
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-5

2006-01-01

Design Issues of Reserved Delivery Subnetworks, Doctoral Design Issues of Reserved Delivery Subnetworks, Doctoral

Dissertation, May 2006 Dissertation, May 2006

Ruibiao Qiu

The lack of per-flow bandwidth reservation in today's Internet limits the quality of service that an

information service provider can provide. This dissertation introduces the reserved delivery

subnetwork (RDS), a mechanism that provides consistent quality of service by implementing

aggregate bandwidth reservation. A number of design and deployment issues of RDSs are

studied. First, the configuration problem of a single-server RDS is formulated as a minimum

concave cost network flow problem, which properly reflects the economy of bandwidth

aggregation, but is also an NP-hard problem. To make the RDS configuration problem tractable,

an efficient approximation heuristic, largest demands first... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Qiu, Ruibiao, "Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May 2006" Report
Number: WUCSE-2006-5 (2006). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/200

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/200?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/200

Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May
2006 2006

Ruibiao Qiu

Complete Abstract: Complete Abstract:

The lack of per-flow bandwidth reservation in today's Internet limits the quality of service that an
information service provider can provide. This dissertation introduces the reserved delivery subnetwork
(RDS), a mechanism that provides consistent quality of service by implementing aggregate bandwidth
reservation. A number of design and deployment issues of RDSs are studied. First, the configuration
problem of a single-server RDS is formulated as a minimum concave cost network flow problem, which
properly reflects the economy of bandwidth aggregation, but is also an NP-hard problem. To make the
RDS configuration problem tractable, an efficient approximation heuristic, largest demands first (LDF), is
presented and studied. In addition, performance improvements with local search heuristic is investigated.
A traditional negative cycle reduction and a new negative bicycle reduction algorithms are applied and
evaluated. The study of RDS configuration problems is then extended to multi-server RDSs. The
configuration problem can be similarly formulated as the single-server RDS configuration problem;
however, the major challenge of multi-server RDS configuration is the optimal server locations. A number
of server placement algorithms are evaluated using simulations. The simulation results show that a class
of greedy algorithms provide the best solutions. In addition to configuration problem, the dynamic load
redistribution mechanism is studied to improve the tolerance to server failures. A configuration algorithm
to build redistribution subnetworks is proposed and evaluated to deal with single server failures in a group
of servers. Besides the exclusive bandwidth access, there are potentials to further improve end-to-end
performance in an RDS because end hosts can utilize the knowledge about the underlying networks to
achieve better performance than in the ordinary Internet. These improvements are illustrated with a
source traffic regulation technique to resolve the unbalanced bandwidth utilization problem in an RDS. A
per-connection and an aggregated regulation algorithm for single-server and multi-server RDSs are
presented and studied.

https://openscholarship.wustl.edu/cse_research/200?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/200?utm_source=openscholarship.wustl.edu%2Fcse_research%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-5

Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation,
May 2006

Authors: Ruibiao Qiu

Corresponding Author: ruibiao@cse.wustl.edu

Web Page: http://www.arl.wustl.edu/~ruibiao/

Abstract: The lack of per-flow bandwidth reservation in today's Internet limits the quality of service that an
information service provider can provide. This dissertation introduces the reserved delivery subnetwork (RDS),
a mechanism that provides consistent quality of service by implementing aggregate bandwidth reservation. A
number of design and deployment issues of RDSs are studied.

First, the configuration problem of a single-server RDS is formulated as a minimum concave cost network flow
problem, which properly reflects the economy of bandwidth aggregation, but is also an NP-hard problem. To
make the RDS configuration problem tractable, an efficient approximation heuristic, largest demands first (LDF),
is presented and studied. In addition, performance improvements with local search heuristic is investigated. A
traditional negative cycle reduction and a new negative bicycle reduction algorithms are applied and evaluated.

The study of RDS configuration problems is then extended to multi-server RDSs. The configuration problem
can be similarly formulated as the single-server RDS configuration problem; however, the major challenge of
multi-server RDS configuration is the optimal server locations. A number of server placement algorithms are

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DESIGN ISSUES OF RESERVED DELIVERY SUBNETWORKS

by

Ruibiao Qiu

Prepared under the direction of Professor Jonathan S. Turner

A dissertation presented to the Henry Edwin Sever Graduate School of

Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF SCIENCE

May 2006

Saint Louis, Missouri

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

DESIGN ISSUES OF RESERVED DELIVERY SUBNETWORKS

by

Ruibiao Qiu

ADVISOR: Professor Jonathan S. Turner

May 2006

Saint Louis, Missouri

The lack of per-flow bandwidth reservation in today’s Internet limits the quality of service
that an information service provider can provide. This dissertation introduces the reserved
delivery subnetwork (RDS), a mechanism that provides consistent quality of service by
implementing aggregate bandwidth reservation. A number ofdesign and deployment issues
of RDSs are studied.

First, the configuration problem of a single-server RDS is formulated as a minimum con-
cave cost network flow problem, which properly reflects the economy of bandwidth ag-
gregation, but is also an NP-hard problem. To make the RDS configuration problem
tractable, an efficient approximation heuristic, largest demands first (LDF), is presented and
studied. In addition, performance improvements with localsearch heuristic is investigated.
A traditional negative cycle reduction and a new negative bicycle reduction algorithms are
applied and evaluated.

The study of RDS configuration problems is then extended to multi-server RDSs. The
configuration problem can be similarly formulated as the single-server RDS configuration
problem; however, the major challenge of multi-server RDS configuration is the optimal
server locations. A number of server placement algorithms are evaluated using simulations.
The simulation results show that a class of greedy algorithms provide the best solutions. In
addition to configuration problem, the dynamic load redistribution mechanism is studied to
improve the tolerance to server failures. A configuration algorithm to build redistribution
subnetworks is proposed and evaluated to deal with single server failures in a group of
servers.

Besides the exclusive bandwidth access, there are potentials to further improve end-to-end
performance in an RDS because end hosts can utilize the knowledge about the underlying
networks to achieve better performance than in the ordinaryInternet. These improve-
ments are illustrated with a source traffic regulation technique to resolve the unbalanced
bandwidth utilization problem in an RDS. A per-connection and an aggregated regulation
algorithm for single-server and multi-server RDSs are presented and studied.

To Hung-Jen, Audrey, Emma, and my parents

Contents

List of Figures . vii

Acknowledgments . xi

1 Introduction . 1

1.1 Motivations . 1

1.2 Applications . 3

1.3 Contributions . 4

1.4 Organization . 5

2 Reserved Delivery Subnetworks (RDS). 7

2.1 Formal Definition . 7

2.2 RDS Configuration . 8

2.3 RDS Scalability . 13

2.4 RDS Fault Tolerance and Recovery .. . 14

2.5 RDS End-to-end Performance .14

3 Configuration of Single-Server Reserved Delivery Subnetworks 16

3.1 Problem Formulation . 16

3.2 Largest Demand First (LDF) Algorithm 18

3.2.1 Algorithm Design Issues . 18

3.2.2 Algorithm Description . 19

3.2.3 Evaluation . 21

3.3 Improving Solution Quality with Local Search Algorithms 24

3.3.1 Local Search Algorithms Using Cycle Reduction Strategy 26

3.3.2 Local Search Algorithm with Cycle Reduction 29

3.3.3 Negative Cost Bicycles in Concave Cost Networks 38

3.3.4 Bicycle Reduction Algorithm . 41

3.3.5 Experimental Results and Analysis 47

iv

3.3.6 Negative Cost Multi-cycles Reduction 62

3.4 Summary . 66

4 Multi-server RDS . 67

4.1 Multi-server RDS Configuration .. . 68

4.1.1 Introduction . 68

4.1.2 Multi-server RDS Configuration69

4.1.3 Problem Definition and Formulation 71

4.1.4 Server Placement in a Multi-Server RDS 73

4.1.5 Evaluation . 77

4.2 Dynamic Load Redistribution in Multi-server RDS 84

4.2.1 Server Load Unbalance in a Multi-Server RDS 84

4.2.2 Configuration of Redirection Subnetworks for Server Pairs 86

4.2.3 Configuration for Redirection Server Group 88

4.2.4 Experimental Results . 91

4.3 Summary . 96

5 Source Traffic Regulation in Reserved Delivery Subnetworks 98

5.1 Introduction . 99

5.2 Unbalanced Bandwidth Utilization Problem in RDSs 100

5.3 Source Traffic Regulation in a Single Server RDS 106

5.3.1 Per-connection Traffic Regulation 106

5.3.2 Aggregated Traffic Regulation .109

5.4 Source Traffic Regulation in a Multi-server RDS 111

5.5 Simulation Studies and Analysis 113

5.5.1 Simulations . 113

5.5.2 Experimental Results and Analysis 114

5.6 Implementation on Various Platforms 137

5.6.1 End Host Implementation . 137

5.6.2 Stand-alone Proxy Implementation 138

5.6.3 Extensible Router Plug-in Implementation 139

5.7 Summary . 139

6 Conclusions and Future Work . 140

6.1 Reserved Delivery Subnetworks .. . 140

v

6.2 RDS Configuration . 141

6.3 RDS Fault Tolerance . 142

6.4 RDS End-to-end Performance Improvements 143

References . 145

Vita . 152

vi

List of Figures

2.1 Reserved Delivery Subnetwork. .. . 9

2.2 Aggregation of bursty flows. .. 10

2.3 Bandwidth economy of aggregation. 11

2.4 State transition diagram for the number of active flows ona link. 12

3.1 Example RDS computed by the LDF algorithm 22

3.2 Performance of LDF on torus network 23

3.3 Performance of LDF on national network 25

3.4 Problems of negative cost cycle reduction in a network with concave edge

costs. 28

3.5 Original cycle reduction algorithm. 31

3.6 Finding the best solution for “target”ti, wherecostf(x, p) = the incremen-

tal cost of addingx units of flow along pathp, relative to existing flowf ,

∆ = f(pf(ti), ti) is the flow intoti, pf(u) = the parent ofu in the tree

defined byf , andpathf (ti, tj) = the path from the nearest common ances-

tor of ti andtj to ti in the tree defined byf . Note, for the original cycle

reduction algorithm,Pnb is only the vertexti. For the improved algorithm

with compressed paths,Pnb is the longest “non-branching” in-tree path to

ti. 32

3.7 A simple network that will benefit from the cycle reduction algorithm. . . . 35

3.8 Path compression in the cycle reduction algorithm. 36

3.9 A simple negative cost bicycle example. 39

3.10 Bicycle reduction algorithm. 42

3.11 Bicycle reduction algorithm. 43

3.12 Negative bicycle reduction algorithm. 45

3.13 National network configuration. 48

3.14 Lower bound computation. .. 51

3.15 Comparison of estimated bounds and lower bounds. 53

vii

3.16 Cost comparison of cycle reduction algorithm with initial LDF solutions

and MST solutions in torus networks. .55

3.17 Cost comparison on torus networks. 57

3.18 Cost comparison on uniform torus networks. 58

3.19 Cost comparison on the national network. 60

3.20 Cost comparison on random networks. 61

3.21 Cost comparison on networks generated by inet topologygenerator. 63

3.22 Negative cost multi-cycles. 64

4.1 Problem transformation. .. 72

4.2 Comparison of different server placement. 74

4.3 Server placement algorithms comparison with optimal solutions obtained

by exhaustive searches for smaller numbers of servers in uniform torus

networks. 78

4.4 Server placement algorithms comparison with optimal solutions obtained

by exhaustive searches for smaller numbers of servers in random networks. 79

4.5 Server placement algorithms comparison with optimal solutions obtained

by exhaustive searches for smaller numbers of servers in thenational net-

works. 80

4.6 Comparison of server placement algorithms in uniform torus networks. . . . 81

4.7 Comparison of server placement algorithms in random networks. 82

4.8 Comparison of server placement algorithms in the national network. 83

4.9 An example redirection subnetwork for a server pair. 87

4.10 An example redirection subnetwork for a four-server group. 90

4.11 An example server-pair redirection subnetwork in the national network

topology. 93

4.12 An example redirection subnetwork for groups of four servers in the na-

tional network topology. 94

4.13 Simulation results of redirection subnetwork in random networks. 95

4.14 Simulation results of redirection subnetwork in torusnetworks. 95

4.15 Simulation results of redirection subnetwork in the national network. 96

5.1 A simple single-server RDS example. 101

viii

5.2 Unbalanced bandwidth utilization problem for bursty UDP traffic flows in

the example network simulation. The received bandwidth measured shown

in this plot is the moving average of the past five seconds. 102

5.3 Unbalanced bandwidth utilization problem for CBR UDP traffic flows in

the example network simulation. .103

5.4 Unbalanced bandwidth utilization problem for CBR TCP traffic flows. . . . 105

5.5 Per-connection traffic flow regulation. 107

5.6 Aggregated traffic flow regulation. 110

5.7 Multi-source traffic regulation. 112

5.8 Source traffic regulation implementation inns-2. 114

5.9 Simulation with per-connection source traffic regulation for all UDP traffic

flows. 116

5.10 Simulation with per-connection source traffic regulation for all TCP traffic

flows. 117

5.11 Simulation with aggregated source traffic regulation for UDP flows. 118

5.12 Simulation with aggregated source traffic regulation for TCP flows. 119

5.13 Maximum and minimum bandwidth in individual UDP flows toeach sink

with per-connection regulation. .. . 120

5.14 Maximum and minimum bandwidth in individual UDP flows toeach sink

with aggregate regulation. .121

5.15 Maximum and minimum bandwidth in individual TCP flows toeach sink

with per-connection regulation. .. . 122

5.16 Maximum and minimum bandwidth in individual TCP flows toeach sink

with aggregate regulation. .123

5.17 Bandwidth unfairness to congested sinks with different round trip delays. . 126

5.18 Improved TCP fairness with source traffic regulation. 127

5.19 End-to-end burst delivery time simulation setup. 128

5.20 Average burst delivery time comparison. 129

5.21 Standard deviation of burst delivery time comparison.. 130

5.22 Simulation of multi-source traffic regulation in a simple multi-server RDS

with two servers. 131

5.23 Lack of server coordination problem in multi-source traffic regulation (all

TCP flows). 132

5.24 Simulation with per-connection multi-source traffic regulation (TCP flows). 133

ix

5.25 Simulation with aggregated multi-source traffic regulation (TCP flows). . . 134

5.26 Maximum and minimum bandwidth in individual TCP flows from both

servers to sinka with per-connection multi-source traffic regulation.135

5.27 Maximum and minimum bandwidth in individual TCP flows from both

servers to sinka with aggregate multi-source traffic regulation. 136

x

Acknowledgments

First of all, I would like to thank my advisor, Professor Jonathan S. Turner for his inspi-
ration, guidance, care, and the opportunity to realize my goal to the fullest. During my
time as a graduate student and as graduate research assistant at ARL, I have learned a great
deal from Dr. Turner, not only his brilliant insights and broad knowledge in the networking
area, but also his passion for research and his care for students.

I would like to thank the other members of my thesis committee: Dr. Roger Chamber-
lain, Dr. Sergey Gorinsky, Dr. Weixiong Zhang, and Dr. Norman Katz. Their invaluable
feedback and suggestions widened my views of the problem, and helped me improve the
dissertation tremendously in many ways. Some of their feedbacks and suggestions have
become important parts of this dissertation.

I would like to thank all staff members and fellow students atARL and the Computer
Science department for their stimulating ideas and great help.

Thanks to my parents, Quangxiang Qiu and Peihe Yan, my brother, Ruidi, and my sister,
Juanli, for their love and support.

Finally, I would thank my wife, Hung-Jen for her support. Without her, this dissertation
would not be possible. Her encouragement and love helped me through the difficult times.
Especially, she took good care of our lovely daughters, Audrey and Emma, with whom I
should have spent more time.

Ruibiao Qiu

Washington University in Saint Louis
May 2006

xi

1

Chapter 1

Introduction

1.1 Motivations

The Internet has become an information infrastructure thatwe increasingly depend on in

our daily life. However, the Internet in its current state isnot capable of meeting the needs

of mission critical applications. One key deficiency of the Internet is the lack of effective

per-flow bandwidth reservation mechanisms. As a result, themajority of today’s Internet

traffic is best-effort traffic, and guaranteed services are not readily available. Because of the

best effort nature of today’s Internet, there is no way to distinguish between transaction-

oriented mission critical data traffic and traffic from causal web browsing. All different

traffic sources have to compete equally for the bandwidth resource, making it it difficult to

provide guarantees for mission critical applications. In addition, the Internet is vulnerable

to malicious attacks, such as denial of service (DoS) and worm attacks. For example, in

January of 2003, the Internet “slammer” worm attack left thousands of bank customers

without ATM access, and dozens of flights grounded [16]. The data communication be-

tween the servers at the bank and airline companies headquarters and the terminals on

ATMs and in the airports was severely affected when the Internet got heavily congested

with traffic generated by the worms. Clearly, the current Internet is an insufficient informa-

tion infrastructure, and needs great improvements to provide consistent and stable services

comparable with traditional information infrastructure,such as telephone networks.

In order to make the Internet a better information infrastructure, various per-flow bandwidth

reservation techniques have been proposed to improve services of the Internet. However,

they are not widely deployed as expected. The major hurdles are the concerns about the

2

costs of upgrading and maintaining the per-flow reservationmechanisms from the network

service providers, because it is widely believed that the per-flow reservation is too expen-

sive to be practical, especially in the core networks.

On the other hand, the idea of aggregate bandwidth reservation is widely accepted. In-

stead of reserving bandwidth for individual flows, aggregate bandwidth reservation reserves

bandwidth for an aggregate of flows. Aggregate bandwidth reservation can be easily im-

plemented in the existing network service providers’ backbone networks as long as the

backbone routers are capable of efficient packet classification and support different queues

for different flows. As these two functions are quite standard in today’s routers, it makes

aggregate bandwidth reservation a more viable option than per-flow reservation.

In this dissertation, we introduce a new aggregate bandwidth reservation based network

service calledReserved Delivery Subnetwork(RDS) as an alternative solution for provid-

ing more consistent quality of service in today’s Internet.An RDS is provided by a network

service provider (such as a telecommunication carrier), and is designed for information ser-

vice providers who need to delivery consistent quality of service to their customers even

under very extreme network conditions, such as worm attacks. An RDS provides a subnet-

work for an information service provider to connect from a central location to the access

routers at different locations where customers of the information service are found. The

links in an RDS are carefully provisioned with sufficient bandwidth so that traffic from the

source node can flow through to the sinks without contention from other traffic sources,

improving quality of service. Although it is difficult to provide quality of service for in-

dividual flows in the current Internet, RDSs give service providers a way to address the

quality of service issue on an aggregate basis. In addition,bandwidth limits on reverse

paths provide a protection mechanism against malicious attacks.

An ideal reserved delivery subnetwork must be configured to achieve two main goals: first,

it must satisfy the demand of all customers at different locations; second, the network re-

source must be utilized efficiently so that more services canbe provided. In addition, the

end hosts in an RDS should be able to leverage the RDS infrastructure to achieve better

performance than in the ordinary Internet. In this dissertation, a number of issues in the

configuration and operation of reserved delivery subnetworks are studied. Specifically, the

configuration problem for a single-server RDS is first studied. The results are then extended

3

to the configuration problem for larger RDSs with multiple servers. The fault tolerance is-

sues in a multi-server RDS is also investigated, and an algorithm to configure redistribution

subnetworks for server failures and overloading is presented. For the operation of an RDS,

the end-to-end performance improvements inside an RDS are studied, and a source traffic

regulation technique is introduced to leverage the underlying RDS.

1.2 Applications

A number of network services and applications can benefit from the deployment of reserved

delivery subnetworks.

One of the most direct applications is web content delivery.A web site or an Internet con-

tent provider (ICP), such as CNN, can purchase such a servicefrom the physical network

service provider, such as SBC. An RDS can be set up that is rooted at the access router

where the ICP servers reside, and connect to all locations where the majority of user de-

mands are found. The ICP can deliver consistent service to end users with some degree of

bandwidth guarantee, even under extreme network conditions.

Another RDS application can be found in enterprise virtual private networks (VPNs). For

example, in a bank or an airline company that depends heavilyon the time-critical deliv-

ery of transaction-oriented data, the company headquarters can subscribe to a customized

reserved delivery subnetwork such that data communicationwill not be interrupted even

when the network is under attack. It is possible that a service provider and the end users are

located in different network domains run by different physical network service providers.

Instead of negotiating a multilateral service level agreement with each individual network

provider, a special type of service provider can be involved. We can call such a service

provider as aReserved Delivery Subnetwork Provideror anRDSP. An RDSP provides re-

served delivery service to a customer by constructing an RDSfrom the customer to their

end users. The subnetwork may span multiple network domains. According to the cus-

tomer requirements, the RDSP purchases reserved bandwidthon subnetwork links from

each individual network provider, and gains service revenues from the customers that sub-

scribe to the service from it.

4

RDSs could extend their applications to grid computing [43]. In traditional studies of

grid computing problems, the focus has been mostly put on theresource management on

the nodes of a computational grid. Less attention was paid tothe bandwidth resource

management of the interconnecting networks. However, thisis an important aspect of grid

computing because inefficient use of the bandwidth resourcemay limit the performance

of a computational grid application. Traffic flows inside a grid can also benefit from the

economy of bandwidth aggregation, thus, an RDS can help manage bandwidth resource in

a grid efficiently and effectively its performance.

Multimedia traffic flows have greater demands for consistentbandwidth availability to

make the playout smooth. An RDS can improve multimedia streaming services by reserv-

ing aggregate bandwidth for a streaming server so that the streaming traffic is not affected

by other best effort traffic. The burstiness of certain typesof multimedia streams is gen-

erally bounded by their encoding standards, and can be measured and represented with

standard methods. Therefore, an RDS provisioned for a multimedia streaming server could

effectively achieve higher bandwidth efficiency than an RDSfor general data traffic.

1.3 Contributions

The main contributions of the work presented in this dissertation are:

• This dissertation proposes an alternative solution to per-flow bandwidth reservation

using aggregate bandwidth reservation to provide more consistent quality of service

and circumvent the deployment hurdles in today’s Internet.This new network service

can be easily implemented with existing facilities in the backbone networks of the

network service providers without drastic changes.

• This dissertation formulates the RDS configuration problemas a minimum concave

cost network flow problem. The edge cost function in our problem formulation is a

concave function that reflects the bandwidth economy of aggregation more accurately

than a linear edge cost function.

• This dissertation presents an efficient approximation algorithm for the NP-hard RDS

configuration problem. It produces solutions closer to an estimated lower bound with

5

much less time complexity than exhaustive search, and is suitable for large networks

with hundreds of nodes.

• This dissertation evaluates our approximation algorithm using local search heuristics

based on negative cost cycle and bi-cycle reduction. In addition to the traditional neg-

ative cycle reduction, the special subgraph structures of multi-cycles are discovered

in a network with concave edge cost function. This discoveryleads to the negative

bicycle (extensible to multi-cycle) reduction algorithm.

• This dissertation formulates the configuration problem formulti-server RDSs sim-

ilarly as a minimum cost network flow problem, and identifies that the key to the

configuration problem is the server placement problem. A number of server place-

ment are evaluated using simulations. A class of greedy server placement algorithms

are found to produce the best solutions.

• This dissertation develops a configuration algorithm for redistribution subnetworks

in a multi-server RDS, which improves fault tolerance by dynamically redirecting

traffic flows from a faulty server to other servers.

• This dissertation demonstrates the potential end-to-end performance improvements

in an RDS by proposing a source traffic regulation technique to resolve the unbal-

ance bandwidth utilization problem. It shows that by leveraging the information of

the underlying RDS, better end-to-end performance can be achieved. A number of

regulation algorithms that can be implemented in various environments and platforms

are proposed and evaluated.

1.4 Organization

The rest of the dissertation is organized as follows: the reserved delivery subnetwork (RDS)

architecture is formally introduced in Chapter 2. In Chapter 3, the configuration problem

for single server RDS is described. The problem is formulated as a minimum concave cost

network flow problem, and an efficient approximation algorithm is presented and evaluated.

In addition, the local search heuristics based on negative cost cycle and bicycle reduction

is also investigated, and the results from simulation studies are presented. In Chapter 4,

6

the study is extended to deal with RDSs with multiple servers. The configuration problem

is similarly formulated as a minimum concave cost network flow problem, however, the

unknown server locations make the configuration for a multi-server RDS more complicated

than the configuration for a single-server RDS. An study is described to evaluate a number

of server placement algorithms in order to identify an good solution for multi-server RDS

configuration. The improvements to fault tolerance to server failures in a multi-server RDS

are also investigated, and a configuration algorithm for theredistribution subnetworks to

redirect traffic for the faulty servers is presented. In Chapter 5, the source traffic regulation

technique is presented to improve end-to-end performance by leveraging the underlying

RDS. Chapter 6 concludes this dissertation with an outline of some future work that can

expend from our work presented in this dissertation.

7

Chapter 2

Reserved Delivery Subnetworks (RDS)

This chapter formally introduces the reserved delivery subnetwork (RDS) as a new network

service to provide more consistent service in today’s Internet. We also outline a number of

design issues related with the configuration and operation of reserved delivery subnetworks.

2.1 Formal Definition

A reserved delivery subnetwork (RDS) is a semi-private network infrastructure used by

an information service provider to allow it to deliver more consistent performance to its

customers. Theendpointsof an RDS include asource nodeand a potentially large number

of sink nodesdistributed within a fixed network infrastructure. Sink nodes are typically

routers within metropolitan areas where customers of the information service are found.

A network provider selects a set of links within the network and dimensions bandwidth

reservations on those links in order to accommodate expected traffic flows from the server

to the various sink nodes. This allows traffic from the sourcenode to flow through to the

sinks without contention from other traffic sources, improving quality of service.

An example RDS is illustrated in Figure 2.1. In the backbone network of an information

service provider, there is a server and a large number of users of the server information

at different locations in the backbone network. An RDS (shown as the highlighted sub-

network) is set up to connect the server to these sink locations with user demands. For

each location with user demands, there must be an RDS path from the source, and the re-

served bandwidth on that path must be sufficient to satisfy the average total user demands

of that location. The RDS must be set up in such a way that it canmeet the demands of the

8

customers of an information service provider, and it utilizes the reserved link bandwidth

efficiently such that more such services can be accommodatedin the backbone network to

maximize the service revenue of the network service provider.

2.2 RDS Configuration

There are two major tasks when we configure an RDS. The first task is to pick the links in

the subnetwork such that there is a path from the server to allsink locations. The second

task is to determine how much bandwidth should be reserved onall selected links. The pro-

visioning of reserved bandwidth in an RDS is crucial its success. If insufficient bandwidth

is reserved on a path from the server to a sink location, user demands at the location will

not be fulfilled completely. On the other hand, if too much bandwidth is reserved on links,

the bandwidth resource of the backbone network will not be efficiently utilized, driving

up costs. Therefore, an optimal solution must reserve bandwidth in the most efficient way

such that the sink overloading probability is minimized, and the network service provider’s

revenue is maximized for providing more RDS services.

Because we reserve aggregate bandwidth for a large number ofbursty flows for a large

number of users in an RDS, we must be able to handle traffic variance gracefully. To allow

for variability in the traffic volume at sink nodes, reservations are dimensioned based on

the mean and variance of the expected traffic. The mean and variance of sink traffic can be

derived from long term traffic measurement and appropriate traffic modeling [19, 9, 54, 89,

10, 88, 68].

