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ABSTRACT OF THE THESIS 

 
 

Bayesian Networks to Assess the Human Newborn Stool Metatranscriptome 
 

by 
 

William E. Bennett, Jr. 
 

Master of Science in Computer Science 

Washington University in St. Louis, 2016 

Thesis Committee:  Professor Michael R. Brent, 

Professor Phillip I. Tarr,  

Professor Roman Garnett 

 
In human stool, a large population of bacterial genes and transcripts from hundreds of genera coexist with host 

genes and transcripts.  Assessments of the metagenome and transcriptome are particularly challenging, since there 

is a great deal of sequence overlap among related species and related genes.  We sequenced the total RNA content 

from stool samples in a neonate using previously-described methods.  We then performed stepwise alignment of 

different populations of RNA sequence reads to different indices, including ribosomal databases, the human 

genome, and all sequenced bacterial genomes.  Each pool of RNA at each alignment step was subjected to 

compression to assess sequence complexity in bits per symbol.  In order to account for the high degree of overlap 

among species, a Bayesian network tool (RNABayes) was constructed using a node based on 16S sequencing, and 

a large number of nodes based on alignment scores to bacterial genes.  The following algorithm was then 

employed: (1) fit 16S census from a sample onto a Dirichlet distribution using maximum likelihood estimation to 

get the conjugate prior, (2) estimate probabilities of each bacterial genus for each bacterial mRNA alignment using 

BLAST alignment scores, (3) fit each of these probabilities to a Dirichlet distribution using maximum likelihood 

estimation, (4) perform inference iteratively to update the conjugate prior, with the result being the posterior 

probability distribution of metabolically active stool bacteria.  This algorithm was then applied to three datasets: 

(1) a simulated data set with normally distributed mRNAs, (2) a simulated data set with skewed mRNAs for a 

single bacterial population, and (3) the RNASeq dataset from our newborn stool sample.  Results indicate that a 

Bayesian network built in this fashion reliably adjusts the prior bacterial population distribution to more accurately 

reflect the transcriptionally active bacterial population.  Application of this method to real world samples appears 

to show even more marked skew, indicating transcripts are not uniformly distributed by population.
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Preface 

The study of complex nucleic acid mixtures has made enormous strides in the past decade, but still 

suffers from the Big Data Curse:  more information does not necessarily yield greater understanding of 

a complex process, and conversely, can often reveal further levels of complexity that only expand that 

which we don’t know.  I have found in most endeavors that believing something to be simple and 

easily solved is highly fallacious, and in almost every case, once we know more about a problem, we all 

too often discover that it’s way more complicated that we thought. 

 

In the 1971 the United States government passed the National Cancer Act, which was billed politically 

as a cure for cancer by the Nixon administration.  The lay press, and many scientists and physicians, 

predicted that with the right amount of investment of resources, we would soon see an end to cancer 

in as little as a decade.  Of course, this was strikingly optimistic, as we now see that cancer is an 

extremely varied clinical endpoint to hundreds of distinct physiologic processes.  Our understanding of 

oncology remains incremental, but has benefited massively from genomic science. 

 

Again in the late 1990’s, the Human Genome Project was billed as a panacea for a whole host of 

human diseases.  Once we knew the code for our genetic failures, we could cure a large number of 

ailments, or predict them.  While the Human Genome Project was certainly a massive scientific 

achievement that has had ripples throughout science, the result has been, somewhat predictably, much 

more complexity than was anticipated, and a deep realization that there are many more details of our 

bodies that we do not understand.  Knowing James Watson’s genetic makeup is only a tiny piece of the 

puzzle.  We must understand the diversity in our genomes and how they change over time, but even 

then, the puzzle contains many more layers of complexity. 

 

I believe they way forward from this expanding complexity problem is the use of rigorous probabilistic 

methods.  In this thesis I suggest a simple application of this idea by applying Bayesian networks to the 

study of complex, multi-species RNA mixtures in human stools.  But, I think Bayesian statistics could 

be expanded to many more problems in medicine, and we would be all the better for it.
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Chapter 1 - Background 
 
The assessment of host and microbial transcripts in stool has received relatively little attention in the 

past several decades.  Initial assessments have been relatively simplistic, but with the genomics 

revolution, massive datasets can be produced.  Tools to illuminate useful biological information from 

these data are lacking.  What follows is a survey of the published data regarding stool mRNA 

assessment. 

 

Stool is a complex analyte containing a large number of bacterial and human cells, as well free protein 

and undigested food debris.   Inhibition of downstream reactions, such as PCR, is common.  A variety 

of methods have been used successfully to obtain pure RNA which is relatively free of inhibitors[1-3]. 

