
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Biology Faculty Publications & Presentations Biology 

11-2012 

Nature and function of insulator protein binding sites in the Nature and function of insulator protein binding sites in the 

Drosophila genome Drosophila genome 

Yuri Schwartz 

Daniela Linder-Basso 

Peter Kharchenko 

Michael Tolstorukov 

Maria Kim 

See next page for additional authors 

Follow this and additional works at: https://openscholarship.wustl.edu/bio_facpubs 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Schwartz, Yuri; Linder-Basso, Daniela; Kharchenko, Peter; Tolstorukov, Michael; Kim, Maria; Li, Hua-Bing; 
Gorchakov, Andrey; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom; Riddle, Nicole; Jung, 
Youngsook; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi; Park, Peter; Savitsky, Mikhail; 
Karpen, Gary; and Pirrotta, Vincenzo, "Nature and function of insulator protein binding sites in the 
Drosophila genome" (2012). Biology Faculty Publications & Presentations. 183. 
https://openscholarship.wustl.edu/bio_facpubs/183 

This Article is brought to you for free and open access by the Biology at Washington University Open Scholarship. It 
has been accepted for inclusion in Biology Faculty Publications & Presentations by an authorized administrator of 
Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/bio_facpubs
https://openscholarship.wustl.edu/bio
https://openscholarship.wustl.edu/bio_facpubs?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/bio_facpubs/183?utm_source=openscholarship.wustl.edu%2Fbio_facpubs%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


Authors Authors 
Yuri Schwartz, Daniela Linder-Basso, Peter Kharchenko, Michael Tolstorukov, Maria Kim, Hua-Bing Li, 
Andrey Gorchakov, Aki Minoda, Gregory Shanower, Artyom Alekseyenko, Nicole Riddle, Youngsook Jung, 
Tingting Gu, Annette Plachetka, Sarah C.R. Elgin, Mitzi Kuroda, Peter Park, Mikhail Savitsky, Gary Karpen, 
and Vincenzo Pirrotta 

This article is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/bio_facpubs/
183 

https://openscholarship.wustl.edu/bio_facpubs/183
https://openscholarship.wustl.edu/bio_facpubs/183


Research

Nature and function of insulator protein binding
sites in the Drosophila genome
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Aki Minoda,7 Gregory Shanower,2 Artyom A. Alekseyenko,5 Nicole C. Riddle,8

Youngsook L. Jung,3 Tingting Gu,8 Annette Plachetka,5 Sarah C.R. Elgin,8

Mitzi I. Kuroda,5 Peter J. Park,3 Mikhail Savitsky,1,4 Gary H. Karpen,7

and Vincenzo Pirrotta2,10
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and Cell Biology, University of California at Berkeley and Department of Genome Dynamics, Lawrence Berkeley National Laboratory,

Berkeley, California 94720, USA; 8Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA

Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of
independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein
binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and
uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional
characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard
enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small
number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are
already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alter-
ations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by
specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.

[Supplemental material is available for this article.]

Insulator elements were first discovered in Drosophila melanogaster

by biochemical (Udvardy et al. 1985) and genetic approaches

(Holdridge and Dorsett 1991; Geyer and Corces 1992) as special-

ized chromatin structures that appeared to define boundaries

between different chromatin states. It was soon found that such

insulator elements have the ability to block enhancer action when

interposed between enhancers and promoters and that this activ-

ity depended on specific DNA binding proteins that associate with

the insulator element. In Drosophila, we now know of four well-

defined insulator DNA binding proteins, SU(HW), ZW5 (also known

as DWG), BEAF-32, and CTCF (Geyer and Corces 1992; Zhao et al.

1995; Gaszner et al. 1999; Moon et al. 2005), of which only CTCF

has an ortholog in mammals (Baniahmad et al. 1990; Lobanenkov

et al. 1990). Two other proteins, MOD(MDG4)67.2 and CP190,

were found to associate with the SU(HW)-binding insulator ele-

ment found in the gypsy transposon and are also required for its

insulator function (Georgiev and Gerasimova 1989; Gerasimova

et al. 1995; Pai et al. 2004). Both MOD(MDG4)67.2 and CP190

contain a POZ/BTB structural motif, known to mediate homotypic

and heterotypic protein–protein interactions, which may drive

the association between multiple insulator elements. Sub-

sequent work has shown that CP190 also shares some of its

chromatin binding sites with BEAF-32 and CTCF and can interact

directly with the latter (Gerasimova et al. 2007; Mohan et al. 2007;

Bushey et al. 2009; Nègre et al. 2010).

