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example, a search of the E. coli. k12 proteome against the GenBank Non-Redundant database takes
36 hours on a standard workstation.

In this thesis, we look to address the problem by accelerating protein searching using Field Pro-
grammable Gate Arrays. We focus our attention on the BLASTP heuristic, building on work
done earlier to accelerate DNA searching on the Mercury platform. We analyze the performance
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2.5x speed improvement over the only other BLASTP-like accelerator for FPGAs while consuming
far fewer logic resources.



To my beloved parents



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Sequence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 NCBI BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The BLAST algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Stage 1: Seed Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Stage 2: Ungapped Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Stage 3: Gapped Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Scale of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Heuristic improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Smith-Waterman accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 BLAST accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Design of an accelerated seed generation stage . . . . . . . . . . . . . . . . . . . . 19

2.1 Performance characteristics of NCBI BLASTP . . . . . . . . . . . . . . . . . . . . . 19

2.2 Software acceleration attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Design space exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Mercury BLASTP seed generation architecture . . . . . . . . . . . . . . . . . . . . 35

3.1 Mercury architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Mercury BLASTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Mercury BLASTP: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Ungapped Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Gapped Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



3.4 Seed Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Word Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Two-hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Two-hit replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.4 Hit generator replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Mercury BLASTP deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Mercury BLASTP software architecture . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Neighbourhood generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Prune-and-search neighbourhood . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Vector implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Query bin packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Approximate bin packing algorithms . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Implementation status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Benchmark comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Area report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendix A Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



List of Tables

1.1 BLAST programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 NCBI BLASTP runtimes for various query sizes . . . . . . . . . . . . . . . . . . . . 10

2.1 Percentage of execution time spent in the various stages of NCBI BLASTP . . . . . 19

2.2 Percentage of execution time spent in the various stages of NCBI BLASTP for various

E-values at a query size of 2048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Percentage of execution time spent in the various stages of NCBI BLASTP for different

organisms at a query size of 2048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Time ti spent in stage i per input item . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Data match rates pi of the various stages of NCBI BLASTP . . . . . . . . . . . . . . 21

2.6 Throughput of NCBI BLASTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Sensitivity of the two-hit BLASTP algorithm for various neighbourhoods . . . . . . 26

2.8 Sensitivity of vector seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Word and query lengths versus neighbourhood size . . . . . . . . . . . . . . . . . . . 28

2.10 Calculation of µ for a neighbourhood of N(4, 13) and a 2048-residue query . . . . . . 30

2.11 Match rates of the one-hit and two-hit algorithms . . . . . . . . . . . . . . . . . . . . 31

2.12 Throughput of the one-hit and two-hit pipelines . . . . . . . . . . . . . . . . . . . . . 31

2.13 Match rates of the two-hit algorithm for various neighbourhood parameters . . . . . 32

2.14 Throughput of the two-hit algorithm for various neighbourhood parameters . . . . . 33

2.15 Variation of throughput with query length . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Percentage of pipeline time spent in each stage of NCBI BLASTN [39] . . . . . . . . 36

3.2 SRAM access statistics in the word matching module, for a neighbourhood of N(4, 13) 45

3.3 Increase in seed generation rate without feedback from NCBI BLASTP stage 2 . . . 50

4.1 Comparison of runtimes (in seconds) of various neighbourhood generation algorithms 64

4.2 Performance of query bin packing approximation algorithms . . . . . . . . . . . . . . 66

5.1 Parameter values for the performance model . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Throughput of the two configurations of Mercury BLASTP . . . . . . . . . . . . . . 70

5.3 Comparison of Mercury BLASTP against the benchmark . . . . . . . . . . . . . . . 71

v



List of Figures

1.1 Growth of UniProtKB/TrEMBL protein databases . . . . . . . . . . . . . . . . . . . 2

1.2 Alignment of two protein sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Pipelined stages in BLASTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Neighbourhood of a single query w-mer in a protein sequence . . . . . . . . . . . . . 5

1.5 Speed vs. sensitivity tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 The two-hit method requires two adjacent word matches on the same diagonal to

generate a seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Ungapped Extension in BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Gapped Extension in BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Speedup of NCBI BLASTP with improved performance of an individual stage . . . . 23

2.2 Classification of search results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Mercury system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Mercury BLASTN: hardware/software deployment [38] . . . . . . . . . . . . . . . . . 37

3.3 Mercury BLASTP: hardware/software deployment . . . . . . . . . . . . . . . . . . . 38

3.4 Ungapped extension prefilter hardware design . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Banded Smith-Waterman: fixed-window gapped extension centered on a seed . . . . 40

3.6 Gapped extension hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Word matching hardware design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Word matching stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Lookup table datapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Two-hit computation performed in a diagonal . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Two-hit module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Two-hit work distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Two-hit replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.14 Switch1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.15 Switch2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Seed Generator Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Single Instruction Multiple Data (SIMD) operations . . . . . . . . . . . . . . . . . . 62

4.3 Histogram of query sequence lengths in the E.coli proteome . . . . . . . . . . . . . . 66

vi



Acknowledgments

I am deeply indebted to my advisors, Dr. Jeremy Buhler and Dr. Roger Chamberlain, for their

tremendous patience, support, guidance and insights over the past two years.

I would like to thank the members of my research group, Joseph Lancaster, Brandon Harris, Praveen

Krishnamurthy and Richard Crowley for the incisive discussions and their constructive criticisms.

We spent many hours in the lab beating the hardware into submission. It was truly a rewarding

experience!

Exegy Inc. provided invaluable assistance during the development of the hardware on the Mercury

platform. I especially acknowledge the support of Mr. Berkley Shands for help with the FPGA

communication wrappers.

I am grateful for the support from our sponsors, the National Institutes of Health and the National

Science Foundation. This research is supported by the NIH/NGHRI grant 1 R42 HG003225-01 and

the NSF career grant DBI-0237902.

Finally, I would like to thank my parents and my brother for their support and love throughout

these years.

Arpith Chacko Jacob

Washington University in Saint Louis

August 2006

vii



1

Chapter 1

Introduction

Sequence analysis is a commonly used tool in computational biology to help study the evolutionary

relationship between two sequences, by attempting to detect patterns of conservation and divergence.

It measures the similarity of two sequences by doing inexact matching, using biologically meaningful

mutation probabilities. A high-scoring alignment of the two sequences matches as many identical

residues as possible while keeping differences to a minimum, thus recreating a hypothesized chain of

mutational events that separates them.

Biologists use high-scoring alignments as evidence in deducing homology, i.e., that the two sequences

share a common ancestor. Homology between sequences implies a possible similarity in function or

structure, and information known for one sequence can be applied to the other. Sequence analysis

helps to understand an unidentified sequence using existing information. Considerable effort has

been spent in collecting and organizing information on existing sequences. An unknown DNA or

protein sequence, termed the query, can be compared to a database of annotated sequences such as

GenBank [4] or Swiss-Prot [10] to detect homologs.

Sequence databases continue to grow exponentially as entire genomes of organisms are sequenced,

making sequence analysis a computationally demanding task. For example, since its release in

1982, the GenBank DNA database has doubled in size approximately every 18 months [5]. The

International Nucleotide Sequence Databases comprising DNA and RNA sequences from GenBank,

European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-Bank), and

the DNA Data Bank of Japan recently announced a significant milestone in archiving 100 gigabases

of sequence data [7]. The Swiss-Prot protein database has experienced a corresponding growth

(Figure 1.1 [6]) as newly sequenced genomic DNA are translated into proteins. Existing sequence

analysis tools are fast becoming outdated in the post-genomic era.

In this thesis, we look to address this problem by accelerating protein database searches using

programmable logic on Field Programmable Gate Arrays (FPGAs). We focus our attention on the

popular BLASTP heuristic, building on work done earlier to accelerate DNA searching [38] on the

Mercury platform. We analyze the performance characteristics of the major stages of the BLASTP

algorithm and propose a hardware design for the initial seed generation stage. We evaluate the
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Figure 1.1: Growth of UniProtKB/TrEMBL protein databases

performance of the individual stage and its effect on the overall pipeline running on the Mercury

system. We achieved a speedup of 13x for the seed generation stage over the software equivalent.

The Mercury BLASTP pipeline is expected to run over 50x faster than a typical protein search on

a standard workstation.

In the following sections we introduce sequence analysis, describe the BLASTP algorithm in detail

and analyze its performance characteristics. Finally, we survey the state of the art in high-throughput

protein sequence analysis.

1.1 Sequence analysis

Pairwise comparison aims to find biologically similar regions between two sequences. It performs a

side-by-side comparison of residues to generate an alignment reflecting their similarity (Figure 1.2).

Comparison assigns a similarity score from a scoring matrix to each residue pair. Nucleotide com-

parison assigns a positive score for a perfect residue match and a negative score for a mismatch.

Protein comparison uses a table of biologically meaningful log-odds scores to score a pair of residues.

In addition, a gap in an alignment corresponding to the absence of a residue is scored by an affine

penalty a + nb, where a is the gap initiation and b the gap extension cost for each of the n gap

positions.
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An optimal alignment is a highest scoring alignment of two sequences. Dynamic programming is

an efficient method to find such an alignment avoiding combinatorial explosion. The Needleman-

Wunsch [47] global alignment algorithm matches two sequences in their entirety. Smith-Waterman [52,

30] locally aligns two sequences by looking for conserved subsequences. Since the entire search space

is inspected by comparing every residue of the two sequences against each other, dynamic program-

ming is guaranteed to find the optimal alignment.

Query: QAPGTLIGASRD--EDELPVKGISNLNNMAMFSVS
  |||| |   ||  +| ||| |+|++| + + +++

   Db: DAPGTRI--ERDVQKDRLPVTGLSSINKVVLLNLA

Figure 1.2: Alignment of two protein sequences

Dynamic programming algorithms run at a cost dependent on the product of the lengths of the two

sequences. Even for small sequences, this becomes prohibitively expensive to run on general-purpose

computers. In addition to the large time complexity, Smith-Waterman suffers from a number of other

disadvantages. The simple traceback procedure used to retrieve an optimal alignment requires space

proportional to the product of the sequence lengths. The space complexity is of greater concern

than the time complexity on memory-limited workstations. Linear space traceback requires a more

sophisticated divide-and-conquer algorithm [46].

As a result of the high cost of Smith-Waterman, a number of fast heuristic algorithms like BLAST [15]

and FASTA [48] have been developed. Heuristics are employed to rapidly identify “hotspots,” i.e.

locations where a good alignment is likely to be present. The more expensive dynamic programming

technique is only performed in this greatly reduced search space. In addition to having lower space

and time complexity, BLAST is able to detect sub-optimal alignments. However, sensitivity is

reduced, and there is no guarantee that the optimal alignment will be found.

1.1.1 NCBI BLAST

The Basic Local Alignment Search Tool, or BLAST [13, 15], is the most popular sequence anal-

ysis package. The BLAST heuristic relies on identifying high-scoring segments between a pair of

sequences using efficient data structures and algorithms. These segments are then used as seeds for

a full dynamic programming alignment procedure. This heuristic results in a huge speed advantage

over Smith-Waterman, at the cost of reduced sensitivity. The original BLAST suite of programs [14]

also introduced the concept of statistical “significance” of an alignment, i.e., how likely it is that

two unrelated sequences are similar simply by chance [35]. The BLAST package provides a variety

of programs with specific functions that are summarized in Table 1.1. In addition, enhancements to

identify distant homologs (PSI-BLAST) and to rapidly compare highly similar nucleotide sequences

(MegaBLAST) are included in the standard distribution.
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Table 1.1: BLAST programs

Program Function
BLASTN Nucleotide query vs. nucleotide database
BLASTP Protein query vs. protein database
BLASTX Nucleotide query translated into its six reading frames vs. protein database
TBLASTN Protein query vs. nucleotide database translated into its six reading frames
TBLASTX Nucleotide query vs. nucleotide database, both translated into their six reading frames

Two BLAST implementations, NCBI BLAST [15, 13] maintained by the National Center for Biotech-

nology Information and WU-BLAST [12] by Warren Gish at Washington University in St. Louis,

are available. We concentrate our efforts on NCBI BLAST (Oct 20, 2004 release 2.2.10) as its source

code is available in the public domain.

1.2 The BLAST algorithm

The BLAST algorithm is based on two heuristics published in 1990 [14] (BLAST1) and 1997 [15]

(BLAST2). We focus on the BLAST2 algorithm, noting important distinctions from the original

when relevant. Though we describe the algorithm for protein-to-protein comparisons, it can be easily

extended to DNA searches with minor modifications.

seedsw−mers

EXTENSION

GAPPED

SEED GENERATION

WORD
MATCHING

TWO HIT
UNGAPPED

EXTENSION

HSPs alignmentsdatabase

Figure 1.3: Pipelined stages in BLASTP

The BLAST algorithm is divided into three stages (Figure 1.3): Seed Generation, Ungapped Exten-

sion, and Gapped Extension. The key observation in the BLAST technique is the high likelihood of

the presence of short aligned words in an alignment. In the Seed Generation stage word matches, or

hits, are identified between the query and the database sequence. These matches are passed as seeds

into the ungapped extension phase to identify High-scoring Segment Pairs (HSPs). An HSP is a pair

of continuous subsequences of residues (identical or not, but without gaps at this stage) of equal

length, at some location in the query and the database sequence. Statistically significant HSPs are

then passed into the gapped extension phase, where a Smith-Waterman-like dynamic programming
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algorithm is performed. An HSP that successfully passes through all three stages is reported to the

user.

The seed generation stage of the pipeline is the focus of this thesis and is described in detail in the

next section. The remaining stages involve work done by other members of our research group and

are only briefly described. A more detailed exposition is available in [15, 13].

1.2.1 Stage 1: Seed Generation

Let S be a string or a sequence defined over an alphabet Σ. A w-mer or a word r is defined as a

string of exactly w characters. A string S can be split into exactly |S|−w+1 overlapping w-mers. If

r ∈ S, pos(r) refers to the index location of the first character of r in S. Seed generation consists of

the word matching and two-hit stages placed back-to-back. The input to seed generation is a query

sequence Q and a database D; the output, a list of w-mer pairs (q, d) ∈ Q×D, termed seeds or hits.

The first stage aims to find w-mer matches between the query and the database. W-mer matches

indicate regions of interest between the two sequences. Reading in a query Q and a database D, the

output of this stage is a list of all word pairs (q, d) ∈ Q×D such that Σw
i=1δqi,di

>= T , i.e. a pairwise

comparison of characters of the two words yields a score greater than or equal to the threshold. δ

is a scoring table/function defined for all pairs of characters in X . In order to compute the list of

word pairs efficiently, a neighbourhood N(w, T ) of the query sequence is defined for a fixed word

length w and a threshold value T . The neighbourhood is defined for every query w-mer as the list of

all possible database w-mers whose pairwise comparison score is greater than or equal to T . Linear

scanning of overlapping words in the database sequence, using a lookup table constructed from the

neighbourhood of the query helps in quick identification of hits.

..., C L L, C L M, C L P, C L Q, C L S, C L T,
C L W, C L X, C L Y,C L V, C K U, C I A,

C I L, C I M, C I T, C I U, C F I, C F U, ...

Q R Q R V A L A R C L V R E Q P I L L L D

Figure 1.4: Neighbourhood of a single query w-mer in a protein sequence

A two-hit stage is frequently employed to filter an input hit stream generated by the word matching

stage. A two-hit is defined as a pair of hits (q, d) and (q′, d′) such that pos(d) − pos(q) = pos(d′)−

pos(q′), pos(d) − pos(d′) < A and pos(d) − pos(d′) ≥ w. A is a scalar, termed the window length.
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The output of this stage termed seeds, is a list of all hits (q, d) such that there exists a two-hit whose

second hit is (q′, d′).

Neighbourhood Generation

Due to the high degree of conservation in DNA sequences, BLASTN word matches are simply

pairs of exact matches in both sequences (with the default word length being 11). Building the

neighbourhood involves identifying all |S| − w + 1 overlapping w-mers in the query sequence S.

Amino acids in protein sequences readily mutate into other, functionally similar amino acids. Hence,

BLASTP looks for shorter (typically of length 3) non-identical pairs of substrings that have a

high similarity score. The neighbourhood N(w, T ) is generated by identifying all possible amino

acid subsequences of size w that match each overlapping w-mer in the query sequence. All such

subsequences that score at least T (called the neighbourhood threshold) when compared to the

query w-mer are added to the neighbourhood. BLAST compares each query w-mer against an

enumerated list of all |Σ|w possible words to determine the neighbourhood.

(a) Word length = 3, Threshold = 9 (b) Word length = 3, Threshold = 11

Figure 1.5: Speed vs. sensitivity tradeoff: increasing the neighbourhood threshold decreases the
number of hits in the seed generation stage. The database sequence is plotted on the X-axis and

the query sequence on the Y-axis.

There is a tradeoff between speed and sensitivity when selecting the neighbourhood parameters.

Increasing the word length or the neighbourhood threshold decreases the neighbourhood size and

therefore reduces the computational costs of seed generation, since fewer hits are generated. However,

this comes at the cost of decreased sensitivity. Fewer word matches are generated from the smaller

neighbourhood, reducing the probability of a hit in a biologically relevant alignment.
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Word Matching

The neighbourhood of a query is stored in a direct lookup table indexed by w-mers. A linear scan

of the database performs a lookup on each overlapping w-mer d at database offset pos(d). The table

lookup yields a linked list of query offsets pos(q1), pos(q2), . . . , pos(qn) which correspond to hits

(q1, d), (q2, d), . . . , (qn, d). Hits generated from a table lookup may be further processed to generate

seeds for the ungapped extension stage.

One-hit: BLASTN and the initial version of BLASTP consider each hit in isolation. In the one-hit

approach, a single hit is considered sufficient evidence of the presence an HSP and is used to trigger

a seed. A neighbourhood N(4, 17) yields sufficient hits to detect similarity between typical protein

sequences. A large number of these seeds, however, are spurious and must be filtered by expensive

seed extension.

Two-hit: The two-hit refinement is based on the observation that HSPs of biological interest are

typically much longer than a word. Hence, there is a high likelihood of generating multiple hits

in a single HSP. In the two-hit method, hits generated by the word matching stage are not passed

directly to ungapped extension, instead being recorded in a diagonal array. The presence of two hits

in close proximity on the same diagonal (noting that there is a unique diagonal associated with any

HSP that does not include gaps) is the necessary condition to trigger a seed. The decreased seed

generation rate drastically reduces time spent in later stages.

Figure 1.6: The two-hit method requires two adjacent word matches on the same diagonal –
indicated by the dashed line – to generate a seed. The database sequence is plotted on the X-axis

and the query sequence on the Y-axis.
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In order to attain comparable sensitivity to the one-hit algorithm, a more permissive neighbourhood

of N(3, 11) is used. Although this increases the number of hits generated by the word matching

stage, only a fraction pass as seeds for ungapped extension. The BLAST2 literature [15] reports

an approximately 3.2x increase of hits in the word matching stage, but an 86% reduction in the

number of seeds generated by the two-hit configuration. Since far less time is spent filtering hits

than extending them, there is a significant savings in the computational cost.