 

1.1 Viral Genomes 
 
The first stool RNA species to be isolated in humans were those belonging to viral genomes.  A large 

number of enteric viruses, such as hepatitis A[4] virus, poliovirus[5], and rotavirus[6] have single- or 

double-stranded RNA genomes, and the isolation of these viruses and their genomes have been 

accomplished for decades.  A number of investigators have isolated total RNA from stool for the 

purposes of viral genotyping and discovery[7, 8], as a large percentage of enteric viruses have RNA 

genomes.  Furthermore, it is now possible to take a broader approach and assess the metagenome of 

specific viruses or groups of viruses[9] both in infectious disease, but also in gastrointestinal disorders 

such as inflammatory bowel disease, which have been shown to be related to dysbiosis of both the 

microbiome and the virome[10]. 

 

While the techniques to isolate nucleic acid are similar, the information contained in genomic RNA is 

distinct from that in the multitude of rRNAs and mRNAs within stool. 

 

1.2 Colon Cancer Biomarkers 
 
A large portion of the investigations of mRNA in stool has been related to the detection of specific 

transcripts as putative biomarkers for colorectal adenocarcinoma in humans.  Initial work was 
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performed by Davidson, et al when they followed up their previous study on protein kinase C (PKC) 

expression in colon adenocarcinoma by assaying total stool mRNA from mouse stool for multiple 

isoforms of PKC using RT-PCR[11].  They concluded this method would be useful to screen for colon 

cancer, and their follow up studies in a rat tumor model showed stool PKC-b2 transcripts to be 

elevated in animals with tumors[12].   

 

Subsequent work has found that a variety of other markers might be useful in colon cancer.  Davidson, 

et al. applied their earlier methods to human samples, using RT-PCR to assay 11 different mRNAs in 

controls, patients with inflammation, and patients with colorectal cancer[13], although no clear pattern 

was seen among a small number of patients.  Cyclo-oxygenase-2 (COX-2) is commonly overexpressed 

in aerodigestive tumors, and COX-2 mRNA has been found in the stools of a small series of patients 

with colorectal adenocarcinoma by Kanaoka, et al[14].  Subsequent work by the same group showed 

that sensitivity improved with the addition of matrix metalloproteinase-7 mRNA measurement[15], and 

that multiple other indicators (such as tumor size, number of exfoliated cells, and tumor expression of 

COX-2) correlated positively with detectable stool COX-2 mRNA[16].  Another group showed a 

somewhat lower sensitivity for detection of colon cancer using stool COX-2 mRNA[17].  Family 

history of colorectal cancer and polyps has also been associated with an increase in stool COX-2 

mRNA in healthy adult volunteers[18].   

 

Yamao, et al. showed that CD44 variant transcripts, which had been previously found to be elevated in 

tumor cells, were often present in adult humans with colorectal cancer, and post-operative samples 

showed a decrease in these stool mRNAs[19].  Fecal cytokeratin 19 (CK19) and ribosomal protein L19 

(RPL19) mRNAs have been shown to be associated with an increased risk of metastatic colorectal 

cancer in a prospective cohort of adults[20].  In a recent study by Koga, et al., multiple stool mRNA 

markers (CEA, MMP7, MYBL2, PTGS2 and TP53) were assayed in a large sample of patients with and 

without colorectal cancer[21].  Their results were variable, with low sensitivity (58.3%), moderate 

specificity (88.1%), and mRNA detection was dependent on the number of sloughed colonocytes 

recovered in stool.  Davidson’s group extended their previous work recently by simultaneously 

measuring a large variety of stool mRNAs associated with insulin resistance and colorectal cancer, then 

applied linear discriminate analysis to determine the most useful combinations of genes[22].  While 
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many researchers had expressed a need for analyses using multiple mRNA markers simultaneously, this 

represents the first effort to do so mathematically.   

 

Additionally, stool micro RNA (miRNA) screening shows promise in illuminating mechanisms of 

physiology and disease when combined with other analyses, such as mRNA sequence[23].  miRNAs 

are probably more stable in complex analytes like stool, and so may have an important future role in 

noninvasive cancer screening[24]. 

 

Screening strategies using cancer-associated DNA sequences have now entered into the clinic and 

received FDA-approval[25].  Recent work on targeted mRNA transcripts, such as integrins, seems to 

show more promise as a useful clinical test than previous work.[26] 

 

 

1.3 Bacterial Gene Expression 
 
The assessment of bacterial virulence factors in vivo is of significant clinical interest, and has been the 

target of several investigations.  While measurement of transcripts in vitro from cultured bacteria from 

human feces is a mainstay of microbiology, the direct assessment of mRNA in stool has not received as 

much attention.  In 2003, Fitzsimons et al. showed using quantitative RT-PCR that housekeeping genes 

in Lactobacillus can be detected in stool when as little as 2x107 cells per gram of stool (about 0.1% of the 

total bacterial population)[27].  While this work did not attempt to assess the native activity of stool 

bacteria, it did show that bacterial mRNAs can be measured, and that they relate quantitatively to the 

bacteria present.  In vivo assessment of toxin gene expression by assaying stool mRNAs in Vibrio 

cholerae infection could discern early from late phases of the disease[28], and in Escherichia coli O157:H7 

showed differences between bovine and human infection[29].  More recently, Dunaev, et al. showed 

that stool mRNA assessments to determine the quantity of viable non-culturable bacteria (VNCB) may 

be a useful measure for quantifying potentially dangerous coliform bacteria, but that RNA isolation 

from these biosolids is a challenging task[30].  

