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carbonate formation was not observed. The freshly reacted mica and quartz substrates also showed 

calcite and vaterite as the two CaCO3 polymorphs after 2 hours reaction, without any observable 

ACC phase. SEM images (Figure 5.1 (Bottom) and Figure 5-S3) demonstrate that these two 

polymorphs have different shapes and surface roughnesses. Different vaterite morphologies were 

observed due to different orientations and combinations of the round, flat particles (Figure 5-S3). 

Vaterite presented a rougher surface than calcite, as shown in the zoomed-in images (Figure 5.1).  

 

Figure 5.1  (Top) Raman spectra of CaCO3 particles formed on mica substrates. The rhombohedral 

particles are calcite, and other shapes (round, elliptic and flower-like) are vaterite. No other CaCO3 phases 

were detected. The peak positions match well with calcite (○) and vaterite (◆) reference spectra.214 

(Bottom) SEM images of a typical surface of vaterite and calcite, taken from C1 and C3 conditions on 

mica. The images show that the vaterite surface is rougher than the calcite surface. Particles under other 

conditions appear to have the same trend. Note that the particles in this figure are likely homogeneously 

formed and have settled to the substrate. 

 

The caveat of SEM and Raman spectroscopy observations is that the observed particles 

were micrometer scale. In GISAXS and AFM experiments, however, we have observed the 
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predominantly affected by ln(𝐼𝐴𝑃/𝐾𝑠𝑝)  and α. For heterogeneous nucleation, the positive 

relationship between rc and α at constant 𝐼𝐴𝑃/𝐾𝑠𝑝 can be affected by other factors, such as particle 

geometry and contact angles between particles and substrates. Assuming proportional relationship, 

we can calculate the α of one system as long as we know the α of another system and the rc’s for 

both systems. For example, if we first measured αvaterite–quartz to be 32 mJ/m2, then αvaterite–mica can 

be calculated by comparing the rc (approximated by comparing earliest Rg obtained using GISAXS) 

on mica and quartz under the C1 and C2 conditions, which gives αvaterite–mica ~ 27 mJ/m2. This 

method provides reasonable estimates, however, it assumes that Eq. 5.3 is applicable, employs the 

smallest observable Rg as good approximation for rc, and requires a priori knowledge of the α of 

another system.  

Eq. 5.2 implies that a substrate with a small α will have faster nucleation rates. Using 

GISAXS, we measured faster nucleation rates on the C2 and C3 mica than on quartz, and using 

AFM, we observed faster nucleation rates on C3 and C4 mica than quartz. However, at higher 

supersaturations (C1), the nucleation rates on mica and quartz were similar, despite the mica 

having a smaller α value. The only parameter in Eq. 5.2 that can account for the similar nucleation 

rate would be different kinetic factors, J0, for mica and quartz.216 Factor J0 in Eq. 5.2 is expanded 

as 𝐽0 = 𝐴exp(
−𝐸𝑎

𝑘𝑇
), where A relates to the geometry and material properties of the reactant, and Ea 

is the effective activation energy arising from attaching new ions onto nucleated clusters.33, 61 

Therefore, predicting a relative nucleation rate by α according to Eq. 5.2 should be approached 

carefully, as J0 could also affect the nucleation rate. To the best of our knowledge, there is little 

experimental research on the kinetic factor, J0.  Research on the relationship between material 

properties and J0 could be an interesting future direction to help us better understand the kinetics 

of heterogeneous nucleation.  
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5.4.2 Factors Contributing to α  

Three substrate related factors can contribute to the kinetics of heterogeneous precipitation: 

