all sinks adjust to their fair shdm@served bandwidth, independent
of their RTT to the server. In particular, the competing tevaded sinks: andb both get
roughly135 Mbps even though has a RTT that is three times thatofThese results show
that source traffic regulation provides better fairnesa fh@P congestion control alone.
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An Example Application

In addition to the bandwidth related simulations, we hage aimulated an example appli-
cation of source traffic regulation to improve end-to-endgrenance for delivery of large
amounts of data across a wide area network, such as streamimdge delivery.

Figure 5.19 shows the network setup for our simple simutatidhere is a server that
constantly has bursty traffic flows to the sink. The connedtiom the server to the sinkis a
UDP connection that has a one-way transmission delay of 5@werloading is prevented
on this connection through source traffic regulation betwibe server side regulator and
the sink. The connection from the sink to the user is a TCP ection with a round trip
delay of 2 ms. The bursty traffic that arrives at the servamisamitted to the sink through
the UDP connection, subject to the source traffic reguldtipthe regulator.

In our simulations, we measure the average and standaratibevof the end-to-end burst
delivery time, which is the time between the moment when tis¢ fiyte leaves the server
and the moment when the last byte is received by the usernipanson, we also measure
the same data for regular end-to-end TCP connections frenseéhver to the user. We
use a packet size of 1500 bytes, and an average burst sizéd gfatfBets. The average
burst arrival rate is 100 per second. The burst transmigsitenis 1Mbps. The connection
between the server and the sink has a reserved bandwidti® dfikps. It uses a Drop Tail
gueue, and the queue is set according to the delay bandwinttligt.

Figure 5.20 shows the average burst delivery times for tleeseenarios. The curve la-
beled TCP shows the average burst delivery time on a regathteeend TCP connection
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Figure 5.21: Standard deviation of burst delivery time cangon.

between the server and the user. The average burst deliwerys about 3 seconds. The
other curve in the plot shows the average burst delivery imaa RDS with source traffic

regulation enabled, as illustrated in Figure 5.19. Theayerburst delivery time is less
than 1.5 seconds. It is clear that using RDS with sourcedredjulation greatly improves

the burst delivery time over regular end-to-end TCP conoest

Figure 5.21 compares the standard deviation of burst dgltuae for the two scenarios. It
shows that the standard deviation in a network with RDS andcedraffic regulation is less
than 2 seconds, while the regular end-to-end TCP has muakegitandard deviation of 5
seconds or more. This result indicates that source traffigclagion with UDP connections
makes the data delivery more smooth than a regular endetG-€R connection.
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250

Figure 5.22: Simulation of multi-source traffic regulatiora simple multi-server RDS
with two servers.

Regulation in a Multi-server RDS

We simulate the multi-source traffic regulation algorithmai simple multi-server RDS as
shown in Figure 5.22. In these simulations, sinksdb normally have 50 TCP flows from
each of the two servers ands, on average. Each flow is the same as in the single server
RDS.a unexpectedly becomes overloaded, and demands 150 flowssfrand 300 flows
from s,. All flows start at 0 second, and stop after 50 seconds.

Ideally, a should receive twice as much data framas the data from; under this over-
loading situation, such that neither server would get serioput backlog ta. Figure 5.23
shows the total received bandwidth on the sinks from bothessrwhen we only enable
single-source traffic regulation onn and s, without any coordination between the two
servers. Because both servers use source traffic regylatiats its average fair share of
bandwidth from boths; ands,, and are not affected by the overloadedHowever, be-
cause there is no coordination between ¢hand s,, the reserved bandwidth is not used
efficiently. In particular, when the flows toare still active, the flow from, to a should get
about twice as much bandwidthoQ Mbps on average) as the flow frogpn to a (50 Mbps
on average). However, because both servers do not have fanpation about the other
peer server, they try to compete equally for the reservedwaith, and only get abouts
Mbps at the beginning each. The total bandwidtlh tmdb gradually changes afterwards
and approaches the ideal allocation. After the backlog fsgno « is cleared after about
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Figure 5.23: Lack of server coordination problem in mudiitece traffic regulation (all
TCP flows).
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Figure 5.24: Simulation with per-connection multi-soutiadfic regulation (TCP flows).

108 seconds, flows from, to a takes the maximum bandwidth allowed on its path:to
(175 Mbps) and clears up its data backlog.

Figure 5.24 shows the total sink received bandwidth fronheatver when we enable per-
connection multi-source traffic regulation. With the sereeordination between the two
serversg receives roughly twice data from than froms;, and the input backlogs at both
servers are drained at about the same time. As it shows, thie fth are not affected by
the overloaded, and both receivé0 Mbps average bandwidth. In addition, the — a
flows get100 Mbps average bandwidth, which is twice the bandwidtt0f— o flows.
This is because the two servers exchange their data basKimgnation with each other,
and regulate their flows accordingly to drain their data baglat about equal rates. As
a result, the flows from bothk; and s, to a drain their input data backlog, and finish at
about the same time after 130 seconds. The surge after ab®setonds is caused by the
termination of alls; — a flows.
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Figure 5.25: Simulation with aggregated multi-sourceficatgulation (TCP flows).
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Figure 5.26: Maximum and minimum bandwidth in individual F @ows from both
servers to sink with per-connection multi-source traffic regulation.

