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Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical

responses of materials and structures. For biological tissues, these spectra must usually

be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests

is challenging because the inverse problem is expensive computationally. We present here

(1) an efficient algorithm and (2) a quasi-linear model that enable rapid identification of

the viscoelastic relaxation spectra of both linear and nonlinear materials. We then apply

these methods to develop fundamental insight into the mechanics of collagenous and fibrotic

tissues.

The first algorithm, which we term the discrete spectral approach, is fast enough to yield a

discrete spectrum of time constants that is sufficient to fit a measured relaxation spectrum

with an accuracy insensitive to further refinement. The algorithm fits a discrete spectral

generalized Maxwell (Maxwell-Wiechert) model, which is a linear viscoelastic model, to

results from a stress-relaxation test. The discrete spectral approach was tested against trial

data to characterize its robustness and identify its limitations and strengths. The algorithm
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was then applied to identify the viscoelastic response of reconstituted collagen and engineered

fibrosis tissues, revealing that cells actively adapted the ECM, and that cells relax at multiple

timescales, including one that is fast compared to those of the ECM.

The second algorithm, which we term the discrete quasi-linear viscoelastic (DQLV) approach,

is a spectral extension of the Fung quasi-linear viscoelastic (QLV) model, a standard tool

for characterizing biological materials. The Fung QLV model provides excellent fits to most

stress-relaxation data by imposing a simple form upon a material’s temporal relaxation spec-

trum. However, model identification is challenging because the Fung QLV model’s “box”

shaped relaxation spectrum, predominant in biomechanics applications, because it can pro-

vide an excellent fit even when it is not a reasonable representation of a material’s relaxation

spectrum. The DQLV model is robust, simple, and unbiased. It is able to identify ranges of

time constants over which the Fung QLV model’s typical box spectrum provides an accurate

representation of a particular material’s temporal relaxation spectrum, and is effective at

providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete

time constants are more suitable than a box spectrum. After validating the approach against

idealized and noisy data, we applied the methods to analyze medial collateral ligament stress-

relaxation and sinusoidal excitation data and identify the strengths and weaknesses of an

optimal Fung QLV fit.

Taken together, the tools in this dissertation form a comprehensive approach to character-

izing the mechanics of viscoelastic biological tissues, and to dissecting the micromechanical

mechanisms that underlie a tissue’s viscoelastic responses.
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Chapter 1

Introduction

The mechanical responses of nearly all materials and structures are viscoelastic, differing

to some degree based upon the rate and duration of loading [134, 54, 18, 74, 164]. Char-

acterizing viscoelasticity is important because viscoelasticity affects the transmission, stor-

age, and dissipation of force and energy, and because variations in viscoelastic response as

a function of loading duration or frequency can provide clues about micromechanical de-

formation, resilience mechanisms and molecular structure. Because cells and collagen-rich

extracellular matrix (ECM) show strong viscoelastic behavior at physiological loading rates

[68, 141, 194, 7], viscoelasticity is a factor in almost all biological tissues and organs. Indeed,

viscoelastic responses have been studied as metrics of tissue function and health of arteries

[32], brain parenchyma [155], liver tissues [26], the prostate [150], skin [29], breasts [23],

articular cartilage [44], ligaments [3], and tendon [49] and its attachments to bone [173].

For engineering polymers, the characterization test of choice is often rotational rheometry,

which can provide information about the frequencies and timescales of loading over which

a material absorbs energy most effectively. However, rotational rheometry is often unsuit-

able for the characterization of biological tissues because of issues of gripping, orienting,

and aligning specimens [8]. Instead, other viscoelastic protocols such as relaxation tests or

dynamic excitation are typically used. In biomechanics, there are two well-known models
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to analyze viscoelastic response of biological materials: 1) The Maxwell spring and dashpot

model. 2) The Fung’ quasi-linear viscoelastic model.

The Maxwell spring and dashpot model is common in biomechanics to analyze stress-

relaxation response of biological materials. The Maxwell model is composed of a linear

dashpot connected in series with a linear spring. A feature of this model is that it has a single

relaxation time constant, τ = η/E. However, this does not wholly simulate the viscoelastic

behavior of most materials. For this reason, the generalized Maxwell (or Maxwell-Wiechert)

model with multiple springs and dashpots is commonly applied. We found that the Maxwell

model could fit most experimental stress-relaxation data with 2 or 3 time constants. This can

be advantageous because a fit to subsequent analogous loadings could be obtained with little

effort or complexity. However, this could be disadvantageous because such fitting may pro-

vide little information relevant to the characterization of intrinsic deformation mechanisms.

In the following sections we present a simple, fast, and robust algorithm for overcoming this

limitation. The discrete spectral approach is an algorithm that is fast enough to yield a

discrete spectrum of time constants sufficient to fit a measured relaxation spectrum with an

accuracy insensitive to further refinement. The algorithm fits a discrete spectral generalized

Maxwell (Maxwell-Wiechert) model to results from a stress-relaxation test. It is analogous

to the inverse fast Fourier transformation (FFT), except that the algorithm dissects the

time domain relaxation data into a spectrum of viscoelastic time constants, each defined as

a viscous coefficient η divided by an elastic modulus E. We broadly describe this model in

Chapter 2. Then, we analyze several idealized, noisy, and incomplete data sets to establish

the strengths and limitations of the approach. Thereafter, the approach will be applied to

study the viscoelastic relaxation of reconstituted collagen.

In Chapter 3, we study how dermal fibroblasts alters the rate-dependent mechanical prop-

erties of collagen in engineered tissue constructs viscoelastically by using discrete spectral
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approach. Fibroblasts remodel their extracellular neighborhood considerably when acti-

vated, stiffening and compressing their extracellular matrix (ECM) environment [27, 138,

84, 98, 110, 114, 113, 20, 16]. During remodeling, fibroblasts secrete ECM proteins, in-

cluding collagens, proteoglycans, glycoproteins, and proteases, and cross-linking proteins

and enzymes [27, 138, 84, 98, 106]. Fibroblasts exert traction on the ECM and each other

[16, 100, 127, 203], and secrete soluble factors that affect neighboring cells and tissues in

a paracrine manner [192]. This remodeling changes the tissue as a whole by establishing a

network to link and organize individual cells [185, 1, 148, 165, 189, 35]. The ways that fibrob-

lasts remodel their environment is central to wound healing, development of musculoskeletal

tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts

make to the material around them and the mechanical consequences of these changes have

proven difficult to quantify, especially in a realistic, viscoelastic three dimensional culture en-

vironments, leaving a critical need for quantitative data. Here, we observed the mechanisms

and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs

(ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To

study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed

on ETCs cultured for 24, 48, and 72 hours.

The Fung quasi-linear viscoelastic (QLV) model is a standard tool for representing the nonlin-

ear history- and time- dependent soft tissue viscoelasticity of biological tissues [55, 33, 188, 2].

Based on the quasi-linear theory [56], the time-dependent response and elastic response of

a viscoelastic material are separable, where nonlinearity is due to only the elastic nature of

materials. Unfortunately, this model is not able to present unique time-dependent spectra

for hysteresis at different strain-levels. Also, the QLV approach estimates a constant loss

modulus over a wide range of frequencies,that is, the hysteresis of a quasi-linear viscoelastic

materials is not frequency-dependent [56]. This contradicts many experiments [72, 107, 6, 79].
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We present a simple model to overcome QLV model’s challenges and termed it discrete quasi-

linear viscoelastic (DQLV). The core of the technique is a finite series that, under special

conditions, reduces to Fung’s box spectrum relaxation function. We show that application

of our DQLV model is a simple and effective way to identify material relaxation spectra

in an unbiased manner from stress-relaxation data. The approach identifies ranges of time

constants over which Fung’s continuous box relaxation spectrum is appropriate, and is effec-

tive at fitting this box relaxation spectrum. It also identifies when discrete time constants

are more appropriate than the box relaxation spectrum for representing damping responses.

After presenting the DQLV model, we apply it to correctly identify spectra at particular

strain levels from simple relaxation tests, and then demonstrate its utility on determining

the quasi-viscoelastic response of the rabbit medial collateral ligament (MCL).

The time- and frequency-dependent properties of connective tissue define their physiological

function, but are notoriously difficult to characterize. Well-established tools such as linear

viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose certain forms

on responses that can mask true tissue behavior. In chapter 5, we present a more general

discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and

frequency-dependent behavior of rabbit medial collateral ligaments. Results of this study

may suggest a mechanistic basis for the “stretching” regimens most favored by athletic

trainers. Stretching is commonly performed by athletes for the purpose of optimizing body

performance, but the mechanisms, optimal conditions, and efficacy of stretching are a source

of debate. Stretching has been shown to enhance range of motion [120], but to either decrease

or not affect peak athletic performance [118, 19]. The time period and character (ramped,

ballistic, sustained) of the stretch appears to be a key determinant of efficacy, with ballistic

stretching apparently less effecive than lower frequency dynamic stretching [77, 136, 179,

19]. The mechanisms underlying these effects are hypothesized to be some combination of

connective tissue inelasticity, paracrine effects, and neural effects, the latter mediated by the
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Golgi tendon organ and the muscle spindle stretch receptor, and somewhat less long-lasting

in effect [34, 19].

The dissertation concludes in Chapter 6 with some reflections on the limitations and strengths

of the work, and thoughts for future directions.
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Chapter 2

Efficient and optimized identification

of generalized Maxwell viscoelastic

relaxation spectra

2.1 Introduction and background

The Maxwell model (Fig. 5.1(a)) is composed of a linear dashpot connected in series with a

linear spring. A feature of this model is that it has a single relaxation time constant, τ = η/E.

However, this does not wholly simulate the viscoelastic behavior of most materials. For this

reason, the generalized Maxwell (or Maxwell-Wiechert) model with multiple springs and

dashpots is commonly applied (Fig. 5.1(b)). This model is composed of a spring of elastic

modulus E0 in parallel with M Maxwell elements, with the ith Maxwell element having time

constant τi and a spring of elastic modulus Ei. Since the components of the generalized

Maxwell model are connected in parallel, all branches have the same strain ε(t) at all times

t, and the overall stress of the system is the sum of the stresses in each branch. The response

of a fully relaxed generalized Maxwell material to a strain history ε(t) is typically studied

following convolution integral:
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σ(t) = s0 +
M∑
i=1

si(t) =

∫ t

0

(
E0 +

M∑
i=1

Eie
−(t−u)/τi

)
ε̇du (2.1.1)

where σ(t) is the generalized Maxwell prediction of the overall stress in a material sample,

M is the number of Maxwell branches, s0 is stress in the single spring and si(t) is the stress

within the ith Maxwell element.

When calibrating the generalized Maxwell model to a particular material, the objective is

to find the strain-independent material properties Ei and τi and number of branches M .

Although Eq. (2.1.1) is particularly simple when the ε(t) represents a stepwise change in

strain, approximating such a strain course experimentally is fraught with difficulty because

inertial effects can cause overshoot in the loading frame and wave motion in the specimen

that can in turn cause substantial error in parameter fitting [124]. Instead, strain is typically

increased at some constant rate ε̇ over a time interval 0 ≤ t ≤ tp, and then held over the

time interval tp ≤ t ≤ tf (Fig. 5.1(c)). At discrete times tj, the predicted stress response is

(Fig. 5.1(d)):

σ(tj) =


E0ε̇tj +

M∑
i=1

Eiτiε̇
(
1− e−tj/τi

)
j = 1, 2, . . . , p

E0ε̇tp +
M∑
i=1

Eiτiε̇
(
1− e−tp/τi

) (
e−(tj−tp)/τi

)
j = p, p+ 1, . . . , f

(2.1.2)

where p and f are the number of data points in ramp and relaxation intervals, respectively.

Note that the response to a very fast ramp (tp → 0, ε̇→∞) to a defined strain level εp has

the simple form:

σ(tj) =

(
E0 +

M∑
i=1

Eie
−tj/τi

)
εp j = 1, 2, . . . , f (2.1.3)
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(a) (b)

(c) (d)

Figure 2.1: Schematics of the Maxwell model (a) and generalized Maxwell model (b). The
strain profile of a stress-relaxation test showing a linear ramp to an isometric value of strain
(c), and the associated stress response, showing a peak at the end of the ramp and a relaxation
to a strain-dependent steady state.

where the substitution t = ε/ε̇ was made into Eq. (5.2.3), and lim
ε̇→∞

ε̇
(
1− e−ε/ε̇τi

)
= ε/τi was

used.
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2.2 Methods

2.2.1 Fitting of generalized Maxwell data

Two classes of approaches were used to fit a generalized Maxwell model to stress data σ̄(tj)

recorded at discrete times tj as a material responds to a straining history ε(tj): an ad hoc

approach and a discrete spectral approach. We present here both approaches.

ad hoc approach

The first approach was a simple and widely used ad hoc approach, requiring an ad hoc

function to compute Ei and τi. Thus, the number M of Maxwell elements was guessed in

advance, and the time constants τi and associated values of Ei were unknown. The values of τi

and Ei could be estimated by minimizing the least squares error to fit a set of f observations

with a relation for 2M unknown parameters (f > 2M). The approach started with a vector

of initial guesses for Ei and τi and refined the estimates iteratively by minimizing the mean

squared error:

MSE =
1

f

f∑
j=1

(
s0 +

M∑
i=1

si(t)− σ̄(tj)

)2

(2.2.1)

where s0 and si(t) were defined in Eq. (2.1.1) and σ̄(t) is the recorded stress history. We

found that the ad hoc approach could fit most experimental stress-relaxation data with M=2

or 3. This can be advantageous because a fit to subsequent analogous loadings could be ob-

tained with little effort or complexity. However, this could be disadvantageous because such

fitting may provide little information relevant to the characterization of intrinsic deformation

mechanisms. Further, if one analyzes a single set of experimental data with three different

arbitrary exponential terms, e.g. M=1, 2 or 3, the results of these analyses are not compa-

rable easily: the derived parameters such as τi and Ei are usually affected by the arbitrarily
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chosen M . In the following sections we present a simple, fast, and robust algorithm for

overcoming this limitation.

Discrete spectral approach

In the second approach, the time constants τi of Maxwell elements were chosen in advance,

with τi spaced sufficiently closely to be approximately continuous on a logarithmic scale.

For analysis of collagen, on the order of M= 1000-10000 time constants were distributed

equidistantly in logarithmic space over an interval of 10−3 to 105 s, an interval broader than

any previously reported time constants of biological materials. The corresponding values of

Ei were determined by fitting a generalized Maxwell model to relaxation data σ̄(tj).

The problem of determining a low-rank solution is ill-posed. A range of methods exist for

this problem, but they are relatively slow and are thus difficult to optimize [139, 163, 76].

