
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-33

2006-01-01

Distributed Utilization Control for Real-time Clusters with Load Distributed Utilization Control for Real-time Clusters with Load

Balancing Balancing

Yong Fu, Hongan Wang, Chenyang Lu, and Ramu S. Chandra

Recent years have seen rapid growth of online services that rely on large-scale server clusters to

handle high volume of requests. Such clusters must adaptively control the CPU utilizations of

many processors in order to maintain desired soft real-time performance and prevent system

overload in face of unpredictable workloads. This paper presents DUC-LB, a novel distributed

utilization control algorithm for cluster-based soft real-time applications. Compared to earlier

works on utilization control, a distinguishing feature of DUC-LB is its capability to handle system

dynamics caused by load balancing, which is a common and essential component of most

clusters today. Simulation... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Fu, Yong; Wang, Hongan; Lu, Chenyang; and Chandra, Ramu S., "Distributed Utilization Control for Real-
time Clusters with Load Balancing" Report Number: WUCSE-2006-33 (2006). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/184

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/184?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/184

Distributed Utilization Control for Real-time Clusters with Load Balancing Distributed Utilization Control for Real-time Clusters with Load Balancing

Yong Fu, Hongan Wang, Chenyang Lu, and Ramu S. Chandra

Complete Abstract: Complete Abstract:

Recent years have seen rapid growth of online services that rely on large-scale server clusters to handle
high volume of requests. Such clusters must adaptively control the CPU utilizations of many processors
in order to maintain desired soft real-time performance and prevent system overload in face of
unpredictable workloads. This paper presents DUC-LB, a novel distributed utilization control algorithm for
cluster-based soft real-time applications. Compared to earlier works on utilization control, a
distinguishing feature of DUC-LB is its capability to handle system dynamics caused by load balancing,
which is a common and essential component of most clusters today. Simulation results and control-
theoretic analysis demonstrate that DUC-LB can provide robust utilization control and effective load
balancing in large-scale clusters.

https://openscholarship.wustl.edu/cse_research/184?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/184?utm_source=openscholarship.wustl.edu%2Fcse_research%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-33

Distributed Utilization Control for Real-time Clusters with Load Balancing

Authors: Yong Fu, Hongan Wang, Chenyang Lu, Ramu S. Chandra

Abstract: Recent years have seen rapid growth of online services that rely on large-scale server clusters to
handle high volume of requests. Such clusters must adaptively control the CPU utilizations of many processors
in order to maintain desired soft real-time performance and prevent system overload in face of unpredictable
workloads. This paper presents DUC-LB, a novel distributed utilization control algorithm for cluster-based soft
real-time applications. Compared to earlier works on utilization control, a distinguishing feature of DUC-LB is its
capability to handle system dynamics caused by load balancing, which is a common and essential component of
most clusters today. Simulation results and control-theoretic analysis demonstrate that DUC-LB can provide
robust utilization control and effective load balancing in large-scale clusters.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

theory.

The rest of this paper is organized as follows. Section
2 reviews previous work related to our research. Section 3
formalizes the problem. Section 4 presents the design and
analysis of DUC-LB. Section 5 provides simulation results
and Section 6 concludes the paper.

2. Related work

A multitude of load balancing approaches have been pro-
posed for real-time distribute systems [3, 4, 22, 27, 30, 31].
While load balancing is an effective approach for handling
overload in parts of the system, it can not provide overload
protection when the workload exceeds the capacity of the
entire cluster. Instead of proposing a new load balancing
algorithm, we aim to develop a utilization control algorithm
that enforces desired utilization bounds in a real-time clus-
ter with load balancing. Specifically, we focus on a com-
mon load balancing approach called diffusive load balanc-
ing (DLB) [6–8, 17] in this work. We choose DLB because
it is a dynamic and scalable load balancing approach which
is particularly suitable for large real-time clusters (see Sec-
tion 4.1).

A survey of feedback performance control in comput-
ing systems is presented in [1]. Several papers applied con-
trol theory to real-time scheduling and utilization control of
single-processor systems [2,12,16,24,26,37]. These algo-
rithms are designed to control the performance of a single
processor and hence are not applicable to real-time clusters.

Several recent papers proposed centralized utilization
control algorithms [21, 25, 33] for distributed real-time sys-
tems. These algorithms can not scale effectively in large
clusters. Among them the algorithm proposed in [33] also
deal with distributed real-time system with load balancing
but the effect of load balancing is not considered in the
controller design. In contrast, both DFCS [28] and DEU-
CON [32] adopted distributed control approaches. How-
ever, neither of them can handle load balancing. As shown
in our simulation results (Section 5), load balancing can
have a significant impact on system stability under utiliza-
tion control. A key novelty of our work is that we explicitly
incorporate the dynamics of DLB in the model and design
of our control algorithm. Another advantage of DUC-LB
is that it only relies on admission control as the adaptation
mechanism. In contrast, DEUCON uses task rates control,
and DFCS assumes that tasks have multiple service lev-
els. DUC-LB therefore can handle a more general workload
model on real-time clusters.

A recent paper [13] proposed a control-based load bal-
ancing algorithm for optimizing the response times of a
DB2 server through memory allocation. However, this al-
gorithm uses a centralized controller and is not designed to

control the CPU utilizations, which is important for a real-
time cluster to deliver desired real-time performance.

3. Utilization Control in Real-time Clusters

In this section we first present the system model, and
then formulate the utilization control problem in real-time
clusters.

3.1. System Model

We assume a workload model that is a representative of
soft real-time applications running on clusters such as real-
time data streaming that periodically update stock prices or
game scores. Thus we can model the workload as a set
of periodic tasks with soft deadlines. A task Ti has a pe-
riod pi and an estimated execution time ci. The estimated
utilization of Ti, Ui = ci/pi. To avoid underutilizing the
servers, these soft real-time applications are usually sched-
uled based on their estimated execution times (instead of
worst-case execution times). However, the actual execution
times are usually unknown. The utilization of the processor
Pi, ui, is the fraction of the time that the processor is not
idle in a time interval. Note that the processor’s utilization
indicates the actual system load.

In a cluster, the processors are connected in a regular pat-
tern by a high-speed network. The common topologies of
regular network in distributed system include mesh, torus,
cube and hyper cube [15]. We assume a network structure
of 2-dimension torus in this work, as shown in Figure 1.
However, our analysis and design presented in this paper
can be easily extended to other types of regular networks.
A cluster comprises n2 processors, {Pi,j | 1 ≤ i, j ≤ n},
which are homogeneous in terms of speed and functionality.