 
 
 
 



	
4	

 

1.4 Other Conditions 
 
A variety of other human conditions have shown changes in stool mRNA content.  A subset of adults 

with HIV infection have been shown to have detectable HIV RNA and CD4 mRNA in their 

stools[31].  Recently, Kaeffer et al. studied stool samples and gastric aspirates obtained from premature 

infants, and found that several housekeeping mRNAs (b-actin, GAPDH, and PER1) are present in 

measurable quantities in a majority of these samples[32].  Bennett et al. showed that there is 

considerable inter-patient and inter-time variability in housekeeping (GAPDH) and inflammation-

associated transcripts (IL-8, calprotectin) in stool, but that intra-specimen reproducibility is high[3].  

The same group showed in a subsequent study that inflammatory transcripts were elevated in the 

stools of children with bacterial colitis when compared with age-matched controls[33]. These same 

approaches have been extended to other infections, such as C. difficile colitis, with similar results[34]. 

 

A similar disease process, environmental enteric dysfunction (EED), which is a complex interaction 

between the gut microbiome, the host immune system, and the host nutritional status, has been 

traditionally measured using more invasive and challenging techniques, such as lactulose permeability.  

Newer approaches using transcriptomic sequencing have identified specific mRNAs associated with 

EED, such as those associated with T-cell proliferation or mediators that dampen hormone response.  

These have been shown to be comparable to more traditional techniques at detecting EED. 

 
 

1.5 Transcriptomes of Environmental Samples 
 
Chen et al. showed that individual bacterial transcripts can be measured in waste water (presumably 

isolated from within biologically active cells), and that these correlate with nutrient availability and 

bacterial contamination[35].  Since that time, several groups have taken an agnostic, sequence-based 

approach to interrogation of total RNA in stool.  Urich, et al. published results of the analysis of a 

single 454 sequencing run on total RNA isolated from a soil sample[36].  Their results show that a 

predominance of RNA reads are rRNA (74.8%), and that the remaining mRNAs are largely unaligned 

or unassigned to a specific gene ontology (8.2% map to a specific gene, 17.0 % are unassigned).  

Bacterial ribo-tags and mRNAs predominated in their samples.  Bailly, et al. used a metatranscriptomic 
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approach to describe eukaryotic diversity, and compared 18S rRNA sequence with metagenomic DNA 

sequencing [37].  Poor correlation was found between these two measures.  Shrestha, et al. applied 

3730 sequencing to total RNA enriched for mRNA using specific Shine-Dalgarno sequence primers 

and found significant functional diversity in a paddy soil community [38].   

 
Marine bacterial communities have also been a focus of metatranscriptomic analysis.  In 2005, 

Poretsky, et al. used selective hybridization to enrich freshwater lake samples for bacterial mRNAs, and 

found a great deal of functional diversity along with many previously unknown sequences[39].  In 

2008, Frias-Lopez, et al. performed 454 sequencing on a sample of marine surface water[40].  They 

found ~ 85% of cDNA sequence (compared with ~ 50% of DNA sequence) did not align well to the 

NCBI non-redundant protein database.  Those sequences that did align were predominantly related to 

photosynthesis and carbon fixation, consistent with the organisms’ ecological niche.  Gilbert et al. 

reported one of the first large-scale metatranscriptomic analyses of complex microbial communities by 

applying 454 sequencing to a marine community and then analyzing both cDNA and DNA 

sequence[41].  A surface water sample was subjected to an artificial “bloom,” and then samples were 

obtained before, mid-bloom, and afterwards, so they could compare both DNA and cDNA among 

different time points.  They found a marked difference between the changes in DNA sequence when 

compared to changes in cDNA sequence, and concluded this represents an alteration in gene 

transcription within taxa, rather than a change in community structure.  More recently, Hollibaugh, et 

al. have demonstrated the strong potential of metatranscriptomic analysis to answer specific biological 

questions by querying a series of 454 sequences for evidence of ammonia-oxidation performed by a 

low-abundance organism (Crenarcheota)[42]. 

