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ABSTRACT OF THE DISSERTATION 
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in Emerging Model Organisms 

by 

Alan Lechuen Kwan 

Doctor of Philosophy in Computer Science 

Washington University in St. Louis, 2011 

Research Advisors: Dr. Gary D. Stormo and Dr. Susan K. Dutcher 

 
 
Cilia are evolutionarily conserved, complex, microtubule-based structures that 

protrude from many eukaryotic cells. In humans, cilia can be found on almost all 

cell types. The effect of abnormal or absent cilia has been established as the 

common underlying cause of a recently emerging class of genetic diseases 

collectively referred to as ciliopathies. The function and structure of cilia are 

conserved across all organisms with cilia. One of the most influential model 

systems used to study ciliopathies has been the ciliated green alga 

Chlamydomonas reinhardtii, an organism for which there is a sequenced genome 

with relatively few experimentally validated whole-gene annotations but in which 

the ciliogenesis process can be reliably induced. Experimental methods have been 

successful in identifying a handful of highly specific cilia disease genes in the 

alga, but high-throughput, automated computational analyses harbor the greatest 

potential to reveal a more comprehensive ciliopathy disease gene list. However, 
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in order for a genome to be informative for downstream computational analyses, 

it must first be accurately annotated. 

This dissertation focuses on accelerating the accurate annotation of the 

Chlamydomonas genome using whole-genome and whole-transcriptome 

methodologies to identify human ciliopathy genes. Towards this end, we first 

develop a genefinder training method for Chlamydomonas that does not require 

whole gene annotations and demonstrate that this traning method results in a 

more accurate genefinder than any other genefinder for this alga. Next, we 

develop a new automated protein characterization method that facilitates the 

transfer of information across different protein families by extending simple 

homology categorization to identify new cilia gene candidates. Finally we perform 

and analyze high-throughput whole-transcriptome sequencing of 

Chlamydomonas at various timepoints during ciliogenesis to identify ~300 novel 

human ciliopathy gene candidates. Together these three methodologies 

complement each other and the existing literature to better elucidate a more 

complete and informative cilia gene catalog. 
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Chapter 1 

Introduction 

1.1 Motivation for this research 

Computational methods have been essential to extracting information 

from DNA sequences since the invention of sequencing methods in 1977. 

Emerging and future sequencing technologies are making the digitization of new 

genomes ever more accessible to researchers and clinicians (PETTERSSON et al. 

2009). A new genome must first be accurately annotated before it is informative 

in downstream computational analyses. Current and emerging sequencing 

technologies output sequence data at an economy and volume that far outpaces 

the rate at which reliable annotation of sequence data can take place. If the 

growing disparity between the rates of sequencing and annotation is left 

unaddressed, then the output of ever more efficient and precise sequencing 

technologies will result only in a vast, accurate collection of unusable genome 

sequence data. The annotation of a genome spans the central dogma of molecular 

biology beginning at the identification of genes embedded in the genomic DNA, 

to individual protein characterization, through to how proteins function together 
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in protein interaction networks. In addition, recent innovations that capitalize on 

high-throughput sequencing technology have made it possible to capture the 

sequences of all the genes being used by an organism under a condition of 

interest. High-throughput, whole-transcriptome sequencing methods are potent 

tools for genome annotation because they can provide direct evidence of genes 

that are used by the organism that can, in turn, be used to better inform 

automated gene identification methods. 

The main objective of this dissertation is to accelerate the accurate 

annotation of novel and existing sequence data. In particular, this work focuses 

on accelerating the accurate annotation of the Chlamydomonas genome to 

identify human genes underlying a recently emerging class of genetic diseases 

referred to collectively as ciliopathies. The etiology of ciliopathies has been 

attributed to the dysfunction, malformation or absence of cilia, which are 

complex organelles protruding from virtually all cell types in the human body 

(FLIEGAUF et al. 2007; TOBIN and BEALES 2009). Cilia are evolutionarily 

conserved, complex, microtubule-based structures that protrude from many 

eukaryotic cells. The function and structure of cilia are conserved across all 

organisms with cilia. One of the most influential model systems used to study 

ciliopathies has been the ciliated green alga Chlamydomonas reinhardtii, an 

organism for which there is a sequenced genome with relatively few 

experimentally validated whole-gene annotations, but in which the ciliogenesis 

process can be reliably induced. Experimental methods have been successful in 

identifying a handful of highly specific cilia disease genes in the alga, but high-
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throughput, automated computational analyses harbor the greatest potential to 

reveal a more comprehensive ciliopathy disease gene list.  

In this dissertation, we first develop a genefinder training method for 

Chlamydomonas that does not require whole gene annotations and demonstrate 

that this training method results in a more accurate genefinder than any other 

genefinder for this alga. Next, we develop a new automated protein 

characterization method that facilitates the transfer of information across 

different protein families by extending simple homology categorization to 

identify new cilia gene candidates. Finally we perform and analyze high-

throughput whole-transcriptome sequencing of Chlamydomonas at various 

timepoints during ciliogenesis to identify ~300 novel human ciliopathy gene 

candidates. Together these three methodologies complement each other and the 

existing literature to better elucidate a more complete and informative cilia gene 

catalog. 

 

1.2 Specific problems addressed 

1.2.1 Inadequate numbers of verified genes for effective genefinder 

training 

Annotation of a genomic sequence begins with determining the most 

complete set of accurate gene models. The completeness and accuracy of 

computational methods developed for genefinding rely on a comprehensive 

model of gene structure in the genomic sequence and the effective determination 
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of parameter values for that model based on a representative training set of 

known gene annotations. The variation of internal gene structure models has 

decreased dramatically as biological understanding of coding sequence 

architecture has matured. However, the existence of an adequate, representative 

set of experimentally based gene annotations on which to train parameter values 

is limited to a very small set of widely studied organisms. The ability and 

relevance of existing and future genefinding methods to accurately predict coding 

genes in less well annotated genomes will be severely limited without a reliable 

training set data source. One abundant source of experimental coding gene 

sequence data that exists in some abundance for almost all sequenced organisms 

is in the form of Expressed Sequence Tags (ESTs). While multiple ESTs represent 

a complete coding gene, individual ESTs cannot be directly used as training data 

for de novo genefinders. Thus, this part of the research focuses on: 

i. The development of a novel genefinder training protocol using gene 

fragments exclusively. 

ii. The application of this novel approach to train an existing genefinding 

method onto the Chlamydomonas reinhardtii genome. 

iii. The performance evaluation of this training method by comparing the 

predictive accuracy of the newly trained genefinder compared to the 

traditional training method using available Chlamydomonas gene 

annotations. 

iv. Experimental validation of novel predictions that result from the novel 

training method. 
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1.2.2 The limits of sharing protein information within a protein family 

The automated characterization of novel genes and proteins has relied almost 

exclusively on sequence similarity, or “homology”. The basis of such methods is 

that similar sequences will fold into similar functional conformations. 

Consequently, proteins can be grouped into families of similar sequences and 

knowledge about one member is extended throughout the family. The extent of 

characterization in this manner is thus dependent on the existence of knowledge 

about at least one protein in every protein family. Consequently, a large 

proportion of protein families remain uncharacterized beyond sequence 

similarity. An alternative approach organizes proteins by a phylogenetic profile 

comparison (PPC), or pattern of conservation. Due to their relative abundance, 

accessibility and size, bacterial genomes have been the main focus for most 

existing phylogenetic profile comparison methods, while the development of PPC 

methods for eukaryotic species remains largely unexplored. Hence, this part of 

the research addresses: 

i. Development of a PPC method for eukaryotes scalable to the number of 

predicted eukaryotic proteomes that are and will become available. 

ii. Incorporation of a weighting scheme that compensates for phylogenetic 

bias that is internally consistent with the sequence data. 

iii. Validation of predicted characterizations in existing literature and 

resources. 
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1.2.3 Repurposing high-throughput sequencing for gene annotation of 

emerging organisms 

Previous work has leveraged the fact that transcript abundance of many genes 

encoding known cilia components are greatly amplified in Chlamydomonas 

during ciliogenesis (LEFEBVRE and ROSENBAUM 1986). Chlamydomonas is a 

unicellular, green alga with genetics similar to yeast but for two cilia that are 

practically identical to cilia found in humans. Chlamydomonas is an ideal model 

organism for transcript abundance based cilia gene detection because ciliogenesis 

can be induced by pH-shock. When environmental pH is precipitously dropped, 

Chlamydomonas cells shed their cilia and ciliogenesis begins immediately once 

environmental pH is restored. The specific transcriptional induction of genes 

encoding many known cilia components during ciliogenesis have been widely 

reported and further underscore the efficacy and potential advantages of using 

Chlamydomonas as a model organism to study cilia and ciliogenesis. Predicted 

cilia genes are often validated by testing for up-regulation by quantitative 

expression assays 30 minutes into ciliogenesis Chlamydomonas (LI et al. 2004; 

PAZOUR et al. 2005; STOLC et al. 2005). While there is evidence that many genes 

involved in cilia do show some up-regulation, it is unclear how many false 

negatives result from expression testing at this timepoint alone. Moreover, the 

regulation program of cilia genes during ciliogenesis is not well understood. 

High-throughput transcriptome sequencing of Chlamydomonas at various 

timepoints during ciliogenesis will help us better understand these and other 
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factors necessary for proper functioning cilia. Thus, in this part of the 

dissertation we: 

i. Perform high-throughput sequencing of the Chlamydomonas 

reinhardtii transcriptome at various timepoints during ciliogenesis. 

ii. Evaluate the sensitivity and specificity of our high-throughput 

sequencing expression data with qRT-PCR 

iii. Determine whether the de facto validation timepoint for up-regulation 

is correct by peak expression analysis. 

iv. Investigate whether there is an early ciliogenesis gene regulation 

program. 

v. Identify novel cilia gene candidates and potential, novel human 

ciliopathy genes. 

 

 

1.3 Dissertation Layout 

This dissertation is laid out as follows: Chapter 1 provides the motivation 

for, and a brief description of, each of the projects that make up this dissertation. 

Chapter 2 provides a brief introduction to molecular biology with a focus on 

aspects that are relevant to each of the projects that make up this dissertation. 

Chapters 3-5 are the independent projects. Chapters 3 and 4 are published and 

Chapter 5 is being submitted. Chapter 6 contains concluding remarks and future 

directions.  
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Chapter 2 

 

Background and Significance 

2.1 Molecular Biology Primer 

A eukaryotic genome is made up of deoxyribonucleic acid (DNA) 

molecules, organized into multiple, linear chromosomes that reside in the 

nucleus. DNA is a polymer of nucleotides, a nucleic acid base (or base) bound to a 

phosphate-deoxyribose sugar group. In a living cell, DNA typically exists as two 

tightly coupled molecules in a double helix held together by hydrogen bonds 

between the internally oriented bases. There are four canonical bases that make 

up the alphabet underlying the language and grammar encoding all information 

necessary for the creation and maintenance of life: they are adenine (A), cytosine 

(C), guanine (G) and thymine (T) and when two DNA molecules interact, such as 

in a double helix, A pairs with T and C pairs with G.  
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Perhaps the most obvious elements encoded in DNA are the protein-

coding genes, which are regions of the genome that are ultimately translated into 

functional proteins that perform the life giving functions necessary for the 

survival of an organism. Genes have many features that are recognized by DNA 

interacting cellular machinery, which include promoters, exons, introns and 

flanking untranslated regions that are essential for different regulatory 

mechanisms. Protein coding genes were among the first elements to be targeted 

for computational analysis because their characteristic features must necessarily 

be distinguishable from the surrounding DNA sequence in which they are 

embedded. Genefinders are machine learning methods that recognize gene 

features by training parameter values using known genes to predict the locations 

and structures of new genes as gene models. When genefinders are applied to 

entire genomes, the output is a predicted gene catalog. Genefinders have 

successfully annotated the genomes of species that have a comprehensive and 

representative training set of genes. 

The process by which a protein coding gene is expressed involves many 

steps that can be grouped into two processes: transcription and translation. 

Transcription of a gene into a primary transcript of ribonucleic acid (RNA) begins 

with the binding of transcription factors that recruit the transcriptional 

machinery to a region located before the start site of the protein coding region of 

the gene. RNA is a nucleic acid like DNA except the sugar group is a ribose and 

RNA contains the base uracil (U) in lieu of thymine (T). The product of 

transcription is a primary transcript of the desired gene. The primary transcript  
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codon and link those amino acids in the order they are indicated to synthesize the 

protein product of the gene.  

The amino acids of a protein interact and fold the polymer on itself in a 

process called protein folding. Achieving the correct final conformation, or shape, 

is critical for the proper function of any protein. The sequence of a protein 

determines the order and proximity of the 20 different amino acids, which 

dictates the folding dynamics of the polymer. Thus the sequence determines the 

final conformation and efficacy of a protein. Multiple proteins interact and 

function in concert as complexes or in pathways on substrates to bring about the 

desired effects and the traits biologists observe as phenotypes. 

 

2.2 Basic gene selection theory 

Basic gene selection theory formulates the evolution of genes and genomes 

as functions over time driven by spontaneous changes on the gene and genome 

levels, which are checked by the various mechanisms of natural selection for the 

most advantageous complement of genes. The evolution of protein-coding genes 

may result from a single base change at a single position, or the insertion or 

deletion of an entire gene feature. If the event impacts the intended protein 

function, it will be acted upon by selective pressure and selected for or against 

depending on whether the change in function is deleterious or confers an 

advantage to the mutation-carrying organism (NEI et al. 2010). 



12 

 

Evolutionary events on the genome level may span entire genome 

duplications, select chromosome duplications or deletions and duplications or 

deletions of large contiguous DNA fragments along with all the genes they 

encode. Duplication events at this scale result in extra copies of genes and 

transcription promoting elements in a species that is perfectly viable with a single 

copy. Organisms with the excess protein product that results from extra copies of 

some genes will be selected for or against. Duplicated genes that result in excess 

proteins that are neither beneficial nor deleterious will be propagated to 

subsequent generations, free from the effects of selective pressure. Over time, the 

extra gene copies may go on to accumulate gene level mutations that result in the 

loss of the original function or gain of new functions that are themselves acted 

upon by selective pressure. If a new function confers an adequate advantage to 

the carrying organism, the mutated copy will eventually become fixed in the 

species population (NEI et al. 2010). 

 

2.3 Sequence similarity and protein function 

The transcription and translation processes entail that genes with similar 

sequences will be translated into proteins with similar sequences. Moreover, the 

relationship between protein sequence, structure and function implies that 

similar proteins will fold into similar conformations and are likely to perform 

similar functions and have similar characteristics. Indeed, one of the most 

successful and widely used computational methods in biology is designed 
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specifically to quantify the degree of similarity between input sequences to 

inform further analysis. Proteins and genes that have significantly similar 

sequences are homologs and their sequences are homologous. 

Basic gene selection theory entails that there be two classes of homologous 

sequences. Orthologs are genes from two different species that share a common 

ancestral gene that existed as a single copy prior to the speciation event giving 

rise to the two species. So, orthologs are presumed to perform similar functions 

because they have presumably been subject to similar selective pressures. 

Paralogs are genes that evolve from separate, duplicate ancestral genes in a 

common ancestral species. As such, paralogs likely do not perform similar 

functions because while one preserves the original function, the other copy is free 

to evolve and thus be subject to different selective pressures.  

 

2.4 The study of human ciliopathies using the model 

organism Chlamydomonas reinhardtii 

Cilia are evolutionarily conserved, complex structures that protrude from 

most eukaryotic cells. These organelles are important components of a variety of 

signaling cascades including the canonical Wnt/β-catenin pathway 

(WALLINGFORD and MITCHELL 2011), the non-canonical Wnt/planar cell polarity 

(PCP) pathway (WALLINGFORD and MITCHELL 2011) and the sonic Hedgehog 

signaling (Shh) pathway (MURDOCH and COPP 2010). Cilia can be further divided 
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into primary cilia or motile cilia (FLIEGAUF et al. 2007). Primary cilia do not 

impart motion into the extracellular environment and act as thermo-, mechano- 

and chemosensory organelles (FLIEGAUF et al. 2007). Motile cilia actively move in 

the extracellular space and are responsible for transporting extracellular fluids or 

bodies over the surface of the cell like mucous in the respiratory tract or ova 

through the fallopian tubes. Motile cilia are also responsible for cell motility, as in 

the case of human spermatozoa. Defects in cilia can result in a wide array of 

developmental and physiological abnormalities. Cystic kidneys and liver disease 

are the most common clinical features of ciliopathies (TOBIN and BEALES 2009). 

Another common feature is a reversal in organ laterality (e.g. heart and stomach 

on right side, liver on the left side; situs inversus). Extra digits on the hands 

and/or feet (i.e. polydactyly), agenesis of the corpus callosum (i.e. failure to 

develop the component of the brain that connects the left and right hemispheres) 

and mental retardation often manifest together (FLIEGAUF et al. 2007; TOBIN and 

BEALES 2009). Other symptoms include retinal degeneration that ultimately 

results in blindness, abnormal brain development resulting in a brain that 

protrudes through the skull and death, infertility, chronic ear and airway 

infections, obesity and hypogenitalism, among others (FLIEGAUF et al. 2007; 

TOBIN and BEALES 2009). The growing list of recognized ciliopathies currently 

includes Bardet-Biedl syndrome (BBS), Meckel syndrome (MKS), Joubert 

syndrome (JBTS), Nephrophthisis (NPHP), Senior-Løken syndrome (SLSN), 

Jeune syndrome (JATD), Oro-facial-digital syndrome type 1 (OFD1), Ellis van 

Creveld syndrome (EVC), Alström syndrome (ALMS), primary ciliary dyskinesia 

(PCD; Kartageners Syndrome), polycystic kidney disease (PKD) and Cancer 
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(FLIEGAUF et al. 2007; TOBIN and BEALES 2009). Furthermore, aberrations in cilia 

disease gene orthologs tend to result in multisystemic abnormalities in multiple 

organisms and indicate a conserved, pervasive reliance of many physiological and 

developmental processes on the proper synthesis and function of cilia (TOBIN and 

BEALES 2009). Consequently, the identification, characterization and implication 

of human ciliopathy disease genes have greatly benefited from their study in 

model organisms (FLIEGAUF et al. 2007; TOBIN and BEALES 2009). One of the 

most influential model organisms for the study of ciliopathy disease genes is 

Chlamydomonas reinhardtii (FLIEGAUF et al. 2007), an organism in which 

ciliogenesis is readily induced.  

Transcript abundance of most genes encoding known cilia components are 

greatly amplified in Chlamydomonas during ciliogenesis (STOLC et al. 2005). 

Chlamydomonas is a unicellular, green alga with genetics similar to yeast but for 

two cilia that are virtually identical to cilia found in Human. Chlamydomonas is 

an ideal model organism for transcript abundance based cilia gene detection 

because ciliogenesis can be induced by pH-shock. When environmental pH is 

precipitously dropped, Chlamydomonas cells shed their cilia and ciliogenesis 

begins immediately once environmental pH is restored. The specific 

transcriptional induction of genes encoding many known cilia components 

during ciliogenesis have been widely reported and further underscore the efficacy 

and potential advantages of using Chlamydomonas as a model organism to study 

cilia and ciliogenesis (LI et al. 2004; PAZOUR and WITMAN 2009; STOLC et al. 

2005). A variety of methodologies have been successfully used to determine the 
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Chlamydomonas ciliome, including direct proteomic analysis (PAZOUR et al. 

2005), comparative genomics (LI et al. 2004; MERCHANT et al. 2007) and 

microarrays (STOLC et al. 2005). Currently, between Chlamydomonas and other 

cilia model organisms, there are more than 650 genes models that have either 

experimental evidence of cilia or ciliogenesis involvement or that have 

predictions suggesting some cilia association (FLIEGAUF et al. 2007). 

 

2.5 Accelerating accurate automated annotation 

The yeast-like characteristics of Chlamydomonas genetics implies many 

advantages to using the green alga as a model system to study cilia and 

ciliopathies. However, relative to the yeast genome, the Chlamydomonas genome 

sequence is poorly annotated. Furthermore, as sequencing technologies continue 

to advance and drive down the costs of genome digitization, the annotation state 

of the Chlamydomonas genome is less an exception and increasingly the norm 

(VARSHNEY et al. 2010). Although experimental methods have been successful in 

identifying a handful of highly specific cilia disease genes in Chlamydomonas, it 

is high-throughput computational studies that harbor the greatest potential to 

rapidly elucidate a more comprehensive ciliopathy disease gene catalog, methods 

which depend on the availability of an accurately annotated genome.  

Existing computational genome and proteome annotation methods rely 

heavily on direct experimental evidence to determine and characterize genes and 
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proteins in organisms of interest. Genefinders require whole-gene annotations to 

train statistical parameters. When there are inadequate numbers of 

experimentally determined whole-gene annotations, research communities either 

delay automated genefinding until more experimentally determined whole gene 

annotations become available, or use parameters trained from some other 

species. Protein characterization is the next step in the annotation process. 

Existing automated protein characterization methods confine novel information 

about protein function within protein families of adequately similar sequences. 

The extent of automated protein characterization made possible by such methods 

is largely dependent on existing knowledge about at least one member of every 

protein family. In the case where a protein of interest belongs to a poorly or 

uncharacterized protein family, the researcher cannot infer any more information 

from the entire protein annotation database.  

Aside from sequencing whole genomes, high-throughput sequencing 

methodologies can also be used to quantify transcriptome changes in an 

organism under conditions of interest. Chlamydomonas undergoes ciliogenesis 

following pH-shock by greatly up-regulating transcript abundance of cilia genes 

(LEFEBVRE and ROSENBAUM 1986). High-throughput sequencing of the 

Chlamydomonas transcriptome would provide transcriptome-wide evidence of 

genes in the predicted catalog. High-throughput whole-transcriptome sequencing 

of Chlamydomonas during ciliogenesis would potentially reveal novel cilia 

association for genes that have no prior evidence of cilia involvement. 

Furthermore, sequencing of the transcriptome at successive timepoints would 
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facilitate time-series analysis of cilia genes, possibly revealing a ciliogenesis 

regulation program that would begin to forward our understanding not only of 

genes involved in cilia assembly, but their interactions and expression control. 

The objective of this work is threefold. First, it develops and validates a 

computational strategy to train genefinders for annotation poor genomes using 

fragments of expressed genes. Second, this work develops and validates a novel 

computational method that facilitates the transfer of protein characterization 

information between dissimilar protein sequences. Finally, this work will analyze 

time-series transcriptome data of Chlamydomonas during induced ciliogenesis to 

identify new human ciliopathy gene candidates and determine whether there is a 

ciliogenesis gene regulation program that co-ordinates the proper assembly of 

cilia. 

 

2.5.1 An effective genefinder training method for emerging model 

organisms 

By analyzing the sequence composition of known genes, computational 

tools can be trained to recognize characteristic differences between coding and 

non-coding genomic sequence. Genefinders are computational methods that take 

a genomic sequence as input and outputs positions of the input sequence that are 

predicted to be boundaries of modeled gene features like exons, introns and 

untranslated regions (UTRs). The most widely available genefinders model gene 

structure using a generative statistical model called generalized Hidden Markov 
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models (gHMM). Typically, given a model of a gene structure that is 

parameterized by different gene features, a gHMM genefinder will fit values for 

model parameters based on observed characteristics of features in a set of high-

confidence training gene models. Then, for a given genomic sequence, the 

genefinder will define gene feature boundaries based on the internal gene model 

and parameter values determined during the training phase.  

In order to predict an accurate and complete catalog of gene models, 

genefinders must be trained on a large, representative set of experimentally 

supported gene annotations from the target species. Large repositories of whole-

gene annotations are available for some species, but the vast majority remains 

annotation poor. While genefinders trained on gene models from one species can 

be used to predict gene models in other species, it is found that the accuracy 

suffers compared to models trained on genes from the same species (LI et al. 

2003).  

The number of available whole-gene annotations is far outnumbered by 

expressed sequence tag (EST) data. Libraries of ESTs are made up of sequence 

fragments templated by the mRNA of expressed genes from organisms under 

different environmental condition (e.g. stress, mating) or tissues (PARKINSON and 

BLAXTER 2009; VARSHNEY et al. 2010). Many organisms with few whole-gene 

annotations have sizable collections of ESTs because gene fragment libraries can 

be constructed from any organism that can be sequenced (PARKINSON and 

BLAXTER 2009). Chlamydomonas, for example, had 156 whole-gene annotations, 

but more than 165,000 ESTs at the time this work was conducted. The 
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incorporation of EST data into the genefinding process has been noted to have a 

positive effect on accuracy and has been used to successfully identify alternative 

protein products from the same gene, a result of alternative splicing of 

transcribed RNA (PARKINSON and BLAXTER 2009; WEI and BRENT 2006). 

However, there has been no report or evaluation of a genefinder trained solely on 

gene fragments, the most abundant coding sequence source available.  

The greatest implication of an effective training protocol that is based 

exclusively on gene fragments is that it would expand the application space of 

automated genefinders to any species with a genome that can be sequenced. 

Furthermore, the main limitations of direct proteomic and whole transcriptome 

sequencing alternatives, in the cases where these methods are economically 

feasible, are that they depend on minimum protein levels or transcript 

abundance, which vary between different environments and conditions. 

Consequently, in order to identify a complete gene set, the exclusive use of these 

methods would require measurements from a wide variety of environmental and 

developmental conditions, to ensure that all transcribed regions have been 

included. One of great advantage of including genefinders into the annotation 

process is that their performance and reliability are not sensitive to protein 

abundance, transcript abundance or untested environmental conditions. 

Therefore, accurate genefinders are complementary to high-throughput, whole-

transcriptome sequencing applications of next-generation sequencing 

technologies and to direct proteomic methods in defining a more complete and 

accurate gene catalog for a given species of interest. Hence, the implementation 
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and validation of a novel strategy to leverage gene fragment data for training the 

genefinder GreenGenie2 make up the first objective in this research and is 

presented in Chapter 3.  

 

2.5.2 Detecting co-evolution of proteins for automated protein 

annotation 

Predicted gene models can be conceptually translated using the genetic 

code that equates codons to unique amino acids. Presently, automation of protein 

characterization is largely limited to transferring existing knowledge between 

protein homologs. Implications of protein sequence similarity and functional 

similarity lead to homology based organization of proteins into protein families. 

Knowledge about one family member is presumed to be transferable to all other 

members. The extent of characterization made possible by this method depends 

on the number of families for which there is characterization data on at least one 

member of that family. The homology method of automatic annotation does not 

facilitate the transfer of information between dissimilar sequence families. As a 

result, a large proportion of protein families remain uncharacterized beyond 

sequence similarity.  

Proteins function in pathways or bind together and form complexes to 

bring about traits and so rarely act alone. In order for a trait to be conserved 

through evolution, co-operating proteins that are responsible for the trait need to 

maintain functional compatibility. The phylogenetic profile comparison (PPC) 
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class of automated protein characterization methods organizes proteins by their 

patterns of occurrence across divergent proteomes. PPC methods operate on the 

premise that patterns of protein occurrence across diverse species sets evidence 

instances of protein co-evolution and that a common pattern is indicative of an 

interaction. The greater the diversity and number of species included in the 

analysis, the more specific the occurrence patterns become. The occurrence 

profile of a protein depends on the completeness and accuracy of the protein 

catalog for each species included in the analysis. These two observations further 

underscore the importance of expanding the application space of accurate 

automated genefinders (Chapter 3). 

Phylogenetic profile comparison methods are based on the premise that 

there is strong selective pressure for proteins that functionally interact to be 

inherited together through speciation events. Early phylogenetic profiling 

annotation methods rely exclusively on sequence similarity when determining a 

bit vector of occurrence across different reference species as determined by a 

static cutoff E-value (ANANTHARAMAN and ARAVIND 2003; KARIMPOUR-FARD et al. 

2007; PELLEGRINI et al. 1999; SUN et al. 2005). More advanced algorithms 

extended early methods by using real-valued vectors to capture more of the 

continuous nature of sequence similarity scores across multiple species and to 

correct for evolutionary bias in sequence similarity (JOTHI et al. 2007). Real-

values are computed by normalizing raw similarity scores by imposing the branch 

lengths of some phylogenetic tree external onto the input data, biasing 

normalized scores towards the external tree. Many existing trees are derived from 
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single proteins or computational concatenation of multiple proteins into 

superproteins that are then aligned for a relative measure of evolutionary 

distance, further removing them from biological reality (ROGER and HUG 2006). 

Typically, after similarity scores have been normalized with respect to a 

phylogeny, clustering of proteins based on their normalized profiles is performed 

by profile comparison methods such as Hamming distance (PELLEGRINI et al. 

1999),  a measure of correlation (KARIMPOUR-FARD et al. 2007) or some measure 

of mutual information . The Hamming distance measure assumes sustained 

protein loss and gain as equally likely events in evolution, which is inconsistent 

with existing knowledge of eukaryotic evolution (ARAVIND et al. 2000). Mutual 

information comparison methods introduce parameters that are computationally 

and statistically convenient but have little if any biological basis (BARKER et al. 

2007). Existing methods further assume that all proteomes are complete and 

correct. In reality, most eukaryotic protein catalogs are incomplete and contain 

some number of proteins that are not real or are mispredicted. Incomplete data 

confounds any attempt at reliably determining the presence or absence of a given 

protein in a given proteome and introduces noise into subsequent phases of 

existing methods. Ultimately, existing methods continue to rely on inference 

through direct homology, which exclude them from novel protein function 

discovery (JIANG). Thus, there is a need to develop a novel method that can help 

characterize knowledge poor protein families in eukaryotes by inferring 

information from other families based on patterns of co-occurrence, referred to 

as APACE, which is the second objective of this research and will be discussed in 

Chapter 4. 



24 

 

2.5.3 High-throughput transcriptome sequencing of Chlamydomonas 

identifies new ciliopathy disease gene candidates 

Transcript abundance of most genes encoding known cilia components are 

greatly amplified in Chlamydomonas during ciliogenesis (LEFEBVRE and 

ROSENBAUM 1986; STOLC et al. 2005). Chlamydomonas is a unicellular, green 

alga with genetics similar to yeast but for two cilia that are practically identical to 

cilia found in humans. Chlamydomonas is an ideal model organism for transcript 

abundance based cilia gene detection because ciliogenesis can be induced by pH-

shock. When environmental pH is precipitously dropped, Chlamydomonas cells 

shed their cilia and ciliogenesis begins immediately once environmental pH is 

restored. The specific transcriptional induction of genes encoding many known 

cilia components during ciliogenesis in Chlamydomonas have been widely 

reported and further underscore the efficacy and potential advantages of using 

this alga as a model organism to study cilia and ciliogenesis. High-throughput 

sequencing of the Chlamydomonas transcriptome at various timepoints during 

ciliogenesis would complement existing direct proteomic results (PAZOUR et al. 

2005) because such a study would probe the entire transcriptome during 

ciliogenesis as a whole, facilitating not only the detection of genes that encode 

products inherent in the mature cilium, but also the genes that, while not 

intrinsic to the mature organelle, are essential for the initiation and regulation of 

ciliogenesis and cilia function. This methodology would also complement existing 

comparative genomics methods that have been applied to defining the complete 

cilia gene catalog. Comparative genomics methods must discard genes that have 
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an adequate degree of conservation in a non-ciliated species, a necessary practice 

to reduce the number of false positive genes that are conserved across ciliated 

species to conserve related traits or processes that are not specific to cilia (e.g. 

transcription or mitosis). Whole-transcriptome next-generation sequencing does 

not depend on gene conservation patterns and will compliment comparative 

genomics methods because of its capacity to include genes that are conserved in 

non-ciliated organisms, but remain essential for proper cilia biogenesis, structure 

and function (e.g. tubulins and kinesins). In Chapter 5, we utilize the recently 

updated Chlamydomonas genome assembly (v4) and gene models predicted on 

that assembly by the GreenGenie2 Chlamydomonas genefinder to present results 

of the first whole-transcriptome next-generation sequencing of Chlamydomonas 

reinhardtii during ciliogenesis.  
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Chapter 3 

An effective genefinder training method for 

emerging model organisms 

Note: Results in this chapter are published in Kwan AL, Li L, Kulp DC, Dutcher SK, Stormo GD: 

Improving Genefinding in Chlamydomonas reinhardtii: GreenGenie2. BMC Genomics 

2009, 10:210. 