Links that carry large traffic volumes are generally more efficient than links that carry small

traffic volumes, since the amount of bandwidth that must be reserved to accommodate traf-

fic variability becomes a smaller fraction of the total as traffic volume grows. For example,

if we take a closer look at the intermediate routers of the example RDS in Figure 2.1, we

can notice that as traffic flows diverge to reach different sinks, the total reserved bandwidth

on the “downstream links” will generally be larger than the reserved bandwidth on the up-

stream link (or links). This economy of aggregate bandwidtheffect can be illustrated in the

following example and analysis.

9

Figure 2.1: Reserved Delivery Subnetwork.

10

Figure 2.2: Aggregation of bursty flows.

Assume there is a large number of independent bursty on/off flows as shown in Figure 2.2,

and each bursty flow source has a peak to average ratio of 25:1.We want to dimension the

reserved bandwidth for these bursty flows on a link such that the overloading probability

of the aggregate traffic is below1%. We show the overloading probability of the aggregate

flows of different sizes in Figure 2.3. When there are 100 suchindependent bursty flows,

we must reserve at least 2.2 times the total average flow bandwidth to keep the overloading

probability below 1%; while when there are10, 000 independent flows, we only need re-

serve 1.14 times the total aggregate bandwidth to get the same overloading probability. It

shows that we need almost twice as much as the reserved bandwidth per flow for the small

flow aggregate (100 flows) as the larger flow aggregate (10, 000 flows).

When there is a large number of statistically similar flows inan aggregate flow, we can

treat the bandwidth of each individual flow as a independent random variableXi and the

bandwidth of the aggregate flow as another random variableX. X =
∑

i Xi. The meanµ

and the standard deviationσ2 of the aggregate flow grows linearly to the sum of the mean

(
∑

i µi) and the sum of the standard deviation (
∑

i σ
2
i) of the individual flows; thus, the

variance of the aggregate flowσ grows as the square root to the sum of the standard de-

viation,σ = (
∑

i σ
2
i)

1/2. Because the majority of the aggregate bandwidth are withinthe

range of the sum of the total average and some multiple (say, 3) of the variance, orµ + 3σ,

11

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

O
ve

rlo
ad

in
g

pr
ob

ab
ili

ty

Per-flow reservation / average

1.14 2.2

10000
flows

100 flows

Figure 2.3: Bandwidth economy of aggregation.

12

0 1 k2 . . .

λ λ λ λ

τ 2τ kτ

Figure 2.4: State transition diagram for the number of active flows on a link.

a reserved aggregated bandwidth ofµ+3σ is sufficient to maintain a low overloading prob-

ability for the aggregate flow. Therefore, the reserved aggregate bandwidth that maintains

a fixed overloading probability grows more slowly as the number of flows increases. This

makes the necessary reserved aggregate bandwidth a concavefunction1 of the number of

flows.

If a link is viewed as carrying a large number of individual active data sessions, the dimen-

sioning of the reserved bandwidth for the aggregate flow can be made based on random

number of active sessions. Assume all active sessions arrive with exponential inter-arrival

time with mean interval of1/λ, and sessions have exponential duration with mean duration

of 1/τ , as illustrated in Figure 2.4. Assuming a standardM/M/∞ queueing system, then

the probability ofk active sessions on a link ispk = (ρk/k!)e−ρ, where the average number

of active sessions isρ = λ/τ . The varianceδ2 = (
∑

k≥1
k2pk) − ρ2. Substituting and

expandingpk, then

∑

k≥1

k2pk =
∑

k≥1

k2(ρk/k!)e−ρ

= e−ρ[ρ + ρ
∑

k≥2

kρk−1/(k − 1)!]

= ρe−ρ[1 +
∑

k≥2

(k − 1)ρk−1/(k − 1)! +
∑

k≥2

ρk−1/(k − 1)!]

= ρ[e−ρ +
∑

k≥1

k(ρk/k!)e−ρ +
∑

k≥1

(ρk/k!)e−ρ]

= ρ(1 + ρ)

= ρ + ρ2

1The unit incremental value of a concave functionf(x) grows smaller as the valuex increases. For
x0 ≤ x1 ≤ x2, (f(x1)− f(x0))/(x1 − x0) ≥ (f(x2)− f(x0))/(x2 − x0).

13

So,δ2 = ρ, and the standard deviationδ = ρ1/2. This result is consistent with the approxi-

mate standard deviation used for the aggregate flows. This result is from a specific source

model, but it can apply to more generic source models such as pareto sources.

Because of this effect of bandwidth economy of aggregation,it is beneficial to group to-

gether flows going from the source to sinks that are close to one another as long as possible,

even though this may cause traffic to follow a longer route than the shortest path.

The bandwidth economy of aggregation depends only on the independence of traffic in

different flows. The effect of aggregation should not be confused with the issue of self-

similarity and long range dependence of network traffic as described in [59, 48, 49]. The

self-similarity characteristics of network traffic refersto the phenomenon that network traf-

fic exhibits similar burstiness patterns over many different time scales, thus can not be prop-

erly modeled by a Poisson process. The self-similarity characteristics is not related to the

bandwidth economy of aggregation, which shows the that the variance of aggregate traffic

differs withdifferent sizesof flow aggregates.

2.3 RDS Scalability

For large information service providers, such as CNN, theirlarge number of users may be

distributed in many vastly separated geographical areas. Asingle-server RDS may not be

sufficient to serve such a user because of the cost of maintaining many high-bandwidth

long-haul links and the reduced performance caused by the longer latency. To meet the

demands of large number of customers in distributed locations, the service providers are

motivated to install multiple servers at separate locations to reduce the cost and improve the

end user quality of service. In this case, the information service provider must scale an or-

dinary RDS with a centralized server to one that has multipleservers. From the customers’

perspective, a multi-server RDS reduces the transmission latency and hence increases the

perceived quality of service. From the information provider’s point of view, the additional

server replicas eliminate the single point of failure in theRDS, and release the bandwidth

tied up on the long haul connections from a single server to various remote locations. These

benefits of improved quality of service and bandwidth efficiency can offset the cost of de-

ploying the server replicas.

14

The configuration of a multi-server RDS is more complicated than the configuration of a

single-server RDS. The complexity comes from two additional subproblems that are unique

in multi-server RDS, namely, the server placement and sink partitioning. Server placement

determines where should the replicated servers be placed, and sink partitioning decides

which sinks should connect to which servers. Both server placement and sink partitioning

are critical to the optimal configuration of a multi-server RDS.

2.4 RDS Fault Tolerance and Recovery

A multi-server RDS provides better quality of service with shorter latency and improved

fault tolerance to single point failure than a single-server RDS. However, when a server

fails or becomes overloaded, users with demands served by the affected server will still

suffer from reduced service quality. To handle such a situation, a redirection subnetwork

can be set up that allows other unaffected servers to take over the load on the affected server.

The redirection subnetwork should be flexible to handle server overload on any server with

minimum bandwidth overhead. In addition, the redistribution subnetwork should incur

minimum communication overhead. The configuration problemof the redirection subnet-

works for dynamic load redistribution in a multi-server RDSis another important issue for

an information service provider.

2.5 RDS End-to-end Performance

An RDS can provide more consistent quality of service to users with exclusive access to

reserved aggregate bandwidth for a large number of users. Besides the benefit of exclusive

aggregate bandwidth access, there are other potentials to further improve the end-to-end

performance in an RDS because the end hosts can utilize the knowledge about the under-

lying networks to achieve better performance than in the ordinary Internet. As Savage et

al. [70] pointed out, the transport protocols in today’s Internet are highly conservative, be-

cause they have to deal with the underlying network as a blackbox, and effectively probe

the network repeatedly in order to determine a safe operating point. On the other hand, if

some information about the underlying network is available, the end-to-end performance

15

can improve tremendously. We should be able to leverage suchadvantages to further im-

prove the end-to-end performance in an RDS by enabling some forms of informed transport

functionalities.

16

Chapter 3

Configuration of Single-Server Reserved

Delivery Subnetworks

This chapter discusses the configuration of a basic single-server RDS. The RDS configu-

ration problem is covered in three sections. Section 3.1 formulates the RDS configuration

problem as a minimum cost maximum flow problem in a network with concave link costs,

which reflects the bandwidth economy of aggregation in real network operations. Because

the minimum concave cost network flow problem is an NP-hard problem, and the exist-

ing search-based exact algorithms are impractical for networks with hundreds of nodes,

an efficient approximation algorithm with reasonably good solution quality is proposed in

Section 3.2. The Largest Demands First (LDF) algorithm is described in this section, and its

performance is studied using simulation. To further improve the solution quality and study

the optimality of an algorithm for the RDS configuration problem, the application of local

search heuristics is studied in Section 3.3. The traditional negative cost cycle reduction as

well as a new negative bicycle reduction are used to improve the solutions obtained from

LDF as well as other algorithms, and the improvements from the local search heuristics are

studied. Section 3.4 summarizes this chapter.

3.1 Problem Formulation

In order to formulate the configuration problem for a single server RDS, we start with an

elementary observation. If the traffic on a link consists of alarge number of independent

and statistically similar streams, the mean and the variance of the aggregate traffic scales

17

directly with the number of flows. So, we letσ(µ) = αµ1/2 denote the standard deviation

of an aggregate traffic flow with meanµ, whereα is a parameter. Note that whenµ = α2,

σ(µ) = µ. That is,α2 is the mean traffic rate for which the mean and standard deviation

are the same. Given a traffic flow with meanµ and standard deviationσ(µ), a suitable

choice for the reserved bandwidth isµ + kσ(µ) = µ + kαµ1/2, wherek is a small constant

(say 3). With these preliminaries, we can now proceed with a formal statement of the RDS

configuration problem.

We are given a directed graph (or network)G = (V, E) and two real-valued functionsl(·)
andb(·) defined onE. We refer tol(e) as thelengthof edgee andb(e) as itsbandwidth.

We also define a real-valuededge capacityc(e), which represents the mean rate of the

largest reservation that can be carried by edgee. The edge capacity satisfies the equation

c(e) + kαc1/2(e) = b(e) and is equal to
(

−kα +
√

k2α2 + 4b(e)
)2

/4.

We are also given asource noder ∈ V and a set ofsink nodesS ⊆ V , with each sink node

s having a mean demandµ(s). The minimum cost RDS that satisfies the mean demands,

while respecting the capacity limits on the network links can be found by solving a min-

imum cost flow problem, in which the flow into each sink is givenby its mean demand,

and the total flow on each linke is bounded byc(e). For an average aggregated flow of

x, the cost ofx on an edgee is defined to bel(e)(x + kαx1/2). The second factor in this

expression corresponds to the amount of bandwidth that mustbe reserved to accommodate

a flow of magnitudex. Note that the cost function is concave. Given a minimum costflow

that satisfies the demand, the optimal RDS is the subgraph ofG defined by the edges with

non-zero flows. The cost of the subnetwork is the sum of the costs of the flows on its edges.

In the minimum cost maximum flow problem, we seek a flow function f on the edges

of the given network. For any node that is not a source or a sink, the sum of the flows

on the incoming edges must equal the sum of the flows on the outgoing edges. The flow

must satisfy the given capacity constraints on the edges andmust satisfy the given demands

required by the sinks. Among all such flows, we seek one of minimum cost. For each edge

(u, v) in the original graph, the residual graph has an edge(u, v) if f(u, v) is less than the

capacity of(u, v) and it has edge(v, u) if f(u, v) is greater than zero. Theresidual capacity

of the edge(u, v) is the difference between the capacity and the current flow. The residual

capacity of(v, u) equalsf(u, v). An augmenting path is just any path in the residual graph

from the source to a sink on which more flow can be added. For anyedgee in the original

18

graph, the cost of carryingx units of flow one is l(e)(x + kαx1/2). We letδf (e, ∆) be

the change in cost caused by adding∆ units of flow on the edgee in the residual graph,

assuming that∆ is no larger than the residual capacity ofe. If ∆ is larger than the residual

capacity,δf(e, ∆) is defined to be infinite. We refer toδf (e, ∆) as theincremental costof

the edgee, with respect to the increment∆. The incremental cost of a path, with respect to

an increment∆, is defined as the sum of the incremental costs of its edges. For any flow and

increment∆, we can define a treeTf(∆), which is a shortest path tree rooted at the source

in the subgraph of the residual graph defined by the edges withresidual capacity no smaller

than∆. The path costs inT are defined with respect to the incremental costs,δf(e, ∆). As

∆ is increased from zero, we get a finite sequence of treesT0, T1, . . . , Tm. For each treeTi

in this sequence, there is a corresponding rangeRi of values of∆. The incremental cost

per unit flowof an augmenting pathp is δf (p, ∆)/∆, where∆ is the amount of flow needed

to saturatep.

Note that when there are no limits on edge capacities, the best RDS is always a tree. We

expect that in practice, network link capacities will oftennot be a limiting factor, so that

the best RDS may typically be a tree. Even when link capacities are limited, we may wish

to constrain the form of the solution so that all traffic goingto a single sink is constrained

to use the same path, in order to simplify the routing of the traffic (note that in this case,

the RDS need not be a tree).

3.2 Largest Demand First (LDF) Algorithm

3.2.1 Algorithm Design Issues

As we noted previously, the edge cost function is a concave function of the currently car-

ried amount of flow. Thus, when we aggregate more flows on a link, the over-provisioned

bandwidth, that is necessary to accommodate traffic variations, decreases, resulting in more

cost efficient networks. So, we prefer a configuration algorithm that rewards flow aggre-

gation. However, it is possible that if we favor aggregationtoo strongly, longer paths may

be selected while shorter and cheaper routes exist. Thus, weneed also to restrict the path

selection within a reasonable region.

19

When we select a path from the root to a sink, we can either keepall traffic to the sink

on a single path, or split it among a number of paths leading tothe sink, some of which

may not have enough capacity for the sink by themselves. The concave edge cost function

suggests that keeping the traffic flows together is more cost efficient than splitting them.

However, such a strategy is not always able to satisfy all sinks in networks with limited

link capacities, which leads to higher demand blocking ratio (the ratio of unmet demands to

the total demands) than an algorithm that splits flows. Therefore, when we design an RDS

configuration algorithm, we need to consider the tradeoff offlow splitting and aggregation,

and try to reduce the cost while minimizing the possibility of sink blocking.

3.2.2 Algorithm Description

One of the classical methods for solving minimum cost flow problems is the minimum

cost augmenting path method. This method iteratively selects aminimum cost augmenting

path from the source to a sink that has unmet demand and adds flow along that path until

either the demand has been satisfied or the capacity limit of some edge on the path has been

reached. While this method can find an optimal flow when the cost per unit flow on each

edge is constant, it cannot be directly applied to the RDS configuration problem, since the

relative costs of two different paths can change depending on the magnitude of the flows

added to those paths. That is, it may cost less to addx units of flow to a pathp than to an

alternative pathq, but it may cost more to add2x units of flow top than toq.

Although we cannot use the minimum cost augmentation algorithm directly in the RDS

configuration problem, we can apply similar ideas to construct an approximation algorithm

that does not require an enumerative search of the problem space. In the minimum cost

augmenting path algorithm, at each step we choose an augmenting path from the source

to the sink in theresidual graphfor the current flow. It is well known [2] that when the

cost per unit flow is constant, we can construct a minimum costflow by finding a succes-

sion of minimum cost augmenting paths andsaturatingeach one in turn (that is adding

as much flow to the path as allowed by the capacity constraints, or the unmet demand at

the sink, whichever is smaller). To apply the minimum cost augmentation strategy to the

RDS problem, we seek an augmenting path from the source to a sink that has the smallest

incremental cost per unit flowamong all augmenting paths. In principle, this can be done

20

by constructing each of the distinct shortest path trees andselecting the best augmenting

path found in all the trees. A computationally simpler alternative is to choose a small set of

increments, construct the tree corresponding to each increment, and find the best augment-

ing path from among this smaller set of trees. While this only“samples” the set of trees,

and hence will not always find the best path, it does at least approximate the minimum cost

augmentation strategy. There are various strategies to select the set of increments. Because

our goal is to schedule flows to the sinks, we should select increments related to the sink

demands. In order to make such a selection, we can order the sinks in a specific order, and

use the remaining unmet demand as the increment values (∆). If a path is found within

Tf (∆), we can then augment the flow along the path. Note that the flow augmentation can

also be implemented with various strategies, resulting in RDSs with different costs. The

following pseudo code shows the generic framework of our algorithm. Depending on the

sink sorting and path augmentation strategies, different algorithms can be obtained.

Order the sinkss1, · · · , sm according to a certain sorting strategy

for i ∈ [1, m]

Augment flow to satisfy demand tosi with a certain augmentation strategy

end

Each iteration of the algorithm requires the computation ofa shortest path tree and possibly

a bottleneck shortest path tree. Both of these computations can be implemented to run in

O(m + n log n) time, wherem is the number of edges andn the number of nodes.

The Largest Demand First(LDF) algorithm orders the sinks by their demands such that

for sink si ∈ {s1, s2, · · · , sm}, µi ≥ µi+1. LDF establishes paths to the sinks with the

largest demands first. Therefore, the flows on existing pathsare large, and the cost benefits

of sharing a path to the root by subsequent sinks are high. In networks with ample link

capacity, each iteration fully satisfies the demand at some sink, so the number of iterations

equals the number of sinks. However, in networks with limited capacity, it is possible that

some sink demands will not be satisfied after the same number of iterations.

The Single Flow Augmentation (SFA) algorithm always tries to augment a flow to a sink

in a single path. If no such path can be found while there is still unmet demand, then

the algorithm fails. In networks with ample link capacity, each iteration fully satisfies the

demand at some sink, so the number of iterations equals the number of sinks. This leads

21

to an overall running time ofO(s(m + n log n)), in the case of ample link capacities. For

arbitrary link capacities, the number of iterations still equals the number of sinks, but there

are sinks whose demands cannot be satisfied, resulting in blocking situations. In addition,

SFA results in lower cost network when the link capacity is not a limiting factor because it

avoid the “penalty” of splitting flows. The obvious drawbackis blocking in more congested

networks.

3.2.3 Evaluation

To evaluate the LDF algorithm we compared the cost of the solution produced to that of

an easily computed lower bound. The lower bound is computed by sorting the sinks in

increasing order of their distance from the root and then assuming that each sink is reached

by a path of this minimum length, and that the path can be shared with all sinks at greater

distances from the root. We evaluated the algorithm on two networks. The first is a15×15

torus (each node is connected to four neighbors forming a rectangular grid with “wrap-

around edges” linking the top and bottom rows and the leftmost and rightmost columns).

Link lengths were uniformly distributed, with the longest links being ten times longer than

the shortest. The demands for the sinks were uniformly distributed, all with the same mean

demand.

The second network, shown in Figure 3.13, includes a node at each of the fifty largest

metropolitan areas in the United States; the link lengths were chosen to be equal to the ge-

ographic distances between the locations, and the demands were chosen to be proportional

to the populations of the metropolitan ares. The locations of sources and sinks were se-

lected randomly, with every node having the same probability of selection. For the results

reported here, unbounded link capacities were used in both networks. An example RDS

computed by the LDF algorithm is shown in Figure 3.1. The source for this example is

in Chicago and there are ten sinks at various locations around the country (the sinks are

designated by small squares on the map). The cost of this solution is about 1.34 times the

cost of the lower bound.

Figure 3.2 shows how LDF performs on the torus. The first chartshows the ratio of the cost

of the solution produced by LDF to the lower bound, as the number of cities increases from

1 to 50, whileα2 is fixed so thatσ(D) = D, whereD is the average demand per sink. Each

22

Figure 3.1: Example RDS computed by the LDF algorithm

data point represents the average of results from 100 independent problem instances. For

large numbers of cities, the LDF algorithm produces solutions costing no more than about

1.6 times the lower bound. The curves labeled LB*(2), LB*(3)and LB*(4) are related to

the lower bound and provide evidence (although no proof) that for larger numbers of cities

the lower bound is fairly loose. LB*(2) is computed by first dividing the sinks into two

sets, those to the “left” of the source and those to the ”right” of the source. Each of these

subsets is then sorted by distance from the source and each node is assumed to share its

path to the source with all nodes in the same subset that are atgreater distance from the

source. LB*(3) (and LB*(4)) is computed similarly, by first dividing the sinks into three

(respectively four) sets of nodes defined by “pie-shaped” regions centered on the root, then

sorting the subsets by distance from the root and assuming the maximum possible sharing

of paths among nodes in the same set. For larger numbers of randomly distributed cities,

it’s reasonable to expect LB*(2), LB*(3) and LB*(4) to be no larger than the cost of an

optimal solution, although they do not constitute true lower bounds. Note that for 50 sinks,

LDF produces solutions that average about 1.3 times LB*(3).

The second chart in Figure 3.2 shows how the performance of LDF varies in comparison

to the lower bound asα2 is varied so thatσ(D)/D varies from .2 to 5, while the number

23

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 5 10 15 20 25 30 35 40 45 50

R
e
l
a
t
i
v
e

c
o
s
t

Number of sinks

LDF

LB*(4)

LB*(3)

LB*(2)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0.2 0.5 1 2 5

LDF

LB*(4)

LB*(3)

LB*(2)

σ(D)/D

R
e
l
a
t
i
v
e

c
o
s
t

Figure 3.2: Performance of LDF on torus network

24

of sinks is fixed at 25. For small values ofσ(D)/D, there is less to be gained from sharing

paths, so LDF performs better, relative to the lower bound. For larger values ofσ(D)/D,

there is much more to be gained by sharing paths, so the gap between the lower bound and

LDF gets larger. Whenσ(D) is five times the average demand per sink, the cost of the

solutions produced by LDF increases to about 2.05 times the lower bound.

Figure 3.3 shows how LDF performs on the national network. Wenote that LDF performs

generally better in this case, than for the torus, but the general character of the results re-

mains the same. We speculate that the improved performance arises largely because the

national network spans a greater east-west distance than north-south, and that the large

numbers of cities are near the coasts meaning that often the root is near one of the coasts,

which makes it relatively easy for LDF to produce solutions with large amounts of shar-

ing. The wide variance in the link lengths in the torus network may also contribute to

the reduced performance in that case (some links in the torusnetwork violate the triangle

inequality, preventing them from being used in any solution).

3.3 Improving Solution Quality with Local Search Algo-

rithms

The configuration problem for a single-server RDS can be conveniently formulated as a

minimum concave cost network flow problem (MCCNFP) as described earlier in this chap-

ter. However, it is well known that MCCNFP is NP-hard [30], and the existing exact algo-

rithms are all search-based algorithms with some intelligent enumeration methods [31, 32].

However, these algorithms do not scale well for networks with even moderate numbers of

nodes, and thus are impractical in real applications. In order to provide solutions for MC-

CNFP in practice, a number of approximation algorithms havebeen studied and proposed.

Among these approximation algorithms, local search algorithms for MCCNFP has enjoyed

tremendous success in solving large and complex problems inpractice. Given an existing

solution, a local search algorithm examines the “neighborhood” of the existing solution,

and identifies a solution that is locally optimal within the “neighborhood”. The “neigh-

borhood” is defined as a set of solutions that are reachable from an existing solution with

a simple operation. In the case of MCCNFP, it is known that theoptimal solution is an

25

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 5 10 15 20 25 30 35 40 45 50

R
e
l
a
t
i
v
e

c
o
s
t

Number of sinks

LDF

LB*(3)

LB*(2)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0.2 0.5 1 2 5

LB*(2)

LB*(3)

LDF

σ(D)/D

R
e
l
a
t
i
v
e

c
o
s
t

Figure 3.3: Performance of LDF on national network

26

extreme flow, which is a tree in an uncapacitated network. By taking advantage of this

property, a local search algorithm finds a local optimal solution from an extreme flow by

examining the adjacent extreme flows reachable from the existing extreme flow with a sim-

ple operation, although it may be trapped in a local optimal solution different from a global

optimal one.

In the rest of this chapter, the existence of negative cost multi-cycles is observed in a net-

work with concave edge costs. That is, even though there is nonegative cost cycle, there

could exist a set of cycles with a common path that has a negative total cost. Based on this

observation, the cycle reduction algorithm in [27] is not able to include all adjacent extreme

flows, and therefore is limited and incomplete. Towards thisend, an improved local search

algorithm is proposed with bicycle reduction method to consider both negative cost single

cycles and bicycles. Both the original and improved local search algorithms are applied to

networks with a simple concave edge cost function in our experiments, and demonstrate

the improvement of solution quality. Although we focus on negative cost bicycles in this

chapter as they are the most likely negative cost multi-cycles, we also show that the bicycle

reduction algorithm can be generalized to handle other negative cost multi-cycles too.

Section 3.3.1 briefly discusses the local search algorithmsusing cycle reduction strategy,

and explains why a naive cycle reduction approach fails in a network with concave edge

costs. The local search algorithm with cycle reduction method proposed by Gallo and So-

dini [27] is reviewed in Section 3.3.2. We also describe a path compression technique to the

original algorithm, reducing the number of shortest path trees computations. We illustrate

in Section 3.3.3 that how a local minimum can be sub-optimal because of the existence of

negative cost bicycles. In Section 3.3.4, we describe the improved local search algorithm

with bicycle reduction to identify and remove negative costbicycles. Section 3.3.5 outlines

the simulation environment and analyzes the simulation results. Section 3.3.6 discusses

the more general case of negative cost multi-cycles and generalizes the bicycle reduction

algorithm to handle negative cost multi-cycles.

3.3.1 Local Search Algorithms Using Cycle Reduction Strategy

Local search [1] is a well-known approximation method that is applicable to almost all

combinatorial optimization problems. Although it can not determine if the best solution

27

found so far is optimal, local search has enjoyed tremendoussuccess in solving large and

complex combinatorial optimization problems in practice.When a local search method

is applied to a problem, a simple operation is employed to transform an existing feasible

solution to a neighboring feasible solution, and a neighboring solution with lower cost is

chosen and further explored until no further improvement can be made. For minimum cost

network flow problems, a local search method searches for a flow with the least cost among

all neighboring feasible flows obtainable from an existing feasible flow with a simple op-

eration. As for the choice of the simple operation in a local search algorithm, the negative

cost cycle reduction method is a natural candidate. The negative cost cycle reduction works

by “pushing” flows along a negative cost cycle to transform anexisting feasible flow to an-

other feasible flow with lower total cost. This operation is exactly what we expect for a

local search algorithm. In addition, the negative cost cycle reduction method can form the

basis of efficient algorithms for the minimum cost network flow problems in networks with

linear edge costs [2].