The lattice mismatch between the substrate and the precipitate, the extent of hydrophilicity, and 

the surface charge of the substrate surfaces.194, 200, 213, 215, 217-220 To provide insight on mechanisms 

responsible for the smaller α in the CaCO3–mica system compared to the CaCO3–quartz system, 

these three factors were analyzed experimentally. First, lattice mismatch is related to interfacial 

energy between the nuclei and the substrates (αsn).
200, 213, 217, 218, 221 The larger the mismatch, the 

larger the αsn, and the less nucleation is favored.200, 213, 217, 218, 221 Because the CaCO3 precipitates 

and the substrates have different crystal structures, it is challenging to obtain the exact lattice 

orientation of nuclei on mica/quartz at the molecular level, Therefore, the bond length mismatch 

was used to approximate the lattice mismatch between the nuclei and substrates.200, 213  The 

calculation suggests a smaller O–O bond length mismatch (m) between CaCO3 and mica (mvaterite–

mica= 11%) than that between CaCO3 and quartz (mvaterite–quartz= 19%), which could be the 

explanation for the smaller energy barrier for the mica system. The extents of hydrophilicity of 

mica and quartz, as well as the surface charge of mica and quartz powders in experimental 

conditions, were also tested. However, the results do not explain the more favorable CaCO3 

nucleation on mica than on quartz. Further details of the analysis of factors controlling α are 

available in the Supporting Information Section 5-S11. 

 

5.5 Environmental Implications 

 Mineral trapping of CO2 by carbonate precipitation is considered to be the safest trapping 

mechanism in GCS. The precipitation process can change the fluid chemistry and porosity-
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permeability, affecting the fate and transport of CO2. These processes for GCS can be modeled by 

reactive transport approaches, which require interfacial and bulk thermodynamic parameters as 

inputs.203, 204 However, most of those models do not include nucleation as an explicit step in 

precipitation, but rather use seeded systems and growth kinetics as approximations. Considering 

that the size of nucleated CaCO3 particles is comparable to the pore sizes of some rocks in GCS 

formations, nucleation is crucial in changing media porosity and permeability. Thus, nucleation 

should be incorporated into reactive transport models. To achieve this, we need to advance our 

kinetic and thermodynamic knowledge of the nucleation of carbonate minerals in subsurface 

environments. At GCS sites, pores present different mineralogies as well as topologies, and can 

serve as important nucleation sites. The interfacial energy, which differs for each mineral, is an 

important parameter controlling nucleation. Hence, the interfacial energies provided by this study 

are useful for incorporating nucleation into current reactive transport models as an explicit step.  

 In this study, we focused on the most abundant carbonate, CaCO3, and obtained effective 

interfacial energies () under ambient conditions. Provided  is not a function of temperature and 

pressure, these parameters can be applied to GCS modeling. At least three major impacts of CaCO3 

precipitation during GCS are expected: First, the permeability of a GCS reservoir can be changed. 

Based on the new effective interfacial energies (αvaterite–mica = 24 mJ/m2, αvaterite–quartz = 32 mJ/m2, 

αcalcite–mica= 41 mJ/m2
, αcalcite–quartz = 47 mJ/m2), if the pore throat mainly consists of mica, CaCO3 

formation will reduce the pore permeability more significantly than if the dominant mineral in the 

throat is quartz. Second, the precipitation process can affect the geometry of pore walls by forming 

different amounts or different quantities and phases of CaCO3. For example, the vaterite surfaces 

we observed are rougher than calcite surfaces, and they have larger surface area.222  The geometry 

and polymorphs of CaCO3 may also be changed after nucleation, by particle evolvement and 
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possible phase transformations. Third, different polymorphs of CaCO3 may lead to different 

wettability of the wall surface, which is a critical factor controlling CO2 transport and trapping.223-

228 For example, the breakthrough capillary pressure of CO2 is proportional to the cosine of the 

mineral-brine-CO2 contact angle measured in brine.226, 228 Therefore, if the porous media is more 

hydrophilic (smaller contact angle), higher pressure is needed in the supercritical CO2 (scCO2) 

phase to transport scCO2 through the media previously saturated with brine. It is reported that 

calcite is more hydrophobic than vaterite,229 and it is known that the hydrophilicity/hydrophobicity 

is also sensitive to temperature and pressure,224, 225 as well as surface roughness,219 which appears 

different for calcite and vaterite according to our observations. Furthermore, different forms of 