Figure 5.25 shows the total sink received bandwidth fromheserver when we enable
aggregate multi-source traffic regulation. Although thgragated regulation results in
less smooth received bandwidth, it shows that similar teszdn be achieved with with
less control overhead.

Figure 5.26 and Figure 5.27 show the maximum and minimunviddal flow bandwidth
from the two servers to the sinkin the multi-source traffic regulation simulations with
per-connection and aggregate regulation algorithmsectsely.

Figure 5.26 shows that the maximum individual flow bandwiddm s; to a is about0.4
Mbps on average, and that the maximum individual flow bantwiidm s, to « is about
0.8 Mbps before backlog ta at s; is first cleared out. The maximum individual flow
bandwidth increases up o8 Mbps before it quickly drops to 0. The minimum individual
flow bandwidth from both servers stays close to 0 until the dhaicklogs are about to clear
up, at which point the minimum individual flow bandwidth from goes up td.4 Mbps
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Figure 5.27: Maximum and minimum bandwidth in individual F @ows from both

servers to sink: with aggregate multi-source traffic regulation.
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and that froms, goes up to abouit.5 Mbps. This shows that the per-connection regulation
does not allow individual flows to have a high bandwidth, dvat the maximum individual
flow bandwidth froms, is about twice of that from;.

Figure 5.27 shows that the maximum individual flow bandwidttaggregate regulation is
higher than that of per-connection regulation. In paraculhe maximum individual flow
bandwidth froms; ands, stays about the same, that ranges from abdutMbps to1.6
Mbps before data backlog from is cleared out. This is more than twice of the bandwidth
in the per-connection regulation, because flows are notaeglion individual basis, and
some flows get more chances to transmit.

5.6 Implementation on Various Platforms

In this section, we outline the possible implementatiorthefource traffic regulation algo-
rithms on various platforms. The advantages and limitatimidifferent implementations
are discussed.

5.6.1 End Host Implementation

There are two ways to implement source traffic regulation ore@d host: special user
libraries and kernel modifications.

In the first implementation option, we can develop a set o&fyprers” in a user level library
which adds the regulation functionality between the usetiegations and the network sys-
tem calls. The major advantage of this approach is its piitialht implements the source
traffic regulation without modifying the end host operatsygtems, and therefore should
work on many platforms. However, it comes at the expense dbpeance due to the
additional data operation overhead.

The second approach is to implement the source regulatymmidm at the socket (or an
equivalent) layer in the end host operating system kerniehpsove the performance. For
example, on a BSD based operating system (such as NetBSPDtf¥8tegulation algorithm
can be implemented in the socket layer with extensions tedbketstructure and addition
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of new traffic regulation socket options. In particular, soeket buffer and related system
calls (for examplerecvmsgandsendmsycan be modified to include rate regulation such
that user data stored in the socket buffer are sent out inuategl fashion when the source
traffic regulation option is enabled. In addition, such aplementation makes it efficient
and convenient to exchange information between the regudatd the collectors with a
reliable connection (such as TCP). The major drawback afithplementation approach
is its complexity and poor portability because it must belangented on end hosts at both
ends of a connection.

The major advantage of an end host implementation is thaes dot require changes to the
access routers and proxies. However, itis not as easy temwit aggregated regulation as
on the other platforms, and it needs operating systems sumpboth sides of connections.

5.6.2 Stand-alone Proxy Implementation

Another platform to implement the source regulation is tefgrmance enhancing prox-
ies [5] at source and sink sides.

The regulator can be implemented at the source side proxythencollector can be im-
plemented on the sink side proxies, both as a performanceouement mechanism in
addition to the other commonly used ones, such as ACK hagpdiimmpression, priority-
based multiplexing, and protocol boosters. One of the mastilar open source web cache
proxy system, Squid [73], derived originally from the Hast/project [6], provides a good
proxy platform to implement traffic regulation algorithmis. particular, the functions of
a regulator or a collector can be added to @ennStateDatatructure and the core data
communication routinecommselecf)) with rate regulation usin@elayPoolclasses.

The major advantages of a proxy implementation is the fleibof this approach and
ease of deployment. A stand-alone proxy is suitable to impl& both the per-connection
and aggregated regulation equally well. It does not recamechanges on the routers or
the end hosts. An end host can simply choose to go through»a fmchis connection
setting to use the source traffic regulation. The major desklof this implementation is
the possible performance limitation, because of the exdpsito and from the proxy and
the proxy processing overhead.
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5.6.3 Extensible Router Plug-in Implementation

Extensible routers, such as the dynamically extensibléeraantroduced in [13], provide
another platform for source traffic regulation as well azofferformance enhancing mech-
anisms that require moderate processing overheads.