Each processor in the cluster executes the DLB algo-
rithm for load balancing. DLB may migrate a task to a new
processor after an instance of the task has been completed
and before its next instance is started. After migration, the
next instance will be started on the new processor. This
mechanism is supported by many clusters. More details of
DLB will be presented in Section 4.1.

3.2. Problem Formulation

Before formulating the problem, we first introduce some
notations. The sampling period, Ts, of utilization control is
assumed to be equal to the period of load balancing. We use
ui,j(k) to denote the processor Pi,j ’s utilization during the
kth sampling period [(k − 1)Ts, kTs]. The utilization set
point of the processors, λ, is specified by the user based on
the desired degree of overload protection and the schedu-
lable utilization bound of the workload and the scheduling

2

algorithm of the system. Because all processors are homo-
geneous and perform load balancing in the system model,
we assume that all processors have the same utilization set
point. For a processor Pi,j , the controller output, ri,j(k),
is the change in the estimated utilization that need to be ac-
commodated via admission control in the sampling period
[kTs, (k + 1)Ts]. If ri,j(k) > 0, the processor Pi,j needs to
admit some tasks, otherwise it needs to reject some tasks.

The utilization control in real-time clusters can be for-
mulated as follows:

Problem. Given the utilization set point λ for all proces-
sors in a real-time cluster with DLB, the goal of utilization
control at the kth sampling period is to choose ri,j(k) to
minimize the following objective:

∀Pi,j , min
(

ρ1 (ui,j(k + 1) − λ)
2

+ ρ2r
2
i,j(k)

)

, (1)

where ρ1, ρ2 are optimization weights.

The optimization objective (1) includes two terms. The
first term is the tracking error, i.e., the difference between
the utilization and the set point. The system needs to min-
imize the tracking error in order to achieve the desired uti-
lization. The second term is the control cost. A higher con-
trol cost requires the system to admit or reject more tasks
which incurs higher run-time overhead. A user can achieve
the desired balance between the tracking error and the con-
trol cost by assigning them appropriate weights.

4. Design and Analysis of DUC-LB

We present the design and analysis of DUC-LB in this
section. As illustrated in Figure 1, DUC-LB employs a dis-
tributed control topology with a local controller located on
each processor. Each local controller only communicates
with its neighbors on the regular network. The primary goal
of the control design is to guarantee global system stability
and maintain utilization guarantees through localized con-
trol. In this section, we first present the dynamic model of
real-time clusters with DLB as the foundation of our de-
sign. After introducing the key control variables we de-
scribe the localized feedback control loop in DUC-LB. We
then present the detailed design and stability analysis of the
control algorithm.

4.1. Dynamic Model of DLB

The fluid model suggested in [1, 18, 19, 29] is adopted
to approximate the system dynamics. In the fluid model, a
processor is approximated by a liquid vessel in which the
level of liquid represents to the processor’s utilization. The
fluid model assumes that the utilization of each task is small

when compared to the processor’s capacity. This assump-
tion holds in many clusters where each server executes a
large number of tasks.

We now derive the dynamic model of a processor. Since
a cluster is composed of homogeneous processors con-
nected by a regular network, all processors share the same
model. The global model of entire real-time cluster’s dy-
namics can be captured by aggregating all the processors’
model. The utilization of a individual processor in real-time
clusters is influenced by two types of dynamics: the utiliza-
tion variation of tasks running on the local processor and
tasks migrated from or to neighbor processors due to load
balancing.

Without considering load balancing, the utilization
ui,j(k + 1) of the processor Pi,j can be modeled as [24]:

ui,j(k + 1) = ui,j(k) + gi,jri,j(k), (2)

where gi,j is the utilization gain which represents the ratio
between the actual utilization change and the estimated one.

A contribution of our work is a dynamic model for ex-
plicitly incorporating DLB. DLB makes load balancing de-
cisions based on the local information in a distributed man-
ner and migrates tasks between neighbors. Since DLB does
not require any global information, it can scale to large clus-
ters and retain the communication locality of the clusters.
Specifically, DLB compares the utilization of the local pro-
cessor, Pi,j , to its neighbors {Pl,m ∈ Ni,j}, where Ni,j

is the set of neighbor processors of Pi,j . When detecting
a difference in the utilization between the local processor
and its neighbors, DLB transfers tasks from a heavy load
processor to a light load processor. According to the DLB
algorithm, the dynamics of the processor Pi,j under DLB
can be modeled as follows:

ui,j(k+1)=ui,j(k)+
∑

Pl,m∈Ni,j

hl,m
i,j κl,m

i,j (ul,m(k) − ui,j(k)), (3)

where κl,m
i,j is the diffusive constant and hl,m

i,j is the utiliza-

tion gain of the tasks migrated between Pi,j and Pl,m. κl,m
i,j

is a tunable parameter that determines the number of tasks
that are migrated between Pi,j and Pl,m in response to the
difference in their utilizations. Specifically, tasks with a
total estimated utilization of κl,m

i,j (ul,m(k) − ui,j(k)) are
migrated from Pl,m to Pi,j ; on the other hand, when
ul,m < ui,j , tasks with a total estimated utilization of
|κl,m

i,j (ul,m(k) − ui,j(k)) | are migrated from Pi,j to Pl,m.
hl,m

i,j is the ratio between the actual utilization of the tasks
migrated between Pi,j and Pl,m and the estimated one. The
DLB model (3) is subjected to two fundamental constraints
[8]:

κl,m
i,j ≥ 0, 1 −

∑

Pl,m∈Ni

κl,m
i,j ≥ 0. (4)

3

To simplify the controller design we assume the diffu-
sive constant on each processor share the same value κ so
that a same controller can be applied to every processor in
the cluster. Under this assumption, the constraints can be
rewritten as more specific form, 0 ≤ κ ≤ 0.25, because we
restrict ourselves on 2-dimension torus.