However, we must be careful when we apply the negative cost reduction method in a net-

work with concave edge costs. The difficulty of applying negative cost cycle reduction in

networks with concave edge costs can be illustrated in an example in Figure 3.4. We show

a small network in Figure 3.4(a) with the capacity, length, and current flow of each edge

in the labels. In this simple network,a is the source vertex that supplies the sink verticesb

andc. Currently, there is a unit flow on edges(a, b) and(a, c). For this example, we adopt

a simple concave edge cost function: the costce(µ) of an edgee with an average flow ofµ

is defined asce(µ) = lµ1/2, wherel is the length of the edge. Thus, the existing flow has a

total cost of8. The incremental cost one = (u, v) with a flow increment of∆ is

∆ce(∆) =



















l(
√

µ + ∆−√µ) if there is no flow on reverse edge(v, u)

l(
√

µ−∆−√µ) if there is flow on reverse edge(v, u), and∆ < µ

l(
√

∆− µ−√µ) if there is flow on reverse edge(v, u), and∆ ≥ µ

Figure 3.4(b) shows the corresponding residual graph of thecurrent flow when a unit of flow

will be changed on all edges. The incremental costs for a unitflow increment are shown

on the labels of Figure 3.4(b). Clearly, Figure 3.4(b) has three negative cycles: namely,

{(a, c), (c, a)}, {(a, b), (b, a)}, and{(a, b), (b, c), (c, a)} with cost of−2.34, −2.34 and

−1.34, respectively. With the negative cost cycle reduction method, we attempt to redirect

28

2,4,1

2,4,1 1,
1,

0

capacity,length,flow

a

b

c

(a) Example network.

2,1.66

2,1.66

1,
1

capacity,inc. cost

a

b

c

2,-4

2,-4

(b) Residual network with incremental costs.

0

2 1

flow

a

b

c

(c) A good choice of negative cost cycle.

1

1
0

flow

a

b

c

(d) A bad choice of negative cost cycle.

Figure 3.4: Problems of negative cost cycle reduction in a network with concave edge
costs.

29

flow along a negative cost cycle such that the negative cost cycle is removed and the total

cost is lowered after the flow redirection. If we choose the{(a, b), (b, c), (c, a)} cycle,

and push a unit flow along it, we could get a new flow with a lower cost of 6.656, and

there is no more negative cost cycle in the residual graph (Figure 3.4(c)). However, if the

{(a, c), (c, a)} cycle is picked, and flow is redirected this cycle, it would neither remove

the negative cost cycle, nor lower the total flow cost (Figure3.4(d)). In fact, any edge in

an existing flow has a two-edge negative cycle in the residualgraph in such a network with

concave edge costs. If any of such two-edge negative cycle ischosen by the cycle reduction

algorithm, the local search algorithm is stalled. This is caused by the concavity of the

edge cost function because on such an edge the absolute incremental costs of increasing

and decreasing the same amount of flow are different, causingthe asymmetric incremental

costs and a “false” negative cycle in the residual graph. In contrast, in a network with

linear edge costs, the absolute incremental costs of the twoopposite edges are the same, but

with different signs. So, there is no negative cost cycle with only two edges in a network

with linear edge cost. Thus, we can not implement negative cost cycle reduction in a

local search algorithm if we can not distinguish two-edge negative cost cycles from other

legitimate negative cost cycles. In particular, we can not pick an arbitrary negative cost

cycle and push flow along it in a network with concave edge costs. There are a number

of efficient negative cycle reduction algorithms for minimum cost flow problems, such as

the Minimum Mean Cycle Canceling algorithm [29] and the mosthelpful cycle canceling

algorithm [4]. However, because they provide no efficient way to characterize the two-

edged negative cycles that we want to avoid, these negative cycle reduction algorithms are

not good candidates for local search for MCCNFP.

3.3.2 Local Search Algorithm with Cycle Reduction

Gallo-Sodini Cycle Reduction Algorithm

The local search algorithm for uncapacitated networks presented in [27] provides an effec-

tive way to implement negative cost cycle reduction that is more efficient than an algorithm

that searches for all negative cycles. An extreme flow in an uncapacitated network is a

feasible flow in a network for which the edges with non-zero flow constitute a tree with the

source vertex at the root of the tree and all sink vertices at the leaves. The Gallo-Sodini

30

cycle reduction algorithm is based on the idea that an extreme flow x′ is adjacent to an

existing extreme flowx if and only if all edges that are inx′ but not inx constitute a path

connecting only two vertices inx. Therefore, for each pair of vertices in an existing ex-

treme flow, the undirectional path between the two vertices and a path consisting only of

edges not in the existing extreme flow form a cycle. If the flow created by redirecting flow

between the two vertices along this cycle has a lower cost than the original flow, this cycle

is a negative cost cycle. A simple but inefficient way to find negative cost cycles in an

extreme flow is to check all pairs of vertices individually, which is very slow. The Gallo-

Sodini algorithm provides a quick and systematic way to find anegative cost cycle without

a complete enumeration of all possible cycles.

Figure 3.5 and Figure 3.6 illustrate the basic operations ofthe Gallo-Sodini algorithm for

finding a neighboring extreme flow from an existing extreme flow. The original extreme

flow f is shown as a tree in Figure 3.5(a).

One vertex in the existing flow is processed in each iterationof the algorithm, denoted as

the current vertex. First, assuming the existing flow into the current vertex is completely

redirected, the incremental cost to another target vertex in the existing flow is computed as

if the flow is redirected along the undirectional path from the current vertex to that target

vertex.

In the specific example in Figure 3.5(a), for a current vertexu with an incoming flow of

f(x, u) in the tree defined by the existing flow, first find the undirectional pathπ∗
uw from u

to any other tree vertexw that is not in the subtree rooted atu. Notice thatπ∗
uw could be

composed of two directed paths: one from the nearest common ancestorc of u andw to

u, and the other fromc to w. Compute the incremental costc∗w of addingf(x, u) units of

flow onπ∗
uw asc∗w = costf (−f(pf(u), u), pathf(u, w))+ costf(f(pf(u), u), pathf(w, u)),

wherecostf (x, p) is the incremental cost of addingx units of flow along pathp, relative to

existing flowf , pf(u) is the parent ofu in the tree defined byf , andpathf (u, w) is the path

from the nearest common ancestor ofu andw to u in the tree defined byf . For example,

the path fromu to w (π∗
uw) is shown in Figure 3.5(a) as well as a directed non-tree pathπwu

from w to u that connects two tree verticesw andu.

For the current vertex, although there is only one undirectional path from it to another

vertex in the existing flow, there is a large number of possible paths between them outside

31

u

r

w

v

x

Path with no in-tree vertices
f(x,u)

π* uw

πwu

(a) Original extreme flow.

u

r

w

v

x

f’=f(x,u)

f’=f-f(
x,u)

f’=f+f(x,u)

(b) The neighboring extreme flow obtained.

Figure 3.5: Original cycle reduction algorithm.

32

t1

s’Edges to
tree vertices

t2

t3

tm

Subgraph induced
by non-tree vertices,
excluding edges incident
into tree verticesnot on path Pnb

cost(s’,tj)=costf(-∆,pathf(ti,tj))

 +costf(∆,pathf(tj,ti))

cost(u,v)=costf(∆,(u,v))

tm

u v

Figure 3.6: Finding the best solution for “target”ti, wherecostf(x, p) = the incremental
cost of addingx units of flow along pathp, relative to existing flowf , ∆ = f(pf(ti), ti) is
the flow intoti, pf(u) = the parent ofu in the tree defined byf , andpathf (ti, tj) = the

path from the nearest common ancestor ofti andtj to ti in the tree defined byf . Note, for
the original cycle reduction algorithm,Pnb is only the vertexti. For the improved

algorithm with compressed paths,Pnb is the longest “non-branching” in-tree path toti.

33

the existing flow. It is highly inefficient and slow to exhaustively check all these paths

individually for the possible negative cost cycles. Instead of a complete enumeration of

all possible cycles, a shortest path tree is built using the incremental cost computed in the

previous step to quickly determine the least incremental cost cycle, which is a negative

cycle if there is one.

In the specific example in Figure 3.5(a), a new network is derived for a specific tree

vertex tm as shown in Figure 3.6. In this transformed network, a pseudosource ver-

tex s′ is introduced, ands′ connects to every tree vertextj defined by the existing flow

with a direct edge(s′, tj), except forti. All original tree edges are removed, and all

non-tree edges incident to any existing tree vertex exceptti are removed too. It we de-

fine ∆ = f(pf(pf(ti), ti) to be the flow intoti, an edge(s′, tj) is assigned a length of

cost(s′, tj) = ctj = costf (−∆, pathf (ti, tj))+costf(∆, pathf(tj , ti)), and a non-tree edge

(u, v) is assigned a lengthcost(u, v) the same as the incremental cost of adding∆ units of

flow on that edge,cost(u, v) = costf(∆, (u, v)). We then find the shortest path froms′ to

ti in the transformed network. After the shortest path is determined, the last vertexw on

the path froms′ to ti is identified, and∆ units of flow is redirected along the undirectional

pathπ∗
tiw

and then along the directed pathπwti . The resulting flow is a neighboring extreme

flow to the original flow, as shown in Figure 3.5(b). If the modified flow has a lower cost

than the original flow, the above procedure is repeated to finda lower cost neighboring flow

of the new flow. Otherwise, the original flow is restored.

The Gallo-Sodini cycle reduction algorithm can be briefly described by the following

pseudo code:

Find an extreme flowx0.

Repeat

For each tree vertexti with an incoming flow of∆.

For each tree vertextj 6= ti,

Compute the incremental costc∗tj
for redirecting∆ units of flow

along the undirectional tree pathπ∗
ti,tj

.

For each non-tree edge(u, v),

Compute incremental costcuv of adding∆ units of flow.

Let G′ = (V ′, E ′) be the subgraph induced by non-tree edges.

34

V ′ ← V ′ ∪ {s′},
E ′ ← E ′ ∪ {(s′, v)|v is a tree vertex, andv 6= ti}
−{(w, v)|v is a tree vertex, andv 6= ti},

For each edge(s′, tj) ∈ E ′, assign a length ofc∗tj ,

for any other edge(u, v) ∈ E ′, assign a length ofcuv.

Find the shortest path froms′ to ti in G′.

Let edge(s′, w) be on the shortest path froms′ to ti.

Redirect∆ units of flow alongπ∗
ti,w

andπw,ti, and obtain an updated flowx′.

If the updated flowx′ has a higher cost than the current flow,

restore the original flow.

until no flow with lower cost can be obtained.

Note that this algorithm transforms the flow to the first improved neighboring extreme flow

found. An alternative is to check all neighboring extreme flows and then transform to

the best neighboring extreme flow. However, as suggested by the empirical results in [31],

transforming to the first improved neighbor generally requires25−40% fewer shortest path

computations than the best neighbor algorithm, and yields results of comparable quality.

Complexity Analysis Let n andm be the numbers of vertices and edges in the network,

for each flow, the cycle reduction algorithm may need to checkO(n) vertices before it can

determine if a neighboring extreme flow with lower cost exist[27]. For the tree defined

by an existing flow withk(k ≤ n) vertices, we need to solvek nearest common ancestor

problems, each takingO(k) time. We also need to compute2k2 incremental path costs.

In addition, we need makek shortest path tree computation. The checking procedure is

dominated by the single source shortest path computation. If we denoteS(n, m) as the

time complexity of a single source shortest path algorithm in a graph withn vertices andm

edges, then the time complexity for finding a neighboring flowwith lower cost in the cycle

reduction algorithm isO(nS(n, m)), or O(n(n + m) log n) if the single source shortest

path algorithm is implemented efficiently.

It is easy to see that the cycle reduction algorithm reduces the cost by redirecting flow

along negative cost cycles. This local search algorithm cangreatly improve the quality

of solutions obtained from LDF. Take the network in Fig. 3.7 for example. The sources

connects to alln sinks with unit demand. LDF picks only the direct links froms to all

35

s n

n-1

n-2

m

1+ε

1+ε

n

n-1
n-2

m

length

1

1

1+ε

1+ε 1+ε
1+ε

Figure 3.7: A simple network that will benefit from the cycle reduction algorithm.

sinks, resulting in a suboptimal solution with no bandwidthsharing. The cycle reduction

algorithm identifies the negative cycles in the LDF solution, redirects the flow along these

cycles, and eventually finds the single paths→ 1 · · · → n− 1→ n as the solution, which

is the optimal solution in this case. With a smallǫ, the improved solution isO(n) times

better than the original one.

Performance Improvement in Cycle Reduction Algorithm with Compressed Paths

The original cycle reduction algorithm by Gallo and Sodini has to check every tree vertex

for negative cost cycles. If there arek vertices in the tree defined by the existing flow,

it requiresk shortest path tree computation. However, as Guisewite and Pardalos noted

in [31], it is not necessary to check every tree vertices. Instead, we can check all the

vertices on a non-branching path in the tree simultaneously. Figure 3.8 shows some non-

branching paths in the tree defined by an existing flow. In thisfigure, x andu are two

branching vertices in the tree, andv is a sink vertex.u andx are possible sink vertices

too. To determine the best alternative path into a tree vertex, it is sufficient to construct a

shortest path tree for every non-branching path in the tree defined by the existing flow. For

the example in Figure 3.8, instead of computing a shortest path tree for every vertex on the

x → u andu → y paths, we only need to compute two shortest path trees. Because we

consider all vertices on a non-branching path simultaneously, we refer to this improvement

heuristic as path compression. If there arem sink vertices, we only need to compute at

36

u

x

Non-branching path

v

Figure 3.8: Path compression in the cycle reduction algorithm.

37

most2m − 1 shortest path trees because there are at most2m− 1 non-branching paths in

a tree. In contrast, if there aren tree vertices, the original cycle reduction algorithm has to

compute alln shortest path trees to find the local optimal. It is easy to seethatn > 2m−1,

and the performance improvement could be very substantial.The following pseudo code

outlines the improved cycle reduction algorithm with path compression:

Repeat

For each leaf or branching tree vertexti with an incoming flow of∆,

For each tree vertextj 6= ti,

Computec∗tj the incremental cost of redirecting∆ units of flow

along the undirected tree pathπ∗
ti,tj

.

For each non-tree edge(u, v),

Compute incremental costcuv of adding∆ units of flow on(u, v).

Let b(ti) be the nearest branching ancestor.

G′ = (V ′, E ′) is the subgraph induced

by non-tree edges and edges on the non-branching path(b(ti), ti).

V ′ ← V ′ ∪ {s′}
E ′ ← E ′ ∪ {(s′, v)|v is a tree vertex, andv 6= ti}
−{(w, v)|v is a tree vertex, andv /∈ (b(ti), ti)},

For each edge(s′, tj) ∈ E ′, assign a length ofc∗tj ;

For any other edge(u, v) ∈ E ′, assign a length ofcuv.

Find the shortest path froms′ to ti in G′.

Let edge(s′, w) be on the shortest path froms′ to ti in G′.

Redirect∆ units of flow alongπ∗
ti,w

andπw,ti, and obtain an updated flowx′.

If the update flowx′ has a higher cost than the current flow,

restore the original flow.

until no flow with lower cost can be obtained.

Complexity Analysis Let n be the number of vertices in the network, andk be the num-

ber of sink vertices. The improved cycle reduction algorithm only needs to compute at

most2k − 1 shortest path tree for the non-branching paths in the tree defined by the exist-

ing flow to find the local minimal, as in contrast withn shortest path computations in the

original cycle reduction algorithm. This improvement speeds up the search for each flow

derived from the initial flow, and therefore the whole local search procedure. Because the

38

shortest path tree computation is the dominating factor of the time complexity of the cycle

reduction algorithm, the path compression heuristic greatly improves the performance of

the local search.

These local search algorithms essentially enumerate all neighboring extreme flows reach-

able from an existing extreme flow by redirecting flows along anegative cost cycles. In a

network with linear edge costs, the resulting flow has no neighboring flow that has lower

cost because negative cost cycles are sufficient to find localoptimal in such a network.

However, in a network with concave edge costs, such as an RDS,the result from the origi-

nal cycle reduction algorithm does not necessarily includeall possible neighboring extreme

flows with lower costs as we demonstrate in the next section.

3.3.3 Negative Cost Bicycles in Concave Cost Networks

In this section, we show that the cycle reduction algorithm can be sub-optimal in a network

with concave edge costs. Consider the example network shownin Figure 3.9(a). The

source vertexr connects tom sink vertices with edges of lengthl. r also connects to

an intermediate vertexw with an edge of lengthl′ that is slightly shorter thanl. w also

connects to each sink vertex with an edge of length ofǫ. Each sink vertex is associated

with a demand of∆. For simplicity, we still adopt the simple concave edge costfunction

cost(x, (u, v)) = l(u, v)x1/2 of a flow x on an edge(u, v) with a length ofl(u, v). With

this cost function, the optimal cost isǫ∆1/2m + l′(∆m)1/2, while the result based on the

shortest path tree (which is the local optima) has a cost ofl∆1/2m. So, if ǫ ≤ l/m1/2,

the cost ratio of the two solutions is no less thanm1/2/2, which can be arbitrarily large.

This example suggests that reduction on negative cost cycles alone does not guarantee a

results with sufficient quality, and better solutions can bereached by redirecting flow along

subgraphs with special structures. For the example networkin Figure 3.9(a), we notice that

we can reach a neighboring flow with lower cost by adding2∆ units of flow along(r, w),

and∆ units of flow along(w, s1), (s1, r), (w, s2), and(s2, r). The paths we redirect flow

on constitute a subnetwork with special structures that we will explore in this section.

In a network with concave link costs, there could exist negative bicycles such as the one

in Figure 3.9(a) that could transform an existing flow to a flowwith lower cost. We define

a negative cost bicycleas a pair of directed cycles that share a common segment, withthe

39

r

s1

s2

sm

length = l

length = ε

demand µi = ∆

w
length = l’

(a) An example network.

a bd0

d1

d2

P1

P2

P0

L1

L2

(b) A general negative cost bicycle.

Figure 3.9: A simple negative cost bicycle example.

40

remainder of the cycles edge disjoint. When we add flow along the two cycles, the total

cost of the resulting flow is lower than the original flow. A general negative cost bicycle

is illustrated in Fig. 3.9(b) that has a pair of verticesa andb. There is a common pathP0

from a to b, and two pathsP1 andP2 from b to a. The sum of the cost of all these path is

negative. Letd0 be the length of the common segment of the negative cost bicycle, andd1

andd2 be the length of the disjoint segments. Then, the incremental cost of adding a unit

flow along the bicycle could be expressed as(1 + ǫ)d0 + d1 + d2, where0 ≤ ǫ ≤ 1. If

ǫ = 1, the cost of the bicycle is equal to the sum of the cost of both cycles with the usual

definition of flow costs. Ifǫ = 0, the bicycle is only charged once for the shared segment.

Any other0 < ǫ < 1 would result in a cost falls in between, showing the benefits of path

sharing. It is easy to see that negative cost bicycle is just one subnetwork structure that

can lead to lower cost neighboring flows. However, we first focus on finding negative cost

bicycles only, because they are more likely to appear in an existing flow, and therefore have

greater effects on final costs. We will generalize to deal with more complex subnetwork

structures than bicycles in a later section. However, the cost benefits could be offset by the

computational complexity of exploring more complicated structures.

For a general negative cost bicycle in a network with the simple concave edge cost function

as defined in the example network, when we push flow∆ along the negative cost bicycle,

we add2∆ flow on the common segment of the bicycleP0, and∆ on the disjoint pathsP1

andP2. Thus, the incremental costC∆ for a flow increment∆ can be expressed as

C∆ =
∑

i∈P0

li(
√

µi + 2∆−√µi)

−
∑

i∈P−

1

li(
√

µi −
√

µi − d) +
∑

i∈P+

1

li(
√

µi + d−√µi)

−
∑

i∈P−

2

li(
√

µi −
√

µi − 2∆ + d) +
∑

i∈P+

2

li(
√

µi + 2∆− d−√µi)

whered is the flow added on the pathP1, P+
1 is the set of links in pathP1 that have flows

in the same direction asP1, andP−
1 is the set of links in pathP1 that have flows in the

opposite direction ofP1; P+
2 andP−

2 are the sets similarly defined onP2. Because this is a

negative cost bicycle,C∆ < 0 for some∆. We must identify these negative cost bicycles

with specific flow increment∆ to reduce the cost of an existing flow.

41

3.3.4 Bicycle Reduction Algorithm

As we described previously, an adjacent extreme flow with lower cost can be reached by

redirecting flow along a negative cost bicycle. Thus, in order to extend the cycle reduction

algorithm, we must efficiently identify these negative costbicycles after the negative cost

single cycles are all removed by the original cycle reduction algorithm.

In the original cycle reduction algorithm, for a vertexu in the existing flow, we find another

vertexv in the existing flow, where the undirectional path in the existing flow π∗
uv and the

pathπvu not used by the existing flow form a minimum cost cycle. If it isa negative cycle,

a neighboring extreme flow with lower cost can be reached by redirecting flow along this

cycle.

In contrast to a negative cost single cycle, a negative cost bicycle consists of two cycles

with a common path segment. Therefore, in order to find a negative cost bicycle, we start

with two vertices,x andy, neither of which is a non-branching vertex in the tree defined

by the existing flow. We then search for a third tree vertexz, through which there is a pair

of directed non-tree pathsπzx andπzy. We definez as theoptimal split point. In addition,

there is another vertexw on both undirectional tree pathsπ∗
xz from x to z andπ∗

yz from y

to z. We definew as theoptimal merge point. The tree pathπ∗
wz is the common segment of

the bicycle, and the two cycles are(π∗
xw, π∗

wz, πzx) and(π∗
yw, π∗

wz, πzy). Figure 3.10(a) and

Figure 3.10(b) show two example negative cost bicycles. Letfx andfy be the amount of

flow into x andy respectively in the existing flow, after redirectingfx units of flow along

(π∗
xw, π∗

wz, πzx) andfy units of flow along(π∗
yw, π∗

wz, πzy), the adjacent extreme flows are

shown in Figure 3.11(c) and Figure 3.11(d).

Given such a pair of verticesx andy in a tree defined by an existing flow, we first observe

that the optimal split pointz can not be on the undirectional tree pathπ∗
xy betweenx and

y. Because ifz is onπ∗
xy, the optimal merge pointw must be the same vertex asz. This

means that there is no common path segment in the two cycles(π∗
xz, πzx) and(π∗

yz, πzy),

and thus not a bicycle. In addition, it is clear that the optimal split point can not be in the

subtrees rooted at neitherx nory, because it will not lead to a bicycle either. Based on these

observations, we limit our search for the optimal split point in the vertices of the existing

flow that are neither in the subtree rooted atx or y nor on the undirectional pathπ∗
xy.

42

y

r

z

x

w
c

f(p
f(x

),x
)

f(pf(y),y)
Paths with no
in-tree vertices

π* uz

π* yz

πzx

πzy

(a) Original extreme flow.

y

r

zx

w
c

f(p
f(x

),x
)

f(p
f(y),y)

Paths with no
in-tree vertices

π* uz

π* yz

πzy

πzx

(b) Original extreme flow.

Figure 3.10: Bicycle reduction algorithm.

43

y

r

z

x

w
c

f’
=f-f

(p
f(x

),x
)

f’=f-f(pf(y),y)

f’=f+f(p
f(x),x)+f(p

f(y),y)

f’
=f-f

(p
f(x

),x
)-f

(pf(y
),y

)

f’=f(pf(x),x) f’=f(pf(y),y)

(c) The neighboring extreme flow obtained.

y

r

zx

w
c

f’
=f-f

(p
f(x

),x
)

f’=f-f(p
f(y),y)

f’
=f+

f(p
f(y

),y
)

f’=f+f(p f(x),x)+f(pf(y),y)

f’=f(pf(x),x)
f’=f(pf(y),y)

(d) The neighboring extreme flow obtained.

Figure 3.11: Bicycle reduction algorithm.

44

If we define the nearest common ancestor ofx andy asc as in Figure 3.10 and Figure 3.11,

the bicycle reduction algorithm can be described as follows:

First, compute the incremental cost of redirectingfx units of flow fromx andfy units of

flow from y to all potential split points in the existing flow as follows:for each tree vertex

u that is either in the subtree rooted atx or y or on the undirectional pathπ∗
xy, define the

incremental costc∗u to be∞. For any other tree vertexu, if u is in the subtree rooted at

c, let v be the nearest ancestor ofu on π∗
xy. Let c∗xv be the incremental cost of redirecting

fx units of flow along the undirectional pathπ∗
xv from x to v, c∗yv be the incremental cost

of redirectingfy units of flow along the undirectional pathπ∗
yv from y to v, andc∗vu be the

incremental cost of redirectingfx +fy units of flow along the undirectional pathπ∗
vu from v

to u. The total incremental costc∗u for u is defined asc∗u = c∗xv + c∗yv + c∗vu. If u is not in the

subtree rooted atc, let c∗xc be the incremental cost of redirectingfx units of flow along the

undirectional pathπ∗
xc from x to c, c∗yc be the incremental cost of redirectingfy units of flow

along the undirectional pathπ∗
yc from y to c, andc∗cu be the incremental cost of redirecting

fx + fy units of flow along the undirectional pathπ∗
cu from c to u. The total incremental

costc∗u for u is defined asc∗u = c∗xc + c∗yc + c∗cu.

Next, make two copiesGx = (V, Ex) andGy = (V, Ey) of the network with existing flow

G = (V, E). In Gx, remove the following edges: all tree edges, all non-tree edges that

incident into any tree vertex other thanx, and all non-tree edges originated from any tree

vertex in the subtrees rooted atx or y, or from any tree vertex on the undirectional tree

pathπ∗
xy. Compute the incremental costcuv for an edge(u, v) in Gx as addingfx amount

of flow on (u, v). Similarly remove edges fromGy, and compute the incremental costcuv

for an edge(u, v) in Gy as addingfy amount of flow on(u, v). Then, compute the shortest

paths from all vertices inGx to x, and shortest paths from all vertices inGy to y. This can

be achieved by running a single destination shortest path algorithm (or a simple modified

single source shortest path algorithm) withx or y as the destination vertex. For each vertex

u in Gx andGy, record the shortest pathsπux in Gx andπuy in Gy as well as the shortest

distancecux andcuy. Figure 3.12 shows the transformed graphs from the example networks

in Figure 3.10. In particular, Figure 3.12(a) showsGx and Figure 3.12 (b) showsGy created

from the existing flow.

At last, for any tree vertexu other thanx andy, define the final total costCu = cux+cuy+c∗u.

Find the vertex with the minimum final total cost. This step isillustrated in Figure 3.12(c).

45

t1

t2

t3

tm

cost(u,v)=costf(∆,(u,v))

x
u v

y

(a)Gx.

t1

t2

t3

tm

cost(u,v)=costf(∆,(u,v))

x
u v

y

(b) Gy.

t1

s’Edges to
tree vertices

t2

t3

tm

cost(s’,tj)=costf(-∆,pathf(ti,tj))

 +costf(∆,pathf(tj,ti))

cost(u,v)=costf(∆,(u,v))

x
u v

y

(c) Combination ofGx andGy.

Figure 3.12: Negative bicycle reduction algorithm.

46

In particular, it is equivalent to first combinedGx andGy, then adding a pseudo source

vertexs′, and connects′ to any vertexu in the combined graph wherecux andcuy are less

than∞. An additional edges froms′ to a vertexu has the length equal toCu. Thus, the

shortest edge(s′, z) corresponds to the optimal split pointz, and the pathsπzx andπzy are

already recorded inGx andGy. (s′, z) andπzx andπzy are highlighted in Figure 3.12(c).

After the optimal split pointz is identified, redirectfx amount of flow alongπzx andπ∗
xz,

andfy amount of flow alongπzy andπ∗
yz. Compute the total cost of the updated flow. If the

updated flow has a lower cost than the original flow, record theupdated flow and repeat the

above procedure. Otherwise, restore the original flow and stop.