 

3.1 Introduction 

A complete genome sequence facilitates the identification of all the genes 

in an organism and helps determine the set of functions encoded by those genes 

as well as the regulation of their expression.  The identification of protein-coding 

genes can be approached both experimentally and computationally and the 

combination of approaches leads to the most complete catalog of genes (HAAS et 

al. 2003).  Expressed sequence tags (ESTs) provide experimental evidence for the 
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transcription of specific regions of the genome and significant similarity with 

known proteins in other organisms also provides evidence for the existence of a 

gene.  However, both approaches have limitations that often preclude them from 

identifying the complete gene set.  The exclusive use of the former would require 

a very large library of ESTs, obtained from a wide variety of environmental and 

developmental conditions, to ensure that all transcribed regions have been 

included.  Identification based on homology will fail to identify genes that are 

novel to a particular species, or that are sufficiently diverged to make detection 

unreliable.  ab initio genefinders provide a complementary gene identification 

method by predicting gene models based on the statistical characteristics of a 

representative set of protein-coding genes from the genome of interest.  

Research using the unicellular green alga, Chlamydomonas reinhardtii, 

has provided important insights into many cellular processes that include cilia 

assembly and motility, basal body assembly and positioning, phototaxis, 

gametogenesis and fertilization, circadian rhythms, photosynthesis, starch 

metabolism, and cell wall assembly (BALL and DESCHAMPS 2009; DUTCHER 2009; 

HEGEMANN and BERTHOD 2009; PAZOUR and WITMAN 2009; ROCHAIX 2009; 

SNELL and GOODENOUGH 2009) .  Chlamydomonas is amenable to genetic 

analysis using classical techniques of tetrad analysis and complementation as 

well as molecular techniques of transformation and RNA interference (HARRIS 

2009).   

The current catalog of genes for Chlamydomonas reinhardtii is based on a 

combination of experimental and computational approaches (MERCHANT et al. 

2007) where 44% of the 15,143 models in the catalog are derived from ab initio 
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methods and the remainder use various evidence including similarity in other 

organisms and manual annotation.  The inclusion of multiple ab initio 

genefinders gives rise to complementary predictions by providing alternative 

models that can be used for experimental validation and may lead to the 

determination of true gene structures.  Taken together, multiple methods may 

yield multiple correct predictions for genes with multiple alternate splice variants 

and a complementing genefinder can also provide complete models for genes that 

are incomplete within an existing catalog and predict novel genes.   

Ab initio genefinders employ models that capture the essential features of 

gene structure that include sequence characteristics that distinguish exons and 

introns that include codon bias and feature length distributions as well as signal 

sequences that correspond to the splice sites that separate them (BRENT 2007; 

STORMO 2000).  Generalized hidden Markov models (gHMMs) are commonly 

used because gene structure can be represented in a probabilistic framework.  

Given a particular model of gene structure, the quality of predictions depends on 

the specific values assigned to the model parameters.  Because these model 

parameters, such as codon bias and splice site patterns, vary between species, 

training a genefinder on a representative set of example genes from the target 

species is closely related to the accuracy of the resulting predictions.  The original 

GreenGenie (LI et al. 2003) is a version of the Genie genefinder (KULP 2003) that 

was optimized for the prediction of genes in Chlamydomonas.  The parameters 

for GreenGenie were obtained by training on only 71 genes with experimentally 

determined structure.  GreenGenie provided more accurate predictions than 

other programs available at the time; it predicted 86 genes within 81Kb and 
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443Kb regions of Chlamydomonas genomic sequence and we extrapolated that 

number to predict between 12,215 and 16,414 genes in the Chlamydomonas 

genome.  This prediction was recently corroborated (MERCHANT et al. 2007).  

GreenGenie facilitated gene identification in Chlamydomonas by many groups 

(DYMEK et al. 2004; MURAKAMI et al. 2005; WIRSCHELL et al. 2004).   

To improve the quality of gene prediction in Chlamydomonas, we used the 

EST assembly tool, Program to Assemble Spliced Alignments (PASA) (HAAS et al. 

2003), to assemble 167,613 Chlamydomonas EST sequences into protein coding 

gene models and trained the most recent version of the Genie ab initio genefinder 

(KULP 2003) on this larger set of Chlamydomonas gene models.  The PASA 

pipeline begins by filtering and aligning input EST sequences onto a genome 

assembly.  These ESTs alignments are then filtered further and clustered based 

on alignment compatibility.  Finally, through a dynamic programming process, 

the EST alignment clusters are stitched into a set of consistent, non-overlapping 

EST assemblies (HAAS et al. 2003).  PASA has been used for gene prediction in 

Arabidopsis thaliana (HAAS et al. 2003), Drosophila melanogaster and Homo 

sapiens (KENT et al. 2002).  This larger training set improves the predictions 

made by the program, now called GreenGenie2, as determined on a set of 140 

well-characterized Chlamydomonas genes that were not included in the training 

set and outperforms the most current published genefinder trained for 

Chlamydomonas.  Importantly, GreenGenie2 complements the existing 

Chlamydomonas gene catalog (MERCHANT et al. 2007) by completing incomplete 

models and predicting new genes that were not previously identified. 
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3.2 Results 

3.2.1 Constructing and evaluating a training-set of gene predictions 

from ESTs 

PASA aligned 167,641 high-quality Chlamydomonas EST sequences onto 

the published genome assembly of Chlamydomonas, which is called v3, and 

assembled those alignments into 19,707 unique models.  The set of PASA 

assembled models to be used for training were selected based on three criteria.  

First, the model must be complete; it must begin with an ATG codon and 

terminate with a stop codon (TAA, TAG or TGA).  Second, the assembly must 

have a minimum open reading frame length of 270bp.  Third, the PASA model 

must lack similarity to the gb140 reference set of GenBank Chlamydomonas gene 

records (3.5.1; 3.6.1 for GenBank accessions) and known transposable elements 

(ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.0/CHLREP.fn.gz).  These 

criteria reduce the 19,707 models to 2,384 models. 

A similarity search of the 2,384 EST assembled models against the NCBI 

non-redundant database (NRdb) using NCBI BLAST (E < 1.0 × 10-3) was 

performed to assess the novelty of the assembled ESTs.  957 (40.1%) of the 

selected PASA assembled models align to an entry in NRdb (Table 3.1) and 482 

(20.2%) of the remaining predictions have some overlap (see section 3.5.1) to 

models in the Frozen Gene Catalog (MERCHANT et al. 2007), which we will refer 

to as FGC07 (see section 3.5.2).  The remaining 945 (39.6%) complete PASA gene  
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Table 3.1 Categorization of the 2384 PASA EST assembly gene models 
 

Class N 

Alignment to NCBI NRdb 
 

957/2384 

Absent from the NCBI NRdb 
 

1427/2384 

Exact overlap in FGC07  222/1427 

Partial overlap in FGC07  260/1427 

No overlap in FGC07  945/1427 

 Single exon 835 

 Tested via RT-PCR 13 

 Verified via RT-PCR 10 

 

models in v3 are novel predictions identified by PASA EST assembly alone.  We 

find that 835 of these novel models contain only a single exon.  The quality of this 

large set of single-exon genes was evaluated by testing 13 randomly selected 

single exon models via RT-PCR.  All 13 models yield product of the correct size 

with genomic DNA as the template and 10 of the 13 produce a fragment of the 

predicted size with cDNA as the template by RT-PCR (Table 3.2).  Given that the 

final set of 2,384 PASA assembled models are derived directly from 167,641 

Chlamydomonas EST records and screened to have a complete compliment of  

 



32 

 

Table 3.2 Analysis of PASA gene models: RT-PCR testing of 13 novel, single exon 
PASA gene assemblies 

 

Assembly ID Outcome 

3146_3724 Present in cDNA 

5172_6168 Present in cDNA  

8132_9749 Present in cDNA  

9104_10933 Present in cDNA  

9866_11843 Present in cDNA  

11161_13363 Present in cDNA  

11240_13451 Present in cDNA  

11709_14017 Present in cDNA  

14828_17825 Present in cDNA  

16095_19351 Present in cDNA  

14105_16951 Not present in cDNA  

15620_18773 Not present in cDNA  

14205_17074 Not present in cDNA 

 
Present:  A product of the correct size was found in samples by RT-PCR 
Not present:  No product was obtained by RT-PCR 
 Assembly ID numbers can be downloaded from http://bifrost.wustl.edu/GreenGenie2 
For primers used see section 3.6.2. 
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gene features, this set of models is likely to provide an improved training set to 

optimize the parameters of the GreenGenie2 genefinding program. 

 

3.2.2 GreenGenie2 is more accurate than GeneMark.hmm-ES 3.0 

One primary purpose of genefinders is to assist the user by accurately 

identifying genes in an isolated DNA segment that may be up to several kilobases 

in length.  To evaluate the performance of GreenGenie2 on such short-sequence 

prediction queries we compared the performance statistics of GreenGenie2 and 

GeneMark.hmm-ES 3.0, the most recent, publicly available genefinder trained 

specifically for Chlamydomonas (LOMSADZE et al. 2005). 

Short-sequence prediction sensitivity and specificity of GreenGenie2 and 

GeneMark.hmm-ES 3.0 were computed for the total predictions made by each 

genefinder using 140 genomic sequences obtained from the literature, referred to 

as gb140 (see section 3.5.1).  At the whole-gene level, GreenGenie2 performs 

considerably better than GeneMark.hmm-ES 3.0.  GreenGenie2 achieves 

sensitivity and specificity values of 0.51 (±0.10) and 0.47 (±0.11) while 

GeneMark.hmm-ES 3.0 sensitivity and specificity values are 0.31 (±0.10) and 

0.24 (±0.09) (Table 3.3).  A two-proportion z-test indicates that both differences 

are statistically significant (p < 0.001; see section 3.5.4).  At the exon level, 

GreenGenie2 outperforms GeneMark.hmm-ES 3.0 with sensitivity and specificity 

values of 0.83 and 0.83 as compared to the corresponding values of 0.79 and 

0.74 when using GeneMark.hmm-ES 3.0 (Table 3.3).  The improvements in 

predictive accuracy made by GreenGenie2 are most obvious with initial and 

terminal exons (Table 3.3).  At the nucleotide level, the least stringent assessment  
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Table 3.3 Comparing GreenGenie2 and GeneMark.hmm-ES 3.0 in gb140 catalog 
 

  GreenGenie2 GeneMark.hmm-ES 3.0 

 N Sensitivity Specificity Sensitivity Specificity 

Genes 140 0.51 0.47 0.31 0.24 

Exons 1145 0.83 0.83 0.79 0.74 

Init. Exons 133 0.65 0.60 0.50 0.40 

Int. Exons 870 0.87 0.88 0.84 0.84 

Term. Exons 133 0.82 0.75 0.78 0.63 

Single Exon 7 0.71 0.62 0.00 0.00 

Nucleotides 713682 0.93 0.92 0.91 0.89 

 

of prediction performance, GreenGenie2 shows an improvement of 2-3% over the 

GeneMark.hmm-ES 3.0 predictions (Table 3.3).  These results indicate that 

GreenGenie2 is an improved ab initio genefinder for Chlamydomonas and 

encouraged us to make whole-genome predictions on assembly v3 and compare 

them to the FGC07 catalog (MERCHANT et al. 2007) with the goal of identifying 

new genes and improving the accuracy of the current gene models. 

 

3.2.3 GreenGenie2 models in v3 complement the Frozen Gene Catalog 

GreenGenie2 predictions on Chlamydomonas genome assembly v3 were 

screened for a minimum coding length of 270bp and against significant 
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alignment to known transposable elements (see section 3.5.2).  The final 

GreenGenie2 v3 catalog, gg2v3, consists of 12,387 predictions.  The identical 

criteria applied to the FGC07 catalog leaves 12,320 predictions.  All models were 

further classified as complete or incomplete based on the presence of start and 

stop codons (see section 3.5.2).  All gg2v3 models are complete by construction.  

Of the 12,320 models in FGC07, only 67.7% are complete; the remaining 3,981 

models lack a start codon, a stop codon or both. 

Given the possible bias towards single-exon models in the GreenGenie2 training 

set, a comparison of single-exon models between gg2v3 and FGC07 was 

performed.  In FGC07, 7.0% of complete models are single-exon genes and a 

similar proportion is observed in gg2v3 where 6.4% of the models are single-

exon predictions.  A two-proportion z-test (see section 3.5.4) indicates that there 

is no significant difference between the two proportions of single exon genes and 

that there is no bias towards the prediction of single-exon genes made by 

GreenGenie2. 

The gg2v3 gene catalog was compared to both the complete and 

incomplete partitions of FGC07 (Table 3.4) using interval overlap analysis.  This 

analysis compares two lists of coding sequence coordinates that index a common 

underlying genome sequence and categorizes each prediction as consistent or 

conflicting (Figure 3.1; see 3.5.5).  Our analysis finds that 11% of the FGC07 

models are predicted identically in gg2v3 and another 67% partially overlap with  



 

Figure 3.1 Diagram of four classes of gene level interval overlaps
analysis identifies four classes of overlaps: identical (A), partial (B), novel exon (C), novel gene 
(D) (See section 3.5.5 ). 

 

gg2v3 models (Table 3.

with gg2v3 models.  Additionally, 

interval overlaps to any model in 
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agram of four classes of gene level interval overlaps. Interval overlap 
analysis identifies four classes of overlaps: identical (A), partial (B), novel exon (C), novel gene 

3.4).  The remaining 22% of FGC07 models have no overlap 

models.  Additionally, there are 2,859 (23%) gg2v3 models without 

interval overlaps to any model in FGC07. Predictions in gg2v3 that have partial 

FGC07 models can be categorized into models with partially 

overlapping exons and models containing novel exons.  Because Genie does not 

canonical splice sites, we determined the proportion of FGC07 

gg2v3 exons with either canonical or non-canonical splice 

Not all splice sites in Chlamydomonas follow the canonical rules 

.  However, allowing non-canonical splice sites might improve the 

Interval overlap 
analysis identifies four classes of overlaps: identical (A), partial (B), novel exon (C), novel gene 

models have no overlap 

models without 

that have partial 

models can be categorized into models with partially 

Because Genie does not 

FGC07 exons 

canonical splice 

follow the canonical rules (STARK et 

ical splice sites might improve the  
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Table 3.4 Comparison of gg2v3 and FGC07 catalog by overlap interval analysis 
 

Complete FGC07 models Incomplete FGC07 models 

Type of overlap Count Type of overlap Count 

Exact Overlap 1,324 Exact Overlap 0 

Partial Overlap 5,425 Partial Overlap 2,826 

No Overlap 1,574 No Overlap 1,149 

Other 16 Other 16 

Total 8,339 Total 3,981 

 
Complete model: Any model that includes a starting ATG gene feature and terminates with a 
stop codon (TAA, TAG or TGA). 
Incomplete model: Any model that lacks a start or stop codon or both. 
Other: Models that interlaced overlaps and concatenated exact overlaps. 

 

sensitivity slightly, the marginal gain would come with the cost of many 

additional false positives. 

In total, 15% of the partially overlapping FGC07 exons contain a non-

canonical splice 5’ site (GT) and 7% contain a non-canonical 3’ splice site (AG).  

Therefore, about 20% of the non-identical, but overlapping exons between the 

gg2v3 and FGC07 catalogs are attributable to the fact that the GreenGenie2 

model does not allow non-canonical splice sites.  The set of partially overlapping 

models are of particular interest because they may include examples of 

alternative splicing as well as highlight incorrect models in each catalog.  Each 

partially overlapping gg2v3 gene model with three or more exons (N=6,885) was  
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Table 3.5 Validation of competing gg2v3 and FGC gene models via RT-PCR 

 

Models with alternate exon termini 
predicted in gg2v3 and FGC07 

Novel exons predicted in 
gg2v3 not present in 

FGC07 

gg2v3 
Gene ID 

Support for 
gg2v3 

Support for 
FGC07 

gg2v3 
Gene ID 

gg2v3 support 

4t254 + — 1t16 + 

11t344 + — 1t34 + 

25t123 + — 1t147 + 

24t200 + — 11t344 + 

5t126 — — 15t291 + 

  30t106 + 

  30t170 + 

  3t257 — 

 
+:  A product of the correct size was found in samples by RT-PCR 
—: No product was obtained by RT-PCR  
*For primers see sections 3.6.3 and 3.6.4. 

 

compared to the corresponding FGC07 model at the exon level.  These exons 

were classified as initial, internal or terminal.  The number of novel gg2v3 exons 

and partially overlapping exons was determined (Figure 3.2).  The four largest 

groups have 1) partial overlaps for all three exon types (N=761) and no new exons 

in the gg2v3 model, 2) an alternative initial exon (N=480), 3) partially 

overlapping internal exons and both a novel initial and novel terminal exon  
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Figure 3.2 Histogram of partial exon overlap gg2v3 models to FGC07. Exon 

level interval overlap analysis identifies three types of exons in gg2v3 models with partial 

overlaps in FGC07: initial, internal and terminal.  Each of the three exon types are represented 

in a three digit code.  The rightmost digit corresponds to the terminal exon, the middle position 

corresponds to all internal exons and the leftmost digit corresponds to the initial exon.  Each 

digit is assigned a value of 0, 1, 2 or 3.  A value of 0 at a given position indicates that all exons of 

that type are exact for every gene in that category.  A value of 1 indicates that there is one or 

more occurrence of partial exon overlap of exons in the position’s exon type and no novel exons 

predicted in gg2v3.  A value of 2 indicates that there is one or more occurrences of a whole new 

exon predicted in gg2v3 that is absent in the overlapping FGC07 model in the exon type 

corresponding to that position for all genes with that code and no partially overlapping exons 

between the two catalogs.  A value of 3 indicates that there is one or more occurrences of both 

partially overlapping exons and extra exons in gg2v3 when compared to the model in FGC07 

(e.g. gg2v3 models in the class 111 have one or more partially overlapping exons in FGC07 of all 

three exon types and no occurrences of extra exons predicted;  gg2v3 models in the class 100 

have exact exon matches across all exons in the model except for the initial exon). 
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(N=461) and 4) an alternative terminal exon (N=453).  Overall, 28% of these 

models have new exon splice sites and no new exons in the gg2v3 model.  Only 

4% of the partially overlapping gg2v3 models have only novel exons (Figure 3.2).  

A small number of each of the partially overlapping models was tested using RT-

PCR (see Section 3.5.6).  Figure 3.1B shows one type of model that has at least 

one exactly overlapping exon and at least one alternative exon terminus.  No 

experimental support for any of the five FGC07 models tested was found, but 

support for four of the five corresponding gg2v3 models tested was found (Table 

3.5).  Figure 3.1C illustrates the second type that has at least one exactly 

overlapping exon and at least one additional exon in the gg2v3 prediction that is 

absent from the FGC07 model.  We find support for seven of the eight predictions 

tested (Table 3.5). 

Predictions in one catalog that have no overlapping counterpart in the 

other catalog (Figure 3.1D) make up a significant proportion of both gg2v3 and 

FGC07 and may represent substantive sets of true genes that reflect the 

complementarity of the two catalogs.  Our analysis finds that 22% (N=2723) of 

complete FGC07 models lack any overlap to models in gg2v3 and that 23% 

(N=2,859) of gg2v3 models do not have interval overlap with any complete or 

incomplete model in FGC07.  A small sample of predictions that are exclusive to 

each catalog was tested by RT-PCR.  Four of the five gg2v3 predictions tested 

were supported by RT-PCR results (Table 3.6).  Similarly, three of the five novel 

FGC07 predictions 
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Table 3.6 Validation of mutually exclusive gene models in gg2v3 and FGC: RT-PCR 

 

Predictions exclusive to 
gg2v3 

Predictions exclusive to 
FGC07 

gg2v3 Gene 
ID 

Outcome 
FGC07 Gene 

ID 
Outcome 

3t69 + 141597 + 

19t170 + 181956 + 

30t189 + 184911 + 

76t11 + 141023 — 

69t65 — 180935 — 

 
+:  A product of the correct size was found in samples by RT-PCR 
—:  No product was obtained by RT-PCR  
*For primers see sections 3.6.5 and 3.6.6. 

 

were supported by RT-PCR (Table 3.6).  in silico analysis indicates that a 

majority of predictions exclusive to each catalog have EST or cross-species 

sequence similarity support or both.  WU-BLASTP sequence similarity analysis 

indicates that 92.2% of gene models exclusive to gg2v3 align to some protein in 

the Eukaryotic Clusters of Orthologous Genes database (KOG) (TATUSOV et al. 

2003) or to some sequence in the Chlamydomonas EST database.  Similarly, 

WU-BLASTP similarity analysis indicates that 94.5% of the FGC07 exclusive 

models are supported by evidence in the KOG or Chlamydomonas EST 

databases.   
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3.2.4 GreenGenie2 is a robust, effective genefinder across different 

genome assemblies 

Our results in the previous section indicate that GreenGenie2 whole-

genome predictions complement FGC07 (MERCHANT et al. 2007) and suggest the 

potential value of including GreenGenie2 models in the annotation of future 

Chlamydomonas assemblies, so we used GreenGenie2 to predict a whole-genome 

catalog from the latest assembly of the Chlamydomonas genome, denoted as 

gg2v4.  Sequence analysis of the two Chlamydomonas genome assemblies 

reveals that v4 contigs are seven times longer than v3 contigs on average, which 

highlights improved continuity in the v4 assembly compared to v3 assembly.  

GreenGenie2 predicts 11,315 models in the v4 assembly that satisfy the quality 

control constraints discussed previously.  We mapped the gg2v4 models onto v3 

scaffolds using BLAT (KENT 2002) to facilitate the interval overlap analysis of the 

gg2v4 catalog with gg2v3.  Only 20 of the gg2v4 models do not have matches in 

the v3 genome assembly.  Conversely, 303 (2.4%) of the gg2v3 models do not 

have matches on the v4 assembly, which indicates a loss of some sequences in v4 

compared to v3.  82.5% of the gg2v4 models (N=9,184) map completely to a 

unique locus in v3 and likely represent loci that are shared between the v3 and v4 

genome assemblies.  77% of these models are identical to models in gg2v3 

despite the large changes in the genome contigs that are used for prediction.  21% 

of them have partial overlaps and only 1% is novel in the gg2v4 model set.  Of the 

17.1% of the gg2v4 models that do not map entirely to a single v3 locus, most of 

them (73%) have matches to two or more v3 loci, and the remainder contains 

additional sequences that do not occur on any v3 locus.  The results indicate that 
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the gg2v4 predictions from the updated v4 assembly are typically the same as the 

predictions on the shorter genome contigs of v3, which suggests that the 

predictions are not overly sensitive to the length of the contigs used as input.  

Furthermore, models that either were previously split across multiple contigs or 

were missing from the v3 assembly explain most of the differences.  In both cases 

it appears that the updated v4 assembly has led to improved accuracy of the 

predicted gene catalog. 

 

3.3 Discussion 

Determining genomic and EST sequence allows for the identification of 

the protein coding genes of a particular organism.  We have used the information 

obtained from EST sequences to train the ab initio genefinder Genie (KULP 2003) 

on a filtered group of PASA assembled models that have both a start codon and a 

stop codon (complete) to create an accurate ab initio genefinder for the GC-rich 

genome of the green alga Chlamydomonas reinhardtii.   

The Program to Assemble Spliced Alignments (PASA) (HAAS et al. 2003) 

was used to assemble Chlamydomonas EST sequences that were pre-aligned to 

the v3 Chlamydomonas genome assembly.  This training set of 2,384 PASA 

assembled gene models has extensive biological evidence.  Interval overlap 

analysis and homology search indicate that a majority of the PASA predictions 

align either to an existing Chlamydomonas gene model (21%) or have homologs 

in other organisms (40%).  39% of the PASA models are novel.  Support for 10 of 
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13 novel predictions tested with RT-PCR suggests the potential for using the 

assembly of pre-aligned EST data as a primary basis of gene modeling, rather 

than as a supplementary source of predictive information. 

One primary application of ab initio genefinders is to accurately predict 

genes within short genomic sequences.  Such short-sequence queries are often 

regions where the user has knowledge of a gene, but depends on the ab initio 

genefinder to predict, confirm or correct the exon level structure of the gene.  To 

test the short-sequence prediction accuracy of GreenGenie2, we compared the 

predictions of GreenGenie2 to the predictions of the most current, publicly 

available ab initio genefinder trained for Chlamydomonas, GeneMark.hmm-ES 

3.0 [18] on a set of 140 Chlamydomonas genomic sequences.  Each of these 

genomic sequences contains a single known GenBank reference Chlamydomonas 

mRNA and the corresponding upstream (average length: 564bp) and 

downstream (average length: 731bp) flanking regions.  Sensitivity and specificity 

of the two genefinders was determined by comparing the prediction from each 

genefinder against the reference GenBank annotation.  Comparing the 

predictions on the gene level, GreenGenie2 is significantly more sensitive and 

specific (Table 3.3; p < 0.001) than GeneMark.hmm-ES 3.0.  Results also indicate 

that GreenGenie2 outperforms GeneMark.hmm-ES 3.0 across all four types of 

exons (initial, internal, terminal and single), in particular, the initial and terminal 

exons.   

Another application of ab initio genefinders is the prediction of whole-

genome gene catalogs.  GreenGenie2 was used to predict a whole genome gene 

catalog on Chlamydomonas genome assembly v3 and this catalog, gg2v3, was 
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compared to the existing FGC07 gene models by interval overlap analysis.  The 

two catalogs predict a similar number of genes and a significant number of the 

models are identical.  However, the two catalogs differ in several ways.  First, 

there are a substantial proportion of complete FGC07 gene models that overlap 

but are not identical to gg2v3 models (54%).  Exon level analysis of partially 

overlapping gg2v3 models shows that there are multiple causes (Figure 3.2).  The 

four most frequent causes include partial exon overlap devoid of any new exons 

in gg2v3, models that are identical except in the initial exon, models where 

GreenGenie2 predicts entirely new initial and terminal exons and models that are 

identical except in the terminal exon.  The third class reflects our observation that 

32% of FGC07 models are incomplete.  This analysis illustrates the range of 

complementarity that exists between the two catalogs.  RT-PCR analysis found 

support for four out of five gg2v3 models (Figure 3.1B; Table 3.5), but failed to 

provide support for any of the five FGC07 models tested.  In addition, seven of 

eight randomly selected gg2v3 models with additional exons that are absent from 

their FGC07 counterparts were validated by RT-PCR (Figure 3.1C; Table 3.5).  

Although the number of genes tested is small, the results suggest that 

GreenGenie2 complements the existing catalog by successfully identifying and 

correcting gene models that may be incorrect in the current Chlamydomonas 

annotation.  Second, there is a set of gg2v3 predictions (N = 2,859) that is absent 

from FGC07, and a set of FGC07 predictions (N = 2,723) that is absent from 

gg2v3.  We tested five randomly selected models from each set of exclusive 

predictions using RT-PCR and found support for four gg2v3 models and support 

for three of the FGC07 models tested.  Furthermore, BLASTP alignment and EST 
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alignment reveal that there is extensive support for almost all predictions that are 

absent from just gg2v3 (93.8%) or absent from just FGC07 (92.2%).  These 

results indicate that each prediction method complements the other by 

identifying potentially true genes that are missing from the other catalog.  Finally, 

GreenGenie2 completes 2,261 incomplete FGC07 models, which demonstrates 

another benefit of including GreenGenie2 whole-genome predictions into current 

and future Chlamydomonas gene catalogs. 

The average contig length from assembly v3 to assembly v4 increases 

seven-fold, which indicates a greater degree of assembly continuity.  The 

robustness of our genefinder was tested across more continuous genome 

assemblies by using GreenGenie2 to predict a whole-genome gene catalog with 

the v4 genome assembly.  If GreenGenie2 predictions were sensitive to the exact 

genome assembly used, and in particular if they varied substantially when the 

length of the genomic contigs changed, it would indicate unreliability in the 

predictions.  However, we find that 77% of the gg2v4 models are identical to 

models in gg2v3, and most of the remainder overlaps significantly with the 

gg2v3 models.  A large fraction of the differences are models where the gg2v4 

predictions extend or merge models in gg2v3 based on the longer contiguous 

sequences in v4.  These results are consistent with improvements in the updated 

assembly of v4 and with GreenGenie2 providing reliable predictions on a more 

contiguous genome assembly.  Overall, GreenGenie2 performance on short-

sequence and whole-genome predictions suggest that optimizing ab initio 

genefinding parameters on the assembly of a large collection of pre-aligned gene 
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fragments is a rapid, low-cost and effective method by which ab initio 

genefinders can be established. 

 

3.4 Summary 

In this chapter, the ab initio genefinder Genie was trained on a large set of 

complete PASA predicted gene models assembled from available 

Chlamydomonas EST sequence data.  Short-sequence performance analysis 

indicates that GreenGenie2 is more accurate than the most recent 

Chlamydomonas genefinder in the literature (LOMSADZE et al. 2005).  Interval 

overlap analysis between the GreenGenie2 v3 whole-genome catalog and the 

FGC07 catalog reveals that GreenGenie2 complements the current 

Chlamydomonas gene catalog (MERCHANT et al. 2007) by accurately predicting 

new v3 gene models that are incomplete, incorrect or absent in FGC07.  When 

GreenGenie2 was applied to the latest available Chlamydomonas genome 

assembly and the predicted v4 models were mapped back onto v3 scaffolds, 

GreenGenie2 appears to be robust against a seven-fold improvement in assembly 

continuity.  These results illustrate a potential new application of EST sequence 

data to gene prediction and underscore the value of including the predictions of a 

fast, accurate ab initio genefinder like GreenGenie2 into present and future 

catalogs.  We have made the GreenGenie2 genefinder described in this study 

available online.  The submission form is available at 

http://bifrost.wustl.edu/cgi-bin/greengenie2/greenGenie2.  
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3.5 Methods 

3.5.1 Sequence datasets 

This study uses the Chlamydomonas genome assembly version 3 

(ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.0/Chlre3.allmasked.gz).  

Genome assembly version 4 (v4) was obtained from Alan Kuo at the Joint 

Genome Institute. Sequences longer than 1Mb are pre-processed into shorter 

sequences prior to annotation by GreenGenie2. Pre-processing involves the 

removal of stretches of ambiguous nucleotides longer than 50bp and treating the 

prefix and suffix as independent sequences.  This pre-processing is advantageous 

for computational efficiency but to preserve maximal continuity in the assembly, 

all splitting events were chosen to minimize the final number of sequences.  We 

found that requiring a minimum length of greater than 50bp greatly increased 

the necessary number of splitting events.  The v3 assembly was split from 1,557 

sequences totaling 120,186,811 bases (~77.2Kb/sequence) into 1,636 sequences 

totaling 120,076,271 bases (~73.4Kb/sequence) following the removal of 110,540 

ambiguous positions.  The v4 assembly was split from 88 sequences totaling 

112,305,447 bases (~1.3Mb/sequence) into 218 sequences totaling 111,935,880 

bases (~513.5Kb/sequence) following the removal of 369,567 ambiguous 

positions.   