As depicted in Figure 1, Ni,j , the set of neighbors of
the processor Pi,j , can be identified directly as Ni,j =
{Pi+1,j , Pi,j+1, Pi−1,j , Pi,j−1}. Thus we can write the
model of the processor Pi,j in a real-time cluster by inte-
grating the equation (2) and (3) into a specific form

ui,j(k + 1) = (1 − 4κ
∑

Pl,m∈Ni,j

hl,m
i,j)ui,j(k)

+ κ
∑

Pl,m∈Ni,j

hl,m
i,j ul,m(k) + gi,jri,j(k). (5)

We call (5) as nominal model when gi,j = hl,m
i,j = 1, that

is,

ui,j(k+1) = (1−4κ)ui,j(k)+κ (ui+1,j(k) + ui−1,j(k)

+ui,j+1(k) + ui,j−1(k)) + gi,jri,j(k). (6)

The nominal model (6) captures the system dynamics in an
ideal case under which there is no difference between actual
and estimated utilization of the tasks.

4.2. Control Variables

Before describing the control design, we first introduce
several important variables used in our control design. In
this paper, we use Ci,j to denote the controller located on
the processor Pi,j .

• Optimization variables: Optimization variables are
those that need to be minimized by the controllers.
According to the problem formulation of utilization
control (1), the optimization variables of the controller
Ci,j on the processor Pi,j include the difference be-
tween the utilization and its set point as well as the
change of estimated utilization. Formally,

z1
i,j(k) = ui,j(k) − λ, z2

i,j(k) = ri,j(k). (7)

The first optimization variable is also the system out-
put variable:

yi,j(k) = ui,j(k) − λ. (8)

The second optimization variable, ri, j(k), is also the
controller output, which is computed by the controller
in the end of each sampling period.

• Processor’s interconnection variables: Processor’s
interconnection variables represent the information ex-
changed between different processors for diffusive
load balancing. There are two kinds of interconnection
variables for each processor Pi,j : the output intercon-
nection variable, which is the utilization of the local
processor sent to its neighbors, and the input intercon-
nection variable, which is a vector including the uti-
lizations of neighbor processors received by the local
processor. We denote the utilization of the processor
Pl,m received by the processor Pi,j as vl,m

i,j (k) during
the sampling period [(k− 1)Ts, kTs]. Likewise we de-
note the utilization of the processor Pi,j sent to Pl,m as
wl,m

i,j (k). Accordingly, the processor Pi,j has input and
output interconnection variables, vi,j(k) and wi,j(k),
respectively:

vi,j(k)=
[

vi+1,j
i,j (k), vi,j+1

i,j (k), vi−1,j
i,j (k), vi,j−1

i,j (k)
]T

,

wi,j(k)=
[

wi+1,j
i,j (k), wi,j+1

i,j (k), wi−1,j
i,j (k), wi,j−1

i,j (k)
]T

.

(9)

• Controller’s interconnection variables: A key fea-
ture of DUB-LB is that it employs a neighborhood co-
ordination scheme in which controllers exchange in-
formation with their neighbors in each sampling pe-
riod. To represent the information exchange between
the controllers, each controller also has input and out-
put interconnection variables. We use vK

i,j(k) and
wK

i,j(k) to represent the input and output interconnec-
tion variables of controller Ci,j , respectively. It is
noted that the interconnection variables among con-
trollers are related to but different from the intercon-
nection variables among processors. We derive the in-
terconnection variables among controllers as a key part
of the controller design in Section 4.4.

4.3. Localized Feedback Control Loop

The architecture of a real-time cluster running DLB-UC
is illustrated in Figure 1. In the end of each sampling pe-
riod [(k−1)Ts, kTs], each controller performs the following
steps.

1. Information exchange among neighbors: The local
controller Ci,j calculates and then sends its output in-
terconnection variables wK

i,j(k) to its neighbor con-
trollers. The controller also receives the input intercon-
nection variables vK

i,j(k) from its neighbor controllers.

2. Local Control computation: Before the local con-
troller Ci,j computes its controller output, it needs two
inputs. The first input is output variable, yi,j(k). The

4

�� �

�� �

�� �

�� �

�� �

��

� �

���

��

��

���������	
��� ���������	
���

������

�����

��
���

�����

	���
����

���
�
���

	���
����

���
�
���

	������

������

	������

������

Figure 1. DUC-LB Framework Overview(5 × 5 torus)

workload sensor (WS) measures utilization ui,j(k) in
the last sampling period and computes the system out-
put yi,j(k). The other input is the controller’s in-
put interconnection variables vK

i,j(k) received from the
neighbor controllers. The controller then executes the
control algorithm and generates the controller output
ri,j(k) for the actuator to adjust processor’s utilization.

3. Utilization actuation: DUC-LB uses the admission
controller (AC) as the actuator. The actuator adjusts
the processor’s utilization locally according to the con-
troller output. There are two ways to implement the ac-
tuator. First, the actuator can be implemented to reject
or admit tasks on the local processor based on the con-
troller output independently from the load balancers.
This implementation is suitable to real-time clusters
which are equipped with existing load balancers that
cannot be modified. The second implementation re-
duces the overhead caused by task migrations by com-
bining the decisions of the controller and the load bal-
ancer. In this case the actuator admits or rejects tasks
based on the outputs of both the local controller and the
load balancer. For instance, the load balancer wants
to request the neighbor processors migrating tasks to
the local processor, while the local controller wants to
reject tasks from the local processor. Under such sce-
nario the actuator may effectively reject the incoming
tasks by not sending the request for task migration to
the neighbors.

DUC-LB assumes that the communication delay of the
interconnection variables is negligible when compared to
the sampling period. This assumption holds in many clus-
ters as they usually use high-speed networks to connect the
processors. In addition, more significant network delays can
be modeled as non-ideal channel between processors [20]
and incorporated in the DUC-LB framework.

4.4. Design of the Distributed Controller

In this work we apply a recently developed distributed
control design method [11] to design the distributed con-
troller. This method extends the classic H∞ optimal con-
troller design [36] which aims to derive a controller to min-
imize the impact of disturbance on the system.

We first rewrite the nominal processor model (6) to the
form that can be handled in the distributed control frame-
work. Because the utilization gains are unknown at design
time, we design the controller based on the nominal model.
We then provide stability analysis that proves the robustness
of the controller against variations in the utilization gains.

To reduce the number of variables, we first define the
spatial shift operator S as ([11])

Sxvi−1,j
i,j (k) = vi,j

i+1,j(k),S−1
x vi+1,j

i,j (k) = vi,j
i−1,j(k), (10)

Syvi,j−1

i,j (k) = vi,j
i,j+1

(k),S−1
y vi,j+1

i,j (k) = vi,j
i,j−1

(k).