The following pseudo code describes the bicycle reduction operations:

Repeat

For any two leaf or non-branching tree verticesx andy

with incoming flows offx andfy, respectively.

For another tree vertexu,

If u is on the undirected tree pathπ∗
xy, or in the subtree rooted atx or y,

c∗u ←∞.

else

Find the nearest common ancestorc of x andy.

If u is in the subtree ofc,

Let v be the nearest ancestor ofu onπ∗
xy.

c∗xv ← incremental cost of redirectingfx unit of flow onπ∗
xv.

c∗yv ← incremental cost of redirectingfy unit of flow onπ∗
yv.

c∗vu ← incremental cost of redirectingfx + fy unit of flow onπ∗
vu.

c∗u ← c∗xv + c∗yv + c∗vu.

else

c∗xc ← incremental cost of redirectingfx unit of flow onπ∗
xc.

c∗yc ← incremental cost of redirectingfy unit of flow onπ∗
yc.

c∗cu ← incremental cost of redirectingfx + fy unit of flow onπ∗
cu.

c∗u ← c∗xc + c∗yc + c∗cu.

CreateGx = (V, Ex) andGy = (V, Ey) from G.

Find the shortest paths from all vertices tox in Gx and toy in Gy.

For a tree vertexu,

47

cux is the shortest distance fromu to x in Gx,

cuy is the shortest distance fromu to y in Gy.

Cu ← cux + cuy + c∗u.

Find the optimal split pointz that gives the minimumCz.

Redirectfx units of flow along pathsπ∗
xz andπzx, andfy units of flow

along pathsπ∗
yz andπzy,

If the modified flowx′ has a higher cost than the original flow,

Restore the original flow.

until no flow with lower cost can be obtained.

Complexity Analysis Let n andm be the numbers of vertices and edges in the network,

andk be the number of sink vertices. For each flow, it may need to check O(k2) vertices

pairs before it can determine if a neighboring extreme flow with lower cost exist through

flow redirection along a negative cost bicycle. It requires solving k nearest common ances-

tor problems and computing4k2 incremental path costs. However, the checking procedure

is dominated by the shortest path tree computation. If we denoteS(n, m) as the time com-

plexity of a single source shortest path algorithm in a graphwith n vertices andm edges,

then the time complexity of find a neighboring flow with lower cost in the bicycle reduc-

tion algorithm isO(n2S(n, m)), or O(n3(m + n2 log n)) if the shortest path algorithm is

implemented efficiently.

3.3.5 Experimental Results and Analysis

In this section, we present the simulation studies of the bicycle reduction algorithm in

networks with a simple concave edge cost function. We start with the description of the

problem instances we generate in our simulations on different network topologies. Next, we

explain the two estimated lower bounds we use for performance comparison. The results

from our simulation studies are then presented with analysis.

48

Figure 3.13: National network configuration.

Simulation Setup

We evaluated the bicycle reduction algorithm on a number of network topologies. The first

is a 15 × 15 torus (each node is connected to four neighbors forming a rectangular grid

with “wrap-around edges” linking the top and bottom rows andthe leftmost and rightmost

columns). We used two types of networks with different link lengths: links in arandom

torus were uniformly distributed, with the longest links being ten times longer than the

shortest, while links in auniform torushave a fixed length. Links in random torus are

restricted such that triangular inequality is observed. The demands for the sinks were uni-

formly distributed, all with the same mean demand.

The second network, shown in Figure 3.13, includes a node at each of the fifty largest

metropolitan areas in the United States; the link lengths were chosen to be equal to the ge-

ographic distances between the locations, and the demands were chosen to be proportional

to the populations of the metropolitan ares [79]. The locations of sources and sinks were

selected randomly, with every node having the same probability of selection.

49

The vertices and edges of the third network are uniform randomly generated inside a unit

square. The source node is located in the corner of the unit square as this choice creates ex-

treme flows with deeper trees and greater effect of flow aggregation. The sinks are uniform

randomly chosen in the unit square with uniform random sink demands drawn from the

range of[1, 10]. Such a network would result in extreme flow solutions represented in deep

trees, and thus would increase the running time of the local search algorithms. However,

it should be noted that such a network has a higher degree of “incidental sharing”, and is

closer to the optimal solution already.

Besides these three network topologies, we also simulate the bicycle reduction algorithm in

networks generated by a topology generator, Inet [82]. Recent studies showed that degree-

based topology generators creates networks that have high resemblance of the Internet even

though these generators do not consider the network structure specifically [75]. The origi-

nal Inet is intended for large network with at least 3037 vertices. In our simulation studies,

we used a modified version of the Inet generator so that smaller networks could be gener-

ated. The networks we generated for our simulations have 100vertices, and the fraction

of degree one vertices is 0.3. Because it uses a seed for the random number generator, the

number of networks for a fixed number of vertices is at most 64.Thus, each data point is

the average of results of 64 independent problem instances,instead of 100 instances as in

simulations in other topologies.

We measure the relative costs of flows generated by differentalgorithms with the estimated

bound. We first obtain an initial solution with thelargest demand first (LDF)algorithm

we developed in our previous study of the RDS configuration problem in [62], and apply

the original cycle reduction algorithm as well as the bicycle reduction algorithm to find

two local optimal solutions from the flow produced by LDF. Thenumber of sinks is varied

to show the performance of different algorithms in a varietyof network conditions. We

also measure the percentage improvements to the flows obtained by LDF after applying the

cycle reduction algorithm and the bicycle reduction algorithm.

Lower Bounds Comparison

In our previous study of the RDS configuration problem, we used an easily computed es-

timated lower bound for the performance evaluation [62]. The idea is to assume all the

50

sinks that are located in a certain geographical area share asingle path to the source ver-

tex, and thus achieve maximum possible path sharing among all the sink vertices in that

area. In particular, estimated bound EB*(2) is computed by first dividing the sinks into two

sets, those to the “left” of the source and those to the ”right” of the source. Each of these

subsets is then sorted by distance from the source and each node is assumed to share its

path to the source with all nodes in the same subset that are atgreater distance from the

source. EB*(3) (and EB*(4)) is computed similarly, by first dividing the sinks into three

(respectively four) sets of nodes defined by “pie-shaped” regions centered on the source,

then sorting the subsets by distance from the source and assuming the maximum possible

sharing of paths among nodes in the same set. For larger numbers of randomly distributed

sinks, it’s reasonable to expect EB*(2), EB*(3) and EB*(4) to be no larger than the cost of

an optimal solution, although they do not constitute true lower bounds.

A tighter lower bound for a network with a small number of sinknodes can be computed

as follows: define apartial solutionas a subtree rooted at the source along with a partition

of sinks among tree nodes. For instance, Figure 3.14(a) shows a partial solution in which

the sink vertices are divided among setsS1, S2, S3 andS4. We can get a lower bound with

partial solutions for a networkG = (V, E) with s as the source vertex in the following

way: letT be a subtree ofG rooted ats with three edges. Partition the sink vertices such

that there is a subset of sink verticesSi for each tree nodeti. Compute the total cost of

T assuming each tree node has the demand equal to the total demands of the sinks in the

subset associated with that tree node. For each tree nodeti, compute the lower bound cost

for supplying all sink vertices inSi from ti, assuming all sink vertices inSi share a single

path toti and the distance fromti to a sink vertexx is the same as the shortest path fromti

to x. Add all these costs associated with tree nodes to the cost ofT to obtain an estimated

total cost value. The pseudo code for this is shown below:

Create a subtreeT rooted ats with three edges.

For each 4-partition(S1, S2, S3, S4) of sink vertices,

Associate each tree nodeti with a subset of sink verticesSi.

Assign each tree node with a demand equal to the sum of all sinkvertices

in the associated subset.

Compute the costs of all tree edges.

For each sink vertices subsetSi,

51

b

s

a

c

x5

x6

x0

x1

x4
x2

x3

x7

S1

S2

S4

S3

(a) An example partial solution.

b

s

a

c

x5

x6

x0

x1

x4
x2

x3

x7

S1

S2

S3

S32

S31

(b) Optimization with connected components.

Figure 3.14: Lower bound computation.

52

Compute lower bound cost for supplying fromti,

assuming shortest distance and maximum sharing.

Add all contributions.

If we iterate over all such partial solutions with three edges, we get overall lower bound.

The trouble with is this is that the best lower bound is likelyto involve large set at root;

however, if we iterate over all subsets of edges from the root, we don’t need to leave any

behind at the root.

We can speed up the computation by avoiding some sink vertices partitions that obviously

can not produce good lower bounds. This can be done by considering assignment of subsets

of sink vertices only to the tree nodes in the same connected component. In this case, we

consider the subtreeT rooted at the source vertex with all the edges out of the source vertex.

For each leaf nodeu in T , if removing(s, u) creates a connected componentCu with some

sink vertices, then we only assign the subset of sink vertices in Cu to u. If a connected

componentC can only be created after removing multiple edges inT , then we apply the

original lower bound operation on the subgraph that includesC and all edges that connect

s and C. Figure 3.14(b) shows an example of this optimization. In this example, we

only assign subset of sink vertices{x5, x6} to tree nodeb, and{x7} to s. In the subgraph

that includes a connected component that is connected tos through(s, a) and(s, c), we

compute the lower bound by iterating the partitions of the sink vertices of{x0, · · · , x4},
but this subgraph can be smaller than the original network, improving the computation

time.

Similarly, if we can iterate over all depth two subtrees or “radiusd” subtrees where tree

nodes are within radiusd (for each sink must consider smallest radius for its incoming

neighbors), we would get tighter lower bounds. We can also apply the similar optimization

operations with connected components to improve the performance too.

Figure 3.15 shows the comparison of the two lower bounds on a randomly generated net-

work with 32 vertices and a variant number of sink vertices. In this plot,the relative cost

of a lower bound to the estimated lower bound when we assume all sink vertices share a

single path (EB(1)). Each of the data point is the average of100 problem instances. The

plot indicates that the tighter lower bounds fall mostly betweenEB(2) andEB(3), and

53

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 5 10 15 20 25 30

R
el

at
iv

e
co

st

Number of Sinks

LB

EB(4)

EB(3)

EB(2)

Figure 3.15: Comparison of estimated bounds and lower bounds.

54

gradually approachEB(3) as the number of sink vertices increases. This results suggests

thatEB(3) andEB(4) can serve as sufficient lower bounds for networks with largersizes.

The performance of the above lower bound algorithms are largely determined by the parti-

tion enumeration method employed. Although these algorithms avoid a total enumeration

of possible partitions, they are exponential in the worst case. Therefore, we compare the

estimated lower bounds and the tighter lower bounds described above only for networks

with small number of vertices (less than 30) to show how approximate the estimated lower

bounds are. We use the Bit-Vector Representation (BVR) as used in [24] to efficiently

enumerate through the partitions for the connected components. In particular, a subset of

vertices are represented as a number bits in a word, in which theith bit is set to 1 if vertex

i is in the subset and 0 otherwise. Thus, ak-partition is represented ask integers that sum

to 2d− whered is the number of vertices in the connected component. For more general

networks with larger numbers of vertices, we only compare the total cost relative to the es-

timated lower bound with the assumption that the tighter lower bounds maintain the similar

ratio to the estimated lower bounds.

Simulation Results and Analysis

Figure 3.16 shows how the initial solution may make a difference. We apply the original

cycle reduction algorithm to initial solutions obtained with the largest demand first (LDF)

described in [62] and a minimum spanning tree (MST) algorithm in random torus net-

works, and compare the results. Note that although we use MSTs in our experiments, other

simple initial solutions such as random spanning trees havesimilar results. Figure 3.16(a)

shows the ratio of the cost of the solution produced by different algorithms to the estimated

lower bound, as the number of sink vertices increases from 1 to 50. Each data point rep-

resents the average of results from 100 independent probleminstances. As shown in the

charts, for large numbers of sink vertices, the improved solutions obtained from the cycle

reduction algorithm are similar: improved solutions from MST solutions are on average

2.75 times of the estimated lower bound, and the improved solutions from the initial LDF

solutions are around 2.7 times the estimated lower bound. However, they are both closer

to the initial LDF solutions obtained as they are no more than2.8 times of the estimated

lower bound, while the MST initial solutions are up to 3.85 times of the estimated lower

55

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

EB(2)

EB(3)

EB(4)
LDF-CRLDF

MST-CR

MST

(a) Cost comparison with varied numbers of sinks.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

MST-CR

LDF-CR

(b) Percentage cost improvement.

Figure 3.16: Cost comparison of cycle reduction algorithm with initial LDF solutions and
MST solutions in torus networks.

56

bound. Figure 3.16(b) shows the percentage improvements ofthe cycle reduction algo-

rithm from the MST and LDF solutions with varied numbers of sinks. It shows that the

space for improvements from a MST solution is much larger than a LDF solution, as the

cycle reduction algorithm improves the MST solutions by no less than26% and even up to

46% in Figure 3.16(b), while the improvements from LDF solutions are all less than3%.

Because it is closer to the local optimal solutions, the initial solutions obtained by LDF has

less negative cost cycles than those obtained by MST. Thus, it takes shorter time to reach

improved solutions when we use an initial solution obtainedfrom LDF. When we start with

an arbitrary tree solution, the results are similar to the MST case. This result indicates that

LDF algorithm provides solutions that are reasonablely close to optimal.

Figure 3.17 shows the simulation results on random torus networks. The curve labeled

with LDF is the relative cost of the initial LDF solution, andthe curves labeled LDF-CR

and LDF-BR are the results obtained by applying the bicycle reduction algorithm and the

original cycle reduction algorithm to the initial solution, respectively. Figure 3.17(a) shows

the ratio of the cost of the solutions produced by different algorithms to the estimated lower

bound, as the number of sink vertices increases from 1 to 50. For large numbers of sink

vertices, the LDF algorithm produces solutions costing no more than about 2.8 times the

estimated lower bound. The cycle reduction algorithm (LDF-CR) improves the solutions

from LDF to no more than 2.7 times the estimated lower bound. The bicycle reduction

algorithm makes some further improvements to the cycle reduction algorithm, but it is rel-

atively small. This is more clear in the percentage improvements results of both the bicycle

reduction and the original cycle reduction algorithms as the number of sink vertices in-

crease in Figure 3.17(b). It shows that the original cycle reduction algorithm improvement

of the LDF solutions grows as the number of sink vertices increase. When there are a

large number of sink vertices, the improvement is about2.5%. The bicycle reduction al-

gorithm improves the cycle reduction results by up to0.5% in some cases, but the average

improvement is about0.1%. A similar set of results obtained in uniform torus networksare

shown in Figure 3.18. In these charts, when there are many sink vertices, the cycle reduc-

tion and bicycle reduction algorithms improved the averagetotal cost from about 2.5 times

of the estimated lower bound to about 2.4 times (Figure 3.18(a)), or about2.25% average

improvement (Figure 3.18(b)). The improvement grows as thenumber of sinks increases

from 0 to2.5%. However, the improvement contributed from the bicycle reduction algo-

rithm is noticeablely smaller than in the random torus networks, ranging from 0 to0.05%

57

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

LDF-CR

EB(2)

EB(3)

EB(4)

LDF-BR

LDF

(a) Relative cost comparison.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

BR

CR

(b) Percentage cost improvement.

Figure 3.17: Cost comparison on torus networks.

58

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

LDF

LDF-CR
LDF-BR

EB(4)

EB(3)

EB(2)

(a) Relative cost comparison.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

BR

CR

(b) Percentage cost improvement.

Figure 3.18: Cost comparison on uniform torus networks.

59

with an average improvement of0.02%. This result indicates that negative cost bicycles

(or other negative cost multi-cycles) are less likely to exist in torus networks, especially

in uniform torus networks. The local optimal flows obtained by the cycle reduction and

bicycle reduction algorithm have marginal difference, andthey offer only very small im-

provements to the LDF solutions, while the two local search algorithms have much higher

computation complexity. Thus, the LDF algorithm offers solutions very close to local opti-

mal, while more time consuming local search algorithms withcycle and bicycle reductions

only provide marginal improvements.

Figure 3.19 shows the simulation results on the national network topology. The curves in

the charts are similarly labeled as the previous charts for torus networks. Figure 3.19(a)

shows the ratio of the cost of the solution produced by different algorithms to the estimated

lower bound, as the number of sink vertices increases from 1 to 50. For large numbers of

sink vertices, the LDF algorithm produces solutions costing no more than about 1.75 times

the estimated lower bound. Both cycle reduction algorithm (LDF-CR) and bicycle reduc-

tion algorithm (LDF-BR) improve the LDF solutions, but the bicycle reduction algorithm

offers very marginal improvements beyond the cycle reduction solutions, as this is more

clearly showed in Figure 3.19(b), the percentage improvements of the bicycle reduction

algorithm over the original algorithm when the number of sink varies. First, it shows that

the improvements by the cycle and bicycle reduction algorithms in the national network

(≤ 1.4%)are less than in the torus networks (≤ 2.7%). It also shows that the cycle reduc-

tion algorithm improves the LDF solutions by an average of1%, and the bicycle reduction

algorithm does not offer further improvement in most cases,and very small improvement in

small number of cases. These results are largely because thenational network is very parse,

creating a greater degree of incidental path sharing. In such a sparse network, the LDF al-

gorithm usually is sufficient to create solutions close to optimal, as the more complex local

search algorithms can not offer much improvements.

Figure 3.20 shows the simulation results on randomly generated networks. The relative cost

results (Figure 3.20(a)) show that LDF produces results up to 2.6 times the estimated lower

bound when there are 50 sink vertices, while the cycle reduction and bicycle reduction al-

gorithm both improve the quality of the LDF results, and the bicycle reduction algorithm

provides more consistent improvement to the solutions produced by the cycle reduction al-

gorithm. As Figure 3.20(b) shows more clearly that the cyclereduction algorithm improves

up to1.2% over the LDF solutions, and the bicycle reduction algorithmcan improve up to

60

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

LDF-BR

LDF

EB(3)

EB(2)

EB(4)

LDF-CR

(a) Relative cost comparison.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

BR

CR

(b) Percentage cost improvement.

Figure 3.19: Cost comparison on the national network.

61

LDF
LDF-CR

LDF-BR

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

(a) Relative cost comparison.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

CR

BR

(b) Percentage cost improvement.

Figure 3.20: Cost comparison on random networks.

62

1.85% over the LDF solutions. In addition, the bicycle reduction algorithm offers up to

twice the improvement than the cycle reduction algorithm inmost cases, the biggest im-

provement by bicycle reduction algorithm among the topologies simulated. This indicates

that there are more negative cost bicycles in the randomly generated and relatively dense

networks than the more regular torus networks and sparse national network.

Figure 3.21 shows the cost comparison on the networks generated by the Inet topology gen-

erator [82]. It shows similar improvements of the cycle and bicycle reduction algorithms

as the number of sink vertices increases in Figure 3.21(a). Figure 3.21(b) shows that both

the cycle and bicycle reduction algorithms offer small improvements (≤ 1.2%) over the

LDF results, and the bicycle reduction algorithm only improves over the cycle reduction

results very marginally in a small number of cases. This is anindication that the small

topologies generated by Inet with default parameters are relatively sparse, and thus contain

less negative cost cycles and even less bicycles.

3.3.6 Negative Cost Multi-cycles Reduction

Negative Cost Multi-cycles

Besides negative cost cycles and bicycles, in a network withconcave edge costs, there could

exist negative multi-cycles that could transform an existing flow to flows with lower costs.

We define anegative cost multi-cycleas a group ofm directed cycles that share a common

segment, with the remainder of the cycles edge disjoint. When we add flow along them

cycles, the total cost of the resulting flow is lower than the original flow. We refer to such a

multi-cycle as negative costm-cycle. For some special cases, whenm = 2, it is a negative

cost bicycle; whenm = 3, it is a negative cost tricycle. A general negative cost multi-cycle

is illustrated in Fig. 3.22 with a pair of verticesa andb. There is a common pathP0 from a

to b, andm paths fromb to a. The sum of the cost of all these path is negative. Letdi be the

length of pathPi. Then, the incremental cost of adding a unit flow along the multi-cycle

could be expressed as(1 + ǫ)d0 +
∑m

i=1
di, where0 ≤ ǫ ≤ m− 1. If ǫ = m − 1, the cost

of the multi-cycle is equal to the sum of the cost of allm cycles with the usual definition of

flow costs. Ifǫ = 0, it is only charged once for the shared segment. Any other0 < ǫ < 1

would result in a cost falls in between, showing the benefits of path sharing.

63

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

LDF

LDF-BR LDF-CR EB(4)

EB(3)

EB(2)

(a) Relative cost comparison.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

CR

BR

(b) Percentage cost improvement.

Figure 3.21: Cost comparison on networks generated by inet topology generator.

64

a bP0

P3

P2

P1

Pm-1

Pm

Figure 3.22: Negative cost multi-cycles.

General Multi-cycle Reduction Algorithm

The bicycle reduction algorithm can be further extended to handle negative cost multi-

cycles. In particular, we can find the adjacent extreme flows of an existing extreme flow

by redirecting flow along a negative cost multi-cycle withk cycles and a common path

segment, or negative costk-cycle.

We pickk tree vertices(v1, v2, · · · , vk), and search for the optimal split points inside the

existing flow to redirect flow throughk paths out of the existing flow. In particular, for each

of thek vertices, we first determine the undirectional paths to to all potential split points

in the tree. These potential split points are similarly defined as in the bicycle reduction

algorithm, namely, all tree vertices that are neither in thesubtree of any one of thek vertices

nor on the undirectional paths between any pair of thek vertices.

For each of the potential split point, construct a subtree rooted at that split point connecting

all k vertices, and sum up the total incremental cost of redirecting flows originally into the

root of the subtree in a similar way to the computation in the bicycle reduction algorithm.

Note that in this case, some of thek vertices share some edges on their paths to the root.

65

The flow increment on these edges is the sum of the flow into these subset of vertices in the

existing flow. As a result, each potential split point has an associated total incremental cost

from thek vertices.

Next, for rach of thek vertices, construct a subgraph from the subgraph induced bythe

non-tree edges in the existing flow, in which edges into the tree vertices except the ones

into the chosen vertex are removed as well as the edges leaving the tree vertices either in

the subtrees of thek vertices or on the paths between any pair of vertices in thek vertices.

In the constructed subgraph, assign the incremental cost ofadding the flow into the chosen

vertex as the edge length on an edge. Apply the single destination shortest path algorithm

in the subgraph to the chosen vertex, and record the shortestdistances and paths from all

the potential split points.

After all k vertices are processed, each potential split point hask shortest paths to thek

vertices. Pick the potential split pointu with the least total distance as the split point. Once

the split point is chosen, redirect the flow from thek vertices tou along the paths in the

original tree, and also redirect flows to thek vertices along the recorded paths recorded

in the constructed subgraphs. If the modified flow has a lower cost than the original flow,

repeat the above procedure; otherwise, restore the original flow, and stops with the local

optimal solution.

This generalized multi-cycle reduction algorithm describes the cycle reduction algorithm

whenk = 1 and the bicycle reduction algorithm whenk = 2. Clearly, it has much greater

complexity whenk grows larger for general multi-cycle reduction. However, as our sim-

ulation results indicate, the degree of quality improvements is limited even for bicycle re-

duction algorithm. Ask increases, we would expect more diminishing returns for increased

complexity. Therefore, we think bicycle reduction would besufficient for most practical

problems, while the general multi-cycle reduction algorithm has theoretical values but may

not be necessary for practical problems.

66

3.4 Summary

This chapter studied the configuration problem for a basic RDS with a single server. The

configuration problem was formally defined and formulated asa minimum cost flow prob-

lem. A concave link cost model is used in the problem formulation to capture the band-

width economy of aggregation. However, the concave link cost also makes the configura-

tion problem an NP-hard problem. An efficient approximationalgorithm, Largest Demand

First (LDF), has been proposed based on the Least Cost Augmentation algorithm for prac-

tical network configuration problems with hundreds of nodes.

The second part of this chapter studied local search heuristics to improve the quality of

an existing solution for RDS configuration problem, which can be extended to the general

minimum concave cost network flow problem (MCCNFP). The original cycle reduction

algorithm proposed by Gallo and Sodini [27] only searches for adjacent extreme flows

reachable from an existing flow by redirecting flow along negative cost cycles. A path

compression technique was implemented to improve the original cycle reduction algorithm

such that it only has to compute at most2m shortest path trees, wherem is the number of

sink nodes, compared withn (n is the total number of vertices) shortest path tree computa-

tions in the original algorithm.

In addition, it is shown in this chapter that there existsnegative cost multi-cyclesin a

concave cost network with an existing flow. By redirecting flow along these multi-cycles,

more local optimal extreme flows can be reached. We present a multi-cycle reduction

algorithm by identifying the negative cost multi-cycles and redirecting flow along these

multi-cycles to get a local optimal extreme flow. Although wefocus on the identification

of negative cost bicycles, we describe how it can be extendedto negative cost multi-cycles.

We study the performance of the bicycle reduction algorithmusing simulations on different

topologies. The experimental results as well as our analysis show that the bicycle reduction

can improve the quality of results, but it would reach a pointof diminishing return as the

quality improvement is limited but the computational complexity grows when we attempt

to identify more general negative cost multi-cycles.

67

Chapter 4

Multi-server RDS

The previous chapter studied the configuration problem for an RDS with a single server.

This chapter will study the issues that arise in an RDS with multiple servers. Such an RDS

uses multiple distributed replicated servers to reduce thetransmission latency and improve

service quality and reliability.

The first part of this chapter studies the configuration problem for multi-server RDSs.

Based on a similar problem definition as in our study of the single-server RDS, we show

that the configuration problem for a multi-server RDS can be transformed into a single-

server RDS configuration problem with the introduction of a pseudo source. However,

what makes the multi-server RDS configuration problem more complicated than a single-

server RDS configuration problem is the selection of optimalserver locations. Therefore, a

number of server placement algorithms designed for a variety of network applications are

surveyed and evaluated. A series of simulation studies are conducted in various networks,

and our simulation studies indicate that among all the server placement algorithms, one

class of greedy algorithms gives close to optimal results.

The second part of this chapter studies the configuration problem for dynamic load redis-

tribution in order to improve the fault tolerance of a multi-server RDS. A redirection sub-

network topology is presented that handles any single-server failure in a group of servers,

while minimizing the amount of additional bandwidth that must be reserved. An algorithm

is first presented to configure such a redirection subnetworkfor server pairs so that if one

server fails, the other server can handle the traffic redirected from the failed server. This

configuration algorithm is then extended to configure redirection subnetworks for groups

of four servers such that if any server fails in such a group, the traffic to the failed server

68

will be redirected to the other three servers through the redirection subnetwork. Simula-

tion studies are conducted in a variety of network topologies to evaluate the redirection

subnetwork configuration algorithms. Our simulation results reveal that the proposed redi-

rection subnetworks can handle dynamic load redistribution for single-server failures while

making efficient use of reserved bandwidth.

The chapter is organized as follows: Section 4.1.2 reviews some related work with respect

to the server placement problem. Section 4.1.3 gives a more detailed definition of the

configuration problem for a multi-server RDS, and formulates the configuration problem as

a single source minimum cost network flow problem. Section 4.1.4 surveys and compares

a number of candidate server placement algorithms originally designed for other network

applications in the literature. Section 4.1.5 lays out the evaluation studies we conduct for

various server placement algorithms, and presents the simulation results and our analysis.