Our contribution is a relatively fast algorithm that enables a well converged (although not

necessarily optimal) approximation to experimental data. We converted (5.2.3) to a system

of linear equations in matrix form that could be solved rapidly as:



σ1
...

σp

σp
...

σf


=




ε̇t1 a11 . . . aM1

...
...

...

ε̇tp a1p . . . aMp





E0

E1

...

EM



ε̇tp b1p . . . bMp

...
...

...

ε̇tp b1f . . . bMf





E0

E1

...

EM



(2.2.2)
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where aij = τiε̇
(
1− e−tj/τi

)
for i = 1, 2, . . . ,M and for j = 1, 2, . . . , p; and bij = τiε̇

(
1− e−tp/τi

)
e−(tj−tp)/τi

for i = 1, 2, . . . ,M and for j = p, p+ 1, . . . , f .

The matrix form of (5.2.4) was written:


σ1
...

σf

 =




εp c11 . . . cM1

...
...

...

εp c1f . . . cMf





E0

E1

...

EM


(2.2.3)

where cij = εpe
−ti/τj for i = 1, 2, . . . ,M & j = 1, 2, . . . , p.

A non-negative least squares regression [95, 21] was used to determine the values Ei from

the stress-relaxation data. For a large dataset, corresponding to a large-scale matrix, solving

the above equations was computationally expensive. Our approach was to use a singular

value decomposition method [38, 87] to decrease the rank of the matrices and speed up

the solution procedure. The procedure was repeated with increasingly large numbers M

of Maxwell elements to ensure that approximations converged to those that would arise

from infinitely large matrices. For all cases studied, spectra estimated using M = 1000 did

not differ from those estimated using M = 10000. We therefore used M = 1000, and the

algorithm calculated dominant time constants and moduli of relaxation data sets precisely,

without needing to guess the requisite number of time constants in advance.

Convergence was achieved in 6.4 s when the algorithm was implemented in uncompiled

Matlab (The Mathworks, Natick, MA) on a laptop running with an Intel Core i7-4710 CPU

at 2.50 GHz and 8 GB of RAM for f=25,000 data points and M=1000 time constants.
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2.2.2 Calibration

Fitting to idealized and incomplete data

Simulated stress-relaxation data were generated using the generalized Maxwell model and a

strain history involving a ramp to 10% strain at a constant rate of 100%/s, followed by 500 s

with the strain level held constant at the fixed level of 10%. The generalized Maxwell model

had M = 3 Maxwell elements in parallel with a linear spring. The elastic modulus of the

parallel spring was E0 = 100 MPa; the time constants of Maxwell branches were {τ1, τ2, τ3}

= {1 s, 10 s, 100 s}; the elastic moduli of the springs within the Maxwell branches were

{E1, E2, E3} = {18 MPa, 25 MPa, 9 MPa}. Data were generated at 50 data points per

second.

Several permutations were studied, including fitting the generated data with a generalized

Maxwell model having M=1, 2, 3 and 4 time constants, and fitting of truncated datasets.

The latter studies aimed to assess the robustness of the procedure when data are acquired

over time intervals that are not long compared to the longest time constant.

Sensitivity to noise

To study the stability of both ad hoc and discrete spectral fittings with respect to noise,

random noise was added to the simulated stress-relaxation data. We superimposed upon the

data noise chosen from the Gaussian distribution with amplitudes of 0%, 1%, 2%, 3% and 4%

of the steady state stress. These noise amplitudes were in the range of experimental levels

of noise. In this way, 50 noisy data sets were generated (10 sets for each noise percentage).

For these new data sets, the time constants of the system were estimated. The sensitivity
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to noise level was then quantified by relative error of the predicted parameters compared to

the underlying input ones.

2.2.3 Estimation of the viscoelastic relaxation spectrum of recon-

stituted collagen

Viscoelastic relaxation spectra of reconstituted collagen gels were estimated from the data of

Pryse et al.[141] using both the ad hoc and discrete spectral approaches. Briefly, type I rat tail

collagen (Upstate Biotechnologies), was diluted to 2.5 mg/ml in Dulbecco’s Modified Eagle

Medium (DMEM) brought to pH 7 with sodium hydroxide. One milliliter of the collagen

solution was pipetted into Teflon casting molds composed of an outer cylinder and an inner

mandrel, and centrifuged gently and incubated at 37 ◦C to form ring-shaped specimens of

9.5 mm inner diameter, 2 mm thickness, and 10 mm height. Specimens were kept in molds

at 37 ◦C for 15-18 hours before force measurements were performed. Ring gel specimens

were then removed from the casting mold and mounted on a loading frame. Specimens were

stretched to a strain of 6.7% in 20 ms and held isometrically while the force was monitored

for 30 min at 5 Hz.

2.3 Results and Discussion

Because the generalized Maxwell model only approximates dominant elastic moduli and time

constants of a real material, validation of the fitting method began with application to a

fictional material whose mechanical response followed the generalized Maxwell model exactly.

In this way, we checked the reproducibility of the approximations to further understand how
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the approximations deviate from the optimum. Then, viscoelastic response of collagen gel

[141] was reinterpreted by using the discrete spectral approach.

2.3.1 Characterization of relaxation spectra from idealized gener-

alized Maxwell data

Ad hoc analysis

We began by evaluating what happens when data generated via the generalized Maxwell

model with M=3 were interpreted using the ad hoc approach with M=1, 2, 3, or 4. When

data from a model with M=3 Maxwell elements were fitted using a generalized Maxwell

model with M=1 elements (i.e., a system including a spring and dashpot in series, in parallel

with a single spring), the longest relaxation was estimated while two fast relaxation time

constants were missed (Fig. 5.2(b)). The data were fitted based on their weights (with MSE

regression); thus, the model estimated the time constants which had the highest weight in

the data, which is τ=100 s. Correspondingly, the fitting (Fig. 5.2(a)) was good for longer

times, but noticeably poor at shorter times. Different weighting functions could be applied

to change this, but optimization based upon approach always captured the longest time

constants.

For M=2, the two longer time constants were well estimated (Fig. 5.2(c)-(d)), and the fit

to the data was much improved. For M=3 all three time constants were identified correctly

(Fig. 5.2(e)-(f)).

When the process was repeated for M=4, in which the number of the viscoelastic terms was

overestimated, a counterfeit peak appeared with a relatively small amplitude in the vicinity

of the fastest time constant of the material’s viscoelastic relaxation (Figs. 5.2(g)-(h)). This
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small counterfeit peak disrupted estimation of the fastest time constant. With a sufficiently

tight convergence criterion and no experimental noise, this peak would presumably disappear

with a well-tailored algorithm and sufficient iteration. However, the peak was sustained to

convergence criteria far tighter than are practical with experimental data. In each case, the

value of R2 for the fitting was very close to 1, even for the case of a fitting with M=1 (Table

2.1). We noted that the MSE of the fittings was a far more sensitive metric of goodness of

fit and applied it in all subsequent analyses (Table 2.1).

15



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Stress relaxation data for an idealized generalized Maxwell material with M=3 time constants, fit with M=1 ((a)
and (e)), M=2 ((b) and (f)), M=3 ((c) and (g)), and M=4 ((d) and (h)) time constants.
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Table 2.1: Both the ad hoc and discrete spectral approaches were used to fit simulated, noise-
free stress-relaxation data generated using M=3 Maxwell branches. R2 and mean squared
error (MSE) for each fitting were calculated. The results for M=1, 2, 3, and 4 correspond
to Fig. 5.2 (ad hoc approach) while the results for M=1000 correspond to Fig. 5.3 (discrete
spectral approach). The approaches required comparable CPU time (f=25000 data points,
1000 iterations).

M 1 2 3 4 1000
R2 0.9957 0.9999 0.9999 0.9999 0.9999
MSE 0.6× 10−2 3.7× 10−3 1.6× 10−9 2.1× 10−9 1.8× 10−9

CPU time (s) 7.0 6.1 3.7 5.6 6.4

Discrete spectral analysis

With a sufficiently large number M of fixed time constants in the discrete spectrum, the

number, elastic moduli, and time constants of Maxwell branches were well predicted using

discrete spectral analysis (Fig. 5.3). Counterfeit peaks did not arise in the discrete spectrum

as they did in the ad hoc spectrum.

(a) (b)

Figure 2.3: Stress relaxation data for an idealized generalized Maxwell material with M=3
time constants, fit using the discrete spectral approach with 1000 time constants distributed
equidistantly in log space over the interval 10−1s ≤ τ ≤ 103s.
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Effects of noise

Random noise added to the stress-relaxation data affected estimation time constants that

were not long compared to the frequency of the noise. The effect increased with the amplitude

of noise added (Fig. 5.4). Although estimates of the time constants were affected, the noise

did not introduce new, artifactual time constants into the viscoelastic relaxation spectrum.

To study the effect of noise estimates derived using the ad hoc approach, a best case scenario

was assumed in which the correct number of Maxwell branches (M = 3) was known in

advance. In this best-case scenario, the fastest time constant of the system,τ1, for 4% noise,

was estimated with less than 8% error, while the other time constants were estimated with

less than 1.5% error. For comparison, the time constants were estimated correctly to within

floating point precision for the ideal case of no noise. The errors associated with interpreting

these data using the discrete spectral approach were smaller still (Fig. 5.4). For 4% noise, the

fastest time constant was estimated with less than 4% error while the other time constants

were estimated with less than 2% error. These results suggest that for the interpretation

of noisy data from a generalized Maxwell material, the discrete spectral approach is at

least as accurate as the ad hoc approach, and has the additional advantages of being fast

computationally and of avoiding the need to guess the number M of time constants a priori.
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(a) (b)

Figure 2.4: 50 sets of Gaussian noise were generated (10 sets for each of 5 noise amplitudes)
and added to ideal simulated stress-relaxation data. The simulated noisy stress relaxation
data were then analyzed using the (a) ad hoc and (b) discrete spectral approaches.

2.3.2 Interpretation of incomplete relaxation data

With the efficacy of the discrete spectral approach established, we evaluated its performance

against incomplete data. This is useful because biological systems often preclude the possi-

bility of holding a specimen sufficiently long for complete relaxation to occur. For example,

in biological tissue constructs consisting of living cells in a reconstituted collagen matrix,

relaxation has been shown to persist to times sufficient for cellular remodeling to occur [97];

in such a case, the tissue construct as a whole becomes a different material before relaxation

is complete, and only partial data can be used.

For the stress relaxation data studied in Fig. 5.2, the first test involved analyzing the first 50

s of stress relaxation data (Fig. 5.5(a)), a time interval that is only 50% of the slowest finite

viscoelastic time constant in the input data. The interpretation of the spectrum succeeded

in identifying the three time constants and the infinite time constant (Fig. 5.5(b)). The

first, second and infinite time constants had accurate positions, but the third time constant
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estimation deviated about 7% from input time constant. When 100 s of the stress relaxation

data were studied (Fig. 5.5(c)), a time interval equal to the longest time constant of the input

data, the interpretation succeeded in capturing the first two fast time constants (Fig. 5.5(d)),

but the interpretation again captured the third peak with about 7% error. With 200 s of

stress-relaxation data, the interpretation succeeded in capturing the peaks at the all three

time constants and also the correct amplitude of the infinite time constant (Fig. 5.5(e)-(f)).

Here, we considered an estimate of the time constant with less than 2% error as successful.

The guidelines demonstrated in this simple test are that a predicted time constant can be

trusted as being represented in the actual spectrum of a tested material if it is infinite or if

it is less than half the duration of the viscoelastic relaxation data. Error was on the order of

10% or less for a time constant that is twice the duration of the viscoelastic relaxation data.
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2.3.3 The viscoelastic relaxation response of reconstituted colla-

gen

We reinterpreted the experimental data studied by Pryse et al.[141] using the ad hoc and

discrete spectral approaches (Figs. 5.6, columns 1 and 2, receptively). For the fitting of these

data collagen gel data, the highest absolute error was associated with the ad hoc approach,

but the mean errors were comparable (Fig. 5.6(e)-(f)).

Consistent with the analyses of Pryse et al. [141], ad hoc analysis estimated that collagen

gel has three relaxation mechanisms that manifest themselves as viscoelastic relaxation time

constants of 4.6 s, 30.6 s and 1250 s (Fig. 5.6(c)). However, the discrete spectral approach

revealed a region with relatively fast time constants (Fig. 5.6(d)). The studies described in

the previous sections suggest that these time constants are not artifacts arising from noise or

from the duration of the test. The spectrum suggested six main relaxation time constants of

about 0.3 s, 0.7 s, 2.6 s, 16.1 s, 72.7 s, and 1520 s (Fig. 5.6(d)). Because the time constants

found were either infinite or less than twice the 1800 s duration of the isometric stretch,

they can be expected to have an error of less than 10%. In addition to being consistent

with the analysis of Pryse et al.[141], they are further consistent with some of the slower

time constants identified by Gupta et al.[70] and Xu et al.[194]. The faster time constants

might have been absent in the work of Gupta et al.[70] because their study was of tendons

rather than of reconstituted collagen. Alternatively, it is possible that, either because their

approach was analogous to the ad hoc approach or because that study used a data acquisition

rate whose inverse was slow compared to the fastest time constants observed here, they were

able to obtain an excellent fit in the absence of the contributions of faster time constants.

The slowest time constant of 1500 s was not present in the work of Gupta et al.[70], possibly

reflecting once more a difference between collagen within reconstituted tissues and collagen

within the fibers and fibrils of a tendon.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Discrete spectral analyses of noisy data following 50 s ((a) and (b)), 100 s ((c)
and (d)), or 200 s ((e) and (f)) of relaxation.
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2.3.4 Prospects for application to collagenous tissues

A central theme of this study is the potential of a viscoelastic spectrum as a tool for assessing

the health and function of a biological tissue. We envision that this potential will be strong

for assessing pathologies such as hypertrophic cardiomyopathy, in which relaxation is central

to the progression of pathology [12]. However, several important factors need to be considered

when extending our application of the method to living tissues, especially collagenous tissues

such as tendon. First, viscoelastic time constants of collagenous tissues are well known to

depend upon the degree of hydration of the tissue. This is known from studies at the

molecular [59], fibril [158], and tissue [180] levels, for both unmineralized and mineralized

tissues [104]. Therefore, the viscoelastic spectra estimated by our approaches will likely be

sensitive to the nature of the medium in which tendons are tested.

Second, such tissues are highly nonlinear and anisotropic. Although these two material

factors are well understood from the perspective of linear elasticity, the nature of the vis-

coelastic nonlinearity and anisotropy is not yet certain [144, 167, 130]. While we expect

that the tools presented in this article will be of value in defining these effects, we note that

characterization and comparison of viscoelastic spectra may be sensitive to the details of

strain state and direction of loading.