Through spatial shift operator, the neighbor processor’s
output interconnection variables can be represented by the
local processor’s input interconnection variables because
the local processor’s output interconnection variables sim-
ply equal its neighbor processors’ input interconnection
variables. Considering that the utilization of the local pro-
cessor is just the output interconnection variables, we can
characterize the relation between output and input intercon-
nection variables as

wi,j(k) = ∆Svi,j(k) = [1, 1, 1, 1]Tui,j(k), (11)

where ∆S = diag(Sx,Sy,S−1
x ,S−1

y).
Since the input interconnection variables of the proces-

sor Pi,j are composed of the output interconnection vari-
ables of its neighbor, and the output interconnection vari-
ables of Pi,j are wi,j(k), we can rewrite the nominal model
of the processor (6) to accommodate distributed control de-

5

sign as follows

ui,j(k + 1) =(1 − 4κ)ui,j(k) + κ[1, 1, 1, 1]vi,j(k)

+ ri,j(k)

∆Svi,j(k) =[1, 1, 1, 1]Tui,j(k)

yi,j(k) =ui,j(k) − λ(k)

z1
i,j(k) =ui,j(k) − λ(k)

z2
i,j(k) =ri,j(k)

.

(12)
The model (12) has the form of standard H∞ control

problems except for the interconnection variables. The dis-
tributed controller design method adopted in this work ex-
tends the classic solution of H∞ problem to deal with these
interconnection variables [9–11]. The core of this design
method is a set of Linear Matrix Inequalities (LMIs) which
are generated by the stability and performance requirements
(equation (82)-(84) in [11]). The distributed optimal con-
troller can be constructed based on the results of these
LMIs. The procedure of distributed controller design has
been built in Matlab Multidimensional system toolbox [9].
The details of the theory and design method of distributed
control can be found in [9–11]. The controller derived by
distributed control theory has the general form as follows,

xi,j(k + 1)
∆Sv

K
i,j(k)

ri,j(k)

 =

AK
TT AK

TS BK
T

AK
ST AK

SS BK
S

CK
T Ck

S DK

xi,j(k)
vK

i,j(k)
yi,j(k)

 , (13)

where xi,j(k) is the state of the controller, and vK(k) is
the input interconnection variables of the controller. The
interconnection variables of neighbor controllers also have
the relationship: wK

i,j(k) = ∆Sv
K
i,j(k). Our controller

computes the interconnection variables vK
i,j(k) and ri,j(k)

by solving Equation (13) based on the method presented
in [10]. We note that the controller has the same intercon-
nection structure as that of the load balancer, that is, both of
them receive and send their interconnection variables from
or to the neighbors. This coordination among neighbor con-
trollers enable DUB-LB to achieve system stability despite
the dynamics caused by load balancing.

4.5. Stability Analysis

In the context of DUC-LB, a stable system refers to one
in which the utilization of every processor converges to the
set point. According to design procedure of distributed
control, if the LMIs representing performance and stability
are feasible, the distributed controllers can guarantee sta-
bility. However because the DUC-LB controller is derived
based on the nominal model in which assumes all utiliza-
tion gains to be 1, we still need to prove system stability
under uncertain utilization gains. To simplify our analy-

sis, we assume that all processors in the real-time clus-
ter share the same utilization gain, that is, gi,j = g and
hi+1,j

i,j = hi−1,j
i,j = hi,j+1

i,j = hi,j−1

i,j = h. This is a reason-
able assumption for many clusters composed homogenous
processors that process similar service requests. Thus it is
necessary to validate the stability of the controller for un-
certain utilization gains.

What following is the main steps of the stability analysis
of DUC-LB under uncertain utilization gains.

1. Derive the controller based on the nominal processor
model (12) with a fixed diffusive constant κ according
to the distributed control design method presented in
Section 4.4.

2. Construct the closed-loop system model by combining
the controller derived in Step 1 and the nominal pro-
cessor model. We denote this closed-loop system as
the nominal closed-loop system.

3. Substitute the unitary utilization gains in nominal
closed-loop model derived in Step 2 to the actual uti-
lization gains g and h. We denote such closed-loop
system as the actual closed-loop system.

4. Finally, derive stability region of the actual closed-
loop system under the diffusive constant κ, that is, the
region of varied utilization gains g, h in which closed-
loop system is stable.

We present the main result of our stability analysis in the
following theorem.

Theorem 1. Under a fixed diffusive constant κ, the DUC-
LB with varied utilization gains, h and g, is stable whenever
θ1 ≤ h ≤ θ2 and γ1 ≤ g ≤ γ2 if the four corner systems
which have parameters (h = θ1, g = γ1), (h = θ2, g =
γ1), (h = θ2, g = γ2), and (h = θ1, g = γ2) satisfy the
LMI conditions given in [10] for some fixed values of the
scaling matrices.

Note that this is a sufficient but not necessary condition.
In the following we only sketch the key idea of the proof
of Theorem 1 due to the space limit. We observe that the
LMI conditions, which ensures the stability in controller de-
sign, depend linearly on g and h. Therefore, by continuity
of the eigenvalues of matrices, if the stability conditions of
nominal closed-loop system is derived, such conditions are
also hold in a neighborhood of of the nominal closed-loop
system. Theorem 1 provides a way to explore the stability
region of DUC-LB only through probing four points in the
region. Because both utilization gains, g and h, in DUC-LB
are determined by the actual execution time of the tasks, we
can use this result to validate the stability of DUC-LB when
deviation between actual and estimated execution time oc-
curs. As an example of application of Theorem 1, when

6

the DUC-LB is designed based on the diffusive constant,
κ = 0.2, a numerical computation in Matlab shows that sta-
bility holds for 0.8 ≤ g, h ≤ 1.1. We apply the stability
analysis to a more complex example in Section 5.3.

5. Performance Evaluation

In this section we first describe the simulation setup and
and baseline algorithm for performance comparison. We
then evaluate the performance and stability of DUC-LB un-
der a wide range of dynamic workloads.

5.1. Simulation Setup

Our simulation environment consists of a real-time clus-
ter simulator and a set of distributed controllers. The real-
time cluster simulator is implemented in C++ based on RT-
Sim [5] which is a simulation library for real-time systems.
The real-time cluster simulator implements a set of inter-
connected processors each composed of a load balancer, a
workload sensor, an admission controller, a scheduler, and a
workload generator. The tasks on each processor are sched-
uled by the EDF algorithm [23]. The distributed controllers
are implemented in Matlab using the Multidimensional sys-
tem toolbox [9]. The real-time cluster simulator and the
distributed controller communicate through Matlab APIs.