A total of 140 experimentally verified Chlamydomonas annotations from 

GenBank 

(http://www.ncbi.nlm.nig.gov/Taxonomy/Browser/wwwtax.cgi?id=3055) 

constitute a reference set for short sequence analysis and are referred to as gb140 
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(see section 3.6.1 for listing).  Initially, 222 GenBank records were retrieved by 

identifying records that indicated experimentally determined gene structure by 

direct sequencing of a complete cDNA and the genomic DNA and thus were not 

generated by automated assembly methods.  The records were then filtered to 

remove genes with misannotated or missing start sites (N=17), non-canonical 

splice sites (N=46), misannotated or missing termination sites (N=6) or open 

reading frames that are not multiples of three (N=13).  The included upstream 

and downstream flanking regions averaged 534bp and 731bp in length, 

respectively.  The 167,613 EST records used to construct the PASA EST 

assemblies are from GenBank 

(http://www.ncbi.nlm.nig.gov/Taxonomy/Browser/wwwtax.cgi?id=3055).  All 

PASA EST assemblies were screened for significant alignment (BLAST E-value < 

1.0 × 10-20) to gb140 before training to remove any bias in the subsequent short-

sequence performance evaluation.   

 

3.5.2 Chlamydomonas gene catalogs 

Three Chlamydomonas whole-genome catalogs were evaluated in this 

study:  the GreenGenie2 whole-genome prediction on assembly v3 

(http://bifrost.wustl.edu/greengenie2/), the GreenGenie2 whole-genome 

prediction on assembly v4 (http://bifrost.wustl.edu/greengenie2/) and the 

Frozen Gene Catalog (FGC07) from Merchant et al.  (MERCHANT et al. 2007) 

(transcript file: ftp://ftp.jgi-

psf.org/pub/JGI_data/Chlamydomonas_reinhardtii/v3.1/Chlre3_1.GeneCatalog

_2007_09_13.transcripts.fasta.gz; model file: ftp://ftp.jgi-
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psf.org/pub/JGI_data/Chlamydomonas_reinhardtii/v3.1/Chlre3_1.GeneCatalog

_2007_09_13.gff.gz).  Prior to further analysis all models from all catalogs were 

screened for a minimum coding length of 270bp and lack of significant alignment 

to known transposable elements (ftp://ftp.jgi-

psf.org/pub/JGI_data/Chlamy/v3.0/CHLREP.fn.gz).  The choice of 270bp as a 

minimum coding length is somewhat arbitrary, but there are very few verified 

genes shorter than this in Chlamydomonas.  In Sacharomyces cerevisiae, recent 

studies show that there are about 200 genes (5%) that are less than 90 amino 

acids or 270bp (KASTENMAYER et al. 2006).   However in a genome that is 2/3 

G+C like Chlamydomonas, prediction of genes 270bp long or shorter will occur 

with a probability of 0.12.  This probably in yeast about is about ten-fold lower 

(0.013).  Thus, the inclusion of predicted genes that are less than 270bp is likely 

to increase the number of falsely predicted genes greatly.  Many models in FGC07 

lack a start codon, a stop codon or both are thus considered incomplete models. 

 

3.5.3 Programs 

Seven publicly available programs are used in this study.  They are PASA 

[2] (http://pasa.sourceforge.net), Genie (KULP 2003), GeneMark.hmm-ES 3.0 

(LOMSADZE et al. 2005) 

(http://opal.biology.gatech.edu/GeneMark/eukhmm.cgi), BLAT (KENT 2002), 

WU-BLAST (ALTSCHUL et al.), NCBI-BLAST (http://blast.ncbi.nlm.nih.gov) and 

Primer3 (ROZEN and SKALETSKY 2000) (http://frodo.wi.mit.edu/).  EST sequence 

assembly was performed using PASA (Program to Assemble Spliced Alignments).  
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The initial EST alignments were performed by PASA using the built-in GMAP 

algorithm option (WU and WATANABE 2005).  The GreenGenie2 program is based 

on the latest version of the Genie genefinder (KULP 2003) 

(http://brl.cs.umass.edu/Research/GenePredictionWithConstraints).  Genie 

implements a general hidden Markov model (gHMM) to predict protein-coding 

regions in genomic DNA.  The most recently published gHMM genefinder trained 

specifically for Chlamydomonas is GeneMark.hmm-ES 3.0 (LOMSADZE et al. 

2005), which is used in this study as the short-sequence performance benchmark 

for GreenGenie2.  Unless otherwise stated, all sequence alignments were 

performed using WU-BLAST and significant alignments are those with BLAST E-

value < 1.0 × 10-5.  PASA EST assembly alignment to the NCBI non-redundant 

database (NRdb) was conducted by NCBI using NCBI-BLAST (default BLAST E-

value < 1.0 × 10-3).  Alignment of v4 models onto v3 was performed using BLAT 

with the -fine and -maxIntron=5000 program options invoked.  All primers used 

in this study were designed using Primer3 (ROZEN and SKALETSKY 2000). 

 

3.5.4 Short-sequence prediction performance evaluation 

The evaluation of predictions requires independent and high quality 

annotated test sequences against which predictions are compared to determine 

sensitivity and specificity statistics and a quantitative evaluation of prediction 

accuracy.  When comparing the predicted genes for a given test sequence to the 

reference annotation of that sequence, the predicted structure can be evaluated at 

three different levels: nucleotide accuracy, exonic accuracy and whole gene 

accuracy (ROGIC et al. 2001).  Whole gene accuracy is the most stringent level 
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because a prediction is correct only when the prediction matches the reference at 

every position; a single mismatched exon boundary is an error and renders the 

entire prediction incorrect.  Nucleotide accuracy is the least stringent level; each 

individual nucleotide is either correctly or incorrectly labeled as coding or non-

coding.  At each level, predictions are classified as either true positive, false 

positive, true negative or false negative.  True positives and true negatives are 

those regions where the predicted structure agrees with the reference annotation 

in coding and non-coding regions respectively.  Conversely, false positives and 

false negatives are those regions where the predicted structure does not agree 

with reference annotations in non-coding and coding regions respectively.  

Sensitivity is defined as the ratio of true positives to actual positives.  Greater 

sensitivity on the gene level indicates that the prediction method being evaluated 

misses fewer genes.  Specificity is defined as the proportion of all predictions that 

are true positives.  Greater specificity at the gene level indicates that there are 

fewer wrong predictions being made by the prediction method under evaluation.  

By determining the different relative ratios of each of the four categories above, it 

is possible to gauge the inherent accuracy of a set of predictions and to compare 

the predictive performance across different sets of gene predictions.  Short-

sequence prediction performance of GreenGenie2 is performed by submitting the 

genomic sequences corresponding to each of the 140 reference annotations in 

gb140 to both GreenGenie2 and GeneMark.hmm-ES 3.0.  Each sequence yields a 

single set of predictions from each of the gene-predictors.  Standard averaged 

sensitivity and specificity ratios are computed on the nucleotide, exon and gene 

levels by the Tally.pl and BaseCounts.pl, utilities that are included as a part of the 
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Genie software package 

(http://brl.cs.umass.edu/Research/GenePredictionWithConstraints).  Statistical 

significance of differences between two ratios is computed by a two-proportion z-

test that compares the corresponding ratios for a given confidence level from 

each of the two independent predictions.  All such comparisons in this study are 

computed using a confidence level of 0.99.   

 

3.5.5 Interval overlap analysis 

Whole-genome predictions are compared using interval overlap analysis of 

predicted models and evaluated for accuracy and complementarity.  The interval 

overlap analysis of gene features is performed by directly comparing two lists of 

coding sequence coordinates indexed on a common genome assembly.  Coding 

nucleotides are classified as either overlapping or not overlapping.  A coding 

nucleotide is overlapping if and only if that position is annotated as coding in 

both predicted models, otherwise the nucleotide is not overlapping.  Exons are 

classified into three classes: exact, partial and novel.  An exon for which every 

nucleotide is aligned is classified as an exact overlap.  An exon that is not 

classified as an exact overlap but has at least thirty consecutive bases that overlap 

is classified as a partial overlap.  An exon that is neither exact nor partial is 

classified as extra in the original catalog and absent in the other catalog.  A gene 

is classified into three classes: exact, partial and novel.  A gene for which every 

exon is classified as exact is classified as exact.  A gene for which every exon is 

classified as novel is classified as novel.  All other genes are classified as partial, 

which indicates that the two predictions overlap but are not identical.  Differing 
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predictions between two catalogs can then be targeted for subsequent testing via 

RT-PCR and other in silico validation methods. 

 

3.5.6 PCR and RT-PCR 

A small subset of novel predictions with non-exact overlaps was tested by 

RT-PCR.  Two classes of predictions were tested: predictions that overlap but are 

not exact and predictions that are exclusive to each catalog.  To verify exons 

whose intron boundaries do not agree between two catalogs, one primer aligns to 

the overhanging region of each of the two partially aligned exons and the other 

primer aligns to a nearby exon that is exactly overlapping between the two 

catalogs.  RT-PCR with these primers unambiguously indicates which prediction 

(if either) is correct, or whether both predicted genes are correct and arise from 

alternative splicing.  The designed primers were also used in genomic DNA PCR 

to verify that they amplify the correct regions of interest.  For genomic DNA PCR, 

crude Chlamydomonas DNA was prepared.  A toothpick-tip-full of 

Chlamydomonas cells was lysed in 10 µL lysis buffer (10 mM Tris-HCl, pH 8.8, 

50 mM KCl, 2 mM MgCl2, 0.1% Triton-100, 1mg/mL proteinase K) at 58°C for 1 

hr followed by 95°C 30 min to denature the proteinase K.  Cell debris was 

collected by a 10 sec centrifugation and 0.5 µL of the supernatant were used in a 

10 µL PCR reaction.  Total RNA from wild-type vegetative Chlamydomonas cells 

was prepared as previously described (LIN and GOODENOUGH 2007).  Total RNA 

(30µg) was treated with 2 units of RNase-free DNase I (New England Biolabs, 

Ipswitch, MA) to remove contaminating genomic DNA from the sample.  One µg 

of total RNA was used for cDNA synthesis with or without the addition of 
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SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA) in a 20 µl 

reaction.  The same reaction mix without reverse transcriptase serves as the 

control for the presence of genomic DNA contamination.  0.5 µL of cDNA 

synthesis products was used in a 10µl PCR reaction with RedTaq DNA 

polymerase (Sigma, St.  Louis, MO) according to the manufacturer’s protocol.  

PCR conditions used were the following: 95°C 2 min, followed by 30 cycles of 

95°C 15 sec, 53°C 15 sec, and 72°C 1 min, and ending at 72°C for 2 min.  

 

3.6 Supplemental Tables 

3.6.1 Supplemental Table 1 NCBI Protein ID codes for gb140 

AAB23258.2 AAM01186.2 CAA37638.1 AAD28474.1 

AAK77552.1 AAR04931.1 AAC49416.1 AAK06774.1 

AAF43040.1 CAD60538.1 AAG30934.1 AAM15777.1 

AAK32150.1 AAQ12259.1 AAK68064.1 AAO45104.1 

AAR20884.1 AAT37069.1 AAK70872.1 AAO48940.1 

AAY86155.1 AAC03784.1 AAK70874.1 AAQ16277.2 

CAA48233.1 AAG45420.1 AAK84866.1 ABC02019.1 

AAA82610.1 AAO25117.1 AAL31495.1 AAG29840.1 

AAB71841.1 AAK14648.1 AAN77901.2 AAT40991.1 

CAE17329.1 AAM19664.1 AAS07042.1 AAN87017.1 

AAB71840.1 AAQ95705.1 AAS89977.1 AAQ19847.1 

AAK01720.1 AAA57316.2 CAA65356.1 AAA84971.1 

AAK82666.1 AAB39840.1 CAC19676.1 AAP30010.1 

AAR23425.1 AAC49887.1 ABC49916.1 AAR82947.1 



56 

 

AAF65221.1 AAC49888.1 AAP12520.1 CAB56598.1 

AAL75576.1 AAD45352.1 AAP12521.1 AAK38270.1 

AAC08533.1 CAD24295.1 AAM44041.1 AAK54060.1 

AAC08534.1 AAO86687.1 AAG45421.1 AAF34540.1 

AAD39433.1 AAD27871.1 AAK37411.1 AAG33634.1 

AAG40000.1 AAF17595.1 AAM88388.1 AAM23012.1 

AAP21826.1 AAF73174.1 AAY56335.1  

AAQ83687.1 AAM15771.1 CAA41039.1  

AAD10324.1 AAR82949.1 AAW67003.1  

AAM88387.2 AAD27849.1 ABG38184.1  

CAF25319.1 AAL28128.1 AAM18057.1  

AAK32117.1 ABK56835.1 AAQ16626.1  

AAL35726.1 CAA44066.1 AAD55941.1  

AAL79816.1 AAB60274.1 ABK34486.1  

AAF36402.1 AAO53242.1 AAG37909.1  

ABB88568.1 AAP57169.1_v1 AAP83163.1  

AAB95196.1 AAP57169.1_v2 CAD32174.1  

AAM23259.1 AAY56333.1 AAT38474.1  

AAM23262.1_v1 AAY56334.1 AAT38475.1  

AAM23262.1_v2 AAL37900.1 AAB00730.2  

AAM44130.1_v1 AAP85534.1 AAD52203.1  

AAM44130.1_v2 CAE46409.1 AAC37438.2  

AAQ55462.1 AAO61143.1 AAD38856.1  

AAS07044.1 AAL73208.1 AAM43910.1  

AAG33633.1 AAN01224.1 AAD50464.1  

AAK77219.1 AAC27525.1 AAK14341.1  

3.6.2 Supplemental Table 2 Primers to verify PASA assemblies 

Assembly ID Left Primer Right Primer Pred. Length 
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3146_3724 GCC GCA ACA CTG TTT GTG TA AAA GCA TGT GTC CCC TCG T 138 

5172_6168 TGC ACT AAG TCC GAA CAC GA CCA TGT AGG CGG GAG AGT AA 143 

8132_9749 AGA GCA AGC GAG TTC GAG AG GTG AGC AAA GGC ACT TAG GC 136 

9104_10933 GCC GAA ATT CCA AGT CAA GA TGC CTG GTG TAA TCG TGG TA 168 

9866_11843 CCA AGT GCC ACT CCA TAG C ATC GTG GAC TGA GCG GTG T 130 

11161_13363 CCC ACA AAC ACA TGA GAA TCC TCC AGT GCA GTT CCA TCT GA 169 

11240_13451 CGG AGT GAC CAA TAG GGT TC CAC CTC GAG GCT TAG CTG TC 149 

11709_14017 ACC ACA CCT TTT TGC GGT AA GAT GCA GTG TGG CAG AGG TA 139 

14828_17825 GTC TGG TAG CTT CCG AGC AG ACC CCC TCA GGA ACG TGT AT 139 

16095_19351 TAC TAC GAT GCG GAT GTG GA GGA TTT GGT TCA GGG AGG AG 150 

14105_16951* AGA CAT GAA CGT CCC CTC AC CAG CGC AAC TCT GAC AGA CA 158 

15620_18773* GGT TGT ATA CGC TGC TGC TG GGC AAA GCC TAC ACA GCT TC 150 

14205_17074* TCT TCT CGT TTA GCG CGT TT CGC ACG CTA TAC GTC TCT CC 147 

*failed to yield predicted product 
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3.6.3 Supplemental Table 3 primers to verify partial overlap exons 

Gene ID Left Primer Right Primer Pred.Length 

4t254 ACA ACG GCA CCA TCA TCA AT GCC GGT TAC GGT GAT GTT 123 

4t254_143087† CTA CAA CGG CAC CAT CAT CA AGC CAG CGT GCC GTA CTC 103 

11t344 GTT CTG CTG CCT CTG GTC AT GTC CCA CTC GAC CCT CCT 100 

11t344_169877† GTT CTG CTG CCT CTG GTC AT TTG ATT GCG TCA ATG GAA AC 105 

25t123 GTG TCC ATC TGC CTG CAC TTC AGC GGG CAC ACA TTT AC 90 

25t123_104389† GTG TCC ATC TGC CTG CAC TGT GCA CTT GCA ATG GAG TAT 106 

24t200 AGA TGA TTG TGT TCC GAC AGG GGC GTC GCT TAC GTC CAG 104 

24t200_195571† CCC CTC CTA CCA GAT GAT TG GTT TGG GTG AAA GCG GAC T 100 

5t126* ATC TCT TCA CGG CAC CTT C TGT GTG CAG GTA AGG GTG AG 148 

5t126_186782†* ATG TCT TCA CGG CAC CTT C GGG GAT GGC TGT CAT GTA CT 143 

*failed to yield predicted product  
†gg2v3 gene id and corresponding protein ID in FGC07 
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3.6.4 Supplemental Table 4 Primers to verify novel gg2v3 exons 

Gene ID Left Primer Right Primer Pred. Length 

1t16 GCG TAT CGC CCA AAT GAA GCG GTG ATG ATG TGT TTG TC 100 

1t34 ACG AGG ACG ACT ACG ACG AC GTC CTT GAG AAG GCG GAA C 102 

1t147 CTG GTG TCC GTG TAC ATT GC TCG GGT GCC ATC CAG TAG  198 

11t344 ACC GAC TGC GAA GAC TGT G CCT TGC TCT GCA GCA ACC 107 

15t291 CCT GAC GCC TAC GAC AAG TT GGA ACA CGG ACT CCA GAG C 128 

30t106 ACA ACC AGT CGC AGA AGG AG CTG TCC ACA GCT CTG ACG TG 181 

30t170 CAT TGG AGA CCA GGA CGA G GTC TCG CGT GTG AGT GTT TG 106 

3t257* GTC ACC GCG GAC CTA CTG GAC TCT CAG CAG CTT CTC TCG 140 

*failed to yield predicted product 
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3.6.5 Supplemental Table 5 Primers to verify novel gg2v3 genes 

Gene ID Left Primer Right Primer Pred. Length 

3t69 CAG CTC CAC CAA CAA CGA G ATC ACC ACC AGC TTG CTG TC 115 

19t170 GCT GGT GCT GGT GTT AAA TG GTG TCC GCT AGC CGC TTA AT 136 

30t189 ATC AGC CTG GAG GAG CTG TGA CAC CGT GGA TCT TAC ACA 119 

76t11 CCT GGG CTG GGA CTT TTC GTC CTG GTA GCG CTC ACA TC 110 

69t65* AAC TCC GGG AGC TTT ACA CA TTT GGA CCA AGA CCT GAA GC 108 

*failed to yield predicted product 

 

 

3.6.6 Supplemental Table 6 Primers to verify FGC07 exclusive genes 

Gene ID Left Primer Right Primer Pred. Length 

141597 GTG CAA CTC GGC CTG GAT GTG GGC GAG AAT GTG GTT AG 103 

181956 CCT GAA CTG CAT CAT CCA CA ATC ATG ACC TCA CGC GTC TC 152 

184911 GCG CAG GCA TTA CAG GTC GGA GCC TCC TGG TGA TGA G 112 

141023* GTG GAT CCC GAG GCT GTC ATG CCG ACA TCG TGA ACT G 104 

180935* GTG CTG TCC AGG CAA AGG TGC TAG CAG CTC TGA CAC CT 168 

*failed to yield predicted product 
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Chapter 4 

Detecting co-evolution for protein 

annotation 

Note: Portions of the results in this chapter are published in Kwan AL, Dutcher SK, Stormo GD: 

Detecting Coevolution of Functionally Related Proteins for Automated Protein Annotation. 

Proc. 2010 IEEE Int. Conf. on Bioinformatics and Bioengineering, pp. 99-105. 

 

4.1 Introduction 

The relationship between the genes and the observable traits of a given 

organism is mediated by the function of the protein products of the genes in 

question. Interactions between individual amino acids are conserved across 

instances. Therefore, proteins that have similar sequences also fold in a similar 
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manner and presumably have similar functions. This relationship between 

structure and function is the basis of sequence similarity-based protein annotation 

methods. These homology methods infer knowledge about a new protein from 

knowledge about a known protein with a sufficiently similar amino acid sequence. 

The organization of proteins into so-called protein families facilitates the 

association of new proteins with known protein families by sequence similarity, 

which facilitates the transfer of knowledge from existing annotations to novel 

proteins. The extent of automated protein characterization made possible by such 

methods is largely dependent on existing knowledge about at least one protein in 

every protein family. As a result, a large proportion of protein families remain 

uncharacterized beyond sequence similarity (JAROSZEWSKI et al. 2009; 

KARIMPOUR-FARD et al. 2007).  

The fact that proteins rarely act in isolation suggests an extended 

annotation approach where the function of a known protein can inform the user 

about the function of a novel protein based on its functional context (PELLEGRINI 

et al. 1999). The phylogenetic profile comparison (PPC) class of automated 

protein characterization methods operates on the premise that members of 

protein networks co-evolve to preserve functional compatibility and that similar 

patterns of protein occurrence across sets of diverse species evidence instances of 

protein co-evolution (PAZOS et al. 2005). Typically, a PPC method proceeds as 

follows: for each protein in a proteome of interest, the presence or absence of an 

orthologous sequence is determined in each of the reference proteomes that a user 

has selected, and an occurrence profile of each protein is constructed. This is 

followed by a pair-wise occurrence profile comparison step. Proteins occurrence 
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profile pairs that satisfy some criterion of occurrence profile similarity are 

predicted to have co-evolved to maintain functional compatibility. PPC methods 

tend to differ in how orthologs are detected and how occurrence profiles are 

compared. For ortholog detection, certain methods use a similarity score cutoff to 

determine the existence of an ortholog (KARIMPOUR-FARD et al. 2007; LI et al. 

2004; LI et al. 2005; SUN et al. 2005), while other methods use pre-computed 

ortholog clusters (COKUS et al. 2007). Each method has its strengths and 

drawbacks. For profile comparison, reported schemes range from simple 

Hamming distance (PELLEGRINI et al. 1999) to phylogeny-based maximum-

likelihood methods complete with an internal model of gene evolution (BARKER et 

al. 2007). Combinations of the more straightforward solutions to both problems 

have made existing methods particularly applicable to prokaryotic proteomes 

(BARKER et al. 2007; KARIMPOUR-FARD et al. 2007; SUN et al. 2005), while the 

development of PPC methods focusing on eukaryotic species remains largely 

unexplored (BARKER et al. 2007; LI et al. 2004).  

PPC methods aim to characterize proteins by extracting information for a 

protein of interest from its compatibility context by leveraging the strength of the 

association relating co-evolution and profile similarity. The use of reference at 

varying evolutionary distances to the proteome of interest is integral for the 

successful application of any PPC method. Varying evolutionary distances 

between species inherently introduces evolutionary biases into sequence similarity 

scores that confound accurate profile construction. Thus, it is imperative to 

normalize similarity scores for any variation in the underlying evolutionary 

distances between a focus species and each reference species (Figure 4.1). While  



 

Figure 4.1 Alignment scores need to be normalized for differences in evolutionary 
distance. Reference proteomes P
for different lengths of time (left). Normalization of similarity scores equalize evolutionary 
distances (rate × time) between P* and all P
scores across multiple Pj (right).

 

gene-evolution events like horizontal gene transfer may justify the use of 

convenient profile comparison approaches, like Hamming distance, as found in 

existing methods, the same approaches to profile comparison are less 

within the context of eukaryotic phylogenetics. Other profile comparison schemes 

rely on many assumptions about eukaryotic gene and species evolution that do not 

accurately reflect known biology.

One of the few methods to focus on eukaryot

al. 2005) in which a PPC method called Procom is presented. Procom works by 

determining the set of proteins in a given focus proteome that has a detected 

ortholog in every species classified as positive for a trait of interest and no 

detectable orthologs species cl

et al. 2004). An ortholog is 

given focus protein in a given reference proteome is
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Alignment scores need to be normalized for differences in evolutionary 
Reference proteomes Pj evolve away from a focus proteome P* at different rates and 

for different lengths of time (left). Normalization of similarity scores equalize evolutionary 
distances (rate × time) between P* and all Pj facilitates proper comparison of sequence similarity 

(right). 

evolution events like horizontal gene transfer may justify the use of 

convenient profile comparison approaches, like Hamming distance, as found in 

existing methods, the same approaches to profile comparison are less 

within the context of eukaryotic phylogenetics. Other profile comparison schemes 

rely on many assumptions about eukaryotic gene and species evolution that do not 

accurately reflect known biology. 

One of the few methods to focus on eukaryotic systems is described in 

in which a PPC method called Procom is presented. Procom works by 

determining the set of proteins in a given focus proteome that has a detected 

ortholog in every species classified as positive for a trait of interest and no 

detectable orthologs species classified as negative for the same trait of interest 

. An ortholog is detected if the BLASTP E-value of the best

given focus protein in a given reference proteome is less than the significance 
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cutoff value of 1E-10. Li and coworkers (LI et al. 2004) demonstrate the 

effectiveness of Procom by identifying and characterizing novel cilia proteins in 

the biflagellate, green alga Chlamydomonas reinhardtii (LI et al. 2004), in which 

the trait of interest is the presence or absence of cilia.  Homo sapiens is the species 

positive for the trait and Arabidopsis thaliana, an unciliated angiosperm, is the 

negative species. Procom was used to define the well-established Flagellar and 

Basal Body proteome (LI et al. 2004). Among many other cilia and basal body 

related proteins, Procom is responsible for the characterization of BBS5, a new 

Bardet-Biedl Syndrome disease gene. 

This chapter presents a new PPC method called APACE (Automated Protein 

Annotation by Coordinate Evolution) based on a novel similarity score 

normalization process and ortholog detection approach that automatically 

clusters proteins without requiring any additional profile comparison scheme. 

Our novel normalization function adjusts sequence similarity scores to equalize 

the evolutionary distance between a focus species and each reference species 

(Figure 4.1). Furthermore, the APACE is able to organize proteins into co-

evolving groups without any additional profile comparison scheme. 

 

4.2 The Approach 

In this section, the input to any PPC method is taken to be a set of N+1 proteomes 

consisting of a focus proteome P* and a set of N reference proteomes labeled P1,  



 

Figure 4.2 Different evolution

 

P2, …, PN. Proteome P* is made up of the appropriate number of individual 

proteins pi encoded by gene 

that is most similar in sequence to a given protein of interest 

hit to pi from Pj” and is denoted by 

pi and pij is quantified by a similarity score 

Orthologs are genes gj1 

a common ancestral gene 

species (Figure 4.2). Proteins encoded by orthologous genes are assumed to retain 

the same function in J as in 

mutate within a functionally equivalent sequence space. Paralogs 
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4.2 Different evolutions of orthologous and paralogous sequences

* is made up of the appropriate number of individual 

encoded by gene gi in genome G*. The protein in reference proteome 

that is most similar in sequence to a given protein of interest pi in P

” and is denoted by pij. The degree of sequence similarity between 

is quantified by a similarity score sij.  
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Figure 4.3 Protein evolution in terms of sequence and function space. 
proteins have function-specific spheres of 
determines the sequence space within which a protein may mutate and still retain the same 
function as the ancestral sequence.
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Protein evolution in terms of sequence and function space. 
specific spheres of equivalent function in function-sequence space, which 

determines the sequence space within which a protein may mutate and still retain the same 
function as the ancestral sequence. 

are genes that evolve from duplicate ancestral genes ga1 and ga2 

not retain the same function across species; that is, paralogs are free to evolve 

outside of their functionally equivalent sequence space (Figure 4.3). This 

relationship between orthologs and paralogs implies that protein pi

similar in sequence to an ortholog than to any other paralogous sequence in an 

arbitrary reference proteome Pj, which suggests that a superset of all orthologs to 
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over each of the N reference proteomes Pj. This set is a superset of 
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the orthologs of pi because not every Pj necessarily contains an ortholog of pi. In 

the case where a Pj does not contain an ortholog to pi, the best-hit pij would still be 

returned. Note that such cases are not necessarily handled correctly by reciprocal-

best-hit ortholog detection schemes. Orthologs can be extracted from a superset of 

best-hits provided that there is a way to separate orthologous best-hits from 

paralogous best-hits. 

The sequence, structure and function of a given protein are intimately 

related characteristics. Evolving proteins can be viewed as moving points within a 

sequence-function space in which every biological action performed by a protein 

defines an associated sphere of equivalent function.  In this space, perturbations 

in the sequence that do not result in a loss-of-function place an extant protein 

point within the functional sphere of the ancestral protein (Figure 4.3a). 

Perturbations in a sequence that greatly affect function place an extant protein 

point outside the functional sphere of the ancestral protein. To visualize this 

relationship we plot functionality against sequence space (Figure 4.3b). Proteins 

that occupy steep functionality curves cannot diverge significantly from a 

functional ancestral sequence without falling below some equivalency threshold of 

functionality (Figure 4.3b). Other genes encode proteins that can withstand 

greater degrees of perturbations will result in orthologs that mutate within a more 

relaxed sequence space (Figure 4.3c). In terms of functionality, functions with 

moderate sequence constraints allow for a larger variety of protein sequences to 

carry out equivalent function (Figure 4.3d). In such a case, there arise some 

sequences that result in conformations more functionally favorable than other 
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sequences, but as in the first case, at a certain point, the degree of functionality 

drops below some critical threshold and the original function is lost.  

Orthologs are proteins from different species that carry out the same 

function by remaining within the functional sphere of the common ancestral 

protein. Proteins under greater functional constraints likely have a lower tolerance 

to sequence perturbations than proteins under fewer constraints. This further 

reduces the degree of sequence space within which functionally equivalent 

orthologs can evolve. Paralogs, by contrast, are free to evolve outside this doubly 

constrained sequence space suggesting the assumption that, over the magnitudes 

of evolutionary time considered by our method, paralogous proteins have had 

ample opportunity to evolve into the wider sequence space and no longer occupy 

the same functional space. The sphere of equivalent function is specific to each 

individual protein; that is, different proteins evolve at different rates and perform 

functions that are tolerant of different degrees of perturbation. Thus, while one 

may define a cutoff similarity score for each protein individually, it is impossible 

to correctly define a universal cutoff similarity score for every protein. 

Evolutionary distance between the two source species and functional 

equality are the two principal factors that influence the degree of similarity 

between any two proteins. PPC methods rely on the accurate detection of 

functionally equivalent orthologs across many species. Therefore, a critical step in 

any PPC pipeline ought to be the normalization of similarity scores for the effects 

of different evolutionary distance. Proteins that are least tolerant of sequence 

perturbations are presumably the most functionally constrained. For these 
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proteins, we expect a high degree of inter-ortholog similarity and any observed 

dissimilarity is primarily a reflection of the evolutionary distance between the two 

source species. Following this rationale, sequence similarity scores of the most 

widely conserved proteins across multiple phyla have been used to infer branch 

lengths of the phylogenetic trees. Our method extends this rationale by equating 

the evolutionary distance between P* and each Pj as the average sij of the most 

widely conserved proteins in P* and each Pj. Our normalization determines a 

normalization factor rj for each reference proteome Pj that is inversely related to 

the distance between P* and Pj. The idea is to calculate an adjusted similarity 

score aij as the product of sij and rj, which equalizes the evolutionary distance 

between P* and every Pj (Figure 4.1).  