Third, we expect viscoelastic spectra to be sensitive to the details of the composition of

tissues. A key motivation for our group is understanding viscoelastic responses at interfaces

between tendon and bone, where composition is known to vary in a graded fashion. Under-

standing such spatial variations will be complicated by the nature and media-sensitivity of

glycosaminoglycans and by the spatial disposition of mineral. Although outstanding models

exist for the viscoelastic responses of proteoglycan rich tissues, the extension of these to

spectral representations will be a challenge.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Fittings for stress-relaxation data acquired from a collagen gel stretched 20%
strain under a fast strain rate (100 %/s) fitted by (a,c,e) the ad hoc and (b,d,f) discrete
spectral approaches. (c) Three time constants were estimated at 4.63 s, 30.6 s and 1250 s
using the ad hoc approach. Using the discrete spectral approach the spectrum shows that
relaxation of the collagen has six main time constants at about 0.3 s, 0.7 s, 2.6 s, 16.1 s, 72.7
s and 1520 s.
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2.4 Conclusions

We presented a fast and general discrete spectral approach to estimating viscoelastic relax-

ation spectra from force or stress relaxation data, and compared it to an ad hoc approach.

When using an ad hoc approach with a fixed number M of variable viscoelastic time con-

stants, the fitting process was sensitive to M : by underestimating M , faster relaxation mech-

anisms were missed; by overestimating M , artifactual fast time constants were introduced.

These problems were not clearly evident when comparing goodness of fit using R2, because

R2 was near 1 for all of the fittings. The precision of fittings was more distinguishable by

considering MSEs.

The discrete spectral approach predicted the number of time constants and corresponding

elastic moduli with very low MSE, only slightly higher than when the correct number of

viscoelastic time constants was known a priori. The discrete spectral approach was less

sensitive to noise, but for ideal data, without any noise, the ad hoc method was more efficient.

Application of the discrete spectral approach to reconstituted collagen gels revealed six time

constants, with the slower time constants analogous to those captured by ad hoc analyses

in the literature. As with the work of others, the discrete spectra that arise are of value

in relating viscoelastic responses to micro-mechanical phenomena that occur across length

scales [196, 9, 67]. Results suggest that the discrete spectral approach is a computationally

efficient and informative approach to analyzing viscoelastic relaxation data.

25



Chapter 3

Remodeling by dermal fibroblasts

alters the rate-dependent mechanical

properties of collagen in engineered

tissue constructs

3.1 Introduction

Although several studies have estimated the effects of this remodeling on ECM elasticity

[110, 17], much less is known about the viscoelastic effects of ECM remodeling. Fibroblasts

are known to affect viscoelastic tissue relaxation in pathologies such as congestive heart

failure. However, these effects have not been quantified, and there is a pressing need for data

on viscoelastic remodeling of tissues.

Additionally, the cells themselves change during remodeling. Cytoskeletal disposition is

known to change in response to perturbations in mechanical loading [89, 80, 90]. During

wound healing, cytoskeletal structure is regulated to develop force against the ECM to close
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the wound [183]. Cell transformation and tumorigenicity are associated with a decrease in

cell viscosity and elasticity [42]. Although well established techniques exist for estimating cell

elasticity within engineered tissues [46, 110], protocols are still needed to acquire information

about cell viscoelasticity.

Engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen

and human dermal fibroblast cells serve as in vitro models of this remodeling, and provide

simplified systems in which to assess how remodeling affects the mechanics of cells and ECM

[92, 186]. These systems have been applied to study both linear and nonlinear elasticity of

cells and ECM, but variations of time-dependent tissue mechanics by ECM remodeling has

not been well characterized quantitatively.

The goal of this study was to establish the ways that fibroblast cells modulate their ECM

viscoelastically and contribute to ETC-level viscoelasticity over the course of ETC remod-

eling. We studied these effects by performing viscoelastic relaxation tests on ETCs at three

different timepoints. Following techniques that are standard for evaluation of ECM elasticity,

ECM viscoelasticity was evaluated by treating ETCs with deoxycholate, a mild detergent

which dissolves cell membranes and disperses cytoplasmic structures such as the cytoskele-

ton. Tests were interpreted using a discrete spectral generalized Maxwell approach [12],

which yields both elastic moduli and viscoelastic relaxation finite time constants. Results

showed that cells actively adapted the ECM, and that cells relax at multiple timescales,

including one that is fast compared to those of the ECM.

27



3.2 Materials and methods

3.2.1 Engineered tissue construct (ETC) preparation

ETCs were synthesized using procedures described in detail elsewhere [183]. Briefly, human

dermal fibroblasts (Lonza, Allendale, NJ, USA) were cultured in Dulbecco’s modified Eagle’s

medium (DMEM, Gibco) at 37◦C and 5% CO2. The media were changed every 3-4 days

and the cells were split when cell confluency reached >80% of the dish surface. The cells

were used for culturing ETCs at the 7th-10th passage. 0.5 million cells were mixed with 1

ml of a solution consisting of DMEM and 0.5 mg/ml type I rat tail collagen (harvested in

our laboratory). The pH of this mixture was brought to neutrality using 0.2 M NaOH. 0.5

ml of this mixture was poured into hollow, cylindrical Teflon molds; the molds contained a

central rod to create an annular well with outer and inner diameters of 14.9 mm and 9.5 mm,

respectively. The final mixture was incubated at 37◦C with 5% CO2 for 30 minutes to allow

the collagen to polymerize. Then, the molds were filled with DMEM supplemented with 5%

fetal bovine serum (FBS) and were kept in an incubator for 24, 48 or 72 hours to allow the

cells to remodel the collagen. Three specimens were tested at each of the three remodeling

times, a total of nine specimens.

3.2.2 Stress-relaxation testing apparatus and protocol

Stress-relaxation tests were performed on the ring-shaped ETCs. ETCs were mounted within

glass organ baths filled with HEPES-buffered DMEM (pH 7.4) and 5% FBS, and kept at

37◦C, conditions standard for culturing engineered tissues [64]. One end was attached to an

actuator connected to a stepper motor, and the other to a force transducer, as described

elsewhere [183]. Tissues were allowed one hour to accommodate to the new media before the
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stress-relaxation test. The protocol started with 10 minutes of force monitoring to establish

a baseline. This was followed by tissue preconditioning consisting of 5 sequential cycles of

a 20% axial stretch, followed by a 30 minute recovery interval. A preconditioning protocol

is standard in testing of collagenous tissues [55]. Using a strain rate analogous to that of

the subsequent characterization experiments and a strain magnitude twice that used in the

characterization experiments yields repeatable results in the testing of ETCs [46, 182].

In the characterization experiments, ETC rings were stretched 10% at 20%/s then held

isometrically for 3600 s while force was recorded at 50 Hz. Nominal stress data were inferred

from force data by dividing the force by the cross-sectional area measured for each specimen

at the conclusion of the test, as described below. Note that, despite the preconditioning, the

specimens likely experienced some permanent deformation over the course of the loading;

by considering a transversely isotropic specimen with a Poisson ratio of 0.5 locked into its

deformed configuration, the difference between the actual first Piola Kirchoff stress and that

we report can be estimated to be less than 10%. The strain amplitude of 10% strain was

chosen because it represents the upper end of the linear range for a tendon [73]. Achieving

this over 0.5 seconds is representative of strains in response to a brisk walking cadence and

to stretching by the cardiovascular system. The stretch rate and prolonged monitoring were

furthermore suitable for characterizing the temporal range of physiological responses [12, 10].

3.2.3 Deoxycholate treatment

The specimens were returned to their baseline configurations and allowed to recover for 30

minutes to prepare for testing the contribution of the remodeled ECM to viscoelastic behavior

of the ring constructs. For this purpose, DMEM+HEPES was replaced with 0.05% w/v

deoxycholate in PBS (pH 7.4), and allowed to incubate for 60 minutes. The stretch-and-hold

protocol was then repeated. Deoxycholate was chosen over inhibitors such as cytochalasin D
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and latrunculin because it enables lysis of cells without altering the mechanics of the protein

structure in the remaining porous ECM [184, 46].

3.2.4 Measurement of ETC dimensions

After the end of each experiment, specimens were mounted on spacers and stretched to

their reference length, then fixed in 4% formaldehyde for 20 minutes at room temperature.

Afterwards, specimens were cut into two equal pieces and placed within four-well plates filled

with PBS. The width and thickness of each tissue were measured using Confocal microscopy

(LSM 510, Zeiss). The thickness was measured near the upper and lower borders as well as

in the middle of the tissue. The cross sectional area of the tissue was calculated as the mean

of the three measurements. All measurements were conducted by the same person.

3.2.5 DNA quantification

We synthesized an additional 9 specimens (three each at 24, 48, and 72 hours of incubation)

to estimate the final cell concentration in ETCs using a total DNA quantification assay.

Right after the measurement of tissue dimensions, the constructs were centrifuged with 2

ml PBS in capped tubes. PBS was removed and, after 1 ml of lysis buffer was added, the

tubes were sonicated. 30 µl of this sample was mixed with 3 ml of Hoechst solution (30 nM

of Hoechst 33258 per ml of PBS) (Sigma, St. Louis, MO). The fluorescence of this mixture

was read at excitation-emission of 346 nm-460 nm max, respectively. A known number of

human dermal fibroblast cells was used as a calibration to estimate the number of cells in

the mixtures.

30



3.2.6 Analysis of stress-relaxation data

The generalized Maxwell model was used to interpret the relaxation behavior of the spec-

imens tested. We used a discrete spectral implementation described elsewhere [12], based

on a large number (n = 1000) of exponential terms. In the discrete spectral approach, the

relaxation times, τi, were logarithmically distributed equidistantly over a range broader than

probable range of time constants of a material. The best fit elastic moduli Ei for each pre-

selected τi were estimated by minimizing the mean squared error between the experimental

data and the fitting arising from the estimated viscoelastic spectrum. We note that MSE

is superior to R2 for identifying viscoelastic relaxation spectra from relaxation spectra be-

cause even a mediocre fit can yield R2 ≈ 1 [12]. The spectrum arising by plotting Ei versus

the pre-selected τi yielded an unbiased relaxation spectrum that enabled simple, graphical

material identification.

3.2.7 Staining and imaging

The actin cytoskeletons of the fixed tissues were stained with rhodamine phalloidin (Sigma,

St. Louis, MO) and imaged using confocal microscopy. Images were obtained with a Zeiss

510 confocal microscope using a 40x, 1.2 NA, water objective. In backscattering reflectance

mode confocal microscopy, collagen fibers of ETCs can be observed directly without staining

and with good axial and lateral resolution.
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(a) (b) (c)

Figure 3.1: Development of engineered tissue constructs (ETCs) over 72 hours, including
variations of their cross-sectional area, of the number of cells within them, and of the number
of cells per unit volume (cell concentration). (a) The cross-sectional areas of the ETCs
reduced to a minimum of ∼ 5×10−7 m2 over approximately 36 hours as the cells remodeled
the collagen. (b) The cell population varied during this compaction, with the number of cells
within each (initially 0.5 ml) ETC rising from 250×103 over the first 24 hours of observation,
then decreasing to approximately 190 × 103 over 72 hours. (c) Throughout incubation, the
cell concentration rose steadily. All error bars represent standard deviation.

3.3 Results

3.3.1 Remodeling of ETCs

Over three days of remodeling, cells proliferated and compressed the ETCs (Fig. 5.1a), with

the initial cross-section area (thickness × width) decreasing from 13.8 × 10−6 m2 (initial

solution poured into the mold) to 1.01 × 10−6 m2 during the first 24 hours, and to 0.51 ×

10−6 m2 after 72 hours. The starting population of 250 × 103 cells (in 0.5 ml of solution)

was sustained for 24 hours, and decreased to about 190 × 103 after 72 hours (Fig. 5.1b).

The initial cell concentration for all ETCs was 0.5 million cells/ml. Over 24, 48 and 72

hours of incubation, cell concentration rose to approximately 8, 10 and 12 million cells/ml,

respectively (Fig. 5.1c).
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3.3.2 Mechanical responses

In response to the ramped stretch, the stress needed to maintain an ETC at its length

increased to a peak value. As the ETC was held isometrically, this stress dropped over time

as a result of viscoelastic relaxation (Fig. 5.2). The relaxation responses of both the control

(Figs. 5.2a, 5.2c and 5.2e) and deoxycholate-treated (Figs. 5.2b, 5.2d and 5.2f) ETCs reached

nearly complete equilibrium at 3600 s, and we therefore termed this the steady state.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Stress relaxation curves showing the variation of stress over time in engineered tissue constructs (ETCs) that
were held isometrically at 10% stretch immediately following a linear ramp to 10% stretch over 0.5 s. The isometric force
required to sustain ETCs at 10% stretch relaxed viscoelastically. Left column (a, c, e): ETCs tested in nutritional medium;
right column (b, d, f): ETCs tested in nutritional medium plus deoxycholate to lyse cells. Three time points were considered:
24 hours (a, b), 48 hours (c, d), and 72 hours (e, f). The data presented are representative; replicate data are presented in
the supplementary document, Figures S1 (24 hours), S3 (48 hours), and S5 (72 hours).
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(a) (b)

Figure 3.3: Variations of the peak stress (immediately following ramp loading, solid circles)
and minimum stress (reached after 3600 s of relaxation, hollow circles) attained during
stress relaxation tests on engineered tissue constructs (ETCs) that remodeled for 24, 48,
or 72 hours prior to testing. (a) In ETCs tested in nutritional medium only, a statistically
significant increase was observed in peak stress between 48 and 72 hours. (b) In ETCs tested
following treatment with deoxycholate, a significant increase was observed in the minimum
stress between 24 and 48 hours. Error bars: standard deviation. Criterion for significance:
p < 0.05 in Student’s T-test.

These stress-relaxation curves changed as the course of remodeling progressed, and were

analyzed to quantify the effects of remodeling. The peak stresses attained immediately

following cessation of the ramp tended to increase as the cells continued remodeling the ETCs

over time for both the control and deoxycholate-treated ETCs. From the 24 to the 72 hour

time points, peak stress doubled for the control ETCs (Fig. 5.3a) and more than doubled

for the deoxycholate-treated ETCs (Fig. 5.3b); these trends were significant statistically

(p < 0.001). Additionally, the peak force in the ETCs rose significantly between 24 and 48

hours, indicating that the stiffening extended beyond that associated with syneresis (Fig. S7).