1.2.2 Stage 2: Ungapped Extension

The input to this stage is a list of seeds; the output, all HSPs that score above a threshold after

extension on a single diagonal, using the X-drop algorithm. Extension along a diagonal centered

on a seed is done using an X-drop procedure [39]. Match/mismatch scores are computed using a

scoring matrix. Seeds are extended in either direction so long as the score continues to increase.

If an extension causes the score of an HSP to fall more than a threshold Xu below the best score

seen so far, the process is terminated. Statistically significant HSPs are passed along the pipeline

for further inspection.

Seed

Optimal Alignment

X drop

S
co

re

Right extensionLeft extension

Figure 1.7: Ungapped Extension in BLAST

In order to avoid the generation of redundant seeds, the length of an HSP extension is recorded in

the diagonal array used by the two-hit algorithm. Feedback from this stage permits recognition of

hits that are part of the same HSP, which can then be safely ignored.

1.2.3 Stage 3: Gapped Extension

The input to this stage is a list of HSPs; the output, a list of high scoring alignments. HSPs

passed into this phase are extended using rigorous dynamic programming permitting gaps. While

full Smith-Waterman performs a fixed amount of computation proportional to the product of the

sequence lengths, the BLAST gapped extension stage is adaptive. Centered on the seed, gapped

extension proceeds along either direction exploring fewer cells, which are selected so as to enclose
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Figure 1.8: Gapped Extension in BLAST. The database sequence is plotted on the X-axis and the
query sequence on the Y-axis.

an optimal alignment. By reducing the number of cells computed, a fraction of the work of full

Smith-Waterman is done. An X-drop procedure similar to the one described in the previous stage

is employed.

Since BLAST looks at multiple hits between the query and the database, more than one high

scoring alignment can be retrieved. An E-value, or an Expectation Value, measures the statistical

significance of an alignment. It denotes the number of chance occurrences in the database when

using a specific scoring system. The lower the E-value of an alignment, the more likely it is to be

biologically significant.

1.3 Scale of the problem

While the fundamental BLAST algorithm has undergone little change since the late 1990’s, advance-

ments in general-purpose microprocessor technology have provided necessary speed enhancements.

However, the exponential growth of sequence data has exposed serious limitations to this strategy.

For example, the BLAST server on the NCBI website makes use of a Linux cluster consisting of

around 200 CPUs [44]. NCBI reported processing 140,000 queries on a typical weekday in 2004 and

planned to double their computing capabilities to keep up with demand [44].

To analyze the scale of the problem, we measured the performance of BLASTP, running it with

default parameters on a benchmark machine. We compared the GenBank Non-Redundant (NR)
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database against query sequences of various lengths, selected randomly from the Escherichia coli

k12 proteome. Details of the benchmark machine and the dataset are presented in chapter 2.

Timings are averaged over twenty queries for each length and reported at 95% confidence intervals.

Table 1.2: NCBI BLASTP runtimes for various query sizes

Query Length BLASTP Runtime
(residues)

500 1m30s ± 3.42%
1000 2m17s ± 2.44%
2000 3m48s ± 2.46%
5000 8m43s ± 4.52%

Ecoli − k12 36h14m20s

Table 1.2 lists the execution time of NCBI BLASTP for query sequences of various sizes. An

approximately linear increase in running time is observed with an increase in the query length.

NCBI BLASTP requires over 36 hours to compare the entire E. coli. K12 proteome against NR.

Recognizing the importance of an accelerated BLASTP implementation, we look to use programmable

logic on Field Programmable Gate Arrays (FPGAs) for a solution. The Mercury system [23] provides

the infrastructure to support high-throughput disk-based computation on reconfigurable hardware

attached to general-purpose workstations. Data from disks is streamed directly through pipelined

logic blocks, typically being filtered by progressively more complex computations before being sent

for post-processing on the attached workstation. Hardware/software codesign is necessary to ensure

efficient implementation of an application. Previous work [38] on the Mercury system targets a

two-order-of-magnitude acceleration of the NCBI BLASTN algorithm.

In this work, we describe the redesign of the Seed Generation stage as part of Mercury BLASTP.

The acceleration of the ungapped and gapped extension stages are detailed in [39, 31].

1.4 Related work

In this section, we survey research targeting acceleration of homology search. We first list algorithmic

advances in the field that improve the BLAST heuristic to increase speed and sensitivity. We then

look at parallel implementations on special-purpose hardware of the Smith-Waterman and BLAST

algorithms.

1.4.1 Heuristic improvements

FASTA: [48] Introduced prior to BLAST, FASTA uses a similar seeding strategy to identify

locations of high similarity. Identical pairs of subsequences, called k-tuples (k = 1 or 2 for protein
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searches), are identified between the query and database sequence. Diagonals with the highest

density of matches are identified by scoring its k-tuples and penalizing intermediate mismatches. This

step corresponds to the neighbourhood strategy in BLAST. The highest-scoring diagonals, which

are likely to form part of a significant alignment, are combined using Smith-Waterman dynamic

programming. This is similar to gapped extension in BLAST, except that dynamic programming is

restricted to a narrow band centered on the highest scoring diagonal. BLAST builds on techniques

introduced in FASTA and is of comparable sensitivity, with fewer false hits and an order of magnitude

speedup [14].

BLAT: [36] The BLAST-like Alignment Tool is a DNA and protein sequence analysis package

written by Jim Kent at UCSC. It was designed to quickly find alignments in sequences of high

similarity. A table of all non-overlapping w-mers (w = 4 or 5 for proteins) in the database is pre-

computed and loaded into memory. Scanning involves a lookup of every overlapping w-mer in the

query. Since the database rather than the query is indexed, the scanning phase is extremely quick.

To reduce the number of hits generated, a longer word length is used, and only non-overlapping

exact matches in the database are identified.

BLAT “clumps” hits into buckets based on their database locations and then sorts them by their

diagonals. Hits within a short window on a diagonal and in close proximity in the database sequence

are located. Homologous regions in the database can then be identified from hits in high scoring

clumps. This stage is similar to the two-hit stage in BLAST; the more elaborate technique is

necessary to handle the large number of hits generated on a table lookup.

BLAT is about 50x faster than existing protein alignment tools for sequences that are at least 80%

identical. In addition to perfectly matching w-mers, BLAT allows near-perfect matches, where up to

one pair of residues may mismatch. The increase in sensitivity comes at a cost of decreased speed.

BLAST, with its sophisticated neighbourhood seeding and gapped extension, is more sensitive and

therefore suitable for more divergent sequences. This is important since homologous sequences have

a percent identity as little as 20%.

The memory requirements of BLAT are considerably increased since both the database index and

sequences must be loaded into main memory. The lookup table of the translated human genome

alone is 2.5 gigabytes in size.

PatternHunter: [42, 41] The major contribution of PatternHunter is the novel seeding strategy

used to improve sensitivity and selectivity of the seed generation stage. While BLAST forms a

word from k contiguous residues, PatternHunter inspects only w < k residues from a window of size

k. The positions of the w residues in spaced seeds is specified by a model. For example, 1110111

inspects k = 7 residues but creates words of size w = 6 (termed the weight of the model); here the

fourth residue is ignored.
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The spaced seeding strategy significantly improves sensitivity because the independence of match

events of neighbouring w-mers in a sequence is increased. When a word and its shifted copy in a

sequence share many residues, a mismatch in the first word directly affects the number of mismatches

in the second. With reduced independence of consecutive words, their match probabilities decrease,

diminishing the sensitivity. This effect is reduced by spaced seeds since fewer residue positions are

shared between consecutive w-mers. By increasing the weight of a word and using a spaced seed

model, fewer false positives are generated in the seed generation stage, without a loss in sensitivity.

A further sensitivity improvement in PatternHunter considered multiple spaced seeds, where a hit

may be generated by any one of multiple seed models.

Vector seeds generalize this concept for protein searches. A vector seed is specified by a pair (v, T ),

where v is the model and T , the threshold. The sum of the score of aligned pairs of residues at

positions specified by a 1 in the model must exceed T to be considered a match. tPatternHunter [37]

uses multiple vector seeds for protein sequences [55].

There are two main disadvantages to these approaches. Firstly, increasing the weight of a seed

model increases the size of the hash table. This is especially true for protein sequences where a

neighbourhood is generated. Secondly, finding optimal seed models is NP-hard. Further, optimal

seed models are specific to a particular dataset. Use of multiple seeds require multiple hash tables,

exacerbating the problem and making it impractical for memory-constrained machines.

MUMmer: [26] MUMmer replaces the hashing strategy of the word matching phase by a more

efficient data structure, the suffix tree. The suffix tree of a sequence is a compact representation of

all suffixes in an input sequence. It is possible to locate every suffix by traversing a unique path from

the root to a leaf node. MUMmer creates a suffix tree for the first genome, and then adds suffixes

from the second. Maximal unique matches (MUMs) are quickly identified using this data structure

and inspected further. A clever implementation of the suffix construction algorithm can be done in

linear time.

The time requirements of MUMmer are better than the BLAST hashing scheme. The suffix tree

approach finds application in searching large genomes that are biologically close to each other. How-

ever, it fails to find alignments without exact matches, unlike BLAST which uses the neighbourhood

strategy.

1.4.2 Smith-Waterman accelerators

The Smith-Waterman algorithm has been studied extensively for parallelization in hardware. Fine-

grained parallelism exploits the data dependency structure in the Smith-Waterman recurrence to

speed up pairwise comparison on tightly-coupled processing elements. To compute the value of a cell

in the dynamic programming matrix, cell values immediately to the left, above, and upper-left must

be known. This allows the simultaneous computation of cells on an anti-diagonal. Coarse-grained
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implementations perform many sequence alignments in parallel on loosely-coupled processors. Each

computational unit aligns the query against an independent subset of the database.

Smith-Waterman accelerators can be classified into four categories: Workstation clusters, Super-

computers, VLSI devices and Reconfigurable Hardware.

General-purpose workstations are an inexpensive and widely available resource. Single Instruction

stream, Multiple Data stream (SIMD) architectures are available on most modern workstations to

handle the demands of multimedia processing. SIMD instructions operate on multiple data words

(between 2 and 16) packed in well-defined fields in special registers. An operation on these registers

individually calculates the result for each data word in a single clock cycle. Various implementations

include VIS on Sun UltraSparc processors, MMX/SSE/3DNow! on x86 processors, and AltiVec on

the PowerPC. Wozniak [54] used the Visual Instruction Set on the UltraSPARC to achieve a two-fold

speed increase. Rognes et al. [50] report a six-fold speedup on a single Pentium III workstation using

MMX instructions. Clusters of workstations have been used to exploit coarse-grained parallelism.

Martins et al. [43] report a speedup of 90 on a 120 node PC cluster using their EARTH architecture.

Supercomputers provide high-throughput sequence analysis, though they are expensive and not

widely available. BLAZE, an implementation for the massively parallel 4096 processor MasPar

MP1104 [20], achieved a speedup of more than four orders of magnitude when compared to work-

stations.

VLSI devices are usually explicitly designed for a single application. They achieve high performance

but are more expensive than general-purpose workstations. Programmable VLSI based architectures

execute a class of similar applications. The UCSC Kestrel Parallel Processor [18] is a SIMD processor

with a 512 array of 8-bit processing elements capable of running a wide range of scientific applications.

They report a speedup of two orders of magnitude when compared with an UltraSPARC-II machine.

VLSI devices, however, cannot be updated to exploit advancements in technology. They are also

constrained by their initial design. For example, 8-bit processing elements on the Kestrel make it

unsuitable for aligning large sequences.

Reconfigurable Hardware systems are flexible devices that can execute a wide array of applications.

They achieve performance approaching that of VLSI devices at a fraction of the cost. A number

of FPGA systems such as DeCypher [3], SPLASH 2 [33], Cray XD1 [2], and others [56] accelerate

Smith-Waterman, reporting several orders of magnitude speedup. These systems can easily be

ported to newer generations of FPGAs with minimum re-design.

It is important to note that Smith-Waterman is essentially the gapped extension stage of the BLAST

algorithm. Acceleration of Smith-Waterman alone in hardware is insufficient to perform high-

throughput sequence analysis. To illustrate this point, we measured the performance of a software

implementation of Smith-Waterman, ssearch [48]. On our benchmark machine, ssearch computes

the dynamic programming matrix at approximately 89 million cell updates per second. A hardware



14

implementation running 100x faster is estimated to take approximately 33 hours to compare the

entire E. coli. K12 proteome against NR (this does not include post-processing, i.e., time spent

retrieving significant alignments). In contrast, NCBI BLASTP running on a single general-purpose

workstation performs the same comparison in approximately 36 hours.

The above result shows that a highly accelerated implementation of Smith-Waterman on an FPGA

runs in about the same time as NCBI BLASTP running on a Pentium 4 workstation. We conclude

that the BLASTP heuristic must be accelerated in order to realize a significant speed improvement

for protein sequence analysis.

1.4.3 BLAST accelerators

The majority of BLAST accelerators run on a cluster of workstations. A few have been designed to

run on FPGA devices.

Faster Search Algorithm BLAST: [21, 22] (FSA-BLAST1) employs software optimization and

modifications to the BLAST algorithm. The lookup table in stage 1 is replaced by a deterministic

finite automaton that is engineered for fast, cache-conscious operation. A semi-gapped extension

stage is added between stages 2 and 3 to further filter data. Here, a dynamic programming recurrence

similar to the ungapped extension stage is used, but with gaps allowed only at every nth residue

in the two sequences. Finally, the recurrence of the gapped extension phase is modified to disallow

adjacent gaps in the two sequences, leading to reduced computation per cell. An overall speedup of

20-30% over NCBI BLASTP is reported.

Apple/Genentech BLAST: [1] (AG-BLAST) Apple Computer and Genentech provide an open-

source version of NCBI BLAST customized to use Altivec instructions on PowerMac G4 and G5

processors. The modifications are in the seed generation stage. AG-BLAST used with word lengths

20 - 40 provide a two-fold speed increase over MegaBLAST. However, the use of large word lengths

makes it unsuitable for searching divergent sequences.

BLAST clusters: The embarassingly parallel nature of BLAST can be exploited to run on a cluster

of nodes. Query segmentation splits the set of query sequences and runs each on individual nodes

of a cluster. BLAST searches a subset of the queries against the entire database on each node. This

approach provides a near linear scalability if the database can fit in main memory. Alternatively,

the database can be segmented, with the same query being processed against different subsets of

the database. NCBI-BLAST implements a native multi-threaded search that can take advantage

of SMP systems. Message Passing Interface BLAST (mpiBLAST) [25] is capable of running on

a diverse set of architectures including Beowulf clusters, exhibiting near linear scalability on small

numbers of nodes. SGI High Throughput Computational BLAST (HTC-BLAST) [9] is a distributed

1http://www.fsa-blast.org/
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cluster implementation of BLAST on SGI Origin 300 servers that enables high-throughput homology

searching. A BLASTX comparison of a large number of query sequences against the NR protein

database on a 32-processor cluster yields a 30x speedup over a single machine. A commercial

offering, TurboBLAST [17], runs on many parallel computing environments including heterogeneous

workstations, parallel supercomputers, and grids. Paracel BLAST [8] is designed to run on high-end

Sun clusters.

Cluster implementations can significantly decrease turn-around time on high-throughput BLAST

searches. Distributed resources can be harnessed to search large queries or databases which would

be infeasible on a single node. However, they scale poorly as more nodes are added to the cluster,

since more time is spent formatting databases and collating results. Equal-size database segments on

each node need not mean equal workload on the nodes. A large number of homologous sequences in

a database segment can cause an imbalance in the load. Clusters typically also have high operational

costs when compared to single-node solutions.

FPGA Accelerators: Rdisk2 [40] is an FPGA based system to accelerate stage 1 of BLASTN. Re-

configurable logic is attached close to a hard disk, providing on-the-fly filtering capabilities. Rather

than using lookup tables, the pattern matching computation is performed between a database word

and all query words. This computation can proceed in parallel for all query words and requires pro-

cessing elements proportional to the size of the query. Rdisk reports a throughput of 60 Mbases/sec

for nucleotide searching. Such an approach, however, is not easily extensible to protein searches due

to the more complicated neighbourhood strategy and the two-hit technique.

DeCypherBLAST [11] is a commercial product running on FPGA based engines attached to high-end

servers. Scarcity of information on this offering makes a side-by-side comparison impossible.

RC-BLAST [45] is a recent implementation of the BLAST word matching phase on FPGAs. The

work illustrates the difficulties faced in accelerating heuristic algorithms on FPGAs. The final FPGA

implementation was slower than software version, although this was attributed to the limitations of

the technology used by the authors.

TUC-BLAST [53] is an FPGA solution to accelerate DNA searches of small query sequences (1000

bases). The basic computation unit is a hit finder and an extension unit. The former stores a hash

table of the query in on-chip block RAMs to detect hits. The extension unit performs ungapped

extension to detect significant alignments. High-throughput searching is achieved by replication of

the basic computation units. The basic idea is similar to our approach but is not easily extended

to protein searches without a significant redesign of the architecture. Storing the hash table of the

neighbourhood of a protein query in block RAMs on currently available FPGAs is infeasible due to

its large size. Additionally, without the two-hit algorithm, the hit finder module quickly overwhelms

the extension unit when performing protein searches.

2http://www.irisa.fr/symbiose/lavenier/rdisk.html
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TreeBLASTP [32] is the only FPGA-based accelerator for BLASTP that we are aware of. Published

in early 2006, this work accelerates seed generation and ungapped extension. The seed generation

phase is similar to the one-hit approach. High-scoring word matches are detected using dynamic

programming (thus eliminating lookup tables), and then passed to ungapped extension servers. Since

two-hit filtering is not performed, larger word lengths and threshold values must be used so as to

not overwhelm ungapped extension. The authors claim a database processing rate of 170 million

amino acids per second on query sizes of 1024 residues on the latest FPGA. The effect of decreased

sensitivity due to the higher neighbourhood threshold must be factored into these results.

An extensive literature survey of accelerated sequence analysis applications has established the need

for faster solutions, specifically for BLAST. The limited number of BLAST accelerators, in particular

for protein matching, highlights the difficulties faced in designing a hardware amenable architecture

for seed generation. The focus of this thesis is a hardware/software design for an accelerated seed

generation architecture.

1.5 Contributions

The subject of this thesis is part of a larger body of work done in the STTR group to accelerate se-

quence matching. Former and current members include Joseph Lancaster, Brandon Harris, Praveen

Krishnamurthy and Richard D. Crowley. This research was conducted under the supervision of Dr.

Jeremy Buhler and Dr. Roger Chamberlain.