Orthologous sequences can be extracted from a set of best-hit sequences 

containing both orthologous and paralogous sequences by leveraging the 

observation that orthologs always evolve with a relatively more constrained 

sequence space; the orthologous best-hits can be distinguished from paralogous 

best-hits by their greater degree of similarity to the reference protein pi than 

paralogous best-hits. Discriminating orthologs from paralogs in a set of best-hits 

can be intuitively interpreted as a simple clustering problem. A best-hit set can be 

represented as a list of similarity scores for each pij for each Pj sorted in decreasing 

order of adjusted similarity according to aij, suggesting that the problem be solved 

by some flavor of k-means. The critical observation here is that the sorted 

similarity scores for every pi in P* will be a mixture of three classes of score 

distributions. Ideally, similarity scores from orthologous best-hits will form a 



 

Figure 4.4 Three classes of similarity score distributions in 1D and their 
corresponding 2D spreads
and the 2D spread has a distinct ortholog
forming a single high-scoring cluster and the 2D spread is roughly linear across the 
(c) Orthologs and paralogs are not easily distinguished in 1D while in the 2D spread an inflection 
point can still be detected. 
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Three classes of similarity score distributions in 1D and their 
2D spreads. (a) Orthologs form a distinct cluster of very similar sequences 

and the 2D spread has a distinct ortholog-paralog gap; (b) Orthologs exist across all species 
scoring cluster and the 2D spread is roughly linear across the 

(c) Orthologs and paralogs are not easily distinguished in 1D while in the 2D spread an inflection 

cluster of high scoring best-hits within the set (Figure 4.4a). Proteins that are 

conserved across all reference species are another class of score 

distributions that form a single cluster with similarity scores scattered over a 

 

Three classes of similarity score distributions in 1D and their 
(a) Orthologs form a distinct cluster of very similar sequences 

paralog gap; (b) Orthologs exist across all species 
scoring cluster and the 2D spread is roughly linear across the 2D spread; 

(c) Orthologs and paralogs are not easily distinguished in 1D while in the 2D spread an inflection 

4a). Proteins that are 

nce species are another class of score 

distributions that form a single cluster with similarity scores scattered over a 
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small range in a roughly uniform manner (Figure 4.4b). A third class of score 

distributions arise when proteins have orthologous and paralogous best-hits 

scores that are not as clearly defined as the ideal first class and yet not as 

uniformly distributed as the second class. This mixture of score distributions 

precludes an a priori determination of the requisite constant k for a k-means 

solution for all proteins in P* (Figure 4.4c). 

We propose a novel solution to this problem by defining a 2D “spread” for each 

list of 1D sorted scores. The 2D spread of any sorted list is constructed by 

introducing an axis of decreasing rank that is orthogonal to the native axis of real 

valued similarity scores (Figures 4.4d-f). The units on the new axis are the rank of 

the score within the scores for a given pi. Because any list of scores has an implicit 

ranking, the property used to cluster the scores is the inter-cluster versus intra-

cluster differences in 1D. Constructing the 2D spread of a list of scores translates a 

large difference between two scores into a line segment with a steep negative slope 

(Figure 4.4d) and a small difference between two scores into a line segment with a 

shallow negative slope and (Figure 4.4e). Thus, clusters of orthologs will form 

approximately linear sub-profiles that begin at the first rank position (leftmost 

position on the rank axis) in a 2D spread. The problem of determining whether a 

group of scores form a cluster in the 1D list as a whole can be reduced to 

determining the rank after which there is an inflection point in the 2D spread. Our 

method determines the appropriate inflection point by computing the second 

forward derivative of the 2D spread at every rank. To mitigate the effects of 

spurious noise in the spreads, the method takes the averaged second derivative 

over rank t, t+1 and t+2 as the smoothed second-forward derivative at t. The 
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Figure 4.6 The phylogenetic tree determined by APACE. A rendering of the phylogenetic 
tree of eukaryotes using FigTree (RAMBAUT 2007) constructed by FastME using interspecies 
distances computed based on the normalization factors rj as determined by the normalization 
phase of APACE. The normalization factors facilitate the quantification of previously unresolved 
branches (KEELING et al. 2005) and the resulting tree topologically recapitulates the composite 
deep eukaryote tree presented in (KEELING et al. 2005). Represented supergroups are ‘Unikonts’ 
(red), Plantae (green), Excavates (blue) and Chromalveolates (purple). 

 

determine an initial W* with unadjusted scores. Every rj is then reassigned the 

ratio of the average sij of every pi in W* for each Pj to some globally constant value 

(i.e. the unit branch length in the balanced star topology). Every aij of every 
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protein pi is then recalculated with the updated rj and the next iteration begins 

(Figure 4.5). Convergence is reached when the composition of W* remains 

unchanged or a maximum number of iterations has been reached. Empirically, 

convergence is reached within four iterations for the 29 eukaryotic test species 

analyzed in this study. After convergence is reached, the similarity scores are 

already appropriately adjusted to normalize evolutionary distance and the 

phylogenetic profile clustering of pi by the occurrence of functionally equivalent 

orthologs is performed using the inflection point analysis method described 

above. The profile of each pi is determined as the species from rank “1” down to 

and including the leftmost rank in the 2D spread with a smoothed second 

derivative greater than zero. Proteins that exhibit the same phylogenetic profile 

are predicted to have co-evolved, presumably to maintain functional 

compatibility. 

 

4.3 Results and Analysis 

APACE introduces two novel methods for its analyses of proteomic data 

from multiple eukaryotic species. The first is the normalization of similarity scores 

for differences in evolutionary distance between a focus proteome P* and each of 

the N reference proteomes Pj. Unlike conventional methods that normalize 

similarity scores based on branch lengths of phylogenetic trees constructed using 

a single gene or a small set of genes, APACE makes use of as many widely 

conserved proteins as possible in determining a species-specific normalization 
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factor rj that is inversely related to the evolutionary distance between P* and each 

Pj. In the current example of 29 species, the interspecies distances are computed 

based on approximately 1,600 highly conserved proteins, varying in a species 

specific manner. The second novel method introduced by APACE is in how 

orthologous sequences are detected from a superset of best-hit sequences from 

each of the reference species from the 2D spread of a list of best-hit similarity 

scores. To validate the normalization approach introduced by APACE, we ask 

whether the phylogenetic tree generated from the inverse values of APACE 

normalization factors is able to topographically recapitulate the unresolved, deep 

eukaryotic phylogeny tree recently presented in (KEELING et al. 2005). To 

demonstrate the flexibility and robustness of the novel ortholog detection and 

phylogenetic profile construction approach introduced by APACE, we present 

results of five analyses designed to identify proteins with specific functional 

classifications. First we present a small-scale example query comparing APACE to 

the method documented in (LI et al. 2005) for identifying proteins involved in 

cilia motility with distantly related species. We demonstrate the scalability of 

APACE in comparison with existing methods, we ask both APACE and Procom (LI 

et al. 2005) to identify a list of human proteins that have co-evolved in a large 

number of multicellular metazoan and plant species. We demonstrate the 

robustness of APACE against false positives when using small numbers of more 

closely related query species by focusing solely on the malaria causing 

Plasmodium falciparum and the toxoplamosis causing Toxoplasma gondii, both 

members of the Apicomplexa phylum (Figure 4.6) to identify proteins that are 

important to the life cycles of these pathological parasites. We demonstrate the 
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accuracy of APACE by comparing interaction predictions and experimentally 

determined co-crystallization pairs from the BioGRID database (STARK et al. 

2011). Finally, we directly demonstrate the ability of APACE to relate multiple 

proteins with dissimilar sequences by investigating whether APACE is able to 

predict cargo proteins of human RAB vesicular transport machinery. 

To validate our normalization procedure, we analyzed 29 eukaryotic 

organisms, which span multiple phyla and supergroups (KEELING et al. 2005). We 

construct a 29 by 29 matrix of distances from the average similarities rj as 

described in (FENG and DOOLITTLE 1997) and use the minimal evolution with 

ordinary least squares tree-building method FastME described in (DESPER and 

GASCUEL 2002) to build a tree from the distance matrix and compare our 

generated tree to a published composite tree (KEELING et al. 2005) (Figure 4.6). 

We confine our comparison to the gross topology because the tree in (KEELING et 

al. 2005) contains unresolved branches. A comparison shows that both trees 

share identical topology from the most general level (i.e. supergroups) down to the 

most specific level presented in (KEELING et al. 2005). The identical topologies of 

the generated tree and the reference tree indicate that our method successfully 

computes normalization factors for 29 widely divergent eukaryotic species. To test 

whether the topological identity is due to the strong bias in the 29 test species for 

species belonging to the ‘Unikonts’ supergroup (KEELING et al. 2005), we removed 

closely related species from metazoa leaving the same number of ‘Unikonts’ 

species as there are species from Plantae. The topological identity of the resultant 

“unbiased” tree remains unchanged (data not shown) and demonstrates that our 
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normalization method is robust against different species biases and sizes of 

different reference species sets. 

We evaluate our predictions by comparing APACE to Procom (LI et al. 

2005). We target C. reinhardtii proteins responsible for cilia motility in our 

comparison with Procom because one class of ciliopathies results from immotile 

cilia (e.g. primary cilia dyskinesia). For this demonstration, the focus species is C. 

reinhardtii; species with motile cilia that we include in our analysis are Homo 

sapiens, Danio rerio (zebrafish) and Physcomitrella patens (a moss) and species 

without motile cilia included in our analysis are Arabidopsis thaliana, 

Caenorhabditis elegans (nematode), Oryza sativa (rice) and Saccharomyces 

cerevisiae (yeast).  

Procom identifies 50 proteins in C. reinhardtii that have orthologs in all 

three positive species and none of the negative species and APACE identifies 65 

proteins that have coevolved in species considered. We find that APACE and 

Procom agree for 33 proteins; 21 have cilia related annotations. Ten of the 21 are 

known cilia proteins by mass spectroscopy of isolated cilia (PAZOUR et al. 2005), 

four were identified previously by Li et al. (LI et al. 2004) and the remainder are 

likely to be involved in cilia motility as they have mutant motility phenotypes 

(Table 4.1). The remaining eight proteins have no previous association with cilia 

or cilia motility. APACE identifies 32 proteins that are not in the Procom output 

(Table 4.1). Three-quarters (N=24) have existing ciliary or cilia motility 

associations; they include ODA7, recently implicated in primary ciliary dyskinesia 

(DUQUESNOY et al. 2009), and PF13, a chaperone of dynein arms (OMRAN et al. 
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2008). This group also includes a novel C. reinhardtii ortholog of human 

BLU/ZMYND10 which is a member of the chromosome 3p21.3 candidate tumor 

suppressor gene cluster (YAU et al. 2006), which may lend further support to the 

recent hypotheses of a role for cilia in cancer. Two proteins are completely novel 

with no existing annotations; none of the remaining six proteins identified 

exclusively by APACE are overtly unrelated to cilia motility (Table 4.1). Procom 

identifies 17 putative cilia motility proteins absent from APACE output.  Given 

existing annotations, about half (N=9) have existing ciliary or cilia motility 

associations, while the remaining eight proteins seem unlikely to be involved with 

cilia motility given existing annotations (Table 4.1). These results demonstrate 

that APACE is able to contribute novel characterizations of proteins that are 

complimentary to existing methods and that it identifies fewer known negatives 

than Procom (LI et al. 2004; LI et al. 2005). 

Table 4.1 Annotation of 82 Chlamydomonas cilia motility gene candidates 
 

Gene ID APACE Procom FAP FBB/MOT MUT Other 

c2_t817 x 
   

BUG21 
 

c15_t340 x 
   

DHC11 
 

merc07tr_126616 x 
   

DHC4 
 

c2_t684 x 
   

DHC5 
 

c2_t1137 x 
 

FAP106 
   

c12_t138 x 
 

FAP52 
   

c1_t1171 x 
  

FBB7 FBB7 
 

c14_t356 x 
   

IDA2 
 

c9_t632 x 
   

MBO2 
 

merc07tr_175396 x 
  

MOT45 
  

c1_t606 x 
   

ODA7 
 

c11_t206 x 
   

PF2 
 

c3_t444 x 
   

POC4 
 

c14_t408 x 
   

DHC7 
 

c3_t926 x 
     

c6_t636 x 
     

s18_t58 x 
     

c11_t128 x 
     

c12_t1305 x 
   

PF13 
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c16_t318 x 
     

c9_t63 x 
     

merc07tr_187155 x 
     

c1_t1271 x 
     

c8_t16 x 
    

ZMYND10 

c5_t31 x 
     

merc07tr_134599 x 
   

DHC6 
 

c3_t1260 x 
 

FAP57 
   

merc07tr_189109 x 
 

FAP59 
   

c14_t480 x 
 

FAP94 
   

c11_t321 x 
  

MOT17 
  

s83_t2 x 
  

MOT40 
  

c2_t1145 x 
   

PF16 
 

c12_t747 x x 
  

BOP5 
 

c3_t752 x x FAP146 
   

c3_t728 x x FAP147 
   

c10_t16 x x FAP178 
   

c3_t243 x x FAP184 
   

c9_t345 x x FAP198 
   

merc07tr_106450 x x FAP250 
   

c12_t374 x x FAP253 
   

merc07tr_154904 x x FAP263 
   

c16_t849 x x FAP73 
   

c7_t275 x x FAP82 
   

c7_t117 x x 
 

FBB10 
  

c8_t36 x x 
 

FBB11 
  

c16_t824 x x 
 

FBB18 
  

merc07tr_132143 x x 
 

FBB18 
  

c1_t1383 x x 
  

IDA7 
 

c1_t1343 x x 
 

MOT16 
  

merc07tr_176821 x x 
 

MOT4 
  

merc07tr_116240 x x 
    

c14_t191 x x 
  

PSL3 
 

c2_t371 x x 
   

RIB172 

c6_t876 x x 
  

RSP3 
 

c7_t369 x x 
  

RSP9 
 

c12_t670 x x 
   

SAS6 

c7_t489 x x 
  

TWI1 
 

c10_t248 x x 
    

c10_t748 x x 
    

c16_t509 x x 
    

c3_t541 x x 
    

c6_t864 x x 
    

merc07tr_117479 x x 
    

merc07tr_172110 x x 
    

c6_t645 x x 
  

VFL3 
 

c2_t389 
 

x 
   

CPLD42 

c2_t619 
 

x FAP100 
   

s22_t48 
 

x FAP116 
   

c12_t770 
 

x FAP194 
   

c2_t1144 
 

x FAP2 
   

c11_t319 
 

x 
 

FBB9 
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c6_t783 
 

x 
   

HBP1 

c9_t127 
 

x 
 

MOT39 
  

c17_t890 
 

x 
 

MOT47 
  

c10_t307 
 

x 
   

SMP10 

c12_t292 
 

x 
   

THY28 

c13_t572 
 

x 
    

c13_t574 
 

x 
 

FBB6 
  

c2_t1149 
 

x 
   

SAS10 

c6_t771 
 

x 
    

c6_t782 
 

x 
    

merc07tr_120200  x 
    

 
FAP: Identified by two or more peptides in direct proteomic study of Chlamydomonas cilia 
(PAZOUR et al. 2005) 
FBB/MOT: Previously associated to cilia by comparative genomics (LI et al. 2004; MERCHANT et 
al. 2007) 
MUT: Genes with mutant lines in Chlamydomonas or Mouse that show cilia defects 
Other: Annotations with no known cilia association 

 

Next, we compared APACE to Procom using 29 eukaryotic proteomes to 

identify human proteins that have orthologs in only multicellular species 

(Anopheles gambiae, Arabidopsis thaliana, Caenorhabditis briggsae, 

Caenorhabditis elegans, Ciona intestinalis, Danio rerio, Drosophila 

melanogaster, Gallus gallus, Mus musculus, Physcomitrella patens, Oryza 

sativa, Rattus norvegicus and Takifugu rubripes), but that are absent from 

unicellular species (Aspergillus nidulans, Chlamydomonas reinhardtii, 

Dictyostelium discoideum, Entamoeba histolytica, Leishmania braziliensis, 

Neurospora crassa, Ostreococcus tauri, Plasmodium falciparum, 

Saccharomyces cerevisiae, Tetrahymena thermophila, Toxoplasma gondii, 

Trypanosoma brucei and Trypanosoma cruzi) with the aim of identifying 

proteins that are essential for multicellularity. Our method identifies  
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55 proteins while Procom is unable to detect any proteins conserved in 

multicellular species exclusively (Table 4.2). Interestingly, the set identified by our 

method mostly consists of extracellular matrix degradation and regulatory 

proteins. The family of metalloproteinase is the most strongly represented group 

in the set (N=10) and have been implicated in multiple tissue remodeling of many 

physiological and pathological processes such as morphogenesis (WISEMAN et al. 

2003), angiogenesis (RUNDHAUG 2005), wound healing/tissue repair (GABISON et 

al. 2005), cirrhosis (LICHTINGHAGEN et al. 2001), arthritis (KONTTINEN et al. 1999) 

and metastasis (KURAHARA et al. 1999). The majority of other proteins identified 

contain transcription factor, signaling or transmembrane domains, potentially 

highlighting more specific functional subclasses that are integral for the 

development, maintenance and pathology of multicellular organisms (Table 4.2). 

 
Table 4.2 Fifty-five human multicellularity gene candidates predicted by APACE 

 

GENE NAME APACE PROCOM 

ENSG00000148584 A1CF x  

ENSG00000168397 ATG4B x  

ENSG00000183778 B3GALT5 x  

ENSG00000176022 B3GALT6 x  

ENSG00000109956 B3GAT1 x  

ENSG00000112309 B3GAT2 x  

ENSG00000149541 B3GAT3 x  

ENSG00000176383 B3GNT4 x  

ENSG00000108588 CCDC47 x  

ENSG00000113722 CDX1 x  

ENSG00000116254 CHD5 x  

ENSG00000095485 CWF19L1 x  

ENSG00000008283 CYB561 x  

ENSG00000134698 EIF2C4 x  

ENSG00000139641 ESYT1 x  

ENSG00000117868 ESYT2 x  

ENSG00000205318 GCNT6 x  

ENSG00000120251 GRIA2 x  

ENSG00000164418 GRIK2 x  

ENSG00000125944 HNRNPR x  
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ENSG00000197576 HOXA4 x  

ENSG00000170166 HOXD4 x  

ENSG00000121774 KHDRBS1 x  

ENSG00000131773 KHDRBS3 x  

ENSG00000140950 KIAA1609 x  

ENSG00000179528 LBX2 x  

ENSG00000166670 MMP10 x  

ENSG00000110347 MMP12 x  

ENSG00000137745 MMP13 x  

ENSG00000102996 MMP15 x  

ENSG00000156103 MMP16 x  

ENSG00000198598 MMP17 x  

ENSG00000008516 MMP25 x  

ENSG00000137675 MMP27 x  

ENSG00000149968 MMP3 x  

ENSG00000118113 MMP8 x  

ENSG00000112664 NUDT3 x  

ENSG00000173598 NUDT4P1 x  

ENSG00000147162 OGT x  

ENSG00000185129 PURA x  

ENSG00000151962 RBM46 x  

ENSG00000133135 RNF128 x  

ENSG00000082996 RNF13 x  

ENSG00000113269 RNF130 x  

ENSG00000108523 RNF167 x  

ENSG00000133318 RTN3 x  

ENSG00000141485 SLC13A5 x  

ENSG00000100678 SLC8A3 x  

ENSG00000121067 SPOP x  

ENSG00000144228 SPOPL x  

ENSG00000167881 SRP68 x  

ENSG00000135316 SYNCRIP x  

ENSG00000176769 TCERG1L x  

ENSG00000170638 TRABD x  

ENSG00000103489 XYLT1 x  

 

We identify synapomorphic proteins specific to the Apicomplexa phylum 

to evaluate the robustness of our algorithm to small numbers of closely related 

query species. APACE identifies 650 genes from the malaria-causing organism, 

Plasmodium falciparum that have co-evolved exclusively with Toxoplasma 

gondii. The RMgm database (RMgmDB) is a repository of P. falciparum genes 

that researchers have attempted to disrupt and records observed parasite 

lifecycle phenotypes that result (JANSE et al. 2011). RMgmDB documents gene 
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disruption attempts have been made on genes encoding only 28 of the 650 

proteins predicted by APACE as essential for Apicomplexa species. Twenty of the 

28 attempts were successful and 16 of these have severe lifecycle phenotypes, 

which translates to a sensitivity measure of 80% (16/20) (Table 4.3). In contrast, 

the entire RMgmDB database consists of 213 genes that have been selected by 

experimental researchers as potential targets for disruption, of which 152 have 

been successfully knocked out (JANSE et al. 2011). Lifecycle disruption is observed 

for 119 out of 152 successful gene perturbations or a sensitivity of 78% (119/152) 

and indicates that, of the tested genes, APACE identifies a set that is comparably 

enriched for essential Apicomplexa lifecycle genes to human selection and 

demonstrates a potentially powerful new application of PPC computational 

methods for effective, automated drug target discovery. 

Table 4.3 Lifecycle phenotypes of 28 disrupted P. falciparum genes 

Gene Lifecycle stage Phenotype 

MAL13P1.301 Fertilization/Ookinete 
Ookinetes unable to penetrate walls of 
mosquito midgut wall cells; motility of 
ookinetes reduced by 90%. 

PF14_0672 Fertilization/Ookinete 
>94% reduction in oocyst development from 
ookinetes. 

PF11_0147 Fertilization/Ookinete 
Male gametocytes cannot produce gametes; 
no fertilization. 

PFI1145w Fertilization/Ookinete 
No oocysts formed; ookinetes cannot invade 
midgut epithelial cells in mosquitoes. 

PFD0430c Liver stage Reduced infectivity 

PFF1420w Liver stage 
90% reduction in infectivity of sporozoites in 
liver. 

PF14_0723 Oocyst Sporozoite formation in oocyst is blocked. 
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PFA0260c Oocyst Sporozoite formation in oocyst is blocked. 

PFC0495w Oocyst Sporozoite formation in oocyst is blocked. 

PFL1315w Oocyst >98% reduction of infectivity in mosquitoes. 

PF14_0067 Oocyst Sporozoite formation in oocyst is blocked. 

PF14_0532 Oocyst Sporozoite formation in oocyst is blocked. 

MAL7P1.92 Sporozoite 
Sporozoites do not invade mosquito salivary 
gland; cannot transmit to host. 

PFI0550w Sporozoite 
Sporozoites do not invade mosquito salivary 
gland; cannot transmit to host. 

PF14_0346 Sporozoite Not infectious in host. 

PF13_0201 Sporozoite >97% reduction of infectivity in mosquitoes. 

PFE1340w N/A No phenotype described 

PFE0825w N/A No phenotype described 

PFC0166w N/A No phenotype described 

PF13_0289 N/A No phenotype described 

PF11_0381 N/A Gene modification not successful 

PF14_0495 N/A Gene modification not successful 

PFE0165w N/A Gene modification not successful 

PF11_0395 N/A Gene modification not successful 
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PFL1370w N/A Gene modification not successful 

PF08_0108 N/A Gene modification not successful 

PFE0870w N/A Gene modification not successful 

PFE0340c N/A Gene modification not successful 

 

To further evaluate the ability of APACE to identify proteins in a functional 

context, we compare interacting protein partners in Saccharomyces cerevisiae as 

evidenced by co-crystallization data in the Biological General Repository for 

Interaction Databases (BioGRID) (STARK et al. 2011). Co-crystallization of two 

proteins is the gold-standard experimental evidence for the direct binding 

interaction of the proteins involved. To measure sensitivity and specificity of 

APACE, it is necessary to define a negative set of S. cerevisiae protein interaction 

pairs. A single, replicable instance of an interaction is sufficient to establish a 

positive protein pair. We define a known positive test set using the 245 proteins 

pairs with co-crystallization evidence in BioGRID. A negative interaction pair can 

only be defined using two proteins that do not interact directly under any 

circumstance. Therefore, in order to establish a negative protein pair with 

absolute certainty one would have to test every possible experimental condition 

and environment for the interaction in question, which is infeasible. We address 

this negative test set problem by adopting the definition of negative interaction 

provided in Barker et al. (BARKER et al. 2007) where each protein of a given pair 

have well established functions in unrelated biological processes and are 
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therefore presumably unlikely to interact with one another. In total, this results 

in 450,000 negative protein interaction pairs from the 6,700 proteins that make 

up the S. cerevisiae proteome (BARKER et al. 2007). Overall sensitivity of APACE 

is 47%, in contrast to the 0% of the method by Barker et al. (BARKER et al. 2007). 

The specificity of APACE is 92%, similar to the 97% of Barker et al. (BARKER et al. 

2007) (Table 4.4). 

Table 4.4 Comparing APACE and Barker on co-crystallization data 
 

 Sensitivity Specificity 

APACE 47% 92% 

Barker et al. 0% 97% 

 
Known positives (N=245): S. cerevisiae proteins that have co-crystallization data in BioGRID. 
Known negatives(N=450,000): S. cerevisiae proteins predicted to not interact (BARKER et al. 
2007). 

 

The Rab family of proteins helps sort different protein cargo in the cell. 

One of the greatest advantages of a successful PPC method over conventional 

protein family methods is that PPC methods are capable of capturing associations 

between groups of interacting proteins that have dissimilar amino acid sequences 

(Figure 4.7). We test the ability of APACE to relate dissimilar proteins by 

searching for non-Rab human proteins that have co-evolved with Rab proteins to 

see if there is a functional enrichment in this set. We found that 57 Rab proteins 

exhibit 38 unique conservation profiles and that of the 38 conservation profiles, 

nine are shared by more than one Rab protein. APACE associates Rab6A, 

Rab11A, Rab11B, Rab35 and Rab41 with 137 non-Rab proteins, which are 
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enriched for cytokinesis annotations. Hence, APACE suggests that these Rabs are 

involved in cytokinesis of cells. 

 

4.4 Summary 

In this chapter, we describe a new, scalable method, APACE, for the 

characterization of proteins by their common phylogenetic profile through a new, 

effective PPC approach that does not require orthologous and paralogous proteins 

to be identified in a preprocessing step.  Furthermore, our method is able to avoid 

the use of alignment significance cutoffs to distinguish orthologs from paralogs.  

Instead, the method recognizes that the set of best-hits to a protein of interest will 

always be a superset of the orthologs to that protein. The task of distinguishing 

ortholog from paralog in a set of best-hits for every protein in a proteome reduces 

to a k-means clustering problem where k cannot be determined a priori.  Our 

method uses a novel clustering method that redistributes similarity scores in one 

dimensional space onto a second dimension to separate orthologs and paralogs 

within a best-hit protein set.  We demonstrate that the method is able to 

determine interspecies evolutionary distances that corroborate the most recent 

deep eukaryotic phylogenies, that our approach can successfully detect a set of 

proteins involved in cilia motility that compliments existing approaches, that our 

method can be applied to larger problem spaces where existing methods often fail, 

that our approach is robust to closely related species and is comparable to human 

selection for drug target discovery in Apicomplexa, that APACE is more sensitive 
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than existing methods in identifying interacting protein pairs and that APACE is 

successful at associating multiple proteins with highly dissimilar amino acid 

sequences. The online submission form for APACE can be found at 

http://bifrost.wustl.edu/APACE. 
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Chapter 5 

Whole-transcriptome sequencing reveals an 

early ciliogenesis gene program 

 

5.1 Introduction 

Cilia are complex organelles protruding out from virtually all cell types in 

the human body. Cilia dysfunction has both physiological implications, such as 

renal cysts, hepatobiliary disease, cognitive impairment, retinal degeneration, 

obesity and skeletal bone defects, as well as developmental effects, including 

laterality defects, polydactyly, agenesis of the corpus callosum and posterior fossa 

defects (FLIEGAUF et al. 2007; TOBIN and BEALES 2009). Abnormal formation or 

function of these structures has been implicated as an underlying cause of many 

syndromes and disorders that have traditionally been recognized as disjoint 

conditions. The list of recognized ciliopathies continues to grow and currently 

include Bardet-Biedl syndrome (BBS), Meckel syndrome (MKS), Joubert 
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syndrome (JBTS), Nephrophthisis (NPHP), Senior-Løken syndrome (SLSN), 

Jeune syndrome (JATD), Oro-facial-digital syndrome type 1 (OFD1), Ellis van 

Creveld syndrome (EVC), Alström syndrome (ALMS), primary ciliary dyskinesia 

(PCD), and polycystic kidney disease (PKD) (FLIEGAUF et al. 2007; TOBIN and 

BEALES 2009). Furthermore, mutations in cilia disease genes tend to result in 

multisystemic abnormalities in multiple organisms and indicate a conserved, 

pervasive reliance of many physiological and developmental processes on the 

proper synthesis and function of cilia (TOBIN and BEALES 2009). The 

identification, characterization and implication of human ciliopathy disease 

genes has greatly benefited from their study in model organisms such as the 

green alga Chlamydomonas reinhardtii (PAZOUR and WITMAN 2009), the 

nematode Caenorhabditis elegans (EFIMENKO et al. 2006), and mouse 

(OSTROWSKI et al. 2002).  

In this study, we take advantage of the fact that transcript abundance of 

most genes that encode known cilia components are greatly increased in 

Chlamydomonas during ciliogenesis. Chlamydomonas is a unicellular, green 

alga with genetics similar to yeast except it has two cilia that are highly similar to 

cilia found in humans. Chlamydomonas is an ideal model organism for transcript 

abundance based cilia gene detection because ciliogenesis can be induced by pH-

shock. When environmental pH is precipitously dropped, Chlamydomonas cells 

shed their cilia and ciliogenesis begins immediately once environmental pH is 

restored. The specific transcriptional induction of genes encoding many known 

cilia components during ciliogenesis have been widely reported and further 
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underscore the efficacy and potential advantages of using Chlamydomonas as a 

model organism to study cilia and ciliogenesis (PAZOUR and WITMAN 2009). In 

this work, we use the v4 Chlamydomonas genome assembly (MERCHANT et al. 

2007) and gene models predicted on that assembly by the GreenGenie2 

Chlamydomonas genefinder (Chapter 3) to present results of the first whole-

transcriptome next-generation sequencing of Chlamydomonas reinhardtii 

during ciliogenesis. 

This approach is complementary to direct proteomic results (PAZOUR et al. 

2005) because it probes the entire transcriptome during ciliogenesis as a whole, 

thereby facilitating not only the detection of genes that encode products present 

in the mature cilium, but also the proteins that, while not intrinsic to the mature 

organelle, are essential for the initiation and regulation of ciliogenesis and cilia 

function. Our results also complement existing comparative genomics methods 

that have been applied to defining the complete cilia gene catalog. Comparative 

genomics methods must discard genes that have an adequate degree of 

conservation in a non-ciliated species. This policy is necessary to reduce the 

number of false positive genes that are conserved across ciliated species to 

conserve related traits or processes that are not specific to cilia (e.g. transcription 

or mitosis) (KWAN et al. 2010; LI et al. 2004; MERCHANT et al. 2007). Whole-

transcriptome next-generation sequencing does not depend on gene conservation 

patterns and will compliment comparative genomics methods because of its 

capacity to include genes that are conserved in non-ciliated organisms but remain 



93 

 

essential for proper cilia biogenesis, structure and function (e.g. tubulins, 

kinesins).  

 

5.2 Results 

5.2.1 RNAseq generates reliable transcriptome-wide ciliogenesis 

dataset  

Illumina sequencing of mRNA isolated from pre-shock, 3, 10, 30 and 60 

minutes into ciliogenesis produced a total of 99.4 million 36-mer single-end 

reads, for an average of 19.9 million reads per timepoint sample. This equates to 

3.58Gb or a 32-fold coverage of the 112Mb Chlamydomonas genome. TopHat 

(TRAPNELL et al. 2009) was used to align the reads onto the Chlamydomonas v4 

genome assembly (MERCHANT et al. 2007) and Cufflinks (TRAPNELL et al. 2010) 

was used to compute expression levels of 11,315 GreenGenie2 assembly v4 gene 

models (KWAN et al. 2009) with the default settings except for a maximum false 

discovery rate set at 1E-5. Expression values calculated by Cufflinks are reported 

in terms of fragments per kilobase transcribed per million reads mapped (FPKM) 

(TRAPNELL et al. 2010). In five independent sets of RNAseq sequencing (pre-

shock, 3, 10, 30 and 60 minutes), ~83% of RNAseq reads align to the v4 

Chlamydomonas genome assembly and 98% of GreenGenie2 predicted models 

show detectible expression in at least one timepoint sample. Any gene with a 

timepoint to pre-shock expression value ratio of 2.5 or greater is considered an 
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up-regulated gene. In total, there are 1400 predicted genes that are up-regulated 

at one or more timepoints (Appendix B). We find that most (83.1%; N=1163) 

genes are up-regulated by four to sixteen fold, the maximum fold-change ranges 

from our lower limit of 2.5 times basal levels to as much as 147 times basal level 

(Figure 5.1). 