Treatment with dexoxycholate more than halved the peak stress in each case. The minimum

stress in the deoxycholate-treated ETCs rose from the 24- to the 48-hour time point (p < 0.05,

Fig. 5.3b).
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The transition from the peak to the steady state stress was analyzed using a spectral ap-

proach that, through integration with tests involving deoxycholate, quantified the rheolog-

ical responses of the cells and ECM over a range of loading time constants. The analyses

demonstrated that the relaxation mechanisms of ETCs cannot be described by one simple

exponential term (Fig. 5.4).

The analysis showed subtle but significant transitions in some of the viscoelastic relaxation

time constants over the course of ECM remodeling, with a slower finite time constant (∼ 7000

s) emerging between 24 and 48 hours of remodeling, and with some faster time constants

(0.5-2 s) merging into a single time constant between 48 and 72 hours of remodeling. As

discussed below, these changes were retained following deoxycholate treatment, indicating

that the changes occurred in the ECM rather than in the cells. In the deoxycholate treated

ETCs, with cells eliminated, the 0.2 s time constant disappeared at all time points. At 24

hours, the ∼ 8 s time constant disappeared with deoxycholate treatment, and at 48 and 72

hours, the 30 s time constant disappeared (Figs. 5.4b, 5.4d and 5.4f). The elastic moduli

decreased for the deoxycholate treated ETCs with respect to control samples (Figs. 5.4a,

5.4c and 5.4e) at finite time constants faster than 100 s. Variance amongst the relaxation

spectra was greatest for the 48-hour time point.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Viscoelastic relaxation spectra of ETCs tested in nutritional medium (left column, panels a, c, and e) or nutri-
tional medium plus deoxycholate to lyse cells (right column, panels b, d, and f). Cells and ECM displayed distinguishable
contributions to the ETC viscoelasticity, with the latter changing over the course of ECM remodeling. Three time points
were considered: 24 hours (a, b), 48 hours (c, d), and 72 hours (e, f). The time constants of the ETCs were similar at the
three different tissue ages. The exception was that during 48-72 hours of the remodeling the two time constants between 1
and 10 s merged into a single time constant at about 2 s. In the deoxycholate treated ETCs the 0.2 s and 30 s peaks were
absent. Each panel corresponds to a single, representative specimen. Replicate spectra are presented in the supplementary
document, Figures S2 (24 hours), S4 (48 hours), and S6 (72 hours).
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Imaging of ETCs

Imaging of 24-hour-old-old ETCs showed a disordered collagen fibers (representative image,

Fig. 5.5a). For 48-hour-old ETCs, a transitional state could be observed in which collagen

fibers were more organized and began to exhibit a preferred orientation (representative image,

Fig. 5.5b). Finally, a very compact pattern of collagen fibers appeared in 72-hour-old ETCs

(representative image, Fig. 5.5c).

Figure 3.5: Confocal reflectance microscopy images of collagen fibers (green) superimposed
upon images of cells (red) in engineered tissue constructs. Although little effect was evident
in the viscoelastic time constants, remodeling corresponded to a substantial change in ECM
morphology. (a) A random collagen distribution was evident at 24 hours. (b) The collagen
fibers were more organized and began to exhibit a preferred orientation at 48 hours. (c) A
very compact pattern of collagen fibers was observed at 72 hours. Red: cell membranes;
green: signal from confocal reflectance. Scale bar, 50 µm.

This compact pattern could be found at a multitude of locations throughout the ETCs,

not only close to the edges. Cells in ETCs could establish a network that linked and orga-

nized cells not only in the direction of circumferential restraint but also perpendicular to it

(Fig. 5.6). The ECM contained several clusters of adjacent cells forming ring-like structures

(e.g., Fig. 5.6).
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Figure 3.6: A confocal reflectance microscopy image of collagen fibers (green) superimposed
upon images of cells (red) in engineered tissue constructs. During the remodeling, the
cells established a connective network, with some clusters of adjacent cells forming ring-
like structures. The network appeared to link and organize individual cells in the ECM.
Mechanical signals sent to amongst cells over a timescale faster than the fastest time constant
in these collagen bundles are not attenuated by the bundles. Scale bar, 50 µm.

3.4 Discussion

3.4.1 Cells remodeled the ECM locally

Many consequences of the interactions between cells and ECM were evident by observing

the ETCs. Reflectance mode confocal microscopy, in which collagen fibers of ETCs can be

observed directly without staining and with good axial and lateral resolution, showed that

collagen fibers remodeled over time into a network showing elements of structural organiza-

tion (Fig. 5.5). The latter typically aligned with the direction of circumferential constraint

in the ring-shaped ETCs, and also connected cells or groups of cells (Fig. 5.6). Cells reduced

ETC cross-sectional area as they collectively remodeled the ECM (Fig. 5.1).

Our images (Fig. 5.5 and Fig. 5.6) and data (Fig. S7, supplementary document) were consis-

tent with previous experimental results [112, 185, 1] showing that remodeling involves more

than simple syneresis. Remodeling mechanisms are believed to include increasing cross-

linking of the collagen network, which helps collagen retain a compressed state and increases
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collagen fibril stiffness [39, 36]. Additionally, contractility [185, 1], enzymatic activity [30],

and matrix synthesis [148] play roles.

The structural aspects of remodeling are central to the mechanics of ETCs [203, 64], and

are particularly important for promising new therapies to improve cardiac function after

myocardial infarction through guiding scar development [75]. They are also key to under-

standing how myofibroblasts invade an infarct region [147, 63]. Additionally, these factors

are central to healing of tendons, ligaments, and their bony attachments [65, 104, 103, 171,

172, 149, 24, 10]. In all of these, percolation phenomena involving formation of a continuous

structural network are important, and variance is typically highest in conditions close to per-

colation [65]. Indeed, in our study, the variance in relaxation spectra was highest in samples

at the 48-hour time point, when images showed the beginnings of interconnection amongst

remodeled regions of ECM. Although visualizing and quantifying the underlying mesoscale

effects are open challenges [128, 22], an understanding of how viscoelasticity is mediated by

such changes will be an important future component of such studies.

3.4.2 ETC remodeling occurred over specific ranges of relaxation

time constants

A remarkable feature of the remodeling process was that the majority of the ETC relaxation

time constants were not altered significantly (Fig. 5.4). Many others have quantified tremen-

dous stiffening of ECM by cells [81, 101, 109] and substantial effects on the cells themselves

[45], which appear to become more compliant with ECM stiffening in 3D [112] and more

compliant in 2D [161]. Stiffening is typically small in tissue constructs that begin with cell

concentrations below those in our study [48, 110]. However, measurable contributions of cells

to ETC mechanics are evident even at cell concentrations far below those used in the current

study[88]. A number of recent studies have shown that, when cell density is sufficiently high,
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cells can adapt the fibrous structure of the ECM to form connections and structures like

those shown in Figs 5.5 and 5.6 [71, 1, 13, 123, 159, 185].

In the work reported here, remodeling of ETCs by fibroblasts showed a major effect on peak

stresses in stress-relaxation tests (Fig. 5.2 and Fig. 5.3). In this light, the relative lack of

viscoelastic effects comes as a surprise. The only exceptions were was that between 24 and

48 hours, a relatively long finite time constant emerged in both the ETCs and the ECM,

and that between 48 and 72 hours of remodeling, two time constants 0.5 and 2 s merged

into a single, intermediate time constant with a stronger amplitude. Because relaxation

spectra are correlated to discrete structure of collagenous tissues [175, 70, 157], the merging

of the two peaks indicates a decrease in the structural heterogeneity of the tissue during the

remodeling process. These time constants are near those that others have been attributed to

intra-fibril relaxation (∼ 4− 7 s) [157, 70, 195]. One possible source of this merging of time

constants is syneresis of inter-molecular water [62, 60]. Time constants in the 1s range are of

particular interest for the cardiovascular system because this is associated with frequency of

the heart. In fibrotic cardiomyopathy, a disease characterized by remodeling of heart tissue

by activated cardiac myofibroblasts, a central pathology involves retarded diastolic filling

[57, 207], possibly due in part to viscoelastic remodeling. Although the fibroblasts within

the heart are believed to differ in subtle ways from those in the skin, viscoelastic remodeling

in this frequency range warrants further study.

3.4.3 Specific time constants can be attributed to cells, ECM, and

components of the ECM

Responses of the tissue constructs to mechanical stretching were quantified using a spectral

approach that, through integration with tests involving specific inhibitors, quantified the

rheological responses of the cells and extracellular matrix (ECM) over a range of loading
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time constants. Through these tests, some responses of cells and remodeled ECM could

be dissected. We note that the analysis techniques are robust against data that have not

reached a complete steady state [12]. A time constant estimated by the discrete spectral

approach can be trusted if it is infinite or if it is less than twice the duration of the viscoelastic

relaxation data: error was found to be on the order of 7% for a time constant that is twice the

duration of the viscoelastic relaxation data [12]. In Fig. 5.4, the slowest finite time constant

was about 7000 s, which is within this trusted range.

The decrease in the minimum stress of the deoxycholate-treated with respect to non-treated

(control) ETCs shows that at least a part of the time-independent (elastic) behavior of

tissues, which corresponds to the single spring in the generalized Maxwell model, is due to

elastic contributions of the cells. Other studies confirm that the cells have elastic (time-

independent) properties [146, 82].

Because deoxycholate treatment removed cells from ETCs, comparison of control and deoxycholate-

treated ETCs enabled attribution of specific time constants to cell responses and to effects

of ECM remodeling (Fig. 5.4). Six peaks in the relaxation spectra of 24 and 72-hour-old

ETCs demonstrate six relaxation mechanisms, while for the 48-hour-old ETCs this number

increased to seven. Two of the spectral peaks disappeared following treatment with deoxy-

cholate (those at 0.2 s and 30 s for 48 hour and older specimens; 0.2 s and 8 s for 24-hour-old

specimens) indicating that these are attributable to cells or cell-ECM interactions. Although

cells might be expected to exhibit different relaxation behaviors under different environmen-

tal conditions, our results for the time constants of cells are within the range reported in other

studies [146, 82, 133]. Wong et al. [191] reported that the major viscoelastic components of

the cell cytoskeleton are responsible for vital mechanical functions, and found a slowest time

constant for a cell of 0.28 s, a number within the range of our findings. Nekouzadeh et al.

[127] and Trepat et al. [176] found that very fast relaxation was associated with cytoskeletal

fluidization; although they did not quantify the relaxation spectrum, we note that this is
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one possible explanation for the fastest time constant we observed. We note as well that the

elastic moduli decreased for deoxycholate-treated ETCs for finite time constants below 100

s (Fig. 5.4), possibly due to loss of fibroblast contractility and contributions of voids in the

ECM left by the lysis of cells.

The remaining four time constants (five after 48 hours) were all associated at least in part

with the ECM. These time constants include several within the range of those found by

others. Pryse et al. [143] found three plus an infinite time constant (approximately 5,

40, and 600s); Xu et al. [195], who estimated a regularized, continuous spectrum, found

dominant time constants between 0.3-1 s, 3-90 s and > 200 s for collagen matrices. We note

that ETCs exhibited some faster relaxation time constants than did collagen matrices, likely

due to the action of cells.

Much work in the literature has focused on identifying the hierarchical structural origins of

the elastic (time-independent) and viscous (time-dependent) behaviors in collagenous tissues

[102, 69], including work on effects of microstructural changes on the microscopic viscoelastic

properties of collagen at different hierarchical levels [145, 62]. The idea is that by analyz-

ing the stress-relaxation data, and by assuming that different time constants correspond

to specific hierarchical structures, one can gain insight into hierarchical contributions and

distinguish different materials [131, 137, 41]; the elastic modulus at each time constant

of the relaxation spectrum reflects the contribution of that time constant to ETC relax-

ation. Potential sources of viscous relaxation exist across collagen’s hierarchical organization

[62, 160]: triple-helix collagen molecules; cross-linked fibrils a few hundred nm in diameter

assembled from these molecules in a roughly triclinic lattice, and infiltrated by water and

non-collagenous proteins; and cross-linked fibers assembled from these fibrils.

The work of Gupta et al. [70] and Shen et al. [158] identify the 7-10 and 100-110 s time con-

stants as being associated with intra-fibril relaxation, and 2 and 33 s time constants as being
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associated with inter-fiber relaxation. Gupta et al. [70] notes that no intra-fiber relaxation

was evident in their experiments. Relaxation time constants for intra-fiber interactions have

not yet been characterized in any study of which we are aware. The 7000 s time constant we

observed might be associated with this, or might be a feature of the larger structures within

the tissue construct. The relaxation time constants of the tropocollagen molecules are on

the order of microseconds [62] and appear to be masked at the level of tissue constructs.

An additional factor is water flow. At the molecular level, tropocollagen molecules bond

covalently [62] and are surrounded by a hydration layer [25]. At the next hierarchical level,

water plays a structural role, possibly maintaining spacing between collagen fibrils, while

dehydration causes the tighter packing of fibrils and enhances mechanical rigidity by in-

creasing intra-molecular hydrogen bonds [181, 117, 115]. Gautieri et al. [61] found that

the dominant fibril-level deformation mechanism shifted from molecular sliding to molecular

stretching with dehydration, with the latter exhibit higher stiffness.

Debate exists in the literature about how cross-linking affects stress-relaxation. Xu et al.

[195] concluded that the viscoelastic response of a collagen gel depends upon cross-linking,

while Feng et al. [50], comparing viscosity of artificial and native tissues, concluded that

it does not. From the observations of remodeling dependent viscoelastic responses in this

study, which includes effects of cross-linking, one can speculate that both groups are correct.

The 100-110 s intra-fibril time constant persists throughout remodeling, while the 7-10 s time

constant associated with intra-fibril relaxation seems coupled with cell responses in ETCs

tested at 24 hours.
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3.4.4 Caveats

A limitation of the current work is that the data acquired are strictly uniaxial. The off-

axis contributions of cells to tissue viscoelasticity cannot be quantified. However, previous

data do show that under the conditions of these experiments, the additive decomposition

of the contributions of cells and ECM is a reasonable approximation [113, 114]. Moreover,

for elongated cells appearing in these tissue constructs, the contributors of the transverse

behavior of cells to the mechanics of the tissue construct is on the order of only a few percent

[111].

A question that is raised in the study and elastic analysis of ETC mechanics is whether

the mechanics of the porous ECM arising from deoxycholate treatment is representative of

the true ECM mechanics. Although this is issue is largely resolved in the elastic analysis of

tissue constructs [46], the question bears scrutiny in our viscoelastic analyses. Two questions

arise. First, does deformation of pores in which cells resided an important (and irrelevant)

deformation mechanism? If this were the case, then a new time constant or set of time

constants associated with such deformation would be expected to appear in the relaxation

spectrum. However, no such time constants appeared, and time constants associated with

cells or cell/ECM interactions disappeared. Second, although deoxycholate does not change

the short-term or long-term elastic response of the ECM [110], does it change the viscoelas-

tic response? Again, no substantial shifting of time constants or appearance of new time

constants was observed in the ECM relaxation spectra. Although the possibility exists that

some of the time constants attributed to cells disappeared because of the action of deoxy-

cholate, the absence of elastic effects combined with the overall insensitivity of the remaining

time constants makes this possibility appear remote. However, now that tools for doing so

are becoming available, quantifying the viscoelastic effects of deoxycholate in addition to the
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other agonists, inhibitors, and detergents that are applied commonly in the study of ETCs

represents an important direction of future inquiry.