 
Fermentation samples have also been subjected to metatranscriptomic analysis, and have yielded 

interestng insights.  Nam, et al. were able to show that a number of lactic acid bacilli are present in 

fermenting kimchi, and that, by metatranscriptomic analysis, these same bacteria are producing 

transcripts consistent with participation in fermentation, and in ratios similar to their average relative 

composition as determined by DNA sequencing[43].  Earlier this year, Weckx, et al. demonstrated a 

similar scenario using microarray data in fermenting sourdough[44]. 
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1.6 Stool Transcriptomes 
 
Stool is a convenient and readily available analyte for human studies, but until recently, the application 

of metatranscriptomics to fecal samples has been sparse.  Microarrays have been used to compare the 

expression profiles of bifidobacteria in a small sample (4 patients) of breast-fed and formula-fed infants 

aged 1 week to 10 months, and may be effective at differentiating the two groups biologically[45].   

This work was expanded upon by Chapkin, et al., using microarrays to measure human expression 

profiles in a larger number of breast-fed and formula-fed infants at 3 months of age[46].  Booijink, et 

al. applied RNA-fingerprinting (using restriction fragment length polymorphisms) to the stools of two 

healthy subjects, and found they could be accurately discriminated with this analysis[47].  Poroyko, et 

al. used RNA-Seq to characterize the functional diversity of the stool microbiome in formula-fed vs. 

mother-fed newborn piglets. 

 

RNA sequencing has only more recently been applied to human stool samples.  In the last year, 

Turnbaugh, et al. reported the first detailed, deep, sequencing-based assessment of human stool 

transcripts by comparing the expression profiles of two identical twins using RNA-Seq[48].  They 

found considerable inter-individual differences, as well as a great number of transcripts encoding 

hypothetical proteins.  RNA-Seq continues to be used to assess specific disease states where invasive 

biopsy or other assessment is difficult, such as to determine the intestinal maturation of preterm 

infants[49]. 

  

Taken as a whole, the body of work studying stool RNA shows that a great deal of information is likely 

to be present, but that extraction of this information is hindered by a combination of relative instability 

of the analyte, as well as an unknown degree of uncertainty in alignment of reads and interpretation of 

biological data.  
 

 
 

1.7 The Problem - Why Use a Probabilistic Model? 
 
 
A significant problem with mRNA alignments to a large number of bacterial genomes is the high 

degree of homology among intestinal bacteria.  Shigella and E. coli are virtually identical, for example.  
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Klebsiella and E. coli are also close evolutionary relatives with a high degree of gene homology.  What’s 

more, many unrelated bacteria may share plasmids or other functional genes acquired through gene 

transfer after a long period of co-evolution in a shared environment.  This often results in many high 

scoring hits for each mRNA when cDNA sequence reads attempt to align to a large number of related 

bacterial genomes.   

 

Our proposed solution to this problem is the use of a Bayesian network to improve alignment fidelity 

using two effects that are likely to change which mRNA-species pair is selected by an alignment: (1) the 

alignment score, (2) the prevalence of a bacteria by 16S sequencing (which as we will see below is 

probably more accurate than the alignments to rRNA in RNA-Seq).  Such a model would be a large 

web of interconnected probabilities ideally suited for a Bayesian network.   
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Chapter 2 – Materials and Methods 
 

2.1 Samples 
 
Stool samples were taken from a single male preterm infant born at 24 weeks estimated gestational age.  

A single sample at 23 days of age, and another at 25 days of age were frozen at -80°C within 4 hours of 

collection. Informed consent was obtained from the subject’s mother.  Samples were collected as part 

of an NIH-funded study to investigate the microbial contribution to necrotizing enterocolitis (NIH 

UH2AI083266).  The subject did not go on to develop necrotizing enterocolitis, so was considered a 

control patient in the study with normal acquisition of gut microbiota.   

 

2.2 Nucleic Acid Extraction 
 

DNA was isolated using the QIAamp DNA Stool Mini Kit (QIAGEN, Benlo, Netherlands – Product 

# 51504) in conjunction with the QIAcube automated nucleic acid isolation system (QIAGEN, Benlo, 

Netherlands – Product # 9001292).  Aqueous DNA was then subjected to 16S sequencing as described 

below. 

 

Total RNA was isolated from stools as described previously[3].  Briefly, frozen stool was subjected to a 

sequence of bead-beating, phenol-chloroform extraction, and then silica column extraction.  The final 

silica column step was performed with the QIAcube, using the protocol provided by the manufacturer 

for RNA isolation.  RNA integrity was assessed using the Agilent 6000 Nano Kit (Agilent 

Technologies, Santa Clara, CA, USA – Product # 5067-1511).   