The mechanistic interdependencies between CP190 and the

sequence-specific DNA binding proteins remain somewhat con-

troversial. CP190 protein is recruited to gypsy insulator by SU(HW)

but also binds directly to the endogenous SU(HW)-dependent in-

sulator DNA from the y-achaete locus (Pai et al. 2004). CTCF

binding to chromosomes was variously claimed to be either strictly

(Gerasimova et al. 2007) or partially (Mohan et al. 2007) de-

pendent on CP190 or, more recently, completely independent of

CP190 (Wood et al. 2011). Despite the uncertainties, an influential

model proposes that CP190 acts as a universal ‘‘glue’’ protein that

mediates interactions between insulator elements of different

classes, thereby generating chromatin loops, whose properties

are postulated to be such that regulatory elements located on

one loop are hindered from interacting with promoters or other

elements on the adjacent loop (Gerasimova et al. 2007; Bushey

et al. 2009).
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Previous immunolocalization and ChIP-chip/ChIP-seq anal-

yses have shown that insulator proteins have numerous binding

sites in the Drosophila genome (Zhao et al. 1995; Gerasimova and

Corces 1998; Mohan et al. 2007; Bartkuhn et al. 2009; Bushey et al.

2009; Nègre et al. 2010). Together with similar data for the mam-

malian CTCF protein (Kim et al. 2007; Cuddapah et al. 2009), these

findings suggest that the genome is partitioned into domains

delimited by boundaries that prevent spreading or influencing the

chromatin state of flanking domains. According to this view, in-

sulator elements would be expected to be very abundant in the

genome and serve an essential function to protect genes from in-

appropriate action of enhancers, silencers, and other chromatin-

modifying activities affecting gene function.

Another view of insulator function, not incompatible with

the first, derives from the discovery that insulator protein binding

sites play a critical role in several complex regulatory regions from

mammalian and Drosophila genomes, where they bring together

different components or juxtapose regulatory elements with the

appropriate promoters (Kurukuti et al. 2006; Ling et al. 2006;

Splinter et al. 2006; Li et al. 2011). Although these elements were

originally discovered for their ability to separate genomic units, the

view that insulators may bring parts of the genome together is

consistent with the realization that chromatin looping is an essen-

tial feature of genome architecture and gene regulation (Lanctôt

et al. 2007; Schoenfelder et al. 2010). In this view, however, such

‘‘linking’’ and folding is the basic function of ‘‘insulator’’ elements,

and in principle, not every insulator protein binding site neces-

sarily has an enhancer blocking insulator function.

Here we evaluate the two concepts by genome-wide analysis

of insulator protein binding to Drosophila chromatin. We focus on

the quantitative aspects of binding, which reveal classes of binding

sites occupied by specific combinations of insulator proteins. We

demonstrate that distinct rules govern the binding of an insulator

protein to different classes of sites, which sometimes involve co-

operation between several insulator proteins. We also describe a

novel class of robust Drosophila insulator elements that in cultured

cells bind CP190 but not any other known insulator proteins. We

find that only a small fraction of insulator protein binding sites act

as robust enhancer blockers in vivo and that significant depletion

of insulator proteins in cultured cells has small effects on genome-

wide expression or the spreading of the H3K27me3 mark. Our

observations argue against the concept of a genome partitioned by

specialized boundary elements and suggest, instead, that in-

sulators are reserved for specific regulation of selected genes.

Results
By use of chromatin immunoprecipitation analyzed by hybrid-

ization to Drosophila genomic tiling arrays (ChIP-chip), we have

mapped the distributions of SU(HW), CTCF, BEAF-32, ZW5, CP190,

and MOD(MDG4)67.2 proteins in cultured S2-DRSC and ML-

DmBG3-c2 cells (hereafter referred to as S2 and BG3). As has been

reported previously (Bushey et al. 2009; Nègre et al. 2010), the

genomic distributions of insulator proteins overlap. To characterize

the persistent co-binding groups, we first used a relaxed threshold

of log2(IP/INPUT) > 0.7 to define genomic regions bound by each

protein and record all possible types of overlapping combinations.

Each region was further examined for the strength of binding of

associated proteins, and only those regions in which all associated

proteins bound with comparative strength were considered for

further analysis (Fig. 1; Supplemental Tables S1–S18). The last step

is critical to take into account differences in antibody strengths

and discriminate between sites with robust co-binding of several

proteins and sites at which one protein binds strongly but others

are barely detectable. This approach shows clearly that some of the

co-binding combinations reported earlier (Nègre et al. 2010) are in

fact at the edge of computational detection (Fig. 1). For example,

class 14 sites that would appear to co-bind CP190 and SU(HW) in

the absence of MOD(MDG4)67.2 display exceedingly weak CP190

signals, which is in stark contrast to the robust CP190 binding to

class 3 sites in the presence of SU(HW) and MOD(MDG4)67.2.

Consistent with a broad role of CP190 in the insulator net-

work, ;80% of robust CP190 binding sites are shared with SU(HW),

CTCF, or BEAF-32 (Fig. 1). In contrast, more than half of the SU(HW),

CTCF, and BEAF-32 sites are standalone, i.e., none of the other

proteins tested are bound to these sites. This implies that the in-

teraction of SU(HW), CTCF, and BEAF-32 with CP190 and other co-

binding partners depends on additional factors. In addition, 83 robust

standalone CP190 sites indicate that this protein can be recruited

to chromatin independently of SU(HW), CTCF, and BEAF-32.