The focus of this thesis is the seed generation stage. We designed and implemented this algorithm

in hardware after a careful analysis to preserve the quality of the results. We achieved a speedup of

13x over the software equivalent. The performance of the seed generation stage was considered in

the context of the BLASTP pipeline and is expected to run over 50x faster than a typical protein

search on a standard workstation.

The author’s specific contributions to the NCBI BLASTP acceleration effort are summarized below.

Significant contributions by other members are highlighted at the relevant sections.

1. Contributions to the hardware design

(a) The application profile of NCBI BLASTP was studied and the bottleneck stages identi-

fied. The performance characteristics of the pipeline were investigated, and the necessary

acceleration required in each stage was determined.

(b) The source code of the seed generation stage was examined in detail and the computa-

tionally expensive logic blocks identified. To enable high-throughput sequence analysis,

the effect of various parameters and two algorithms on the performance was analysed.
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The case for preserving NCBI BLAST-like sensitivity was established, and the effect of

the selected set of parameters on the quality of results was studied.

(c) An initial design with a highly optimized implementation of the word matching stage

running on the host CPU and the latter stages on an FPGA was considered. This was

determined to be insufficient to meet the performance goal, and the requirement of placing

all stages in hardware was established.

(d) The word matching hardware architecture was designed for the seed generation stage. An

encoding scheme to pack query positions in SRAM was used to increase the throughput

of this stage. The design was implemented in VHDL and optimized for high performance.

(e) A pipelined, high performance design for the two-hit module was implemented in hard-

ware. The effect of the lack of feedback from the ungapped extension stage on the

workload of the pipeline was characterized.

(f) Software simultations of the word matching and two-hit modules were written for use as

a benchmark in the comparison of results generated by the hardware.

(g) Significant contributions were made in parallelizing the word matching module and in the

design of switch1. Other contributors include Brandon Harris, Dr. Roger Chamberlain

and Dr. Jeremy Buhler. The initial implementation was done by Richard D. Crowley.

An optimized high performance implementation was later written by the author.

(h) The architecture for parallel two-hit modules and modulo division of work was designed.

Praveen Krishnamurthy contributed to this design.

(i) Significant contributions were made to the design of the switch2 module along with Bran-

don Harris and Richard D. Crowley. An initial implementation of the switch was written

by Richard D. Crowley. A high speed version of switch2 and the seed reduction tree was

written by the author.

(j) The effect of out-of-order hits due to parallel word matching modules was closely exam-

ined. The stages in the seed generation hardware were designed to minimize this effect.

(k) The parallel seed generation hardware, including multiple copies of the word matching

and two hit modules, was implemented and verified for functional correctness.

2. Contributions to the software design

(a) The necessity of an efficient algorithm to generate the neighbourhood of a query was

established. An optimized prune-and-search neighbourhood generation implementation

was written for this purpose. Dr. Jeremy Buhler was a major contributor to the design

of this algorithm.

(b) A vector implementation of the prune-and-search algorithm was designed and imple-

mented for high-performance neighbourhood generation.

(c) An encoding scheme for lookup table generation for use in the word matching stage was

designed and implemented.
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(d) A survey of bin packing approximation algorithms was performed, and the algorithms

applied to query packing. The quality of results of the approximation algorithms was

studied and the appropriate ones selected based on the deployment of the Mercury system.

(e) A multi-threaded, high performance software architecture for the Mercury BLASTP sys-

tem was designed.

(f) The software design was implemented and interfaced to the Exegy FPGA communication

wrapper. The Mercury software system was incorporated with the NCBI BLASTP source

code to realize an integrated application.

(g) A reconfigurable logic test tool (rltesttool) to perform stability testing of FPGA logic

blocks based on a scripted set of commands, was written to aid the hardware development

process.

The rest of the thesis is organized as follows. Chapter 2 studies the various seed generation param-

eters affecting overall system performance and settles on an optimal set. Chapter 3 describes the

parallel hardware architecture in detail. Chapter 4 details the necessary algorithmic modifications

required in the software supporting the BLASTP pipeline. Chapter 5 reports performance numbers,

and Chapter 6 concludes.
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Chapter 2

Design of an accelerated seed

generation stage

In this chapter we explore the various parameters of the NCBI BLASTP algorithm and study their

effect on system performance. We first identify the bottleneck stages of BLASTP and characterize

the workload of each stage. We then proceed to study the design space of the seed generation stage,

to help build a hardware-amenable implementation.

2.1 Performance characteristics of NCBI BLASTP

To analyze the performance of the various stages of BLASTP, we determined its execution profile

by running it with its default parameters (word length 3, threshold 11, E-value 10, reporting 500

best matches with alignments displayed for the first 250). Our benchmark machine was a single

2.8 Ghz Pentium 4 workstation with an L2 cache of 512 KB and 1 GB of RAM. We compared

the GenBank Non-Redundant (NR) database1 (3,292,813 sequences; 1,128,164,434 residues) against

query sequences of various lengths chosen randomly from the Escherichia coli k12 proteome2 (4,242

sequences; 1,351,322 residues). Timings were averaged over twenty queries for each length and

reported at 95% confidence intervals.

Table 2.1: Percentage of execution time spent in the various stages of NCBI BLASTP

Query Length Word
Two-hit

Ungapped Gapped I/O & Pre/Post
(residues) Matching Extension Extension processing

512 45.99 ± 3.23% 15.74 ± 2.91% 12.74 ± 3.87% 24.74 ± 8.16% 0.73 ± 9.22%
1024 36.61 ± 2.87% 17.50 ± 3.42% 14.15 ± 5.03% 31.27 ± 6.82% 0.42 ± 7.95%
2048 30.96 ± 2.22% 19.29 ± 2.28% 15.85 ± 2.07% 33.60 ± 3.68% 0.24 ± 4.84%
4096 28.72 ± 2.66% 20.27 ± 1.96% 16.64 ± 1.86% 34.14 ± 3.35% 0.16 ± 7.22%

1ftp://ftp.ncbi.nih.gov/blast/db/{nr.00.tar.gz, nr.01.tar.gz}
2ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/Escherichia coli K12/U00096.faa
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Table 2.1 shows the execution profile of NCBI BLASTP. Seed generation dominates, accounting

for up to half the execution time. While time spent in the gapped extension stage in BLASTN is

virtually negligible [38], protein matching spends close to a third of its execution time in this stage.

A BLASTP accelerator must necessarily speed up all three stages of the pipeline to achieve an

overall performance boost. Note that as the query size increases, the percentage of time spent in the

word matching stage progressively decreases, while the rest of the pipeline shows a gradual increase.

Longer query sequences increase the probability of a hit in the word matching stage, leading to

more work for the latter stages. We ignore disk I/O and pre/post processing times (including query

filtering, alignment traceback, and output formatting) in further analysis since it takes less than one

percent of the total execution time.

Table 2.2: Percentage of execution time spent in the various stages of NCBI BLASTP for various
E-values at a query size of 2048

E-Value
Word

Two-hit
Ungapped Gapped I/O & Pre/Post

Matching Extension Extension processing
10−5 30.99 ± 2.28% 18.92 ± 2.19% 16.21 ± 7.28% 33.59 ± 4.12% 0.23 ± 6.70%
10−2 31.03 ± 2.39% 19.09 ± 2.46% 15.95 ± 1.46% 33.65 ± 3.67% 0.23 ± 7.85%
10 30.96 ± 2.22% 19.29 ± 2.28% 15.85 ± 2.07% 33.60 ± 3.68% 0.24 ± 4.84%

Table 2.3: Percentage of execution time spent in the various stages of NCBI BLASTP for different
organisms at a query size of 2048

Query
Word

Two-hit
Ungapped Gapped I/O & Pre/Post

Matching Extension Extension processing
E.coli K12 30.96 ± 2.22% 19.29 ± 2.28% 15.85 ± 2.07% 33.60 ± 3.68% 0.24 ± 4.84%

D.melanogaster (Chr3) 32.57 ± 3.96% 19.07 ± 3.70% 15.45 ± 3.69% 32.58 ± 7.40% 0.27 ± 6.92%
P.falciparum (Chr14) 27.04 ± 5.61% 15.51 ± 5.59% 13.60 ± 8.25% 43.47 ± 5.91% 0.25 ± 9.89%

S.enterica chol. 31.98 ± 2.19% 19.53 ± 2.04% 16.02 ± 2.48% 32.16 ± 3.96% 0.24 ± 6.91%
S.pneumoniae R6 30.22 ± 2.49% 18.20 ± 2.70% 15.29 ± 3.00% 36.00 ± 4.24% 0.23 ± 7.97%

The execution profile remains the same for various E-values (Table 2.2). A lower E-value leads

to a more restrictive threshold in the gapped extension phase and thus only affects the I/O and

post processing time. We observe similar results (Table 2.3) when other organisms are used as the

query sequence dataset. Though we restrict ourselves to the Escherichia coli k12 proteome in further

analysis and our performance measurements, we expect to achieve similar results with other query

organisms.

Table 2.4 shows the time ti spent in stage i of the pipeline per input database residue, w-mer match,

seed, or HSP. Later stages of the pipeline are computationally more expensive. Ungapped extension

spends 2-5x more time per input item as compared to seed generation, while full Smith-Waterman

consumes several orders of magnitude more time than ungapped extension.

Table 2.5 shows the data match rates across the pipeline. The match rate, pi, represents the

probability that an output item from stage i is produced by a single input into that stage. Here, 1a
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Table 2.4: Time ti spent in stage i per input item

Query Word
Two-hit

Ungapped Gapped
Length Matching Extension Extension

(residues) (µsec/residue) (µsec/w − mer) (µsec/seed) (µsec/hsp)
512 0.0312 0.0112 0.2193 163.6821
1024 0.0401 0.0103 0.2043 155.5074
2048 0.0619 0.0100 0.1926 156.6640
4096 0.1043 0.0096 0.1873 147.2897

Table 2.5: Data match rates pi of the various stages of NCBI BLASTP

Query Length
Word

Two-hit
Ungapped Gapped

Matching Extension Extension
(residues) (r1a) (p1b) (p2) (p3)

512 0.9566x 0.0412 0.0026 0.0507
1024 1.8561x 0.0409 0.0029 0.0486
2048 3.8733x 0.0425 0.0026 0.0314
4096 7.6555x 0.0422 0.0026 0.0419

and 1b refer to the word matching and two-hit stages respectively. All stages except word matching

are extremely good filters, discarding more than 95% of their input and leaving progressively less

work for later stages. Unlike BLASTN, the word matching stage of BLASTP is a net expander of

data. The hit generation rate, r1a, of this stage represents the number of w-mer matches generated

per input residue of the database. Inexact matching combined with a short word length results

in the data expansion characteristic of this stage. The two-hit stage – computationally, the least

expensive in the pipeline – discards close to 95% of these w-mers. This two-hit design for the seed

generation stage results in high sensitivity at low computational cost.

Protein sequences tend to be relatively small in size (the average sequence length in the NR database

is 319 residues). Hence, short sequences may be concatenated and processed in a single pass to

decrease overall run time. Conversely, longer sequences may be split into smaller, overlapping

chunks and processed over multiple runs. However, as was noted previously, the length of a query

sequence has an effect on the execution profile of BLASTP. Linear growth in the number of word

matches with increasing query length has the potential to overwhelm later stages. This places a

limit to the performance benefit observed by increasing the size of the query sequence processed in

a single pass.

To characterize the performance of BLASTP, we consider the throughput of individual stages, as

well as the entire pipeline. Throughput, Tputi, for stage i is the number of input items that can be

processed per second and is given by 1/ti. The throughput of the entire pipeline is the number of

input database residues that can be processed per second. On a sequential computational resource,

the average compute time per input residue of the database is given by t = t1a + r1at1b + r1ap1bt2 +

r1ap1bp2t3. The throughput of the run is then 1/t.
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Table 2.6: Throughput of NCBI BLASTP

Query Word
Two-hit

Ungapped Gapped NCBI I/O
Length Matching Extension Extension BLASTP data rate

(residues) (106res./s) (106w − mers/s) (106seeds/s) (106hsps/s) (106res./s) (MB/s)
512 32.05 89.29 4.56 0.0061 14.85 8.85
1024 24.94 97.09 4.89 0.0064 9.18 5.47
2048 16.16 100.00 5.19 0.0064 5.02 2.99
4096 9.59 104.17 5.34 0.0068 2.76 1.65

Table 2.6 gives the throughput of individual stages in millions of input items per second. The seed

generation phase processes input items at a rate several times faster than the downstream stages.

Throughput is strongly dependent on the query size. While throughput increases slightly in the two-

hit and extension stages for longer queries, word matching performance progressively degrades. This

is explained by the linear growth with query size of the w-mer generation rate in the word matching

stage. A longer query sequence increases the number of matches expected purely by chance and not

part of a meaningful alignment. This leads to an increase in the time spent per input residue in the

word matching stage.

An important observation is the low throughput of BLASTP when compared to BLASTN. While

the former runs at only 15 million residues per second for a 512-residue query, BLASTN is capable

of executing an order of magnitude faster for even 10,000-base query sequences. Assuming 5 bits to

encode a residue (20 amino acids), we compute in Table 2.6 the disk I/O rate required to support

the different throughputs. A 2048-residue query sequence requires a sustained database transfer rate

of only 3 MB/sec from disk to processor. The Mercury platform is capable of data transfer to its

computational unit at over 700 MB/sec. Hence, an accelerated implementation of BLASTP on the

Mercury system running even 100x faster than the software will not be I/O limited.

We investigate the effect of improved individual stages on the performance of the NCBI BLASTP

pipeline. Figure 2.1 graphs the overall system performance as a function of the throughput of

individual stages, for 512-residue queries. In each case, the throughput of a single stage is increased,

while the remaining stages run at the speeds indicated in Table 2.6. When accelerating the seed

generation stage, we assume a two-hit module capable of ingesting hits at the rate produced by the

word matching module.

While improved ungapped and gapped extension stages provide a small increase in overall perfor-

mance, an accelerated seed generation stage has the most impact. The seed generation stage is the

bottleneck stage of the pipeline and must be significantly accelerated for any overall performance

improvement. The graph also shows that acceleration of just a single stage produces only a modest

increase in the throughput of the pipeline. To achieve a significant order of magnitude speedup,

it is necessary that all three stages are accelerated. In this work we characterize the design of an

accelerated seed generation stage. Ungapped and gapped extension stages are dealt with in [39, 31].
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Figure 2.1: Speedup of NCBI BLASTP with improved performance of an individual stage

2.2 Software acceleration attempts

The word matching module of the seed generation stage uses a direct lookup table to generate

hits. This table stores the neighbourhood of the query sequence and is used for efficient scanning

against the database. The size of this lookup table increases exponentially with the length of the

w-mer. For example, a 3-mer table requires just a few KB, while a 4-mer table requires close to

1MB of storage space. A hardware implementation of the word matching stage must store this

table in memory. While currently available FPGAs provide on-chip block RAMs, they are typically

limited to small capacities. Off-chip SRAM/DRAM modules must be used for applications with

larger memory requirements. However, modern workstations have ample storage space in the form

of caches and memory modules. To take advantage of this resource, we investigated a design that

uses an accelerated software implementation of the word matching stage, with the remaining stages

running on an FPGA.

A number of optimizations were employed to decrease the size of the lookup table and improve

the performance of the word matching module. The alphabet size was reduced to 20, discarding

w-mers containing ambiguity characters. Using base-20 in place of the existing base-32 arithmetic to

generate w-mer indices into the table further reduced its size. Lookup table locations were aligned at

word boundaries to reduce misaligned memory read penalties. The word matching loop was unrolled

several iterations, and memory was explicitly prefetched to reduce the number of cache misses.

This software-hardware approach yielded limited success in accelerating the word matching stage.

The major limiting factor is the memory bottleneck: the database and the lookup table are too large
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to fit in cache memory. Database w-mer lookups follow a random access pattern, further increasing

the number of cache misses. We conclude, therefore, that a hardware implementation that solves

the memory resource constraint is necessary to achieve a significant speedup of the seed generation

stage.

2.3 Design space exploration

In this section, we investigate the parameters that control the seed generation stage and characterize

their effect on the BLASTP pipeline. The various parameters are studied to converge on a set

of values that maximizes the throughput of a hardware implementation. However, the limited

resources available on an FPGA are a constraint that must be carefully considered. The design space

exploration is treated as a throughput optimization problem given certain resource constraints.

An accelerated implementation of the BLASTP algorithm must not only yield a significant speedup

but also produce results similar to the standard software implementation. The parameters used in

the seed generation algorithm have a considerable impact on sensitivity. As the popularity of BLAST

has soared, it has become an important component of commercial research. However, institutions

have been reluctant to adopt faster, alternative heuristic solutions for fear of “missing” hits that

might otherwise have been found with NCBI BLAST. This has resulted in the limited adoption

of a number of commercial products, including other BLAST-like accelerators [29]. In our design

of Mercury BLASTP, we place great importance in preserving its output characteristics. A set of

parameter values that maximizes the pipeline throughput must not come at the expense of sensitivity

of the search result.

An FPGA has limited logic and memory resources on board. Memory is of particular concern in the

word matching stage. The lookup module probes a table containing the neighbourhood of a query.

In general, this table is too large to be stored in on-chip block RAMs and requires an off-chip SRAM

resource. The speed of the SRAM and its capacity are the resource constraints considered in this

section. The former decides the maximum speed of the lookup module; the latter limits the size of

the query neighbourhood.

The word length and threshold parameters used to generate the neighbourhood of a query sequence

directly influence the throughput of the pipeline. Longer word lengths or higher threshold values

increase throughput. However, this comes at the cost of decreased sensitivity, and so a careful

tradeoff must be made. The throughput of a BLASTP search can be increased by concatenating

multiple query sequences, and processing them in a single pass of the database. However, this

increases the neighbourhood size, which may exceed the capacity of the SRAM. Finally, we consider

the original one-hit algorithm for seed generation and examine it as an alternative to two-hit.
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In the following sections, we first study the effect of the neighbourhood parameters on the sensitivity

of a BLASTP search. We then consider the resource constraints to narrow down the parameter

space. In order to measure the throughput of a hardware design, we first develop a mean-value

performance model. Using this, we select a set of parameters that maximizes the throughput of the

seed generation stage.

2.3.1 Sensitivity

Alignments generated by BLASTP searches at different neighbourhood parameters were compared

for sensitivity. NCBI BLASTP was run with a neighbourhood of N(3, 11) at a cut-off E-value of

10−5. The resultant HSPs reported were designated as the “gold standard.” The restrictive E-value

is justified, since the default of 10 generates a large number of biologically spurious hits purely by

chance. The neighbourhood parameters were then varied and the search results compared against

the gold standard.
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Figure 2.2: Classification of search results

An HSP in the gold standard is designated as detected in the search result (true positive TP) if the

latter contains an HSP between the same query/database pair whose alignment overlaps at least half

the original query and database residues. In practice, greater than 99.5% of true positives exhibited

total overlap in our experiments. An HSP in the gold standard that fails to be identified by a search

result is termed a false negative (FN). Sensitivity is measured as TP/(TP + FN), where a number

closer to 1 signifies a larger coverage of the gold standard. False positives (FP) are those HSPs
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detected by the search result, but not present in the gold standard. The specificity is TP/(TP +

FP), where a number closer to 1 signifies increased accuracy of the search. These definitions are

summarized in Figure 2.2.