3.5 Conclusions

Although the hierarchical origins of the time constants observed are still an issue of debate,

the spectral analyses we presented indicate that cells remodel the viscoelastic nature of their

environment, and have the potential to communicate through a viscoelastic ECM at higher

frequencies. Our spectral analyses revealed that human dermal fibroblasts remodeled their

environments in such a way as to strengthen some temporal responses relative to others.

These changes resulted in an increase in the energy absorption in the 1 Hz range, indicating

increased damping in the range associated with heart contraction in humans. The cells them-

selves exhibited damping at time constants sufficiently fast that the ECM would effectively

appear elastic, indicating that cells are capable of absorbing and transmitting mechanical

signals from one another at these ranges. Results highlight the multifaceted nature of the

signals that cells receive, and indicate that the well-known ECM stiffening effects of fibrob-

lasts are enacted over a specific range of viscoelastic time constants. The possible effects of

this on cell-cell communication and pathologies of fibrosis warrant continued study.
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Chapter 4

A Discrete Spectral Analysis for

Determining Quasi-linear Viscoelastic

Properties of Biological Materials

4.1 Introduction and background

The Fung quasi-linear viscoelastic (QLV) model is a standard tool for representing the nonlin-

ear history- and time- dependent soft tissue viscoelasticity of biological tissues [55, 33, 188, 2].

The QLV model provides a simple fit to stress-relaxation tests, which are preferred over

standard rotational rheometry for biological tissues due to issues of gripping and anisotropy.

These tests involve stretching a specimen a prescribed amount and then analyzing the re-

laxation over time of the force needed to sustain this level of stretch. However, confidence

interval for estimation of the parameters of the box shaped temporal relaxation function

that Fung suggested in his book [55] are typically large [2], which complicates comparison of

materials. Further, the usual box form of the temporal relaxation function is sufficiently re-

strictive that many have found the need to apply different relaxation functions [169, 125, 177]

or apply different QLV representations altogether [142]. Finally, identifying when the box
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spectrum is too restrictive to describe a specific biological materials time-dependent mechan-

ical responses is a challenge [173, 153, 154, 132, 135, 93, 151, 91, 5] because, with this box

spectrum, the Fung QLV model can fit relaxation data even for materials whose responses

to dynamic loading it would fail to predict [79, 6].

We present here a simple technique to overcome these challenges. The core of the technique

is a finite series that, under special conditions, reduces to Fung’s box spectrum relaxation

function. In this proposal, we show that application of our discrete QLV (DQLV) form of

the Fung QLV model is a simple and effective way to identify material relaxation spectra

in an unbiased manner from stress-relaxation data. The approach identifies ranges of time

constants over which Fung’s continuous box relaxation spectrum is appropriate, and is effec-

tive at fitting this box relaxation spectrum. It also identifies when discrete time constants

are more appropriate than the box relaxation spectrum for representing damping responses.

After presenting the DQLV model, we apply it to correctly identify spectra at particular

strain levels from simple relaxation tests, and then demonstrate its utility on determining

the quasi-viscoelastic response of the rabbit medial collateral ligament (MCL).

We begin with overview of the integral form of linear and quasi-linear viscoelastic models

with the goal of setting the stage for the specific discrete relaxation function we present in

section 3.2.2.

4.1.1 Integral form of linear viscoelasticity

The behavior of a linear viscoelastic material in one dimensional can be represented by the

following convolution integral [166, 105].

σ(t) =

∫ t

−∞
ψ(t, u)

∂ε

∂u
du (4.1.1)
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where ψ(t, u) is a material modulus function, t is time, σ is engineering stress, and ε is

linearized strain. For hereditary or non-aging materials, this reduces to:

σ(t) =

∫ t

−∞
φ(t− u)

∂ε

∂u
du (4.1.2)

where the relaxation function φ(t) describes the mechanical character of a material, ranging

from an elastic solid (φ=constant) to a Newtonian fluid (φ(t) = ηδ(t), where η is a coefficient

of viscosity and δ(t) is Diracs delta function. For a material with both elastic and viscous

properties, φ(t) must be a generalized function that defines the whole spectrum of material

behavior. φ(t) is determined in general by fitting to data from an experiment such as a

stress-relaxation test, in which a sample is subjected to a linear ramp at strain rate ε̇ over

time 0 ≤ t ≤ tp, followed by an isometric relaxation phase over tp ≤ t ≤ tf (Figure 4.1(a)

and (b)).

4.1.2 Fung’s quasi-linear viscoelastic (QLV) model

In a biological material, φ(t) is typically inadequate because the relaxation function depends

upon the degree to which the material is strained. Fung’s QLV model, reviewed extensively

and in more detail by others [126, 177, 132, 93, 151, 79, 6, 166, 105, 40, 200, 154, 43, 153,

66, 202], provides a simple strain-dependent extension of 4.1.2 in which the temporal decay

of stress is independent of strain:

K(ε, t) = G(t) σ(e)(ε) (4.1.3)
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Figure 4.1: Characterization of a viscoelastic material through a standard ramp-and-hold
test. (a) In a ramp-and-hold relaxation test, uniaxial strain is increased at a constant rate
ε̇ over a time tp then held at an isometric level ε̇tp until time tf . (b) In response, the
stress varies with time, rising to a peak value σp and then relaxing to a value σf . (c) For
biological tissues, such data are often interpreted using Fungs QLV theory, involving a box-
shaped relaxation spectrum of height C. (d) The parameters describing this box spectrum
can be rearranged to predict the “reduced relaxation function” that appears in the Fung
QLV constitutive law
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where G(t) is a normalized function of time so that limt→∞G(t) = Gti (time-independent

component of G) and limt→0G(t) = 1 (Figure 4.1 (d)); K(ε, t) represents stress; and σ(e)(ε)

presents the elastic response. Based upon the concave-up force-displacement curves common

to collagenous tissues, Fung proposed using an exponential relationship that he attributes

to Kenedi et al. [55, 56], for the elastic stress component:

σ(e)(ε) = A(eBε − 1) (4.1.4)

The stress responses to a small strain increment, applied at time u, G(t − u)∂σ
(e)(ε)
∂ε

δε(u),

can be summed using the Boltzmann superposition principle, so that the stress for t0 can

be written:

σ(ε, t) =

∫ t

0

G(t, u)
∂σ(e)(ε)

∂ε

∂ε

∂u
du (4.1.5)

G(t) is a monotonically decreasing function [105]; as in the fading memory model, the recent

strain history determines material response. Fung termed G(t) the “reduced relaxation

function” and suggested the form:

G(t) =
1 +

∫∞
0
S(τ)e−t/τdτ

1 +
∫∞
0
S(τ) dτ

(4.1.6)

where S(τ) is the following function, first proposed independently by others including Neu-

bert [129]:

S(τ) =


C
τ

τ1 < τ < τn

0 otherwise
(4.1.7)
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in which C, τ1 and τ2 are material constants to be determined experimentally (Figure 4.1).

Substituting, one arrives at the form that is ubiquitous in the biomechanics literature:

G(t) =
1 +

∫ τ2
τ1

(C/τ)e−t/τdτ

1 +
∫ τ2
τ1

(C/τ) dτ
=

1 + C(E1(t/τ2)− E1(t/τ1))

1 + C ln(τ2/τ1)
(4.1.8)

where E1 =
∫∞
0
e−ττdτ is the exponential integral function. This version of the Fung QLV

model is predicated upon the requirements of equations 4.1.3, 4.1.4, and 4.1.7. Although

the typical implementation focuses on small strain applications, straightforward extensions

of the Fung QLV model to finite strain exist [28, 37, 190]. However, the suitability of the

assumption of equation 4.1.3 must be checked carefully for any material to which these

extensions are applied.

In section 3, we present a simple tool to identify whether the relaxation response S(τ) follows

the box spectrum of Equation 4.1.7, and whether this response is independent of strain (cf.

Equation 4.1.3). We further propose a simple technique for modeling a material if these

requirements prove unsuitable.

4.1.3 Schematic representations of the Fung QLV model

Two graphical representations of the Fung QLV model bear mention. These provide a

foundation for interpreting the fitting and model identification tools presented in section 3.

4.1.4 Standard linear solid models in series

The Fung QLV model can be represented as an infinite number of standard linear solid

elements in series, modified so that linear springs are replaced by nonlinear springs (Figure

4.2(a)). S(τ) for each of those elements varies between two constants: S(τ2) < C/τ < S(τ1).
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Noting that the stress in each element is equal, a relationship can be written between the

first and the last elements:

1 + (C/τ1)e
−t/τ1dτ

1 + (C/τ1) dτ
A(eBε1 − 1) =

1 + (C/τ2)e
−t/τ2dτ

1 + (C/τ2) dτ
A(eBε2 − 1) (4.1.9)

where A,B,C, τ1 and τ2 are the five QLV parameters to be fit. The first element (S = C/τ1)

has the highest strain, ε1, while the last (S = C/τ2) has the smallest, ε2. Equation 4.1.9

shows a major difference between the QLV and generalized Maxwell models [190]. Because

the viscoelastic elements in the QLV model are in series, changing τ1 or τ2 changes the stress in

all of the individual models (Figure 4.2(a)). Thus, in contrast with the generalized Maxwell

model, τ1 and τ2 are not the fastest and slowest viscoelastic time constants, respectively.

Rather, they are time-domain parameters whose values affect the entire stress-relaxation

curve.

4.1.5 Temporal QLV decomposition

A second useful schematic depiction of the Fung QLV model involves decomposition into

time-independent and time-dependent parts. This decomposition is instructive and useful

because it introduces a constraint upon the five QLV parameters. Following a ramp to a

sustained level of isometric stretch (cf. Figure 4.1(a)), the relaxation function, G(t), (t > tp)

is:

G(t) = Gti +Gtd(t) =
1

1 + C ln(τ2/τ1)
+
C(E1(t/τ2)− E1(t/τ1))

1 + C ln(τ2/τ1)
(4.1.10)
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where Gti represents the time-independent and Gtd the time-dependent parts of the reduced

relaxation function. The stress can likewise be separated into time-independent and time-

dependent parts (Figure 4.2(b)). For example, for a specimen that is fully relaxed at time

t=0 that is stretched at a constant strain rate ε̇ from t = 0 to t = tp then held isometrically

until t = tf (Figure 4.1(a)),

σ(t) =


A(eBε−1)
1+C(τ2/τ1)

+
∫ t
0
C(E1((t−u)/τ2))−E1((t−u)/τ1)))

1+C ln(τ2/τ1)
eBε̇u 0 ≤ t ≤ tp

A(eBεp−1)
1+C(τ2/τ1)

+
∫ tp
0

C(E1((t−u)/τ2))−E1((t−u)/τ1)))
1+C ln(τ2/τ1)

eBε̇u 0 ≤ t ≤ tp

(4.1.11)

or

σ(t) =

 σti(ε) + σtd(t) 0 ≤ t ≤ tp

σti(εp) + σtd(t) tp ≤ t ≤ tf

(4.1.12)

Schematically, the first term on the right side of these equations represents the stress in

a nonlinear time-independent (strain-dependent) spring, and the second term represents

a nonlinear spring, with linear viscous damping, which is time-dependent (Figure 4.2(b)).

After sufficient relaxation, the second term on the right hand side of equation 4.1.11 or 4.1.12

approaches 0, and σ(t) approaches a steady-state:

σ(∞) = σti(εp) =
A(eBε − 1)

1 + C ln(τ2/τ1)
(4.1.13)

where ε0 = εtp. Thus, a way to ensure that the five QLV parameters are estimated correctly

from a data set is to compare the stress asymptote in the data to A(eBεp−1)
1+C(τ2/τ1)

from equation

4.1.13 (Figure 4.1(b)), assuming the isometric portion of the experiment was sufficiently long

to provide an accurate estimate of σ(∞).
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Figure 4.2: Schematic representations of the Fung box spectrum model. (a) The box spec-
trum model can be represented schematically by a continuous series of nonlinear viscoelastic
elements, each associated with a time constant between the limits τ1 and τ2 of the box re-
laxation spectrum, and with the height C of the box relaxation spectrum (cf. Figure 4.1(c)).
(b) In another representation, with a different type of nonlinear spring, the time-independent
and time-dependent stress responses can be separated as in equation 4.1.12.

4.2 Methods

4.2.1 Continuous quasi-linear viscoelastic spectrum

To analyze a materials relaxation spectrum without any specific pre-assumption for S(τ),

suppose S(τ) is

S(τ) =


h(τ)
τ

τ1 < τ < τn

0 otherwise
(4.2.1)

where for h(τ) = C, equation 4.2.1 reduces to the Fung QLV model (cf. equation 4.1.7).

Plugging equation 4.2.1 into equation 4.1.6, the relaxation function can be written:
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G(t) =
1 +

∫∞
0
S(τ)e−t/τdτ

1 +
∫∞
0
S(τ) dτ

=
1 +

∫ τmax
τmin

h(τ)e−t/tau

τ
dτ

1 +
∫ τmax
τmin

h(τ)
τ
dτ

(4.2.2)

Then, for a fully relaxed specimen stretched at a constant strain rate dotε over the time

interval 0 to tp and held isometrically until time tf , the stress history can be written:

σ(t) =



A(eBε−1)
1+

∫ τmax
τmin

h(τ)
τ
dτ

+
∫ t
0

∫ τmax
τmin

h(τ)e−(t−u)/τ
τ

dτ

1+
∫ τmax
τmin

h(τ)
τ
dτ

eBε̇udu 0 ≤ t ≤ tp

A(eBεp−1)
1+

∫ τmax
τmin

h(τ)
τ
dτ

+
∫ tp
0

∫ τmax
τmin

h(τ)e−(t−u)/τ
τ

dτ

1+
∫ τmax
τmin

h(τ)
τ
dτ

eBε̇udu tp ≤ t ≤ tf

(4.2.3)

In the above equations, A,B, h(τ), τmin and τmax are unknowns that should be estimated

by fitting σ(t) to experimental stress-relaxation data. This, unfortunately, is an ill-posed

problem. However, a broad range of techniques exists to find a solution [105, 52, 178, 47]

that is suitable and repeatable, if not unique.