CaCO3 have different surface energies and mechanical properties,230 which will change the 

properties of pore walls if they precipitate. The information reported in this chapter is not only of 

interest for the geologic CO2 sequestration community, but to other fields where heterogeneous 

CaCO3 nucleation is an important process, such as in industrial pipeline scaling, and CaCO3 

formation on engineered surfaces or biofilms. 
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Figure 7.3  Calibration of GISAXS data using AFM. (a) Example AFM images (1 × 1 μm2) of nuclei 

formed under different temperatures for various reaction times. The evenly distributed particles are 

heterogeneously formed, while the larger particles are homogeneously formed and settled to the quartz 

substrate surface. (b) Plot and regression of counted particle numbers with units of #/μm2 over the 

arbitrary particle numbers obtained from fitting GISAXS data. 
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7.3.4 Unit Conversion of Nucleation Rates    

According to the in-plane nuclei radius of 4.7 ± 0.7 nm, and the nuclei geometry studied in 

our previous studies,163, 164 the individual nuclei volume was calculated as 4.1 ± 1.8 nm3. The 

standard deviation of nuclei volume was expected to be reduced for materials that generate larger 

nuclei, because large nuclei are easier to measure accurately. Multiplication of individual nuclei 

volumes (m3) and nucleation rates (#/m2/s) gives nucleation rates in volume of nuclei per unit area 

of substrate surface per unit time (i.e., m3/m2/s). If the CaCO3 phase is assumed to be calcite, as 

commonly used in reactive transport modeling approaches, the moles of Ca2+ or CO3
2- ions 

consumed from fluid can be calculated by dividing the volume nucleation rates (m3/m2/s) by the 

molar volume of calcite (m3/mol), where the molar volume is just the product of the reciprocal of 

calcite density and the molecular weight of calcite: 

υ =
1

𝜌
×𝑀𝑊 .         Eq. (7.4) 

If the nucleating CaCO3 phase is assumed to be other than calcite, the Ksp and molecular 

volume should be correspondent to that specific phase, but the methods for obtaining Ea and A are 

the same as presented for calcite.  

The obtained nucleation rate was in moles of Ca2+ or CO3
2- ions consumed per unit area of 

substrate surface per unit time (i.e., m3/m2/s). Since the pre-exponential factor A has the same units 

as the nucleation rate J, the unit conversion method for A is the same as that for J. The calculated 

values for J and A with different units are shown in Table 7.1.  
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Table 7.1  Nucleation rates and pre-exponential factors obtained in this study. The error ranges are 

standard deviations from the experimental data. 

Temperature and 

pre-exponential 

factor 

Fitted Nucleation 

Rate (a.u./min) 

Absolute 

Nucleation Rate 

(#/μm2/min) 

Absolute 

Nucleation Rate 

(nm3/μm2/min) 

Absolute 

Nucleation Rate 

(mol/m2/min) 

12 oC (3.4 ± 0.1) × 10-5 6.1 ± 1.2 24 ± 12 (6.6 ± 3.2) × 10-10 

25 oC (8.8 ± 0.4) × 10-5 15.5 ± 3.2 63 ± 31 (17.1 ± 8.3) × 10-10 

31 oC (15 ± 1) × 10-5 27.0 ± 5.6 108 ± 52 (29 ± 14) × 10-10 

A 

exp(15.5 ± 2.4) 

or 

106.7 ± 1.0 

exp(27.6 ± 2.5) 

or 

1012.0 ± 1.1 

exp(29.0 ± 2.9) 

or 

1012.6 ± 1.3 

exp(4.6 ± 2.9) 

or 

102.0 ± 1.3 

 

7.4 Discussion 

7.4.1 Newly Developed GISAXS-AFM Method 

The successful acquisition of kinetic factors in this study proved the validity of a new 

method for calibration of GISAXS data using AFM. In SAXS and GISAXS data acquisition, 

standard glassy carbon samples are commonly used to calibrate the scattering intensity obtained 

from different beamtimes. But methods for calibration of scattering intensity with absolute particle 

numbers for GISAXS were scarce. In this study, we developed the GISAXS-AFM method to 

transform GISAXS-obtained particle numbers on the substrate from arbitrary to absolute units. 