Neighbourhood parameters

To study the effect of the neighbourhood parameters on the sensitivity of NCBI BLASTP, we

compared an earlier release of the GenBank Non-Redundant (NR) database (2,321,957 sequences;

787,608,532 residues) against the entire Escherichia coli k12 proteome (4,242 sequences; 1,351,322

residues). Table 2.7 shows the sensitivity and specificity of BLASTP searches for various neighbour-

hoods. The gold standard of N(3, 11) recorded 2,623,223 HSPs between the NR database and the

Escherichia coli k12 proteome.

Longer word lengths or higher threshold values increase the probability of missing a seed in a

biologically meaningful alignment. The sensitivity of a search at a particular word length is higher

for a lower threshold value. For example, N(4, 11) and N(5, 13) perform extremely well. Increasing

the threshold shows a slow decline in sensitivity followed by a rapid fall off as the threshold value

increases beyond a critical point.

Table 2.7: Sensitivity of the two-hit BLASTP algorithm for various neighbourhoods

N(w, T)
# HSPs # HSPs # New HSPs Sensitivity Specificity

detected (TP ) missing (FN) detected (FP ) (TP/(TP + FN)) (TP/(TP + FP ))
N(4, 11) 2, 622, 471 752 7, 658 0.9997 0.9971
N(4, 12) 2, 620, 928 2, 295 6, 332 0.9991 0.9976
N(4, 13) 2, 612, 600 10, 623 4, 588 0.9960 0.9982
N(5, 13) 2, 621, 263 1, 960 6, 841 0.9993 0.9974
N(5, 14) 2, 616, 699 6, 524 5, 262 0.9975 0.9980
N(5, 15) 2, 601, 312 21, 911 3, 958 0.9916 0.9985
N(5, 17) 2, 475, 696 147, 527 14, 542 0.9438 0.9942
N(5, 18) 2, 334, 988 288, 235 32, 385 0.8901 0.9863

Specificity remains high for the various neighbourhood parameters and is much less of a concern. It is

important to note that the gold standard itself is a result of statistical analysis using computational

methods and does not necessarily imply biological similarity. Hence, though we aim to reduce false

positives to produce a result identical to default NCBI BLASTP, the newly discovered HSPs are in

fact statistically significant. A neighbourhood of N(4, 12), for example, detects more than twice as

many new statistically significant HSPs as it loses, while still running faster than default BLASTP.

While it would have been preferable to use a gold standard based on a known list of biologically

relevant HSPs, as far as we are aware, no such list exists for large databases.

We consider the neighbourhood parameters having a sensitivity greater than 99.5% as prime candi-

dates for the target implementation.
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Seeding strategy

Recent research [37] suggests that the seeding strategy used in the word matching stage affects the

search sensitivity. While BLASTP uses a consecutive subsequence of k residues as its seed, a vector

seed uses a discontiguous subsequence of residues. As described in section 1.4.1, a vector seed (v, T )

is specified by a model v ε {0, 1}∗ and a threshold value T . Positions indicated by a 1 in the seed

model are checked for a positive match, while all others are ignored. A seed match is generated

when the sum of the scores of the residue pairs is greater than or equal to T .

Vector seeds increase the independence of match events at adjacent database residues, and have

been shown to improve sensitivity and specificity for DNA searches [42, 41]. The construction of

vector seeds during the database scanning phase is expensive in software, however, a hardware

implementation can be easily adapted for this purpose. We briefly investigated the use of vector

seeds to improve the sensitivity of protein matching.

Table 2.8: Sensitivity of vector seeds

v, T
# HSPs # HSPs # New HSPs Sensitivity Specificity

detected (TP ) missing (FN) detected (FP ) (TP/(TP + FN)) (TP/(TP + FP ))
(1, 1, 1, 1), 13 2, 324, 875 8, 405 3, 973 0.9964 0.9983

(1, 0, 1, 1, 1), 13 2, 330, 785 2, 495 5, 494 0.9989 0.9976
(1, 1, 1, 0, 0, 0, 1), 13 2, 331, 113 2, 167 5, 564 0.9991 0.9976

(1, 0, 1, 1, 1), 14 2, 320, 649 12, 631 4, 042 0.9946 0.9983

The word matching stage of the NCBI BLASTP software was modified to use a vector seeding

strategy. 3000 sequences randomly selected from the Escherichia coli k12 proteome were compared

against the GenBank Non-Redundant (NR) database. The gold standard was the default seed

(1, 1, 1), 11, which detected 2,333,280 HSPs. Sensitivity results are summarized in Table 2.8. Vector

seeds show a slight increase in sensitivity when compared to their consecutive counterparts at the

same threshold. For example, (1, 1, 1, 0, 0, 0, 1), 13 loses 6238 fewer and finds 1591 more HSPs than

(1, 1, 1, 1), 13. The resultant sensitivity is greater than 99.9% of the gold standard.

However, unlike for DNA searches, the advantage of using vector seeds for proteins is minimal.

Vector seeds do not show a significant increase in sensitivity; we do not consider this further. The

default seed (1, 1, 1, 1), 13 is used in our implementation.

2.3.2 Constraints

The off-chip SRAM used to store the neighbourhood of a query sequence is a critical resource. The

query neighbourhood is packed into a direct lookup table stored in the SRAM. The packing scheme

is described in detail in the next chapter. Increasing the word length increases the number of possible
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unique w-mers in the neighbourhood and so the size of the table. Similarly, a lower threshold value

increases the number of w-mers that map to the query sequence. The table size is also directly

proportional to the length of the query sequence.

Word and query sequence lengths

Table 2.9 shows the variation of the lookup table size with the neighbourhood parameters and the

query sequence length. The data was averaged over twenty sequences of various lengths generated

from the Escherichia coli k12 proteome. The key space is the number of unique w-mers for a

particular word length and is computed as |Σ|w, where the size of the alphabet is 20. The occupancy

rate measures the fraction of the key space populated by w-mers in a neighbourhood. The large

occupancy rates observed, especially for longer query sequences, justifies the use of a direct lookup

table instead of a hashing mechanism.

For a fixed query sequence length, the size of the neighbourhood, and hence the lookup table,

increases exponentially with word length. For example, neighbourhoods with a word length of 4

require under 2MB to store the lookup table, while those with a word length of 5 require a minimum

of 10MB.

Table 2.9: Word and query lengths versus neighbourhood size

512 2048 4096

N(w, T)
Key Occ. Neigh. Table Occ. Neigh. Table Occ. Neigh. Table
space rate w-mers size rate w-mers size rate w-mers size

N(3, 11) 8 × 103 61% 8, 960 35K 95% 36, 399 77K 99% 73, 801 134K
N(4, 13) 1.6 × 105 41% 91, 147 634K 85% 371, 257 928K 96% 755, 569 1.6M
N(4, 14) 1.6 × 105 28% 56, 349 628K 70% 230, 267 743K 88% 469, 918 1.1M
N(5, 14) 3.2 × 106 35% 1, 442, 167 12.3M 80% 5, 873, 872 16M 95% 11, 943, 444 25.7M
N(5, 15) 3.2 × 106 24% 913, 301 12.3M 65% 3, 734, 387 14M 85% 7, 609, 670 18.5M

The growth of the table size is more controlled with an increase in the query sequence length. A

longer query sequence increases the number of w-mers in the neighbourhood, but the key space

remains the same. For a neighbourhood of N(4, 13), the data shows a modest 2.5x increase in the

table size from a 512-residue to a 4096-residue query.

The SRAM available in our implementation is limited to 1MB of storage space. This excludes the

use of neighbourhoods with a word length greater than 4 for 2048-residue query sequences.
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2.3.3 Throughput

Now that the sensitivity of the search and the memory constraints have been considered, we estimate

the hardware throughput for various points in the reduced parameter space. We develop a mean-

value performance model to estimate the throughput of the BLASTP hardware pipeline. The pipeline

executes word matching (1a), two-hit (1b), ungapped extension (2a), and gapped extension (3a) on

the FPGA. The throughputs for the ungapped and gapped extension prefilters are computed from

the implementations described in [39, 31].

Performance model

When executing in a pipelined fashion, the overall throughput is limited to the minimum throughput

achieved by any one resource:

Tputpipe = min(Tput1a, T put1b, T put2a, T put3a) Mresidues/second

where Tput1a, T put1b, Tput2a, and Tput3a are the throughputs of the word matching, two-hit,

ungapped extension, and gapped extension stages respectively.

The throughput of the word matching stage is a function of its data input rate and its w-mer

processing time. The target frequency of the FPGA implementation of the word matching stage is

140 MHz. This stage is capable of accepting up to 12 database residues per clock cycle. The w-mer

processing time (expressed in clock cycles), µ, is dependent on the neighbourhood parameters, the

size of the query sequence and the design of the w-mer lookup module. Throughput of stage 1a is

computed as:

Tput1a =
h× f1

µ
Mresidues/second

where h is the number of parallel copies of the w-mer lookup module and f1 = 140 MHz is the clock

frequency of this hardware stage. Note that each input w-mer in stage 1a corresponds to a single

residue of the database.

An off-chip memory lookup table is accessed to detect query hit positions corresponding to a database

w-mer. The neighbourhood parameters and the query size determine the number of query hit

positions stored in this table. Additionally, the organization of the table decides the number of

memory probes required to retrieve all hits corresponding to a w-mer. We compute µ empirically for
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every set of neighbourhood parameters and query sequence lengths. The organization of the lookup

table is described in the next chapter.

Table 2.10: Calculation of µ for a neighbourhood of N(4, 13) and a 2048-residue query. Note: a
w-mer is never satisfied in two probes (Refer Chapter 3)

Table probes Probability Value
1 0.8262 0.8262
3 0.1548 0.4643
4 0.0175 0.0699
5 0.0015 0.0074
6 0.0001 0.0007

Weighted average: µ = 1.3684

Table 2.10 shows the calculation of the empirical value for µ. The data was averaged over NCBI

BLAST searches of twenty 2048-residue query sequences against the NR database, using a neigh-

bourhood of N(4, 13). The weighted average Σgiai, is computed from the probability gi that a

database w-mer is satisfied in exactly ai probes.

The normalized throughput of the two-hit stage is a function of its data input rate and the hit

generation rate of the word matching module. A clock frequency of f1 = 140 MHz is targeted for

the hardware two-hit stage, and it is capable of accepting one hit per clock cycle. Throughput of

stage 1b is computed as

Tput1b =
b× f1

r1a

Mresidues/second

where b represents the number of parallel copies of the two-hit module running in hardware.

We measure the normalized throughput of stage 2a as

Tput2a =
f2

r1ap1b

Mresidues/second

where the ungapped extension prefilter runs at f2 = 75 MHz on the FPGA, and is capable of

accepting one seed per clock cycle. r1ap1b represents the number of seeds passed into stage 2a per

input residue.

Finally, the normalized throughput of stage 3a is computed as

Tput3a =
f3

µ3a × (r1ap1bp2a)
Mresidues/second
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where the gapped extension prefilter runs at f3 = 66 MHz on the FPGA. µ3a represents the average

number of clock cycles required to process an input HSP in the gapped extension stage. We use

µ3a = 700 in our calculations. r1ap1bp2a represents the number of HSPs passed into stage 3a per

input residue.

One-hit versus two-hit

One of two candidate algorithms may be implemented in the seed generation hardware stage. We es-

tablish the superiority of the two-hit over the one-hit algorithm by making an important observation

that affects the performance of the hardware implementation. To compare the two algorithms, we

measured their match rates and throughputs by performing BLASTP searches of twenty 2048-residue

sequences against the NR database. Tables 2.11 and 2.12 display the results.

Table 2.11: Match rates of the one-hit and two-hit algorithms

Algorithm N(w, T)
Word Matching Two-hit Ungapped Extension

(r1a) (p1b) (p2a)

two-hit
N(3, 11) 3.8727 0.0424 0.0025
N(4, 13) 2.0067 0.0183 0.0091
N(4, 17) 0.2097 0.0026 0.0843

one-hit
N(3, 11) 3.8727 − 0.0001
N(4, 13) 2.0067 − 0.0003
N(4, 17) 0.2097 − 0.0011

The two-hit algorithm uses a shorter word length combined with a smaller threshold value to increase

sensitivity. As a consequence, the word matching rate r1a increases drastically. However, the two-hit

modules act as strong filters discarding a large fraction of input hits. One-hit seed generation, on the

other hand, passes a much larger fraction of seeds to ungapped extension. For example, one-hit seed

generation at N(3, 11) produces 24x more work for ungapped extension than its two-hit counterpart.

Most of these seeds are discarded, as evidenced by the very low match rate in stage 2a of the one-hit

pipeline. Relaxation of the one-hit neighbourhood parameters reduces this rate but comes at the

cost of decreased sensitivity.

Table 2.12: Throughput of the one-hit and two-hit pipelines

Algo. N(w, T)
µ T put1a

b
Tput1b Tput2a Tput3a Tputpipe.

(clks/w-mer) (106res./s) (106res./s) (106res./s) (106res./s) (106res./s)

two-hit
N(3, 11) 2.1843 192 6 217 457 225 192
N(4, 13) 1.3684 307 5 349 2, 048 282 282
N(4, 17) 1.0019 419 1 668 136, 324 2, 032 419

one-hit
N(3, 11) 2.1843 192 − − 19 171 19
N(4, 13) 1.3684 307 − − 37 171 37
N(4, 17) 1.0019 419 − − 358 427 358
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Throughput comparison for the hardware pipeline is done with h = 3 copies of the lookup module.

The high hit generation rate when using the two-hit algorithm is dealt with by replicating the two-hit

modules, using up to six copies for N(3, 11). In this case, the throughput of the ungapped extension

prefilter is extremely high, owing to the excellent filtering capabilities of stage 1. The performance

of this configuration (except for N(4, 13)) is limited by the word matching module.

In the one-hit pipeline, the ungapped extension prefilter is overwhelmed by the high stage 2a input

rate, especially at shorter word lengths. The throughput of stage 2a in the one-hit pipeline is up

to several orders of magnitude lower than its two-hit counterpart. A similar effect is seen on the

gapped extension stage. Using a more permissive neighbourhood of N(4, 17) decreases r1a, and so

alleviates this problem to a certain extent. However, stage 2a remains the bottleneck of the pipeline.

This highlights an important advantage of the two-hit algorithm. The two-hit module may be

replicated relatively cheaply to handle the high hit production rate. The ungapped extension stage

by comparison consumes far more resources and is both costly and more complex to replicate. We

conclude, therefore, that the two-hit pipeline configuration scales better with the number of lookup

modules and is more suited for a hardware implementation.

Neighbourhood

The performance of the seed generation stage is affected by the w-mer processing time, and the

hit generation rate of the word matching stage. The throughput of the word matching module is

inversely proportional to µ. An increase in r1a requires two-hit module replication to keep up with

the increased hit production rate. The values of both these parameters can be reduced by using

more permissive neighbourhoods. Increasing the word length or the threshold value decreases µ and

r1a. We study the effect of various neighbourhood parameters on the throughput of the BLASTP

hardware pipeline.

Table 2.13: Match rates of the two-hit algorithm for various neighbourhood parameters

N(w, T)
Word Matching Two-hit Ungapped Extension

(r1a) (p1b) (p2a)
N(3, 11) 3.8727 0.0424 0.0025
N(4, 11) 5.5245 0.0418 0.0023
N(4, 12) 3.3531 0.0280 0.0047
N(4, 13) 2.0067 0.0183 0.0091
N(5, 13) 2.7100 0.0183 0.0089
N(5, 14) 1.6741 0.0123 0.0166
N(5, 15) 1.0176 0.0081 0.0295
N(5, 17) 0.3595 0.0033 0.0838
N(5, 18) 0.2095 0.0021 0.1337

Table 2.13 shows the match rates for various w-mer lengths, neighbourhood thresholds, and two-

hit window lengths. The data was averaged over BLASTP searches of twenty 2048-residue query
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sequences selected from the Escherichia coli k12 proteome against the NR database. In each config-

uration of the hardware pipeline, a single copy of the lookup module (h = 1) and a variable number

of two-hit modules are used. The hit production rate for the default neighbourhood parameter is

3.8727 hits/residue. This drops by half for a neighbourhood of N(4, 13), and by three-fourths for

N(5, 15). There is also a corresponding decrease in the workload of downstream stages. Smaller

values of r1a translate to reduced workload in the two-hit stage and increased individual throughputs

of downstream stages.

Table 2.14: Throughput of the two-hit algorithm for various neighbourhood parameters

N(w, T)
µ Tput1a

b
Tput1b Tput2a Tput3a Tputpipe.

(clks/w-mer) (106res./s) (106res./s) (106res./s) (106res./s) (106res./s)
N(3, 11) 2.1843 64 2 72 457 225 64
N(4, 11) 2.9383 48 2 51 325 176 48
N(4, 12) 1.9495 72 2 84 799 212 72
N(4, 13) 1.3684 102 2 140 2, 048 282 102
N(5, 13) 1.6473 85 2 103 1, 509 212 85
N(5, 14) 1.2332 114 2 167 3, 632 275 114
N(5, 15) 1.0689 131 2 275 9, 084 388 131
N(5, 17) 1.0042 139 1 389 62, 736 941 139
N(5, 18) 1.0010 140 1 668 170, 808 1, 606 140

Table 2.14 summarizes the pipeline throughput for various neighbourhood parameters. The w-mer

processing time in the lookup module falls by over a clock cycle for N(5, 15), from 2.1843 for the

default parameters. This has a direct effect on the throughput of the word matching stage, with the

former configuration running twice as fast as the latter. The effect on the throughput of the two-hit

and ungapped stages is magnified, running almost 4x and 20x faster respectively. We conclude that

increasing the word length has a favourable impact on the throughput of the hardware pipeline.

As discussed in the previous sections, we only consider word lengths of 3 and 4 for our hardware

implementation because of the memory constraint. A configuration with a neighbourhood of N(4, 13)

produces the highest throughput, running 1.5x faster that the default parameters.

Query sequence length

Having established the use of a neighbourhood of N(4, 13), we now consider the optimum query

sequence length. The length of a typical protein sequence is around 300 residues. Performing a

search against a proteome requires a database scan against every one of its queries. If instead, they

are packed to form larger composite sequences, the number of database scans can be reduced. Since

the throughput remains almost unchanged for the larger query sequence, the runtime is reduced. We

have already considered the effect of the query sequence length on the lookup table size. An increase

in query size also leads to a larger match rate in the word matching module, and may overwhelm

downstream stages.
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Table 2.15: Variation of throughput with query length

Query length µ Tput1a
b

Tput1b Tput2a Tput3a Tputpipe.