 

2.3 cDNA Production and Sequencing 
 

DNA was subjected to 16S sequencing using protocols developed as part of the Human Microbiome 

Project Demonstration Project on Necrotizing Enterocolitis.  The first major publication from that 

project[50] details the exact method employed: 
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The V3-5 region of the 16S rRNA gene was sequenced on the Roche-454 platform to define 
the composition of the bacterial community. Sample preparation, DNA isolation, sequencing, 
data processing followed standardized protocols developed by the Human Microbiome Project 
consortium. The minimal sequence length was 200 bp, and chimeric sequences were removed 
by Chimera-Slayer. Average quality of scores of <35 were used as the minimum to remove low-
quality reads. Sequences meeting the above criteria were further classified by the Ribosomal 
Database Project (RDP) Naive Bayesian Classifier version 2.5 using training set 9 from phylum 
to genus level[50]. 

 

The 16S profile of each sample was then recorded as a number of total reads aligning to the primer for 

a specific V3-5 region of a specific bacterial genus.  We then knew the proportion of each sample 

constituting each bacterial genus. 

 

cDNA for RNA-Seq was created using both the Nu-Gen Ovation and Nu-Gen Ovation Prokaryotic 

enrichment systems.  Sequencing was performed using the Illumina platform as described above.  

Sequences obtained from the Ovation Prokaryotic / Illumina system were then used to study the effect 

of Bayesian networks on the fidelity of assigning mRNA-organism pairs in complex mRNA mixtures. 

 

2.4 Analysis 
 

2.4.1 Overall Pipeline 
 

The overall analysis pipeline is portrayed in Figure 1.  Prior to alignment, reads were assessed for 

quality using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  All reads were 

first scrubbed of adapter and barcode sequences.  Adapter sequences, bases with a Phred quality score 

< 28, and reads with a length < 40 (for 100 bp reads) and < 20 (for 40 bp reads) after trimming were 

removed using the FastX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Alignments were 
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performed using Bowtie[51], with the addition of TopHat[52] for human alignments, to improve the 

likelihood of correctly mapping reads that span 

splice sites.  Transcripts were assembled using 

CuffLinks.  Ribosomal indices were built using 

the latest version of the SILVA database 

containing all known ribosomal RNA 

sequence[53].  Human indices were built using 

the February 2009 (hg27) NCBI assembly.  

Microbial indices were created using either all 

microbial sequence deposited in NCBI, or by 

creating custom indices based on the 16S 

census of individual samples.  All genera (or 

families) with greater than a 0.1% contribution 

to the microbial census by 16S sequence 

analysis were included for each sample using all 

sequence deposited in the NCBI for that genus 

or family (both fully sequenced organisms and 

draft sequence).  rRNA, mRNA, and unaligned 

bins were subjected to further analysis outlined 

below. 

 

Reads which aligned to rRNA sequence were compared, by genus (or family, if necessary), to those 

genera and families which accounted for > 0.1% of the microbial census.  In order to more accurately 

make comparisons with 16S sequence data, rRNA sequences that aligned to hypervariable regions were 

removed and compared separately.  The percentage contribution to the microbial census was then 

compared between 16S and rRNA-Seq. 

 

Reads which aligned to ribosomal RNA or other non-coding RNAs (and were missed by the previous 

ribosomal index alignment step) were removed prior to analysis of transcripts.  For both microbial and 

human alignments likely to be mRNAs transcripts were assembled and binned according to KEGG 

Figure 2.1 – Overall sequence analysis pipeline. 
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category.   

 

Additionally, a subset of specific human transcripts known to be involved in the maturation of the 

human intestine, and in the control of gut inflammation, were assessed separately, and then compared 

by relative abundance between samples and sequencing methods.  These include:  IL-1b, IL-6, IL-8, 

IL-10, S100A8, TGF-b, TNF-a, TLR-2, TLR-4, HMGBP-1, EGF, and GAPDH.   

 

2.4.2 Complexity Assessment 
 

We assessed the average complexity of our sequence at each step of the alignment process to help 

determine the likely contribution of each pool to unaligned reads.  Complexity was determined by 

compressing the total sequence of each pool of reads using the expert model (XM) compression 

algorithm[54], and then computing the bits per symbol (BPS).  This algorithm uses a series of experts:  

a simple Markov expert, a context Markov expert that uses the previous 512 symbols, and a hash table 

full of copy experts that encompass many combinations of potential sequence repeats.  The relative 

weight of each expert is computed by: 

 

       (2.1) 

These weights are then combined using Bayesian averaging and their (relative) predictions used to 

compress the given sequence: 

(2.2) 

 

Sequences with a higher average BPS thus has less sequence complexity since more information can be 

stored per unit.  For comparison, we used the same algorithm to compute the complexity of a 

simulated set of repeated adapters (where we would expect low complexity), as well as simulated 
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random reads from human cDNA (where we would expect high complexity). 