Figure 5.1 Distribution of maximum fold-change values 

 

To evaluate the reliability of our data, we combine the qRT-PCR data from 

two previous studies to define a reference expression dataset of 201 genes that 

are up-regulated (N=91), down-regulated (N=29), or showed no change (N=81) 

when measured at the reference timepoint of 30 minutes by quantitative real-

time RT-PCR (qRT-PCR) (LI et al. 2004; PAZOUR et al. 2005). Sensitivity is the  
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Table 5.1 Peak timepoint of 1400 up-regulated genes 

Timepoint 

Genes that 
show  
peak 

expression 
(N) 

Genes that 
show  
peak 

expression 
(%) 

3-minute 77 5.5% 

10-minute 576 41.1% 

30-minute 362 25.9% 

60-minute 385 27.5% 

TOTAL 1400 100.0% 

 

proportion of reference up-regulated genes that are detected as such by RNAseq. 

We find that our RNAseq data are in agreement with 81 of 91 reference up-

regulated genes, which equates to a sensitivity of 89.0%. Specificity is the 

proportion of reference genes that are not up-regulated, which are measured as 

such in the RNAseq data. We find that our RNAseq data agree with reference 

genes that do not show up-regulation in 97 out of 101 instances, which indicates a 

specificity of 96.0%. Given that all samples are from the same starting population 

and that they each underwent the same conditions and treatments, these 

performance results can be extended to all other recorded timepoints. We looked 

at the breakdown of peak expression in our timeseries to find that 5.5% (N=77) of 

up-regulated genes show peak abundance at the 3-minute timepoint, 41.1% 

(N=576) peak at the 10-minute timepoint, 25.9% (N=362) peak at the 30-minute 

timepoint, and the remaining genes (27.5%; N=385) peak at the 60-minute 

timepoint (Table 5.1). 
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Table 5.2 Distribution of 1400 up-regulated genes in 16 expression patterns 

 

Per 
pattern 
(N) 

Per 
pattern 
(%) 

Per 
group 
(N) 

Per 
group 
(%) 

Arch1 446 31.9% 543 
 

38.8% 
 Arch2 97 6.9% 

Stag-3 68 4.9% 
497 

 
35.5% 

 
Stag-10 71 5.1% 

Stag-30 170 12.1% 

Stag-60 188 13.4% 
 

127 
 

 
9.1% 

 

Pulse-3 55 3.9% 

Pulse-10 43 3.1% 

Pulse-30 29 2.1% 

UT1 34 2.4% 

110 
 

7.9% 
 

UT2 28 2.0% 

UT3 28 2.0% 

UT4 11 0.8% 

UT5 9 0.6% 

Hump1 50 3.6% 76 
 

5.4% 
 Hump2 26 1.9% 

Ambiguous 36 2.6% 36 2.6% 

Outliers 11 0.8% 11 0.8% 

TOTAL 1400 100.0% 1400 100.0% 

 

5.2.2 Timeseries analysis reveals early ciliogenesis regulation 

programs 

We performed principal expression profile discovery by adapting the 

method from Brady et al. (BRADY et al. 2007) to determine a set of principal 

regulation profiles for genes that are up-regulated during the first 60 minutes of 

cilia regeneration in Chlamydomonas. All 1400 profiles (Appendix B) were 

included in the profile discovery process and 16 principal regulation profiles are 

identified. Note that this is significantly smaller than the 81 (that is, three 

possible outcomes for each measured timepoint, or 34) profiles that are 
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mathematically possible over four timepoints. The most common principal 

expression profile is Arch1 and represents 31.9% (N=446) of up-regulated genes 

(Table 5.2). This profile is shaped like an arch (Figure 5.2A). The second most 

common principal expression profile is the pattern Stag-60 (N=183; 13.4%) 

(Table 5.2), which shows no measurable up-regulation until an increase in mRNA 

abundance at the 60-minute mark (Figure 5.2B). A similar expression pattern is 

observed as the third most common principle expression profile, Stag-30 

(N=170; 12.1%) (Table 5.2). Stag-30 exhibits no significant up-regulation until 30 

minutes. This elevated transcript abundance is sustained through the 60-minute 

timepoint (Figure 5.2B). The fourth most common profile is Arch2 (N=97; 

6.9%)(Table 5.2), which is another arch-like pattern (Figure 5.2A). The fifth most 

common principal expression profile is Stag-10 and is another delayed profile 

that first shows significant up-regulation at 10 minutes (N=71; 5.1%)(Table 5.2),  

Figure 5.2 Sixteen principal expression profiles shown in pattern groups 
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which is sustained. The sixth most common profile is Stag-3 (4.9%; N=68)(Table 

5.2), the 3-minute analog of the three other principal expression profile that 

completes the Staggered pattern group (Figure 5.2B). The remaining 35.7% (N= 

360) up-regulated genes are categorized into three pattern groups: pulse, up-tick 

(UT) and hump (Figures 5.2C-E). We observe pulse patterns for 9.1% (N=127) of 

the up-regulated genes (Table 5.2). This pattern group is characterized by a 

significant up-regulation event at only one timepoint. We observe a pulse pattern 

at each of the 3-minute (Pulse-3), 10-minute (Pulse-10) or 30-minute (Pulse-30) 

timepoints (Figure 5.2). We note that a fraction of up-regulated genes categorized 

as Stag-60 may actually exhibit a 60-minute pulse if further data were gathered 

at later timepoints. However, extrapolating from the relative proportions of 

Pulse-30 and Stag-30 group sizes (17.1%; N=32), we expect a similar proportion 

of genes in Stag-60 belong to a hypothetical Pulse-60 expression profile. UT 

patterns make up 7.9% (N=110) of up-regulated genes (Table 5.2) and can be 

further sub-divided by the timepoint of the up-tick (Figure 5.2D). Finally, hump 

patterns make up 5.4% (N=76)(Table 5.2) and are profiles that are pulse-like but 

significant up-regulation is sustained over two consecutive timepoints (Figure 

5.2E). Of the remaining fraction, 2.6% (N=36) have profiles that are equally 

similar to more than one principal expression profile and 0.8% (N=11) show 

profiles that are outliers in that their profiles are not adequately similar to any 

principal expression profile found in this analysis (Table 5.2; Section 5.5.2). 
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5.2.3 RNAseq further supports existing comparative genomics 

predictions 

Comparative genomics methods organize genes by patterns of 

conservation (KWAN et al. 2010). Several groups have used different ciliated and 

non-ciliated species in comparative genomics studies with the aim of identifying 

new human ciliopathy genes in Chlamydomonas and other organisms (AVIDOR-

REISS et al. 2004; EFIMENKO et al. 2005; KWAN et al. 2010; LI et al. 2004; 

MERCHANT et al. 2007; OSTROWSKI et al. 2002). Li et al. identifies 

Chlamydomonas cilia genes as those also present in human, but absent from the 

non-ciliated Arabidopsis thaliana (LI et al. 2004). Merchant et al. distinguish 

Chlamydomonas cilia genes as those also present in both human and a ciliated 

fungus (Phytophthora), but absent from non-ciliated organisms (MERCHANT et 

al. 2007). We also apply the method described previously in (KWAN et al. 2010) 

to predict Chlamydomonas cilia genes as those conserved in Homo sapiens 

(human), Mus musculus (mouse) and Danio rerio (zebrafish), but absent from 

Arabidopsis thaliana, Saccharomyces cerevisiae and Oriza sativa (rice) (KWAN 

et al. 2010). Combining the predictions from these three methods takes 

advantage of complementary strengths that exist between each method and the 

species they use. Taken together, the three comparative genomics methods 

identify 646 putative cilia genes. Existing qRT-PCR and proteomic results (LI et 

al. 2004; PAZOUR et al. 2005) provide experimental support for 149 of the 646 

(23.1%) putative cilia genes and our early timepoint RNAseq data supports 123 of 

the 149 (82.6%).  
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Furthermore, RNAseq provides novel support for an additional 74 (11.5%) 

of the 646 Chlamydomonas genes with human homologs identified by 

comparative genomics, but lacked supporting qRT-PCR or proteomic evidence in 

Chlamydomonas cilia. We divide this set of genes into five broad categories 

based on their existing annotation in relation to cilia, human disease or mutant 

phenotypes (Table 5.3). The different groups consist of genes that are known 

from studies in other organisms to associate directly with cilia (N=12), genes that 

have prior evidence of associating with genes that are themselves cilia related or 

that are associated with recognized ciliary diseases (N=8), genes that have been 

implicated in diseases or mutant phenotypes with no known ciliary basis (N=7), 

genes that have no known function or cilia involvement (N=13) and genes that 

have known functions with no known connection to cilia (N=34) (Table 5.3). The 

genes that have been reported as cilia related in other organisms include ones 

that have been implicated in defective hedgehog signaling (ARL13B) (CASPARY et 

al. 2007), Bardet-Biedl Syndrome (BBS4 and BBS7)(NACHURY et al. 2007), 

structural genes (DNAH8, DNAL4, DYNLT1, TUBA1A, SEPT7 and TTLL9)(KUBO 

et al. 2010; TANNER et al. 2008), Primary Ciliary Dyskinesia 

(LRRC50)(DUQUESNOY et al. 2009; LOGES et al. 2009), defective murine 

spermatogenesis (PACRG)(LORENZETTI et al. 2004) and Sensenbrenner 

syndrome or cranioectodermal dysplasia (WDR35)(GILISSEN et al. 2010; MILL et 

al. 2011). Genes that have prior evidence of associating with genes that are 

themselves cilia related or that are associated with recognized ciliary diseases 

include genes that are involved in Joubert Syndrome (AASDHPPT), cilia 

formation (CEP164 and TTLL3)(GRASER et al. 2007; PATHAK et al. 2011; WLOGA 
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et al. 2009), basal body assembly (MORN1)(LORESTANI et al. 2010), 

spermatogenesis (PHPT1 and SPATA4)(KAMATH et al. 2010; WANG et al. 2011), 

cystic kidney disease (PIH1D1)(INOUE et al. 2010) and adult onset obesity and 

retinal degeneration in mice (TUB)(STOLC et al. 2005).  

Genes that have been implicated in diseases or phenotypes with no known 

connection to cilia are involved in carotid artery calcified plaque or CarCP 

(ABCA3 and CACNA1H), autism (CACNA1H), dyslexia (DYX1C1), interacting 

with NUDT9 (GLOD4), lysosomal storage disease or Sanfillipo Syndrome (GNS), 

neuronal degeneration (INPP4A) and the short-limb dwarf mouse phenotype 

(NPR2). Two genes found to associate with carotid artery calcified plaque are up-

regulated. ABCA3 is a lipid transporter and CACNA1H is a calcium channel T-

type, which are also associated with surfactant transport in the lung, one role of 

cilia in that organ. DYX1C1 is associated with dyslexia (CURRIER et al. 2011) and 

up-regulated by about 8-fold during ciliogenesis, which may suggest a potential 

cilia role in the condition. INPP4A is up-regulated about 9-fold and has been 

associated with neuronal degeneration (SASAKI et al. 2010). The short limb dwarf 

mouse has mutations in the guanylate cyclase natriuretic peptide receptor 2 

(NPR2)(TSUJI and KUNIEDA 2005), which traffic to chemosensory neurons in C. 

elegans for dauer formation (FUJIWARA et al. 2010; HALLEM et al. 2011; HUME et 

al. 2009; JENSEN et al. 2010). Genes with annotated functions but no obvious 

cilia connection include ankyrins (ANK1 and ANK2), calcium-channels 

(CACNA1G, CACNA1I), cystein conjugate-beta lyase 2 found to associate with 

mitochondria (CCBL2), potassium voltage-gated channels (KCNB2 and KCNJ1), 
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kinesins (KIF5B, KIF6 and KIF9), a Lamin B receptor (LBR), a guanylate cyclase 

(NPR1), Golgi association (SEC14L5 and SEC22A), ubiquitination or ubiquitin 

association (SKP1, UBFD1 and UBXN1) and also a tumor suppressor (VWA5A). 

Finally, of the 13 genes that have no known function and no known cilia 

connection, one is a tumor suppressor (ZMYND10) six have shown preferential 

expression in ciliate tissues (CXorf41, LRRC6, SLC25A32, TEX9, ZMYND10 and 

ZNF474).  

 

Table 5.3 Annotation of 78 Human homologs of cilia gene candidates in 
Chlamydomonas previously identified by comparative genomics sorted on pattern 

 

CILIARY GENES (N=12) 

GENE log2(maxFC) PATTERN DESCRIPTION DEFECTS 

BBS4 2.00 Arch1 Bardet-Biedl Syndrome 
Obesity, retinal 
degeneration, 
kidney disease1 

DNAL4 3.42 Arch1 
Axonemal dynein light 
chain 

Chlamydomonas 
Dynein Light Chain 
LC10/DLL3/oda122 

DYNLT1 2.78 Arch1 
Axonemal dynein light 
chain TcTex type 

Chlamydomonas 
Inner dynein arm 
I1; TcTex1/DLT3 

PACRG 2.71 Arch1 
Parkin coregulated; 
sperm morphogenesis 

Mouse 
spermatogenesis 
defective3 

TUBA1A 2.97 Arch1 Tubulin  

WDR35 3.01 Arch1 IFT121 

Sensenbrenner 
syndrome: 
Cranioectodermal 
dysplasia4,5 

ARL13B 3.37 Arch2 Ciliary / mouse mutant 
Defective hedgehog 
signaling6 

LRRC50 4.43 Arch2 
Axonemal dynein 
chaperonin, ODA7 

Primary Ciliary 
Dyskinesia7,8 
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TTLL9 3.52 Arch2 
Tubulin tyrosine ligase 
like 

Inner dynein arm 
motility in 
Chlamydomonas 

BBS7 2.08 Stag-10 Bardet-Biedl Syndrome 
Obesity, retinal 
degeneration, 
kidney disease1 

DNAH8 2.34 Stag-10 
Axonemal dynein heavy 
chain 

Chlamydomonas 
Outer arm dynein 

heavy chain γ 

SEPT7 1.96 Stag-30 Ciliary diffusion barrier 
siRNA tissue 
culture9 

ASSOCIATION WITH CILIARY DISEASE OR OTHER CILIARY 
PROTEINS (N=8) 

GENE log2(maxFC) PATTERN DESCRIPTION DEFECTS 

MORN1 2.90 Arch1  
Defective in basal 
body assembly in 
Toxoplasma10 

PIH1D1 2.54 Arch1 PIH1 domain 

Part of prefoldin 
complex  (R2TP)  
RuvB1 and RuvB2 
Reptin (RuvB2) is 
implicated in cystic 
kidney disease in 
zebrafish.  
Assembly factor in 
sea urchin11 

TTLL3 3.40 Arch1 
Tubulin monoglycase 
TTLL3 

Short cilia in 
zebrafish12,13 

TUB 1.53 Arch1 Tubby 

Adult onset obesity  
and retinal 
degeneration in 
mice14 

CEP164 2.2 Pulse-30 Centrosomal protein 
Primary cilia 
formation15 

PHPT1 2.88 Stag-30 
Phosphohistidine 
kinase 

Highly expressed in 
testis 
Dephosphorylates 
ATP-Citrate lyase16 

(See Table 5.4) 

SPATA4 3.2 UT3 
Spermatogenesis 
associated 

Spermatogenesis 
associated 
/osteoblast 
differentiation17 

AASDHPPT 1.54 Ambiguous LYS5 
Joubert syndrome 
with pipecolic 
acidemia 

IMPLICATED IN DISEASES OR MUTANTS NOT KNOWN TO HAVE 
CILIARY BASIS (N=7) 

GENE log2(maxFC) PATTERN DESCRIPTION DEFECTS 
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GLOD4 1.97 Arch1  

Down-regulated in 
RPGRORF15 and 
interacts w/ 
NUDT9 

INPP4A 3.13 Hump1 
Inositol polyphosphate-
4-phosphatase, type I 

Neuronal 
degeneration 

DYX1C1 2.97 Hump2  Dyslexia 

GNS 1.46 Hump2 
Glucosamine (N-acetyl) 
6 sulfatase 

Lysosomal storage 
disease; 
Sanfillipo 
syndrome 

NPR2 2.22 Pulse-3 Guanylate cyclase 
Short limb dwarf 
mouse 

CACNA1H 1.40 Pulse-10 
Calcium channel; T 
type 

Carotid artery 
calcified plaque 
(CarCP) 
Autism 

ABCA3 2.13 Stag-30 Lipid Transporter 
Carotid artery 
calcified plaque 
(CarCP) 

KNOWN FUNCTION BUT NO KNOWN CILIARY CONNECTION 
(N=32) 

GENE log2(maxFC) PATTERN DESCRIPTION DEFECTS 

CACNA1G 3.01 Arch1 Calcium channel  

CYP4X1 3.31 Arch1 Cytochrome P450  

DNAJC27 3.11 Arch1 Chaperonin  

GYLTL1B 2.68 Arch1 
Glycosyltransferase like 
1B 

Paralog of LARGE 
mouse mutant 

KIF6 2.34 Arch1 Kinesin  

LBR 1.67 Arch1 Lamin B receptor  

RHBG 6.25 Arch1 Rh family glycoprotein 
ammonium 
transport 

VWA5A 5.11 Arch1 
BCSC-1/tumor 
suppressor 
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KCNB2 2.88 Arch2 
Potassium voltage 
gated channel 

 

KIF9 3.36 Arch2 Kinesin  

SEC14L5 2.06 Arch2  Golgi/No function 

NPR1 1.92 Pulse-3 Guanylate Cyclase  

PEF1 1.44 Pulse-3 Penta EF hand ER folding 

CACNA1I 2.26 Pulse-10 Calcium channel  

TMEM65 1.50 Pulse-30 
Transmembrane 
protein 

 

KCNJ1 3.22 Stag-3 
Potassium voltage 
gated channel K+ efflux 
pathway 

 

PDE4C 2.21 Stag-3 Phosphodiesterase  

PSMD10 4.00 Stag-3 
Non-ATPase regulatory 
subunit 

Proteosome 
 

ANK1 3.12 Stag-10 Ankyrin1  

ANK2 2.99 Stag-10 Ankyrin2  

PLA2G7 3.14 Stag-10 Phospholipase A2 
Arachidonic acid 
pathway 

HCCS 2.61 Stag-30 
Holocytochrome C 
synthase 

Mitochondria 

RBM45 1.87 Stag-30 RNA binding protein Deubiquinitation 

SEC22A 1.81 Stag-30 SNARE Golgi 

SKP1 1.52 Stag-30 
S phase kinase 
ubiquitin ligases 

Ubiquitination 
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TXNRD1 1.55 Stag-30 Thioredoxin reductase  

CCBL2 1.48 Stag-60 
cysteine conjugate-beta 
lyase 2 

Mitochondria 

GDA 2.11 Stag-60   

KIF5B 2.08 Stag-60 Kinesin  

MTR 2.04 Stag-60 

5-
methyltetrahydrofol
ate-homocysteine 
methyltransferase 

Folate metabolism 

NUDT14 2.45 Stag-60 
UDP-glucose 
pyrophosphatase 

 

UBFD1 1.84 Stag-60 
Polyubiquitin binding 
protein 

Ubiquitination 

HSPBP1 2.49 UT5 Hsp70 binding protein Chaperonin 

UBXN11 4.49 Outlier Ubiquitin associated  

NO KNOWN FUNCTION AND NO CILIA CONNECTON 
(N=13) 

GENE log2(maxFC) PATTERN DESCRIPTION DEFECTS 

ANKRD50 3.31 Arch1   

SVEP1 1.55 Arch1 Sushi  

TEX9 2.23 Arch1  Testis enriched 

ZNF474 2.16 Arch1  

Up-regulated in 
mice ciliated tissue; 
Highly expressed in 
testis   

CXorf41 2.91 Arch2  
Expressed highly in 
testis and trachea 

KIAA0562 3.20 Arch2   
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LRRC6 3.36 Arch2  Testis enriched 

ZMYND10 4.57 Arch2 
Zinc finger/tumor 
suppressor 

 

C1orf53 5.84 Stag-30   

HEPHL1 2.11 Stag-30   

KRTAP10-6 1.55 Stag-60 
Keratin associated 
protein 

 

SLC25A32 1.97 Stag-60  
Mitochondrial 
expressed in brain 

TROVE2 2.99 UT1   

 
1(NACHURY et al. 2007)  
2(TANNER et al. 2008)  
3(LORENZETTI et al. 2004)  
4(MILL et al. 2011)  
5(GILISSEN et al. 2010)  
6(CASPARY et al. 2007)  
7(LOGES et al. 2009)  
8(DUQUESNOY et al. 2009)  
9(KIM et al. 2010) 
10(LORESTANI et al. 2010)  
11(INOUE et al. 2010)  
12(PATHAK et al. 2011)  
13(WLOGA et al. 2009)  
14(STOLC et al. 2005)  
15(GRASER et al. 2007)  
16(KAMATH et al. 2010)  
17(WANG et al. 2011) 
All human homologs have a BLASTP E-val of better than 1E-10 to the Chlamydomonas gene. 
Blank cells indicate no available annotation. 

 

5.2.4 RNAseq identifies 188 novel ciliopathy gene candidates 

There are 188 human genes that have Chlamydomonas homologs that are 

up-regulated during ciliogenesis. Our timeseries data indicates that these genes 

have an additional annotation of being up-regulated during ciliogenesis, which 
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suggests potential ciliary roles. These genes can be categorized into 14 annotation 

categories (Figure 5.3; Table 5.4; Table 5.5). In decreasing order of the number of 

genes found in each annotation group, they are solute 

carriers/facilitators/transporters (N=23), Golgi and trafficking (N=19), 

chaperonins (N=18), kinases and phosphatases (N=15), mitochondria (N=13), 

lipid and inositol metabolism (N=10), cilia proteins from non-Chlamydomonas 

studies (N=8), genes attributed to diseases or mutant phenotypes that have not 

been related to cilia (N=8), ubiquitin (N=7), cell cycle (N=7), disulfide bonds 

(N=5) and DNA repair (N=3). There are 16 additional genes that have no prior 

annotation (Table 5.4) and 36 genes that previously lacked any association to 

cilia or ciliogenesis (Figure 5.3; Table 5.5). The mitochondria annotation set is 

the only annotation group that is significantly enriched for an expression pattern. 

Stag-30 is exhibited by 9 out of 13 genes (P=2.07E-6). Membrane transporters 

make up the largest of the coherent annotation groups (Table 5.4) and we note 

that SLC25A6 is a membrane transporter that was found by proteomic analysis 

(PAZOUR et al. 2005). The next largest annotation group is the Golgi/membrane 

trafficking proteins (Table 5.4). This group of proteins would not be found by 

proteomics or comparative genomics, but recent work has shown that IFT20 and 

GMAP210 are Golgi proteins (FOLLIT et al. 2008). The third largest annotation 

group is the chaperonins, including Hsp40, Hsp70 and Hsp90, which were 

observed previously to be up-regulated (STOLC et al. 2005). Since tubulin is the 

major protein of cilia and it requires tubulin folding cofactors such as chaperonin 

containing TCP1 and TCPCT-complex proteins, it is reasonable that this should 

be a major class. Mutations in the ASQ2 gene show a role for the tubulin folding 
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co-chaperone, TBCCD1, in mother-daughter basal body linkage (FELDMAN and 

MARSHALL 2009) and in centrosome and Golgi positioning (GONCALVES et al. 

2010). Fourth most common are the kinesins and phosphatases that perform 

post-translational modifications (Table 5.4). This is a diverse class and is likely to 

have a wide range of functions. It includes two cyclin dependent kinases, two 

aurora kinases and three aarF domain kinases. Aurora A kinase has been 

implicated in ciliary disassembly (LANDER et al. 2001; PUGACHEVA et al. 2007). 

ADCK3 is a mitochondrial protein that acts on Q10 biosynthesis (LAGIER-

TOURENNE et al. 2008) and NEK4 has been implicated in altering sensitivity to 

the action of Taxol in Chlamydomonas (DOLES and HEMANN 2010). There is a 

group of genes that affect inositol and lipid function and biosynthesis (Table 5.4). 

Several inositol biosynthetic genes have been implicated in ciliary function. 

Morpholinos to inositol kinase (Ipk1) in zebrafish and patients with Joubert 

Syndrome that have mutations in INPP5E show ciliary defects (BIELAS et al. 

2009; SARMAH et al. 2007). Furthermore, PICALM (phosphatidylinositol binding 

clathrin assembly protein) has been recently implicated as having a role in late-

onset Alzheimer’s disease (JUN et al. 2010; KOK et al. 2011). Seven genes affect 

ubiquitin based processes. Ubiquitin conjugation has been implicated in ciliary 

disassembly (HUANG et al. 2009). STAMBPL1 may serve as an interesting link as 

a STAM binding protein. STAM is an ESCRT-O protein that interacts with USP8 

ubiquitin pathway for movement to the membrane (BERLIN et al. 2010). There 

are also a number of genes in cell cycle control, disulfide bond reduction and 

DNA repair (Table 5.4). A number of genes have been previously implicated in 
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cilia or ciliopathies. Two are likely to be missed by comparative genomics 

methods  

 

Figure 5.3 Annotation group distribution of 188 Human cilia genes 

 

because they are small proteins and fail the 1E-10 similarity cutoff (TXNDC3 and 

DYNLT1). Tubulin, actin, katanin and KIF21A are found in non-ciliated 

organisms and would fail the negative cutoff. KIF21A has been implicated in 

movement of dendrites and its role in cilia would be interesting (MARSZALEK et al. 

1999). Sixteen genes are annotated as open reading frames or by motifs. Leucine 

rich repeats (LRR) and WD repeats (WDR) are motifs found in other ciliary 

proteins (COLE 2003; DUQUESNOY et al. 2009). Thirty-six genes have existing 

annotations but were not associated with cilia, but it is interesting to note that 22 
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of them have enzymatic roles. Finally, nine of the 188 human homologs have 

been associated with human disease or mutant phenotypes in model organisms 

(Table 5.5). TULP1 is a tubby-like protein that is up-regulated about 14-fold 

during ciliogenesis; mouse mutants show retinal degeneration (XI et al. 2003). 

Furthermore, TULP3 has been implicated in retrograde transport 

(MUKHOPADHYAY et al. 2010). Cut-like homeobox 1 (CUX1) is a transcription 

factor and a homolog of the protein cut in Drosophila melanogaster. CUX1 has 

been implicated in transcriptional regulation of the RPGRIPIL and FTO (fat mass 

and obesity associated) genes (STRATIGOPOULOS et al. 2011) and follows the Pulse-

30 expression profile, suggesting that its role may be transient though essential. 

PRMT1 is an arginine methyltransferase. Sloboda and co-workers found that 

several proteins in flagella are methylated (SLOBODA and HOWARD 2009). A 

deletion of PRMT1 in Chlamydomonas results in altered motility (ESPARZA, 

GIDDINGS and DUTCHER, in preparation). CALN5 encodes a calpain, which is a 

calcium-dependent cysteine protease. CALN5 has been associated with polycystic 

ovary syndrome (GONZALEZ et al. 2006). Two other calpains (FAP135 and 

FAP226) were found in cilia by proteomic analysis (PAZOUR et al. 2005). NXN is a 

nucleoredoxin. In a whole exome sequencing project of a mouse that shows a 

recessive perilethal phenotype, a splice site variant was found (BOLES et al. 

2009). The mouse has cleft palate defects, which has been observed in mice with 

defects in sonic hedgehog signaling (LIPINSKI et al. 2010). CLPTM1 is predicted to 

be a transmembrane protein that has been implicated in cleft lip and palate 

(BARONI et al. 2010), but there has not been validation of this role via mutational 

analysis. However, its expression is altered by exposure to nicotine, which has 
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been implicated in cleft lip and palate (BARONI et al. 2010). SHOC2 has been 

implicated in Noonan Syndrome, which is characterized by dysmorphic features, 

webbed neck, cardiac anomalies, short stature and cryptorchidism. It is generally 

an autosomal dominant trait and is often caused by defects in the MAPK pathway 

(KOMATSUZAKI et al. 2010). This method may provide a number of new genes that 

will serve as candidates for ciliopathy disease genes. 