Take the above dynamically extensible router for examplen e@ch input and output
port, there is a software-based packet processing smdrcgal (SPC) as well as a pro-
grammable hardware device called field programmable poenheber (FPX). The SPC can
use loadable modules to process data packets at a very haghl,sand the FPX is ca-
pable of dynamically loading hardware modules onto the oarth FPGA for high speed
hardware-based packet processing. By implementing theateg and the collector as two
SPC loadable modules, with the help of the FPX for the bulkPoptocessing and buffer-
ing, the traffic regulation can be performed very efficieniiyis platform is also a good
choice if we want to handle large number of flows.

The major difficulty of this implementation approach is tlesgible resource limitation. In
particular, when there are sustained overloading, thelmhitklog may increase to a point
that the memory resource on a port is exhausted.

5.7 Summary

In this chapter, we show that besides the benefit of exclusawelwidth access, the end-
to-end performance can be further improved in an RDS byzirtii the knowledge about
the underlying network. Specifically, we introduce souredfic regulation to resolve the
unbalanced bandwidth utilization problem inside an RDSe Shurce traffic regulation
ensures that all traffic flows are within the constraints eereed bandwidth on the end-
to-end path; in addition, it regulates the source trandomssates to different end hosts
in such way that bandwidth utilization on all links is baladdo protect a sink from ill-
behaved overloading sinks. We study our proposed per-ctioneand aggregated traffic
regulation algorithms with simulations in the network slatar, and our simulation results
demonstrate the improved end-to-end performance withceduaffic regulation.
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Chapter 6
Conclusions and Future Work

The Internet must provide services with a certain level ofdveidth assurance before it
can become a more reliable and trustworthy informationastfucture. However, per-
flow bandwidth reservation services have not been widelyogegd as expected in today’s
Internet. Toward this end, we proposed a reserved deliveopetwork (RDS) service
that provisions aggregate bandwidth reservations forggaf users. An RDS is more
easily deployed than per-flow reservation services, andges more consistent quality of
service than best-effort forwarding. In the preceding ¢bieoof this dissertation, we study
a number of design issues with the configuration, deploynsemt operation of an RDS.
Besides these topics we have covered in this dissertatiene tare a number of related
issues that can be further explored in future research.

6.1 Reserved Delivery Subnetworks

The reserved delivery subnetwork was introduced in Chapias an alternative way to
provide more consistent quality of service within todayiternet infrastructure. Instead of
deploying per-flow bandwidth reservation services, execisandwidth is reserved for an
aggregated group of customers of a service provider, tamivent the deployment problem
encountered by per-flow bandwidth reservation services.deployment of such a service
will benefit a number of network applications such as webeaindelivery, virtual private
networks, and grid computing.

In this dissertation, we have focused on the configurati@hdaployment of a generic re-
served delivery subnetwork. Less attention has been péngtissues about how a specific
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network application can benefit from the deployment of an RE® example, although a
web content delivery service can naturally be deployed oareegc RDS, the deployment
of a VPN service over an RDS may put extra requirements ondhéguration of the un-
derlying RDS because the asymmetric bandwidth assumgioa longer a constraint. In
addition, data security and service stability are cruaiahiVPN. Therefore, we may in-
clude security and stability considerations in the configjon and deployment of an RDS
VPN. One possible strategy is to integrate the security aailgy factors into the link
cost function for the configuration of an RDS VPN.

Grid computing is another potential application of RDS. hartgrular, the RDS service
can facilitate resource management in a grid computing@gipn that uses the resources
of a potential large nhumber of computers connected by a nmktteosolve a large-scale
computation problem. Traditionally, the research focustbeen put on the computational
resource discovery and allocation of different nodes in mmatational grid. Relatively
little attention has been paid to the the management ancaibm of bandwidth resources
in the network used by the grid. We think this issue is equallyortant to the performance
of a computational grid, and deserves more study. Simitdntigjues for configuring and
deploying an RDS can apply to the bandwidth resource managgeproblem in a grid
computing application. In particular, link selection focamputational grid should also
consider the economy of bandwidth aggregation so that camuatiion cost is minimized.