In the second part of this chapter, Section 4.2.1 describes the load unbalance problem in a

multi-server RDS, and introduces the configuration problemfor redirection subnetworks to

handle these situations. A redirection subnetwork topology and a configuration algorithm

are presented to find redirection subnetworks for the simplecase of redirection server pairs

in Section 4.2.2. Section 4.2.3 extends the redirection subnetwork configuration algorithm

for server pairs to handle a single-server failure in groupsof four servers. Section 4.2.4

shows the results of our simulation studies and Section 4.3 summarizes this chapter.

4.1 Multi-server RDS Configuration

4.1.1 Introduction

The previous chapters have introduced the concept of a reserved delivery subnetwork

(RDS) as a new network service to allow an information service provider to deliver more

consistent quality of service to its customers. Until now, we have focused our attention on

the configuration problem for an RDS with a single central server. However, when there is

a large number of customers in many distributed areas for a certain service, an information

service provider may find it advantageous to place multiple replicas of the server at sepa-

rate locations. From the customers’ perspective, this reduces the transmission latency and

69

hence increases the perceived quality of service. From the information service provider’s

point of view, the additional replicated servers eliminatethe single point of failure in the

RDS, and release the bandwidth tied up on the long haul connections from a central server

to various remote locations. These benefits of improved quality of service and bandwidth

efficiency can offset the cost of deploying the replicated servers.

For a multi-server RDS, the configuration problem is similarto that for a single-server RDS,

but clearly becomes more complicated as it involves two major additional subproblems to

solve. First, we must determine where to put the servers to obtain optimal performance,

whereas the server location is fixed for the single-server RDS configuration problem. Sec-

ond, after we determine the locations of the servers, we needto decide how different loca-

tions should connect to a server to get good performance and overall cost efficiency, while

all locations connect to the one server in the single-serverRDS. The choices for server

placement and sink partitioning strategies are vital to theconfiguration of a multi-server

RDS.

4.1.2 Multi-server RDS Configuration

Many network applications have to deal with some form of placement problem similar

to the server placement problem in a multi-server RDS. To determine a suitable server

placement algorithm in a multi-server RDS, we surveyed a variety of placement algorithms

developed for a broad range of network applications. These placement algorithms serve as

a basis for our evaluation of our placement algorithm.

Qiu, Padmanabhan and Voelker [60] first studied a web server replicas placement problem

that is similar to our server placement problem in a multi-server RDS, although they looked

for a relatively dynamic placement solution for periods of 24 hours, as in contrast to our

longer operation time frame for RDSs. They formulated the placement problem as an

uncapacitatedK-median problem, and evaluated four algorithms (tree-based algorithm,

greedy algorithm, random algorithm, and hot spot algorithm) in synthetic random graphs as

well as Internet topologies (derived from BGP routing information) with actual web server

trace data. Their simulation results showed that a greedy algorithm that places replicas

based on distance and sink demands consistently delivered the best performance across the

network topologies tested.

70

Jamin et al [39] investigated a similar problem of constrained mirror placement in the

Internet. They studied the correlation between the number of mirrors (equivalent to the

replicated servers) in a limited number of sites and the performance improvement perceived

at both the server and client sides for different placement algorithms. Their results showed

a diminishing return as the number of mirror sites increases. Radoslavov, Govindan, and

Estrin [66] later extended the evaluation of the fanout-based replica placement algorithm

with more accurate network topologies, and found similar results.

Jamin et al [38] described two instrumentation center placement algorithms in a network

with known topology: a greedy algorithm based on thel-hierarchically well-separated trees

(l-HST) and an approximation minimumK-center algorithm. The first algorithm recur-

sively divides the graph into small partitions with decreasing partition radii, and places a

center for a partition that is sufficiently small. When they formulated the center placement

problem as a minimumK-center problem in a graphG = (V, E), a 2-approximate algo-

rithm finds the subgraphG2
i with K stars as the approximate solution, whereG2

i = (V, E2
i)

is the graph that contains all the vertices such that there isan edge(u, v) ∈ E2
i if there are

no more than two hops betweenu andv in E, andEi is the set ofi edges with least cost in

an increasing order.

Shi and Turner [72] looked into the server placement problemin overlay networks. They

formulated the placement problem as a set cover problem, andcompared the solutions by

both a linear programming relaxation and greedy heuristicswith simulations on random

graphs as well as geographic graphs.

There has also been a substantial amount of research on web proxy and web cache place-

ment for more restricted network topologies. For example, when Li and his colleagues

investigated the optimal placement problem for web proxiesin the Internet in [50], they

assumed the underlying network topologies are trees, and solved the proxy placement

problem with a dynamic programming approach. Korupolu, Plaxton and Rajaraman [42]

proposed a constant-factor approximation web cache placement algorithm that works for

hierarchical cooperative web caching. Although they formulated the placement problem as

a minimum cost flow problem, the algorithm only works for hierarchical cache placement.

One common feature of all these server placement algorithmsis that they use a single

measurement metric for evaluating the solutions. Althoughthe measurement metric is the

71

distance between a sink vertex and the server in most cases, it could also be other similar

metrics such as latency. However, the measurement metric does not consider the traffic

loads on paths. As a result, they produce solutions that do not take advantage of the benefits

of traffic aggregation in practice. In our study of the configuration for a multi-server RDS,

we use the cost metric that incorporates both the distance and traffic loads, just as the cost

metric used in the single-server RDS configuration.

4.1.3 Problem Definition and Formulation

With the existing notations from the preceding chapter, theconfiguration problem for a

multi-server RDS can be defined as follows: we are given a directed graphG = (V, E),

an integerk and a set of sinksT = {t1, t2, · · · , tm} ⊆ V with each sinkti having an

associated demandµi. The objective is to partitionT into k subsetsT1, · · · , Tk and find a

directed tree for eachTi with rootsi. The tree forTi should include all elements ofTi. The

cost of a tree is determined by the flow on its links needed to satisfy the sink demands.

This formulation of the multi-server RDS configuration problem resembles the formulation

of the configuration problem for a single-server RDS described in the preceding chapter,

except that there is more than one possible location to placethe servers, and the server lo-

cations are not specified in advance. Assuming that we already have thek server locations,

we can apply the following transformation to convert the multi-server RDS configuration

problem into a single-server RDS configuration problem, andeventually a single-source

single-sink minimum cost network flow problem: first, we add apseudo source vertexs,

and connects to all vertices corresponding to the server locations. Eachadded edge has a

length of 0 and capacity equal to the total sink demands. After this step, the multi-server

RDS configuration problem is transformed into a single-server RDS problem, in whichs

is the root vertex. Next, add a pseudo sink vertext, and connect all sink vertices tot.

Each added edge has a length of 0 and capacity equal to the demand of the connected

sink vertex. This transformation step is the same as in the single-server RDS configuration

problem, after which the problem is transformed into a traditional single-source single-sink

minimum cost network flow problem. An optimal solution for the transformed minimum

cost network flow problem corresponds to an optimal solutionfor the original configura-

tion problem for multi-server RDS. Figure 4.1 shows the transformation of a multi-server

72

t1

t2

t3

(a) Original graph.

s

s1

s2

s3

t1

t2

t3

t

(b) Transformed graph.

Figure 4.1: Problem transformation.

73

RDS configuration problem into a single-source single-sinknetwork flow problem. In this

example, we are trying to place three servers in a network with three sink vertices. The

original network is shown in Figure 4.1(a) with sink vertices marked ast1, t2 andt3. After

the transformation, the network is shown in Figure 4.1(b) with an added pseudo sink vertex

t, an added pseudo source vertexs and edges connectings to a chosen subset of server

verticess1, s2 ands3.

4.1.4 Server Placement in a Multi-Server RDS

If the locations of thek servers are given in advance, it is clear that the configuration

problem for such a multi-server RDS is essentially equivalent to the single-server case

because every sink connects to one of thek servers in the solution in the derived single-

server RDS configuration problem, and the subsets of the sinks connected to thek servers

defines a partition on the sinks. However, thek server locations are unknown for the multi-

server configuration problem. Therefore, the key to the multi-server RDS configuration

problem is to find good sets of servers.

Take the simple network in Figure 4.2 for example. There are four sinks (t1 throught4),

each with a unit sink demand. The link lengths are shown next to each link. Assume the

link cost isf(µ) = l · (µ + 3µ1/2), whereµ is the flow on the link, andl is the length of the

link. If we place two serverss1 ands2 as in Figure 4.2(a), the total cost of the multi-server

RDS is 44. However, if the two servers are placed as in Figure 4.2(b), the total cost is only

28. Therefore, an optimal server placement is important in the configuration of an optimal

multi-server RDS.

Placement problems are often encountered in many practicalapplications such as facility

location and telecommunication network resource allocation. They are normally formu-

lated as some forms of graph theoretic problems, such as minimum K-median problem

and minimumK-center problem, or some other non-graph problem, such as the set cover

problem. Therefore, the solutions to these placement problems are often quite different. In

this section, we first survey a number of placement algorithms for similar problems in the

literature, and compare them as potential placement algorithms for server placement in a

multi-server RDS. In particular, we evaluated the web server replica placement algorithms

74

t2

t1

s2

t3

t4

1

1

2

2 2 4

3

4

3

4

3

2
s1

(a) Bad choice of server locations.

t2

t1

t3

t4

1

1

2

2 2 4

3

4

3

4

3

2

s1

s2

(b) Good choice of server locations.

Figure 4.2: Comparison of different server placement.

75

in [60], the constrained mirror placement algorithms in [39], and the Internet instrumenta-

tion tracer placement algorithms in [38].

Candidate Server Placement Algorithms

Random placement algorithm is the simplest approach. It simply places replicated

servers ink randomly chosen locations. It is normally used for performance comparison

with other placement strategies because of its simplicity and random nature, as in the cases

of [60, 39, 66].

Transit node algorithm is another simple heuristic used in [39, 66]. It places replicated

servers on candidate locations in descending order of theiroutdegrees. The goal of this

heuristic is to place replicated servers at locations that can reach the largest possible number

of sink vertices with small latency.

Hot spot algorithm was proposed and studied by Qiu, Padmanabhan and Voelker for

web server replica placement [60]. It tries to place replicated servers near the sink vertices

that generate the largest bulk of traffic to the servers. All candidate vertices are first sorted

by their sink demands, and the replicated servers are then put on thek sink vertices with

the highest sink demands.

l-greedy algorithm was proposed by Jamin et al [39] for the constrained mirror place-

ment problem. It first exhaustively checks each possible vertex to identify the vertex that

gives the least cost to cover all sink vertices. Ifl = 0, it proceeds to check the rest of the

candidate vertices to find another vertex such that the new vertex and the previously se-

lected replicated server vertices together have the minimum cost to cover all sink vertices.

This special case greedy algorithm was studied by Qiu, Padmanabhan and Voelker [60] for

web server replica placement. Ifl is non-zero, the algorithm allows forl step(s) backtrack-

ing by checking all the possible combinations of removingl of the already placed replicated

servers and replacing them withl + 1 new replicated servers.

76

l-HST algorithm was presented by Jamin et al [38] for placing Internet instrumentation

tracers for latency measurement. Starting with the whole network as a single partition,

this algorithm tries to divides the network into overlapping partitions recursively in the

following way: pick an arbitrary vertex in the current (parent) partition, a new (child)

partition with all the vertices within a random radius of thechosen vertex is created, and

the vertices in the newly created (child) partition are not used for future partitioning in the

current (parent) partition. The mean diameter of the child partition is l times smaller than

the diameter of the parent partition. This recursive procedure is applied to all partitions

until all partitions have only one vertex. When it halts, a hierarchical tree of partitions is

formed in which the root node is the partition of the whole network and the leaves are all

single-vertex partitions. A virtual node is designated foreach partition, and the virtual node

of a parent partition and the virtual node of its child partitions are connected using a link

with half the parent partition diameter. These virtual nodetogether form a hierarchical tree,

and is called al-hierarchically well-separated tree (l-HST). The choice of a random radius

in each partitioning step makes the probability of a short edge being cut by partitioning

decrease exponentially as one climbs the tree. Thus, it keeps the vertices close together in

the same partition in lower level of the tree.

In order to usel-HST for server placement, a maximum partition diameter bound D is

specified to limit the size of a partition. A greedy placementalgorithm usingl-HST always

maintains a list of partitions sorted in the decreasing order of the partition diameter. The

greedy algorithm always removes the partition with the largest diameter, and creates two

child partitions, one of which contains the vertices with a random radius of a chosen ver-

tex, and the other one contains the rest of the vertices in theparent partition. These child

partitions are then inserted in the sorted partition list for further processing. If the largest

partition of sink vertices has a diameter less than the maximum partition sizeD, the algo-

rithm halts, and a set of partitions each with a diameter lessthanD is obtained. A server

can be placed in a vertex of each partition of sink vertices.

77

4.1.5 Evaluation

To evaluate candidate server placement algorithms for multi-server RDS, we simulate these

algorithms on three classes of networks: random networks, unit torus networks and a na-

tional network. In a random network, a fixed number of vertices are randomly placed in

a unit square, and a fixed number of edges are randomly added between vertices to make

it a connected network. The number of edges is a random numberbetween three and four

times the number of vertices. If the number of edges reaches the fixed edge limit but the

network is still not connected yet, an existing edge is randomly moved to connect two other

random vertices. Sink vertices are randomly selected amongall vertices, each with a ran-

domly assigned demand in a range. In a unit torus network, each vertex is connected to its

four neighbors, forming a rectangular grid with “wrap-around” edges linking the top and

bottom rows as well as the leftmost and rightmost columns. All edges have a unit length.

The sink vertices are selected randomly with a random sink demand uniformly distributed

in a range. In the national network, we use the 50 largest metropolitan areas in the United

States [79] as 50 vertices. A set of cities are randomly selected as sink vertices, and each

city has a sink demand proportional to its population. The edges of the national network

are drawn based on the backbone networks of some national network service providers.

Some additional links are added to further increase the network density.

For simulations in random networks, we use random networks with 300 vertices and 100

sinks. For simulations in unit torus networks, we use 15 x 15 unit torus networks with

100 sinks. For simulations in the national network, we randomly select 32 sinks in each

simulation. In addition, each data point in the simulation results represents the average

value of the results from 100 different problem instances with the same specific parameters

(network sizes, number of servers, and number of sinks). Theaverage total costs of RDSs

generated by different server placement algorithms are measured and compared.

Simulation Results and Analysis

In Figure 4.3, we compare the total costs of subnetworks created by different server place-

ment algorithms to a lower bound (LB) in a unit torus network with no more than three

servers. Because of the small number of servers, we use exhaustive search to obtain the

78

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3

C
os

t (
M

bp
s

x
M

ile
s)

Number of Servers

Random

Transit Node

l-HST
Hot Spot

0-greedy
LB 2-greedy

1-greedy

Figure 4.3: Server placement algorithms comparison with optimal solutions obtained by
exhaustive searches for smaller numbers of servers in uniform torus networks.

79

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3

C
os

t (
M

bp
s

x
K

 M
ile

)

Number of Servers

Random
Transit Node

Hot Spot

l-HST

0-greedy LB 2-greedy

1-greedy

Figure 4.4: Server placement algorithms comparison with optimal solutions obtained by
exhaustive searches for smaller numbers of servers in random networks.

lower bounds. As showed in the plot, all classes of greedy algorithms achieve results very

close to the optimal solutions. In particular, the 2-greedyalgorithm produces the optimal

solutions for problems with no more than three servers, because it is essentially conducting

exhaustive search just like the lower bound algorithm. Similarly, the 1-greedy algorithm

produces optimal solutions for single server RDS. These greedy algorithms produce good

solutions because they go through different combinations of server locations to find a good

solution, and resemble the search-based algorithms whenl becomes large. Thel-HST al-

gorithm has very good performance, next to the greedy algorithms. The Hot Spot algorithm

does not perform well for networks with smaller numbers of servers, but the performance

improves when the number of servers increases. The Transit Node algorithm produces the

worst results that are comparable to the random placement algorithm. This is because the

outdegree of a vertex in a uniform torus network is always four, and the Transit Node algo-

rithm ends up picking up arbitrary server locations as in therandom placement algorithm.

80

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3

C
os

t (
M

bp
s

x
K

 M
ile

s)

Number of Servers

Transit Node

Hot Spot

l-HST

Random

0-greedy LB 2-greedy

1-greedy

Figure 4.5: Server placement algorithms comparison with optimal solutions obtained by
exhaustive searches for smaller numbers of servers in the national networks.

In Figure 4.4, we compare the total costs of subnetworks created by different server place-

ment algorithms to a lower bound (LB) in a random network withno more than three

servers. The results are very similar to those in the uniformtorus networks, except for the

results of the Transit Node algorithm. Specifically, the greedy algorithms have the overall

best solutions; thel-HST algorithms produces solutions better than other non-greedy al-

gorithms, but its advantages over the Hot Spot algorithm reduces as the number of servers

increases; the Transit Node algorithm has performance onlyslightly better than the random

placement algorithm, showing that placing servers on nodeswith large outdegrees does not

significantly reduce the cost of the network; the random placement algorithm has the worst

overall results.

In Figure 4.5, we compare the total costs of subnetworks created by different server place-

ment algorithms to a lower bound (LB) in a national network with no more than three

servers. The results are similar to those in the random and torus networks.

81

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

C
os

t (
M

bp
s

x
M

ile
)

Number of Servers

Random

Transit Node

Hot Spot

l-HST

0-greedy
1-greedy

2-greedy

Figure 4.6: Comparison of server placement algorithms in uniform torus networks.

82

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9 10

C
os

t (
M

bp
s

x
K

 M
ile

)

Number of Servers

Random

Transit Node

Hot Sopt

l-HST

0-greedy
2-greedy

1-greedy

Figure 4.7: Comparison of server placement algorithms in random networks.

Figure 4.6 shows the results of different server placement algorithms in a unit torus network

with up to 10 servers. The results are similar to those in Figure 4.3. All greedy algorithms

get the best performance. Thel-HST algorithm outperforms the other non-greedy algo-

rithm when there are less than eight servers. The Hot Spot algorithm does not perform well

when there are small numbers of servers, but the results improve as the number of servers

increases. The results improve more quickly than thel-HST algorithm, and the Hot Spot

algorithm eventually produces better results when there are more than eight servers. The

Transit Node algorithm still performs comparably with the random placement algorithm,

which has the worst performance.

Figure 4.7 shows the results of different server placement algorithms in a random network

with up to 10 servers. The results are similar to those in Figure 4.4. All greedy algo-

rithms get the best performance. Thel-HST algorithm outperforms the other non-greedy

algorithm when there are small numbers of servers, but the Hot Spot algorithm eventually

improves over it when there are more than seven servers. The Transit Node algorithm still

83

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6 7 8 9 10

C
os

t (
M

bp
s

x
K

 M
ile

)

Number of Servers

l-HST

Random

Transit Node

Hot Spot

0-greedy
1-greedy

2-greedy

Figure 4.8: Comparison of server placement algorithms in the national network.

performs relatively worse than other non-random algorithms, and the random placement

algorithm has the worst performance.

The results in the national network with up to 10 servers showed in Figure 4.8 reveal the

similar results as in Figure 4.5. All greedy algorithms get the best performance. Thel-

HST algorithm outperforms the other non-greedy algorithm when there are small numbers

of servers, and the Hot Spot algorithm improves over it when there are more than eight

servers. The Transit Node algorithm still performs relatively worse than other non-random

algorithms, and the random placement algorithm has the worst performance.

These simulation studies indicate that thel-greedy algorithms can produce solutions with

lower costs than the other server placement algorithms. However, because they use an ap-

proach approximating an exhaustive search in the solution space, they have high computa-

tional complexity whenl is greater than 2. On the other hand, solutions created by 0-greedy

and 1-greedy algorithms have lower cost than the solutions produced by the other server

84

placement algorithms with low computational complexity. Therefore, these two greedy al-

gorithms are good choices for determining the server locations for the configuration of a

multi-server RDS when the number of servers is much smaller than the number of sinks.

4.2 Dynamic Load Redistribution in Multi-server RDS

4.2.1 Server Load Unbalance in a Multi-Server RDS

In an RDS, software or hardware failure can make a server incapable of providing service

to its assigned sinks. In a single-server RDS, such server failure will cause interruption

of quality of service to customers. In a multi-server RDS where a number of replicated

servers exist, the demands from the customers to the failed server can be redirected with a

redirection subnetwork to other unaffected servers which have some extra capacity so that

the interruption to quality of service can be minimized. We study the configuration of a

redirection subnetwork infrastructure to provide improved tolerance to server failures in a

multi-server RDS in the remainder of this chapter.

The redirection subnetworks improve the tolerance to server failures, but they also increase

the communication cost because of the additional bandwidthreserved on the links in the

redirection subnetworks that is not used under normal conditions. In particular, to con-

figure the redirection subnetwork that handles the failure for a specific server, we can re-

move the potentially failing server vertex from the networkand rerun the multi-server RDS

configuration algorithm. The additional edges and extra reserved bandwidth in the newly

created RDS constitutes the redirection subnetwork for that server. However, if we use this

method to deal with a potential failure ofanyone of thek servers, we would end up with

k different redirection subnetworks. Each redirection subnetwork will be used when the

specific server fails. It is unlikely that all these redirection subnetworks will share many

of their edges and reserved bandwidth, and thus this could incur high communication cost

overhead. Although this configuration can ensure that everypossible server failure can

be handled effectively, the additional cost of the reservedbandwidth on the links in the

redirection subnetworks could be prohibitively high.

85

An alternative solution is to set up a common redirection subnetwork shared by a group of

servers, instead of one redirection subnetwork for each server that will fail potentially. If

one server fails, the demands of the sinks to the failed server can be redirected only to the

other servers in the same group through the redirection subnetwork. Although this type of

redirection subnetwork limits the choice of the servers that traffic can be redirected to, and

may have higher communication cost than an individual redirection subnetwork dedicated

to a specific single server, it reduces the number of separateredirection subnetworks and the

total amount of reserved bandwidth in the redirection subnetworks, and can be expected to

have a lower cost than the collective total cost of all the individual redirection subnetworks

for individual servers in the group. We will focus on this type of redirection subnetwork in

our study in this chapter.

We must configure the redirection subnetworks with two goalsin mind: first, we must be

able to satisfy the demand of sinks affected by the failed server as much as possible. This is

largely determined by the amount of additional reserved bandwidth in the redirection sub-

network and the extra capacity of the healthy servers in a server group. Second, we must

keep the extra communication cost and bandwidth reservation incurred by the redirection

subnetworks as low as possible. The cost of a link in a redirection subnetwork is deter-

mined with the same concave link cost function of the averagetraffic on the link, as in the

RDS configuration problem. Thus, reusing the existing RDS links when configuring the

redirection subnetworks would reduce the additional cost incurred by the extra bandwidth

in the redirection subnetworks.

In order to implement dynamic load redistribution, we first assign each serversi an extra

capacityCi
r to handle extra demands from the sinks of failed servers.Ci

r can be either a

fixed amount or a fraction of the original server capacity. Weonly discuss the case with

fixed extra capacityCi
R = Cr in this dissertation for simplicity.We also focus our attention

on the case of single server failure.

The two subsequent sections will study the configuration algorithms for a redirection sub-

network for groups of servers of different sizes. We start with the study of the simplest

redirection subnetworks for server pairs, and then extend our study to redirection subnet-

works for groups of four servers. Optimal redirection subnetwork solutions for server pairs

can be obtained efficiently because the amount of redirection traffic is fixed between two

86

servers. When there are more than two servers, an approximation algorithm is needed to

find a good solution efficiently for networks of practical sizes.

4.2.2 Configuration of Redirection Subnetworks for Server Pairs

Problem Statement

We start with the configuration of the simplest redirection subnetworks in a multi-server

RDS. Specifically, we find a peer server for each server to forma server pair in a multi-

server RDS. If a server in this server pair fails, the sink demands for the affected server

will be redirected to the other server through a common redirection subnetwork for the pair

of servers. The additional communication cost is the cost ofthe reserved bandwidth in

the redirection subnetwork for the server pairs. An overalloptimal redirection subnetwork

includes all the server pairs. We only consider the cases foreven numbers of servers.

Using the existing notations from the early part of this chapter, the redirection subnetwork

configuration problem for server pairs can be formally specified as follows: given a pair

of serverssi, sj and their subnetworks of the RDS,Gi = (Vi, Ei) andGj = (Vj , Ej).

A redirection subnetwork is defined by a bidirectional path joining si andsj that can be

divided into three parts,Pi, P andPj , wherePi contains only vertices inVi, Pj contains

only vertices inVj andP contains only vertices that are in neitherVi nor Vj . Let Gij =

(Vij, Eij) be the graph formed by combiningGi, Gj and this path. For each edge(u, v)

on the path, we require that the edge capacity equal the demand of all the sinks reachable

from v in the graph(Vij, Eij − {(v, u)}). An example illustrating these definitions appears

in Figure 4.9. The two original subnetworks shown in Figure 4.9(a) are connected with the

redirection subnetwork to form an augmented subnetwork shown in Figure 4.9(b). Note

that this changes some of the original capacities. The cost of links in Gij is determined

using the same cost function as for the original RDS configuration problem. The cost of

Gij is the sum of its edge costs. The cost of pairingsi with sj is cost ofGij− (cost ofGi+

cost ofGj).

The redirection subnetwork configuration problem partitions the set of servers into pairs,

with the objective of minimizing the overall cost and can be solved optimally using a

weighted matching algorithm. We define a new complete graph consisting of only servers,

87

a

b

2

si

c

e

d

3

2

3

3

5 5

3

3

2

2
Capacity

Demand
zyw

x

2

2
4

2

2

3

6

4 2

3

sj

3

(a) Original subnetworks.

a

b

2

si

c

e

d

3

2

3

3

5 16

3

3

2

zyw

x

2

2
4

2

9

3

6

4 2

3

sj

15

11

13

11

13

11

13

83

(b) Augmented subnetwork.

Figure 4.9: An example redirection subnetwork for a server pair.

and define the weight of an edge as the cost of pairing the two vertices on both ends of

the edge. A minimum weight maximum size matching on this complete graph gives us the

least-cost way of pairing the servers.

The algorithm is described in the following pseudo code:

For any serversi

Compute incremental cost on all links

Compute the shortest path tree fromsi using incremental costs as edge lengths

Derive a complete graphGs of servers only,

with the least cost between two servers as edge lengths

Find the minimum weight maximum matchingM in Gs

For each pair of matched servers(si, sj),

connectsi to all sinks inGj with the paths in the shortest path tree

connectsj to all sinks inGi with the paths in the shortest path tree

end

88

4.2.3 Configuration for Redirection Server Group

Problem Statement

Although redirection subnetworks for server pairs in a multi-server RDS are simple and

produces optimal solutions, it requires that every server must be over-engineered by a factor

of 2 to handle the redirected traffic from the peer server in its server pair. If we organize

larger groups of servers, we can still recover from any single server failure, but each server

in the group requires less extra capacity and handles less extra demand than a server in a

server pair. Specifically, If there arem servers in each server group, a server only needs to

be over-engineered by a factor ofm/(m − 1), and has extra capacity to handle1/(m− 1)

extra sink demand. However, when the groups of servers grow larger, the optimal solution

can no longer be efficiently obtained because a solution depends on how the extra capacity

is distributed among the servers, which greatly increases the size of the solution space.