 

2.4.3 Creation of Simulated Reads  
 
In order to test our Bayesian network, we needed to create simulated transcripts that varied in known 

ways, so that we could then determine if the model accounted for these changes in a predictable way.  

We simulated two sets of 1000 transcripts using built-in Python string functions:  

 

1. A set of transcripts that were random at any coding portion of the genome and were normally 

distributed around the frequency of each genera.  The model should have minimal effect on the 

posterior probability distribution of this data set. 

 

2. A set of transcripts obtained identically as #1, but with a skewed frequency of genera.  

Escherichia and Staphylococcus were the dominant genera, rather than Escherichia and Klebsiella. 

 

These simulated sets of transcripts with known relationships with the 16S proportions could then 

help determine the effectiveness of the model.  

 
2.4.4 Fitting to and Sampling from the Dirichlet Distributions 
 

Since our data consist of a distribution of the probability of several bacterial genera, we chose to use 

the Dirichlet distribution.  Additionally, the Dirichlet distribution is ideally suited for use as a conjugate 

prior in a Bayesian network, which is described below.   

 

All distributions were constructed and manipulated in our final software tool by modifying existing 

modules written in Python.  The NumPy (www.numpy.org) and SciPy (www.scipy.org) packages both 

contain multiple classes helpful in the manipulation of Dirichlet distributions.  Visualization of 

distributions was accomplished using the matplotlib Python package (www.matplotlib.org). 

 
The Dirichlet distribution is useful when we have a set of conjugate probabilities, as we do with 16S 

data and data derived from mRNA alignment scores which are the conjugate probability of a set of 
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bacterial genera: 

 

(2.3) 

 

Where θ represents the probability of each bacterial genus being present in the 16S population or the 

metabolically active mRNA population.  These experimentally determined θ values can be used to 

construct a Dirichlet distribution using maximum likelihood estimation (MLE), since the parameters 

for the distribution (𝑎), are present in the following conditional probability: 

 

(2.4) 

 

MLE was performed on experimental θ values using an existing Python module written by Eric Suh 

(https://github.com/ericsuh/dirichlet).  The code was modified slightly to allow for longer 

computation cycles, since many of the experimental data we attempted to fit had wide variability and 

high Dirichlet parameters, which would often result in failure of the MLE algorithm to converge.   

 

Additionally, since we usually had a single 16S or mRNA sample, we wanted to account for repeat 

sample / intrasample variation, since our analyte (stool) is not homogenous.  Some previous work has 

shown intrasample variation of genus assignment to be low, about 5%[55].  So, when performing 

parameter estimation, 100 samples were generated with a variation of 3-7% in the most common 

genera, and subsequent genera adjusted randomly for that change, so that they all still summed to 1.  

This also resulted in greater likelihood of the MLE algorithm converging, as performance was 

noticeably poorer with smaller numbers of experimental samples for parameter estimation. 

 

For the 16S census of the sample, the probabilities were straightforward, since the top 4 genera 

accounted for the vast majority of the likelihood.  As such, we built all subsequent distributions 

using the probabilities of only these top 4 genera:  Escherichia, Klebsiella, Staphylococcus, 

and Enterobacter.  We thus created the prior θ distribution of: 
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(2.5) 

 

Assigning probabilities to mRNA alignments was more challenging.  First, when aligning using BLAST, 

only the top 4 genera were used as the index.  Second, once an alignment score was generated for each, 

probabilities were generated by determining the relative alignment score of each genus.  If no 

alignment occurred, the θ was set to 0 for that genus.  If there were multiple genes that aligned to a 

specific genus, the maximum alignment score was used. 

 

We then had two data sets: (1) a 16S distribution that represented the prior probability of each genus, 

(2) a set of several thousand alignments that represented many examples of the likelihood of each 

mRNA being from one of those 4 genera.  These θ’s could then be converted to Dirichlet distributions 

and analyzed using a Bayesian network. 

 

 

2.4.5 Bayesian Network Model for Prokaryotic mRNA  
 

We constructed the Bayesian network according to the following schematic: 

 



	
15	

Figure 2.2 – Bayesian network model schematic. 

 
 

The single 16S node layer represents the prior probability (Dirichlet prior) of which genera are 

metabolically active, which is simply those bacteria that we know to be present.  As detailed in the 

overall algorithm below, this prior probability is then updated by the many distributions in the second 

layer via inference, resulting in a change in a successive change in the Dirichlet parameters, eventually 

resulting in the posterior probability, which is the model’s estimate of the true metabolically active 

population of bacteria. 