6.2 RDS Configuration

The configuration of an RDS involves two tasks: selectingstifnetwork and determining
the appropriate bandwidth reservation on links in the stvooik. In Chapter 3, we start
with configuration of the basic RDS with a single server. Werfolate the configuration
problem of such an RDS as a minimum concave cost network flomi@m, where the per
unit flow cost increments decrease as the current flow ineseashis problem formula-
tion takes the economy of bandwidth aggregation into camaitbn and is more practical,
but it also makes the configuration problem a NP-hard probléraditional enumerative
search-based exact algorithms are not practical even fatwornk with moderate size.
An approximate heuristic (LDF) based on least cost augrtientalgorithm has been pre-
sented to solve the problem efficiently. Our simulation lssimdicate that LDF creates
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results that are within a constant factor of an estimateaidvound to the optimal solu-
tion. We used an easily computed lower bound and estimateel lbounds derived from
this lower bound to evaluate the performance of our propadgarithm. However, this
lower bound is very loose. Thus, a better lower bound thatjiger than the lower bound
we used and has comparable computational complexity waulgdsth studying.

To further improve the results from LDF, we apply local séaheuristics on the LDF

results. We started with a traditional negative cost cyelduction algorithm first, and

found that a special negative cost multi-cycle subnetwamnkcture can also be used to
further reduce the cost of an RDS. We implemented and stukésperformance of a local

search algorithm based on negative cost bi-cycle reduct@ur simulation results show
that although local search algorithms based on negativecgoke and bi-cycle reduction

can greatly improve the results of an arbitrary initial $imn, the improvement to LDF is

limited. We think this is a strong indication that LDF sotuts are close to optimal.

We have only studied the simplest negative cost multi-gydecycles, in our study. When
we consider negative cost multi-cycle with more cycles, ¢benputational complexity
grows substantially. It would be interesting to study tred&off of computational com-
plexity and performance improvements to find out a point ofidished returns.

In Chapter 4, we study the configuration of RDSs with multgeevers. We can transform
this problem into a single server RDS configuration with aditahal pseudo server, but
there is a unique server placement issue for a multi-seriz&$ Bonfiguration that com-
plicates the configuration. We have studied a variety ofesgplacement algorithms, and
our simulation results indicate that a class of greedy #lgyois out-perform other server
placement algorithms.

6.3 RDS Fault Tolerance

Also in Chapter 4, we have studied a method to improve the falérance of a multi-
server RDS. In particular, we study the problem of settingagirection subnetworks for
groups of up to four server in a multi-server RDS. The redioecsubnetwork for a group
of servers redirects traffic from a faulty or overloaded eete other “healthy” servers in



143
the group, utilizing the existing RDS links to the maximumesX. We use a recursive
approach to build up the redirection subnetworks. In paldic we started with a simple
problem of finding the optimal server pairs that traffic to eeever in a server pair can be
redirected to the other server in the pair. For each pairmkss, a redirection subnetwork
is configured to allow traffic redirection from one server he sinks of the other server.
To generalize to groups of four servers, we start with theesgpairs already obtained in
the first step, and find optimal pairs of server pairs to formugs of four servers. For
each group of four servers, identify a center redirectionfend configure the redirection
subnetwork to redirect traffic from the sinks of one servahwother three servers.

There are several possible studies we could pursue in theefuFirst, in some cases, not
all sinks have to be covered by a redirection server, esihewiaen the original server is
only overloaded briefly. Instead, we can configure the retloe subnetwork to partially
cover the sinks connected to a server. Second, we can algosappe simple local search
heuristic to improve the solution quality. For example, vem d¢ry to adjust the server
location locally, so that the total cost of the original RD®ldhe redirection subnetwork is
lower, although this move may increase the cost of the cald®DS.

6.4 RDS End-to-end Performance Improvements

In Chapter 5, we have investigated an option for potentidbpemance gains of end-to-end
applications in an RDS. By leveraging the knowledge aboeiuthderlying RDS network,
we try to improve the end-to-end performance by solving thiealanced bandwidth uti-
lization problem with source traffic regulation. Withoutyamaffic regulation at the server
side, an overloaded sink would congest the upstream paltie teetrver, reducing the band-
width utilization and service quality at other sinks thaashpart of the congested path. By
enabling source traffic regulation, the server controlg@8ic to a specific sink according
to the data backlogs at both ends of a connection and thecteaffidition in the RDS. Our
simulations have shown that all sinks get their fair shareesérved bandwidth and only
the overloaded sinks are penalized. In addition, the tregficilation mechanism improves
the TCP fairness when the round trip delay to sinks is large.
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Source traffic regulation was inspired by the distributedwgging techniques in high speed
routers [58]. It would be interesting to study the work camagon property in the RDS
context, and determine the speed-up factor needed to &chierk conservation. In this
chapter, we also have outlined a number of implementatibrs®wrce traffic regulation
on three platforms. It would be interesting to implemenntrend evaluate RDS in a real
network environment.



145

References

[1] E. Aarts and J. K. LentraLocal Search in Combinatorial Optimizatiodohn Wiley
& Sons, 1997.

[2] Ravindra K. Ahuja, Thomas Magnanti, and James OrlNetwork Flows Prentice
Hall, 1993.

[3] David G. Andersen, Hari Balakrishnan, M. Frans Kaashaekl Robert Morris. Re-
silient overlay networks. IProceedings of 18th ACM SOSPanff, Canada, October
2001.