On the other hand, the search based exact algorithm is impractical for real world network

configuration problems, which can have hundreds of sinks. Thus, we study the efficient

solutions to configuration problem for redirection subnetworks for groups of more than

two servers using approximation algorithms. We limit our study to groups of four servers

because it reduces the reserved extra server capacity by2/3 and is more practical in real

world applications.

The redirection subnetwork configuration problem for server groups can be similarly de-

scribed as follows: given four serverssi, sj, sk, sl and their subnetworks of a multi-server

RDS,Gi = (Vi, Ei), Gj = (Vj, Ej), Gk = (Vk, Ek), andGl = (Vl, El). A redirection for

the group of four servers is defined by a subgraph that consists of a center vertexC and

four bidirectional paths joiningC and each of the four servers. Each path can be divided

into two parts: the path fromC to si can be divided intoPi andPCi, wherePi contains only

vertices inVi, andPCi contains only vertices not in any ofVi, Vj, Vk, andVl. Similarly,

the path fromC to sj is divided intoPj andPCj, the path fromC to sk is divided intoPk

andPCk, and the path fromC to sl is divided intoPl andPCl. Let GC = (VC , Ec) be the

graph formed by combiningGi, Gj, Gk, Gl and this subgraph. For each edge(u, v) on the

path fromC to any of the servers, we require that the edge capacity equalthe demand of

all the sinks reachable fromv in the graph(VC , EC − {(v, u)}). For each edge(u, v) on

the path fromsi to c, we require that the edge capacity equal to one third of the maximum

89

total demand tosj, sk andsl plus the demand of all the sinks reachable fromv in the graph

(Vi, Ei−{(v, u)}). The capacity on edges fromsj, sk andsl are similarly assigned. An ex-

ample illustrating these definitions appears in Figure 4.10. The four original subnetworks

shown in Figure 4.10(a) are connected to a center vertexC with the redirection subnetwork

paths to form an augmented subnetwork shown in Figure 4.10(b). Note that this changes

some of the original capacities. The cost of links inGc is determined using the same cost

function as for the original RDS configuration problem. The cost ofGC is the sum of its

edge costs. The cost of connecting the four servers is cost ofGC − (cost ofGi+ cost of

Gj+ cost ofGk+ cost ofGl). The redirection subnetwork configuration problem partitions

the set of servers into groups of four servers, with the objective of minimizing the overall

cost and can be approximately solved using an approximationalgorithm.

Configuration Algorithm

The redirection subnetwork configuration for a group of fourservers starts with the redi-

rection subnetwork configuration for server pairs. First, the optimal server pairs are found

using the configuration algorithm for server pairs. This reduces the number of four-server

combinations that have to be checked. Instead, only pairs ofthe optimal server pairs are

checked to determine the four-server groups. Specifically,we take each pair of server pairs

obtained in the first phase,(si, sj) and(sk, sl), and find the best redirection subnetwork for

this set of four servers. The best redirection subnetwork for the four servers is determined

by trying all possible center vertices for the four servers,and using the center vertex re-

sulting in the least cost redirection subnetwork. When all the best redirection subnetworks

for all server pairs are determined, use the cost of the redirection subnetwork for the server

pair (si, sj) and(sk, sl) as the weight joining(si, sj) with (sk, sl) on a complete graph con-

sisting all server pairs from the first phase. We then find the minimum weight maximum

size matching in this derived complete graph, and the resulting matching corresponds to

the groups of four servers for the best redirection subnetworks.

When the groups of four servers are determined as pairs of server pairs, we then use the

center vertex for each matched pair of server pairs as the center node for the group of the

four servers in the pair of server pairs. The incremental cost from the center node to each

server of the four subgraphs isCr, and the incremental cost from each of the four server to

the center node isCr/3. The total incremental cost for a specific group of four servers is

90

2

si3

2

3

2

5 5

3

3

2

2
Capacity

Demand

2

2
4

2

2

4

6

4 2

4

sj

2

sk

3

3

3

2

3

6

2

2

2 2

3

3 4

3
2

sl

3

6

2

12
4

2

Sink

(a) Original subnetworks.

2

si3

2

3

2

5 9
2

2

12

4
2

4

6

4 2

4

sj

2

sk

3

3

3

2

3

2

2

2

3

3 4

2

sl

2

16
4

4

12

7
7

10

6

6

10

12

4 4

6

9

8

6

7

9

9

4

2

2

12
C

3

2

3

(b) Augmented subnetwork.

Figure 4.10: An example redirection subnetwork for a four-server group.

91

the sum of total cost of the redirection subnetwork connecting the center node and all four

servers.

The following pseudo code describes the configuration algorithm:

Run configuration algorithm for server pairs

For every pair of server pairs(si, sj) and(sk, sl) produced in the first phase,

For each vertexc,

Compute incremental cost with flow increment ofCr

betweenc and each ofsi, sj,sk, andsl

Compute shortest path tree with incremental costs as edge lengths

Compute the cost of the resulting shortest path tree

Find the center nodeC for si, sj ,sk, andsl with the least cost

Create the complete graphG′ of all server pairs

Find the minimum weight maximum matchingM in G′

For each group of the matched servers,

Connect the center nodeC of the four server to the subgraphs

with appropriate reserved bandwidth

end

4.2.4 Experimental Results

We study our redirection subnetwork configuration algorithm with simulation studies on

three classes of networks: random networks, national networks, and unit torus networks.

In a random network, a fixed number of vertices are randomly placed in a unit square,

and a fixed number of edges are randomly added between vertices to make it a connected

network. The number of edges is a random number between threeand four times the

number of vertices. If the number of edges reaches the fixed edge limit but the network is

still not connected yet, an existing edge is randomly moved to connect two other random

vertices. Sink vertices are randomly selected among all vertices, each with a randomly

assigned demand in a range. In a unit torus network, each vertex is connected to its four

neighbors, forming a rectangular grid with “wrap-around” edges linking the top and bottom

rows as well as the leftmost and rightmost columns. All edgeshave a unit length. The sink

92

vertices are selected randomly with a random sink demand uniformly distributed in a range.

In the national network, we use the 50 largest metropolitan areas in the United States [79]

as 50 vertices. A set of cities are randomly selected as sink vertices, and each city has a sink

demand proportional to its population. The edges of the geographical national network are

drawn based on the backbone networks of some national network service providers. Some

additional links are added to further increase the network density.

For simulations in random networks, we use random networks with 300 vertices and 100

sinks. For simulations in unit torus networks, we use 15 x 15 unit torus networks with

100 sinks. For simulations in the national network, we randomly select 32 sinks in each

simulation. For simulations in random and unit torus networks, we use networks with 4, 8,

12 and 16 servers; while for simulation in the national network, we use 4, 8 and 12 servers.

In addition, each data point in the simulation results represents the average value of the

results from 10 different problem instances with the same specific parameters (network

sizes, number of servers, and number of sinks). The error bars in the results show the range

of these results. The unit of the network cost is Mbps×Miles.

Figure 4.11 shows an example redistribution subnetwork fora server pair in the national

network topology. In this example, there are two servers in Chicago and San Francisco

(marked with larger squares), each connecting to a set of sinks (marked with smaller

squares) with certain traffic demands. The original RDS links are marked with thick solid

lines, and the redirection subnetwork links connecting thetwo subnetworks through Las

Vegas and St. Louis are marked with thick dashed lines.

Figure 4.12 shows an example redistribution subnetwork fora group of four servers in the

national network topology. In this example, the four servers are in Chicago, New York

City, Orlando, and San Francisco (marked with larger squares), each connecting to a set of

sinks (marked with smaller squares) with certain traffic demands. The original RDS links

are marked with thick solid lines. The center node is at Oklahoma City (marked with a

large circle, and the additional redirection subnetwork links are marked with thick dashed

lines.

Figure 4.13, Figure 4.14 and Figure 4.15 show the total costsof the RDSs with and with-

out redirection subnetworks in random networks, national networks and torus network,

respectively. The curves labeled “Base RDS” are the costs ofRDSs with no redirection

93

Sink

Server
Redirection Link

Figure 4.11: An example server-pair redirection subnetwork in the national network
topology.

94

Sink

Server

Center

Redirection Link

Figure 4.12: An example redirection subnetwork for groups of four servers in the national
network topology.

95

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 12 16

C
os

t (
M

bp
s

x
K

 M
ile

)

Number of Servers

Group of
4 Servers

Server Pairs

Base RDS

Figure 4.13: Simulation results of redirection subnetworkin random networks.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 4 8 12 16

C
os

t (
M

bp
s

x
M

ile
)

Number of Servers

Group of
4 Servers

Server Pairs

Base RDS

Figure 4.14: Simulation results of redirection subnetworkin torus networks.

96

 0

 500

 1000

 1500

 2000

 2500

 4 8 12

C
os

t (
M

bp
s

x
K

 M
ile

)

Number of Servers

Group of
4 Servers

Server Pairs

Base RDS

Figure 4.15: Simulation results of redirection subnetworkin the national network.

subnetworks, the curves labeled with “Server Pairs” are thecosts of RDSs with redirection

subnetworks for server pairs, and the curves labeled “Groupof 4 Servers” are the cost of

RDSs with redirection subnetworks for groups of four servers. As these plots show, when

the number of servers increases, the costs of the RDSs drop, and the additional cost of

redirection subnetworks is small, relative to the total communication cost of an RDS. They

also show that although redirection subnetworks for serverpairs can get optimal solution,

the additional communication cost incurred by the additional reserved bandwidth is higher

than those of the subnetworks for groups of four servers.

4.3 Summary

This chapter studies two issues in a multi-server RDS, the configuration problem for a

multi-server RDS and the dynamic load redistribution in a multi-server RDS. The config-

uration of a multi-server RDS can be similarly formulated asa configuration problem for

a single-server RDS. However, the key issue of optimal placement of servers makes the

97

multi-server RDS configuration problem complicated. A number of server placement algo-

rithms are evaluated using simulation studies. Our simulation results show that a class of

greedy server placement algorithms render the best solutions. The second part of this chap-

ter studies the configuration algorithm of redirection subnetworks in a multi-server RDS

such that temporary server overloading can be resolved by redirecting traffic to backup

servers in a group with extra capacity. We presented solutions for configuration of traffic

redirection subnetworks for server pairs and for groups of four servers.

98

Chapter 5

Source Traffic Regulation in Reserved

Delivery Subnetworks

The previous chapters show that reserved delivery subnetworks (RDSs) can provide more

consistent quality of service to users by reserving bandwidth on an aggregate basis. Be-

sides the benefit of exclusive bandwidth access, there are other potentials to further im-

prove end-to-end performance in an RDS because the end hostscan utilize the knowledge

about the underlying network to achieve better performancethan in the ordinary Internet.

In this chapter, we propose a source traffic regulation technique to improve end-to-end

performance in the environment of an RDS. The basic idea is toregulate the traffic from

a server to sink end hosts such that bandwidth usage does not exceed the reserved link

bandwidth and overloaded sinks do not affect other well behaved sinks. We propose a

per-connection as well as an aggregated source traffic regulation algorithm for both single

server and multi-server RDSs. We evaluate our algorithms with simulation studies in the

ns-2network simulator, and outline implementations on end hosts, proxies, and as loadable

modules on extensible routers.

The rest of the chapter is organized as follows: Section 5.1 briefly discusses the motivation

for source traffic regulation in an RDS. Section 5.2 describes and analyzes the unbalanced

bandwidth utilization problem in an RDS. In Section 5.3, we present both per-connection

and aggregated source traffic regulation algorithms for single server RDSs. These algo-

rithms are modified in Section 5.4 to suit an RDS with multipleservers. Details of our

simulation studies are presented in Section 5.5 along with simulation results and analysis.

We discuss algorithm implementation options on various platforms in Section 5.6. Sec-

tion 5.7 summarizes this chapter.

99

5.1 Introduction

As we showed clearly in the preceding chapters, the exclusive bandwidth access in an

RDS can improve end-to-end performance, especially duringextreme situations when the

network is under attack. In addition to the benefits of exclusive bandwidth access, we want

to show that there is potential for more end-to-end performance improvements in an RDS.

As Savage et al. [70] pointed out, the transport protocols intoday’s Internet are highly

conservative, because they have to deal with the underlyingnetwork as a black box with

unknown characteristics. On the other hand, if some information about the underlying

network is available, end-to-end performance can be improved.

Unlike the ordinary Internet, servers in an RDS have information about the underlying net-

work, including topology and reserved bandwidth. By utilizing this available information,

we can make end-to-end performance improvements that are not possible in the ordinary

Internet.

One possible end-to-end performance improvement in an RDS can be found in solutions to

the unbalanced bandwidth utilization problem. In particular, in an RDS, when a sink node

is under sustained overload, traffic flows to the overloaded sink consume more reserved

bandwidth from the source than its fair share of the reservation. Because all traffic flows

from the source node share the reserved bandwidth, flows to other sink nodes with lighter

loads also get blocked. In addition, links close to the sink nodes with light traffic loads suf-

fer from poor bandwidth utilization. This results in inefficient use of reserved bandwidth,

reduced service quality, and sink starvation problems in anRDS. This situation can be mit-

igated by regulating the traffic flows at which the source nodesends to the overloaded sink

nodes so that these traffic flows do not interfere with flows to other unaffected sink nodes.

In this chapter, we present source traffic regulation techniques to improve end-to-end per-

formance in the context of an RDS. These techniques may be extended to general overlay

networks with reserved bandwidth. The idea of source trafficregulation was inspired by

the distributed queueing packet scheduling algorithms in packet switches [58]. In a packet

switch, when an output port is under sustained overload, thequeues at the intermediate

switch elements fill up, causing packet drops in the traffic flows to other sinks on other

output ports that should otherwise be unaffected. To mitigate this problem in a packet

100

switch, the packets are scheduled in such a way that the traffic flows to all output ports are

in accordance with the bandwidth available at the output ports, avoiding internal blocking.

Similar ideas can be applied to an RDS to improve the bandwidth utilization and thus end-

to-end performance. There are two goals: first, we want to avoid excessive traffic flows on

the RDS links; second, we want to keep the bandwidth utilization high so that the resources

are not wasted. We present a basic per-flow source regulationalgorithm and an aggregated

regulation algorithm. More general regulation algorithmsfor multi-server RDSs are also

outlined. We evaluated the regulation algorithms with simulation studies using the ns-

2 network simulator [80]. In addition, we describe the implementation of the regulation

algorithms on end hosts, performance enhancing proxies, and extensible routers.

5.2 Unbalanced Bandwidth Utilization Problem in RDSs

In an RDS, when a sink node is under sustained overload, and the demand is kept on a

higher than average level, the traffic flow to such a sink will consume more bandwidth than

it should on links in the path from the source. This bandwidthover-consumption will lead

to an undesirable situation where the other sinks sharing some of the same upstream links

to the source receive less bandwidth than their fair shares,even though the links close to

these sinks have sufficient reserved bandwidth. As a result,the reserved bandwidth on these

links is under utilized, and the users at the locations of these affected sinks will experience

reduced quality of service.

Take a simple RDS in Figure 5.1 for example. There are three sinks (a, b, c), and the source

is s. Assume each sink has a number of connections tos, and the traffic on each connection

is a bursty on/off flow. Each traffic flow has an average burst (or “on”) time of 0.5 seconds,

an average idle (or “off”) time of 9.5 seconds, and a burst rate of 20 Mbps. The average

bandwidth of each flow is therefore1 Mbps. We use 1K bytes packets. If a flow uses a TCP

connection, the maximum window size is set to 250 packets, or250KB. In the example in

Figure 5.1, each sink has 70 connections on average, and thusan average demand of70

Mbps.

101

b

c

s

175

175

175

280

390

a

r1

r2

Figure 5.1: A simple single-server RDS example.

The reserved bandwidth to satisfy these sink demands are labeled along the links (in units of

Mbps) in the figure. The reserved bandwidth on a link is set to accommodate the average

traffic plus three times the standard deviation of the aggregate flow. For a link withn

flows on average, the aggregate standard deviation is about20
√

npq, wherep = 0.95

andq = 0.05. Thus, link(r1, a), (r2, b) and(r2, c) all get a reserved bandwidth of about

175 Mbps, link (r1, r2) gets about280 Mbps, and link(s, r1) gets about390 Mbps. The

transmission delays on the links(s, r1), (r1, a), (r1, r2), (r2, b), (r2, c) are25 ms,25 ms,50

ms,25 ms,75 ms, respectively. Thus, the round trip delay is100 ms fora, 200 ms forb, and

300 ms forc. The queue length on a link is configured to be equal to the bandwidth-delay

product for the largest round trip delay through that link.

Initially, each sink has 100 flows, 30 more than its average; after 30 seconds, sinkc sud-

denly has 200 more flows, indicating an overloading condition. All traffic flows stop after

60 seconds. In theory, initially, all sinks should receive100 Mbps on average. After 30 sec-

onds, when the path toc becomes congested,a should get about78 Mbps. b andc should

get78 Mbps and234 Mbps on average on link(s, r1), respectively. Therefore, traffic tob

andc will congest link(r1, r2). b will get 70 Mbps on average,c will only get 210 Mbps on

average on(r1, r2), and eventually an average of175 Mbps after link(r2, c).

102

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

c

a

b

Figure 5.2: Unbalanced bandwidth utilization problem for bursty UDP traffic flows in the
example network simulation. The received bandwidth measured shown in this plot is the

moving average of the past five seconds.

103

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

c

a

b

Figure 5.3: Unbalanced bandwidth utilization problem for CBR UDP traffic flows in the
example network simulation.

104

Fig. 5.2 and Figure 5.3 plot the total sink perceived bandwidth of the three sinks in our

simulation run in ns-2, demonstrating the unbalanced bandwidth utilization problem in this

simple RDS. In the test results shown in Figure 5.2, we use thebursty flows as described.

In comparison, in the test results shown in Figure 5.3, we useconstant bit rate (CBR)

traffic to do the same tests. Each CBR flow is1 Mbps. In these tests, all connections are

UDP connections. As we can see, all sinks can get an average bandwidth of 100 Mbps

initially, but after 30 seconds, whenc becomes overloaded, and gets bandwidth close to

175 Mbps, which is the maximum bandwidth allowed by the reservation on the last link,a

andb only get about75 Mbps each on average, down by25%. The effects are more clear

in Figure 5.3 when there is no burstiness. It actually confirms our estimated bandwidth.

These tests show thata andb can not get their fair share of reserved bandwidth becausec

over-consumes the reserved bandwidth by overloading the path from the source, although

there is plenty of bandwidth on the last link toa and b. Ideally, a and b should not be

affected by the overload atc, and onlyc should be penalized for its excess traffic. However,

c uses more than its fair share of the reserved bandwidth, reducing the quality of service to

a andb.

In addition, these results show that the bursty traffic flows and CBR flows exhibit about the

same average bandwidth, but the bursty traffic makes the results harder to interpret. We

will use only CBR traffic in the rest of this chapter.

A similar problem with all TCP traffic flows is shown in Figure 5.4. We use the same

CBR traffic sources on all TCP (Reno) connections. In this case, initially, all flows try to

acquire the maximum available bandwidth, causing bandwidth surges. When congestion

occurs, all sinks fall back to their fair share of bandwidth at about100 Mbps. After 30

seconds, the received bandwidth fora andb drop to as low as about65 Mbps and72 Mbps

respectively, while the additional new flows makec surge to about175 Mbps. Flows toa

andb eventually stabilize at about100 Mbps available bandwidth after about 12 seconds.

The received bandwidth atc drops to about85 Mbps after congestion is encountered, and

eventually stabilizes at175 Mbps after 12 seconds.

Such an unbalanced bandwidth utilization problem on RDS links and reduced bandwidth

on affected sinks is similar to the blocking problem in a packet switch with a sustained

overload at an output port. By applying similar ideas to those used in distributed queueing

algorithms for packet switches [58], these problems can also be resolved in an RDS, and

105

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

c

a

b

Figure 5.4: Unbalanced bandwidth utilization problem for CBR TCP traffic flows.

106

end-to-end performance improvements can be achieved. The essential idea of the solution

is to regulate the transmission rates of the source node according to the data backlog to in-

dividual sinks in such a way that bandwidth utilization on links is balanced and maintained

at high levels, and the quality of service at a sink is not be affected by other overloaded

sinks.

5.3 Source Traffic Regulation in a Single Server RDS

5.3.1 Per-connection Traffic Regulation

We first present the source traffic regulation algorithm thatregulates the source traffic on

each individual connection. A transport protocol, such as TCP, keeps the status information

about an individual connection on hosts at both ends of the connection (for example, the

socket, the Internet PCB and the TCP PCB data structures in a BSD implementation). In

order to implement source traffic regulation, we need to include additional information for

each connection. Specifically, we need to keep track of how fast the receiver is consuming

data from the source, how much data is waiting to be forwardedto the receiver at the source,

and how much data is to be transmitted to the receiver at the sink. By receiver, we mean

the user application that is consuming data at the sink end ofthe connection.

At the source, for each connection with a receiverx, we define the input data backlogBi(x)

as the amount of data that the source has to send to the receiver x, the output data backlog

Bo(x) as the amount of data awaiting delivery to the receiverx at the sink, and the drain

rater(x), the rate at which the receiverx consumes data from the sink. The drain rate and

output data backlog for a connection can be constantly measured at the sink that monitors

the flows to end hosts. This information is then fed back to thesource on a regular basis.

A virtual sink queue(VSQ) is maintained for each connection at the source to keeptrack

of the input data backlog to the receiver at the other end of the connection. The VSQ is the

counterpart of avirtual output queue(VOQ) used on the input port of a router to keep track

of data to be forwarded to a specific output port [58].

The source regulates the transmission rate on each active connection based on its input

data backlog, its output data backlog and the receiver drainrate, subject to the reserved

107

Bi(1)

Bo(1)

Bo(2)

Bi(2)

Bi(3)

Bi(4)

Bi(5)

Bo(3)

Bo(4)

Bo(5)

C1

C2

C3

C4

C
C4

C3

C1

C2

r(1)

r(2)

r(3)

r(4)

r(5)

R(1)

R(2)

R(3)

R(4)

R(5)

Sink 1

Sink 2

Sink 3

Figure 5.5: Per-connection traffic flow regulation.

bandwidth constraints. To enforce the reserved bandwidth constraint on all end-to-end

paths, the underlying RDS topology along with the reserved bandwidth on all links within

the RDS are kept at the source. The source keeps checking the total transmission rates on

all links against the reserved bandwidth to ensure the transmission rates do not exceed the

reserved bandwidth.

Figure 5.5 shows an example per-connection traffic flow regulation scenario. In this exam-

ple, there are three sinks, and five end-to-end connections to five receivers (1 through 5) at

different sinks. The total reserved bandwidth allocated for the source isC, and the reserved

bandwidth on the other links areC1, C2, C3, andC4, as labeled on the diagram. Assume

the source assigns a transmission rateR(x) to each receiverx. These transmission rates are

108

subject to the reserved bandwidth constraints:

R(3) ≤ C2

R(1) + R(2) ≤ C1

R(4) + R(5) ≤ C3

R(1) + R(2) + R(3) ≤ C4

R(1) + R(2) + R(3) + R(4) + R(5) ≤ C

If all the constraints above are enforced, none of the bandwidth reservation is exceeded.

The source traffic regulation algorithm determines the transmission rate on each active con-

nection, based on the data backlogs on both server and sink sides as well the draining rates

on individual connections. It always tries to allow the active connections with the shortest

time to drain their output data backlogs to transmit first because these connections are not

overloaded, and should not affected by other overloaded connections. In addition, when all

the output backlogs are all relatively small, then the active connections with smaller input

data backlogs will transmit first to avoid overloaded connections. Therefore, the active con-

nections that are least likely overloaded are given the priority to transmit first, thus limiting

the impacts of overloaded connections.

If we denoteT as the scheduling interval (the interval between two updates of the output

data backlog and drain rate information from the sinks), thesource can regulate traffic at

each intervalT using the following algorithm:

For each active connection with receiverx,

Output draining timet(x) = B0(x)/r(x)

For all active connections with draining time< T ,

Sort these connections by input backlogBis in an increasing order

For each active connection with receiverx (in sorted order)

Transmit atR(x) = min{Bi(x)/T, Ra(x)},
whereRa(x) is the min. available bandwidth on the end-to-end path tox

If Ra(x) > 0

For all active connections with draining time≥ T ,

Sort these connections by receiver draining timet(x) in an increasing order

109

For each active connection with receiverx (in sorted order)

Transmit atR(x) = min{Bi(x)/T, Ra},
end

This algorithm attempts to clear the data backlogs that can be drained quickly first by sort-

ing the connections by the estimated drain time in an increasing order. For a connection

with the shortest estimated drain time, compare its input data backlog with the traffic al-

lowed by the remaining reserved bandwidth along the path from the source to the sink. The

remaining reserved bandwidth is the difference between theoriginal reserved bandwidth

and the bandwidth already used by the connections with shorter estimated drain time. If

the input data backlog is greater than the amount of data allowed by the remaining reserved

bandwidth on the path, then send data to use up the remaining reserved bandwidth. If the

remaining bandwidth allows for more data to be transmitted than the input data backlog,

then let the input data backlog be cleaned out before the nextupdate interval, and update

the remaining reserved bandwidth along the path accordingly. If there is still remaining

reserved bandwidth after cleaning out an input data backlog, then try to allocate remaining

reserved bandwidth to the other connections to the same sinkthat have longer estimated

drain time, starting with the connection with the shortest estimated drain time. Repeat the

procedure until all input data backlogs are cleared, or all reserved bandwidth is consumed.

5.3.2 Aggregated Traffic Regulation

Although the additional per-connection information does not incur excessive amounts of

memory, the per-connection traffic regulation may require excessive computation when

there are many active flows. Therefore, we present an aggregated source traffic regula-

tion algorithm that reduces the overhead and maintains the efficiency and effectiveness for

large number of connections. In particular, a VSQ in the aggregate regulation algorithm

is maintained for eachsink instead of each connection, and each sink only maintains an

aggregated output data backlog forall connections that pass through, instead of one back-

log for each connection. Similarly, the sink measures the aggregate estimated drain rate

for all connections. All connections to the same sink share the sameinput backlog, output

backlog and drain rate. Besides these differences of data backlogs, the traffic regulation

algorithm works the same way. Figure 5.6 shows a simplified diagram of aggregate traffic

110

VSQ to sink 1

VSQ to sink n

Traffic Regulation

Source

.

.

.

RDS

.

.

.

Sink 1

Sink 2

Sink n

Figure 5.6: Aggregated traffic flow regulation.

flow regulation in contrast to the per-connection traffic flowregulation algorithm.

The aggregate traffic regulation algorithm works in the similar way as in the per-connection

regulation algorithm. We first sort the sinks by their estimated drain time in increasing

order. Then, we pick the VSQ with the shortest estimated drain time, and check if it is

sufficient to drain the aggregate input data backlog. If not,transmit as much as allowed by

the reserved bandwidth. Otherwise, clear out the input databacklog to that sink, and use

the remaining bandwidth for the other sinks with the shortest draining time first.