At the beginning of the simulation, the real-time clus-
ter simulator initializes the distributed controllers. At the
end of each sampling period, the simulator collects the pro-
cessors’ utilization and then calls the controllers. Each
controller Ci,j sends its output interconnection variable to
its neighbor controllers, receives the input interconnection
variables vK

i,j from neighbor controllers, and executes the
control algorithm. The controller also returns its output
ri,j(k) to the real-time cluster simulator which in turn calls
the admission controller to adjust the processors’ utiliza-
tion.

In our experiments, every task has a period of 2000 ticks
(the time unit of the simulations) and an estimated utiliza-
tion of 0.02, although their actual utilization may be differ-
ent from the estimated one and vary at run time. Each task
has a relatively small utilization to simulate real-time clus-
ters that handle high volume of requests. While utilization
bound of EDF is 1.0 under ideal conditions [23], we use 0.8
as the set point to provide additional overload protection
against workload variations.

In the following experiments, the real-time cluster con-
sists of 25 processors connected by a network with a 2-
dimension torus topology, as shown in Figure 1. The load
balancer on every processor runs the Receiver Initiated Dif-
fusive (RID) [34] algorithm. With the RID algorithm, a pro-
cessor with a lower utilization requests tasks from neigh-
bors with higher utilizations. Compared to the Sender Ini-

tiated Diffusive (SID) algorithm, RID not only achieves
higher performance but also scale more effectively [34]. We
set the transferring threshold to 0.01, i.e., half of a task’s es-
timated utilization. If the difference of utilization between
two neighbor processors is less than 0.01, task migration
will not be performed to avoid possible overbalancing. The
load balancing and the control loop share the same sampling
period of 20000 ticks. The optimization weights in the op-
timization objective (1) are p1 = 0.1 and p2 = 1.0. Except
when explicitly mentioned otherwise, the diffusive constant
κ = 0.2.

To evaluate the stability of DUC-LB, the average exe-
cution time of the task Ti can be tuned by execution-time
factor etfi(k) = ai(k)/ci, where ai(k) and ci are the aver-
age and estimated execution times of task Ti, respectively.
The actual execution times of the instances of the task are
uniformly distributed in the range of (0.8ai(k), 1.2ai(k)).
Unless mentioned otherwise, all the tasks on a processor
share a same execution-time factor etf(k). Thus the uti-
lization gains, g and h, equal to etf(k). During a simulation
the execution-time factor can be either constant or changed
dynamically.

5.2. Baseline Algorithm

We use FCU-LB as the baseline for performance com-
parison. FCU-LB is a straightforward extension of a single-
processor utilization control algorithm called FC-U algo-
rithm [24]. With FCU-LB every processor has its own con-
troller designed running the FC-U algorithm. Each con-
troller computes its control output based only on the local
processor’s utilization, i.e., the controllers do not commu-
nicate with each other. FCU-LB may work well when task
migration is rare, because under such scenario the system
can be seen as an aggregation of isolated individual proces-
sors on which the performance of FC-U has been validated
by previous research [24]. However, when task migration
occurs frequently due to load balancing, the performance of
FCU-LB may degrade sharply. Note that we can not com-
pare DUC-LB against an existing distributed control algo-
rithm such as DEUCON [32] and DFCS [28] because both
of them have additional requirements on the task model.
Specifically, DEUCON requires task rates to be adjustable,
and DFCS assumes that tasks have multiple service levels.
In contrast, DUC-LB supports a more general task model
without those restrictions.

5.3. Steady Execution Times

This set experiments evaluate the performance of DUC-
LB when task execution times deviate from estimation. Al-
though all tasks share a fixed execution-time factor etf
in each run, different processors still experience differ-

7

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(period)

U
til

iz
at

io
n

Pu
Pe
Pc
Setpoint

(a) DUC-LB

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(period)

U
til

iz
at

io
n

Pu
Pe
Pc
Setpoint

(b) FCU-LB

Figure 2. Utilization of DUC-LB and FCU-LB
at etf = 1.1

ent utilizations because of randomized execution times.
Figure 2(a) illustrates the utilization of three processors.
Processors Pu, Pe and Pc are located on the upper-left cor-
ner, the upper-center, and the center of the real-time cluster,
respectively. At the beginning of the execution, etf is set to
1.1, i.e., the average execution time of the tasks is 110% of
their estimation. As a result all processors are over-utilized.
DUC-LB dynamically adjusts a processor’s utilization by
rejecting tasks. After 10Ts, the difference between the av-
erage utilization and the set point becomes less than 0.01,
while the standard deviation of the utilizations of all proces-
sors is less than 0.03. As predicted in our stability analysis,
the system maintains stable under κ = 0.2 and etf = 1.1.
For comparison we also plot the utilization of FCU-LB un-
der the same workloads in Figure 2(b). In sharp contrast to
DUC-LB, FCU-LB causes the utilization to oscillate dras-
tically resulting in an unstable system. This is because the
controllers in FCU-LB are not designed to handle the dy-
namics caused by load balancing. This result demonstrates
the importance of incorporating load balancing in the sys-
tem model and design of utilization control algorithms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.7

0.75

0.8

0.85

0.9

etf

U
til

iz
at

io
n

Dev
Avg
Setpoint

Figure 3. Average Utilization and Deviation of
DUC-LB When Execution-time Factor Varies

To examine the performance of DUC-LB under different

etf values, we plot the average and the standard deviation
of the utilizations under DUC-LB when etf increases from
0.2 to 2.0 in Figure 3. Every data point in the figure is
based on the utilization from 100Ts to 300Ts to exclude the
transient response in the beginning of the run. As shown
in Figure 3, the average utilization remains close to the set
point for eft values from 0.2 to 1.3 and deviates from the
set point for larger etf values. The deviation of DUC-LB
shows the similar pattern. From etf = 0.2 to etf = 1.28
the deviation is less than 0.05 but increases significantly af-
ter that. If we consider the performance of DUC-LB accept-
able when the deviation is less than 0.05, these results show
that DUC-LB maintains desired utilization from etf = 0.2
to etf = 1.28. This range covers our analytical result that
the system is stable between etf = 0.8 and etf = 1.1 at
κ = 0.2. This is consistent with the claim that the analytical
result is only sufficient but not necessary.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