 

We can therefore find a new distribution that is a re-parameterization of the initial Dirichlet prior: 

 

 (2.6) 

 

 

2.4.6 The Algorithm – RNABayes 
 
The RNABayes software tool was written using Python 2.7 with the following features: 

 

Input:  Set of 16S probabilities (1 or more), Set of mRNA probabilities (1 or more) 

Output:  Set of estimated proportions of metabolically active bacteria. 
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1. Read in 16S probabilities in the format ([a, b, c, d]). 

2. Read in mRNA probabilities in the format ([a, b, c, d]). 

3. Use maximum likelihood estimation to generate parameters for a Dirichlet distribution for 

each set of probabilities. 

4. Assign each of these Dirichlet distributions to nodes in a Bayesian network as described 

above. 

5. Perform inference on each node, updating the prior probability in layer 1 with the 

observations in layer 2. 

6. Return the final updated distribution from layer 1 as the estimate of the metabolically active 

population of bacteria.  
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Chapter 3 – Results and Conclusions 
 
3.1   rRNA and 16S Census Comparison 

We made multiple comparisons between 16S genus profiles and rRNA profiles obtained via RNA-

Seq.  We took all genera with >1% of the total and compared them across multiple variables:  rRNA 

vs. 16S, DOL 23 vs. DOL 25, between two runs of the same sample, and 16S V1-V3 vs. V3-V5.  

These results are shown in Figures 3.1, 3.2, 3.3, and 3.4, respectively. 

Figure 3.1 

 
 
16S and RNA-Seq showed similar profiles, but RNA-Seq had far more variety, and probably reflects 

the fact that RNA-Seq sequences a large number of less variable RNA regions which might align well 

to multiple bacterial genomes, whereas V1-V3 provides greater resolution between genera.  

Furthermore, some portions of rRNA may be less stable in environmental samples such as stool. 
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Figure 3.2 
	

 
 

The shift in bacterial species across a 48-hour period is consistent with comprehensive work 

describing the transition of bacterial genera across the first few weeks of life[50].  Two genera 

(Pseudomonas and Escherichia) show large reciprocal shifts, whereas the remaining portions are 

unchanged. 
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Figure 3.3 

 
 

Figure 3.4 
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There are only minor variations between multiple runs of RNA-Seq and between 16S rRNA gene 

sequencing at different hypervariable regions, indicating that these are not important sources of 

variation. 
 
 

3.2 Human mRNA 

Since human mRNA was only present from a single individual from a single species, we did not subject 

it to further processing as we did with prokaryotic mRNA (see Bayesian Network Analysis for 

Prokaryotic mRNA, above).  Using MEGAN[56], we determined the KEGG category for all aligned 

mRNA reads and compared DOL23 and DOL25.  Results are shown in Figures 2.6 and 2.7 below.  

The relative distribution was similar for each sample.  We further determined the KEGG categories 

for transcripts within the Metabolism category, since this was the dominant transcript type.  The 

majority of these alignments were for mRNAs coding for carbohydrate (CHO) metabolism.  These 

results are consistent with previous transcript profiles of individual gut microbiota, and with the overall 

metabolic activity of gram negative and anaerobic gut bacteria[57, 58]. 
	

Figure 3.5 – KEGG categories for DOL 23 
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Figure 3.6 – KEGG categories for DOL 25 

	
	

3.3 Complexity Analysis 
 

While we might assume that more complex sequence would consistently be present in mRNAs compared 

to ribosomal sequence, this may not be true of all genes, and highly repetitive k-mers might make a larger 

contribution to the mRNA sequence pool.  However, in our sample, there was substantially more 

complexity in non-rRNA (mean complexity = 1.24, median = 1.22) reads than in those aligning to rRNA 

(mean complexity = 0.667, median = 0.635), as we might expect.  Furthermore, the striking difference 

between the average complexity at each alignment step when comparing DOL 23 and DOL 25 serves 

to underscore the heterogeneity one expects to find in the large, heterogenous total RNA pool within 

human stool. 
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Figure 3.7 – Read complexity with human and prokaryotic primers 

 
 

3.4 Bayesian Network Model 
 

3.4.1 Fitting Probabilities to the Dirichlet Distribution 
 
With a 3-7% variation in the most common bacteria, the Dirichlet distribution had a high scalar for 

parameters as determined by MLE.  This resulted in a low variation in the probability density, as seen 

in Figure 3.8 “16S”.  When mRNA transcripts were simulated based on a normal distribution of the 

most common bacteria, the distribution was slightly more dispersed, as seen in Figure 3.8 “Sim 

Norm”.  When a skew was added decreasing the likelihood of a Klebsiella transcript, the probability 

distribution shifted to a new axis between Escherichia and Staphylococcus, but had a similar 

dispersion, as seen in Figure 3.8 “Sim Skew.”   

 

However, when actual RNA-Seq alignments were used, there was far more dispersion in probability 

density, which has several potential causes: 

1. High degree of homology between Klebsiella and Escherichia, resulting in frequently similar 

alignment scores. 