4.2.2 Discrete quasi-linear viscoelastic spectrum

A discretization technique simplifies this ill-posed problem. Although several approaches

exist for discretizing viscoelastic responses, including the Prony series approach, our specific

objective is to arrive at an approach that yields a graphical representation to easily identify

the suitability of the the Fung box spectrum over a particular range of loading conditions.

The approach we take begins with a discrete form of the integral
∫ λn+1

λ1

h(τ)
τ
dτ , with the

interval (λ1, λn+1) divided into equidistant logarithmic subintervals:
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∫ λn+1

λ1

h(τ)

τ
dτ =

∫ λn+1

λ1

h(τ)d(ln(τ)) =
n∑
i=1

∫ λi+1

λ1

h(τ)d(ln(τ)) =
n∑
i=1

ln(
λi+1

λ1
)Hi (4.2.4)

For the case of λi distributed equidistantly over the range λ1 ≤ λi ≤ λn, one can further

simplify to write:

∫ λn+1

λ1

h(τ)

τ
dτ = T

n∑
i=1

Hi (4.2.5)

where the constant T = ln(λi+1

λ1
) = ln(λ2

λ1
), and Hi is the height of the ith rectangle and τi

is the corresponding time constant (Figure 4.3). The spectrum Hi(τi) represents a tool for

model identification, which we term a “discrete quasi-linear viscoelastic” (DQLV) spectrum,

which simplifies to the continuous Fung box spectrum when appropriate. Throughout, we

use the superscript DQLV to distinguish parameters arising from a DQLV fitting from those

arising from a box spectrum fitting. The discrete form of equation 4.2.2 is:

G(DQLV )(tj) =
1 + T

∑n
i=1Hie

−tj/τi

1 + T
∑n

i=1Hi

(4.2.6)

and that of equation (3.1) is:

S(DQLV )(τi) =


Hi
τi

τ1 < τ < τn

0 otherwise
(4.2.7)

where Hi are parameters to be fit and τ1 and τn, as described below, are chosen to encompass

a range broader than that needed to describe a material. In contrast to the Neubert [31]
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Figure 4.3: Schematic of the discretization of the continuous function h(τ). A partition of an
interval [γ1, γ(n+1)] is a finite sequence of n subintervals on a logarithmic x-axis. [γi, γ(i+1)]
is the width and Hi is the height of the ith rectangle and τi time constant corresponding to
Hi.

and Fung box spectrum models [1], the values of Hi need not be identical. Schematically,

the DQLV model is analogous to the box spectrum model, except with a finite number

of elements, Hi, that represent the relaxation spectrum (Figure 4.4). For materials that

are not well fit by the box spectrum model, the insertion of equation (4.2.9) into equation

(4.2.8) provides for a simple extension of the QLV model. We note that, although the

DQLV spectrum reduces to a box spectrum, it is different in that the values of Hi need

not be constant. Further, although this physical meaning of τ1 and τn is analogous to these

constants within a Prony series, we note that the DQLV spectrum reduces to a box spectrum

when a box spectrum is indeed the correct representation of a materials relaxation response.

The model does not reduce to the spectral representation that would be obtained using the

generalized Maxwell model [39].
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Figure 4.4: The DQLV model differs from the Fung box spectrum model in that it has a finite
number n of elements analogous to those in Figure 4.2(a), each with a discrete time constant
τi and with a potentially different height Hi. (b) The time-independent and time-dependent
stress responses can be separated as in 4.2(b).

4.2.3 Numerical fitting algorithms

As in equation 4.1.12, we can split G(DQLV )(t) into time-independent and time-dependent

parts:

G(DQLV )(t) = G
(DQLV )
ti +G

(DQLV )
td (t) =

1

1 + T
∑n

i=1Hi

+
T
∑n

i=1Hie
−t/τi

1 + T
∑n

i=1Hi

(4.2.8)

Because of the nature of ill-posed problems, we expect predictions to show some deviation

from a Fung box spectrum even for artificial data generated from the Fung model [163, 162,

85, 15]. Thus, we used a simple regularizing criterion, which acted as a penalty against

unwanted states and ensured that the fitting algorithm did not become trapped in local

minima. In this approach, Hi were smoothed by a regularization function and were identified

by minimizing:
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1

f

f∑
j=1

(σ
(exp)
j − σ(DQLV )

j ) + α
n−1∑
i=2

(Hi−1 + 2Hi −Hi+1)
2 (4.2.9)

where f is the number of data points, σ
(exp)
j are known stress data or a calculable relationship,

and α is a regulating factor. Parameters were determined using a non-negative least-squares

regression [21]. For any α on the order of 1, the parameter estimates were insensitive to the

specific choice of α. α = 1 was used in the model validation studies below. σ
(DQLV )
j are

DQLV estimates of σ
(exp)
j :

G(t) =
1 +

∫∞
0
S(τ)e−t/τdτ

1 +
∫∞
0
S(τ) dτ

=
1 +

∫ τmax
τmin

h(τ)e−t/tau

τ
dτ

1 +
∫ τmax
τmin

h(τ)
τ
dτ

(4.2.10)

Then, for a fully relaxed specimen stretched at a constant strain rate ε̇ over the time interval

0 to tp and held isometrically until time tf , the stress history can be written:

σ
(DQLV )
j =


A(eBε̇tj−1)
1+T

∑n
i=1Hi

+
∫ tj
0

T
∑n
i=1Hie

−(tj−u)/τi

1+T
∑n
i=1Hi

eBε̇udu (j = 1, 2, ..., p)

A(eBε̇tp−1)
1+T

∑n
i=1Hi

+
∫ tp
0

T
∑n
i=1Hie

−(tj−u)/τi

1+T
∑n
i=1Hi

eBε̇udu (j = p+ 1, p+ 2, ..., f)

(4.2.11)

where p and f are the number of data points in ramp and relaxation intervals, respectively.

4.2.4 Validation of software to estimate DQLV spectra

A code to obtain the DQLV spectrum of a material from stress versus time data in a relax-

ation test was generated in the Matlab environment. The code is available from the authors.

Because the DQLV model represents an approximation of the real spectrum of a material
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[163], it was important to validate the model and check the reproducibility of the approxi-

mation. Validations were performed by using the DQLV model to fit stress-relaxation data

generated using either the Fung QLV model with a box spectrum or using the generalized

Maxwell model, the latter having three time constants (including the infinite time constant)

(see, e.g., [206, 52]). The stability of the model with respect to noise was then studied.

Random noise was added to the simulated Fung QLV stress-relaxation data to evaluate how

noise affects DQLV analysis results. We superimposed upon the data noise chosen from

a uniform distribution with amplitudes of 5%, 10%, 15%, 20% or 25% of the steady state

stress. 50 noisy data sets were generated (10 sets for each noise percentage). Relaxation

spectra, H(τ), for these new data sets were estimated using the DQLV approach. The sen-

sitivity to noise level was then quantified by the mean square error (MSE) of the predicted

stress-relaxation compared to the underlying input stress-relaxation data.

4.2.5 Characterization of MCL relaxation

As an example of DQLV characterization of an orthopedic tissue, we studied the either

the left or right medial collateral ligament (MCL) from N=6 skeletally mature female New

Zealand white rabbits. The study was done in compliance with the National Institutes of

Health guidelines for animal care and the Institutional Animal Care and Use Committee

(IACUC) at the University of Pittsburgh. Prior to dissection, knees were wrapped in saline

soaked gauze and then sealed in plastic bags and fresh frozen at −20◦C [193]. On the day of

testing, knees were thawed to room temperature and MCLs were dissected and cut free at the

insertion sites [122, 187]. The geometry was standardized by cutting the ligaments into dog

bone shapes with a length-to-width ratio of 6.8±0.8 (width 1.6±0.2 mm). The tissue samples

were fixed in custom-made soft tissue clamps, and the cross-sectional area was determined

with a laser micrometer system (1.0± 0.3 mm2 [193, 99]. Measurements were taken in three
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locations along the length of the tissue sample and averaged for stress calculations. The

tissue sample-clamp construct was then mounted to a tensile testing machine (Enduratec

Elf 3200, Bose Corporation, Framingham, MA). Reflective markers were placed on the tissue

sample to track strain using an optical system (VP110, Motion Analysis, Santa Rosa, CA). A

saline drip was utilized to hydrate the tissue sample and maintain temperature at a constant

37◦C. The tissue sample was aligned along the loading axis using an x-y table and then

was left unloaded for 30 minutes to acclimate. Specimens were elongated to strain levels of

1.25%, 2.5% and 5% and held isometrically at each level for 35 minutes to reach equilibrium

[119]. Force data were acquired at 3 Hz throughout the ramp and 35 minute relaxation

intervals. The ramp time for all three samples was 9.2sec; thus, the specimens strain rates

were 0.135%/sec, 0.271%/sec and 0.543%/sec, respectively. The experimental data were

fit using both the DQLV and Fung box spectrum models [2].

4.3 Results and discussion

4.3.1 Fitting of simulated data

In the first validation study, stress-relaxation data were calculatedfor a Fung QLV material

whose relaxation response followed abox spectrum, and the DQLV model was applied to

estimate the parameters used to generate these data. The parameters chosen were those

reported by Abramowitch et al. [2] for a goat medial collateral ligament (MCL) that was

strained to 2.76% over 18.4 s then held isometrically for 3600s (Figure 4.5(a) and band table

4.1). The DQLV model was applied using equation (3.10), which constrains the DQLV model

to fit stress-relaxation data. A spectrum that approximated a box spectrum was predicted,

indicating that the material would be well-modeled by a box spectrum representation. Sev-

eral sets of time constants and different regularization parameters were evaluated to ensure
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that the DQLV spectrum was repeatable. The predicted spectra were insensitive to the

choice of α for α on the order of 1, and α=1 was adopted for all subsequent analyses. The

spectrum shown in Figure 4.5(c) had n=100 time constants. Increasing n provided a better

quantitative fit to the stress-relaxation data, but did not change the qualitative nature of

the predicted DQLV spectrum. An interesting feature of the DQLV analysis is that the

predicted DQLV spectrum, despite its deviation from a box shape, yielded error of less than

0.01% of the peak stress when predicting stress-relaxation data generated using a flat box

spectrum.Indeed, the Fung box spectrum and DQLV fits were both indistinguishable from

the input relaxation data (Figure 4.5(c)). The logical course of action for a DQLV spec-

trum such as this would thus be to adopt the simpler box spectrum fitting for subsequent

analysis ofthis material. We next studied whether the DQLV model could identify when

stress-relaxation data should not be represented by a Fung box spectrum. The input data

in this case were generated using a generalized Maxwell model [52] including two Maxwell

elements in addition to a linear spring, all acting in parallel. The data chosen were those

reported by Shen et al. [158] for fitting the response of a sea cucumber (Cucumariafrondosa)

collagen fibril following a 20s ramp to a strain of 20% and a subsequent 520s isometric hold

(Figure 4.6 and band table 4.2). The DQLV fitting recovered a Maxwell-type spectrum with

two distinct peaks at the two non-infinite time constants used to generate the input data

(4.6(c).
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Figure 4.5: Validation of the DQLV fitting method against simulated stress-relaxation data
from an ideal Fung QLV material with a box spectrum. (a) Simulated stress-relaxation
data were generated for an idealized Fung QLV material with a box spectrum, then fit with
the DQLV model. (c) The DQLV spectrum approximated a box-shape. (d) DQLV fitting
provided and excellent fit to the input data.
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Figure 4.6: Validation of the DQLV fitting method to simulated stress-relaxation data from
an ideal generalized Maxwell material. (a) Simulated stress-relaxation data were generated
for an ideal generalized Maxwell model with two time constants, then fit with the DQLV
model. (b) Despite the inappropriateness of a Fung box spectral fitting, both fittings pro-
vided excellent fits to the input data. (c) The DQLV spectrum identified the two discrete
time constants accurately.

Table 4.1: Constants describing the parameters of reduced relaxation function, the instan-
taneous elastic response and the strain profile for goat MCL [2].

A(MPa) B C τ1 τ2 tp tf ε̇(s−1)
32.86 13.5 0.05 0.51 2786 18.4 3618.4 0.0015

However, the box spectrum fitting (Figure 4.6(c)), also yielded an excellent fit to the stress-

relaxation data. The fitting error, as observed in the plot of the residuals (inset of Figure

4.6(b)), was only slightly higher than that of the DQLV fitting. This very small differ-

ence in residual error highlights the peril of fitting a Fung QLV box spectrum in the ab-

sence of a spectral evaluation such as that which the DQLV model provides: although the

box spectrum model capturedthe relaxation data very well, this prediction captures the

frequency-dependence of the material response very poorly at the extremes of the range of

time constants [79, 6]. As we emphasize in the sequel to this article, the errors become sub-

stantial when attempting to predict material response under dynamic loading. Finally, the
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fittings were remarkably robust against Gaussian random noise for both the DQLV (Figure

4.7(a)) and box spectrum (Figure 4.7(b)) models. MSEs increased with noise, but were less

than 2MPa for 25% noise in both models, compared to a peak stress of about 13MPa.

Table 4.2: Constants describing the elastic moduli, the relaxation time constants and the
strain profile for isolated collagen fibrils of Cucumaria frondosa [158].

E0(MPa) E1(MPa) E2(MPa) τ1 τ2 tp tf ε̇(s−1)
83 19 14 6 100 20 520 0.0100

Figure 4.7: Assessment of the susceptibility of the DQLV and Fung QLV fitting methods to
experimental noise. (a) DQLV and (b) Fung QLV fittings of simulated data reproduced the
stress-relaxation curves in a way that was robust against noise. The DQLV model showed
lower MSE than the Fung QLV model. Shown is the mean squared error (MSE) of the fit
to the stress-relaxation data for fitting of 10 different noisy sets of relaxation data at each
of 5 different levels of noise. For comparison, the peak stress was about 13 MPa. Noise was
introduced by adding a Gaussian random fraction of the quantity β(σf ) to each data point,
where β ∈ [0%, 5%, 10%, 15%, 20%, 25%].