κ

et
f

Analytical
DUC−LB
FCU−LB

Figure 4. Stable Regions of DUC-LB, FCU-LB
and Analytical Result

To further investigate the stability properties of the al-
gorithms, we evaluate the stability of the DUC-LB under a
range of parameter values, where 0.1 ≤ etf ≤ 2.5, 0.0 ≤
κ ≤ 0.24. The range of the diffusive constant, κ, is based
on the constraints of DLB (4). We still use deviation of
the utilization as the criteria of stability, that is, the system
is considered empirically stable if the standard deviation is
within 0.05 and the average utilization deviates set point
within 0.01. Figure 4 shows the empirical stable region of
DUC-LB. For comparison we also plot the empirical stable
region of FCU-LB, as well as the analytical stable region
predicted by Theorem 1. Among these regions, the empir-
ical stable region of DUC-LB is the largest. The analytical
region of DUC-LB is inside the empirical stable region of
DUC-LB. Again this is because the stability condition pro-
vided by Theorem 1 is sufficient but not necessary. The
difference between FCU-LB and DUC-LB is particularly
significant when both κ and etf are relative large. For ex-
ample when κ = 0.213, which is the optimal diffusive con-
stant of our real-time cluster’s configuration [35], the stable
range of FCU-LB is 0.1 ≤ etf ≤ 0.68 while DUC-LB is

8

0.1 ≤ etf ≤ 1.28. The reason of poor performance of
FCU-LB is that it ignores the interaction between the pro-
cessors caused by load balancing.

The different dynamic response of FUC-LB and DUB-
LB can be illustrated with a simple example. Assuming a
processor P has utilization 0.72 and each of its 4 neighbors
have utilization of 0.85. The set point of utilization is 0.8.
The FCU-LB increases utilization of P without considering
the effect of load balancing because the measured utilization
is less than the set point. But when κ is greater than 0.16,
the tasks transferred from the neighbors via load balancing
over-utilizes the processor P . In contrast, the controllers
of DUC-LB exchange information with the neighbor con-
trollers. Based on the exchanged information the DUC-LB
controller is able to find that the local processor utilization
will surpass the set point after load balancing and hence de-
creases the utilization of the local processor so as to main-
tain its desired utilization.

5.4. Varying Execution Times

In this experiment we demonstrate that DUC-LB can
maintain desired utilization under varying execution times.
We change etf dynamically according to the predefined
profile in this experiment. In this profile, at the beginning
of each run etf is 0.5; at 100Ts it increases abruptly to
0.9 which corresponds a 80% increase of execution time;
at time 200Ts etf drops to 0.3 causing a 67% decrease in
execution time.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(period)

U
til

iz
at

io
n

Pu
Pe
Pc
Setpoint

(a) Utilization

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(period)

Re
sp

on
se

Deviation
Average

(b) Response Times

Figure 5. Utilization and Response Times un-
der DUC-LB when execution time fluctuates
globally

Figure 5(a) illustrates the utilization of DUC-LB. We ob-
serve that DUC-LB enforces the utilization set point even
under significant load variations. At time 100Ts, the in-
crease in task execution times causes all processors to be

overloaded. DUC-LB responds to the load increase by re-
jecting tasks and then the utilization returns to set point
within 10Ts. At time 200Ts, etf drops, causing the system
underutilized. DUC-LB responds by admitting more tasks
and the utilization re-converges after a settling time of 60Ts.
The difference in the settling times after 100Ts and 200Ts

are caused by the different utilization gains which change
according to etf . The settling time after 100Ts is shorter
because the utilization gains during interval [100Ts, 200Ts]
are larger than those in [200Ts, 300Ts] and hence the sys-
tem is more responsive to admission control after 100Ts.
Throughout the run DUC-LB achieves load balancing since
the deviation of all processors’ utilization is less than 0.02
when system is steady.

Figure 5(b) shows the average and the deviation of the
Relative Response Time (RRT) of all processors in DUC-
LB. RRT is defined as the ratio of the task’s response time
to its period. At the beginning of the run, because the execu-
tion time of the tasks is only a half of the estimated execu-
tion time, the RRT of the system remains a low level. Due to
the load increase at 100Ts, the RRT increases sharply. After
DUC-LB causes the utilization to converge to the set point
the RRT also decreases to a satisfactory level. At 200Ts

the system load decreases 60% causing the RRT to drop.
When DUC-LB adapts the utilization to the set point again
the RRT also returns to the previous level. We also observe
that the deviation of the RRT remains small in the process
of adaptation due to the effect of load balancing.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(period)

U
til

iz
at

io
n

Pu
Pe
Pc
Setpoint

(a) Utilization

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(period)

Re
sp

on
se

Deviation
Average

(b) Response Times

Figure 6. Utilization and Response Times un-
der DUC-LB when execution time fluctuates
locally

The previous experiment represents a scenario with
global load fluctuation. We now repeat the experiments un-
der local load fluctuations. Only the tasks on the proces-
sor Pc (in the center of the cluster) change their execution

9

times at run time in this experiment. Note that such local
load fluctuations cause significantly imbalanced load in the
system. As shown in Figure 6(a), DUC-LB still maintains
desired utilization under local load fluctuations. The aver-
age response time, showned in Figure 6(b), only increases
slightly when etf on Pe is varied. In addition the deviation
of response time holds small in most running times except
several short time intervals. These results demonstrate that
DUC-LB can effectively handle the significant dynamics of
load balancing caused by local fluctuations in system load.

6. Conclusions

We have presented DUC-LB, a novel distributed utiliza-
tion algorithm designed for large-scale real-time clusters
operating in dynamic environments. DUC-LB has several
salient features. First, it is the first distributed utilization
control algorithm that handles the dynamics of load balanc-
ing, which is a common feature of modern clusters. Sec-
ond, it employs a localized control structure that can scale
effectively in large clusters. Finally, DUC-LB is rigorously
designed based on recent advance in distributed control the-
ory. Stability analysis and simulation results demonstrate
that DUC-LB can dynamically enforce desired utilization
set points under a range of dynamic workloads.

7. Acknowledgements

Fu and Wang are supported in part by National Natu-
ral Science Foundation of China (Grant No. 60373055,
60542055 and 60374058). Lu is supported in part by an
US National Science Foundation CAREER award (CNS-
0448554). The authors would like to thank the anonymous
reviewers for their valuable feedback.