(residues) (clks/w-mer) (106res./s) (106res./s) (106res./s) (106res./s) (106res./s)
512 1.0085 139 1 284 8, 609 1, 174 139
2048 1.3684 102 2 140 2, 048 282 102

Table 2.15 shows the variation of throughput with query length for the neighbourhood of N(4, 13).

As expected, the 2048-residue query has a 4x higher match rate in the word matching stage (data

not shown). However, this higher match rate is easily handled by two-hit replication. While the

throughput of the downstream stages decreases for the longer query sequence, word matching remains

the bottleneck. In the word matching stage, the average number of clock cycles required to satisfy

an input w-mer increases only slightly for the 2048-residue sequence. Consequently, throughput

remains fairly constant resulting in decreased runtime for packed searches.

We use a query length of 2048 residues in our hardware implementation.

2.3.4 Summary

To summarize, we considered the design space of NCBI BLASTP as a throughput maximization

problem, constrained by the memory resources available to the hardware implementation. A number

of neighbourhood parameters with high sensitivity were considered. The 1MB capacity of the off-chip

SRAM limited the word length to 4 and the query sequence length to under 4096 residues. Finally,

the two-hit algorithm using a neighbourhood of N(4, 13) and a query sequence of 2048 residues were

selected to maximize throughput.
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Chapter 3

Mercury BLASTP seed generation

architecture

In this chapter we discuss the hardware design of Mercury BLASTP. We first describe the salient

features of the Mercury architecture and briefly summarize past work done on an accelerated im-

plementation of BLASTN. We then give a general description of the Mercury BLASTP design and

describe in detail the seed generation stage.

3.1 Mercury architecture

The Mercury system [23] supports disk-based, high-throughput computation on reconfigurable logic.

The goal of the design is to place low-complexity, high-throughput, application-specific logic blocks

near the data source. Streams of data are continuously pumped at disk access speeds through this re-

source, performing one or more physically pipelined functions. High-complexity tasks are performed

by more resource-intensive, general-purpose units present downstream, such as a microprocessor.

The Mercury system is ideally suited for a computational pipeline that performs a large part of

its computation in easily parallelizable, low-cost logic blocks placed upstream. In a typical design,

FPGA-based co-processors receive data from disks over a high-bandwidth I/O bus. One or more

microprocessors on the host, running a conventional operating system, manage the functioning of

the FPGA as well as performing high-complexity tasks. Hence, the Mercury system is ideal for

hardware-software codesign problems. Applications previously implemented on the Mercury system

include text search and DNA sequence matching.

The Mercury system used for implementing BLASTP consists of two 2.0 GHz AMD Opteron CPUs

with 6 GB of memory. The host CPU runs a customized version of Linux 2.6.16-rc5 with Mer-

cury kernel drivers and an API provided by Exegy Inc1. Two prototyping co-processor boards are

connected to the processors and the disk subsystem (SCSI Ultra320 10,000 RPM disk drive) via

1http://www.exegy.com/
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Figure 3.1: Mercury system architecture

the PCI-X bus. The first board contains a Xilinx Virtex-II 6000 FPGA with 33,792 slices and 144

18-Kbit on-chip block RAM memory, while the second board contains a Xilinx Virtex-II 4000 FPGA

with 23,040 slices and 120 18-Kbit on-chip block RAM memory. In addition, up to four synchronous

SRAM modules (GS88032BT-150), each providing 1MB of off-chip memory are available. On this

configuration, members in our group [24] have demonstrated sustained data throughput of over 700

MB/sec from the disk to the FPGA.

3.2 Mercury BLASTN

In this section we compare and contrast Mercury BLASTN with BLASTP. A detailed description

may be found in [38, 39]. The BLASTN heuristic consists of a similar pipeline; however the distri-

bution of execution time is different, being spent primarily in the seed generation stage. The most

significant observation from the execution profile in Table 3.1 is the negligible time spent performing

gapped extension. As a result of these characteristics, only the first two stages were implemented in

hardware. The Mercury BLASTN deployment is illustrated in Figure 3.2.

Table 3.1: Percentage of pipeline time spent in each stage of NCBI BLASTN [39]

Query Size (bases) Stage 1 Stage 2 Stage 3
10 K 86.53±1.33% 13.24±1.99% 0.23±0.02%
25 K 83.89±2.56% 15.88±4.40% 0.22±0.04%
50 K 82.63±2.94% 17.28±4.96% 0.09±0.01%
100 K 83.35±1.28% 16.58±2.17% 0.08±0.01%
1 M 85.39±3.34% 14.68±5.24% 0.03±0.01%

The seed generation stage of BLASTN is substantially different in its design. Since DNA uses an

alphabet of size 4, exact matches of a given length are statistically more probable than in proteins.
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Figure 3.2: Mercury BLASTN: hardware/software deployment [38]

BLASTN uses w-mers of size 11 rather than a neighbourhood seeding strategy, along with the one-

hit algorithm, where a single word match triggers a seed. Further, unlike in BLASTP, the word

matching stage is a strong filter. A parallel Bloom filter [19] stage is employed to rapidly inspect

database residues, discarding more than 90% of input w-mers. A Bloom filter is a probabilistic

algorithm that is used to test the presence of input w-mers in a large member set. This can be done

using far fewer resources than a direct lookup table and is easily implemented in hardware using

on-chip block RAMs. A number of such parallel blocks can support high-throughput scanning of the

database (16 residues/clk). A near-perfect hashing scheme [38] is used to query off-chip SRAM, to

retrieve word matches of flagged w-mers at the rate of one per clock. Query positions corresponding

to an exact match are passed directly from the SRAM as seeds for ungapped extension. The need

to look up the SRAM is a potential bottleneck in the pipeline; however, the Bloom filter greatly

reduces the load in this phase.

An ungapped extension prefilter is employed on the hardware to further filter 99% of seeds emitted

by the first stage. HSPs emitted by the ungapped extension prefilter are then passed through NCBI

BLASTN ungapped and gapped extension stages running on the host CPU. The probability of a

database residue generating a seed that passes through the entire hardware pipeline is very small

(< 4.72 × 10−7). Hence the downstream stages are able to keep up with the ingest rate, whilst

running on the microprocessor.

The NCBI BLAST software code was modified to call the FPGA routines to perform the initial

stages, while running latter stages in parallel with the hardware on the host CPU. This preserves

the familiar BLAST interface for the end user, with the Mercury system running transparently.

A speedup of 30x over the software-only deployment was targeted, with the seed generation stage

running at 1.4Gbases/sec for 10k queries (or a 700MB/sec database ingest rate).

3.3 Mercury BLASTP: Overview

Mercury BLASTP is a hardware/software architecture consisting of substantial hardware and soft-

ware components. As described earlier, all three stages of NCBI BLASTP must be accelerated in
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order to achieve a substantial speedup. An overview of the Mercury BLASTP deployment is depicted

in Figure 3.3.
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Figure 3.3: Mercury BLASTP: hardware/software deployment

The seed generation stage includes word matching and the two hit modules. A prefilter stage as in

Mercury BLASTN is of little performance benefit, as the probability of a database w-mer producing

a word match in the query’s neighbourhood is high (≈ 0.85 for 2048 residue queries). Stage 1a

accesses the query neighbourhood stored in off-chip SRAM(s) to generate w-mer matches. Stage 1b

seeks pairs of word matches in close proximity, which indicates an alignment of interest. The second

word match is passed as a seed into the ungapped extension phase.

Stage 2a of the pipeline is a dynamic programming filter that extends a seed within a fixed window

of residues. Gaps are disallowed, so the computation can be implemented as a high throughput

filter. Ungapped HSPs scoring above a threshold are passed to stage 3a, where the costly banded

Smith-Waterman gapped extension computation is performed. This stage is a substitute for the

X-drop gapped extension algorithm described in Chapter 1. While the software equivalent places

no bounds on gapped extension, the hardware stage is limited to a fixed rectangular search space.

Gapped HSPs scoring above a threshold and those crossing the search boundary are sent to the

host CPU. This approach minimizes false negatives, but introduces a few false positives. The NCBI

BLASTP software pipeline is resumed at the gapped extension phase (stage 3b), filtering out false

positives and generating alignments of significant matches.

The seed generation hardware is described in detail in the next section. The next chapter deals with

the software architecture and algorithms needed to support the hardware. In this section, we briefly

summarize the design of the remaining hardware stages.

3.3.1 Ungapped Extension

The design and implementation of the Mercury BLASTP ungapped extension stage was done by

another member of our research group, Joseph Lancaster, and is described in detail in [39]. The

ungapped extension algorithm is a heuristic used to decide if a seed is likely to lead to a significant

alignment. As the name implies, residue pairs are scored in the region surrounding the seed; gaps,
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or residue insertion and deletions, are disallowed. This simplifies the general Smith-Waterman

recurrence and can be computed efficiently.

The NCBI BLASTP ungapped extension X-drop algorithm described in chapter 1 is ill-suited for

a hardware implementation. However, a decision on a significant fraction of input seeds can be

made by an extension of a fixed window of residues on either side of the seed. This leads to an

FPGA-friendly hardware implementation. The prefilter always scores left to right in a fixed window

centered on the seed. The recurrence can modified to ensure that the HSP always passes through

the seed. HSPs that score above the threshold are passed directly to the gapped extension stage.

DB WINDOW
LOOKUP
MODULE

Residue Scorer

Systolic Array

Threshold ComparatorSCORING MODULE

HSP

Figure 3.4: Ungapped extension prefilter hardware design

Figure 3.4 shows the design of the prefilter module. A window lookup module retrieves the query and

database sequences in the prefilter window. The entire query is stored in block RAMs, while a circular

buffer holds the required portion of the database. A scorer module compares corresponding residues

of the query and database sequences, assigning a score based on a scoring table (BLOSUM62) stored

in on-chip lookup tables. A systolic array of scoring stages implements the dynamic programming

recurrence and emits the score of the highest-scoring HSP. Finally, a threshold comparator flags both

HSPs that score above a threshold value and those that intersect the window bounds for passage to

the next stage. The hardware module is fully pipelined and accepts one seed per clock.

The design of the ungapped extension prefilter has two major consequences for the seed generation

hardware. Firstly, seeds passed into the prefilter must be approximately sorted by database position.

As the database is streamed through the window lookup module, the circular buffer is advanced to

accommodate incoming data, based on the database offset of the most recent seed. Hence there

is no guarantee that a window of database residues will be available for seeds that appear out of

order (or out of order by more than a bounded number of residues). Secondly, the seed generation

hardware and the ungapped extension prefilter run in parallel, with little synchronization between

them. In NCBI BLASTP, feedback from stage 2 to the two-hit module helps determine seeds that

are part of a previously extended HSP, discarding them in the process. The effect on the workload

of the prefilter in the absence of this information in hardware is studied in section 3.4.2.
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3.3.2 Gapped Extension

We briefly describe work done by a member of our group, Brandon Harris, in accelerating the gapped

extension phase of the BLASTP pipeline. Further detail is available in [31]. Gapped extension is

the most computationally expensive stage of the BLASTP pipeline. The upstream prefilters are

designed with the sole purpose of reducing the input rate into this phase. The NCBI X-drop gapped

extension algorithm is unsuitable for a hardware implementation due to the lack of a fixed search

boundary. We advocate the use of banded Smith-Waterman, a fixed-window alternative that is also

used in WU-BLAST. This hardware stage acts as a filter on the input HSP stream. Gapped HSPs

scoring above a threshold are passed to the host CPU, where the unbounded gapped extension is

performed.

Figure 3.5: Banded Smith-Waterman: fixed-window gapped extension centered on a seed

As illustrated in figure 3.5, the search is limited to a fixed rectangular band centered around the

seed. The dimensions of this band are selected according to the required sensitivity and specificity of

the prefilter. A systolic array of cells simultaneously computes the score of an entire anti-diagonal in

the rectangular window. The computation proceeds left to right until all anti-diagonals are scored,

as the database is streamed through the array. The systolic array maintains the score of the best

HSP passing through the seed, which is compared to the threshold at the end of the computation.

Unlike ungapped extension, the Banded Smith-Waterman prefilter is a multi-cycle (≈ 700) stage.

Figure 3.6 shows the block diagram of the gapped extension prefilter. The entire query sequence is

pre-loaded into on-chip block RAMs, while the database is streamed through a FIFO. During the

fixed-width extension, residues from both sequences are shifted through a register set. Parallel taps

from the query and database shift registers feed the systolic cell array. The score of each database

and query residue pair for each cell is computed by a lookup into the scoring matrix stored in block

RAMs. The Smith-Waterman computation is performed in each cell element, and the results are

stored in the VEF register block. The stage 3 controller initiates the extension process when an
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Figure 3.6: Gapped extension hardware

HSP and its corresponding database window is received from the ungapped extension prefilter. The

maximum score in the systolic cell array is extracted and compared to the threshold upon completion

of the extension process.

3.4 Seed Generation

The seed generation hardware closely reflects the functionality of NCBI BLASTP. In keeping with

the goal of producing comparable results, the same heuristics are reproduced in hardware. It is

important that the seed generation hardware process the database stream at a high throughput,

since it is the bottleneck stage of the pipeline. The design decisions and the highly pipelined logic

of the hardware are motivated by a high-speed implementation.

The designs of the word matching and the two-hit unit are described in detail in this section.

We investigate approaches to replicating these modules for increased throughput and design an

interconnecting switch. Finally, we discuss the current instantiation of Mercury BLASTP and the

implementation parameters used.

3.4.1 Word Matching

Figure 3.7 shows the block diagram of the word matching module in hardware. It is divided into two

logical components: the w-mer feeder and the hit generator. The w-mer feeder receives a database

stream from the DMA engine and constructs fixed length words to be scanned against the query



42

neighbourhood. Twelve 5-bit database residues are accepted in each clock cycle by the w-mer control

finite state machine. The output of this stage is a w-mer and its position in the database. The word

length is defined by the user at compile time.

The w-mer creator block is a structural module that generates the w-mer at each database position.

Simple modifications enable various word lengths, masks (discontiguous residue position taps), or

even multiple w-mers based on different masks. Another function of the module is to flag invalid w-

mers. While NCBI BLASTP supports an alphabet size of 24 (20 amino acids, 2 ambiguity characters

and 2 control characters), Mercury BLASTP is restricted to 20. W-mers that contain residues not

representing the twenty amino acids are flagged as invalid and discarded by the seed generation

hardware. This stage is also capable of servicing multiple consumers in a single clock cycle. Up to

M consecutive w-mers can be routed to downstream sinks based on independent read signals. This

functionality is important to support multiple parallel hit generator modules. Care is also taken

to eliminate dead cycles; the w-mer feeder is capable of satisfying up to M requests in every clock

cycle.

CREATOR
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WMER2KEY
LOOKUP

HIT
CTRL
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FSM
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WMER FEEDER HIT GENERATOR

COMPUTE

TABLEdatabase hits

Figure 3.7: Word matching hardware design

The hit generator produces hits from an input w-mer by querying a lookup table stored in off-

chip SRAM. The pipeline consists of the wmer2key, table lookup, and hit compute modules. A

direct memory lookup table stores the position(s) in the query sequence to which every possible

w-mer maps. As mentioned earlier, the twenty amino acids are represented using 5 bits. A direct

mapping of a w-mer requires a prohibitively large lookup table with 32w entries, out of which only

20w specify valid w-mers. Therefore, a change of base is done in the wmer2key module as follows:

20w−1rw−1 + 20w−2rw−2 + ... + r0, where ri is the ith residue of the w-mer. For a fixed word length

(which is set during compile time), this computation is easily realized in hardware.

Figure 3.8(a) shows the three-stage w-mer-to-key conversion for w = 4. A database w-mer r, at

position dbpos is converted to the key in stages. Simple lookup tables are used in place of hardware

multipliers (since the alphabet size is fixed) to multiply each residue in the w-mer. The result is

aggregated using an adder tree.
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(a) W-mer to key conversion module (b) Hit compute module

Figure 3.8: Word matching stages

The table lookup module generates hits for each database w-mer. The query neighbourhood is stored

in off-chip SRAM, in a primary and duplicate table. We describe the implementation for a 32-bit

addressable SRAM, storing query positions for a 2048-residue query sequence.

DATABASE SEQUENCE
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H(r)

TABLE

DUPLICATE
TABLE

CNT DPTR

0

1

QP0 QO1 QO2

QUERY SEQUENCE

0QP0 QO1 QO2

Figure 3.9: Lookup table datapath

The primary table is a direct memory lookup table containing 20w 32-bit entries, one for every

possible w-mer. Unlike for DNA matching, hashing is unsuitable for proteins since a large fraction

of the key space is non-empty (Refer Table 2.9). Each primary table element stores up to three

query positions that a w-mer maps to. Since a w-mer may map to more than three positions in the

query, the primary table entry is extended to hold a duplicate bit. If set, the primary table element
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does not store any query positions. Instead, the remaining bits hold the duplicate table pointer and

an entry count value. Duplicates are stored in consecutive memory locations in the duplicate table,

starting at the address indicated. The number of duplicates for each w-mer is limited by the size

of the count field and the amount of off-chip memory available. Figure 3.9 illustrates the data path

for a w-mer lookup.

Algorithm 1 Encode query positions

1: procedure Encode(n, qp0, . . . , qpn−1)

2: if n = 0 then

3: return Add(2047, 0, 0) . Non-matching w-mer

4: else if n = 2 and (qp1 − qp0) = 1024 then

5: qp2 ← 2047; n← 3 . Special case #2

6: end if

7:

8: s← 0

9: for i← 1, n− 1 do

10: if qpi − qpi−1 ≥ 1024 then

11: s← i . Special case #1

12: end if

13: end for

14: return Add(qps, . . . , qpn−1, qp0, . . . , qps−1)

15: end procedure

Lookups into the duplicate table reduce the throughput of the word matching stage. It is essential

that such lookups are kept to a minimum, and that most w-mer lookups are satisfied by a single probe

into the primary table. As noted in section 2.3.3, the word matching stage generates approximately

two query positions per w-mer lookup, when used with the default parameters. To decrease the

number of SRAM probes for each w-mer, the 11-bit query positions are packed three in each primary

table entry. To achieve this packing in 31 bits, we use the following encoding scheme: the first query

position is stored in the first 11 bits, followed by two unsigned 10-bit offset values, i.e. (qp0, qo1, qo2).

The three query positions are decoded as follows: qp0, (qp0 + qo1) mod 2048, and (qp0 + qo1 +

qo2) mod 2048. The result of each addition is an 11-bit query position.

The encoding of the query positions in the lookup table is done during the pre-processing step on

the host CPU. There are two special cases that need to be handled. Firstly, for three or more sorted

query positions, 10 bits are sufficient to represent the difference between all but (possibly) one pair

(qpi, qpj). The solution is to start the encoding by storing qpj in the first 11 bits of the table entry.