This method can be extended for calibration of particle numbers in other experimental systems 

using GISAXS as the detection technique, such as those used in (bio)material sciences,  

geosciences, and environmental sciences. However, several considerations are important in 

carrying out this method. 

 The first consideration is the range of experimental conditions. In our study, the CaCO3 

nuclei were several nanometers in radius. GISAXS is able to observe nuclei with radii between 1-

80 nm. However, to have accurate AFM data, the nuclei should be several nanometers. Smaller 



190 

 

nuclei are hard to resolve clearly in AFM, whereas too large particles tend to hide small features. 

Besides particle size, particle density (#/unit area) is also important. GISAXS requires a 

considerable coverage of the substrate by nuclei to have a high signal-to-noise ratio, especially 

when the electron density of the nuclei is low, but a large number of nuclei are likely to aggregate 

into groups of nuclei, thus are hard to count from AFM images. The particle size and particle 

density on the substrate surface are functions of reaction conditions, and thus the conditions should 

be adjusted to enable acceptable data quality for both GISAXS and AFM. To obtain good data for 

GISAXS and AFM, and thus reliable statistics for parameter acquisition of Ea and factor A, our 

study determined the experimental condition to be at IAP/Ksp=101.65 and a temperature range of 12 

–31 oC.  

 The second consideration is the match of in situ and ex situ tests. If both AFM and GISAXS 

tests are ex situ, the sample preparation for both techniques should be identical. However, if one 

of the techniques is in situ, the situation is more complicated, because the system setup for the in 

situ test with one technique might not be applicable for in situ test with the other technique. In this 

study, for example, the systems were designed for in situ GISAXS measurement, but the same 

setup cannot be used for in situ AFM tests, which require a special reaction cell and a much slower 

flow rate. Therefore, we did the AFM test ex situ. In this and similar cases, it is important to 

preserve the sample close to its in situ status. For example, instead of rinsing off the unreacted 

solution from the substrate with water, we used ethanol to prevent dissolution of nuclei by water. 

After ethanol rinsing, the samples were dried as fast as possible with ultra-pure nitrogen. The 

nuclei were then scanned with AFM immediately to prevent nuclei aging through aggregation, 

desiccation, or phase transformation. Despite the care with which ex situ AFM samples were 
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prepared, we are aware of the possible discrepancies between the ex situ samples and the in situ 

samples, and therefore would rely on in situ data (e.g., nuclei size) if available. 

 For different materials, these considerations might differ in details. However, with 

modifications, our proposed method for calibrating GISAXS intensities with absolute particle 

densities is transformative for calibrations of other materials tested using GISAXS.  

7.4.2 Relative Importance of Thermodynamic (ΔG*) and Kinetic (Ea) Energy 

Barriers.  

The overall energy barrier for nucleation reactions is a combination of the kinetic energy 

barrier, Ea, and the thermodynamic energy barrier, ΔG*. The thermodynamic energy barrier ΔG* 

is usually referred to as “nucleation energy barrier” because it is characteristic of nucleation 

reactions, whereas apparent activation energy exists for virtually all chemical reactions. ΔG* can 

be considerably large, thus hindering the start of precipitation in many aqueous system, such as in 

seed-free nanoparticle synthesis, in pipelines with scale inhibitors, or in geomedia experiencing 

dissolution of primary minerals and precipitation of secondary minerals. However, previous 

knowledge of J0=Aexp(-Ea/kT) was limited. For homogeneous nucleation, estimating the 

theoretical value of J0 was possible, but for heterogeneous nucleation, even the order of magnitude 

of J0 was not clear. Due to the limited information, it was hard to analyze the relative importance 

of ΔG* over Ea.  