[4] Francisco Barahona and Eva Tardos. Note on Weintraubigmum-cost circulation
algorithm. SIAM Journal of Computindl8(3):579-583, June 1989.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. SlyeRFC 3135: Performance
Enhancing Proxies Intended to Mitigate Link-Related Ddgteons. RFC 3135, June
2001.

[6] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Mantend Michael F.
Schwartz. The Harvest information discovery and accesssy€omputer Networks
and ISDN System&8(1-2):119-126, 1995.

[7] R. Braden, D. Clark, and S. Shenker. Rfc 1633: Integratdices in the Internet
architecture: an overview, 1994.

[8] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zeguv&odeling Internet topol-
ogy. [IEEE Communications Magazing5(6):160-163, June 1997.

[9] J. Cao, D. Davis, S. Wiel, and B. Yu. Time-varying netwadknography : Router
link data. Technical report, Bell Labs Tech. Memo, 2000.

[10] Jin Cao, D. Davis, Scott Vander Wiel, Bin Yu, and ZhengyZhu. A scalable method
for estimating network traffic matrices from link counts.cheical report, Bell Labs
Tech Report, 2001.

[11] Boris V. Cherkassky and Andrew V. Goldberg. Negatiyele detection algorithms.
In European Symposium on Algorithnmsages 349-363, Barcelona, Spain, March
1996.



146

[12] S. Choi and Y. Shavitt. Placing servers for sessioeftgd services. Technical re-
port, Technical Report WUCS-01-41, Washington Universityst. Louis, Dept. of
Computer Science., 2001.

[13] Sumi Choi, John Dehart, Ralph Keller, Fred Kuhns, Jolotkwood, Prashanth
Pappu, Jyoti Parwatikar, W. David Richard, Ed Spitznagalyi® Taylor, Jonathan
Turner, and Ken Wong. Design of a high performance dynatyieatensible router.
In Proceeding of DARPA Active Networks Conference and Expng[DANCE) San
Francisco, CA, USA, May 2002.

[14] Israel Cidon, Shay Kutten, and Ran Soffer. Optimal@dkion of electronic content.
In INFOCOM, pages 1773-1780, 2001.

[15] David Clark and William Lehr. Provisioning for burstgternet traffic: Implications
for industry and internet structure. Rroceedings of MIT ITC Workshop on Internet
Quality of Service (MIT WISQ 199%Boston, MA, USA, December 1999.

[16] CNN. Computer worm grounds flights, blocks ATMs. URL ghttwww.cnn.
com/2003/TECH/internet/01/25/internet.attack/.

[17] M. B. Doar. A better model for generating test networks.Proceedings of Global
Internet, Globecom '96November 1996.

[18] Zhenhai Duan, Zhi-Li Zhang, and Yiwei Thomas Hou. SeevDverlay Networks:
SLAs, QoS and Bandwidth Provisioning. Rroceedings of 10th IEEE International
Conference on Network Protocols (ICNParis, France, Novmber 2002.

[19] Anja Feldmann, Albert G. Greenberg, Carsten Lund, NRekngold, Jennifer Rex-
ford, and Fred True. Deriving traffic demands for operatiodRanetworks: method-
ology and experience. IBIGCOMM pages 257-270, 2000.

[20] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D.S. Bakin,.8V Marcus, and T.M.
Raleigh. Protocol boosterslEEE Journal on Selected Areas of Communication
16(3), April 1998.

[21] J. A. Fingerhut. Approximation Algorithms for Configuring Nonblocking Comm
nication Networks D. Sc. dissertation, Washington University, St. Louissidiuri,
May 1994.

[22] J. Andrew Fingerhut, Subhash Suri, and Jonathan S.efurBesigning least-cost
nonblocking broadband networkslournal of Algorithms 24(2):287-309, August
1997.

[23] Sally Floyd and Van Jacobson. Random early detectidevggys for congestion
avoidancelEEE/ACM Transactions on Networking(4):397-413, 1993.



147

[24] Dalila B. M. M. Fontes, Eleni Hadjiconstantinou, andcN$ Christofides. A new
branch-and-bound algorithm for network design using ceacast flows. Technical
report, Imperial College, London, UK, 2002.

[25] Dalila B. M. M. Fontes, Eleni Hadjiconstantinou, andch$ Christofides. Upper
bounds for single-source uncapacitated concave mininash+tetwork flow prob-
lems. Networks 41(4):221-228, July 2003.

[26] Chuck Fraleigh, Fouad Tobagi, and Christophe Diot.viBioning IP Backbone Net-
works to Support Latency Sensitive Traffic. Pmoceedings of IEEE InfoComrBan
Francisco, CA, USA, April 2003.

[27] G. Gallo and C. Sodini. Adjacent extreme flows and agpion to min concave cost
flow problems.Networks 9:95-121, 1979.