For example, query positions 10, 90, and 2000 are encoded as (2000, 58, 80).
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Secondly, if there are only two query positions, with a difference of exactly 1024, a dummy value of

2047 is introduced, after which the solution to the first case applies. For example, query positions

70 and 1094 are encoded as (1094, 953, 71). Query position 2047 is recognized as a special case and

ignored in the hit generation module. This can be done without loss of information since query w-mer

positions only range from [0 . . . 2047− w]. The encoding process is summarized in Algorithm 1.

As a result of the encoding scheme used, query positions may be retrieved out of order by the word

matching module. This, however, is of no consequence to the downstream stages, since the hits

remain sorted by database position.

Table 3.2: SRAM access statistics in the word matching module, for a neighbourhood of N(4, 13)

% of DB w-mers satisfied
SRAM probes Offset-encoded Naive

1 82.6158 67.5121
2 82.6158 67.5121
3 98.0941 91.3216
4 99.8407 98.0941
5 99.9889 99.6233
6 100.0000 99.9347
7 100.0000 99.9889
8 100.0000 99.9985
9 100.0000 100.0000

Table 3.2 reveals the effect of the query encoding scheme on the SRAM access pattern in the word

matching stage. The table displays the percentage fi of database w-mer lookups that are satisfied

in ai or fewer probes into the SRAM. The data is averaged for a neighbourhood of N(4, 13), over

BLASTP searches of twenty 2048-residue query sequences compiled from the Escherichia coli k12

proteome, against the NR database. The most important observation is that 82% of the w-mer

lookups can be satisfied in a single probe (returning up to three query positions) when using the

encoded representation. The naive scheme would satisfy only 67% of lookups (returning up to two

query positions), thus reducing the overall throughput. Note, in case that the duplicate bit is set, the

first probe returns the duplicate table address (and zero query positions). All fifteen query positions

are retrieved in 6 SRAM accesses when the encoding scheme is used; this increases to 9 otherwise.

Decoding the query positions in hardware is done in the hit compute module. The two stage pipeline

is depicted in Figure 3.8(b) and the control logic in Algorithm 2. The circuit accepts a database

position dbpos, a query position qpos0, and up to two query offsets qoff1 and qoff2. Two back-

to-back adders generate qp2 and qp3. Each query offset represents a valid position if it is non-zero.

Additionally, the dummy query position qp2 = 2047 is discarded. The circuit outputs up to three

hits at the same database position.
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Algorithm 2 Lookup table control logic

1: procedure Lookup(r, dp) . Lookup database w-mer r

2: key ← 20w−1rw−1 + 20w−2rw−2 + ... + r0 . Base conversion

3: entry ← sram[key] . Read primary table entry

4: if d = 1 then . Duplicate bit set

5: entry ← sram[dup ptr]

6: return dp,HitCompute(qp0
0, qo

0
1, qo

0
2), . . .. Return query positions from duplicate table

7: else if qp0 = 2047 then

8: return NULL . Non-matching w-mer

9: else

10: return dp,HitCompute(qp0, qo1, qo2) . Return query positions from primary table

11: end if

12: end procedure

13:

14: procedure HitCompute(qp0, qo1, qo2) . Compute query positions from offsets

15: qp1 ← qp0 + qo1

16: qp2 ← qp1 + qo2

17: if qo1 = 0 or qp1 = 2047 then

18: qp1 ← NULL . Second query position is invalid or dummy value

19: end if

20: if qo2 = 0 then

21: qp2 ← NULL . Third query position is invalid

22: end if

23: return qp0, qp1, qp2

24: end procedure

3.4.2 Two-hit

The diagonal of a hit (qi, di) is defined as Di = di − qi. Given two hits (qi, di) and (qj , dj), the two

hit algorithm generates a seed (qj , dj) when Di = Dj and dj − di ≥ w, dj − di < A, where A is the

window length. The algorithm can be efficiently implemented using a data structure to store the

database positions of seeds encountered on each diagonal [49]. The diagonal array is implemented

using on-chip block RAMs of size equal to 2M , where M is the size of the query sequence. As

the database is scanned left to right, all diagonals Dk < dk −M are no longer used and may be

discarded. Di indexes the array and wraps around to reuse memory locations corresponding to

discarded diagonals. For a query size of 2048 and 32-bit database positions, the diagonal array can

be implemented in eight block RAMs.
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Algorithm 3 sketches the two-hit algorithm. Line 9 ensures that at least one word match has been

encountered on the diagonal, before generating a seed. This is accomplished by checking for the

initial zero value (database positions range from 1..N). A valid seed is generated if the word match

does not overlap and is within A residues to the right of the last encountered w-mer (Line 10).

Finally, the latest hit encountered is recorded in the diagonal array, on Line 5.

Algorithm 3 Two-hit

1: procedure Two-hit(qi, di)

2: Di ← di − qi . Compute diagonal index: result is a signed value

3: dp ← DIAG ARRAY [Di] . Look up last encountered database position on the diagonal

4:

5: if di − dp >= w then . Update diagonal if non-overlapping word match

6: DIAG ARRAY [Di]← di

7: end if

8: . Condition to check for a valid two-hit seed

9: if dp 6= 0 then . At least one word match encountered on this diagonal

10: if di − dp >= w and di − dp < A then . Non-overlapping w-mer within right window

11: return qi, di

12: else if di − dp < −A then . Out-of-order w-mer by more than A residues

13: return qi, di

14: end if

15: end if

16: end procedure

As will be detailed in the next section, the two-hit module must be capable of handling hits received

out of order, without an appreciable loss in sensitivity or increase in workload of downstream stages.

Our heuristic (Line 12) is to do one of the following: if the hit is within A residues to the left of the

last recorded hit, discard it; else, forward it to the next stage. In the former case, the out-of-order

hit is likely part of an HSP that was already inspected – assuming the last recorded hit was passed

for ungapped extension – and can be safely ignored. In practice, for A = 40, most out-of-order hits

fall into this category (due to the design and implementation parameters).

Figure 3.10(a) shows the choices for two-hit computation on a single diagonal, upon the arrival of

a second hit. If it is within the right window (hit b), it is forwarded to the next stage; if instead

it is beyond A residues (hit a), it is discarded. An out-of-order hit (hit c) within the left window

is discarded, while hit d, which is beyond A residues, is passed on for ungapped extension. The

heuristic to handle out-of-order hits may lead to false negatives. Figure 3.10(b) illustrates this

point, showing three hits numbered in their order of arrival. When hit 2 arrives, it is beyond the

right window of hit 1 and is discarded. Similarly, hit 3 is found to be in the left window of hit 2 and

discarded. A correct implementation would forward both hits 2 and 3 for extension. The heuristic,
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(a) Two-hit algorithm choices (b) Loss in sensitivity due to an out-of-order hit

Figure 3.10: Two-hit computation performed in a diagonal

though not perfect, handles out-of-order hits without increasing the workload of downstream stages.

The effect on sensitivity was empirically determined to be negligible.

Figure 3.11 illustrates the two-hit module. A input hit (dbpos, qpos) is passed in along with its

corresponding diagonal index, diag idx. The hit is checked in the two-hit logic, and sent downstream

(i.e. vld is high) if it passes. The two-hit logic is pipelined into three stages to enable a high-speed

design. This increases the complexity of the design since data has to be forwarded from the later

stages. The Diagonal Read stage performs a lookup into the block RAM using the computed diagonal

index. The read operation uses the second port of the block RAM and has a latency of one clock

cycle. The first port is used to update a diagonal with the last encountered hit in the Diagonal

Update stage. A write collision condition is detected upon a simultaneous read/write to the same

diagonal, and the most recent hit is forwarded to the next stage. The second stage performs the

two-hit check and implements the three conditions discussed. The most recent hit in a diagonal is

selected from one of three cases: a hit from the previous clock cycle (forwarded from the Diagonal

Update stage), a hit from the last but one clock cycle (detected by the write collision check), or the

value read from the block RAM. The two-hit condition checks are decomposed into two stages to

decrease the length of the critical path, e.g: di − dp < A becomes tmp = di − A and tmp < dp. A

seed is generated when the requisite conditions are satisfied.
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NCBI BLASTP employs a redundancy filter to discard seeds present in the vicinity of HSPs inspected

in the ungapped extension stage. The furthest database position examined after extension is recorded

in a structure similar to the diagonal array. In addition to passing the two-hit check, a hit must be

non-overlapping with this region to be forwarded to the next stage. This feedback characteristics of

the filter make it a challenging candidate for hardware implementation.

Table 3.3: Increase in seed generation rate without feedback from NCBI BLASTP stage 2

Query Length N(w, T) Rate increase
(residues) (%)

2000 N(3, 11) 0.2191
2000 N(4, 13) 0.2246
2000 N(5, 14) 0.2784
3000 N(3, 11) 0.2222
3000 N(4, 13) 0.2205
3000 N(5, 14) 0.2743
4000 N(3, 11) 0.2359
4000 N(4, 13) 0.2838
4000 N(5, 14) 0.3956

We measured the effect of the lack of the NCBI BLASTP extension feedback on the seed generation

rate of the first stage. Table 3.3 shows the increased seed generation rate for various query sizes and

neighbourhoods. The experimental setup is similar to that described in the previous chapter. The

data suggests a modest increase in workload for ungapped extension, of less than a quarter of one

percent. The reason for this is that the two-hit algorithm is already an excellent filter, approximately

performing the role of the redundancy filter. We conclude that feedback from stage 2 has little effect

on system throughput and choose to ignore it in our design.

3.4.3 Two-hit replication

As noted in section 2.3.3, the word matching stage generates hits at the rate of approximately two

per database residue for a neighbourhood of N(4, 13). The two-hit module, with the capacity to

process only a single hit per clock cycle, becomes the bottleneck in the pipeline. Processing multiple

hits, however, poses a substantial challenge due to the physical constraints of the implementation.

Concurrent access to the diagonal array is limited by the dual-ported block RAMs on the FPGA.

Since one port is used to read a diagonal and the other to update it, no more than one hit can be

processed in the two-hit module at a time. In order to address this issue, the two-hit logic must

be replicated, with hits being evenly distributed among the copies. A straightforward replication of

the entire diagonal array requires that all copies be kept coherent, leading to a multi-cycle update

phase and a corresponding loss in throughput. Efforts to time-multiplex access to block RAMs

(for example, quad-porting by running them at twice the clock speed of the two-hit logic) proved

impractical because the two-hit logic already runs at a high clock speed.
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An important observation is that the two-hit computation for a w-mer is performed on a single

diagonal and is independent of the values of all other diagonals. Rather than replicating the entire

diagonal array, the diagonals can instead be evenly divided among b two-hit modules. A hit (qi, di)

is processed by the jth two-hit copy if Di mod b = j−1. This modulo division scheme also increases

the probability of equal work distribution between the b copies. Hits generated by the word matching

phase tend to be clustered around a few high scoring residues; hence, an alternate division of the

diagonal array into b bands leads to an uneven partitioning of hits (Figure 3.12). The routing of a

hit to its two-hit unit is also simplified. If b is a power of two, i.e. 2t, the lower t bits of Di act as

the two-hit identifier. If not, the modulo operation is precomputed for all possible Di values and

stored in on-chip lookup tables.
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Figure 3.12: Two-hit work distribution: modulo division of diagonals achieves a more equal
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Figure 3.13: Two-hit replication: hits from a single word matching module are routed to b two-hit
modules
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Interconnecting Switch 1

An important part of the design is the switch required to route hits from the word matching stage to

the two-hit units. Figure 3.14 displays the hardware design of the 3×b interconnecting switch (Switch

1) between a single word matching stage and b = 2 two-hit modules. The word matching module

generates up to three hits per clock cycle (dbpos, qpos0, diag idx0, vld0, ...), which are stored in a

single entry of an interconnecting FIFO. All hits in a FIFO entry share the same database position

and must be routed to their appropriate two-hit units before the next triple can be processed. The

routing decision is made independently, in parallel, and locally at each two-hit unit. Hits sent to

the two-hit modules are (dbpos0, qpos0) and (dbpos1, qpos1).

A decoder for each hit examines t = 1 low-order bits of the diagonal index. The decoded signal is

passed to a priority encoder at each two-hit unit to select one of the three hits. In case of a collision,

priority is given to the higher-ordered hit. Information on whether a hit has been routed is stored in

a register (routed0/1/2 in the figure) and is used to deselect a hit that has already been sent to its

two-hit unit. This is decided by examining if the hit is valid, is being routed to a two-hit unit that

is not busy, or has already been routed previously. The read signal is asserted once the entire triple

has been routed. Each two-hit unit always accepts at least one available hit every clock cycle. With

the word matching module generating two hits on average per clock cycle, b = 2 two-hit modules

are sufficient to eliminate the bottleneck from this phase.

3.4.4 Hit generator replication

With downstream stages capable of handling the seed generation rate of the first stage, the through-

put of Mercury BLASTP is limited by the word matching phase. The design is constrained by

the lookup into off-chip SRAM. A logical solution to speed up the pipeline is to run multiple hit

generation modules in parallel, each accessing an independent off-chip SRAM resource with its own

copy of the tables. Adjacent database w-mers are distributed by the feeder stage to each of h hit

generation modules. Hits generated by each copy are sent to the two-hit modules. The number of

two-hit modules is increased to keep up with the larger hit generation rate.

The use of h independent modules has an unintended consequence on the generated hit stream.

The w-mer processing time is variable due to the possibility of duplicate query positions. This

characteristic causes the lookup stages to lose synchronization and generate hits that are out of

order with respect to the database positions. Out-of-order hits may be discarded in the hardware

stages. This however, leads to decreased search sensitivity. Alternatively, hits that are out of order

by more than a fixed window of database residues in the extension stages may be forwarded to the

host CPU without inspection. This increases the false positive rate and has an adverse effect on the

throughput of the pipeline.
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This problem may be tackled in one of three ways. First, the h modules may be deliberately kept

synchronized. On encountering a duplicate every module stalls until all duplicates are retrieved,

before the next set of w-mers is accepted. This approach quickly degrades in performance: as h

grows, the probability of the modules stalling increases, and the throughput decreases drastically.

Another approach is to stall the modules only if they get out of order by more than the downstream

tolerance. We advocate a slightly different solution. The number of duplicates for each w-mer in the

lookup table is limited to L, requiring a maximum processing time of l = dL/3e clock cycles in our

implementation. This automatically limits the distance the hits can get out of order in the worst

case to (dt + l)× (h− 1) database residues, without the use of additional hardware circuitry. Here,

dt is the latency of access into the duplicate table. The downstream stages can then be designed for

this out-of-order tolerance level. In our implementation dt = 4 and L = 15. The loss in sensitivity

due to the pruning of hits outside this window was experimentally determined to be negligible.

Interconnecting Switch 2

With the addition of multiple hit generation modules, additional switching circuitry is required to

route all h hit triples to their corresponding two-hit modules. This is done in two phases. Firstly, a

triple from each hit generation module is routed to b queues (one for each copy of the two-hit unit),

using the interconnecting switch 1. A total of h × b queues, each containing a single hit per entry,

are generated. Finally, a new interconnecting switch (2) is required at each two-hit unit to select

hits from one of h queues. This two-phase switching mechanism successfully routes any one of 3×h

hits generated by the word matching stage to any one of the b two-hit units.

Figure 3.15 shows the single stage hardware design of switch 2 with h = 4. Hits (dbpos0, qpos0, ...)

each with a valid signal, must be routed to a single output port (dbpos out, qpos out). The data

reduction circuit is designed to not introduce out-of-order hits. Parallel comparators ( h×(h−1)
2 in

number) inspect the first element of all h queues to detect the hit at the lowest database position.

This hit is then passed directly to the two-hit module and cleared from the input queue.

Figure 3.16 illustrates the final architecture of the Mercury BLASTP seed generation hardware. The

w-mer feeder block accepts the database stream from the host CPU, generating up to h w-mers per

clock. Hit triples from the hit generator modules are routed to one of b queues in each of the h

switch 1 circuits. Switch 2 then reduces data from h input streams and feeds the two-hit units.

The final piece of the design is the seed reduction module. Seeds generated from b copies of the

two-hit units are reduced to a single stream and forwarded to the ungapped extension phase. An

attempt is again made to maintain order. The hardware circuit is identical to switch 2, except that

a reduction tree is used. For a large number of input queues (> 4), the single-stage design described

earlier has difficulty routing at high clock speeds. For b = 8, the reduction is performed in two

stages: two 4-to-1 followed by a single 2-to-1.
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We also note that seed reduction is not required to operate as fast as the rest of the design, since

the two-hit stage generates seeds at less than one per clock cycle.
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Figure 3.16: Seed Generator Hardware Design

3.5 Mercury BLASTP deployment

We conclude this chapter by detailing the instantiation parameters of Mercury BLASTP used in our

implementation. The seed generation stage supports a query sequence of up to 2048 residues, and

uses a neighbourhood of N(4, 13). A database sequence of up to 232 residues is supported. We use

h = 3 copies of the hit generation module, and b = 8 parallel copies of the two-hit unit.

A dual-FPGA solution is used in our implementation of Mercury BLASTP, with seed generation and

ungapped extension on the first FPGA and gapped extension running on the second. The database

sequence is streamed from the host CPU to the first card. HSPs generated after ungapped extension

are sent back to the host CPU, where they are interleaved with the database sequence and resent

to the gapped extension stage. Significant hits are finally sent back to the host CPU to resume the

software pipeline.

Modules in the Mercury system communicate via separate 64-bit data and control buses. Module-

specific commands program the lookup table and clear the diagonal array in the two-hit modules.

The seed generation and ungapped extension modules communicate via two independent data paths.

The standard data communication channel is used to send seed hits, while a new bus is used to stream

the database sequence. All modules respect backpressure signals asserted to halt an upstream stage

when busy.



57

Chapter 4

Mercury BLASTP software

architecture

Mercury BLASTP requires tight co-ordination between the FPGA resource and software running

on the host CPU. In the following chapter, we describe the software infrastructure supporting the

Mercury BLASTP system. We give an overview of the architecture and discuss the salient algo-

rithms in detail. Finally, we briefly summarize the FPGA communication interface and describe the

modifications undertaken to the NCBI BLASTP software pipeline.

4.1 Architectural overview

The software is organized as a multi-threaded application consisting of independently executing

components communicating via queues. Figure 4.1 illustrates the hardware/software architecture

of Mercury BLASTP. The software code falls into three categories: Mercury BLASTP support

routines, FPGA interface code, and the NCBI BLAST software. The first category comprises code

written specifically to populate data structures, such as the word matching lookup table, used in the

hardware. The FPGA interface code uses the Exegy API to perform low-level communication tasks

with the Mercury modules. A major goal in the design of the software system was to integrate the

Mercury code into the existing NCBI BLAST package. The NCBI BLASTP pipeline was modified

and FPGA resources substituted for the software equivalents.