This study fills this knowledge gap. The acquired J0 allows estimation of nucleation 

kinetics of the correct order of magnitude, and the value of Ea enables analysis of the comparative 

importance of ΔG* and Ea. As an example, Figure 7.4 shows the variation of ΔG* as a function of 

either the effective interfacial energy α, or the supersaturation of the solution. The dotted lines 
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indicate the magnitude of Ea for comparison. The results show that at a supersaturation of 

IAP/Ksp=101.65, the thermodynamic energy barrier ΔG* is larger than Ea if the effective interfacial 

energy α is larger than 68 mJ/m2. Also, at a fixed α value of 47 mJ/m2, ΔG* exceeds Ea for 

supersaturations lower than IAP/Ksp = 100.9. The relative importance of kinetic and thermodynamic 

factors is thus revealed. 

 

 

Figure 7.4.  Comparison of kinetic energy barrier Ea with thermodynamic energy barrier ΔG* for 

heterogeneous nucleation of CaCO3 on quartz. Dotted lines are the level of Ea for comparison. Figure (a) 

is generated with a fixed IAP/Ksp=101.65 and varying α. Figure (b) is generated with a fixed α equal to 47 

mJ/m2 and varying IAP/Ksp=101.65. Calculations of ΔG* are based on Eq. 7.3. 

 

The quantification of Ea also facilitates further investigation of J0 for nucleation in the 

aqueous phase. For heterogeneous nucleation in the gaseous phase, it is reported that the J0 term 

is related to the impingent rate of monomers onto existing nuclei through either gaseous diffusion 

or surface diffusion, to the adsorption efficiency of monomers on nuclei, to the total nuclei surface 

area at critical size, and finally to the possibility of a critical nucleus to actually pass ΔG*. Drawing 

an analogy to heterogeneous nucleation in the aqueous phase, we propose that the apparent 

activation energy can be understood as a combined energy barrier from monomer diffusion in 



193 

 

solution, monomer diffusion on the surface, adsorption of monomers on the substrate, and 

adsorption of monomers on nuclei. 

 

7.5 Conclusions 

This study is the first attempt to quantify kinetic terms in the nucleation rate equation, i.e., 

A and Ea, in the equation  𝐽 = 𝐴exp(−
𝐸𝑎

𝑘𝑇
) exp (−

∆𝐺∗

𝑘𝑇
). The obtained apparent activation energy 

Ea is 45 ± 7 kJ/mol, and the pre-exponential factor A is 1012.0 ± 1.1 # of nuclei / μm2 of quartz 

substrate surface area / min, or 102.0 ± 1.3 mol of Ca2+ or CO3
2- consumed from fluid / m2 of quartz 

substrate surface area / min. The kinetic energy barrier Ea is associated with the series of reactions 

to incorporate a monomer into existing nuclei, and it is higher than the thermodynamic energy 

barrier ΔG* when interfacial energy α is lower than 68 mJ/m2, or when the supersaturation of the 

solution is higher than IAP/Ksp = 100.9 for the case of CaCO3 precipitation. With these parameters 

and information, further investigation of nucleation process using reactive transport modeling can 

be facilitated, and an improved understanding of the comparative kinetic and thermodynamic 

factors’ contributions to overall precipitation can be achieved.  
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Chapter 8: Conclusions and Future 

Directions  

8.1 Conclusions 

To better understand interactions between geomedia and fluids in subsurface 

environments, in this dissertation, Portland cement was used as a model geomedium. Chemical 

and mechanical alterations of cement, in which CaCO3 plays an important role as both a reactant 

and a product of related geochemical reactions, were characterized. Both experimental and 

modeling approaches were employed for this research, with a particular focus on CaCO3 formation 

for detailed analyses of CaCO3 nucleation. Experimental results on CaCO3 nucleation facilitated 

our modeling investigation, which further clarified the mechanisms in our experiments.    

 
Figure 8.1  Relations among Tasks and their implications. 