[28] GNU. GNU Scientific Library. URL http://www.gnu.orgsfware/gsl/.

[29] A. V. Goldberg and R. E. Tarjan. Finding minimum-costccilations by canceling
negative cyclesJournal of ACM 36:873—-886, 1989.

[30] G. M. Guisewite and P. M. Pardalos. Minimum concavetoeswork flow problems:
Applications, complexity, and algorithmAnnals of Operations Resear®b:75-99,
1990.

[31] G. M. Guisewite and P. M. Pardalos. Algorithms for thegle-source uncapaci-
tated minimum concave-cost network flow problefournal of Global Optimization
1:245-265, 1991.

[32] G. M. Guisewite and P. M. Pardalos. Global search atgors for minimum concave-
cost network flow problemslournal of Global Optimizationl:309-330, 1991.

[33] Dorit S. Hochbaum, editorApproximation Algorithms for HP-hard ProblemBWS
Publishing Company, 1993.

[34] R. Horst, P. M. Pardalos, and N. V. Thoalntroduction to Global Optimization
Kluwer Academic Publishers, 1995.

[35] R. Horst and H. TuyGlobal Optimization Springer-Verlag, 1993.

[36] Sundar lyer, Supratik Bhattacharyya, Nina Taft, andi€bphe Diot. An approach
to alleviate link overload as observed on an IP backbonePréiceedings of IEEE
InfoComm San Francisco, CA, USA, April 2003.

[37] Van Jacobson. Congestion Avoidance and ControPribc. ACM SIGCOMNpages
314-329, Palo Alto, CA, USA, August 1988.



148

[38] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Sttaand Lixia Zhang. On
the placement of internet instrumentationllHEE INFOCOM pages 295-304, 2000.

[39] Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz, anga¥ Shavitt. Con-
strained mirror placement on the internetIlBHEE INFOCOM pages 31-40, 2001.

[40] Alpr Jttner, Istvn Szab, and ron Szentesi. On Bandwigfficiency of the Hose Re-
source Management Model in Virtual Private Networks. Pimceedings of IEEE
InfoComm San Francisco, CA, USA, April 2003.

[41] M. Klein. A primal method for minimal cost flowsManagement Sciencé&4:205—
220, 1967.

[42] Korupolu, Plaxton, and Rajaraman. Placement algarstfor hierarchical cooperative
caching. INSODA: ACM-SIAM Symposium on Discrete Algorithms (A Conferen
Theoretical and Experimental Analysis of Discrete Alduris) 1999.

[43] Anshul Kothari, Subhash Suri, and Yunhong Zhou. Bamilwconstrained allocation
in grid computing. InProceedings of Workshop on Algorithms and Data Structures
(WADS’03) Ottawa, Canada, July 2003.

[44] Balachander Krishnamurthy and Jia Wang. On networirawclustering of web
clients. INSIGCOMM pages 97-110, 2000.

[45] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayddrnet routing conver-
gence. InProc. ACM SIGCOMMpages 175-187, Stockholm, Sweden, 2000.

[46] C. Labovitz, R. Wattenhofer, S. Venkatachary, and Aufsh The impact of Internet
policy and topology on delayed routing convergencé?roc. IEEE INFOCOM April
2001.

[47] Bruce W. Lamar. An imporved branch and bound algoritlomrhinimum concave
cost network flow problemslournal of Global Optimizatioy3:261—-287, 1993.

[48] Will E. Leland, Murad S. Taqq, Walter Willinger, and DahV. Wilson. On the self-
similar nature of Ethernet traffic. In Deepinder P. Sidhuta@dACM SIGCOMM
pages 183—-193, San Francisco, California, 1993.

[49] WIill E. Leland and Daniel V. Wilson. High time-resoloti measurement and analysis
of LAN traffic: Implications for LAN interconnection. IHMNFOCOM (3) pages
1360-1366, 1991.

[50] Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Derajnd Kazem Sohraby. On
the optimal placement of web proxies in the internet. IBEE INFOCOM pages
1282-1290, 1999.



149

[51] Dong Lin and Robert Morris. Dynamics of random earlyadion. InProceedings
of ACM SIGCOMM pages 127-137, Cannes, France, September 1997.

[52] Hongzhou Ma, Inderjeet Singh, and Jonathan S. Turnens@aint based design of
ATM networks, an experimental study. Technical Report WLBZ35, Department
of Computer Science, Washington University, 1997.

[53] R. Mahajan, S. Floyd, and D. Wetherall. Controlling Higandwidth flows at the
congested router. IRroc. IEEE 9th International Conference on Network Protsco
(ICNP), November 2001.

[54] A. Medina, N. Taft, S. Battacharya, C. Diot, and K. Saddian. Traffic matrix esti-
mation: Existing techniques compared and new directionSIGCOMM Pittsburgh,
PA, USA, August 2002.