 

Table 5.4 Annotation of 144 of 188 Human homologs of novel Chlamydomonas cilia 
gene candidates that can be assigned an annotation group sorted on pattern 

 

SOLUTE 
CARRIERS/FACILITATORS 
/TRANSPORTERS (N=23) 

GENE log2(maxFC) PATTERN 

ATP2C1 1.48 Arch1 

ATP8B2 2.28 Arch1 

SLC25A45 2.23 Arch1 

NIPA2 3.15 Arch1 

SLC10A7 3.79 Arch1 

ATP8B4 2.63 Arch2 

SLC25A6 1.43 Pulse-3 

ABCA2 1.37 Pulse-30 
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ABCC4 1.67 Stag-10 

ABCF2 2.41 Stag-10 

SLC26A5 3.63 Stag-10 

SLC11A1 3.64 Stag-10 

ATP6V1C2 1.45 Stag-30 

SLC17A6 1.51 Stag-30 

SLC35B1 1.72 Stag-30 

ABCB9 2.83 Stag-30 

SLC7A14 2.95 Stag-30 

MFSD5 4.89 Stag-30 

ABCG2 2.03 Stag-60 

HIAT1 2.84 Stag-60 

ABCB6 3.43 Stag-60 

ATP2A3 1.64 UT2 

ABCG2 2.01 Ambiguous 
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GOLGI AND TRAFFICKING 
(N=19) 

GENE log2(maxFC) PATTERN 

VPS28 1.6 Arch1 

SEC61A2 1.94 Arch1 

YKT6 2.16 Arch1 

GOLT1B 2.66 Arch1 

GOSR2 3.01 Arch1 

TBC1D17 3.95 Arch1 

ARL6 4.65 Arch2 

CPNE9 3.22 Hump1 

STAMBPL1 1.37 Pulse-10 

RABAC1 1.42 Pulse-10 

KIFC3 1.91 Stag-3 

GBF1 1.4 Stag-30 

YOD1 1.58 Stag-30 

ARF3 1.81 Stag-30 
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ERP29 1.87 Stag-30 

SEC31B 1.95 Stag-30 

KDELR1 1.98 Stag-30 

DERL3 1.39 UT1 

VAMP7 1.74 UT1 

CHAPERONINS (N=18) 

GENE log2(maxFC) PATTERN 

DNAJB5 1.94 Arch1 

CCT6A 2.05 Arch1 

CCT8 2.13 Arch1 

ERO1l 2.14 Arch1 

CCT3 2.16 Arch1 

TCP1 2.21 Arch1 

CCT2 2.25 Arch1 

CCT7 2.31 Arch1 

DNAJC10 2.97 Arch1 
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DNAJB11 2.19 Hump1 

DNAJA3 1.8 Stag-10 

HSPA5 3.64 Stag-10 

DNAJC7 1.91 Stag-30 

DNAJC2 1.77 Stag-60 

HSPA9 1.45 Stag-60 

BBS9 1.6 Pulse-30 

HSP4L 1.62 UT2 

HSP90AB1 3.82 
 

KINASES AND PHOSPHATASES 
(N=15) 

GENE log2(maxFC) PATTERN 

MAP3K11 1.45 Arch1 

PPP4C 1.53 Arch1 

NEK4 1.76 Arch1 

AURKA 2.12 Arch1 

CDKL1 Stag-3 Arch2 
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AURKC 2.21 Hump1 

PRKACB 2.41 Hump1 

DUSP4 1.7 Pulse-10 

RPS6KA1 1.45 Stag-3 

ADCK2 1.97 Stag-30 

ADCK1 2.31 Stag-30 

AK2 2.54 Stag-30 

MLK4 1.42 Stag-60 

STK38L 1.61 UT3 

BRSK2 1.95 Ambiguous 

MITOCHONDRIA (N=13) 

GENE log2(maxFC) PATTERN 

MRPL24 1.44 Stag-30 

TIMM23 1.58 Stag-30 

HTRA2 1.66 Stag-30 

COQ9 1.72 Stag-30 
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TIMM17A 1.73 Stag-30 

COQ5 1.75 Stag-30 

ALDH2 2 Stag-30 

NDUFS4 2.29 Stag-30 

ADCK3 2.66 Stag-30 

COQ3 1.49 Stag-60 

TAZ 1.9 Stag-60 

GFER 2.45 Stag-60 

SOD2 1.9 UT5 

LIPID AND INOSITOL 
METABOLISM (N=10) 

GENE log2(maxFC) PATTERN 

IMPA 1.47 Stag-60 

PICALM 1.48 Arch1 

CDIPT 1.54 Arch1 

ISYNA1 1.76 Arch1 

SC5DL 2.91 Arch1 
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SPTLC1 3.39 Arch2 

ACLY 2.18 Hump1 

SACM1L 2.01 Hump1 

LPCAT1 1.57 Stag-30 

LSS 1.84 Stag-30 

UBIQUITIN (N=7) 

GENE log2(maxFC) PATTERN 

UBTD2 1.55 Arch1 

DCUN1D1 1.7 Arch1 

WDR5 2.6 Arch2 

USP2 2 Hump1 

UBA5 2.51 Stag-10 

ARIH2 1.47 Stag-30 

WUSUB1 2.75 Stag-60 

CILIA PROTEINS (N=8) 

GENE log2(maxFC) PATTERN 

KIF21A 2.36 Arch1 
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TXNDC3 2.68 Arch1 

RUVBL1 2.86 Arch1 

DYNLT1 3.29 Arch1 

TUBB 3.3 Arch1 

RUVBL2 3.49 Arch1 

ACT 6.73 Stag-10 

KAT 1.54 Stag-30 

CELL CYCLE (N=7) 

GENE log2(maxFC) PATTERN 

CNNM2 1.44 Arch1 

CCNB2 1.65 Stag-30 

CDKL2 1.46 Stag-60 

MCM5 1.52 Stag-60 

GINS 1.96 Stag-60 

CDC42BPG 2.29 UT3 

MAD1L1 1.41 UT4 
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DNA REPAIR (N=3) 

GENE log2(maxFC) PATTERN 

ERCC8 1.82 UT1 

NUDT6 1.88 Stag-30 

NUDT5 2.19 Arch1 

DISULFIDE BONDS (N=5) 

GENE log2(maxFC) PATTERN 

GPX7 1.75 Hump2 

PDIA6 1.37 Stag-60 

PDIA3 1.41 Stag-60 

HAGH 1.61 Stag-60 

GPX4 1.75 UT2 

UNDEFINED FUNCTIONS (N=16) 

GENE log2(maxFC) PATTERN 

RCBTB2 1.79 Arch1 

ZFAND5 1.83 Arch1 

LRRC61 2.55 Arch1 

C22orf25 3.04 Arch1 
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GPATCH8 1.64 Hump1 

ZDHHC11 2.38 Hump1 

WDR49 2.4 Hump2 

C4orf29 1.42 Pulse-10 

MACROD2 1.68 Pulse-10 

FAM119B 2.34 Pulse-10 

KLHDC3 2.06 Pulse-3 

C8orf38 3.68 Stag-3 

GLIPRIL1 1.37 Stag-60 

ACO68499.1 2.15 Stag-60 

ZCCHC24 2.92 Stag-60 

C22orf13 1.5 UT3 

 
All human homologs have a BLASTP E-val of better than 1E-10 to the Chlamydomonas gene. 
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Table 5.5 Annotation of 44 of 188 Human homologs of novel Chlamydomonas cilia 
gene candidates involved in other processes or diseases sorted on pattern 

 

OTHER CELLULAR PROCESSES (N=35) 

GENE log2(maxFC) PATTERN DESCRIPTION 

GLRX5 1.66 Arch1 Glutaredoxin 

TMEM19 1.76 Arch1 Transmembrane protein 

CYB5A 2.06 Arch1 Cytochrome 5 

CYP26A1 2.69 Arch1 Cytochrome P450 

L2HGDH 2.82 Arch1 L-2-hydroglutamate dehydrogenase 

CYP51A1 3.93 Arch1 Cytochrome P450 

CWC27 3.93 Arch1 Peptidyl-prolyl isomerase 

ECE2 2.71 Arch2 Endothelin converting enzyme 

CYP4V2 3.58 Arch2 Cytochrome P450 

TXNDC9 4.58 Arch2 Translation initiation factor 

GPD1L 1.89 Pulse-3 
Glycerol-3-phosphate dehydrogenase 
1-like 

DGAT2 2.23 Pulse-3 Diaycl glycerol-O-transferase 

RPS15 1.53 Pulse-30 Ribosomal protein 
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TM9SF4 1.6 Pulse-30 Transmembrane protein 

HIST4H4 2.56 Pulse-30 Histone H4 

NLRC5 3.3 Pulse-30 NOD family/Receptor 

ALDH18A1 1.6 Stag-10 
Aldehyde dehydrogenase 18 family 
member A1 

H3F3C 1.57 Stag-30 Histone H3 

ENTPD6 1.67 Stag-30 
Ectonucleoside triphosphate 
diphosphohydrolase 

NCOA7 1.75 Stag-30 Coactivator 

GGH 1.96 Stag-30 gamma-glutamyl hydrolase 

P4HB 2.23 Stag-30 prolyl 4-hydroxylase 

GCH1 2.2 Stag-30 GTP cyclohydralase 

MSI2 2.64 Stag-30 RNA binding 

EXT2 1.37 Stag-60 Exotensis 

EIF2B1 1.39 Stag-60 Translational Initiation factor 

DDX49 1.47 Stag-60 
 

ECD 1.54 Stag-60 Ecdysoneless homolog 



125 

 

ATG5 1.54 Stag-60 
 

LIPF 1.7 Stag-60 Lipase 

ABHD3 1.77 Stag-60 Membrane bound hydrolase 

MTHFR 2.8 Stag-60 Methylene tetrahydrofolae reductase 

CPVL 3.04 Stag-60 carboxypeptidase 

EPHX4 3.42 Stag-60 Epoxide hydrolase 

PHGDH 4.02 Stag-60 Phosphoglycerate dehydrogenase 

GENES WITH ASSOCIATED DISEASES OR MUTANT 
PHENOTYPES (N=9) 

GENE log2(maxFC) PATTERN DESCRIPTION 

VPS4 1.72 Arch1 Cytokinesis 

CHMP4B 1.57 Hump1 
ESCRT III/Cytokinesis; interacts with 
VPS4 

CALN5 2.5 Arch2 Polycystic ovary syndrome 

NXN 5.94 Outlier Perinatal lethal in mice 

TULP1 3.75 Pulse-3 Retinitis pigmentosa 

CUX1 1.46 Pulse-30 
Transcription factor that regulates 
RPGRIP1L that results in COACH 
syndrome 

SHOC2 1.7 Pulse-30 Noonan Syndrome 
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CLPTM1 1.78 Stag-30 Cleft Lip and palate gene 

PRMT1 1.53 Stag-60 Arginine protein methyltransferase 

 
All human homologs have a BLASTP E-val of better than 1E-10 to the Chlamydomonas gene. 

 

 

5.3 Discussion 

High-throughput transcriptome sequencing over a timeseries of interest 

facilitates the annotation of genes involved in a given biological process of 

interest and helps to further elucidate the regulation dynamics that underlie the 

biological process in question. We have leveraged the inducible ciliogenesis 

response in Chlamydomonas to support the involvement and better describe the 

regulation dynamics of known and novel Chlamydomonas homologs of human 

ciliopathy disease genes during ciliogenesis. 

We performed high-throughput transcriptome sequencing of 

Chlamydomonas before pH-shock and at 3, 10, 30 and 60 minutes into 

ciliogenesis and find that 83% of the 99.4 million resulting sequencing reads can 

be aligned to the v4 assembly by TopHat (TRAPNELL et al. 2009). This fraction is 

similar to the fraction of genomic sequence that remains unresolved (MERCHANT 

et al. 2007) and the fraction of high-throughput genome sequencing reads that 

align to the same assembly (DUTCHER, in preparation). We quantified the 

transcript abundance of 11,315 gene models on the v4 assembly from each sample 

using Cufflinks (TRAPNELL et al. 2010) and find that 98% of the GreenGenie2  
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predicted models are supported by some detectable expression evidence, which 

further supports the genome-wide prediction accuracy claims originally made by 

Kwan et al. (KWAN et al. 2009).  

We find that 1400 gene models satisfy our minimum fold-change cutoff of 

2.5-fold up-regulation and that our sequencing, assembly, abundance and fold-

change computation pipeline is both highly sensitive (89.0%) and very specific 

(96.0%). This represents a 30.9% increase in reliability over previous genome-

wide transcriptional analysis of flagellar regeneration in Chlamydomonas (STOLC 

et al. 2005). This unprecedented degree of reliability is likely a result of 

combining the technological advances in next-generation whole-transcriptome 

sequencing, a new genome assembly and updated gene models predicted by a 

Chlamydomonas specific genefinder than any other potential factors. The fact 

that 10.2% (N=1163) of the entire gene catalog shows moderate up-regulation of 

between four and sixteen fold may indicate that ciliogenesis requires the 

cooperation of a large group of genes in a complicated, distributed process, which 

is not entirely unexpected given the inherent complexity, diverse functionality 

and evolutionary age of the organelle. 

Many forms of experimental expression validation of cilia gene predictions 

measure candidate gene expression levels for evidence of up-regulation at 30 

minutes into ciliogenesis because it is thought to be the time that most cilia genes 

exhibit peak expression in general (STOLC et al. 2005). Surprisingly, our whole-

transcriptome data indicates that, while a substantial proportion of up-regulated 

genes do reach peak measured values at 30 minutes (N=362; 25.9%), there is a 

similar proportion of up-regulated genes with peak expression values at 60 
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minutes (N=385; 27.5%). Moreover, the greatest proportion of up-regulated 

genes reach peak measured expression values at 10 minutes (N=576; 41.1%). The 

remaining fraction (N=77; 5.5%) of up-regulated genes peak at 3 minutes (Table 

5.1). Perhaps the most striking result is that over one-third of up-regulated genes 

(N=475; 33.9%) are at or below basal expression levels at 30 minutes and likely 

to be miscategorized as not up-regulated if transcript abundance is measured 

only at that timepoint. Given the reliability demonstrated by our data, these peak 

expression results indicate that, should a candidate gene not show up-regulation 

at the 30-minute timepoint, the 10-minute and 60-minute timepoints ought to be 

considered prime alternative timepoints for expression-based validation. 

We detect a small number of principal regulation patterns from the 1400 

expression profiles by adapting the correlation-based profile clustering method 

described earlier (BRADY et al. 2007) and determine 16 principal expression 

profiles (Figure 5.2). These profiles can be further grouped into five regulation 

pattern groups: Arch, Staggered, Pulse, Up-tick and Hump (Figure 5.2). The six 

most common principal expression profiles represent 74.3% (N=1040) of all up-

regulated genes (Table 5.2). While 38.8% (N=543) of all up-regulated genes 

follow either Arch1 or Arch2 (Table 5.2), we also find that a similar proportion 

(35.5%; N=497) exhibit a staggered temporal signature reminiscent of expression 

profiles found in regulatory cascades in profiles Stag-3, Stag-10, Stag-30 and 

Stag-60 (Figure 5.2B) (KIM et al. 2008; ORLANDO et al. 2008; QIAN et al. 2001). 

Pulse patterns account for 9.1% (N=127) of up-regulated genes (Table 5.2). This 

expression profile pattern group is characterized by significant up-regulation at a 

single measured timepoint (Figure 5.2C). Presumably, these genes are required 
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transiently at key times during ciliogenesis and these regulation pattern gene sets 

may be particularly enriched in genes that are essential for ciliogenesis. 

We find 78 human genes with Chlamydomonas homologs that are up-

regulated during ciliogenesis, which were previously predicted to be involved in 

cilia by comparative genomics studies but lacked any qRT-PCR or proteomic 

evidence. In this group, there are several interesting genes that have mutant 

phenotypes or that are associated with human disease (Table 5.3). The up-

regulation of these genes suggests additional diseases or mutant phenotypes that 

may be further studied in Chlamydomonas, including autism, dyslexia, carotid 

artery calcified plaque (CarCP), lysosomal storage disease (Sanfillipo syndrome), 

episodic ataxia, neuronal degeneration and the short limb dwarf mouse 

phenotype (Table 5.3). 

Our data identifies an additional 188 human genes with Chlamydomonas 

homologs that are up-regulated during ciliogenesis. This set includes eight genes 

that have existing evidence of their involvement in cilia or ciliogenesis (KAT, 

KIF21A, TXNDC3, RUVBL1, DYNLT1, TUBB, RUVBL2, ACT). There are another 

nine genes with existing non-ciliopathy disease genes or mutant phenotypes to 

which our data assigns novel cilia annotations, thereby indicating some cilia 

involvement in the associated diseases or mutant phenotypes, including COACH 

syndrome, Noonan syndrome, cleft lip and palate gene, polycycstic ovary 

syndrome and perinatal lethality in mice (Table 5.5). Figure 5.3 illustrates how 

the largest category in the remainder of the set contains 23 solute 

carriers/transporters out of the 300 that have been found in human, followed by 

Golgi/membrane trafficking proteins (N=19). The next groups are chaperonins 
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(N=18), followed by kinases and phosphatases (N=15). The remainder of the 

coherent protein annotation groups include proteins that are involved in or that 

are associated with mitochondria (N=13), lipid and inositol metabolism (N=10), 

cell cycle (N=8), ubiquitin (N=7), proteins that act on disulfide bonds (N=5) and 

DNA repair (N=3). The mitochondrial annotation group may be of particular 

interest as there is a strong enrichment for the pattern Stag-30 (P=2.07E-6). One 

could hypothesize that, aside from the recently reported roles of IFT20 and 

GMAP210 involvement at the Golgi (FOLLIT et al. 2008), there are genes 

associated to the mitochondria that are also essential for ciliogenesis that are 

subject to precise temporal regulation. These results suggest new areas where 

there may be cilia involvement and indicate the potential of using 

Chlamydomonas as a model organism for the study of these diseases and 

phenotypes. 

 

5.4 Summary 

In this chapter, we leverage the fact that transcript abundance of most genes that 

encode known cilia components are greatly increased in Chlamydomonas during 

ciliogenesis and perform high-throughput sequencing to measure the 

Chlamydomonas transcriptome at various points during ciliogenesis. Our results 

lend further support of a ciliary role for 372 genes that have existing 

Chlamydomonas evidence of cilia association and provide novel evidence of 

ciliogenesis involvement for 289 Chlamydomonas homologs of human genes. 
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Most importantly, our analysis has identified 254 novel ciliopathy human disease 

genes and many new diseases and mutant phenotypes that may be cilia based or 

involve cilia in some way. These data provide the necessary evidence to 

demonstrate, for the first time, a regulation program that hints at the elaborate 

and carefully tuned process of cilia biosynthesis. Our results reinforce the 

advantages of using Chlamydomonas as a model organism for ciliopathies and 

exemplify the importance of emerging model organisms in furthering our 

understanding of human disease. 

 

5.5 Methods 

5.5.1 RNAseq of Chlamydomonas transcriptome during ciliogenesis 

Chlamydomonas cell cultures were grown in 150mL Rich medium (R) to a 

concentration of 7.2E6 cells per mL and proportion flagellated was 87.5% 

averaged over two samples. Cells were spun down in 50mL conical tubes in a 

Sorvall RT6000 for 10 minutes at 3500 RPM in room temperature. Cells were 

resuspended in 25mL HEPES buffer and a 5mL aliquot was taken and diluted to 

50mL in R as “pre-treatment” sample. Acetic acid (0.5N) was added to the 

remaining 20mL with constant stirring to a pH of 4.1 as measured by a Corning 

pH meter 240 at 24C. After 45 seconds, pH was restored to 7.1 with 0.5N KOH. 

Deflagellation was confirmed under 40X magnification with a phase microscope. 

Deflagellated cells were diluted to 100mL with R then poured into a 600mL 

beaker and further diluted to 200mL R (22C). Aliquots of 50mL were taken at 0, 
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7, 27 and 57 minutes, spun in Sorvall RT6000 for 3 minutes at 3500 RPM, 

bringing the total number of timepoints to five. 

RNA is isolated with a Qiagen RNeasy kit using a modified animal tissue 

protocol. Briefly, homogenization of the lysate was achieved by the needle 

method but passing the lysate through 20 times, instead of 5 as instructed for 

animal cells. Isolated RNA was prepared for Illumina sequencing per Illumina 

protocols and sequenced on the Illumina Gene Sequencing Machine. 

Reads were aligned to the v4 Chlamydomonas genome assembly 

(MERCHANT et al. 2007) using the TopHat alignment software suite (TRAPNELL et 

al. 2009). Transcript abundance for 11,315 final GreenGenie2 gene models 

predicted on the v4 assembly (KWAN et al. 2009) were computed in FPKMs using 

the Cufflinks software suite (TRAPNELL et al. 2010).  

 

5.5.2 Expression profile clustering 

In this study, we compute the principal regulation profiles of every gene 

with an FC greater than 0.95 at some timepoint using the clustering method 

adapted from previous work (BRADY et al. 2007). Briefly, genes are first sorted by 

profile decreasing variance. The top 75% of genes are then grouped by fuzzy c-

means clustering, which aims to assign, for each profile a probability 

membership to a given cluster. In contrast to regular k-means clustering, fuzzy c-

means clustering allows multi-cluster membership for a given gene. Once 

membership is determined, the method determines the appropriate membership 

probability cut-off such that the average gene is assigned to one cluster (BRADY et 

al. 2007). After c-means clustering, similar clusters are collapsed by combining 
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clusters that have median profiles with a 1-Pearson correlation distance and 

cutting the single-linkage hierarchical clustering tree at a similarity cut-off 

(default: 0.1). Finally, all original input genes are assigned to the resultant 

“principal profiles” by evaluating the Pearson correlation between each input 

profile and each principal profile. Every gene is assigned to every profile for 

which the Pearson correlation coefficient satisfies the Pearson cutoff (default: 

0.85). At this step, the method also determines the appropriate membership 

probability cut-off such that the average gene is assigned to one cluster (BRADY et 

al. 2007). 
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Chapter 6 

 

Closing remarks and future directions 

This work has describes the development of two new computational 

methods and a computational pipeline for accelerating the annotation of 

emerging model organisms that can greatly inform our understanding of human 

pathologies and their underlying biology and genetics. In Chapter 3, we described 

an effective genefinder training method that does not require a model organism 

to have any experimentally determined gene models and demonstrated this 

method on the Chlamydomonas genome to define a more accurate gene catalog 

in GreenGenie2. When we compared the prediction accuracy of GreenGenie2 to 

the latest Chlamydomonas specific genefinder GeneMark.hmm-3.0, we found 

that our EST-based training method outperforms the competition by a significant 

margin, making most performance gains on bounding and single exons. Five 

independent experiments of high-throughput transcriptome sequencing in 

Chapter 5 lends further support to 98% of the GreenGenie2 v4 gene models. 
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Chapter 4 described APACE: a novel, scalable comparative genomic method that 

automatically adjusts alignment scores to correct for biases introduced by 

differences in evolutionary distance without a predetermined phylogenetic tree. 

Furthermore, this method determines the appropriate alignment cutoff for each 

individual protein instead of using an arbitrary constant cutoff E-value for every 

protein alignment. We demonstrated the predictive performance of APACE on 

co-crystallization data in yeast and show that it is substantially more sensitive 

than existing methods. We also demonstrate its efficacy in predicting genes that 

are essential in the lifecycle of the malaria-causing parasite Plasmodium 

falciparum and found that APACE has a success rate similar to human gene-

target selection. Most importantly, we demonstrated that APACE is able to 

identify a more accurate set of cilia genes than Procom and is thus an effective 

tool for automated protein characterization in our example emerging ciliopathy 

model organism, Chlamydomonas. 

Finally, Chapter 5 uses high-throughput sequencing to detect genes that 

are up-regulated in Chlamydomonas during ciliogenesis. This component 

annotates 372 human genes with a role in ciliogenesis, identifies new diseases 

and phenotypes that may have cilia underpinnings and provides the first 

description of the early ciliogenesis gene regulation program in Chlamydomonas. 

This dissertation has presented computational methods for accelerating 

the accurate annotation of the green alga Chlamydomonas reinhardtii. However, 

the methods presented here can be applied to any emerging model organism 

from gene model, through protein characterization to analyzing how genes are 

regulated in any process of interest. For example, aside from ciliopathies, 
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Chlamydomonas is only one of many emerging algal model organisms that have 

recently been recognized as essential for biofuels research and development. The 

list of emerging model organisms continues to grow. Some examples include the 

choanoflagellate Monosiga brevicolis for studying animal development and the 

origins of multicellularity (KING et al. 2008), the urochordate Ciona intestinalis 

for the study of the origins of vertebrate life, the zygomycete fungus Phycomyces 

blakesleeanus for the study of signal transduction pathways in response to 

environmental cues, the placozoan Trichoplax adhaerens, which is the simplest 

known animal with the smallest known animal genome that will be an important 

model organism for the study of how animal life evolved (SRIVASTAVA et al. 

2008), and the gastropod snail Lottia gigantean as an emerging model in the 

studies of ecology and conservation. 

This work complements any existing methods and resources for a given 

model organism. The methods developed in this dissertation are designed to help 

inform the biologist on the bench direct her experiments and also help the 

computational biologist at the terminal in his efforts to process genomes of 

multiple emerging model organisms to be as informative for downstream 

computational analyses as possible. 
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Appendix A 

 

Colorfy: a heat-map visualization method 

for CLUSTALW multiple sequence 

alignments 

Multiple sequence alignments (MSA) were color-coded using the online 

MSA column percentage composition coloring tool, Colorfy 

(http://bifrost.wustl.edu/colorfy). Colorfy takes as input any standard ALN 

format MSA such as default CLUSTALW output (LARKIN et al. 2007) and outputs 

the corresponding color-coded MSA. Colorfy groups the twenty amino acids into 

eight separate conservation groups ([G, A], [V, L, I], [F, Y, W], [C, M], [K, R, H], 

[D, E, N, Q], [S, T], [P]). Percentage composition is defined on a per column basis 

and categorized as Majority Identity, Conserved Minority or Insufficient 

Conservation. A column is Majority Identity when at least 61% of the amino acids 

in that column are identical. A column is Conserved Minority when at least 61% 

of the amino acids in that column belong to the same conservation group and no 
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amino acid makes up more than 60% of that column. A column is Insufficient 

Conservation when its composition fails to satisfy any of the prior two conditions. 

Columns are colored based on percentage composition (Blue: 61 to 70; Green: 71 

to 80; Gold: 81–90; Red: 91 to 100). Colors codes are divided into two shades, 

dark and light. A Majority Identity column can have up to two colors in the 

column: dark to indicate the positions of the identity amino acid and light to 

indicate positions of amino acids belonging to the same group as the identity 

amino acid. A Conserved Minority is colored the light color of the corresponding 

percentage composed of the majority amino acid group. Columns categorized as 

Insufficient Conservation are left uncolored. If a column satisfies Majority 

Identity at a lower percentage and Conserved Minority at a higher percentage, the 

Majority Identity categorization takes precedence and the column is colored per 

the Majority Identity percentage. 
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Appendix B 

 

Data table of 1400 Chlamydomonas genes 

that are up-regulated during ciliogenesis 

Gene Profile MaxTP Log2 (MaxFC) 

c1_t1000 Arch1 t30 2.957583 

c1_t1005 Arch1 t30 2.995049 

c1_t1006 UT2 t60 1.639738 

c1_t1011 Stag-60 t60 2.061193 

c1_t1028 Stag-3 t10 4.273609 

c1_t1041 UT3 t10 2.46975 

c1_t1065 UT2 t60 1.698629 

c1_t1068 Stag-3 t10 4.185475 

c1_t1072 Arch1 t30 2.916105 

c1_t1075 Stag-30 t60 1.98499 

c1_t1088 Stag-30 t30 1.428164 

c1_t1090 Stag-30 t30 1.914067 

c1_t1092 Arch1 t10 4.101091 

c1_t1105 UT4 t30 1.929734 

c1_t1107 Stag-60 t60 1.46396 

c1_t1110 Pulse-3 t3 1.889931 

c1_t114 Arch1 t30 3.201701 

c1_t1140 Stag-30 t30 1.642047 
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Gene Profile MaxTP Log2 (MaxFC) 

c1_t1141 Stag-30 t30 1.913461 

c1_t1166 Hump1 t10 2.726867 

c1_t1171 Arch2 t10 3.66671 

c1_t1185 Pulse-3 t3 1.381461 

c1_t12 Stag-60 t60 2.159599 

c1_t120 Stag-60 t60 1.546627 

c1_t121 Arch1 t30 2.49429 

c1_t1216 Stag-30 t60 1.674781 

c1_t122 Stag-60 t60 4.13159 

c1_t1222 Stag-60 t60 1.472054 

c1_t1227 Stag-3 t10 1.917082 

c1_t1228 Arch1 t10 2.917072 

c1_t1229 Stag-3 t10 2.221433 

c1_t123 Stag-30 t60 4.524522 

c1_t1235 Pulse-3 t3 1.473121 

c1_t1240 Arch2 t10 3.717335 

c1_t1243 Arch1 t10 3.401731 

c1_t1249 Stag-30 t30 1.879572 

c1_t1256 Stag-60 t60 1.546627 

c1_t1272 Stag-3 t10 2.986638 

c1_t1273 Arch1 t10 3.638549 

c1_t1278 UT3 t10 1.632164 

c1_t1293 Arch2 t10 3.387405 

c1_t1294 Stag-10 t30 1.601002 

c1_t1309 Arch1 t10 2.9973 

c1_t1343 UT3 t10 3.206274 

c1_t1349 Arch1 t30 1.56166 

c1_t1376 Stag-10 t30 2.695762 

c1_t1383 Arch1 t30 3.388285 

c1_t1401 Stag-10 t30 2.067772 

c1_t1428 Arch1 t10 3.058081 

c1_t1448 Hump1 t10 2.692834 

c1_t1452 Arch1 t10 2.230767 

c1_t1459 Arch1 t10 2.600645 

c1_t1460 Stag-3 t10 4.005455 

c1_t1468 Stag-60 t60 1.618776 

c1_t1478 Arch1 t10 2.127658 

c1_t1484 Stag-60 t60 1.39705 

c1_t1508 Arch2 t30 1.879572 

c1_t1509 outlier t30 2.292803 
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Gene Profile MaxTP Log2 (MaxFC) 

c1_t1513 Stag-3 t10 3.979876 

c1_t1518 Arch1 t30 1.784513 

c1_t1523 Arch1 t10 1.942993 

c1_t183 Pulse-3 t3 3.673058 

c1_t184 Pulse-3 t3 3.349866 

c1_t194 Stag-3 t10 2.925973 

c1_t207 UT1 t60 3.745929 

c1_t210 ambiguous t10 1.873801 

c1_t216 Pulse-3 t3 4.522921 

c1_t230 Stag-60 t60 1.453559 

c1_t231 Stag-10 t30 1.983908 

c1_t245 Stag-30 t30 1.842394 

c1_t255 Pulse-3 t3 2.058091 

c1_t278 Pulse-10 t10 1.426889 

c1_t282 UT3 t10 4.22134 

c1_t284 Arch1 t10 3.047405 

c1_t292 Stag-30 t30 1.61654 

c1_t306 Arch1 t10 1.851367 

c1_t316 Stag-60 t60 1.3767 

c1_t317 UT1 t10 2.374056 

c1_t342 Hump1 t10 2.941583 

c1_t349 Arch1 t10 3.565174 

c1_t36 Arch1 t10 1.450803 

c1_t37 Arch1 t10 1.424969 

c1_t371 Arch1 t10 2.695257 

c1_t380 Arch1 t10 3.220211 

c1_t39 Arch1 t30 1.479729 

c1_t401 Stag-30 t30 1.378212 

c1_t404 ambiguous t10 3.119554 

c1_t435 Stag-30 t60 1.589691 

c1_t443 Pulse-3 t10 3.190246 

c1_t445 Arch2 t10 3.676247 

c1_t452 Stag-30 t30 1.582593 

c1_t455 Stag-60 t60 1.698629 

c1_t472 Hump1 t10 3.021566 

c1_t492 Stag-60 t60 1.524337 

c1_t50 Hump1 t10 2.417596 

c1_t51 UT3 t10 1.870483 

c1_t517 Pulse-10 t10 1.371139 

c1_t520 Arch1 t30 7.195485 
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Gene Profile MaxTP Log2 (MaxFC) 

c1_t538 Arch2 t10 2.158301 

c1_t541 Stag-3 t10 3.931532 

c1_t559 Arch1 t30 2.30824 

c1_t581 Stag-30 t60 1.546627 

c1_t586 Arch1 t10 2.82849 

c1_t587 Arch1 t10 2.931931 

c1_t598 Arch1 t10 1.376416 

c1_t606 Arch2 t10 4.434138 

c1_t610 Arch1 t30 2.703798 

c1_t616 Arch1 t30 2.005692 

c1_t617 Pulse-3 t10 3.486893 

c1_t618 UT3 t10 1.607956 

c1_t620 Stag-30 t60 2.786464 

c1_t628 Arch2 t10 3.990826 

c1_t631 Pulse-3 t3 2.222125 

c1_t65 Stag-60 t60 1.772452 

c1_t659 Stag-30 t30 1.974732 

c1_t662 Stag-30 t30 1.726372 

c1_t663 UT1 t60 1.815819 

c1_t671 Stag-30 t60 1.91727 

c1_t688 Stag-30 t30 1.999128 

c1_t691 Arch1 t10 2.606315 

c1_t693 Stag-60 t60 1.407223 

c1_t695 Hump2 t30 1.661393 

c1_t701 Stag-60 t60 1.482903 

c1_t712 Arch1 t30 3.576268 

c1_t721 Pulse-10 t10 2.677426 

c1_t736 Stag-3 t10 3.221437 

c1_t738 Stag-30 t60 2.638733 

c1_t743 Stag-3 t10 3.245891 

c1_t749 UT1 t10 3.569357 

c1_t755 Arch1 t10 2.338479 

c1_t758 Stag-30 t60 5.519174 

c1_t759 Stag-60 t60 3.041778 

c1_t760 Stag-60 t60 3.236282 

c1_t773 Stag-30 t60 1.600324 

c1_t775 Arch2 t10 4.582028 

c1_t795 Arch1 t10 3.896431 

c1_t804 Arch1 t10 2.548391 

c1_t807 Hump1 t10 2.194094 
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Gene Profile MaxTP Log2 (MaxFC) 

c1_t810 Stag-10 t30 3.040033 

c1_t813 Hump2 t10 1.414398 

c1_t830 Arch1 t30 1.384047 

c1_t832 Pulse-3 t3 1.637964 

c1_t838 UT3 t10 2.977016 

c1_t843 Stag-30 t60 2.951754 

c1_t85 Stag-60 t60 1.546627 

c1_t863 Arch1 t10 1.721712 

c1_t89 Arch2 t10 3.693732 

c1_t90 Arch1 t30 2.776813 

c1_t901 Stag-10 t30 2.077394 

c1_t902 Arch1 t30 2.520388 

c1_t910 Arch2 t10 3.977352 

c1_t924 Pulse-10 t10 2.055004 

c1_t926 Stag-60 t60 1.961661 

c1_t927 Stag-60 t60 2.283599 

c1_t933 Arch1 t10 3.447031 

c1_t935 ambiguous t10 1.664711 

c1_t975 UT1 t60 2.013497 

c10_t100 UT2 t30 3.464531 

c10_t101 UT2 t60 3.574912 

c10_t102 Stag-60 t60 1.546627 

c10_t104 Arch1 t30 2.432283 

c10_t110 Stag-3 t10 4.004907 

c10_t131 Stag-60 t60 1.485226 

c10_t136 Stag-3 t10 4.114653 

c10_t141 Arch1 t10 3.669783 

c10_t143 UT3 t10 2.761996 

c10_t16 Arch1 t10 3.857521 

c10_t183 Stag-60 t60 1.961661 

c10_t191 Arch1 t30 3.309672 

c10_t196 Stag-30 t60 1.806687 

c10_t197 Arch1 t10 3.992933 

c10_t207 Arch2 t10 3.335944 

c10_t216 Stag-30 t60 2.315295 

c10_t224 Stag-60 t60 2.855454 

c10_t227 Arch1 t30 2.144191 

c10_t230 Arch1 t30 3.283963 

c10_t245 Hump1 t10 2.376465 

c10_t250 Stag-30 t60 2.655266 
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Gene Profile MaxTP Log2 (MaxFC) 