2. The frequent occurrence of a very low alignment score for 2 or more of the genera. 
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3. The occurrence of a high degree of homology between all genera, likely in the case of heavily 

conserved bacterial genes. 
	

Figure 3.8 – Prior probability distributions for all datasets 

 

 
3.4.2 Results from Inference on Simulated Data Set, Normally 

Distributed 
 
The simulated transcript set with a normally distributed change in transcripts behaved as expected.  

There was a slightly more dispersion after the model adjustment than in the initial transcript set.  The 

shift towards Escherichia can likely be explained by a disproportionate change in the other parameters 

(a 5% change in a higher probability was a 50% change in the lower probabilities).   
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Figure 3.9 – Posterior probabilities for simulated data set, normal 

 
 
3.4.3 Results from Inference on Simulated Data Set, Skewed  
 
The skewed simulated transcript set also performed as expected.  When the transcripts were skewed 

to be predominantly Escherichia and Staphylococcus rather than Klebsiella, the probability density shifted to 

the edge between the two dominant genera in the 16S data set (Escherichia and Klebsiella).  The relative 

dispersion remained similar, since transcripts were not otherwise selectively drawn from one genome 

or another. 

 
Figure 3.10 – Posterior probabilities for simulated data set, skewed 

 
 
3.4.4 Results from Inference on RNA Seq Data Set 

 

As the final analysis, we sought to determine how the model performed on a real data set.  Both of the 
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simulated examples performed as we would expect, so we would also expect for the model to adjust 

both the probabilities by genus, but also to likely increase the amount of uncertainty in the distribution, 

since the two pieces of information (16S and RNA-Seq) contained such different predictions.  Our 

hypothesis was confirmed.  The probability distribution expanded substantially, indicating a large 

amount of uncertainty, and the region shifted towards Escherichia as we would expect. 

 

Figure 3.11 – Posterior probability distribution for RNA Seq 

 
 

3.5 Discussion 
 

We have described a novel approach to improving the fidelity of alignment of complex bacterial mRNA 

populations in human stool using Bayesian inference.  The method relies on the construction of a small 

Bayesian network using Dirichlet distributions to model the conjugate probabilities of the most 

common bacterial constituents in a stool sample.  Most work has focused on detection of the host 

transcriptome, but we hope that further work building on probabilistic improvement of these complex 

and difficult transcriptomes will help us gain further insight into the metabolic activity of these 

important bacterial communities. 

 

The results of the model are not surprising, and confirm the utility of Bayesian networks for this 

application.  In general, whichever direction the two sets of distributions (16S vs. RNA-Seq) tended to 

differ, the model found a distribution with both (a) more uncertainty and (b) a shift towards the other 

distribution.  This may especially helpful in specific disease states where one or more populations of 

bacteria are having a disproportionately large effect on the host. 
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3.5.1 Weaknesses 
	

There are several important weaknesses to this work.  First, we had no gold standard to determine 

efficacy of our Bayesian model in improving fidelity of aligning mRNA-species pairs correctly.  While 

the model performed modestly well on simulated reads, we are unable to determine if that performance 

held for real world sequence, especially given how different the real samples were from the simulated 

ones.  There could be a cause of variation completely unrelated to the actual metabolic activity of the 

bacteria in the sample (such as increased degradation of some mRNAs, different locations within the 

stool of some bacteria vs. others).  Secondly, only a small portion of total RNA was mRNA, which was 

the eventual analyte we chose.  Of those mRNAs, a minority were prokaryotic.  Given the massive 

community that is the human intestinal microbiome, it is surprising that we are able to see only a tiny 

fraction of the bacterial transcriptome.  However, we have no reason to believe there is disproportionate 

degradation of one gene’s mRNA over another. 

 

3.5.2 Future Directions 
	

Future work in the use of probabilistic methods to assist in assessment of complex transcriptomes is 

essential.  Overall, the use of Bayesian methods to provide continually updated probabilities in complex 

systems tends to improve outcomes at many levels.  There are several research directions that would 

continue to improve our understanding of complex transcriptomes: 

 

1. Better systems biology at the level of bacterial communities, especially those occupying the human 

host. 

2. Better isolation methods and depth of sequencing.  As sequencing technology continues to decrease 

in cost, the coverage of single samples that can be achieved will only improve. 

3. Expansion of Bayesian methods to analyze a large number of samples simultaneously. 

 

Based on our preliminary results with this method, there are several improvements that could be made 

to the software in later versions: 
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1. Parsing of reads or alignments without the need for preprocessing of data. 

2. Ability to test the performance of different graph structures. 

3. Additional analysis of Bayesian network performance. 

4. Graphical interface. 
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