 

 

Task 1 focused on an experimental study of the chemical and mechanical alterations of 

wellbore cement under GCS conditions. Experiments were carried out in the presence and absence 
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of additional sulfate ions in the brine. Cement samples developed layer structures after CO2 attack. 

The CO2-attacked depth was 1220 μm for samples reacted without additional sulfate, resulting in 

a ~80% decrease of sample strength and elastic modulus. The weakened macroscale mechanical 

properties are mainly related to the microscale portlandite-depleted region in the cement samples. 

The CO2-attacked samples were also more ductile and had rougher fracture surfaces. In the 

presence of 0.05 M sulfate, the CO2 attacked thickness was only 800 μm, and the decrease of 

strength and elasticity were both ~50%. The mitigated CO2 attack on cement was due to the coating 

of gypsum and/or sorption of sulfate on the CaCO3 grains in the carbonated layer, reducing the 

dissolution rate of CaCO3.  Task 1 findings provide important insights into modeling and 

predicting wellbore integrity in energy-related subsurface operation.  

In Task 2, we further investigated the mechanisms of portlandite-depleted zone formation 

using the reactive transport modeling software, CrunchTope. By calibrating the model using 

experimental data, two geochemical mechanisms were critical to capture the experimentally 

observed reaction fronts: First, precipitation of secondary phases cannot fill the pore space 

completely, likely because of fractures or defects in the precipitation zone, or because insufficient 

CaCO3 precipitation in nanopores. This mechanism was incorporated into our continuum model 

using a “minimum porosity limit”, which scales down the secondary phase precipitation rate when 

the porosity reaches the minimum porosity limit. A minimum porosity of 1.5% enabled our model 

to predict the experimentally observed brine transport in cement, and it is also a reasonable porosity 

approximation in the fields. Second, secondary CaCO3 precipitation in brine, starting with its 

nucleation rate, is important. If CaCO3 precipitation in the brine is not considered, the model with 

closed boundaries predicts that the dissolution of the cement surface should stop when the brine is 

saturated with CaCO3. However, during experiments, continuous dissolution was observed at the 
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cement surface. This discrepancy suggests that the secondary phases in brine and in cement have 

different thermodynamics, such that the phases in cement can dissolve and re-precipitate in the 

brine. After the modeling code was updated with the nucleation rate law for a stable CaCO3 phase 

in the brine, the model accurately predicted the dissolution of the cement surface as observed in 

experiments. This task highlights the importance of including pore scale insights and nucleation 

in the overall model of a geochemical/geotechnical problem.  

Task 3 aimed at acquiring thermodynamic and kinetic parameters for CaCO3 nucleation, 

and elucidating the nucleation mechanisms. It is split into three sections: The first aims to compare 

mica and quartz as the nucleation substrates. The second section evaluates the effects of salinity, 

and the third quantifies the kinetic factors in the nucleation equation. Known thermodynamic 

parameters for calcite were used in calculations to avoid unnecessary complications with CaCO3 

phase transformation. While the absolute values will be shifted, the trends will be the same if 

parameters for other CaCO3 phases are used for calculation. Regarding substrate comparison, the 

interfacial energy for CaCO3 nucleation on mica was 41 ± 2 mJ/m2, lower than the energy of 47 ± 

1 mJ/m2 for nucleation on quartz. Correspondingly, the nuclei were smaller in the mica system, 

and the nucleation rates were faster than in the quartz system. Focusing on the quartz system, we 

found that the interfacial energy decreased with increasing salinity, from ~48 mJ/m2 in 0.15 and 