[55] Alberto Medina, Anukool Lakhina, Ibrahim Matta, , andhh Byers. BRITE: An
approach to universal topology generationPhoceedings of the International Work-
shop on Modeling, Analysis and Simulation of Computer andcdenmunications
Systems (MASCOTS 'QQincinnati, Ohio, USA, August 2001.

[56] Debasis Mitra and Qiong Wang. Stochastic Traffic Engrireg, with Applications to
Network Revenue Management. Rnoceedings of IEEE InfoComrBan Francisco,
CA, USA, April 2003.

[57] Rong Pan, Balaji Prabhakar, and Konstantinos PsoubidOKE, a stateless active
gueue management scheme for approximating fair bandwlidgiteéion. InProceed-
ings of IEEE INFOCOM (2)pages 942-951, 2000.

[58] Prashanth Pappu, Jyoti Parwatikar, Jonathan Turmet,Ken Wong. Distributed
queueing in scalable high performance routersPioceeding of IEEE InfoconSan
Francisco, CA, USA, April 2003.

[59] Vern Paxson and Sally Floyd. Wide area traffic: the fa@lof Poisson modeling.
IEEE/ACM Transactions on Networking(3):226—244, 1995.

[60] L. Qiu, V. Padmanabham, and G. Voelker. On the placeroénteb server replicas.
In Proceedings of IEEE INFOCOM 200pAnchorage, AK, USA, April 2001.

[61] Ruibiao Qiu. Reserved delivery subnetworks configaraalgorithm with the maxi-
mum sharing shortest path tree. SRIE Conference on Performance and Control of
Next Generation Communication Networks, ITCdnlando, FL, USA, September
2003.

[62] Ruibiao Qiu and Jonathan S. Turner. Configuration oémesd delivery subnetworks.
In Proceedings of IEEE Globecqmaipei, Taiwan, Novmber 2002.



150

[63] Ruibiao Qiu and Jonathan S. Turner. Approximation gtgm for reserved delivery
subnetwork configuration. Technical Report WUCS-0352, &&pent of Computer
Science and Engineering, Washington University, 2003.

[64] Ruibiao Qiu and Jonathan S. Turner. Improved local deafgorithm with multi-
cycle reduction for minimum concave cost network flow praie Technical report,
WUCS-04-74, Washington University at St. Louis, DeparttrafrComputer Science
and Engineering, 2004.

[65] Ruibiao Qiu and Jonathan S. Turner. Configuring mudtiver reserved delivery sub-
networks. Technical report, WUCS-05-01, Washington Ursilg at St. Louis, De-
partment of Computer Science and Engineering, 2005.

[66] P. Radoslavov, R. Govindan, and D. Estrin. Topolodpiimed internet replica place-
ment. InProceedings of WCW’01: Web Caching and Content Distrilmuédorkshop,
Boston, MAJune 2001.

[67] Pablo Rodriguez and Sandeep Sibal. SPREAD: Scalahtéopi for reliable and
efficient automated distributioWWVWW9 / Computer Network33(1-6):33—-49, 2000.

[68] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicales, and Y. Zhang.
Experience in measuring backbone traffic variability: Misgdmetrics, measurements
and meaning. IMACM SIGCOMM Internet Measurement Worksha@02.

[69] Stefan Savage, Tom Anderson, Amit Aggarwal, David Beckleal Cardwell, Andy
Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voetkand John Zahorjan.
Detour: a Case for Informed Internet Routing and Transp&EE Micro, 19(1):50—
59, January 1999.

[70] Stefan Savage, Neal Cardwell, and Tom Anderson. The fmasnformed transport
protocols. InProceedings of the Seventh Workshop on Hot Topics in Oper&lys-
tems Rio Rico, AZ, USA, March 1999.

[71] Stefan Savage, Andy Collins, Eric Hoffman, John Snatid Tom Anderson. The
end-to-end effects of Internet path selectionPhceedings of the ACM SIGCOMM
Conferencepages 289-299, Cambridge, MA, USA, September 1999.

[72] Sherlia Shi and Jonathan S. Turner. Placing serversénlay networks. InProc.
Symposium on Performance Evaluation of Computer and Teleamication Systems
(SPECTS)San Diego, CA, USA, July 2002.

[73] Squid Web Cache Proxy. URL http://www.squid-cachg/.or

[74] A. Steger, E. Mayr, and H. Prmel, editotsectures on Proof Verification and Approx-
imation Algorithmsvolume 1367. Springer, 1998.



151

[75] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenket,\&. Willinger. Network
topology generators: Degree-based vs structurdPrémeedings of ACM SIGCOMM
2002 August 2002.

[76] Robert Endre TarjanData Structure and Network Algorithmgolume 44. Society
for Industrial and Applied Mathematics, 1983.

[77] P.T. Thach. A decomposition method using a pricing na@i$m for min concave cost
flow problems with hierarchical structurelournal of Mathematical Programming
53:339-359, 1992.