Besides the per-connection and aggregate regulation, another intermediate option is to as-

sign active flows to one ofm queues per sink, using a hash function. The semi-aggregate

traffic regulation algorithm treats each of them queues individually as if each queue has

one individual active connection. This intermediate solution has less overhead than the

per-connection regulation, and has more precise regulation of individual flows than the

total aggregate regulation.

It should be noted that source traffic regulation is coarse grained because rates are deter-

mined based on past information that lags by at least one round trip delay. The higher the

frequency of the control messages, the more accurate is the regulation, but with a tradeoff

of higher overhead.

111

5.4 Source Traffic Regulation in a Multi-server RDS

In an RDS with multiple sources, traffic flows from different sources could compete for

reserved link bandwidth. It is clear that as the number of source nodes increases, more

nodes are likely to be affected by overloaded sink nodes. Note, if the reserved bandwidth

is exclusively for an individual source node, the problem caused by an overloaded sink

is limited to flows from the same source. In this case, the single traffic flow regulation is

sufficient. However, in a multi-server RDS with shared reserved bandwidth among different

sources, more complicated traffic flow regulation algorithms should be used to account

for the additional sources. The major challenge is to coordinate the transmission rates

from different sources to the same sink without causing unbalanced bandwidth utilization

problems.

As shown in Figure 5.7(a), when there is more than one data source sending to a set of

sinks, one source has to consider other sources to the same sink when determining its

transmission rates. In particular, a source with a larger input backlog to a sink should get

higher transmission rate than the ones with smaller input backlogs. The traffic regulation

should also consider the output backlog and drain rates as for the single source case. In

addition, the reserved bandwidth constraints along all paths from a source to a sink should

be observed.

We need to modify our previous definitions to handle multiplesource nodes. One tricky

thing about multi-source traffic regulation is how a source can get information about input

backlogs of other peer sources. One solution is to let the sink collect source data backlog

information from all sources, and feeds it back to all the sources. Thus, a source not only

receives data backlog information from its sinks, but also sends out its input backlog to all

its sinks. A sink gathers this information and sends back to all sources. Another option is

to fully connect all sources and regularly exchange input data backlog information among

all sources. However, this requires another subnetwork among the peer servers, and does

not take advantage of the existing RDS infrastructure.

In this basic multi-source regulation algorithm, because asource needs to multicast its input

backlog to all its sinks or other sources, the control message overhead doubles, making

it less effective and less efficient when there is a large number of flows. In this case,

an aggregate multi-source traffic regulation algorithm is more favorable as it reduces the

112

VSQ to sink 1

VSQ to sink n

Traffic Regulation

Source 1

.

.

.

RDS

.

.

.

Sink 1

Sink 2

Sink n

VRQ from source 1

VRQ from source n

.

.

.

VRQ from source 1

VRQ from source n

.

.

.

VRQ from source 1

VRQ from source n

.

.

.

VSQ to sink 1

VSQ to sink n

Traffic Regulation

.

.

.

Source 2

(a) Basic multi-source traffic regulation.

VSQ to sink 1

VSQ to sink n

Traffic Regulation

.

.

.

RDS
.
.
.

Sink 1

Sink 2

Sink n
VSQ to sink 1

VSQ to sink n

Traffic Regulation

.

.

.

(b) Aggregated multi-source traffic regulation.

Figure 5.7: Multi-source traffic regulation.

113

control overhead. In the aggregate regulation algorithm, if we use the sinks to “bounce”

back the data backlog of the peer sources, a source sends its aggregate backlogs to all

sinks. A sink sends back its own aggregate backlog and aggregate drain rate along with

the source data backlog gathered from all the sources it connects back to these sources.

If we use a dedicated subnetwork among sources to exchanges data backlog, the source

aggregate the input data backlog information, and send it tothe other sources. Sources

can use this aggregate information to limit their use of shared resources to prevent overuse.

Figure 5.7(b) shows an RDS with aggregate multiple traffic flow regulation. As in the

single source case, a single queue is maintained for all flowsfrom a sink node to all end

hosts connected, and only aggregate drain rates are fed backto the source nodes.

5.5 Simulation Studies and Analysis

The evaluation of traffic regulation in an RDS was conducted through simulation studies

using the network simulator (ns-2) [80]. New regulation classes are introduced in ns-2

to implement the source traffic regulation algorithms. We simulate the web traffic by as-

signing a traffic generator with CBR traffic. We choose CBR traffic because it shows the

average bandwidth more clearly. Similar results can be obtained with bursty traffic flows,

but the CBR results make the effects of source traffic regulation more apparent. In our sim-

ulations, each CBR flow has a rate of 1 Mbps. The link transmission latency of the links

(s, r1), (r1, a), (r1, r2), (r2, b), (r2, c) are 25 ms, 25 ms, 50 ms, 25 ms, 75 ms, respectively.

Therefore, the RTT to sinksa, b, c are 100 ms, 200 ms, and 300 ms, respectively. All in-

termediate routers are using drop-tail queues, and the queue length is equal to the product

of reserved bandwidth and maximum round trip delay. The regulation interval is set to the

maximum round trip delay 300 ms.

5.5.1 Simulations

In our ns-2 simulations, we first implement the infrastructure of the basic RDS that enforces

the bandwidth reservation on links in the subnetwork. Then,we implement the traffic regu-

lation algorithm as a special regulator application that regulates the traffic generator at each

traffic source. The traffic source is modified to allow the regulator to control the output.

114

Regulator

TCP/UDP Agent

Node

TCP/UDP
Agent

Node

TCP/UDP Sink

Traffic Generator

Collector

RDS

Collector

TCP/UDP
Agent

Node

TCP/UDP Sink

Collector

Server

Sink

Sink

Figure 5.8: Source traffic regulation implementation inns-2.

A collector is introduced as an application to gather the sink side data backlog informa-

tion, and feed them back to the regulator. The implementation details are illustrated in

Figure 5.8. As we can see, the traffic generator includes a newregulation control after the

original packet queue. This regulation control is regularly updated after each regulation

interval by the regulator to control the rate of a traffic source based on the regulation algo-

rithm implemented in the regulator. The regulator has the data backlog information at both

ends of each connection, as well as the topology and reservedbandwidth of the underlying

RDS. At each regulation interval, the regulator updates a counter in the regulation control,

and the attached TCP or UDP agent is only allowed to transmit this amount of data before

the next regulation interval. The collector sends back the sink data backlog information

also once every regulation interval.

5.5.2 Experimental Results and Analysis

We use the same simple network as in Figure 5.1 for our simulations for single-server RDS

regulation. In particular, each of the three sinks initially has 100 connections, and each

115

connection with a CBR traffic generator at the source. After 30 seconds, sinkc adds an

additional 200 CBR flows, each with the same traffic generator. The total sink perceived

bandwidth is measured and plotted with and without the source traffic regulation. We

simulate both cases of all TCP flows as well as all UDP flows.

Figure 5.3 and Figure 5.4 in Section 5.2 show the results for all UDP and all TCP flows with

no source traffic regulation. In the all-UDP flow simulation results in Figure 5.3, the total

bandwidth to the overloaded sinkc is limited (175 Mbps) by its access link reservation.

Sinksa andb should not be affected, but their received bandwidth drops below their fair

share of bandwidth (100 Mbps), resulting in reduced service quality. In the all-TCPflow

simulation results in Figure 5.4, although all sinks get theoptimal bandwidth allocation

eventually, it takes more than 10 seconds to adapt to the optimal bandwidth, during which

the sink bandwidth drops to below the fair share of reserved bandwidth. When we enable

source traffic regulation, we expecta andb will not affected byc and get100 Mbps along

their path froms, andc will get 175 Mbps along its path froms.

Per-connection Regulation in a Single-server RDS

Figure 5.9 shows the effects of the source traffic regulationfor the all UDP flow case.

Because the source now determines the transmission rates based on the data backlogs on

source and sink sides, the sinks with normal loads (a andb) are not affected by the over-

loaded sinkc, and can still get their fair share of reserved bandwidth when the path from

s to c becomes congested. Thus, even after 30 seconds,a andb still maintain about100

Mbps bandwidth, whilec is still limited to 175 Mbps by its access link. After 60 seconds,

when traffic stops in all connections, input data backlogs toa andb are quickly cleared out,

while c takes about 22 seconds to clear out its backlog.

Figure 5.10 shows the effects of the source traffic regulation for the all-TCP flow case. At

the beginning, all flows try to find the maximum rates they are allowed during the TCP slow

start phase, causing the surges. They soon get to their fair share of the reserved bandwidth

of 100 Mbps. Whenc becomes overloaded after 30 seconds, the TCP congestion control

mechanism causes all flows to reduce their transmission rates. Because we now have source

traffic regulation, it takes less time (3 to 4 seconds, as compared to 12 seconds in Figure 5.4

116

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

c

a b

Figure 5.9: Simulation with per-connection source traffic regulation for all UDP traffic
flows.

117

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

c

a

b

Figure 5.10: Simulation with per-connection source trafficregulation for all TCP traffic
flows.

118

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

c

b a

Figure 5.11: Simulation with aggregated source traffic regulation for UDP flows.

without source traffic regulation) for all the sinks to return to their fair shares of reserved

bandwidth.

Aggregated Regulation in a Single-server RDS

Our simulations with aggregate source traffic regulation show that normally the aggregated

source traffic regulation has the same effects on the total sink bandwidth results as the

per-connection regulation, especially for all-UDP flows, as shown in Figure 5.11 (all-UDP

flows) and Figure 5.12 (all-TCP flows). One major difference for all-TCP flows is that the

received bandwidth ofc drops to a lower level afterc becomes overloaded, and that it takes

a andb about 4 more seconds to return to100 Mbps, and the bandwidth fluctuation is much

smaller than the the case with no traffic regulation. In addition, the received bandwidth of

c reduces gradually instead of sharply as in Figure 5.10.

119

c

b

a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

Figure 5.12: Simulation with aggregated source traffic regulation for TCP flows.

120

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

In
di

vi
du

al
 fl

ow
 b

an
dw

id
th

 (
M

bp
s)

Time (second)

a-max b-max

c-max
a-min b-min

c-min

Figure 5.13: Maximum and minimum bandwidth in individual UDP flows to each sink
with per-connection regulation.

These differences are caused by the different ways these twoalgorithms regulate the flow

transmission rates. The per-connection regulation algorithm reduces the transmission rates

on all connection when the end-to-end path gets congested, so the sources of all connections

transmit at about the same lower rate. Thus, the overall fluctuation caused by the TCP

congestion control mechanism on individual flows is smaller. In contrast, when congestion

occurs, the aggregate regulation algorithm still allows anindividual source to send as fast

as it can as long as the total transmission rate is reduced. So, it essentially reduces the

number of flows transmitting at high rates, and increases thenumber of flows that are “on

hold” from transmission. Therefore, the overall fluctuation caused by TCP is higher.

The differences of the two regulation algorithms are more clearly depicted in Figure 5.13

through Figure 5.16. In these figures, we show the maximum andminimum individualac-

tiveflow bandwidth among all flows to a sink measured every second with both regulation

algorithms for both all-UDP and all-TCP flows. For example, the maximum individual flow

bandwidth to sinka is labeled as “a-max”, and the minimum individual flow bandwidth to

121

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

In
di

vi
du

al
 fl

ow
 b

an
dw

id
th

 (
M

bp
s)

Time (second)

c-min

c-max

a-min

b-maxa-max

b-min

Figure 5.14: Maximum and minimum bandwidth in individual UDP flows to each sink
with aggregate regulation.

122

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

In
di

vi
du

al
 fl

ow
 b

an
dw

id
th

 (
M

bp
s)

Time (second)

max-a

max-b

min-a
min-b

max-c

min-c

Figure 5.15: Maximum and minimum bandwidth in individual TCP flows to each sink
with per-connection regulation.

123

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100

In
di

vi
du

al
 fl

ow
 b

an
dw

id
th

 (
M

bp
s)

Time (second)

c-max

c-min

a-max

a-min

b-max

b-min

Figure 5.16: Maximum and minimum bandwidth in individual TCP flows to each sink
with aggregate regulation.

124

a is labeled as “a-min”. Figure 5.13 and Figure 5.15 use per-connection regulation, and

Figure 5.14 and Figure 5.16 use aggregate regulation. Figure 5.13 and Figure 5.14 are for

all-UDP flows, and Figure 5.15 and Figure 5.16 are for all-TCPflows.

Figure 5.13 shows that flows on connections to all sinks are almost the same. Before

c becomes overloaded, the maximum and minimum individual flowbandwidth is about

1Mbps, which means all flows are transmitting at the the maximum allowable rates. After

c becomes overloaded after 30 seconds, the maximum and minimum individual flow band-

width drops to about0.6 Mbps. This is because whenc becomes overloaded, all flows have

60% (roughly175 Mbps out of300 Mbps) of time transmitting each second, and all flows

have equal opportunities to transmit.

In contrast, Figure 5.14 shows that the maximum and minimum individual bandwidth

among flows toa andb is still about1 Mbps, but the maximum individual flow bandwidth

to c is much higher afterc becomes overloaded. Whena andb are still transmitting before

the 62nd seconds, the individual flow maximum bandwidth goesup to8.4 Mbps and has

an average of about5 Mbps, and the individual flow minimum bandwidth drops to close to

0. This indicates that some flows transmit more often than theothers when using aggregate

regulation because it does not attempt to regulate individual flows to avoid overloading

each receiver. So, some flows are allowed to transmit as much as they can as long as the

aggregate backlog at the sink is not too high and the aggregate received bandwidth is below

its fair share of reserved bandwidth. Note that we only measure the active flows, which is

less than 300. So the total bandwidth toc does not exceed the reserved bandwidth of175

Mbps on the bottleneck link. Aftera andb stop their transmission at about 62th second,

the individual flow maximum bandwidth jumps up to and stays atabout25 Mbps. The in-

dividual flow minimum bandwidth also increases to about3.8 Mbps. This is because after

a andb finish transmission, more reserved bandwidth is available to c, andc can transmit

more data on the individual flows. So, the individual flow maximum bandwidth increases.

in addition, because some flows get more chances to transmit earlier, some of these flows

already cleared out their input backlog, and have no data to transmit. So, the total number

of flows decreases, more flows with large accumulated backlogbegin to transmit, and the

individual flow minimum bandwidth increases.

Figure 5.15 shows that the individual flow maximum and minimum bandwidth toa andb

is 1 Mbps. Among flows toc, the individual flow maximum and minimum bandwidth is

125

1 Mbps beforeC becomes overloaded at the 30th second; afterc becomes overloaded, the

individual flow maximum bandwidth drops to an fluctuating number no less than0.6 Mbps,

and the individual flow minimum bandwidth drops to an fluctuating number no greater than

0.6 Mbps. The fluctuation of the individual maximum and minimum bandwidth roughly

complements each other. This indicates that there are active flows on all connection whenc

is overloaded. It also shows that not all flows get the same transmission rate every second;

some flows get more data to transmit while other flows get aboutsame less amount of data

to transmit. These effects are caused the regulation of individual flows.

Figure 5.16 shows that although there are several “spikes” and “dips”, the individual flow

maximum and minimum bandwidth toa andb is about1 Mbps. Among flows toc, the

individual flow maximum and minimum bandwidth is1 Mbps before it becomes overloaded

at the 30th second. Afterc becomes overloaded and beforea and b stop receiving data

around the 62nd second, the individual flow maximum bandwidth increases to about1.66

Mbps, and the minimum individual flow bandwidth drops to near0. This shows that some

flows are allowed to transmit more data while other flows only allowed to transmit very

little data by the aggregate regulation algorithm. The difference is not as large as in the all-

UDP flows though. Aftera andb clear out their data backlog and stop receiving data from

the source, the maximum and minimum individual flow bandwidth both increases. The

maximum individual flow bandwidth jumps to up to3.3 Mbps and the minimum individual

bandwidth jumps up to about2.5 Mbps after 83 seconds. This is because more reserved

bandwidth is available toc, and more flows can transmit more data to clear up their data

backlog. As the data backlogs are cleared out on more connections, even more flows can

transmit at a higher rate.

TCP Fairness

When two overloaded sinks have different round trip transmission delays to the server, the

TCP congestion control mechanism will favor the sink with the shorter RTT. This band-

width unfairness to different sinks is shown in Figure 5.17.This figure shows a simulation

run on a simple network similar to the network we used previously, except that link(r2, b)

has a transmission delay of 100 ms in this network. This makesRTT from s to b 300 ms.

Specifically, in this simulation, all three sinks start with100 TCP flows, each with a CBR

source with 1 Mbps bandwidth. After 30 seconds,a andb have an additional 50 flows, and

126

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

a

b

c

Figure 5.17: Bandwidth unfairness to congested sinks with different round trip delays.

127

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

a
b

c

Figure 5.18: Improved TCP fairness with source traffic regulation.

c has an additional 30 flows. Thus, the(s, r1) becomes the only congested link, anda and

b are competing for the bandwidth on the congested link. Figure 5.17 shows thata receives

about 145 Mbps of bandwidth andb only gets about 130 Mbps, although they both have

the same total traffic demands.

Figure 5.18 shows the results of the total received sink bandwidth when we enable source

traffic regulation. We only show the result of the per-connection regulation algorithm; the

aggregated regulation produces similar results. Figure 5.18 clearly shows that when traffic

regulation is enabled, all sinks adjust to their fair share of reserved bandwidth, independent

of their RTT to the server. In particular, the competing overloaded sinksa andb both get

roughly135 Mbps even thoughb has a RTT that is three times that ofa. These results show

that source traffic regulation provides better fairness than TCP congestion control alone.

128

50 ms one-way delay

Bursty
arrivals

2 ms RTT

Sink User

UDP connection

TCP connection

Regulator

Server

Figure 5.19: End-to-end burst delivery time simulation setup.

An Example Application

In addition to the bandwidth related simulations, we have also simulated an example appli-

cation of source traffic regulation to improve end-to-end performance for delivery of large

amounts of data across a wide area network, such as stream video image delivery.

Figure 5.19 shows the network setup for our simple simulation. There is a server that

constantly has bursty traffic flows to the sink. The connection from the server to the sink is a

UDP connection that has a one-way transmission delay of 50 ms. Overloading is prevented

on this connection through source traffic regulation between the server side regulator and

the sink. The connection from the sink to the user is a TCP connection with a round trip

delay of 2 ms. The bursty traffic that arrives at the server is transmitted to the sink through

the UDP connection, subject to the source traffic regulationby the regulator.

In our simulations, we measure the average and standard deviation of the end-to-end burst

delivery time, which is the time between the moment when the first byte leaves the server

and the moment when the last byte is received by the user. In comparison, we also measure

the same data for regular end-to-end TCP connections from the server to the user. We

use a packet size of 1500 bytes, and an average burst size of 100 packets. The average

burst arrival rate is 100 per second. The burst transmissionrate is 1Mbps. The connection

between the server and the sink has a reserved bandwidth of 150 Mbps. It uses a Drop Tail

queue, and the queue is set according to the delay bandwidth product.

Figure 5.20 shows the average burst delivery times for the two scenarios. The curve la-

beled TCP shows the average burst delivery time on a regular end-to-end TCP connection

129

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 b
ur

st
 d

el
iv

er
y

tim
e

(s
ec

)

Time (sec)

TCP

Source Traffic Regualtion with UDP

Figure 5.20: Average burst delivery time comparison.

130

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45 50S
ta

nd
ar

d
D

ev
ia

tio
n

of
 b

ur
st

 d
el

iv
er

y
tim

e
(s

ec
)

Time (sec)

TCP

Source Traffic Regulation with UDP

Figure 5.21: Standard deviation of burst delivery time comparison.

between the server and the user. The average burst delivery time is about 3 seconds. The

other curve in the plot shows the average burst delivery timein an RDS with source traffic

regulation enabled, as illustrated in Figure 5.19. The average burst delivery time is less

than 1.5 seconds. It is clear that using RDS with source traffic regulation greatly improves

the burst delivery time over regular end-to-end TCP connections.

Figure 5.21 compares the standard deviation of burst delivery time for the two scenarios. It

shows that the standard deviation in a network with RDS and source traffic regulation is less

than 2 seconds, while the regular end-to-end TCP has much greater standard deviation of 5

seconds or more. This result indicates that source traffic regulation with UDP connections

makes the data delivery more smooth than a regular end-to-end TCP connection.

131

a

b

s1

150

150 150

150

250

s2

Figure 5.22: Simulation of multi-source traffic regulationin a simple multi-server RDS
with two servers.

Regulation in a Multi-server RDS

We simulate the multi-source traffic regulation algorithm in a simple multi-server RDS as

shown in Figure 5.22. In these simulations, sinksa andb normally have 50 TCP flows from

each of the two serverss1 ands2 on average. Each flow is the same as in the single server

RDS.a unexpectedly becomes overloaded, and demands 150 flows froms1 and 300 flows

from s2. All flows start at 0 second, and stop after 50 seconds.

Ideally, a should receive twice as much data froms2 as the data froms1 under this over-

loading situation, such that neither server would get serious input backlog toa. Figure 5.23

shows the total received bandwidth on the sinks from both servers when we only enable

single-source traffic regulation ons1 and s2 without any coordination between the two

servers. Because both servers use source traffic regulation, b gets its average fair share of

bandwidth from boths1 ands2, and are not affected by the overloadeda. However, be-

cause there is no coordination between thes1 ands2, the reserved bandwidth is not used

efficiently. In particular, when the flows tob are still active, the flow froms2 to a should get

about twice as much bandwidth (100 Mbps on average) as the flow froms2 to a (50 Mbps

on average). However, because both servers do not have any information about the other

peer server, they try to compete equally for the reserved bandwidth, and only get about75

Mbps at the beginning each. The total bandwidth toa andb gradually changes afterwards

and approaches the ideal allocation. After the backlog froms1 to a is cleared after about

132

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

s2-a

s1-a

s2-b s1-b

Figure 5.23: Lack of server coordination problem in multi-source traffic regulation (all
TCP flows).

133

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

s2-a

s1-a

s1-b
s2-b

Figure 5.24: Simulation with per-connection multi-sourcetraffic regulation (TCP flows).

108 seconds, flows froms2 to a takes the maximum bandwidth allowed on its path toa

(175 Mbps) and clears up its data backlog.

Figure 5.24 shows the total sink received bandwidth from each server when we enable per-

connection multi-source traffic regulation. With the server coordination between the two

servers,a receives roughly twice data froms2 than froms1, and the input backlogs at both

servers are drained at about the same time. As it shows, the flows tob are not affected by

the overloadeda, and both receive50 Mbps average bandwidth. In addition, thes2 → a

flows get100 Mbps average bandwidth, which is twice the bandwidth ofs1 → a flows.

This is because the two servers exchange their data backlog information with each other,

and regulate their flows accordingly to drain their data backlog at about equal rates. As

a result, the flows from boths1 ands2 to a drain their input data backlog, and finish at

about the same time after 130 seconds. The surge after about 128 seconds is caused by the

termination of alls1 → a flows.

134

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

R
ec

ei
ve

d
ba

nd
w

id
th

 (
M

bp
s)

Time (second)

s2-a

s1-a

s1-b s2-b

Figure 5.25: Simulation with aggregated multi-source traffic regulation (TCP flows).

135

s2-max

s1-max s2-min

s1-min

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

In
di

vi
du

al
 fl

ow
 b

an
dw

id
th

 (
M

bp
s)

Time (second)

Figure 5.26: Maximum and minimum bandwidth in individual TCP flows from both
servers to sinka with per-connection multi-source traffic regulation.

Figure 5.25 shows the total sink received bandwidth from each server when we enable

aggregate multi-source traffic regulation. Although the aggregated regulation results in

less smooth received bandwidth, it shows that similar results can be achieved with with

less control overhead.

Figure 5.26 and Figure 5.27 show the maximum and minimum individual flow bandwidth

from the two servers to the sinka in the multi-source traffic regulation simulations with

per-connection and aggregate regulation algorithms, respectively.

Figure 5.26 shows that the maximum individual flow bandwidthfrom s1 to a is about0.4

Mbps on average, and that the maximum individual flow bandwidth from s2 to a is about

0.8 Mbps before backlog toa at s1 is first cleared out. The maximum individual flow

bandwidth increases up to5.8 Mbps before it quickly drops to 0. The minimum individual

flow bandwidth from both servers stays close to 0 until the data backlogs are about to clear

up, at which point the minimum individual flow bandwidth froms1 goes up to0.4 Mbps

136

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

In
di

vi
du

al
 fl

ow
 b

an
dw

id
th

 (
M

bp
s)

Time (second)

s2-max

s1-max s1-min

s2-min

Figure 5.27: Maximum and minimum bandwidth in individual TCP flows from both
servers to sinka with aggregate multi-source traffic regulation.

137

and that froms2 goes up to about0.5 Mbps. This shows that the per-connection regulation

does not allow individual flows to have a high bandwidth, and that the maximum individual

flow bandwidth froms2 is about twice of that froms1.

Figure 5.27 shows that the maximum individual flow bandwidthfor aggregate regulation is

higher than that of per-connection regulation. In particular, the maximum individual flow

bandwidth froms1 ands2 stays about the same, that ranges from about0.9 Mbps to1.6

Mbps before data backlog froms1 is cleared out. This is more than twice of the bandwidth

in the per-connection regulation, because flows are not regulated on individual basis, and

some flows get more chances to transmit.

5.6 Implementation on Various Platforms

In this section, we outline the possible implementations ofthe source traffic regulation algo-

rithms on various platforms. The advantages and limitations of different implementations

are discussed.

5.6.1 End Host Implementation

There are two ways to implement source traffic regulation on an end host: special user

libraries and kernel modifications.

In the first implementation option, we can develop a set of “wrappers” in a user level library

which adds the regulation functionality between the user applications and the network sys-

tem calls. The major advantage of this approach is its portability. It implements the source

traffic regulation without modifying the end host operatingsystems, and therefore should

work on many platforms. However, it comes at the expense of performance due to the

additional data operation overhead.

The second approach is to implement the source regulation algorithm at the socket (or an

equivalent) layer in the end host operating system kernel toimprove the performance. For

example, on a BSD based operating system (such as NetBSD [78]), the regulation algorithm

can be implemented in the socket layer with extensions to thesocketstructure and addition

138

of new traffic regulation socket options. In particular, thesocket buffer and related system

calls (for example,recvmsgandsendmsg) can be modified to include rate regulation such

that user data stored in the socket buffer are sent out in a regulated fashion when the source

traffic regulation option is enabled. In addition, such an implementation makes it efficient

and convenient to exchange information between the regulator and the collectors with a

reliable connection (such as TCP). The major drawback of this implementation approach

is its complexity and poor portability because it must be implemented on end hosts at both

ends of a connection.

The major advantage of an end host implementation is that it does not require changes to the

access routers and proxies. However, it is not as easy to implement aggregated regulation as

on the other platforms, and it needs operating systems support on both sides of connections.

5.6.2 Stand-alone Proxy Implementation

Another platform to implement the source regulation is the performance enhancing prox-

ies [5] at source and sink sides.

The regulator can be implemented at the source side proxy, and the collector can be im-

plemented on the sink side proxies, both as a performance improvement mechanism in

addition to the other commonly used ones, such as ACK handling, compression, priority-

based multiplexing, and protocol boosters. One of the most popular open source web cache

proxy system, Squid [73], derived originally from the Harvest project [6], provides a good

proxy platform to implement traffic regulation algorithms.In particular, the functions of

a regulator or a collector can be added to theConnStateDatastructure and the core data

communication routine (commselect()) with rate regulation usingDelayPoolclasses.