c10_t266 Hump1 t10 2.055177 

c10_t267 Hump2 t30 2.166928 

c10_t279 Arch1 t30 2.821825 

c10_t282 Arch1 t10 1.989779 

c10_t295 Stag-3 t10 3.949421 

c10_t310 Arch1 t30 3.620256 

c10_t324 Stag-60 t60 2.808985 

c10_t325 Stag-30 t60 6.781835 

c10_t337 Stag-30 t30 1.650097 

c10_t342 Hump1 t10 2.209415 

c10_t344 Arch2 t10 2.878667 

c10_t359 Stag-60 t60 2.148086 

c10_t365 Stag-30 t60 1.615487 

c10_t385 Pulse-3 t3 1.492497 

c10_t424 Stag-60 t60 1.654699 

c10_t425 Stag-30 t60 2.084781 

c10_t426 Arch1 t30 2.313607 

c10_t439 Arch1 t30 2.207713 

c10_t447 Stag-30 t30 1.755414 

c10_t454 Stag-10 t60 2.588238 

c10_t46 Hump1 t10 1.838354 

c10_t472 Hump2 t30 1.752196 

c10_t48 Arch1 t10 1.536441 

c10_t489 ambiguous t3 1.405241 

c10_t491 Arch1 t10 2.509236 

c10_t506 Arch1 t10 3.498795 

c10_t517 Arch1 t30 2.163033 

c10_t526 Arch1 t30 2.184428 

c10_t530 Stag-60 t60 2.758895 

c10_t533 Stag-60 t60 2.541509 

c10_t539 Arch2 t10 3.197503 

c10_t540 Pulse-30 t30 2.20288 

c10_t548 Pulse-10 t10 2.261338 

c10_t566 Pulse-30 t30 1.464537 

c10_t579 Stag-60 t60 2.184053 

c10_t589 Stag-30 t60 1.546627 

c10_t602 UT2 t30 2.615736 

c10_t604 Stag-60 t60 1.502235 

c10_t607 Arch1 t10 1.401027 

c10_t608 Arch1 t10 2.363639 
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Gene Profile MaxTP Log2 (MaxFC) 

c10_t611 outlier t10 1.909032 

c10_t616 Stag-10 t30 3.607877 

c10_t622 Stag-30 t60 1.812588 

c10_t632 Arch1 t10 3.422938 

c10_t633 Arch1 t10 1.787225 

c10_t640 Arch1 t10 2.67278 

c10_t650 Arch1 t10 3.292706 

c10_t661 Arch1 t30 3.319685 

c10_t663 Arch1 t30 3.355045 

c10_t671 Stag-60 t60 1.3767 

c10_t705 Stag-30 t60 1.729488 

c10_t709 Arch1 t30 3.013429 

c10_t711 Arch1 t10 1.62068 

c10_t716 Pulse-3 t3 1.492497 

c10_t717 Arch1 t30 2.250763 

c10_t780 Stag-60 t60 3.194329 

c10_t791 Stag-60 t60 1.835296 

c10_t797 UT3 t10 1.498975 

c10_t8 Arch2 t10 1.917948 

c10_t805 Arch1 t30 2.164302 

c10_t817 Stag-3 t10 3.730059 

c10_t819 Arch1 t30 2.368963 

c10_t82 UT2 t60 1.819642 

c10_t827 Arch1 t10 1.475516 

c10_t869 UT1 t60 3.746766 

c10_t894 Arch1 t10 2.748709 

c10_t919 Stag-60 t60 1.403095 

c10_t92 Hump1 t10 3.200128 

c10_t940 Arch1 t30 3.671399 

c10_t961 Stag-10 t30 3.899475 

c10_t973 Arch2 t10 3.524504 

c10_t974 Arch1 t10 3.616389 

c10_t980 Stag-30 t30 1.444859 

c10_t981 Stag-3 t10 3.04514 

c10_t982 Arch1 t10 2.536878 

c10_t99 Stag-60 t60 1.406449 

c11_t101 Stag-60 t60 1.9904 

c11_t11 Stag-60 t60 1.894547 

c11_t128 Arch1 t10 2.718066 

c11_t13 Arch1 t10 3.45322 
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Gene Profile MaxTP Log2 (MaxFC) 

c11_t143 Arch1 t10 3.922067 

c11_t15 Stag-10 t30 2.623728 

c11_t154 Arch1 t10 4.977947 

c11_t158 Arch1 t10 3.465498 

c11_t170 Arch1 t30 3.014901 

c11_t180 Hump1 t10 1.974862 

c11_t191 Stag-10 t10 2.341307 

c11_t196 Arch1 t30 3.53518 

c11_t205 Arch1 t10 1.417787 

c11_t206 Arch1 t10 3.831654 

c11_t212 Arch1 t30 3.117246 

c11_t220 UT2 t60 1.469457 

c11_t222 Arch1 t30 3.189092 

c11_t23 Stag-10 t30 1.387274 

c11_t249 Stag-10 t30 1.994136 

c11_t25 Arch1 t30 1.739501 

c11_t271 Stag-60 t60 1.815834 

c11_t283 Arch1 t10 2.595711 

c11_t315 UT3 t10 1.437164 

c11_t317 Arch2 t10 4.071026 

c11_t319 Arch1 t10 3.255917 

c11_t321 Arch1 t10 2.897639 

c11_t329 Hump1 t10 1.762007 

c11_t33 Arch1 t10 4.086059 

c11_t34 Pulse-3 t3 2.991298 

c11_t347 Pulse-3 t3 2.299843 

c11_t35 Arch1 t10 3.13124 

c11_t51 UT1 t60 1.482759 

c11_t79 ambiguous t60 1.832179 

c11_t82 Pulse-10 t10 1.714355 

c11_t93 Arch1 t30 2.942579 

c11_t94 Arch1 t10 1.505063 

c11_t98 Arch1 t10 1.727757 

c12_t1017 Arch1 t10 1.96068 

c12_t1019 Stag-60 t60 1.6621 

c12_t1020 Arch1 t30 3.139131 

c12_t1032 Arch1 t30 1.422917 

c12_t1048 Arch1 t10 2.20868 

c12_t1059 Arch1 t10 2.277799 

c12_t106 Stag-30 t30 1.520673 
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Gene Profile MaxTP Log2 (MaxFC) 

c12_t1060 Arch2 t10 2.625258 

c12_t1061 Arch1 t10 3.542278 

c12_t1063 Stag-30 t30 3.103396 

c12_t107 Stag-30 t60 3.090844 

c12_t1072 Arch1 t30 2.952216 

c12_t1086 outlier t60 5.371053 

c12_t1100 Arch1 t30 1.924469 

c12_t1105 Stag-3 t10 3.638001 

c12_t1117 Arch1 t30 1.554562 

c12_t1159 Arch1 t10 3.50924 

c12_t1174 UT1 t60 2.546631 

c12_t1181 Stag-60 t60 1.799632 

c12_t1184 ambiguous t10 2.973914 

c12_t1208 Arch1 t30 2.986436 

c12_t1216 Arch1 t10 1.785133 

c12_t1217 UT1 t60 1.809515 

c12_t1224 Arch1 t10 2.424968 

c12_t1234 Arch1 t10 4.238494 

c12_t1243 Arch1 t30 3.388732 

c12_t1244 Stag-30 t60 1.871882 

c12_t1254 Stag-30 t60 2.426786 

c12_t1261 Stag-60 t60 1.836132 

c12_t1279 Arch1 t30 3.387592 

c12_t1284 Arch1 t10 3.886721 

c12_t1288 Arch1 t30 3.15402 

c12_t1291 Stag-30 t30 4.170341 

c12_t1292 Stag-60 t60 1.515465 

c12_t1293 Stag-60 t60 2.028775 

c12_t130 Stag-30 t60 2.131582 

c12_t1300 Pulse-3 t3 2.145201 

c12_t1325 Stag-30 t60 2.008967 

c12_t1327 Hump1 t10 1.808462 

c12_t133 Arch1 t10 3.609291 

c12_t1336 Stag-10 t60 4.050035 

c12_t1337 UT4 t30 1.879572 

c12_t1338 Arch1 t10 2.009357 

c12_t134 UT3 t10 1.526242 

c12_t1355 Arch1 t30 3.302387 

c12_t138 Arch1 t10 3.697858 

c12_t1385 Stag-60 t60 1.462157 
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Gene Profile MaxTP Log2 (MaxFC) 

c12_t1388 Arch1 t10 1.481504 

c12_t1389 Hump1 t10 2.009934 

c12_t1393 Arch2 t10 3.731617 

c12_t142 Arch2 t30 1.899928 

c12_t1429 Arch2 t10 2.60356 

c12_t1437 Arch1 t10 3.29852 

c12_t1456 Arch1 t30 3.01203 

c12_t1459 Stag-10 t30 2.114789 

c12_t1462 Stag-30 t30 1.814478 

c12_t1463 UT1 t60 1.584599 

c12_t1487 UT4 t30 2.421881 

c12_t149 UT5 t3 1.909248 

c12_t1491 Stag-30 t60 1.934178 

c12_t1492 Arch2 t10 4.581206 

c12_t1507 Arch1 t30 3.015651 

c12_t1516 Pulse-3 t3 2.229454 

c12_t1518 Stag-10 t30 1.807019 

c12_t1530 Arch1 t10 3.90236 

c12_t1531 Arch1 t10 3.45876 

c12_t1532 Arch2 t10 3.074701 

c12_t1533 Stag-60 t60 3.421092 

c12_t1536 Arch1 t30 3.209001 

c12_t156 Stag-30 t30 1.397422 

c12_t1561 Arch1 t30 2.04642 

c12_t1570 Stag-30 t60 2.643537 

c12_t1571 Stag-3 t10 4.012741 

c12_t17 Stag-10 t30 2.885924 

c12_t196 Arch1 t10 2.346962 

c12_t201 Pulse-10 t10 1.679542 

c12_t226 Arch1 t30 3.161161 

c12_t230 Pulse-30 t30 1.5964 

c12_t239 Arch1 t30 2.696714 

c12_t241 Arch1 t10 1.526718 

c12_t242 Pulse-10 t10 1.407027 

c12_t243 Arch1 t10 3.898133 

c12_t264 Arch1 t10 4.853544 

c12_t281 Arch1 t10 2.160681 

c12_t283 Stag-3 t10 4.473018 

c12_t288 Arch1 t10 3.723279 

c12_t298 Arch2 t10 5.032842 
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Gene Profile MaxTP Log2 (MaxFC) 

c12_t299 Stag-10 t60 2.916668 

c12_t303 Arch1 t10 3.789556 

c12_t309 Stag-30 t60 1.6621 

c12_t32 Arch2 t10 3.905462 

c12_t33 Hump1 t10 2.334252 

c12_t338 Arch1 t10 3.706904 

c12_t34 Stag-3 t10 3.96783 

c12_t345 Arch1 t30 2.804585 

c12_t35 Hump1 t10 2.69934 

c12_t357 Stag-30 t30 1.519345 

c12_t36 Stag-3 t10 4.017935 

c12_t374 Stag-3 t10 3.907727 

c12_t390 UT2 t3 2.330328 

c12_t408 UT1 t60 2.890584 

c12_t409 ambiguous t10 3.426487 

c12_t42 Stag-60 t60 2.131582 

c12_t429 Stag-3 t10 3.448503 

c12_t43 Stag-3 t3 1.756438 

c12_t435 Arch1 t10 3.49653 

c12_t437 Hump1 t10 2.122911 

c12_t438 Stag-10 t30 3.142608 

c12_t450 Arch1 t30 3.238201 

c12_t467 Arch2 t10 4.652778 

c12_t473 Stag-60 t60 1.836132 

c12_t508 Stag-60 t60 1.374673 

c12_t517 Arch2 t10 2.268638 

c12_t519 Stag-30 t60 1.394049 

c12_t521 Arch2 t10 3.332409 

c12_t529 Arch1 t10 3.262006 

c12_t543 Stag-10 t10 2.855483 

c12_t552 Arch1 t10 1.622599 

c12_t553 Arch1 t10 3.771479 

c12_t557 Stag-3 t10 3.968551 

c12_t558 Pulse-3 t3 4.074142 

c12_t566 Arch1 t10 2.234071 

c12_t605 Stag-3 t10 3.518575 

c12_t606 Arch1 t10 3.744255 

c12_t625 Arch1 t10 1.598189 

c12_t637 Arch1 t10 2.870184 

c12_t64 Stag-3 t10 3.9458 
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Gene Profile MaxTP Log2 (MaxFC) 

c12_t672 Stag-30 t30 1.670569 

c12_t679 Arch2 t10 3.358551 

c12_t684 Stag-60 t60 3.206173 

c12_t693 Stag-3 t10 2.08393 

c12_t696 Arch1 t30 2.974924 

c12_t701 Stag-60 t60 1.961661 

c12_t742 Arch1 t30 1.537163 

c12_t747 Arch1 t30 3.56073 

c12_t748 Arch1 t30 3.469148 

c12_t75 Arch1 t10 4.118635 

c12_t760 Stag-30 t60 2.472621 

c12_t767 Arch1 t30 3.786469 

c12_t770 Arch1 t10 2.469057 

c12_t776 Stag-30 t30 1.948706 

c12_t778 Arch1 t30 2.525481 

c12_t780 Hump1 t10 2.125667 

c12_t798 UT1 t60 1.389525 

c12_t822 UT1 t60 2.039668 

c12_t831 Stag-30 t30 1.872748 

c12_t834 Arch1 t10 2.639324 

c12_t87 Hump1 t10 2.10531 

c12_t89 Arch1 t30 1.702914 

c12_t893 Arch1 t30 3.139694 

c12_t894 Arch1 t30 3.421755 

c12_t910 ambiguous t3 2.366958 

c12_t915 Arch1 t30 3.480473 

c12_t921 Arch1 t30 2.155213 

c12_t931 Arch2 t10 3.605497 

c12_t932 outlier t3 2.068839 

c12_t943 Stag-60 t60 1.421874 

c12_t963 Pulse-30 t30 1.440289 

c12_t964 Arch1 t10 3.318458 

c12_t970 Arch1 t10 3.921548 

c12_t978 Stag-60 t60 1.737885 

c13_t117 Arch1 t10 3.506629 

c13_t122 Arch1 t10 1.760708 

c13_t143 Stag-60 t60 2.365659 

c13_t150 Stag-60 t60 2.296352 

c13_t151 Hump2 t30 1.645105 

c13_t157 Hump2 t30 1.714758 
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Gene Profile MaxTP Log2 (MaxFC) 

c13_t158 Pulse-10 t10 3.171044 

c13_t160 Pulse-10 t10 2.628028 

c13_t166 Stag-60 t60 3.605526 

c13_t167 Stag-30 t30 2.464542 

c13_t168 Arch1 t10 6.253852 

c13_t175 Arch1 t30 3.130793 

c13_t180 Hump2 t30 1.511843 

c13_t187 Stag-60 t60 2.187371 

c13_t221 Hump2 t10 2.19496 

c13_t222 Arch1 t30 2.951047 

c13_t235 Arch1 t10 3.773888 

c13_t248 Arch1 t10 2.826196 

c13_t291 Hump2 t10 1.460729 

c13_t306 Arch1 t30 2.857301 

c13_t31 Stag-10 t30 2.747959 

c13_t33 Arch1 t30 3.295895 

c13_t337 ambiguous t60 2.965099 

c13_t347 Stag-30 t60 2.196128 

c13_t374 Stag-30 t60 4.889741 

c13_t377 Stag-30 t60 1.824158 

c13_t39 Hump1 t10 2.804888 

c13_t390 Arch1 t10 3.450941 

c13_t392 Arch1 t30 2.497002 

c13_t393 Pulse-30 t30 1.439704 

c13_t397 Stag-60 t60 2.097477 

c13_t4 Pulse-10 t10 2.346962 

c13_t411 Arch1 t30 2.982469 

c13_t420 Stag-10 t30 2.512641 

c13_t421 Stag-60 t60 2.925136 

c13_t423 Stag-30 t30 2.879576 

c13_t425 Arch1 t10 3.221437 

c13_t43 Arch2 t10 3.083934 

c13_t432 UT1 t60 1.639738 

c13_t448 Stag-10 t60 1.818459 

c13_t462 Arch1 t10 3.867562 

c13_t464 Arch1 t10 3.629345 

c13_t466 Stag-10 t30 1.548372 

c13_t509 outlier t30 1.912913 

c13_t519 UT2 t60 3.931431 

c13_t52 Arch1 t30 2.957409 
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Gene Profile MaxTP Log2 (MaxFC) 

c13_t54 Arch1 t30 1.409353 

c13_t560 Stag-30 t30 2.567435 

c13_t572 Arch1 t60 4.821617 

c13_t573 Stag-30 t30 1.900635 

c13_t574 Arch1 t60 5.119836 

c13_t591 Stag-60 t60 1.377099 

c13_t630 Stag-30 t30 1.49557 

c13_t662 UT2 t60 2.882231 

c13_t665 UT5 t60 1.546627 

c13_t672 Arch1 t10 3.057908 

c13_t682 Hump1 t10 1.931192 

c13_t686 Stag-3 t3 1.525174 

c13_t688 Pulse-3 t3 4.564211 

c13_t716 Arch1 t10 4.315014 

c13_t727 Stag-30 t60 5.843175 

c13_t728 Stag-60 t60 2.197455 

c13_t753 Stag-3 t10 4.378897 

c13_t760 Stag-60 t60 1.474117 

c13_t762 Stag-30 t30 2.41562 

c13_t786 Arch1 t10 2.391887 

c13_t8 ambiguous t3 3.176396 

c13_t807 Stag-60 t60 2.283599 

c13_t808 UT2 t60 4.909635 

c13_t81 Stag-60 t60 1.46862 

c13_t823 Stag-60 t60 1.769018 

c13_t852 Arch1 t10 2.38678 

c13_t865 Hump1 t10 2.543053 

c13_t879 UT1 t60 2.406098 

c13_t887 Stag-60 t60 3.427714 

c13_t911 Arch2 t10 1.457108 

c13_t916 Stag-60 t60 1.384087 

c13_t932 UT3 t60 2.168573 

c14_t113 Arch1 t10 2.796347 

c14_t116 Arch1 t10 2.759688 

c14_t117 Arch1 t10 2.146673 

c14_t123 Pulse-30 t30 1.37392 

c14_t138 Stag-60 t60 1.387929 

c14_t163 Stag-30 t60 2.176738 

c14_t180 Stag-60 t60 1.705395 

c14_t190 Arch1 t30 3.089026 
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Gene Profile MaxTP Log2 (MaxFC) 

c14_t193 Stag-10 t60 2.441747 

c14_t194 Stag-30 t60 1.971299 

c14_t195 Arch1 t10 3.62858 

c14_t196 Arch1 t10 3.788128 

c14_t20 Arch1 t10 1.47983 

c14_t211 Stag-3 t10 3.521445 

c14_t212 Arch1 t10 2.066156 

c14_t224 UT2 t60 1.517513 

c14_t254 Stag-30 t60 1.769018 

c14_t258 Pulse-3 t3 2.196835 

c14_t26 UT2 t60 1.961661 

c14_t270 Stag-60 t60 2.611797 

c14_t318 Pulse-30 t30 1.702698 

c14_t319 Pulse-10 t10 1.763724 

c14_t326 Arch2 t10 3.978058 

c14_t345 Arch2 t10 3.645243 

c14_t346 Arch2 t10 3.575763 

c14_t356 Stag-10 t30 2.836512 

c14_t359 Stag-30 t60 2.378586 

c14_t36 Stag-60 t60 2.108657 

c14_t394 Stag-30 t60 3.06476 

c14_t408 Stag-10 t30 3.110422 

c14_t409 Arch1 t10 4.017704 

c14_t442 Arch2 t10 4.434585 

c14_t448 Arch2 t10 1.498513 

c14_t472 Stag-60 t60 1.546627 

c14_t475 Pulse-3 t3 1.690204 

c14_t480 Arch1 t30 4.08023 

c14_t489 Arch2 t10 3.732887 

c14_t505 Arch1 t10 3.581577 

c14_t521 Stag-60 t60 2.447085 

c14_t54 Arch2 t10 3.102631 

c14_t62 UT2 t60 1.41872 

c14_t63 Arch1 t30 2.520792 

c14_t86 Stag-3 t10 4.561095 

c14_t89 Arch1 t10 2.20249 

c14_t96 Arch1 t30 3.257317 

c14_t97 Arch1 t10 3.702417 

c15_t107 Pulse-10 t10 1.812948 

c15_t108 Pulse-10 t10 1.437484 
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Gene Profile MaxTP Log2 (MaxFC) 

c15_t109 Pulse-10 t10 1.487808 

c15_t115 Arch1 t10 4.276408 

c15_t128 Stag-60 t60 1.525563 

c15_t194 ambiguous t60 1.961661 

c15_t246 Hump1 t10 2.579582 

c15_t268 Pulse-3 t3 4.177785 

c15_t273 Stag-10 t30 1.673223 

c15_t293 Arch1 t10 5.073107 

c15_t305 Arch1 t30 3.190621 

c15_t307 Stag-3 t10 3.372054 

c15_t323 Pulse-30 t30 2.467961 

c15_t338 Stag-10 t30 3.777957 

c15_t340 Stag-30 t30 3.155419 

c15_t41 Stag-60 t60 1.620709 

c15_t48 Arch2 t10 3.105416 

c16_t11 Hump2 t10 2.091821 

c16_t124 Arch1 t10 3.095259 

c16_t127 Pulse-3 t3 4.493447 

c16_t130 Arch1 t10 4.252704 

c16_t146 UT2 t60 2.283599 

c16_t152 Stag-60 t60 1.591971 

c16_t162 Arch1 t10 2.992395 

c16_t166 Hump1 t10 1.589432 

c16_t17 Pulse-30 t30 2.161157 

c16_t171 Stag-60 t60 2.835819 

c16_t176 Stag-10 t30 1.397924 

c16_t18 Pulse-30 t30 2.559918 

c16_t194 Arch1 t30 2.149428 

c16_t198 Stag-60 t60 1.972554 

c16_t199 Stag-60 t60 2.464166 

c16_t208 Arch1 t10 2.190704 

c16_t209 Arch1 t10 2.398913 

c16_t215 Pulse-3 t3 1.492497 

c16_t219 Arch1 t10 2.366337 

c16_t220 Arch1 t10 2.156079 

c16_t222 UT1 t60 3.54662 

c16_t231 Arch1 t30 2.066228 

c16_t265 Arch2 t10 3.248906 

c16_t274 Pulse-10 t10 1.480696 

c16_t28 Stag-3 t10 2.952071 
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Gene Profile MaxTP Log2 (MaxFC) 

c16_t295 Stag-60 t60 1.86855 

c16_t30 Stag-60 t60 2.342086 

c16_t302 Stag-10 t30 2.989495 

c16_t307 Stag-60 t60 1.605518 

c16_t324 Arch1 t10 2.919164 

c16_t333 Stag-30 t30 1.424459 

c16_t335 Arch1 t10 2.596173 

c16_t345 Arch1 t10 3.013631 

c16_t346 Pulse-10 t10 1.979782 

c16_t353 Arch1 t30 3.414383 

c16_t359 Arch1 t30 5.53301 

c16_t364 Arch1 t10 3.455341 

c16_t370 UT4 t30 1.410089 

c16_t372 Arch1 t10 1.825557 

c16_t4 Pulse-3 t3 2.229454 

c16_t404 Pulse-3 t3 3.110739 

c16_t405 Pulse-3 t3 3.750762 

c16_t439 Pulse-3 t3 3.156862 

c16_t44 Stag-3 t3 1.720096 

c16_t457 Arch1 t10 1.736731 

c16_t485 Stag-60 t60 1.402339 

c16_t49 Pulse-10 t10 1.751028 

c16_t50 Stag-60 t60 1.974487 

c16_t54 Arch1 t10 2.065348 

c16_t546 Arch1 t10 2.827163 

c16_t547 Stag-3 t10 4.07645 

c16_t549 Stag-60 t60 1.410534 

c16_t572 Stag-60 t60 1.769018 

c16_t58 Stag-3 t10 3.438519 

c16_t590 Stag-10 t30 2.245641 

c16_t596 UT5 t60 4.13159 

c16_t597 UT2 t60 1.618776 

c16_t61 Arch1 t30 1.444354 

c16_t610 UT5 t60 2.283599 

c16_t613 Stag-60 t60 1.546627 

c16_t620 Stag-60 t60 1.597972 

c16_t625 Arch2 t10 4.426087 

c16_t63 outlier t3 1.492497 

c16_t642 Stag-60 t60 2.10671 

c16_t651 Arch1 t10 3.765838 
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Gene Profile MaxTP Log2 (MaxFC) 

c16_t659 Stag-30 t30 3.045356 

c16_t666 Arch1 t10 2.219283 

c16_t677 Pulse-10 t10 1.604262 

c16_t696 Stag-30 t60 2.283599 

c16_t705 Stag-30 t60 1.475891 

c16_t715 ambiguous t3 3.979833 

c16_t728 Stag-60 t60 1.466961 

c16_t768 Arch1 t30 2.87897 

c16_t77 Stag-30 t30 1.670468 

c16_t824 Arch2 t10 3.308071 

c16_t829 Arch1 t10 2.907117 

c16_t846 UT1 t60 2.107431 

c16_t849 Arch1 t10 3.366991 

c16_t860 Pulse-30 t30 1.420143 

c16_t861 Stag-30 t60 2.605522 

c16_t862 Hump1 t10 1.984398 

c16_t869 Arch1 t10 3.507754 

c16_t87 Arch2 t10 2.757409 

c16_t885 Stag-30 t60 2.305614 

c16_t903 Pulse-10 t10 1.370624 

c16_t92 Arch1 t30 3.271888 

c16_t926 Stag-10 t30 3.295115 

c16_t927 Stag-60 t60 2.955447 

c16_t928 Stag-10 t30 3.351554 

c16_t929 Stag-60 t60 1.395002 

c16_t930 Stag-60 t60 3.436702 

c16_t931 Stag-60 t60 2.421102 

c16_t945 UT4 t30 2.800141 

c16_t953 Stag-60 t60 3.527721 

c16_t954 Stag-60 t60 2.977968 

c16_t961 Stag-60 t60 2.546631 

c16_t962 ambiguous t10 2.488086 

c16_t970 Stag-3 t3 1.644499 

c16_t976 Stag-30 t30 1.880149 

c16_t978 Stag-60 t60 2.927776 

c16_t987 Arch2 t10 1.762007 

c16_t995 Arch1 t10 2.560856 

c16_t996 Arch1 t10 2.219009 

c17_t140 Pulse-3 t3 1.492497 

c17_t157 Arch1 t10 3.521734 
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Gene Profile MaxTP Log2 (MaxFC) 

c17_t158 Arch1 t10 3.609637 

c17_t162 Arch1 t10 1.993328 

c17_t167 Arch1 t10 3.476881 

c17_t168 Arch1 t30 1.870757 

c17_t178 Arch1 t30 2.290423 

c17_t215 UT4 t30 1.783791 

c17_t224 Arch1 t10 2.372425 

c17_t235 Stag-10 t30 1.620695 

c17_t239 Stag-30 t60 1.862837 

c17_t280 Arch1 t10 1.472761 

c17_t300 Stag-30 t60 2.8543 

c17_t303 Arch2 t10 3.415768 

c17_t324 Stag-60 t60 2.217999 

c17_t33 Arch1 t10 4.137043 

c17_t332 ambiguous t3 3.515213 

c17_t333 Pulse-3 t3 3.570814 

c17_t34 UT3 t10 2.346962 

c17_t341 Stag-60 t60 1.900116 

c17_t363 Pulse-3 t3 1.372166 

c17_t365 Arch1 t30 2.678666 

c17_t366 Stag-10 t60 4.13159 

c17_t367 Stag-10 t30 2.045164 

c17_t368 Pulse-30 t30 1.60295 

c17_t369 Pulse-3 t3 1.54126 

c17_t381 Arch2 t10 2.888333 

c17_t388 Arch2 t10 3.951931 

c17_t389 Hump1 t10 1.886569 

c17_t422 UT3 t10 2.700148 

c17_t426 Stag-60 t60 1.447095 

c17_t435 Arch2 t10 3.523364 

c17_t45 Arch1 t30 2.419587 

c17_t455 Arch1 t30 3.633024 

c17_t458 Arch1 t10 3.275538 

c17_t491 Pulse-10 t10 1.930831 

c17_t492 Pulse-10 t10 1.408017 

c17_t497 Stag-30 t30 2.044587 

c17_t499 Stag-30 t30 2.130269 

c17_t502 Arch1 t10 3.122006 

c17_t518 Arch1 t10 2.057312 

c17_t521 Stag-30 t60 1.55146 
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Gene Profile MaxTP Log2 (MaxFC) 

c17_t537 Arch1 t10 2.140512 

c17_t538 Stag-3 t10 3.50497 

c17_t541 Stag-10 t30 3.636803 

c17_t542 Stag-10 t30 3.002508 

c17_t545 Arch1 t10 2.696714 

c17_t551 Arch2 t10 3.27297 

c17_t552 Arch2 t10 3.600404 

c17_t553 Pulse-10 t10 1.462446 

c17_t561 Stag-3 t10 3.657665 

c17_t564 Arch1 t30 2.552257 

c17_t57 Stag-60 t60 1.3767 

c17_t588 UT1 t10 2.990159 

c17_t593 Stag-30 t60 1.597424 

c17_t598 UT2 t60 5.090953 

c17_t6 Stag-30 t30 1.481922 

c17_t600 Arch1 t10 1.76042 

c17_t610 Arch1 t10 3.636948 

c17_t627 Hump1 t10 2.116852 

c17_t634 Arch1 t30 2.161042 

c17_t638 Arch1 t30 2.466576 

c17_t642 UT5 t3 1.907531 

c17_t666 Stag-60 t60 2.693742 

c17_t670 Arch1 t30 2.675146 

c17_t679 Stag-30 t30 1.772654 

c17_t684 ambiguous t60 1.961661 

c17_t69 Arch1 t10 1.887536 

c17_t697 Arch1 t30 2.273731 

c17_t708 Stag-10 t30 2.021172 

c17_t71 Arch1 t30 1.530122 

c17_t721 Stag-3 t10 3.45739 

c17_t729 Stag-60 t60 1.769018 

c17_t731 Stag-30 t60 2.168154 

c17_t739 Stag-60 t60 1.599098 

c17_t787 Stag-60 t60 2.077135 

c17_t789 Arch1 t30 2.604858 

c17_t798 Arch1 t10 5.526575 

c17_t799 Arch1 t10 4.904961 

c17_t800 Arch1 t10 4.253858 

c17_t828 Arch1 t10 2.823441 

c17_t829 Pulse-10 t10 1.550493 
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Gene Profile MaxTP Log2 (MaxFC) 