References

[1] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang, and
Y. Lu. Feedback performance control in software services.
IEEE Control Systems Magazine, 23(3):74–90, June 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis
of a reservation-based feedback scheduler. In IEEE RTSS,
2002.

[3] A. Amin, R. Ammar, and A. E. Dessouly. Scheduling real
time parallel structure on cluster computing with possible
processor failures. In IEEE ISCC, July 2004.

[4] R. Ammar and A. Alhamdan. Scheduling real time parallel
structure on cluster computing. In IEEE ISCC, July 2002.

[5] C. Bartolini and G. Lipari. RTSim. http://rtsim.sssup.it/.
[6] J. E. Boillat. Load balancing and poisson equation in a

graph. Concurrency: Pract. Exper., 2(4):289–313, 1990.
[7] T. L. Casavant and J. G. Kuhl. A taxonomy of schedul-

ing in general-purpose distributed computing systems. IEEE
Trans. Softw. Eng., 14(2):141–154, 1988.

[8] G. Cybenko. Dynamic load balancing for distriubted mem-
ory multiprocessors. Journal of Parallel Distributed Com-
puting, 7:279–301, 1989.

[9] R. D’Andrea. Software for modeling, analysis, and con-
trol design for multidimensional systems. In 1999 CACSD,
pages 24–27, 1999.

[10] R. D’Andrea and R. S. Chandra. Control of spatially inter-
connected discrete time systems. In IEEE CDC, 2002.

[11] R. D’Andrea and G. E. Dullerud. Distributed control design
for spatially interconnected systems. IEEE Transactions on
Automatic Control, 48(9):1478–1495, Sept. 2003.

[12] D.C.Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole. A feedback-driven porpotional allocator for real-
rate scheduling. In OSDI, Feb. 1999.

[13] Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Light-
stone, S. S. Parekh, and C. Garcia-Arellano. Incorporating
cost of control into the design of a load balancing controller.
In RTAS, 2004.

[14] G. E. Dullerud and F. Paganini. A Course in Robust Conrol
Theory, A Convex Approach. Springer, 2000.

[15] T. Feng. A survey of interconnection networks. IEEE Com-
puter, 14(12):12–27, 1981.

[16] A. Goel, J. Walpole, and M. Shor. Real-rate scheduling. In
IEEE RTAS, 2004.

[17] A. Heirich and S. Taylor. A parabolic theory of load balance.
Technical Report Caltech-CS-TR-93-25, California Institute
of Technology, 1993.

[18] D. Henrich. The liquid model load balancing method. Jour-
nal of Parallel Algorithms and Applications, 8:295–307,
1996.

[19] C. C. Hui and S. T. Chanson. Hydrodynamic load balanc-
ing. IEEE Transactions on Parallel and Distributed Systems,
10(11):1118–1137, 1999.

[20] C. Langbort, R. S. Chandra, and R. D’Andrea. Distributed
control design for systems interconnected over an arbi-
trary graph. IEEE Transactions on Automatic Control,
49(9):1502–1519, 2004.

[21] S. Lin and G. Manimaran. Double-loop feedback-based
scheduling approach for distributed real-time systems. In
HiPC 2003, pages 268–278, 2003.

[22] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time divsi-
ble load scheduling for cluster computing. Technical Report
TR-UNL-CSE-2005-0011, University of Nabraska-Lincon,
2005.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time enviroment. J. ACM,
20:46–61, 1973.

[24] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback
control real-time scheduling: Framework, modeling, and al-
gorithms. Real-Time Systems, 23(1/2):85–126, July 2002.

[25] C. Lu, X. Wang, and X. Koutsoukos. Feedback utiliza-
tion control in distributed real-time systems with End-to-
End tasks. IEEE Transactions on Parallel and Distributed
Systems, 16(6):550–561, June 2005.

[26] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and
Z. Lu. Power-aware QoS management in web servers. In
IEEE RTSS, 2003.

10

[27] K. G. Shin and C. J. Hou. Design and evaluation of effective
load sharing in distributed real-time system. IEEE Trans-
actions on Parallel and Distributed Systems, 5(7):704–719,
1994.

[28] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao,
S. Son, and C. Lu. Feedback control scheduling in dis-
tributed real-time systems. In IEEE RTSS, Dec. 2002.

[29] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case for
feedback control real-time scheduling. In ECRTS, 1999.

[30] M. Suzuki, H. Kobayashi, N. Yamasaki, and Y. Anzai. A
task migration scheme for high performance real-time clus-
ter system. In ISCA, 2003.

[31] Y. C. Tay and H. Pang. Load sharing in distributed
multimedia-on-demand systems. IEEE Trans. on Knowl-
edge and Data Engineering, 12(3):410–428, 2000.

[32] X. Wang, C. Lu, D. Jia, and X. Koutsoukos. Decentralized
utilization control in distributed real-time systems. In IEEE
RTSS, Dec. 2005.

[33] Y. Wei, S. H. Son, J. A. Stankovic, and K.-D. Kang. Qos
management in replicated real time databases. In IEEE
RTSS, pages 86–97, 2003.

[34] M. H. Willebeek-LeMair and A. P. Reeves. Strategies for
dynamic load balancing on highly parallel computers. IEEE
Transactions on Parallel and Distributed Systems, 4(9):979–
993, 1993.

[35] C. Xu and F. C. M. Lau. Optimal parameters for load bal-
ancing with the diffusion method in mesh networks. Parallel
Processing Letters, 4:139–147, 1994.

[36] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal
Control. Upper Saddle River, NJ: Prentice-Hall, 1995.

[37] Y. Zhu and F. Mueller. Feedback EDF scheduling exploiting
dynamic voltage scaling. In IEEE RTAS, 2004.

Appendix A. Proof of Theorem 1

We prove the main stability and performance result, The-
orem 1, in a series of lemmas.

Lemma 1. Let the closed-loop system, obtained by con-
necting the processor and controller, be represented by

xC
i,j(k + 1)

(∆Sv
C
i,j)(k)

zi,j(k)

 =

AC
TT AC

TS BC
T

AC
ST AC

SS BC
S

CC
T CC

S DC

xC
ij(k)

vC
i,j(k)

λi,j(k)

 .

(A.1)
For the processor model (12) considered in this paper, the
matrices AC

TT and AC
TS depend affinely on the parameters

h and g, while all other closed-loop realization matrices are
independent of both h and g.