4.3.2 DQLV fitting of stress-relaxation data of rabbit MCL

The stress-relaxation data for rabbit MCLs at strain levels of 1.25%, 2.5% and 5% all showed

a characteristic rise during stretching, then gradually decreased to plateau at about 2000s

(Figure 4.8(a), (c) and (e)). Both the DQLV and box spectrum models fit the experimental

data with acceptable error, but the DQLV had higher precision (Figure 4.8(a), (d) and (f)).By

comparing the DQLV spectra (Figure 4.9(a)) to the Fung box spectra (Figure 4.9(b)) of the

three stress-relaxation tests, it is clear that the box spectra weakly estimated the lower
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boundary of dominant time constants of the system.The DQLV model estimation, on the

other hand, was more consistent. Moreover, the DQLV model illuminated a structurally fast

time constant at about 10s and a slow time constant at about 1000s that were not detectable

by the Fung boxspectra. These observations are consistent with dynamic testing reported

for other tissues [79, 6, 166].
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Figure 4.8: Demonstration of the fitting methods on experimental stress-relaxation data from
a ligament. DQLV and Fung QLV fittings of stress-relaxation data acquired from a rabbit
MCL stretched to (a) 1.25%, (c) 2.5% and (e) 5% strain. The residuals were substantially
lower for the DQLV fittings at all three strain levels: (b) 1.25%, (d) 2.5%, and (f) 5% strain.
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Figure 4.9: DQLV and Fung QLV spectra of the rabbit MCL. (a) The DQLV spectra were
very similar at all three strain levels, which is a fundamental requirement for using the Fung
QLV model. However, the spectra showed two dominant peaks (about 10s and about 1000s)
rather than a box spectrum, which precludes use of the Fung QLV model. (b) The Fung
QLV model produced a poor fit to this spectrum, with the lower range of τ mispredicted
and the minor variations of the spectrum with respect to strain exaggerated.

The DQLV spectrum showed reasonable repeatability for the three strain levels, suggesting

that the Fung QLV model’s criterion of a strain-independent reduced relaxation function-

would be metreasonably well for the rabbit MCL specimens tested. However, the other

condition, that of a flat, box-like spectrum was not met: the continuous spectrum of equa-

tion (3.1) must have constant dimensionless heighth (τ) = C over some range of τ1 to τ2,

but the values of τ1, τ2 and C varied substantially for the best fits to the three tests. Errors

associated with applying the box spectrum model become evident at the lower boundary of

the time constants (Figure 4.9(b)).

4.3.3 Choosing amongst models

For a tissue such as the rabbit MCL studied above, a more detailed description of the

spectrum would be required, especially under dynamic loading. Two logical choices are a

normalized, generalized form of the Maxwell model and the DQLV model. Both are related

in that they involve a Prony series, and both have strengths and limitations. The generalized
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Maxwell model is an excellent tool for fitting most experimental stress-relaxation data, and

can usually do so with only two or three exponential terms [12].This is a strength because

of its simplicity, but is also a limitation because the limited number of time constants may

be inadequate to reveal either the range of relaxation mechanisms or the subtle differences

between materials. The DQLV model can represent the reduced relaxation spectrum of a

material such as the rabbit MCL, and is convenient for several reasons. First, estimating a

DQLV spectrum is a logical first step in choosing a material model for a biological material:

by using a regularizing function, the approach identifies ranges of time constants over which

Fung’s continuous box relaxation spectrum provides a suitable approximation, and is effective

at fitting this box relaxation spectrum. Second, a DQLV spectrum identifies when discrete

time constants are more effective than a box relaxation spectrum for representing damping

responses, and provides a reasonable material model with no further fitting. Third, the DQLV

spectra from multiple strain states reveal the assumption of strain-independent relaxation

(cf. Equation (2.3)) is supported; for example, the MCL data (Figure 4.9(a)) showed DQLV

spectra that are very similar for three different strain levels, indicating that the DQLV

model would be an reasonable simplification. Finally, the parameters Hi are insensitive to

the number of time constants chosen. Increasing the number of time constants will improve

precision of the discretization of a continuous relaxation spectrum, but our experience is that

the nature of this spectrum eventually converges, becoming insensitive to further increases

in the number of time constants.Application of this approach is a simple and effective way

to identify material relaxation spectra in an unbiased manner from stress-relaxation data.

4.4 Conclusion

Application of the DQLV model is a simple and effective way to identify material relaxation

spectra in an unbiased manner from stress-relaxation data. The approach identifies ranges
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of time constants over which Fung’s continuous box relaxation spectrum provides a suitable

representation of material behavior, and is effective at fitting this box relaxation spectrum.

It also identifies when discrete time constants are more appropriate than a box relaxation

spectrum for representing damping responses. Although the Fung QLV model with abox

spectrum can fit most stress-relaxation data, including data generated using a relaxation

spectrum that differs substantially from a box spectrum, errors associated with applying the

box spectrum become evident at the lower boundary of the time constants. The improve-

ment in fit to relaxation data using the DQLV model can be substantial, especially when

considering behavior over narrow ranges of material time constants. The DQLV model was

able to identify correctly spectra at particular strain levels from simple stressrelaxation tests.
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Chapter 5

Identifying time- and

frequency-dependent properties of the

medial collateral ligament

5.1 Introduction

“Stretching” is commonly performed by athletes for the purpose of optimizing body perfor-

mance, but the mechanisms, optimal conditions, and efficacy of stretching are a source of

debate. Stretching has been shown to enhance range of motion [120], but to either decrease

or not affect peak athletic performance [118, 19]. The time period and character (ramped,

ballistic, sustained) of the stretch appears to be a key determinant of efficacy, with ballistic

stretching apparently less effecive than lower frequency dynamic stretching [77, 136, 179, 19].

The mechanisms underlying these effects are hypothesized to be some combination of con-

nective tissue inelasticity, paracrine effects, and neural effects, the latter mediated by the

Golgi tendon organ and the muscle spindle stretch receptor, and somewhat less long-lasting

in effect [34, 19].
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We focus here are the first factor and, more broadly, characterization of the dynamic, vis-

coelastic responses of connective tissue. The dynamic responses of connective tissue demon-

strate viscoelastic damping that is dominated by syneresis and rearrangement of the fibrous

structures of the connective tissue, both of which elongate the stress-free state of the tissue

[121, 53, 59, 104, 170]. Because both of these factors dissipate energy in ways that are rate-

dependent [125, 70], we hypothesized that stretching cycles applied to ligament would show

rate-dependent energy dissipation, and that this would be greatest at the timescale of tens

of seconds cited as the optimal ramp time for a stretching routine [19].

While linear viscoelastic models exist for predicting the viscoelastic nature of soft tissues

under cyclic loadings such as those associated with stretching [51], these models are not

sufficient to describe the complex, non-linear behavior of soft tissues. Specifically, linear

viscoelastic constitutive equations describing the relationships between stress, strain, and

strain rate are not sufficient to model all aspects of tissue viscoelastic behavior under dif-

ferent loading patterns and stimuli. The most common extension of these linear viscoelastic

constitutive relations is Fung’s quasi-linear viscoelastic (QLV) model [56], but we show here

that this model imposes a certain character to viscoelastic responses that can mask the

frequency dependence of tissue hysteresis. We therefore applied the discrete quasi-linear

viscoelastic (DQLV) model [10] to interpret our experiments.

The experiments focused on quantifying the time- and frequency-dependent viscoelastic prop-

erties of rabbit medial collateral ligaments (MCLs). The model stretching regimen was a

combined static-dynamic (ramp-hold-sinusoidal) testing procedure applied over a range of

frequencies (from 0.01 to 50 Hz), with three levels of baseline strain levels (1.25%, 2.5% and

5%). This pre-strain was required to ensure that, as in the body, the ligament was never

slack during a sinusoidal stretching cycle and to assess the nonlinearity of the response.
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A theoretical framework was derived for characterizing material behavior of nonlinear bio-

logical materials under sinusoidal loadings using the DQLV approach, then applied to rabbit

MCL data and compared to linear and QLV fits of the same data. Results supported our hy-

pothesis, and further suggested a mechanical basis for the stretching regimens most favored

by athletic trainers.

5.2 Background

5.2.1 Quasi-linear viscoelasticity

The rabbit MCLs tested showed rate-dependence and non-linearity. The usual model of

choice for quantifying the behavior of such a tissue is Fung’s QLV model, in which the stress

σ(ε, t) at time strain ε and time t is obtained by solving the following convolution integral

[56]:

σ(ε, t) =

∫ t

−∞
G(t− u)

∂σ(e)

∂ε

∂ε

∂u
du, (5.2.1)

where σ(e)(ε) represents the (possibly nonlinear) elastic stress response of the tissue, and

G(t) is the relaxation function, normalized so that lim
t→0

G = 1, and lim
t→∞

G = c, where c is

a constant for a specific material (Figure 5.1a). For σ(e)(ε), Fung proposed the exponential

relationship he attributed to Kenedi et al. [86, 56]:

σ(e) = A(eBε − 1), (5.2.2)

where A and B are material constants. For G(t), Fung proposed the following form:

G(t) =
1 +

∫ τ2
τ1

(C/τ)e−t/τdτ

1 +
∫ τ2
τ1

(C/τ) dτ
(5.2.3)
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where C, τ1 and τ2 are material constants to be determined experimentally.

Many viscoelastic biomaterials exhibit frequency-dependent dissipation that is not repre-

sented well by Equation (5.2.3) [142, 12, 11]. A more general choice for G(t) is the discrete

DQLV form of Equation (5.2.3) [10]:

G(t) =
1 + T

∑n
j=1Hie

−t/τi

1 + T
∑n

i=1Hi

, (5.2.4)

where τi are the n time constants, typically chosen in advance and spaced equidistantly

on a temporal logarithmic axis, T is the logarithmic distance between two adjacent time

constants on this temporal logarithmic axis [10], Hi are dimensionless spectrum amplitudes,

and n is a number sufficiently large to capture the material behavior of interest (typically,

n=100-1000).

For the common viscoelastic test consisting of a linear ramp in strain followed by a sustained,

isometric strain at the ramp’s peak strain, a simple analytical solution for Equation (5.2.1)

can often be found. However, for more complex strain profiles, such as the ramp-hold-

sinusoidal loading protocol considered here, numerical approaches are preferred. Although

when solving Equation (5.2.1) numerically the choices for σ(e)(ε) and G(t) need not be

restricted to those that admit simple analytical solutions, simple forms like those described

above are often desirable for interpreting fits to experimental data.

5.2.2 Memory effects in viscoelastic materials

The experimental protocol we applied in this work involved sinusoidal straining of a vis-

coelastic tissue. A challenge for such a loading is that applying a complete cycle of tension

and compression is impractical for connective tissues due to their tendency to buckle. There-

fore, application of a sinusoidal loading require that the sample first be placed in tension with
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a pre-stress greater than the amplitude of the sinusoidal loading. Because the instantaneous

response of a viscoelastic material depends upon the history of loadings it has experienced,

the history must be factored into material characterization. To clarify this point, consider a

sinusoidal straining of a material:

ε(t) = ε0 sin(ωt), (5.2.5)

where ε0 is a defined amplitude and ω is angular frequency. The stress response to this

straining of a linear viscoelastic material that was fully relaxed at t = 0 (Figure 5.1b) shows,

as expected from (5.2.1)-(5.2.4), that ε(t = 0) = σ(t = 0) = 0. However, as the sinusoidal

response approaches a steady state, the peak stress changes and the stress profile falls behind

the strain profile by a phase lag φ:

σ(t) = σ0 sin(ωt+ φ), (5.2.6)

where σ0 is the stress amplitude. A central focus of the current work is therefore taking

proper account of strain history when interpreting experimental data.

5.2.3 Complex modulus of a Fung QLV material

The viscoelastic response of a linear viscoelastic material is often represented by a complex

modulus G∗(ω), defined by a one-sided Fourier transform [83]:

G∗(ω) = jω

∫ ∞
0

G(u)e−jωudu = G′(ω) + jG′′(ω), (5.2.7)

where j =
√
−1 and G′(ω) and G′′(ω) are the storage and loss moduli, respectively. The

storage modulus represents the material response of the elastic portion (corresponding to
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(a) (b)

Figure 5.1: Relaxation function, input strain and stress response of a viscoelastic material
under sinusoidal excitation using a simulated experiment. (a) Relaxation function G(t),
which is normalized so that G(0) = 1. The rate of relaxation to a constant c depends on
the viscoelastic response of a material. (b) In response to a sinusoidal straining, the stress
response requires several cycles to reach a steady state amplitude and phase delay with
respect to the strain.
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the stored energy), and the loss modulus represents the viscous portion (corresponding the

dissipated energy).

For the reduced relaxation function of Equation (5.2.3), the normalized storage and loss

moduli are [56]:

G′ =
1 + C

2
[ln(1 + ω2τ 22 )− ln(1 + ω2τ 21 )]

1 + C ln(τ2/τ1)
and G′′ =

C[tan−1(ωτ2)− tan−1(ωτ1)]

1 + C ln(τ2/τ1)
. (5.2.8)

5.3 Materials and methods

5.3.1 Characterization of MCL relaxation and damping responses

MCLs were dissected and cut free at the insertion sites of N=6 rabbit knees. The geometry

was standardized by cutting the ligaments into a dog-bone shape with a length-to-width ratio

of 6.8± 0.8 (width 1.6± 0.2 mm). The tissue samples were affixed to custom-made soft tissue

clamps, and the cross-sectional area was determined with a laser micrometer system (1.0 ±

0.3 mm2). Measurements were taken at three locations along the length of the tissue sample

and averaged for stress calculations. Then, the tissue sample-clamp construct was mounted

on an Enduratec Elf 3200 testing machine (Bose, Framingham, MA). Reflective markers

were placed on the tissue sample to track strain using a Motion Analysis Corporation strain

tracking system (Santa Rosa, CA). A heated saline drip was utilized to hydrate the tissue

sample and maintain temperature at a constant 37◦C. The tissue sample was aligned along

the loading axis using an x− y table and then was left unloaded for 30 min to acclimate. A

0.5 MPa pre-stress was placed on the tissue sample and this position served as the starting

point for all subsequent tests.
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Figure 5.2: Specimens were elongated to one of three baseline strain levels {1.25%, 2.5%,
5%} over an interval of tp=9.2 s and were then held isometrically for 2100 s as specimens
relaxed to a steady state at time tf . Thereafter, 60 sinusoidal strain perturbations were
applied, with cycles 10 at each of six frequencies (0.01, 0.1, 1, 10, 25, and 50 Hz). The
sequence of frequencies was randomized.

The subsequent testing protocol (Figures 5.3 and 5.2) began with a ramp to a baseline level

of strain (0 ≤ t ≤ tp, tp = 9.2 s) followed by an isometric hold of 2100 s (tp ≤ t ≤ tf ,

tf = 2100 s) at this baseline strain to enable the specimen to reach a steady state stress.

Specimens were elongated to three different levels of baseline strain (1.25%, 2.5%, or 5%).