c17_t832 Pulse-10 t10 1.762007 

c17_t839 UT2 t60 1.624633 

c17_t856 Arch1 t30 2.740861 

c17_t870 Arch2 t10 4.743091 

c17_t871 Arch1 t10 2.499036 

c17_t873 Arch2 t10 2.289817 

c17_t890 Arch2 t10 3.345119 

c17_t897 Arch1 t30 2.767681 

c17_t905 Stag-60 t60 2.661844 

c17_t912 Stag-10 t30 1.863414 

c17_t935 Hump1 t10 3.126998 

c2_t1001 Pulse-3 t3 1.787687 

c2_t1005 Pulse-3 t3 2.121454 

c2_t1015 Stag-10 t30 2.280107 

c2_t1016 Hump1 t10 2.252638 

c2_t1026 Arch1 t30 2.846221 

c2_t1028 Arch1 t10 3.849471 

c2_t105 UT2 t60 1.755212 

c2_t1060 Stag-3 t10 4.133971 

c2_t1061 Arch2 t10 4.267319 

c2_t1062 Arch1 t10 4.117134 

c2_t1065 Stag-3 t10 3.550501 

c2_t1076 Arch1 t10 1.492771 

c2_t1096 Stag-10 t30 3.417283 

c2_t1114 Stag-60 t60 1.802546 

c2_t1117 Arch1 t30 1.484807 

c2_t112 Arch2 t10 3.791518 

c2_t113 Arch1 t30 3.067328 

c2_t1135 Stag-30 t60 3.735513 

c2_t1136 Stag-30 t60 2.196503 

c2_t1137 Arch1 t10 3.953143 

c2_t1144 Arch1 t10 3.235027 

c2_t1145 Arch1 t30 3.490875 

c2_t118 Arch1 t10 3.671183 

c2_t1192 ambiguous t30 1.394147 

c2_t1202 Stag-30 t30 1.643576 

c2_t1205 Arch1 t10 1.429067 

c2_t1206 Pulse-3 t3 4.511812 

c2_t1219 UT1 t60 1.735259 

c2_t1229 UT5 t60 2.248714 
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Gene Profile MaxTP Log2 (MaxFC) 

c2_t1231 UT5 t60 2.223943 

c2_t1242 Arch1 t30 3.303858 

c2_t1251 Stag-60 t60 2.243247 

c2_t1256 ambiguous t60 3.243251 

c2_t1259 ambiguous t3 1.907531 

c2_t126 Arch1 t30 1.721958 

c2_t1260 Arch1 t10 2.585252 

c2_t1276 Arch2 t10 3.907987 

c2_t1281 Arch1 t10 2.669722 

c2_t13 Arch1 t10 3.327345 

c2_t131 Arch1 t30 1.443907 

c2_t1321 Arch2 t10 4.578696 

c2_t1330 ambiguous t60 2.965099 

c2_t1393 Arch1 t10 3.603246 

c2_t1395 Stag-30 t30 2.110735 

c2_t1396 Stag-10 t30 2.290163 

c2_t1400 Arch2 t10 2.060111 

c2_t1425 Stag-3 t10 2.213109 

c2_t1428 UT1 t60 4.049126 

c2_t1436 Pulse-10 t10 2.899514 

c2_t1437 Pulse-10 t10 1.67507 

c2_t1445 Arch1 t10 3.108286 

c2_t1447 Arch1 t30 3.571363 

c2_t1454 Stag-30 t60 1.542905 

c2_t1461 Arch1 t10 1.440108 

c2_t1476 Arch2 t10 3.634827 

c2_t1477 Arch1 t10 3.124574 

c2_t150 Arch1 t30 3.642747 

c2_t1505 Arch1 t30 1.511843 

c2_t151 outlier t60 3.828682 

c2_t152 Arch1 t30 3.79423 

c2_t158 Stag-60 t60 1.819642 

c2_t159 Stag-60 t60 2.562544 

c2_t160 Stag-60 t60 1.671405 

c2_t233 Arch1 t10 2.753585 

c2_t239 Stag-60 t60 1.546627 

c2_t273 Stag-30 t60 1.396292 

c2_t295 Stag-60 t60 1.421095 

c2_t300 Stag-30 t60 2.236552 

c2_t314 Arch1 t30 3.482464 
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Gene Profile MaxTP Log2 (MaxFC) 

c2_t334 Arch1 t30 2.801569 

c2_t337 Arch2 t10 4.327782 

c2_t34 Arch1 t30 1.545155 

c2_t366 Stag-30 t60 1.511223 

c2_t371 Arch1 t10 3.838579 

c2_t374 Arch1 t10 3.139968 

c2_t381 UT2 t60 1.518379 

c2_t383 Arch1 t30 3.932989 

c2_t389 Arch1 t10 3.737489 

c2_t391 Arch1 t10 3.923885 

c2_t392 Arch1 t30 3.64569 

c2_t419 outlier t60 5.94373 

c2_t420 outlier t60 5.735809 

c2_t426 Pulse-30 t30 2.559918 

c2_t432 Arch2 t10 3.318011 

c2_t438 UT2 t60 3.662108 

c2_t447 Stag-10 t30 2.414841 

c2_t504 Hump1 t10 2.165052 

c2_t510 Stag-30 t30 1.869877 

c2_t519 Arch1 t30 1.706146 

c2_t538 Stag-30 t60 1.425944 

c2_t549 Hump2 t10 2.318296 

c2_t57 ambiguous t10 1.945445 

c2_t60 Pulse-10 t10 1.422927 

c2_t609 Arch2 t10 2.037417 

c2_t614 Stag-10 t30 2.230984 

c2_t619 Arch1 t10 3.778 

c2_t636 Stag-60 t60 1.667251 

c2_t648 Arch1 t10 2.766498 

c2_t659 Stag-30 t60 1.553205 

c2_t662 Arch1 t30 3.180926 

c2_t671 UT1 t30 3.402409 

c2_t684 Stag-30 t30 2.130327 

c2_t69 Arch1 t10 3.04211 

c2_t7 Stag-3 t10 4.283304 

c2_t711 Stag-30 t60 1.633491 

c2_t715 Stag-60 t60 1.548906 

c2_t731 ambiguous t10 1.931927 

c2_t74 Arch1 t30 1.669155 

c2_t76 Arch1 t30 1.856878 
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Gene Profile MaxTP Log2 (MaxFC) 

c2_t763 Arch1 t10 2.85052 

c2_t789 Arch1 t30 2.59046 

c2_t792 Arch2 t10 2.495026 

c2_t805 Arch1 t10 3.305041 

c2_t817 Arch1 t10 3.582457 

c2_t849 Stag-60 t60 2.155675 

c2_t857 Stag-60 t60 2.068334 

c2_t858 UT1 t60 2.488909 

c2_t867 UT3 t10 1.762007 

c2_t874 Arch1 t10 3.456769 

c2_t880 Stag-10 t30 2.549098 

c2_t893 Stag-60 t60 2.05359 

c2_t904 Stag-30 t60 2.284969 

c2_t914 Arch1 t10 2.773235 

c2_t918 Pulse-3 t3 2.292197 

c2_t930 ambiguous t10 1.668895 

c2_t932 Stag-60 t60 2.464166 

c2_t954 Stag-60 t60 1.464162 

c2_t963 ambiguous t10 2.420222 

c3_t1019 Arch2 t10 4.101495 

c3_t1029 Pulse-3 t3 1.438045 

c3_t1032 Arch2 t10 4.855188 

c3_t1044 Arch1 t10 3.099861 

c3_t1049 Arch1 t10 2.142142 

c3_t1054 Arch2 t10 3.656655 

c3_t1055 Hump1 t10 1.647832 

c3_t1062 Arch1 t10 3.184533 

c3_t1112 Arch1 t30 3.116943 

c3_t1114 Stag-30 t60 3.316958 

c3_t1115 Stag-60 t60 1.391651 

c3_t1119 Stag-30 t60 1.897534 

c3_t1120 Stag-60 t60 2.257327 

c3_t1126 Stag-30 t60 2.546631 

c3_t1160 Pulse-3 t3 3.452326 

c3_t118 Arch1 t10 3.110725 

c3_t1182 Stag-60 t60 1.961661 

c3_t1196 Pulse-3 t3 2.091057 

c3_t1209 Stag-30 t60 1.928494 

c3_t122 Hump2 t30 1.428736 

c3_t1222 Stag-3 t10 3.724202 
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Gene Profile MaxTP Log2 (MaxFC) 

c3_t1232 UT3 t10 1.785739 

c3_t1249 UT5 t60 2.103204 

c3_t1260 Arch1 t30 3.800102 

c3_t1269 Arch2 t10 3.649528 

c3_t150 Hump1 t10 1.872748 

c3_t157 Stag-10 t60 2.086916 

c3_t170 Arch2 t10 3.644017 

c3_t179 Arch1 t30 2.221678 

c3_t192 Pulse-3 t3 1.422103 

c3_t201 Arch1 t10 5.046432 

c3_t224 Pulse-10 t10 2.005303 

c3_t243 Arch1 t10 3.76542 

c3_t26 Stag-10 t30 1.841413 

c3_t264 Stag-60 t60 1.961661 

c3_t297 Stag-3 t10 3.62431 

c3_t299 Arch2 t10 2.642657 

c3_t306 Arch1 t30 2.533574 

c3_t32 Pulse-3 t3 1.747493 

c3_t361 Stag-60 t60 1.686063 

c3_t362 Stag-3 t10 3.257692 

c3_t373 Stag-60 t60 2.427089 

c3_t377 UT3 t10 2.849467 

c3_t391 Arch1 t10 4.364888 

c3_t399 Pulse-3 t3 2.129923 

c3_t403 Arch1 t30 2.131091 

c3_t422 Pulse-10 t10 1.984398 

c3_t424 Hump1 t10 2.800141 

c3_t425 Arch2 t10 2.998483 

c3_t430 Stag-3 t10 2.82259 

c3_t440 Stag-30 t60 2.182307 

c3_t458 Arch1 t30 1.944537 

c3_t461 Stag-30 t60 1.961661 

c3_t462 Pulse-30 t30 1.496955 

c3_t466 Arch1 t10 2.221433 

c3_t468 Arch2 t10 4.095277 

c3_t477 Stag-60 t60 2.925136 

c3_t478 Stag-30 t60 2.564506 

c3_t482 Stag-60 t60 1.528838 

c3_t496 UT2 t60 1.618776 

c3_t502 Arch1 t30 1.779478 
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Gene Profile MaxTP Log2 (MaxFC) 

c3_t516 Pulse-30 t30 2.559918 

c3_t518 Arch1 t10 3.202581 

c3_t522 Arch1 t10 3.376397 

c3_t530 Stag-3 t10 3.856425 

c3_t552 Stag-60 t60 3.929743 

c3_t557 ambiguous t10 2.857575 

c3_t558 Arch2 t10 4.888529 

c3_t567 Arch1 t10 2.617987 

c3_t572 Stag-10 t60 6.734255 

c3_t577 Stag-60 t60 1.98535 

c3_t594 Arch1 t10 3.619982 

c3_t597 Arch1 t30 1.454742 

c3_t598 Stag-60 t60 1.961661 

c3_t603 Arch1 t30 2.810687 

c3_t606 Arch2 t10 3.622146 

c3_t615 UT2 t60 2.853059 

c3_t637 Arch1 t10 1.758256 

c3_t638 Arch1 t10 2.488937 

c3_t646 Stag-30 t60 4.785304 

c3_t647 Stag-10 t60 6.614771 

c3_t648 Stag-30 t60 4.918768 

c3_t655 Stag-3 t10 3.761366 

c3_t656 Arch1 t30 2.895417 

c3_t661 Stag-30 t60 3.31804 

c3_t662 UT1 t60 2.533199 

c3_t665 Stag-10 t10 1.677436 

c3_t725 Stag-60 t60 1.401287 

c3_t728 Arch1 t30 2.619934 

c3_t729 Arch1 t10 1.50287 

c3_t730 Stag-3 t10 3.058773 

c3_t740 Arch1 t30 3.557744 

c3_t741 Stag-3 t10 1.40586 

c3_t743 Arch1 t10 1.659907 

c3_t745 UT2 t60 1.546627 

c3_t746 Arch1 t10 2.161893 

c3_t752 Arch1 t30 2.912267 

c3_t769 Arch1 t30 3.767093 

c3_t78 Pulse-10 t10 2.346962 

c3_t780 UT1 t10 1.679715 

c3_t783 Hump2 t10 1.808779 
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Gene Profile MaxTP Log2 (MaxFC) 

c3_t819 Stag-60 t60 1.447095 

c3_t838 Arch1 t30 3.082102 

c3_t855 Stag-10 t30 2.754047 

c3_t857 Arch1 t10 2.668899 

c3_t858 Arch1 t30 2.548189 

c3_t863 Stag-30 t30 3.594042 

c3_t88 Arch1 t30 2.29201 

c3_t881 Stag-60 t60 2.065997 

c3_t886 Arch1 t10 1.980647 

c3_t887 Pulse-3 t3 1.400055 

c3_t89 Arch1 t30 2.111831 

c3_t907 Stag-10 t30 3.678973 

c3_t908 Stag-10 t30 1.844774 

c3_t916 Pulse-30 t30 1.379215 

c3_t938 Stag-3 t10 1.569393 

c3_t959 Stag-30 t60 1.572653 

c3_t961 UT1 t60 1.791741 

c3_t983 Hump2 t10 2.161734 

c3_t984 Arch1 t10 1.873109 

c4_t116 Stag-30 t60 2.428402 

c4_t117 Stag-30 t60 2.740443 

c4_t122 Arch1 t30 2.970394 

c4_t132 Pulse-30 t30 2.442512 

c4_t133 Pulse-3 t3 1.422114 

c4_t175 Arch1 t10 2.848688 

c4_t180 Hump2 t10 3.792903 

c4_t182 Pulse-30 t30 1.608172 

c4_t183 Arch1 t10 4.806396 

c4_t186 UT3 t10 1.624503 

c4_t187 Pulse-3 t3 2.218273 

c4_t211 Stag-3 t10 3.285565 

c4_t212 Stag-60 t60 2.027001 

c4_t23 Arch2 t10 3.522225 

c4_t234 Stag-60 t60 2.158055 

c4_t239 Stag-60 t60 1.403278 

c4_t240 Stag-60 t60 1.546627 

c4_t244 Stag-60 t60 1.95426 

c4_t272 Pulse-10 t10 1.464768 

c4_t292 Arch1 t10 4.199858 

c4_t296 UT1 t60 1.926589 
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Gene Profile MaxTP Log2 (MaxFC) 

c4_t314 ambiguous t3 1.396915 

c4_t319 Arch1 t10 1.486697 

c4_t320 Hump2 t10 1.738188 

c4_t335 Hump2 t30 1.464537 

c4_t340 Stag-60 t60 1.692844 

c4_t347 Stag-30 t30 1.754043 

c4_t359 Stag-60 t60 1.769018 

c4_t362 Arch1 t30 3.664676 

c4_t363 Pulse-10 t10 1.630173 

c4_t384 Stag-10 t60 2.909541 

c4_t398 Stag-60 t60 1.768239 

c4_t406 Stag-60 t60 2.283599 

c4_t65 Pulse-3 t3 1.907531 

c4_t77 Stag-30 t30 2.113058 

c4_t83 Arch1 t10 2.570378 

c4_t95 ambiguous t10 1.755313 

c4_t96 Hump1 t10 1.832468 

c5_t104 Arch1 t10 2.122479 

c5_t106 Stag-60 t60 1.698629 

c5_t141 Arch2 t10 3.079202 

c5_t147 Stag-30 t30 1.619901 

c5_t151 Arch1 t10 2.232628 

c5_t170 Pulse-3 t3 1.928595 

c5_t178 Stag-60 t60 2.033998 

c5_t198 Stag-60 t60 1.546627 

c5_t205 Stag-3 t10 2.351492 

c5_t206 Arch1 t10 2.713753 

c5_t210 Pulse-30 t30 2.677757 

c5_t242 Hump2 t30 1.845135 

c5_t276 UT3 t10 2.671135 

c5_t28 Arch1 t10 3.154323 

c5_t280 Hump1 t10 2.188597 

c5_t290 UT2 t60 1.640157 

c5_t292 Arch1 t30 3.222303 

c5_t293 Arch1 t30 3.540835 

c5_t294 UT3 t10 3.330692 

c5_t296 Stag-60 t60 1.433985 

c5_t310 UT3 t10 2.08393 

c5_t322 Hump2 t30 2.789206 

c5_t337 Stag-30 t60 2.209588 
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Gene Profile MaxTP Log2 (MaxFC) 

c5_t347 Arch1 t30 1.692974 

c5_t354 Stag-30 t30 1.747464 

c5_t358 Stag-10 t30 3.12218 

c5_t360 Stag-10 t30 3.48043 

c5_t366 Stag-30 t30 1.84802 

c5_t38 Arch1 t10 1.812631 

c5_t397 ambiguous t10 1.906464 

c5_t401 Stag-30 t30 2.95223 

c5_t407 Stag-30 t60 1.56694 

c5_t409 Pulse-30 t30 1.53031 

c5_t410 Stag-30 t30 3.647869 

c5_t55 UT1 t60 3.54662 

c5_t91 Arch2 t10 3.578922 

c5_t92 UT1 t60 2.50599 

c6_t1010 Arch2 t10 3.796452 

c6_t1015 Arch1 t30 2.127499 

c6_t1022 Arch1 t10 1.650746 

c6_t1061 Arch2 t10 3.367957 

c6_t1085 Pulse-3 t3 2.522552 

c6_t1092 Stag-30 t30 1.405748 

c6_t1111 Arch1 t10 4.029851 

c6_t1123 UT3 t10 2.285561 

c6_t1149 Stag-3 t10 3.959592 

c6_t1161 UT4 t30 1.450486 

c6_t1168 Stag-60 t60 2.394629 

c6_t1180 Arch2 t10 3.367726 

c6_t1190 Stag-10 t60 3.045976 

c6_t1203 UT2 t60 1.518061 

c6_t1208 Stag-60 t60 1.385599 

c6_t1234 Arch1 t10 1.549858 

c6_t1240 Stag-10 t30 2.921212 

c6_t1244 Arch1 t10 1.955313 

c6_t1245 Stag-3 t3 3.977914 

c6_t1255 Stag-30 t60 2.836136 

c6_t139 Stag-30 t60 1.905714 

c6_t154 UT3 t10 3.465613 

c6_t161 Arch1 t10 3.995977 

c6_t166 UT4 t30 1.797699 

c6_t20 Hump1 t10 1.810986 

c6_t235 Stag-10 t30 1.800628 
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Gene Profile MaxTP Log2 (MaxFC) 

c6_t236 Arch1 t30 1.782132 

c6_t265 Arch1 t10 3.20538 

c6_t267 Stag-3 t10 2.729045 

c6_t276 Stag-30 t60 2.047487 

c6_t277 Stag-60 t60 1.740467 

c6_t282 Arch1 t30 1.921742 

c6_t29 Stag-30 t60 1.453155 

c6_t306 Pulse-10 t10 2.525423 

c6_t32 Stag-10 t30 2.080265 

c6_t323 Arch1 t10 1.686828 

c6_t324 Arch1 t10 1.830722 

c6_t332 Hump1 t10 2.001364 

c6_t375 Arch2 t10 2.644965 

c6_t38 Stag-30 t60 2.868554 

c6_t380 Stag-30 t30 1.388326 

c6_t389 Pulse-30 t30 3.161161 

c6_t403 Stag-3 t10 4.181536 

c6_t405 Arch1 t30 2.55898 

c6_t409 Hump1 t10 1.774385 

c6_t421 Stag-30 t60 1.722693 

c6_t426 Stag-30 t60 1.57108 

c6_t428 Stag-60 t60 3.387924 

c6_t429 Stag-30 t60 1.500273 

c6_t44 Stag-60 t60 2.037576 

c6_t444 Arch1 t10 1.955833 

c6_t445 Arch1 t10 4.604289 

c6_t454 Pulse-10 t10 1.492165 

c6_t456 UT1 t10 1.407594 

c6_t477 Stag-3 t10 3.775807 

c6_t49 Arch1 t10 3.015521 

c6_t502 Stag-30 t60 1.676931 

c6_t535 Arch1 t10 2.590604 

c6_t556 Stag-60 t60 1.953755 

c6_t557 Stag-60 t60 2.453202 

c6_t559 Stag-60 t60 1.616049 

c6_t611 Arch1 t30 1.902626 

c6_t612 Arch1 t10 1.837157 

c6_t618 Stag-3 t10 1.920501 

c6_t627 Arch1 t30 2.405636 

c6_t654 Arch1 t30 1.912956 
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Gene Profile MaxTP Log2 (MaxFC) 

c6_t680 ambiguous t10 1.832396 

c6_t691 Hump1 t10 1.571008 

c6_t708 Arch1 t30 3.40603 

c6_t734 Arch1 t30 2.71319 

c6_t755 UT1 t60 2.769022 

c6_t765 Stag-60 t60 2.402232 

c6_t766 UT3 t10 2.176233 

c6_t77 UT4 t30 1.879572 

c6_t773 Stag-60 t60 2.108499 

c6_t779 UT2 t60 2.176103 

c6_t827 Stag-60 t60 1.511858 

c6_t875 UT2 t30 1.641412 

c6_t876 Stag-3 t10 3.410618 

c6_t879 Arch1 t10 1.496926 

c6_t900 Arch1 t30 2.68047 

c6_t902 Arch1 t30 2.828 

c6_t903 Arch1 t30 3.352506 

c6_t921 outlier t60 4.488282 

c6_t922 Stag-10 t60 5.313013 

c6_t926 Stag-60 t60 1.836132 

c6_t953 Stag-30 t30 1.61654 

c6_t956 Stag-60 t60 1.546627 

c6_t985 Arch1 t10 3.71142 

c7_t102 UT3 t10 2.7638 

c7_t104 ambiguous t60 1.454525 

c7_t117 Arch1 t10 3.049785 

c7_t12 Hump1 t10 2.079962 

c7_t127 Arch2 t10 3.386496 

c7_t128 Pulse-30 t30 1.47403 

c7_t155 Pulse-10 t10 1.715595 

c7_t158 Hump1 t10 2.820541 

c7_t164 Stag-10 t30 2.393503 

c7_t169 Stag-30 t60 3.421092 

c7_t170 Stag-30 t60 3.421092 

c7_t172 Stag-60 t60 2.37785 

c7_t21 Arch1 t10 2.126922 

c7_t212 Stag-30 t30 1.427879 

c7_t213 Arch1 t10 3.33968 

c7_t225 ambiguous t10 1.895485 

c7_t230 Arch1 t30 2.62911 
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Gene Profile MaxTP Log2 (MaxFC) 

c7_t235 ambiguous t60 1.546627 

c7_t243 Stag-30 t30 2.411335 

c7_t247 Arch1 t10 2.478997 

c7_t273 Arch1 t10 1.659503 

c7_t275 Stag-10 t30 2.231359 

c7_t291 Stag-60 t60 2.103017 

c7_t307 Arch1 t30 2.548636 

c7_t325 Stag-60 t60 1.377458 

c7_t34 Hump2 t30 2.409532 

c7_t369 Arch1 t30 3.704192 

c7_t373 Arch2 t10 2.884149 

c7_t374 Stag-30 t60 1.438101 

c7_t378 Pulse-10 t10 1.700606 

c7_t385 Arch1 t10 2.947109 

c7_t397 Stag-30 t30 2.923968 

c7_t400 Hump1 t10 2.073946 

c7_t414 Arch1 t10 2.388786 

c7_t434 Stag-30 t30 2.464542 

c7_t456 Stag-30 t60 1.404606 

c7_t486 Stag-30 t60 1.891272 

c7_t488 Arch1 t30 3.106238 

c7_t489 Arch2 t10 2.907059 

c7_t504 Arch1 t10 2.347726 

c7_t532 Pulse-30 t30 3.855747 

c7_t57 Stag-30 t60 1.961661 

c7_t587 Arch1 t10 5.134855 

c7_t620 Arch1 t30 3.236903 

c7_t632 Arch1 t10 3.245227 

c7_t651 Pulse-3 t3 1.745748 

c7_t655 Arch1 t30 4.414878 

c7_t656 Stag-10 t30 4.171495 

c7_t663 Stag-30 t60 1.935981 

c7_t665 Stag-30 t60 2.159599 

c7_t672 Stag-30 t60 4.015612 

c7_t674 Stag-60 t60 1.698629 

c7_t675 Stag-60 t60 2.178498 

c7_t688 Arch2 t10 3.534184 

c7_t695 UT1 t60 2.510246 

c7_t706 Stag-30 t60 1.75035 

c7_t725 Arch1 t30 3.238591 
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Gene Profile MaxTP Log2 (MaxFC) 

c7_t739 Stag-60 t60 1.688646 

c7_t74 UT1 t60 3.662108 

c7_t752 Stag-3 t3 1.4253 

c7_t771 Stag-10 t30 2.879576 

c7_t776 Stag-60 t60 1.631515 

c7_t780 Pulse-3 t3 1.492497 

c7_t798 UT3 t3 1.741549 

c7_t807 Hump1 t10 2.324946 

c7_t808 Hump1 t10 1.597511 

c7_t817 Arch1 t30 3.366197 

c7_t82 ambiguous t60 1.6621 

c7_t821 Stag-60 t60 2.020552 

c7_t823 Pulse-3 t3 2.481522 

c7_t865 Arch1 t30 2.623728 

c8_t109 Hump1 t10 3.123767 

c8_t12 Arch2 t10 3.00939 

c8_t131 Arch2 t10 2.876792 

c8_t136 UT3 t10 2.009934 

c8_t139 Pulse-10 t10 2.849467 

c8_t16 Arch2 t10 4.566014 

c8_t168 Stag-60 t60 1.51721 

c8_t170 Stag-30 t60 1.836132 

c8_t18 Arch1 t10 4.323093 

c8_t188 Pulse-10 t10 3.975115 

c8_t190 Stag-60 t60 1.86855 

c8_t191 Hump1 t3 1.621229 

c8_t193 Arch2 t10 1.636478 

c8_t196 Stag-3 t10 3.029486 

c8_t208 Hump2 t10 1.567272 

c8_t212 Stag-30 t60 1.879197 

c8_t214 Stag-60 t60 1.783085 

c8_t224 Stag-30 t60 1.553725 

c8_t241 Stag-3 t10 3.092229 

c8_t245 Stag-30 t30 2.559918 

c8_t246 ambiguous t60 2.827062 

c8_t262 Stag-30 t60 1.645423 

c8_t263 Stag-30 t60 2.088114 

c8_t274 Stag-60 t60 1.482499 

c8_t275 outlier t3 2.456102 

c8_t279 Arch2 t10 2.345663 
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Gene Profile MaxTP Log2 (MaxFC) 

c8_t281 Pulse-10 t10 3.210328 

c8_t282 Pulse-3 t3 2.053301 

c8_t305 Arch1 t10 3.191573 

c8_t310 Stag-60 t60 1.385423 

c8_t323 UT3 t3 1.656474 

c8_t335 Hump1 t10 2.120459 

c8_t36 Arch2 t10 3.682248 

c8_t360 Arch1 t30 3.400086 

c8_t362 Hump2 t30 3.096803 

c8_t363 Arch1 t30 3.146013 

c8_t372 Arch1 t10 3.459814 

c8_t376 Pulse-30 t30 1.527497 

c8_t400 Arch1 t30 2.614856 

c8_t411 Stag-30 t30 2.542534 

c8_t419 Arch1 t10 4.19465 

c8_t420 Arch1 t10 4.307714 

c8_t421 Arch1 t10 3.831336 

c8_t483 Arch2 t10 2.792163 

c8_t491 UT5 t60 2.284969 

c8_t499 Stag-60 t60 1.77489 

c8_t500 ambiguous t60 3.313135 

c8_t507 Stag-30 t30 2.031055 

c8_t510 Stag-10 t60 2.626816 

c8_t527 Pulse-30 t30 1.436467 

c8_t528 Pulse-30 t30 1.458666 

c8_t54 Pulse-30 t30 2.822965 

c8_t567 Stag-30 t60 1.621142 

c8_t569 Stag-60 t60 1.815819 

c8_t579 Arch1 t30 1.375269 

c8_t64 Arch2 t10 3.523105 

c8_t74 Stag-60 t60 2.610759 

c8_t77 Stag-30 t60 2.167765 

c8_t95 Arch1 t30 3.116871 

c8_t97 Arch2 t10 2.712252 

c9_t103 UT4 t30 1.821273 

c9_t137 Stag-30 t60 2.11124 

c9_t138 Stag-60 t60 1.454352 

c9_t159 ambiguous t3 2.492487 

c9_t169 Stag-30 t30 1.515162 

c9_t189 ambiguous t3 2.011016 
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Gene Profile MaxTP Log2 (MaxFC) 

c9_t191 Arch2 t10 3.668889 

c9_t197 Arch1 t30 2.850664 

c9_t204 Arch1 t10 1.547723 

c9_t206 Arch1 t10 3.50924 

c9_t216 Pulse-3 t3 1.434105 

c9_t219 Arch1 t10 2.249623 

c9_t222 Arch1 t30 2.05196 

c9_t234 Arch1 t30 5.0943 

c9_t235 Stag-30 t60 1.783301 

c9_t275 Hump1 t10 3.215738 

c9_t279 Hump1 t10 1.93223 

c9_t284 Arch1 t10 1.836854 

c9_t285 Stag-30 t60 2.179061 

c9_t296 UT4 t30 1.879572 

c9_t335 Stag-60 t60 2.861138 

c9_t345 Arch1 t10 3.636255 

c9_t358 UT1 t10 2.627162 

c9_t360 Arch1 t10 1.540495 

c9_t444 Arch1 t10 4.032087 

c9_t474 Stag-30 t60 1.582694 

c9_t484 Stag-3 t10 3.688798 

c9_t501 Stag-60 t60 2.14057 

c9_t509 Stag-10 t30 3.714767 

c9_t51 Stag-30 t30 2.008607 

c9_t518 Stag-30 t60 1.483624 

c9_t54 Pulse-3 t3 2.229454 

c9_t541 Stag-30 t60 1.532402 

c9_t543 Pulse-10 t10 1.770547 

c9_t561 Pulse-30 t30 1.464537 

c9_t582 Arch1 t30 2.860143 

c9_t59 Arch1 t10 2.655093 

c9_t600 Hump2 t10 1.677436 

c9_t605 Hump2 t10 1.677436 

c9_t608 Stag-60 t60 2.243247 

c9_t614 Stag-3 t10 3.401759 

c9_t63 Arch2 t10 2.095904 

c9_t632 Arch1 t30 3.209722 

c9_t636 Arch1 t30 2.25121 

c9_t640 Pulse-10 t10 1.698182 

c9_t650 Stag-30 t30 1.616511 
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Gene Profile MaxTP Log2 (MaxFC) 

c9_t73 Stag-10 t60 2.136747 

c9_t86 Stag-60 t60 1.698629 

c9_t99 Stag-10 t60 3.036945 

s18_t110 Pulse-3 t3 1.875936 

s18_t126 Stag-30 t60 2.260443 

s18_t151 Stag-60 t60 1.431149 

s18_t153 Arch1 t10 3.556835 

s18_t154 Hump2 t10 2.972327 

s18_t156 Arch2 t10 2.344033 

s18_t174 Arch1 t30 2.693497 

s18_t177 Stag-60 t60 2.447085 

s18_t21 Arch1 t30 2.806619 

s18_t27 Stag-60 t60 1.898183 

s18_t41 Stag-60 t60 1.3767 

s18_t44 Pulse-30 t30 1.776477 

s18_t45 Hump2 t30 1.762223 

s18_t5 Arch1 t10 2.692156 

s18_t60 Stag-60 t60 2.376696 

s18_t80 Arch1 t30 1.726675 

s18_t84 UT1 t10 2.083583 

s18_t90 Pulse-10 t10 1.578842 

s18_t95 Arch1 t30 3.094379 

. 
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