Proof. The closed-loop realization matrices can be com-
puted explictly as follows. Consider our processor
model (12), which can be written as

ui,j(k + 1)
∆Svi,j(k)

yi,j(k)
zi,j(k)

=

ATT ATS BTr BTλ

AST ASS BSr BSλ

CyT CyS Dyr Dyλ

CzT CzS Dzr Dzλ

uij(k)
vi,j(k)
ri,j(k)
λi,j(k)

,

(A.2)
where zi,j(k) = [z1

i,j(k), z2
i,j(k)]T, and the proces-

sor realization matrices are ATT = 1 − 4κ, ATS =
[κ, κ, κ, κ], BTr = 1, AST = [1, 1, 1, 1]T , CyT =
1, Dyλ = −1, CzT = [1, 0]T , Dzr = [0, 1]T , Dzλ =
[−1, 0]T , with BTλ, ASS , BSr, BSλ, CyS , Dyr, and CzS

being zero matrices of appropriate sizes.
From the controller model (13), the control output ri,j is

ri,j = CK
T xi,j + CK

S vK
i,j + DKyi,j

Since Dyr and CyS are zero matrices, we get

yi,j = CyT ui,j + Dyλλi,j (A.3)

Thus,

ri,j = CK
rT xi,j + CK

rSvK
i,j + DK

ryCyT ui,j + DK
ryDyλλi,j .

(A.4)
Substituting (A.4) in processor model (A.2) and (A.3) in

controller model (12) and simplifying, we get (A.1), where
the closed-loop state are xC

i,j := [uT
i,j , xT

i,j]
T , the closed-

loop interconnection variables are vC
i,j := [vT

i,j , (vK
i,j)

T]T ,
and the closed-loop realization matrices for this particular
problem (where several of the processor matrices are zero)
are

AC
TT =

[

ATT + BTrD
KCyT BTrC

K
T

BK
T CyT AK

TT

]

,

AC
TS =

[

ATS BTrC
K
S

0 AK
TS

]

,

11

BC
T =

[

BTλ + BTrDyλ

BK
T Dyλ

]

,

AC
ST =

[

AST 0
BK

S CyT AK
ST

]

,

AC
SS =

[

0 0
0 AK

SS

]

,

BC
S =

[

0
BK

S Dyλ

]

,

CC
T =

[

CzT + DzrD
KCyT DzrC

K
T

]

,

CC
S =

[

0 DzrC
K
S

]

,

and
DC = Dzλ + DzrD

KDyλ.

From the above explicit formulas, it can be seen at once that
Lemma 1 holds.

Now, define

Γ :=

AC
TT AC

TS BC
T

AC
ST AC

SS BC
S

CC
T CC

S DC

From the main result of [10], the stability and performance
of the closed-loop system (A.1) are implied by the existence
of symmetric scaling matrices XT > 0 and XS such that a
matrix inequality of the form

J(XT , XS , Γ) < 0 (A.5)

holds, where J is affine in AC
TT and AC

TS when XT , XS

and the remaining elements of Γ are held fixed. From this
observation and Lemma 1, we have the following result:
Lemma 2. Assume that the controller (13) and the scaling
matrices XT and XS are fixed. Then the matrix inequality
J(XT , XS , Γ) < 0 which proves stability and performance
of the closed-loop system is affine in h and g.

Proof. Notice that, by hypothesis and Lemma 1, the only
variable quantities that appear in the matrix inequality J <
0 are AC

TT and AC
TS . Since J is affine in AC

TT and AC
TS

(when the scaling matrices XT and XS and the other el-
ements of Γ are held fixed), the lemma follows immedi-
ately.

Lemma 3. (Nominal controller) Assume that for some nom-
inal values of g and h, there exists a solution for the LMI
synthesis conditions of [10]. Let the controller constructed
by means of these LMIs be represented by (13). Then there
exists an open set

S = {(α, β) : gmin < α < gmax, hmin < β < hmax} ,

for some values of gmin, gmax, hmin and hmax, such that
the linear matrix inequality for stability and performance
analysis (A.5) holds for some fixed scaling matrices XT and
XS and for all (g, h) ∈ S.

Proof. Since the LMI synthesis conditions in [10] are
equivalent to (A.5), there exist, by hypothesis, scales ma-
trices XT and XS that satisfy (A.5) for the nominal pro-
cessor model and the corresponding controller. Now (A.5)
depends affinely and hence continuously on h and g (from
Lemma 2). Recall the meaning of the LMI (A.5): it is satis-
fied if and only if all eigenvalues of J are strictly negative.
Since the eigenvalues of a matrix are continuous functions
of its elements (see [14] for instance), (A.5) is also satisfied
for small enough perturbations of h and g, which implies
Lemma 3.

The next lemma completes the proof by showing that the
LMI (A.5) need only be checked at the vertices of the rect-
angle S.

Lemma 4. Assume that the nominal controller represented
by (13) (which can be computed for the nominal proces-
sor according to the method given in [10]) satisfies the
LMI (A.5) for some fixed values of XT > 0 and XS at
the four vertices of the rectangle S. Then in fact (A.5) holds
for every point (g, h) ∈ S.

Proof. The proof is a simple special case of the convex-
ity of linear matrix inequality conditions. Since both the
controller and the scaling matrices are fixed, we have from
Lemma 2 that the left hand side of (A.5) depends affinely
on g and h. To make this dependence clear, we write the
matrix function J as J(p) for any point p = (g, h) ∈ S.
Define the four vertices of S as p1 := (gmin, hmin), p2 :=
(gmax, hmin), p3 := (gmin, hmax), and p4 := (gmax, hmax).
By hypothesis, we have

J(pi) < 0 (A.6)

for i = 1, . . . , 4. Since the rectangle S is convex, there exist
real numbers αi such that

αi ≥ 0, i = 1, . . . , 4 (A.7)
4

∑

i=1

αi = 1, and (A.8)

p =
4

∑

i=1

αipi (A.9)

for all p ∈ S. Since Lemma 2 implies that J is linear in g
and h, we have

J(p) =

4
∑

i=1

αiJ(pi)

for all p ∈ S. Equations A.7 and A.8 imply that αi are non-
negative, and moreover, that αi must be strictly positive for
at least one value of i ∈ {1, . . . , 4}. From this observation
and (A.6), Lemma 4 follows.

12

	Distributed Utilization Control for Real-time Clusters with Load Balancing
	Recommended Citation
	Distributed Utilization Control for Real-time Clusters with Load Balancing

	tmp.1418149444.pdf.Gx0ly