Afterwards, the baseline strain level was maintained, and each specimen was subjected to

sinusoidal perturbations in strain (amplitude 0.25% strain) at frequencies of (ω/2π) = {0.01

Hz, 0.1 Hz, 1 Hz, 10 Hz, 25 Hz, 50 Hz}. This protocol was repeated for each baseline strain

level with 1 hour of recovery between tests at each baseline strain level (Figure 5.2). In

addition, the order of testing was randomized for strain level. For each frequency, 10 cycles

of stress and strain versus time data were collected following the first 10 cycles of loading

and unloading.
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5.3.2 Numerical fitting algorithm

The DQLV and QLV models were applied to fit the ramp-hold-sinusoidal loading data. A

simple regularizing criterion was used to penalize unwanted states and to ensure that the

fitting algorithm did not become trapped in local minima. For the DQLV model, Hi were

regularized and identified by minimizing:

MSE =
m∑
k=1

(
σ
(model)
k − σ(exp)

k

)2
+ α

n−1∑
i=1

(Hi −Hi+1)
2, (5.3.1)

wherem is the number of data points, σ
(exp)
k are known stress data or a calculable relationship,

α is a regulating factor and σ
(model)
k is the model estimate of σ

(exp)
k . For the QLV approach,

α = 0 and Hi = C.

As shown in Figure 5.2, the strain profiles were treated as:

ε(ωl, tk) =


γtk k = 0, 1, 2, ..., p

γtp k = p+ 1, p+ 2, ..., f

γtp + ε0 sin(ωltk) k = f + 1, f + 2, ..., q

(5.3.2)

where p, f and q, respectively, represent the time when the ramp, hold and sinusoidal loading

phases are ended, and (ωl/2π) = {0.01 Hz, 0.1 Hz, 1 Hz, 10 Hz, 25 Hz, 50 Hz} represents

the frequency of sinusoidal loading.

5.3.3 Complex modulus of a DQLV material

Results are presented in terms of complex moduli. After the terms Hi were fit, normalized

storage and loss moduli for the DQLV fitting were obtained by substuting Equation (5.2.2)
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into Equation (5.2.7):

G′(ω) =
1 + T

∑n
i=1Hi

ω2τ2i
1+ω2τ2i

1 + T
∑n

i=1Hi

and G′′(ω) =
T
∑n

i=1Hi
ωτi

1+ω2τ2i

1 + T
∑n

i=1Hi

. (5.3.3)

5.3.4 Statistics

Paired T -tests were performed to assess whether damping was frequency dependent. Re-

sponses at six frequencies were compared to each other, and the BenjaminiHochberg proce-

dure was applied to control the false discovery rate at 0.05 Hz [116].

5.4 Results

The stress-relaxation data for rabbit MCLs at the three baseline strain levels of 1.25%, 2.5%,

and 5% exhibited a characteristic non-linear rise during stretching, then a gradual decrease

to a plateau by ∼1500 s (Figure 5.3). The responses exhibited two hallmarks of non-linear

viscoelastic behavior. First, whereas linear viscoelastic models such as the standard linear

solid model [52] have linear dashpots that relax the linear proportionality of stress and

strain to produce concave-down stress-strain curves, the stress-strain curves for the MCLs

were concave up (Figure 5.3). Second, whereas linear viscoelasticity requires that stress

levels be proportional to strain levels, the stress peaks were 1.5 MPa, 4.2 MPa and 12.7

MPa, for slow ramps up to 1.25%, 2.5% and 5% strain, respectively.

The DQLV approach was applied to fit ramp-hold-sinusoidal experimental data at the three

baseline strain levels using equations (5.3.1) and (5.3.2). The DQLV spectra that approxi-

mated the time-dependent properties of the MCLs at 1.25% and 2.5% baseline strain showed

four peaks at about τ = 0.002 s, 0.2 s, 20 s and 1000 − 2000 s (Figure 5.4a). These peaks
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Figure 5.3: Representative data for force relaxation during application of baseline strain.
The DQLV fits shown represent the parameter that best fit not only the data for ramp
loading and relaxation, but also the subsequent sinusoidal oscillation of the specimens.

shifted slightly with straining, so that at 5% the baseline strain they appeared at about τ

0.001 s, 0.02 s, 20 s and 1000 s (Figure 5.4a).

The QLV approach was also used to fit these data, but the tissue was clearly not a perfect

Fung QLV material (Figure 5.4b). The upper estimated time constants (τ2) were fairly

consistent at all three levels of baseline strain, but the damping coefficients, C (plateau level

in Figure 5.4b), decreased with strain, and the lower estimated time constants (τ1) varied

non monotonically (Figure 5.4b).
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(a) (b)

Figure 5.4: Representative DQLV and Fung QLV relaxation spectra of a rabbit MCL speci-
men (replicate data in the Supplementary document). (a) The DQLV spectra were similar at
all three strain levels, a key requirement for application of quasi-linear theory. The spectra
showed four dominant peaks (around τ = 0.002s, 0.2s, 20s and 1000− 2000s), which shifted
only slightly as a function of strain. (b) The Fung box spectra overstated minor variations
of the spectrum with respect to strain, and were not strain independent.
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The elastic parameter A and non-linearity parameter B for each strain level, estimated using

equation (5.2.2), were similar for QLV and DQLV estimates (Tables 5.1 and 5.2). However,

the DQLV fits matched the cyclic strain data more closely than the Fung QLV fits, with the

differences most pronounced at the 1 Hz loading (Figure 5.5).

Table 5.1: Estimated elastic parameters using the DQLV model

1.25 % strain 2.5 % strain 5% strain
A(MPa) 1.505 ± 0.26 2.17 ± 0.31 10.43 ± 1.71
B 56.57 ± 5.4 43.57 ± 7.8 18.22 ± 3.3

Table 5.2: Estimated elastic parameters using the Fung QLV model

1.25 % strain 2.5 % strain 5% strain
A(MPa) 1.395 ± 0.21 2.31 ± 0.29 11.03 ± 1.89
B 42.62 ± 8.18 37.59 ± 5.81 20.42 ± 8.43
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Figure 5.5: Data for the final sinusoidal oscillation of a specimen at each of the six frequencies,
with DQLV and QLV fits. The DQLV fit captured the small differences between loading and
unloading responses better than the QLV fit.
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Figure 5.6: Storage and loss moduli obtained using the DQLV fittings of the data. Storage
moduli estimated using the DQLV model increased with loading frequency, and did not
change significantly as a function of strain. As load increased, more energy was stored in
rabbit MCL. Loss moduli estimated using the DQLV model were highest at ω/2π=0.1 Hz,
indicating that inelastic energy absorption was highest for stretching on the order of tens of
seconds.
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Figure 5.7: Storage and loss moduli obtained using the Fung QLV fittings of the data.
Storage moduli estimated using the Fung QLV model were similar to those estimated using
the DQLV model. Loss moduli estimated using the Fung QLV model were independent of
strain and frequency.
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As represented in equations (5.2.8) and (5.3.3), the normalized storage and loss moduli de-

pend on ω and the relaxation spectra (including τi, T and Hi). For the DQLV model, the

frequency-dependent storage and loss moduli for MCLs at all three baseline strains increased

monotonically with respect to frequency from ω/2π=0.01 Hz to ω/2π= 50 Hz (Figure 5.6,

the right column). The loss moduli, however, showed a substantial and statistically sig-

nificant increase in damping at a frequency of ω/2π=0.1 Hz (Figure 5.6, the left column):

BenjaminiHochberg tests revealed that the damping response at 0.1 Hz differed substantially

from the responses at all other frequencies (BenjaminiHochberg p < 0.05 for comparison to

0.01 Hz; BenjaminiHochberg p < 0.01 for comparison to all other loading frequencies). The

QLV approach predicted a similar monotonic increase in storage modulus (Figure5.7), al-

though for 1.25% baseline strain data, the modulus estimate was about 25% lower than for

the 2.5 and 5% baseline strains. The QLV approach predicted a frequency-independent loss

modulus at each strain level.

5.5 Discussion

Based on QLV theory, the time-dependent and elastic responses of a viscoelastic material are

separable, with nonlinearity arising only from the nonlinear elastic nature of biomaterials.

This serves as the workhorse for modeling of viscoelastic biological materials, and is effective

in many ways, especially compared to linear viscoelasticity. For example, the definition of

complex modulus based upon linear viscoelasticity permits no strain dependence for the

frequency response spectrum of a material, and is therefore inappropriate for nearly all

biological materials.

However, although it provides a strong foundation, the Fung QLV model is not adequate for

identifying the frequency-dependent hysteretic behavior of the MCL at different strain-levels
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(Figure 5.4b). The Fung QLV model predicts a constant loss modulus over a wide range

of frequencies; that is, it predicts that the hysteresis of a quasi-linear viscoelastic materials

is frequency-independent [56]. This is contradicted by many experiments [79, 72, 107, 6].

As shown in Figure 5.4d, the QLV approach predicts a frequency-independent hysteresis for

MCLs as well.

The DQLV approach resolves this problem. It identified robust, nearly strain-independent

temporal relaxation spectra (Figure 5.4a) and complex moduli (Figures 5.4a and b) from

ramp-hold-sinusoidal data in an unbiased way. The more refined relaxation spectra led to

substantially improved predictions of the stress versus time responses of the specimens at

each strain level (Figure 5.5).

The ramp-hold-sinusoidal protocol analyzed here provided a fuller picture of the relaxation

spectra of rabbit MCLs than is available through other means. In an analysis of stress-

relaxation data alone for rabbit MCLs presented elsewhere [10], only a portion of the time-

dependent material properties were accessible, (over the range of 100 < τ < 104). Here,

we showed that by applying high frequency sinusoidal loading, the fast time constants of

MCLs can be estimated as well. In other words, high frequency loading excited very fast

time constants, which were not detectable in a simple stress-relaxation test.

From the perspective of material damping, the DQLV interpretation of the data revealed an

interesting increase in damping at a loading rate of 0.1 Hz. This frequency-dependence of

the MCL’s mechanical response is not evident in the QLV interpretation, again because the

QLV model by its nature enforces a prediction of frequency-independent hysteresis.

Although stretching protocols prior to exercise typically target muscles and tendons rather

than ligaments [19], this result is interesting in that it shows increased energy absorption of a

collagenous tissue at a critical loading rate of 10s of seconds, which is in the range of loading

times recommended for stretching. For example, Bandy et al. [14] showed that the optimal
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stretching period for increasing hamstring flexibility is a 30 s cycle. Although a great many

hypotheses exist about what stretching accomplishes physiologically for those who subscribe

to the hypothesis that permanent rearrangement of collagenous tissues is a beneficial aspect

of stretching, the data presented here suggest that loading over 10s of seconds appears to be

optimum for applying energy inelastically to such tissues.

5.6 Conclusions

The DQLV approach, when applied to ramp-hold-sinusoidal testing data, provides a robust

spectral characterization of rabbit MCL tissues that enable more accurate prediction of me-

chanical response than the QLV approach. Data show for the first time that the rabbit MCL

damped energy most effectively over 10 second loading cycles. These results have implica-

tions for stretching protocols prior to athletic events. More broadly, the protocol presented

provides a straightforward mechanism for characterizing the high frequency responses of bi-

ological tissues, and for overcoming limitations of the Fung QLV model when studying the

frequency-dependence of hysteresis.
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Chapter 6

Future work

This dissertation proposed a new linear discrete approach to estimate the viscoelastic spec-

trum of a material from the time variation of isometric force responses in chapter 2, then

applied this to perform spectral analysis of engineered tissue constructs in chapter 3. A

discrete quasi-linear viscoelastic model was presented in chapters 4 and 5, and applied to

analyze the isometric and dynamic time- and frequency-dependent behavior of rabbit medial

collateral ligaments. Together, the methods comprise a comprehensive toolbox for the anal-

ysis of viscoelastic tissues. However, the work is far from complete, and we suggest several

important directions for future studies.

6.1 Dissipation energy and rate dependence in connec-

tive materials

Soft tissues that serve a structural role are in continual states of varying static and dynamic

tension, compression, and shear. As a result, these structures are constantly under varying

degrees of deformation and recovery, and are at constant risk of injury. We developed two

models to describe the behavior of connective tissues under ramp-isometric hold loading,
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but less is known about two important concepts of a biological tissue system under dynamic

loading: (1) instantaneous stress response and (2) energy dissipation. Also, the proportionate

response of cells and ECM in a tissue is not well studied. As an example, Figure 6.1 shows

decomposed behaviors of ECM and cells in a 3D engineered tissue construct. Although

it is widely accepted that almost all biological materials behave nonlinearly, there is no

universal method of characterizing or predicting a nonlinear stress response. An important

area of future inquiry is the development of protocols for dynamic testing of tissues, such as

sinusoidal or saw-tooth strain excitation, to describe linear behavior and non-linear behaviors

of connective tissues. These efforts must necessarily incorporate numerical solutions.

Figure 6.1: Stress response and energy dissipation of tissue, ECM and cells under sawtooth
loading.

6.2 A universally adaptable numerical tool for viscoelas-

tic model identification and fitting

Although almost all standard viscoelastic tests are well-developed in theory, they are imprac-

tical to some extent. For example in a stress-relaxation test, with a very fast ramp, loadings

often overshoot their target deformation or undershoot their target strain rates near the end
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of a ramped strain due to inertial effects. Thus, closed-form stress-relaxation models can not

predict stress responses of specimens (Figure 6.2(a)). Moreover, predicting viscoelastic re-

sponses of connective tissues require a pre-strain, as they often can not undergo both tension

and compression in a loading cycle. In practice we need to predict behavior of connective

tissues under ramp-hold-sinusoidal loading, which is analytically almost impossible, but a

numerical approach can capture material response very well (Figure 6.2(b)). Thus, future

work should include a universal viscoelastic model to enable the mechanical characterization

of materials under conditions that are not sufficiently described by standard viscoelastic

tests.

6.3 Photoacoustic viscoelasticity imaging

Photoacoustic imaging is a mixed imaging method, imaging ultrasounic waves generated by

pulsed laser heating. This high optical contrast and resolution method has made great im-

provements in medical applications such as tumor detection [94, 201], noninvasive monitoring

of vasculature networks [205, 198] and brain functional imaging [197, 204, 58]. The com-

mon viscoelastic model in photoacoustic viscoelasticity imaging is the Kelvin-Voigt model,

a two-element model including a spring and dashpot in parallel. Although the Kelvin-Voigt

model is simple and facilitates material property estimation, application of this model could

be disadvantageous because the simplifications it requires may mask information relevant to

the characterization of intrinsic time- and frequency-dependent material properties. We sug-

gest the generalized Maxwell model instead to identify local spectral viscoelastic properties

at regions of interest within biological tissues.
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(a)

(b)

Figure 6.2: A universal viscoelastic model can predict uncommon perturbations. (a) Re-
sponse of a material to under-shooting of strain in a stress-relaxation test. (b) Response of
a material to sequential ramp-hold-sinusoidal excitation.
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