The major advantages of a proxy implementation is the flexibility of this approach and

ease of deployment. A stand-alone proxy is suitable to implement both the per-connection

and aggregated regulation equally well. It does not requireany changes on the routers or

the end hosts. An end host can simply choose to go through a proxy in his connection

setting to use the source traffic regulation. The major drawback of this implementation is

the possible performance limitation, because of the extra hops to and from the proxy and

the proxy processing overhead.

139

5.6.3 Extensible Router Plug-in Implementation

Extensible routers, such as the dynamically extensible router introduced in [13], provide

another platform for source traffic regulation as well as other performance enhancing mech-

anisms that require moderate processing overheads.

Take the above dynamically extensible router for example. On each input and output

port, there is a software-based packet processing smart port card (SPC) as well as a pro-

grammable hardware device called field programmable port extender (FPX). The SPC can

use loadable modules to process data packets at a very high speed, and the FPX is ca-

pable of dynamically loading hardware modules onto the on-board FPGA for high speed

hardware-based packet processing. By implementing the regulator and the collector as two

SPC loadable modules, with the help of the FPX for the bulk of IP processing and buffer-

ing, the traffic regulation can be performed very efficiently. This platform is also a good

choice if we want to handle large number of flows.

The major difficulty of this implementation approach is the possible resource limitation. In

particular, when there are sustained overloading, the databacklog may increase to a point

that the memory resource on a port is exhausted.

5.7 Summary

In this chapter, we show that besides the benefit of exclusivebandwidth access, the end-

to-end performance can be further improved in an RDS by utilizing the knowledge about

the underlying network. Specifically, we introduce source traffic regulation to resolve the

unbalanced bandwidth utilization problem inside an RDS. The source traffic regulation

ensures that all traffic flows are within the constraints of reserved bandwidth on the end-

to-end path; in addition, it regulates the source transmission rates to different end hosts

in such way that bandwidth utilization on all links is balanced to protect a sink from ill-

behaved overloading sinks. We study our proposed per-connection and aggregated traffic

regulation algorithms with simulations in the network simulator, and our simulation results

demonstrate the improved end-to-end performance with source traffic regulation.

140

Chapter 6

Conclusions and Future Work

The Internet must provide services with a certain level of bandwidth assurance before it

can become a more reliable and trustworthy information infrastructure. However, per-

flow bandwidth reservation services have not been widely deployed as expected in today’s

Internet. Toward this end, we proposed a reserved delivery subnetwork (RDS) service

that provisions aggregate bandwidth reservations for groups of users. An RDS is more

easily deployed than per-flow reservation services, and provides more consistent quality of

service than best-effort forwarding. In the preceding chapters of this dissertation, we study

a number of design issues with the configuration, deployment, and operation of an RDS.

Besides these topics we have covered in this dissertation, there are a number of related

issues that can be further explored in future research.

6.1 Reserved Delivery Subnetworks

The reserved delivery subnetwork was introduced in Chapter2 as an alternative way to

provide more consistent quality of service within today’s Internet infrastructure. Instead of

deploying per-flow bandwidth reservation services, exclusive bandwidth is reserved for an

aggregated group of customers of a service provider, to circumvent the deployment problem

encountered by per-flow bandwidth reservation services. The deployment of such a service

will benefit a number of network applications such as web content delivery, virtual private

networks, and grid computing.

In this dissertation, we have focused on the configuration and deployment of a generic re-

served delivery subnetwork. Less attention has been paid tothe issues about how a specific

141

network application can benefit from the deployment of an RDS. For example, although a

web content delivery service can naturally be deployed on a generic RDS, the deployment

of a VPN service over an RDS may put extra requirements on the configuration of the un-

derlying RDS because the asymmetric bandwidth assumption is no longer a constraint. In

addition, data security and service stability are crucial in a VPN. Therefore, we may in-

clude security and stability considerations in the configuration and deployment of an RDS

VPN. One possible strategy is to integrate the security and stability factors into the link

cost function for the configuration of an RDS VPN.

Grid computing is another potential application of RDS. In particular, the RDS service

can facilitate resource management in a grid computing application that uses the resources

of a potential large number of computers connected by a network to solve a large-scale

computation problem. Traditionally, the research focus has been put on the computational

resource discovery and allocation of different nodes in a computational grid. Relatively

little attention has been paid to the the management and allocation of bandwidth resources

in the network used by the grid. We think this issue is equallyimportant to the performance

of a computational grid, and deserves more study. Similar techniques for configuring and

deploying an RDS can apply to the bandwidth resource management problem in a grid

computing application. In particular, link selection for acomputational grid should also

consider the economy of bandwidth aggregation so that communication cost is minimized.

6.2 RDS Configuration

The configuration of an RDS involves two tasks: selecting thesubnetwork and determining

the appropriate bandwidth reservation on links in the subnetwork. In Chapter 3, we start

with configuration of the basic RDS with a single server. We formulate the configuration

problem of such an RDS as a minimum concave cost network flow problem, where the per

unit flow cost increments decrease as the current flow increases. This problem formula-

tion takes the economy of bandwidth aggregation into consideration and is more practical,

but it also makes the configuration problem a NP-hard problem. Traditional enumerative

search-based exact algorithms are not practical even for a network with moderate size.

An approximate heuristic (LDF) based on least cost augmentation algorithm has been pre-

sented to solve the problem efficiently. Our simulation results indicate that LDF creates

142

results that are within a constant factor of an estimated lower bound to the optimal solu-

tion. We used an easily computed lower bound and estimated lower bounds derived from

this lower bound to evaluate the performance of our proposedalgorithm. However, this

lower bound is very loose. Thus, a better lower bound that is tighter than the lower bound

we used and has comparable computational complexity would be worth studying.

To further improve the results from LDF, we apply local search heuristics on the LDF

results. We started with a traditional negative cost cycle reduction algorithm first, and

found that a special negative cost multi-cycle subnetwork structure can also be used to

further reduce the cost of an RDS. We implemented and studiedthe performance of a local

search algorithm based on negative cost bi-cycle reduction. Our simulation results show

that although local search algorithms based on negative cost cycle and bi-cycle reduction

can greatly improve the results of an arbitrary initial solution, the improvement to LDF is

limited. We think this is a strong indication that LDF solutions are close to optimal.

We have only studied the simplest negative cost multi-cycles, bi-cycles, in our study. When

we consider negative cost multi-cycle with more cycles, thecomputational complexity

grows substantially. It would be interesting to study the tradeoff of computational com-

plexity and performance improvements to find out a point of diminished returns.

In Chapter 4, we study the configuration of RDSs with multipleservers. We can transform

this problem into a single server RDS configuration with an additional pseudo server, but

there is a unique server placement issue for a multi-server RDS configuration that com-

plicates the configuration. We have studied a variety of server placement algorithms, and

our simulation results indicate that a class of greedy algorithms out-perform other server

placement algorithms.

6.3 RDS Fault Tolerance

Also in Chapter 4, we have studied a method to improve the fault tolerance of a multi-

server RDS. In particular, we study the problem of setting upredirection subnetworks for

groups of up to four server in a multi-server RDS. The redirection subnetwork for a group

of servers redirects traffic from a faulty or overloaded server to other “healthy” servers in

143

the group, utilizing the existing RDS links to the maximum extent. We use a recursive

approach to build up the redirection subnetworks. In particular, we started with a simple

problem of finding the optimal server pairs that traffic to oneserver in a server pair can be

redirected to the other server in the pair. For each pair of servers, a redirection subnetwork

is configured to allow traffic redirection from one server to the sinks of the other server.

To generalize to groups of four servers, we start with the server pairs already obtained in

the first step, and find optimal pairs of server pairs to form groups of four servers. For

each group of four servers, identify a center redirection point and configure the redirection

subnetwork to redirect traffic from the sinks of one server tothe other three servers.

There are several possible studies we could pursue in the future. First, in some cases, not

all sinks have to be covered by a redirection server, especially when the original server is

only overloaded briefly. Instead, we can configure the redirection subnetwork to partially

cover the sinks connected to a server. Second, we can also apply some simple local search

heuristic to improve the solution quality. For example, we can try to adjust the server

location locally, so that the total cost of the original RDS and the redirection subnetwork is

lower, although this move may increase the cost of the original RDS.

6.4 RDS End-to-end Performance Improvements

In Chapter 5, we have investigated an option for potential performance gains of end-to-end

applications in an RDS. By leveraging the knowledge about the underlying RDS network,

we try to improve the end-to-end performance by solving the unbalanced bandwidth uti-

lization problem with source traffic regulation. Without any traffic regulation at the server

side, an overloaded sink would congest the upstream path to the server, reducing the band-

width utilization and service quality at other sinks that share part of the congested path. By

enabling source traffic regulation, the server controls itstraffic to a specific sink according

to the data backlogs at both ends of a connection and the traffic condition in the RDS. Our

simulations have shown that all sinks get their fair share ofreserved bandwidth and only

the overloaded sinks are penalized. In addition, the trafficregulation mechanism improves

the TCP fairness when the round trip delay to sinks is large.

144

Source traffic regulation was inspired by the distributed queueing techniques in high speed

routers [58]. It would be interesting to study the work conservation property in the RDS

context, and determine the speed-up factor needed to achieve work conservation. In this

chapter, we also have outlined a number of implementations of source traffic regulation

on three platforms. It would be interesting to implement them and evaluate RDS in a real

network environment.

145

References

[1] E. Aarts and J. K. Lentra.Local Search in Combinatorial Optimization. John Wiley
& Sons, 1997.

[2] Ravindra K. Ahuja, Thomas Magnanti, and James Orlin.Network Flows. Prentice
Hall, 1993.

[3] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Re-
silient overlay networks. InProceedings of 18th ACM SOSP, Banff, Canada, October
2001.

[4] Francisco Barahona and Eva Tardos. Note on Weintraub’s minimum-cost circulation
algorithm.SIAM Journal of Computing, 18(3):579–583, June 1989.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. RFC 3135: Performance
Enhancing Proxies Intended to Mitigate Link-Related Degradations. RFC 3135, June
2001.

[6] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and Michael F.
Schwartz. The Harvest information discovery and access system.Computer Networks
and ISDN Systems, 28(1–2):119–126, 1995.

[7] R. Braden, D. Clark, and S. Shenker. Rfc 1633: Integratedservices in the Internet
architecture: an overview, 1994.

[8] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura.Modeling Internet topol-
ogy. IEEE Communications Magazine, 35(6):160–163, June 1997.

[9] J. Cao, D. Davis, S. Wiel, and B. Yu. Time-varying networktomography : Router
link data. Technical report, Bell Labs Tech. Memo, 2000.

[10] Jin Cao, D. Davis, Scott Vander Wiel, Bin Yu, and Zhengyuan Zhu. A scalable method
for estimating network traffic matrices from link counts. Technical report, Bell Labs
Tech Report, 2001.

[11] Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection algorithms.
In European Symposium on Algorithms, pages 349–363, Barcelona, Spain, March
1996.

146

[12] S. Choi and Y. Shavitt. Placing servers for session-oriented services. Technical re-
port, Technical Report WUCS-01-41, Washington Universityat St. Louis, Dept. of
Computer Science., 2001.

[13] Sumi Choi, John Dehart, Ralph Keller, Fred Kuhns, John Lockwood, Prashanth
Pappu, Jyoti Parwatikar, W. David Richard, Ed Spitznagel, David Taylor, Jonathan
Turner, and Ken Wong. Design of a high performance dynamically extensible router.
In Proceeding of DARPA Active Networks Conference and Exposition (DANCE), San
Francisco, CA, USA, May 2002.

[14] Israel Cidon, Shay Kutten, and Ran Soffer. Optimal allocation of electronic content.
In INFOCOM, pages 1773–1780, 2001.

[15] David Clark and William Lehr. Provisioning for bursty internet traffic: Implications
for industry and internet structure. InProceedings of MIT ITC Workshop on Internet
Quality of Service (MIT WISQ 1999), Boston, MA, USA, December 1999.

[16] CNN. Computer worm grounds flights, blocks ATMs. URL http://www.cnn.
com/2003/TECH/internet/01/25/internet.attack/.

[17] M. B. Doar. A better model for generating test networks.In Proceedings of Global
Internet, Globecom ’96, November 1996.

[18] Zhenhai Duan, Zhi-Li Zhang, and Yiwei Thomas Hou. Service Overlay Networks:
SLAs, QoS and Bandwidth Provisioning. InProceedings of 10th IEEE International
Conference on Network Protocols (ICNP), Paris, France, Novmber 2002.

[19] Anja Feldmann, Albert G. Greenberg, Carsten Lund, NickReingold, Jennifer Rex-
ford, and Fred True. Deriving traffic demands for operational IP networks: method-
ology and experience. InSIGCOMM, pages 257–270, 2000.

[20] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D.S. Bakin, W.S. Marcus, and T.M.
Raleigh. Protocol boosters.IEEE Journal on Selected Areas of Communication,
16(3), April 1998.

[21] J. A. Fingerhut. Approximation Algorithms for Configuring Nonblocking Commu-
nication Networks. D. Sc. dissertation, Washington University, St. Louis, Missouri,
May 1994.

[22] J. Andrew Fingerhut, Subhash Suri, and Jonathan S. Turner. Designing least-cost
nonblocking broadband networks.Journal of Algorithms, 24(2):287–309, August
1997.

[23] Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance.IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

147

[24] Dalila B. M. M. Fontes, Eleni Hadjiconstantinou, and Nicos Christofides. A new
branch-and-bound algorithm for network design using concave cost flows. Technical
report, Imperial College, London, UK, 2002.

[25] Dalila B. M. M. Fontes, Eleni Hadjiconstantinou, and Nicos Christofides. Upper
bounds for single-source uncapacitated concave minimum-cost network flow prob-
lems.Networks, 41(4):221–228, July 2003.

[26] Chuck Fraleigh, Fouad Tobagi, and Christophe Diot. Provisioning IP Backbone Net-
works to Support Latency Sensitive Traffic. InProceedings of IEEE InfoComm, San
Francisco, CA, USA, April 2003.

[27] G. Gallo and C. Sodini. Adjacent extreme flows and application to min concave cost
flow problems.Networks, 9:95–121, 1979.

[28] GNU. GNU Scientific Library. URL http://www.gnu.org/software/gsl/.

[29] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles.Journal of ACM, 36:873–886, 1989.

[30] G. M. Guisewite and P. M. Pardalos. Minimum concave-cost network flow problems:
Applications, complexity, and algorithms.Annals of Operations Research, 25:75–99,
1990.

[31] G. M. Guisewite and P. M. Pardalos. Algorithms for the single-source uncapaci-
tated minimum concave-cost network flow problem.Journal of Global Optimization,
1:245–265, 1991.

[32] G. M. Guisewite and P. M. Pardalos. Global search algorithms for minimum concave-
cost network flow problems.Journal of Global Optimization, 1:309–330, 1991.

[33] Dorit S. Hochbaum, editor.Approximation Algorithms for HP-hard Problems. PWS
Publishing Company, 1993.

[34] R. Horst, P. M. Pardalos, and N. V. Thoai.Introduction to Global Optimization.
Kluwer Academic Publishers, 1995.

[35] R. Horst and H. Tuy.Global Optimization. Springer-Verlag, 1993.

[36] Sundar Iyer, Supratik Bhattacharyya, Nina Taft, and Christophe Diot. An approach
to alleviate link overload as observed on an IP backbone. InProceedings of IEEE
InfoComm, San Francisco, CA, USA, April 2003.

[37] Van Jacobson. Congestion Avoidance and Control. InProc. ACM SIGCOMM, pages
314–329, Palo Alto, CA, USA, August 1988.

148

[38] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia Zhang. On
the placement of internet instrumentation. InIEEE INFOCOM, pages 295–304, 2000.

[39] Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz, and Yuval Shavitt. Con-
strained mirror placement on the internet. InIEEE INFOCOM, pages 31–40, 2001.

[40] Alpr Jttner, Istvn Szab, and ron Szentesi. On BandwidthEfficiency of the Hose Re-
source Management Model in Virtual Private Networks. InProceedings of IEEE
InfoComm, San Francisco, CA, USA, April 2003.

[41] M. Klein. A primal method for minimal cost flows.Management Science, 14:205–
220, 1967.

[42] Korupolu, Plaxton, and Rajaraman. Placement algorithms for hierarchical cooperative
caching. InSODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on
Theoretical and Experimental Analysis of Discrete Algorithms), 1999.

[43] Anshul Kothari, Subhash Suri, and Yunhong Zhou. Bandwidth constrained allocation
in grid computing. InProceedings of Workshop on Algorithms and Data Structures
(WADS’03), Ottawa, Canada, July 2003.

[44] Balachander Krishnamurthy and Jia Wang. On network-aware clustering of web
clients. InSIGCOMM, pages 97–110, 2000.

[45] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayedinternet routing conver-
gence. InProc. ACM SIGCOMM, pages 175–187, Stockholm, Sweden, 2000.

[46] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A. Ahuja. The impact of Internet
policy and topology on delayed routing convergence. InProc. IEEE INFOCOM, April
2001.

[47] Bruce W. Lamar. An imporved branch and bound algorithm for minimum concave
cost network flow problems.Journal of Global Optimization, 3:261–287, 1993.

[48] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On the self-
similar nature of Ethernet traffic. In Deepinder P. Sidhu, editor, ACM SIGCOMM,
pages 183–193, San Francisco, California, 1993.

[49] Will E. Leland and Daniel V. Wilson. High time-resolution measurement and analysis
of LAN traffic: Implications for LAN interconnection. InINFOCOM (3), pages
1360–1366, 1991.

[50] Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Deng, and Kazem Sohraby. On
the optimal placement of web proxies in the internet. InIEEE INFOCOM, pages
1282–1290, 1999.

149

[51] Dong Lin and Robert Morris. Dynamics of random early detection. InProceedings
of ACM SIGCOMM, pages 127–137, Cannes, France, September 1997.

[52] Hongzhou Ma, Inderjeet Singh, and Jonathan S. Turner. Constraint based design of
ATM networks, an experimental study. Technical Report WUCS-9715, Department
of Computer Science, Washington University, 1997.

[53] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows at the
congested router. InProc. IEEE 9th International Conference on Network Protocols
(ICNP), November 2001.

[54] A. Medina, N. Taft, S. Battacharya, C. Diot, and K. Salamatian. Traffic matrix esti-
mation: Existing techniques compared and new directions. In SIGCOMM, Pittsburgh,
PA, USA, August 2002.

[55] Alberto Medina, Anukool Lakhina, Ibrahim Matta, , and John Byers. BRITE: An
approach to universal topology generation. InProceedings of the International Work-
shop on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS ’01), Cincinnati, Ohio, USA, August 2001.

[56] Debasis Mitra and Qiong Wang. Stochastic Traffic Engineering, with Applications to
Network Revenue Management. InProceedings of IEEE InfoComm, San Francisco,
CA, USA, April 2003.

[57] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis.CHOKE, a stateless active
queue management scheme for approximating fair bandwidth allocation. InProceed-
ings of IEEE INFOCOM (2), pages 942–951, 2000.

[58] Prashanth Pappu, Jyoti Parwatikar, Jonathan Turner, and Ken Wong. Distributed
queueing in scalable high performance routers. InProceeding of IEEE Infocom, San
Francisco, CA, USA, April 2003.

[59] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[60] L. Qiu, V. Padmanabham, and G. Voelker. On the placementof web server replicas.
In Proceedings of IEEE INFOCOM 2001, Anchorage, AK, USA, April 2001.

[61] Ruibiao Qiu. Reserved delivery subnetworks configuration algorithm with the maxi-
mum sharing shortest path tree. InSPIE Conference on Performance and Control of
Next Generation Communication Networks, ITCom, Orlando, FL, USA, September
2003.

[62] Ruibiao Qiu and Jonathan S. Turner. Configuration of reserved delivery subnetworks.
In Proceedings of IEEE Globecom, Taipei, Taiwan, Novmber 2002.

150

[63] Ruibiao Qiu and Jonathan S. Turner. Approximation algorithm for reserved delivery
subnetwork configuration. Technical Report WUCS-0352, Department of Computer
Science and Engineering, Washington University, 2003.

[64] Ruibiao Qiu and Jonathan S. Turner. Improved local search algorithm with multi-
cycle reduction for minimum concave cost network flow problems. Technical report,
WUCS-04-74, Washington University at St. Louis, Department of Computer Science
and Engineering, 2004.

[65] Ruibiao Qiu and Jonathan S. Turner. Configuring multi-server reserved delivery sub-
networks. Technical report, WUCS-05-01, Washington University at St. Louis, De-
partment of Computer Science and Engineering, 2005.

[66] P. Radoslavov, R. Govindan, and D. Estrin. Topology-informed internet replica place-
ment. InProceedings of WCW’01: Web Caching and Content Distribution Workshop,
Boston, MA, June 2001.

[67] Pablo Rodriguez and Sandeep Sibal. SPREAD: Scalable platform for reliable and
efficient automated distribution.WWW9 / Computer Networks, 33(1-6):33–49, 2000.

[68] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J.Yates, and Y. Zhang.
Experience in measuring backbone traffic variability: Models, metrics, measurements
and meaning. InACM SIGCOMM Internet Measurement Workshop, 2002.

[69] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker, Neal Cardwell, Andy
Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and John Zahorjan.
Detour: a Case for Informed Internet Routing and Transport.IEEE Micro, 19(1):50–
59, January 1999.

[70] Stefan Savage, Neal Cardwell, and Tom Anderson. The case for informed transport
protocols. InProceedings of the Seventh Workshop on Hot Topics in Operating Sys-
tems, Rio Rico, AZ, USA, March 1999.

[71] Stefan Savage, Andy Collins, Eric Hoffman, John Snell,and Tom Anderson. The
end-to-end effects of Internet path selection. InProceedings of the ACM SIGCOMM
Conference, pages 289–299, Cambridge, MA, USA, September 1999.

[72] Sherlia Shi and Jonathan S. Turner. Placing servers in overlay networks. InProc.
Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), San Diego, CA, USA, July 2002.

[73] Squid Web Cache Proxy. URL http://www.squid-cache.org/.

[74] A. Steger, E. Mayr, and H. Prmel, editors.Lectures on Proof Verification and Approx-
imation Algorithms, volume 1367. Springer, 1998.

151

[75] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Network
topology generators: Degree-based vs structural. InProceedings of ACM SIGCOMM
2002, August 2002.

[76] Robert Endre Tarjan.Data Structure and Network Algorithms, volume 44. Society
for Industrial and Applied Mathematics, 1983.

[77] P. T. Thach. A decomposition method using a pricing mechanism for min concave cost
flow problems with hierarchical structure.Journal of Mathematical Programming,
53:339–359, 1992.

[78] The NetBSD Foundation. NetBSD. URL http://www.netbsd.org/.

[79] U.S. Census Bureau. Census 2000. URL http://www.census.gov/population/www/
cen2000/.

[80] VINT. Network Simulator. URL http://www.isi.edu/nsnam/ns/.

[81] B. M. Waxman. Routing of multipoint connections.IEEE Jounral of Selected Areas
in Communications, 6(9):1617–1622, 1988.

[82] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator. Technical Re-
port UM-CSE-TR-456-02, Department of Computer Science andEngineering, Uni-
versity of Michigan, 2002.

[83] X. Xiao and L. M. Ni. Internet QoS: A big picture.IEEE Network, 13(2):8–18, March
1999.

[84] Guo-Liang Xue and Shang-Zhi Sun.The shortest path network and its applications
in bicriteria shortest path problems, pages 355–362. World Scientific Publishing Co.,
1993.

[85] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model an
internetwork. InIEEE Infocom, volume 2, pages 594–602, San Francisco, CA, USA,
March 1996.

[86] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.
RSVP: A new resource reservation protocol.IEEE Network Magazine, September
1993.

[87] Weixiong Zhang.State-Space Search. Springer-Verlag New York Inc., 1999.

[88] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fastaccurate computation
of large-scale ip traffic matrices from link loads. InACM SIGMETRICS, San Diego,
CA, USA, June 2003.

[89] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic approach
to traffic matrix estimation. InACM SIGCOMM, August 2003.

152

Vita

Ruibiao Qiu

Degrees B.S. Beijing University of Posts and Telecommunications,
Computer Engineering, July 1992
M.S. Beijing University of Posts and Telecommmunications,
Computer Engineering, May 1995
M.S. Florida International University, Computer Science,
December 1997
D.Sc. Washington University in St. Louis, Computer Science,
May 2006

Professional
Societies

Association for Computing Machines (ACM)
Institute of Electrical and Electronics Engineers (IEEE)
The NetBSD Foundation
The International Society for Optical Engineering (SPIE)
Institute of Electrical, Information and Communications Engi-
neers (IEICE)

Selected
Publications

Ruibiao Qiu, Jonathan S. Turner, ”Source Traffic Regulationin
Reserved Delivery Subnetworks”. Proceedings of 25th IEEE In-
ternational Performance Computing and Communications Con-
ference (IPCCC), Phoenix, AZ, April, 2006.
Ruibiao Qiu, Jonathan S. Turner, ”Local Search Algorithms for
Reserved Delivery Subnetwork Configuration Problems with Cy-
cle and Bicycle Reduction”. Proceedings of Advances for Net-
works & Internet Symposium,IEEE Globecom 2005, St. Louis,
MO, November, 2005.
Qiu, Ruibiao and Turner, Jonathan S. Configuration of Reserved
Delivery Subnetworks. Proceedings of Service Infrastructure for
Virtual Enterprises Symposium, IEEE Globecom 2002, Taipei,
Taiwan, November 2002.
Qiu, Ruibiao, Cox, Jerome R., and Kuhns, Fred, A Conference
Control Protocol for Highly Interactive Video-conferencing. Pro-
ceedings of IEEE Globecom 2002, Taipei, Taiwan, November
2002.

153

Qiu, Ruibiao, Kuhns, Fred, Cox, Jerome R. and Horn, Craig,
Bringing Studio Quality Video-conferencing to Wide Area IPNet-
works with an Adaptation Layer Translator (ALX). Proceedings
of IEEE International Conference on Multimedia and Expo (ICME
2002), Lausanne, Switzerland, August 2002.
Yu, Wei, Qiu, Ruibiao, Fritts, Jason, Motion-JPEG2000 Video
Transmission over Active Networks. Proceedings of Image and
Video Communications and Processing Conference at IS&T/SPIE
Electronic Imaging 2003, Santa Clara, CA, January 2003.
Qiu, Ruibiao, Kuhns, Fred, Cox, Jerome, Horn, Craig, High Qual-
ity Videoconferencing System for Wide Area IP Networks. Pro-
ceedings of SPIE ITCom 2002, Boston, MA, 07/02.
Yu, Wei, Qiu, Ruibiao and Fritts, Jason, Advantages of Motion-
JPEG2000 in Video Processing. Proceeding of SPIE Visual Com-
munications and Image Processing (VCIP02), San Jose, CA, Jan-
uary 2002.

May 2006

Short Title: Reserved Delivery Subnetworks Qiu, D.Sc. 2006

	Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May 2006
	Recommended Citation
	Design Issues of Reserved Delivery Subnetworks, Doctoral Dissertation, May 2006

	tmp.1418149444.pdf.TMAbO