[78] The NetBSD Foundation. NetBSD. URL http://www.netlzsd/.

[79] U.S. Census Bureau. Census 2000. URL http://www.cegsw/population/www/
cen2000/.

[80] VINT. Network Simulator. URL http://www.isi.edu/nam/ns/.

[81] B. M. Waxman. Routing of multipoint connectiond&EEE Jounral of Selected Areas
in Communications5(9):1617-1622, 1988.

[82] Jared Winick and Sugih Jamin. Inet-3.0: Internet togglgenerator. Technical Re-
port UM-CSE-TR-456-02, Department of Computer Science Emglineering, Uni-
versity of Michigan, 2002.

[83] X. Xiao and L. M. Ni. Internet QoS: A big picturéEEE Network 13(2):8-18, March
1999.

[84] Guo-Liang Xue and Shang-Zhi Suiihe shortest path network and its applications
in bicriteria shortest path problempages 355-362. World Scientific Publishing Co.,
1993.

[85] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bh&issiee. How to model an
internetwork. INIEEE Infocom volume 2, pages 594—-602, San Francisco, CA, USA,
March 1996.

[86] Lixia Zhang, Steve Deering, Deborah Estrin, Scott eenand Daniel Zappala.
RSVP: A new resource reservation protocbEEE Network MagazineSeptember
1993.

[87] Weixiong Zhang.State-Space SearcBpringer-Verlag New York Inc., 1999.

[88] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fasturate computation
of large-scale ip traffic matrices from link loads. ACM SIGMETRICSSan Diego,
CA, USA, June 2003.

[89] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An inforioattheoretic approach
to traffic matrix estimation. IA\CM SIGCOMM August 2003.



Degrees

Professional
Societies

Selected
Publications

152

Vita
Ruibiao Qiu

B.S. Beijing University of Posts and Telecommunications,
Computer Engineering, July 1992

M.S. Beijing University of Posts and Telecommmunications,
Computer Engineering, May 1995

M.S. Florida International University, Computer Science,
December 1997

D.Sc. Washington University in St. Louis, Computer Science
May 2006

Association for Computing Machines (ACM)

Institute of Electrical and Electronics Engineers (IEEE)

The NetBSD Foundation

The International Society for Optical Engineering (SPIE)
Institute of Electrical, Information and Communicationadge
neers (IEICE)

Ruibiao Qiu, Jonathan S. Turner, "Source Traffic Regulation
Reserved Delivery Subnetworks”. Proceedings of 25th IEEE |
ternational Performance Computing and Communications- Con
ference (IPCCC), Phoenix, AZ, April, 2006.

Ruibiao Qiu, Jonathan S. Turner, "Local Search Algorithiors f
Reserved Delivery Subnetwork Configuration Problems with C
cle and Bicycle Reduction”. Proceedings of Advances for-Net
works & Internet Symposium,IEEE Globecom 2005, St. Louis,
MO, November, 2005.

Qiu, Ruibiao and Turner, Jonathan S. Configuration of Reskrv
Delivery Subnetworks. Proceedings of Service Infrastmector
Virtual Enterprises Symposium, IEEE Globecom 2002, Taipei
Taiwan, November 2002.

Qiu, Ruibiao, Cox, Jerome R., and Kuhns, Fred, A Conference
Control Protocol for Highly Interactive Video-conferengi Pro-
ceedings of IEEE Globecom 2002, Taipei, Taiwan, November
2002.



153

Qiu, Ruibiao, Kuhns, Fred, Cox, Jerome R. and Horn, Craig,
Bringing Studio Quality Video-conferencing to Wide AreaNiet-
works with an Adaptation Layer Translator (ALX). Proceeghn

of IEEE International Conference on Multimedia and ExpoNIE
2002), Lausanne, Switzerland, August 2002.

Yu, Wei, Qiu, Ruibiao, Fritts, Jason, Motion-JPEG2000 Vde
Transmission over Active Networks. Proceedings of Image an
Video Communications and Processing Conference at IS&E/SP
Electronic Imaging 2003, Santa Clara, CA, January 2003.

Qiu, Ruibiao, Kuhns, Fred, Cox, Jerome, Horn, Craig, HiglaQu
ity Videoconferencing System for Wide Area IP Networks. Pro
ceedings of SPIE ITCom 2002, Boston, MA, 07/02.

Yu, Wei, Qiu, Ruibiao and Fritts, Jason, Advantages of Mwtio
JPEG2000 in Video Processing. Proceeding of SPIE Visual-Com
munications and Image Processing (VCIP02), San Jose, @A, Ja
uary 2002.

May 2006



Short Title: Reserved Delivery Subnetworks Qiu, D.Sc. 2006



	Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May 2006
	Recommended Citation
	Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May 2006

	tmp.1418149444.pdf.TMAbO