There are two main advantages to using the NCBI codebase. Fundamental support routines such

as I/O processing, query filtering, and the generation of sequence statistics can be reused. Further,

support for additional BLAST programs such as blastx and tblastn can be added with minimal work

at a later stage. Secondly, the user interface, including command-line options, input sequence format,

and output alignment format is preserved. This facilitates transparent migration for end users and

seamless integration with the large set of applications designed to work with NCBI BLAST.
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Query pre-processing involves preparing the necessary data structures required by the Mercury

BLASTP hardware and the NCBI BLAST software pipeline. The input query sequences are first

examined to mask low complexity regions (short repeats, or residues that are over-represented),

which would otherwise generate statistically significant but biologically spurious alignments. SEG

filtering replaces residues contained in low complexity regions with the “invalid” control character.

The query sequence is packed, 5 bits per base in 60-bit words, and encoded in big-endian format for

use by the hardware. Three main operations are then performed on the input query sequence set.

Query bin packing concatenates smaller sequences to generate composites of the optimal size for the

hardware. The neighbourhood of all w-mers in the packed sequence is generated and lookup tables

created for use in the word matching stage. It is essential that query sequences are pre-processed

at a high enough rate to prevent starvation of the hardware stages. We study these algorithms in

detail in the next section.

The BLASTP initialization code executes part of the traditional NCBI pipeline that creates the state

for the search process. The Mercury query data structures are then loaded and search parameters

initialized in hardware. Finally, the database is streamed through the FPGA device. The BLAST

sequence database files are augmented to include a version encoded specifically for Mercury BLASTP.

The ingest rate into the card is modulated by a backpressure signal propagated backwards from the

hardware modules.

The FPGA device on the first card executes the first two stages of the BLASTP pipeline. HSPs

generated by ungapped extension are sent back to the host CPU, where they are multiplexed with

the database stream. Banded gapped extension on the second card consumes the stream to generate

significant HSPs. The NCBI BLASTP pipeline is resumed on the host CPU at the X-drop gapped

extension stage, and alignments are generated after post-processing.

The FPGA communication wrappers, the Mercury device driver, and the hardware DMA engine

were provided by Exegy Inc.
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4.2 Neighbourhood generation

A substantial portion of the pre-processing time in the BLASTP pipeline is spent generating the

neighbourhood of a query. A naive algorithm, similar to the one used in NCBI BLASTP, scores all

possible 20w w-mers against every w-mer in the query sequence, adding those that score greater than

or equal to T into the neighbourhood. The lookup table for the word matching module is generated

from the neighbourhood using the encoding scheme specified in the previous chapter.

The NCBI BLASTP implementation is both memory-intensive and computationally expensive, de-

grading exponentially at longer word lengths. We describe a prune-and-search algorithm that has

the same worst-case bound but shows practical improvements in speed. The algorithm divides the

search space into a number of independent partitions, each of which is inspected recursively. At

each step, it is possible to determine if there exists at least one w-mer in the partition that must be

added to the neighbourhood. This decision can be made without the costly inspection of all w-mers

in the partition. Such w-mer partitions are pruned from the search process. Another advantage of

this class of algorithms is that they can be easily parallelized. We describe a vector implementation

using SIMD technology available on the host CPU that further speeds up neighbourhood generation.

4.2.1 Prune-and-search neighbourhood

Given a query w-mer r, an alphabet Σ, and a scoring matrix δ, the neighbourhood of the w-mer is

computed using the following recurrence. The neighbourhood N(w, T ) of the query Q is the union

of the individual neighbourhoods of every query w-mer r ε Q.

N(w, T ) =
⋃

r ε Q

Gr(ε, w, T )

Gr(x, w, T ) =
⋃

a ε Σ











{xa} if |x| = w − 1 and Sr(x) + δrw,a ≥ T ,

Gr(xa, w, T ) if |x| < w − 1 and Sr(x) + δr|x|+1,a + Cr(|x|+ 1) ≥ T ,

φ otherwise.











Sr(x) =

{

0 if x = ε,

Sr(y) + δr|x|,a otherwise, where x = ya.

}
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Cr(i) =

{

max a ε Σ δrw,a if i = w − 1,

max a ε Σ δri,a + Cr(i + 1) otherwise.

}

Gr(x, w, T ) is the set of all w-mers in N r(w, T ) having the prefix x. We term x a partial w-mer.

The base is Gr(x, w, T ) where |x| = w − 1 and the target is to compute Gr(ε, w, T ). At each step

of the recurrence, the prefix x is extended by one character a ε Σ. The pruning process is invoked

at this stage. If it can be determined that no w-mers with a prefix xa exist in the neighbourhood,

all such w-mers are pruned; otherwise the partition is recursively inspected (lines 2 and 3 of the

recurrence). The score of xa is also computed and stored in Sr(xa). The base case of the recurrence

occurs when |xa| = w − 1. At this point it is possible to determine conclusively if the w-mer scores

above the neighbourhood threshold.

We now describe the pruning step in more detail. During the extension of x by a, the highest score

of any w-mer in N r(w, T ) with the prefix xa is determined. This score is computed as the sum of

three parts: the score of x against r1..|x|, the pairwise score of a against the character r|x|+1 and

the highest score of some suffix string y and r|x|+2..w with |xay| = w. The three score values are

computed by constant-time table lookups into Sr, δ, and Cr respectively. Cr(i) holds the score of

the highest scoring suffix y of some w-mer in N r(w, T ), where |y| = w − i. This is easily computed

in linear time using the scoring matrix.

A stack implementation for the computation of Gr(ε, w, T ) is shown in Algorithm 4. The algorithm

does a depth-first search of the neighbourhood, extending a partial w-mer by every character in the

alphabet. We define Σ
′

b to be the alphabet sorted in descending order of the pairwise score against

character b in δ. The w-mer extension is done in this order, causing the contribution of the δ lookup

in the left-hand side of the expression on line 12 to progressively diminish with every iteration.

Hence, as soon as a partition is pruned, further extension by the remaining characters in the list can

be halted.

As partial w-mers are extended, a larger number of partitions are discarded. The fraction of the

neighbourhood discarded at each step depends on the scoring matrix δ and the threshold T . While

in the worst case the algorithm takes exponential time in w, in practice the choice of the parameters

leads to a significant improvement in speed over naive enumeration.



61

Algorithm 4 Stack implementation of the prune-and-search algorithm

1: procedure PS-Neigh(w, T, r) . Generate neighbourhood N(w, T ) for query w-mer r

2: G← φ . Initialize neighbourhood set

3: stack.push(ε) . Initialize target of recurrence

4: repeat

5: x← stack.pop( ) . Pop next partial w-mer

6: for all a ε Σ
′

r|x|+1
do . Cycle through alphabet, sorted by pairwise score

7: if |x| = w − 1 then . Base case

8: if Sr(x) + δrw,a ≥ T then

9: G← G ∪ {x · a}

10: end if

11: else if Sr(x) + δr|x|+1,a + Cr
|x|+2 ≥ T then

12: . Partition contains at least one w-mer in neighbourhood: store for later search

13: stack.push(x · a)

14: else . All remaining partitions guaranteed to score poorer: prune

15: break for

16: end if

17: end for

18: until stack.empty( )

19: return G

20: end procedure

4.2.2 Vector implementation

To further improve performance of the implementation, we take advantage of vector instructions

available on modern microprocessors. Single Instruction, Multiple Data (SIMD) instructions ex-

ploit data parallelism in algorithms by performing the same operation on multiple data values. The

instruction set architectures of modern general purpose processors are augmented with SIMD in-

structions that offer increasingly complex functionality. Existing extensions include SSE2 [27] on

x86 architectures and AltiVec [28] on PowerPC cores.

Sample SIMD instructions are illustrated in Figure 4.2. The vector addition of four signed 8-bit

operand pairs is done in a single clock cycle, decreasing the execution time to one-fourth. The

number of data values in the SIMD register (Vector Size) and their precision are implementation-

dependent. The Cmpgt-Get-Mask instruction checks to see if signed data values in the first vector

are greater than those in the second. This operation is performed in two steps. First, a result value

of all ones if the condition is satisfied or zero otherwise is created. Second, a sign extended mask

is formed from the most significant bits of the individual data values. The mask is returned in an

integer register that must be inspected sequentially to determine the result of the compare operation.
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ADD

+

19 1A 2F 11

53 2C 6B 55

>

CMPGT-GET-MASK

21 50 2D 0A

05 79 4F 04

msb

09

FF 00 00 FF

3A 12 3C 44

Figure 4.2: Single Instruction Multiple Data (SIMD) operations

Prune-and-search algorithms partition a search problem into a number of subinstances that are

independent of each other. In our case, the extension of a partial w-mer by every character in the

alphabet can be done independently of each other. We exploit the resultant data parallelism by

vectorizing the computation in the for loop of Algorithm 4.

Algorithm 5 shows the vector implementation of the prune-and-search algorithm. As in the sequential

version, each partial w-mer is extended by every character in the alphabet. However, each iteration

of the loop performs V ECTOR SIZE such simultaneous extensions. As noted previously, a sorted

alphabet list is used for extension. The sequential add operation is replaced by the vector equivalent,

Vector-Add. Lines 21-27 perform the comparison operation and inspect the result. The returned

mask value is shifted right, and the least significant bit is inspected to determine the result of the

comparison operation for each operand pair. Appropriate actions are executed according to this

result. The lack of parallelism in statements 22-27 results in sequential code.

We use SSE2 extensions available on the host CPU for our implementation. A vector size of 16

and signed 8-bit integer data values were used. The precision afforded by this implementation is

sufficient for use with typical parameters without overflow or underflow exceptions. Saturated signed

arithmetic is used to detect overflow/underflow and clamp the result to the largest/smallest value.

The alphabet size is increased to the nearest multiple of 16 by introducing dummy characters, and

the scoring matrix is extended accordingly.
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Algorithm 5 Vector implementation of the prune-and-search algorithm

1: procedure PS-Neigh-Vector(w, T, r)

2: . Generate neighbourhood N(w, T ) for query w-mer r using vector instructions

3: ~T ← {T − 1, . . . , T − 1} . Initialize threshold vector

4: G← φ

5: stack.push(ε)

6:

7: repeat

8: x← stack.pop( )

9: Σ
′′

← Σ
′

r|x|+1
. Retrieve sorted alphabet list for this w-mer residue

10: δ
′′

← δ
′

r|x|+1
. Retrieve corresponding pairwise scores

11: ~S ← {Sr(x), . . . , Sr(x)}

12: ~C ← {Cr
|x|+2, . . . , C

r
|x|+2}

13: ~P ← Vector-Add(~S, ~C) . Precompute loop invariant vector

14:

15: . Cycle through alphabet, VECTOR SIZE characters per iteration

16: for i← 1, |Σ|, V ECTOR SIZE do

17: ~δ ← {δ
′′

Σ
′′

i

, . . . , δ
′′

Σ
′′

i+V ECT OR SIZE

} . Initialize score vector

18:

19: if |x| = w − 1 then . Base case

20: ~A← Vector-Add(~S,~δ)

21: mask ← Vector-Cmpgt-Get-Mask( ~A, ~T ) . vector set bit, if op1 > op2

22: pos← 0

23: while mask do . Locate neighbourhood w-mers in vector

24: G← G ∪ {x · Σ
′′

i+pos}

25: mask ← mask � 1

26: pos← pos + 1

27: end while

28: else

29: ~A← Vector-Add(~P ,~δ)

30: mask ← Vector-Cmpgt-Get-Mask( ~A, ~T )

31: pos← 0

32: while mask do . Locate partitions in vector not pruned

33: stack.push(x · Σ
′′

i+pos)

34: mask ← mask � 1

35: pos← pos + 1

36: end while

37: end if

38: end for

39: until stack.empty( )

40: return G

41: end procedure
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4.2.3 Results

Table 4.1 compares the neighbourhood generation times of the three algorithms discussed. The run

times are averaged over twenty runs on a 2048-residue query sequence. The benchmark machine was

a 2.0 GHz AMD Opteron workstation with 6GB of memory.

The prune-and-search algorithm is 5x faster than the NCBI BLAST enumeration method for w = 4.

The performance of the naive implementation degrades drastically with increasing word lengths. For

example, at w = 6, the prune-and-search algorithm is over 60x faster.

Table 4.1: Comparison of runtimes (in seconds) of various neighbourhood generation algorithms

N(w, T) NCBI-BLAST Prune-Search Vector-Prune-Search
N(4, 13) 0.4470 0.0780 0.0235
N(4, 11) 0.9420 0.1700 0.0515
N(5, 13) 25.4815 1.3755 0.4430
N(5, 11) 36.2765 2.6390 0.7835
N(6, 13) 1, 097.2388 16.0855 5.2475

The vector implementation shows a speedup of 3x over the sequential version. At first, this seems

unusually low given simultaneous inspection of 16 characters of the alphabet during extension. We

explain the discrepancy as follows. Since the alphabet size of amino acids is 20, two iterations of

the for loop are required, resulting in an efficiency of only 62%. Additionally, the large sequential

block of code in the for loop acutely affects the performance. Nevertheless, a consistent order of

magnitude speedup is observed over the naive algorithm.

At the default Mercury BLASTP neighbourhood of N(4, 13), the naive neighbourhood generation

algorithm consumes approximately 10% of the program execution time. This is especially critical

because the rest of the pipeline remains idle until the neighbourhood is generated. In contrast,

the vectorized prune-and-search implementation is 19x faster, consuming just 0.5% of the execution

time. These savings are even more pronounced for sensitive neighbourhoods at lower thresholds.

4.3 Query bin packing

Query bin packing is an optimization intended to speed up the BLAST search process. Multiple

short query sequences are concatenated and processed in a single pass over the database. Sequences

larger than the maximum supported size are broken into smaller, overlapping chunks and processed

over several passes of the database. Query bin packing is especially relevant for Mercury BLASTP:

the maximum query size supported is 2048 residues, while the average protein sequence in typical

sequence databases is only 300 residues.
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Sequence packing reduces the overhead of each pass, and so ensures that the resources available are

fully utilized. However, a number of caveats must first be addressed. To ensure alignments generated

do not cross sequence boundaries, an invalid sequence control character is used to separate them.

The word matching stage detects and rejects w-mers crossing these boundaries. Similar safeguards

are present in the downstream extension stages. The HSP co-ordinates returned by the hardware

stages must be translated to the reference system of the individual components. Finally, the process

of packing a set of sequences in an online configuration must be optimized to reduce the overhead

to a minimum. We address this latter issue in this section.

4.3.1 Approximate bin packing algorithms

In the query bin packing problem, we are given a list of L = (q1, q2, . . . , qn) query sequences, each

of length li ε (0, 2048] that must be packed into a minimum number of bins, each of capacity 2048.

This is the classical one-dimensional bin packing problem and is known to be NP-hard. A number

of approximation algorithms have been suggested that can be guaranteed to use no more than a

constant factor of bins used by the optimal solution. We briefly describe two of the most popular

algorithms [34] and study their application to query bin packing.

Let B1, B2, . . . be a list of bins indexed by the order of their creation. Let Bl
k be the sum of the

lengths of the query sequences packed in bin Bk. In the Next Fit (NF ) algorithm, the query qi

is added to the most recently created bin Bk if li ≤ 2048− Bl
k. Otherwise, Bk is closed and qi is

placed in a new bin Bk+1, which now becomes the active bin. This algorithm is guaranteed to use

not more than twice the number of bins used by the optimal solution.

The First Fit (FF ) algorithm attempts to place the query qi in the first bin in which it can fit,

i.e. the lowest indexed bin Bk, such that the condition li ≤ 2048− Bl
k is satisfied. If no bin with

sufficient room exists, a new one is created with qi as its first sequence. The FF algorithm uses no

more than 17/10 the number of bins used by the optimal solution.

These algorithms can be improved by first sorting the query list by decreasing sequence lengths

before applying the packing rules. The corresponding algorithms are Next Fit Decreasing (NFD)

and First Fit Decreasing (FFD). It can be shown that FFD uses no more than 11/9 the number

of bins used by the optimal solution.

4.3.2 Results

The approximation algorithms discussed were implemented and their performance assessed over

4,241 sequences (1,348,939 residues) of the Escherichia coli k12 proteome. The length of each query

sequence was increased by one to accommodate the sequence control character. The capacity of



66

each bin was set to 2048 residues. Bin packing was performed either in the original order of the

sequences in the input file, or after sorting by decreasing sequence length.

Table 4.2: Performance of query bin packing approximation algorithms

Bins
Algorithm Unsorted Sorted

NF 740 755
FF 667 662

An optimal solution for this input set uses 1, 353, 180/2048 = 661 bins. Table 4.2 shows the number

of bins required for each of the packing rules. In general, both algorithms perform considerably

better than the worst case. FF performs best on the sorted list of query sequences, using just one

more bin than the optimal solution. This good performance can be attributed to the large number

of relatively small query sequences in the data set. Figure 4.3 shows the histogram of input query

sequence lengths. The distribution is heavily biased toward smaller sequences, with 60% of the input

set being less than 300 residues. We believe this data to be representative of protein sequences in

general and expect to achieve near-optimal bin packing in practice.

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Fr
eq

ue
nc

y

Query Sequence Length

Figure 4.3: Histogram of query sequence lengths in the E.coli proteome

Sorting the list of input query sequences is possible when they are known in advance. In the case

of certain configurations, such as when Mercury BLASTP is used to service requests from a web

server, this is not feasible. In the on-line approach where sequences cannot be sorted, the best rule

for packing is FF which uses just six more bins than the optimum.

The Mercury BLASTP pipeline is stalled during the query bin packing pre-processing computation.

FF keeps every bin open until the entire query set is processed. The NF algorithm may be used if
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this pre-processing time becomes a major concern. Since only the most recent bin is inspected in this

case, all previously closed query bins may be dispatched for processing in the pipeline. However, NF

significantly increases the number of database passes required and causes a corresponding increase

in execution time.

In our implementation, the input query sequence set is assumed to be known in advance, and FFD

is the preferred packing rule. The Escherichia coli k12 proteome dataset is packed into query bins

in under 0.17 seconds on the host CPU.



68

Chapter 5

Results

We evaluate the performance of the seed generation stage as part of the Mercury BLASTP pipeline.

The throughput of the implementation is the main metric.

Sensitivity of searches conducted on Mercury BLASTP is also an important factor. We considered

the sensitivity of the hardware implementation during the design phase. The seed generation algo-

rithm implemented in hardware closely matches that of NCBI BLASTP. We expect to achieve near

identical results and thus maintain the sensitivity of the search. The downstream hardware stages

were also designed with this consideration; their sensitivity analysis is treated in [39, 31].

5.1 Implementation status

Mercury BLASTP is work in progress. The seed generation hardware has been implemented in

VHDL and tested for functional correctness in simulation. A configuration of the seed generation

hardware with a single copy of the word matching stage and eight copies of the two-hit module was

implemented on a Xilinx Virtex-II 6000 through post place-and-route. This configuration has been

verified in hardware at only 60 MHz due to stability issues experienced with the SRAM at higher

clock speeds. This is a fault with the SRAM controller, and is being resolved by other members of

our research group.