0.30 M salinities to ~35 mJ/m2 in 0.50 and 0.85 M salinities. Meanwhile, the kinetic factors A and 

Ea also changed such that the 𝐴exp(−
𝐸𝑎

𝑘𝑇
)  term in the nucleation rate equation, 𝐽 =

𝐴exp(−
𝐸𝑎

𝑘𝑇
) exp (−

∆𝐺∗

𝑘𝑇
), was lower at high salinities. The overall effects of high salinity were 

increased nucleation rates for a given supersaturation, decreased nucleus size, and shortened 

induction times. CaCO3 nucleation was further investigated at 0.15 M salinity over a temperature 
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range of 12–31 oC. The change of temperature did not appreciably affect nucleus sizes. From the 

calibration of GISAXS intensities with AFM images, Ea and A were calculated to be 45 kJ/mol 

and 102.0 ± 1.3 mol/m2/min, respectively.  These outcomes strengthened our understanding of 

nucleation and enabled reactive transport modeling to include the nucleation reaction, and 

important factor in improving model accuracy.  
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8.2 Recommended Future Directions 

Our new understanding and insights gained over the course of this research open the doors 

to broader and deeper studies on related topics. 

To elucidate interactions between geomedia and fluid, this study used cement as a model 

geomedium and CO2 saturated brine as the fluid. The system can be extended to include more 

geomedia, more complex solution compositions, or conditions other than those occurring during 

GCS. For example, the dissolution and precipitation reactions between naturally-present rocks and 

CO2-saturated brine can follow the same trend as in cement.174 During GCS operation, the CO2 

plume or CO2-saturated brine is pushed through formation rocks by the injection pressure. Under 

ideal operation conditions, CO2 mineralization should not happen near to the injection point, where 

it can block injection fluids, nor too far away, where it may not trap CO2 efficiently.40 In this case, 

holistic investigations of CO2 reactive transport through porous formation rock, using both 

experimental approaches to understand geochemical reactions and modeling approaches to predict 

larger scales and longer reaction times, can help estimate the CO2 mineralization locations and 

optimize CO2 injection parameters (e.g., tuning the injection rates and pressures and adjusting the 

chemical composition of injected fluid). Another key factor which needs to be examined is the 

reactivity of shales that act as a caprock to trap CO2. As a barrier for CO2 structural trapping, it is 

important to determine whether the fractures or open pores in shale can lead to CO2 leakage and 

whether CO2 can trigger precipitation to seal these shale fractures and pores. Previous studies have 

focused mostly on the dissolution of reactive minerals, such as carbonates, in shale matrices when 

exposed to acidic brine.277 However, the precipitation of carbonate and other minerals, which is 

expected to prevent CO2 leakage, has not been studied sufficiently, especially in real shales.278  
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In addition, further research is needed to strengthen the linkage between chemical reactions 

and mechanical changes. Results from Task 1 show that when geomedia have been altered 

chemically, their mechanical properties can also change, altering their tendency to fracture. The 

fracture geometries will also change accordingly, thus changing the reactive surface areas and fluid 

transport pathways. Therefore, when bridging chemical reactions and mechanical changes of 

geomedia, both the chemical-reaction-induced mechanical property changes and the aftermath of 

these mechanical property changes should be considered. Further investigations should focus on 

more tightly linking geochemistry and geomechanical alterations.  

Specific studies are recommended to more fully characterize the cement system. In Task 

2, we found that cement deterioration under GCS conditions can be mitigated by the formation of 

a thicker and less porous carbonated layer. Thus, we recommend that further studies determine 

which conditions promote stronger carbonated layers. For example, the brine composition can be 

tuned to inhibit the precipitation of stable forms of CaCO3, thus helping to prevent dissolution 

from the cement surface. Alternatively, the dissolution of the cement surface could be inhibited by 

adding a proper inhibitor in the solution. As a result, the carbonated layer in these systems is 

expected to be thicker and more protective. Findings in Task 2 also suggest that if CaCO3 

precipitation can fill more pore spaces, cement deterioration will be mitigated. Corresponding 

strategies include modifying the solid chemistry of cement pore walls to trigger CaCO3 

precipitation in nanopores, or modifying the mechanical properties of cement to hinder fracture 

formation. 

In terms of nucleation, we recommend further studies on nucleation in confined pore 

spaces, because Task 2 suggested that the CaCO3 phase formed in pores can have different 

solubility than that formed in a free space. We also recommend studies on the effects of organic 
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