A configuration with three word matching stages and eight two-hit modules is still to be tested on

the FPGA. We believe a clock speed of 100 MHz is a reasonable estimate for this configuration. The

ungapped extension hardware prefilter is estimated to run at 75 MHz on the same FPGA [39]. The

version for DNA sequences has been placed-and-routed at 100 MHz. The gapped extension module

runs at 66 MHz on a Xilinx Virtex-II 4000 [31].
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The software algorithms described in the previous chapter have been implemented, and a standalone

program was written to test the seed generation hardware module. We are in the process of inte-

grating the three hardware stages of the Mercury pipeline. Software to support the two-card FPGA

solution and an integrated NCBI BLAST application are also in preparation.

5.2 Performance

We consider two configurations of the seed generation stage. MBP/1/2 implements one copy of the

word matching stage and two parallel copies of the two-hit module. This is a configuration that

has been placed and routed at 130 MHz on the FPGA. The second configuration, MBP/3/8, is the

target configuration for Mercury BLASTP.

We estimate the performance of Mercury BLASTP based on the mean-value model described in

Section 2.3.3. The throughput equation is extended to accomodate the final configuration of the

Mercury BLASTP pipeline shown in Figure 3.3. The throughput equations are summarized below.

Tputpipe = min(Tput1a, T put1b, T put2a, T put3a, T put3b) Mresidues/second

Tput1a =
h× f1

µ
Mresidues/second

Tput1b =
b× f1

r1a

Mresidues/second

Tput2a =
f2

r1ap1b

Mresidues/second

Tput3a =
f3

µ3a × (r1ap1bp2a)
Mresidues/second

Tput3b =
1

t3b × (r1ap1bp2ap3a)
Mresidues/second

A newly considered pipeline resource in this model is the NCBI BLASTP gapped extension stage

(3b) running on the host CPU at the end of the pipeline. The average time spent processing an

input HSP in this stage is given by t3b. The HSP input rate per database residue into this stage is

r1ap1bp2ap3a.
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The values for these parameters are summarized in Table 5.1, and the throughput in Table 5.2.

The seed generation stage has a maximum throughput of 95 Mresidues/second for MBP/1/2 and

219 Mresidues/second for MBP/3/8. This translates to a 13x speedup over its software equivalent

running on the benchmark machine. In both configurations, the hardware pipeline is limited by the

word matching module.

However, a further increase in the number of word matching modules (h > 3) is limited by the

performance of the gapped extension hardware prefilter. A tradeoff can be made at this point to

decrease the filtering efficiency of 3a for better performance of this stage. This increases the number

of HSPs forwarded into the software gapped extension stage, which is able to handle the higher

input rate.

Table 5.1: Parameter values for the performance model

Parameter Value Unit Comment
r1a 2.0067 hits/residue 1a hit production rate
p1b 0.0183 seeds/hit 1b match rate
p2a 0.0091 HSPs/seed 2a match rate [39]
p3a 0.0292 HSPs out/HSP in 3a match rate [31]
µ 1.3684 1a clks/w-mer 1a service time

µ3a 700 3a clks/HSP 3a service time [31]
f2 75 MHz 2a clock frequency
f3 66 MHz 3a clock frequency
t3b 156 µsec/HSP 3b service time

Table 5.2: Throughput of the two configurations of Mercury BLASTP

Parameter MBP/1/2 MBP/3/8 Unit Comment
f1 130 100 MHz clock frequency of stage 1
h 1 3 number of copies of 1a
b 2 8 number of copies of 1b

Tput1a 95 219 Mresidues/sec 1a throughput
Tput1b 130 399 Mresidues/sec 1b throughput
Tput2a 2, 048 2, 048 Mresidues/sec 2a throughput
Tput3a 282 282 Mresidues/sec 3a throughput
Tput3b 654 654 Mresidues/sec 3b throughput

Tputpipe 95 219 Mresidues/sec overall pipeline throughput
Input rate 61 140 MB/sec data input rate

We also measured the input rate required from the I/O subsystem to support the throughput of

the hardware pipeline. Database residues are encoded in five bits, and are packed twelve in a 64-bit

word. The highest input rate required is 140 MB/sec, which is easily supported on the Mercury

platform.
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5.2.1 Benchmark comparison

In order to quantify the speedup of Mercury BLASTP, we compared its performance to the software

version of NCBI BLASTP. The benchmark machine was a single 2.8 GHz Pentium 4 workstation

with an L2 cache of 512 KB and 1 GB of RAM. We measured the runtime of a search of the

entire Escherichia coli k12 proteome (4,242 sequences; 1,351,322 residues) against the GenBank

Non-Redundant (NR) database (2,321,957 sequences; 787,608,532 residues). Post-processing time

(generation and display of alignments) is excluded from our analysis. NCBI BLASTP performs a

single pass of the database against each query sequence, resulting in an execution time exceeding 36

hours.

To measure the search time of Mercury BLASTP, the input query sequences were packed into 2048-

residue bins. Query sequences larger than this length were split across multiple bins, with a ten

percent overlap. Mercury BLASTP requires 664 passes of the database to process the packed query

sequences. The average runtime of a single pass is calculated as 787, 608, 532/Tputpipe seconds. The

total search time evaluates to 92 and 40 minutes for the two configurations.

We also estimated the performance of TreeBLAST [32], a BLASTP-like FPGA accelerator, on this

dataset. This implementation processes 1024-residue query sequences in the seed generation stage

at the rate of 170 million database residues per second. The query sequences were packed into 1,368

1024-residue bins, requiring a search time of 106 minutes.

Table 5.3: Comparison of Mercury BLASTP against the benchmark

System Passes
Runtime/pass Total Runtime

Speedup
(sec) (sec)

NCBI BLASTP 4, 242 variable 130, 460 1
TreeBLASTP 1, 368 4.63 6, 338 20
MBP/1/2 664 8.29 5, 505 23
MBP/3/8 664 3.60 2, 388 54

Table 5.3 summarizes these results. MBP/3/8 runs 54x faster than the benchmark machine. The

speedup achieved is a result of both the hardware accelerator and the fewer passes required due to

query bin packing performed on the host CPU. In contrast, TreeBLAST achieves an acceleration of

only 20x, below that of the MBP/1/2 configuration.

Since we have considered the entire BLASTP pipeline in our performance model, we believe it to

be reasonably accurate. However, there is still pre-processing (query bin packing, neighbourhood

and table generation) and post-processing (generation of alignments) for each run that must be

accounted for. We do not aim to accelerate the post-processing stage. Generation and formatting

of output alignments for user display is done offline.
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The pre-processing steps however count toward the cost of the hardware implementation. The ac-

celeration efforts described in Chapter 4 were an attempt to decrease this execution time. Query

bin packing reads in a set of input sequences and packs them into multiple bins. This entire compu-

tation is done on the host CPU in under 0.17 seconds. The neighbourhood and the lookup table are

generated in 0.08 seconds for each bin, for a total execution time of 53.12 seconds. Before each pass

of the database, the lookup table must be written into the off-chip SRAM. This operation consumes

262,144 clock cycles, and executes in 0.0027 seconds per pass on a 100 MHz system. The total time

spent in the pre-processing steps is approximately 55 seconds, which is only 2.3% of the total search

time.

The pre-processing time is dominated by the neighbourhood and table generation. We note how-

ever, that the multi-threaded software architecture runs the pre-processing stages in parallel to the

hardware pipeline and so mitigates its effect on the overall performance.

5.3 Area report

We report the FPGA resource requirements of stage 1 with a single copy of word matching, and two

copies of the two-hit module. The design uses 4,393 (13%) slices and 24 (17%) block RAMs on a

Xilinx Virtex-II 6000. We estimate that the MBP/3/8 configuration with the ungapped extension

stage and the DMA engine will occupy 85% of the slices of the FPGA.

TreeBLASTP requires the larger Xilinx Virtex-4 LX160 FPGA. It uses 60,825 (90%) slices and 254

(88%) block RAMS. The large area requirement is due to a systolic array used for word matching.

Mercury BLASTP, in contrast, uses a lookup table stored in off-chip SRAM to perform a similar

function.
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Chapter 6

Conclusion and future work

6.1 Conclusion

The rapid growth of genomic data has made high-throughput protein searching an increasingly

demanding task. Workstation clusters running NCBI BLASTP have been relied upon thus far

for the necessary speed improvement. We addressed this issue by designing a hardware/software

architecture to accelerate BLASTP using Field Programmable Gate Arrays.

The focus of this thesis was the seed generation stage. We designed and implemented this algorithm

in hardware after a careful analysis to preserve the quality of the results. The important problem of

excessive hits generated in the lookup module was handled by a novel work division scheme in the

two-hit stage. We achieved a speedup of 13x over the software equivalent. The performance of the

seed generation stage was considered in the context of the BLASTP pipeline including the software

subsystem, to realize the entire BLASTP application. Mercury BLASTP is expected to run over

50x faster than a typical protein search on a standard workstation.

We believe Mercury BLASTP is the first FPGA accelerator for BLASTP that considers the entire

sequence analysis pipeline. The design shows a 2.5x performance boost over the best known BLAST-

like FPGA implementation while still consuming fewer resources on the FPGA.

6.2 Future work

Immediate future work includes building and testing of a configuration of the seed generation stage

with multiple copies of the word matching module. The two-card FPGA solution with the inte-

grated hardware stages is to be completed. Finally, the software interface, as well as the necessary

modification to the NCBI BLAST codebase to support the Mercury system is underway. Support

for future enhancements may include vector seeding in the word matching module. We believe there

is a demand for commercial BLASTP accelerators and intend to explore this option.
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The basic ideas of the two-hit algorithm and the work division scheme can be applied to accelerate

other problems in computational biology. Electronic PCR (e-PCR) [51] is a tool used to detect

landmarks (fixed subsequences) in a DNA sequence that are used to construct genomic maps. The

software aims to detect primer (subsequence) pairs, i.e. a forward and reverse primer in a query

string, separated by no more than M bases. The current implementation first scans the sequence

for the forward primer. Upon its detection, a scan of a window of M bases is performed to locate

the reverse primer, and thus declare a match.

We propose speeding up multiple simultaneous detection of forward/reverse primer pairs in an input

sequence, by using a two-hit like data structure. The primer-pair array, which corresponds to the

diagonal array, holds a distinct entry for each primer pair. In such an algorithm, the sequence

is scanned simultaneously for both forward and reverse primers. Upon the detection of a forward

primer, its position is recorded in a unique location of the primer-pair array. When a reverse primer

is detected, a lookup is done in the array to retrieve the most recent position of the corresponding

forward primer. A match is reported if it is within the window specified. This algorithm could

conceivably be accelerated in hardware using a Bloom Filter based scanning phase, followed by a

two-hit like module.

The basic hardware pipeline using the seeding heuristic can also be adapted for profile-based se-

quence searches. HMMER is an application that searches for protein families (termed a profile),

by comparing a probabilistic representation of multiple proteins against a database. A dynamic

programming algorithm is used to optimally compare a profile against an input sequence. Heuristics

to speed up this process include the use of patterns constructed from the profile, to enable a high-

speed prefilter. Such a pipeline is a prime candidate for acceleration using the Mercury BLASTP

architecture.
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Appendix A

Glossary

Alignment: A side-by-side comparison of two sequences reflecting their similarity. Residues may

be paired across both, reflecting conservation; different, reflecting divergence, or absent in either

sequence, represented by gaps. Global alignment compares the sequences in their entirety, while

local alignment looks for subsequences of interest.

Alignment Score: The score of an alignment is computed by summing the individual scores of

residue pairs in an alignment. This involves the match/mismatch score as defined by the scoring

matrix and penalties for gaps introduced in either sequence.

Database: Refers to an organized list of sequences that have been archived by the molecular biology

community. An example is the Swiss-Prot protein database.

E-value: Expectation Value; measures the statistical significance of a match. Denotes the number

of chance occurrences in the database when using a specific scoring system. The lower the E-value

of a match, the more likely it is to be biologically significant.

Gap Penalty: An affine gap penalty of a + kb refers to a gap initiation cost of a and an extension

cost of b for each of the k gaps. This is used for the gapped alignment of two sequences.

Neighbourhood: The neighbourhood of a query w-mer is the list of all possible database w-

mers of length w, whose pairwise comparison score is greater than or equal to the threshold T . A

neighbourhood N(w, T ) of a query sequence is the union of the individual neighbourhoods of all

query w-mers.

Optimal Alignment: An alignment that scores the highest based on a set of parameters. Usually,

when referring to “an alignment” of two sequences, we imply any optimal alignment.

Query: A sequence that is compared against entries in a database to find biologically related

matches.

Residue: Refers to a single nucleotide or amino acid in a DNA or protein sequence respectively.
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Scoring Matrix: Defines the parameters used to evaluate the similarity of two sequences. DNA

sequence comparison simply assigns a positive score for a match between two residues, and a negative

score for a mismatch. Protein comparison uses a table of biologically meaningful log-odds scores for

its evaluation.

Sequence: A chain of nucleotides or amino acids that is represented as a string of characters and

forms a DNA or protein sequence respectively.

W-mer: A sequence of exactly w residues. Also known as a word.



77

References

[1] Apple/Genentech BLAST. http://www.apple.com/acg/.

[2] Cray XD1 Smith-Waterman solution. http://www.cray.com/products/xd1/smithwaterman.
html.

[3] DeCypherSW - Smith-Waterman solution. http://www.timelogic.com/decypher sw.html.

[4] GenBank. http://www.ncbi.nlm.nih.gov/Genbank/.

[5] Growth of GenBank. http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.

[6] Growth of Swiss-Prot. http://www.expasy.org/sprot/relnotes/#SPstat.

[7] Growth of the DNA sequence database maintained by the International Nucleotide Sequence
Database Collaboration. http://www.nlm.nih.gov/news/press releases/dna rna 100 gig.

html.

[8] Paracel BLAST. http://www.paracel.com/.

[9] SGI high throughput computational BLAST. http://www.sgi.com/industries/sciences/

chembio/papers.html#bio.

[10] Swiss-Prot. http://www.ebi.ac.uk/swissprot/.

[11] Timelogic DeCypher BLAST. http://www.timelogic.com/.

[12] WU-BLAST. http://blast.wustl.edu/.

[13] S F Altschul and W Gish. Local alignment statistics. Methods Enzymology, 266:460–80, 1996.

[14] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment search
tool. J Mol Biol, 215(3):403–10, 1990.

[15] S F Altschul, T L Madden, A A Schaffer, J Zhang, Z Zhang, W Miller, and D J Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25(17):3389–3402, Sep 1997.

[16] Abdullah N. Arslan, Omer Egecioglu, and Pavel A. Pevzner. A new approach to sequence
comparison: normalized sequence alignment. In RECOMB ’01: Proceedings of the fifth annual
international conference on Computational biology, pages 2–11, New York, NY, USA, 2001.
ACM Press.

[17] R.D. Bjornson, A.H. Sherman, S.B. Weston, N. Willard, and J. Wing. TurboBLAST: A parallel
implementation of BLAST built on the turbohub. 2002.

[18] Andrea Di Blas, David M. Dahle, Mark Diekhans, Leslie Grate, Jeffrey D. Hirschberg, Kevin
Karplus, Hansjörg Keller, Mark Kendrick, Francisco J. Mesa-Martinez, David Pease, Eric Rice,
Angela Schultz, Don Speck, and Richard Hughey. The UCSC Kestrel parallel processor. IEEE
Trans. Parallel Distrib. Syst., 16(1):80–92, 2005.



78

[19] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[20] Douglas L. Brutlag, Jean-Pierre Dautricourt, Ron Diaz, Jeff Fier, Bruce Moxon, and Richard

Stamm. BLAZEtm: An implementation of the Smith-Waterman sequence comparison algo-
rithm on a massively parallel computer. Computers & Chemistry, 17(2):203–207, 1993.

[21] Michael Cameron, Hugh E. Williams, and Adam Cannane. Improved gapped alignment in
BLAST. IEEE/ACM Trans. Comput. Biology Bioinform., 1(3):116–129, 2004.

[22] Michael Cameron, Hugh E. Williams, and Adam Cannane. A deterministic finite automaton
for faster protein hit detection in BLAST. Journal of Computation Biology., 2005.

[23] Roger D. Chamberlain, Mark A. Franklin Ron K. Cytron, and Ronald S. Indeck. The Mercury
System: Exploiting truly fast hardware for data search. Proc. of Int’l Workshop on Storage
Network Architecture and Parallel I/Os, pages 65–72, September 2003.

[24] Roger D. Chamberlain and Berkley Shands. Streaming data from disk store to application.
Proc. of 3rd Int’l Workshop on Storage Network Architecture and Parallel I/Os, pages 17–23,
September 2005.

[25] Aaron E. Darling, Lucas Carey, and Wu chun Feng. The design, implementation, and evaluation
of mpiBLAST. ClusterWorld Conference & Expo and the 4th International Conference on Linux
Clusters., 2003.

[26] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg. Alignment
of whole genomes. Nucl. Acids. Res., 27(11):2369–2376, 1999.

[27] Keith Diefendorff. Katmai enhances MMX. Microprocessor Report, 10/5/98.

[28] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales. Altivec extension
to PowerPC accelerates media processing. IEEE Micro, 20(2):85–95, 2000.

[29] Sean Eddy. Private communication, 2006.

[30] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular
Biology, 162(3):705–708, 1982.

[31] Brandon B. Harris. Acceleration of gapped alignment in BLASTP using the Mercury system.
Master’s project, Washington University in St. Louis, August 2006.

[32] Martin Herbordt, Tom VanCourt, Yongfeng Gu, Josh Model, and Bharat Sukhwani. Single
pass approximate string matching on FPGAs. In FCCM, 2006.

[33] Dzung T. Hoang. Searching genetic databases on Splash 2. In Duncan A. Buell and Kenneth L.
Pocek, editors, IEEE Workshop on FPGAs for Custom Computing Machines, pages 185–191,
Los Alamitos, CA, April 1993. IEEE Computer Society Press.

[34] Dorit S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing
Co., Boston, MA, USA, 1997.

[35] S Karlin and S F Altschul. Methods for assessing the statistical significance of molecular
sequence features by using general scoring schemes. Proc Natl Acad Sci U S A, 87(6):2264–8,
1990.

[36] W. J. Kent. BLAT–the BLAST-like alignment tool. Genome Research, 12(4):656–664, April
2002.



79

[37] Derek Kisman, Ming Li, Bin Ma, and Li Wang. tPatternHunter: gapped, fast and sensitive
translated homology search. Bioinformatics, 21(4):542–544, February 2005.

[38] Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang,
Arpith Jacob, and Joseph Lancaster. Biosequence similarity search on the mercury system. To
appear in Journal on VLSI Signal Processing.

[39] Joseph M. Lancaster. Design and Evaluation of a BLAST Ungapped Extension Accelerator.
Master’s thesis, Washington University in St. Louis, St. Louis, MO. USA. 63130, May 2006.
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