As expected, from polytene chromosome staining (Gerasimova

and Corces 1998), we detect ;300 sites with simultaneous robust

binding of SU(HW), MOD(MDG4)67.2, and CP190, the combina-

tion of proteins associated with the gypsy insulator (Fig. 1, class 3).

We will refer to this class of binding sites as gypsy-like, although none

of them corresponds to gypsy retrotransposon insertions as all re-

petitive sequences were excluded from our analysis. We see no

MOD(MDG4)67.2 binding in the absence of SU(HW) and CP190.

cis cooperation and motif coincidence govern the co-binding
of CP190 with CTCF and SU(HW)

Since SU(HW) and CTCF interact directly with CP190 (Pai et al.

2004; Gerasimova et al. 2007), the large number of standalone sites

Figure 1. The classes of insulator protein binding sites. The composi-
tion of 16 co-binding groups detected by initial overlap comparison is
indicated by the checkerboard pattern under the bar plot. The color code
in log2(IP/INPUT) units (indicated to the right) is used to show the number
of sites of different binding strength within each class. For the multiprotein
classes, the bars are divided from left to right corresponding to the top to
bottom positions of the proteins in the chart below. The numbers of sites of
each class that bind all corresponding proteins within 60% of their ChIP-
chip signal dynamic range are indicated above the bars. Only those sites
were used for further analysis. The dashed line on each bar indicates the
position of the 60% cutoff. The classes representing robust co-binding
combinations are numbered in red.

Genome Research 2189
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for these two proteins requires explanation. The comparison of the

genomic distributions of SU(HW), CTCF, and CP190 in S2 and BG3

cells and in whole embryos (from Nègre at al. 2010) shows that the

distinction between the standalone and CP190 co-bound sites is

well-preserved in all three sources of chromatin. We conclude that

the co-binding of CP190 is an inherent property of a site rather

than a product of tissue specific regulation.

The analysis of DNA sequences in standalone SU(HW) and

CTCF regions (class 2, 4) and those shared with CP190 (class 3, 9)

indicates that SU(HW) and CTCF bind to DNA directly and with

the same sequence specificity irrespective of CP190 presence. The

most prominent motifs derived from the corresponding stand-

alone and CP190 co-bound regions are essentially identical (Fig.

2A; Supplemental Fig. S1) and match the reported binding se-

quences of SU(HW) and CTCF in vivo (Adryan et al. 2007; Holohan

et al. 2007; Nègre et al. 2010) and in in vitro (Spana and Corces

1990; Golovnin et al. 2003; Moon et al. 2005). The number of

SU(HW) or CTCF motifs in the standalone sites does not differ

significantly from that in the CP190 co-binding sites.

In addition to the canonical CTCF motif, the sequence anal-

ysis reveals a new motif enriched in class 9 (CTCF+CP190) but not

class 4 (standalone CTCF) regions (Fig. 2A; Supplemental Fig. S1).

Strikingly, this motif is also enriched at class 6 (standalone CP190)

sites (Fig. 2A; Supplemental Fig. S1), suggesting that CP190 can

bind to DNA directly or through an unknown DNA-binding pro-

tein(s) (for more details, see Supplemental Results) and that the

binding of CTCF and CP190 to common sites results from the

coincidence of the corresponding recognition sequences. It is

clear, however, that at many sites CTCF is required for CP190

binding. RNAi depletion of CTCF that reduces its binding at class

9 (CTCF+CP190) sites (Fig. 2B) also reduces CP190 binding at most

of those same sites but not at class 3 (gypsy-like) or other sites where

CP190 is not accompanied by CTCF (Supplemental Fig. S2). The

converse knock-down of CP190 has very little effect on CTCF

binding (Fig. 2B; Supplemental Fig. S2), indicating that CTCF is

recruited to class 9 (CTCF+CP190) sites independently of CP190.

In contrast to class 9 (CTCF+CP190) sites, the sequence

analysis of class 3 (gypsy-like) and class 2 (standalone SU(HW)) sites

Figure 2. The sequence determinants and interdependence of the insulator protein binding to chromatin. (A) The logo representations of sequence
motifs characteristic of SU(HW), CTCF, and CP190 binding sites defined by the MEME algorithm and used in the analysis in D. (B) The effects of the RNAi
knock-down on the target protein and its co-binding partners. The sites at which ChIP-chip signal was consistently reduced judged from the comparison of
two replicate mock RNAi experiments and two specific RNAi experiments (z-scores < �3, unpaired t-test) were counted and their fractions plotted. Here
and in C and D, the error bars indicate the 95% confidence interval. The bar plots show that the binding of CP190 to some of the class 9 but not at gypsy-like
sites depends on CTCF. However, the binding of CTCF to class 9 sites does not depend on CP190. In contrast, the binding of SU(HW) and CP190 to gypsy-
like sites is interdependent. (C ) As illustrated by this bar plot, BEAF-32 and CP190 bind to common sites independently. (D) The presence of SU(HW) and
CTCF recognition sequences within indicated classes of sites demonstrates that the coincidence of the two motifs is responsible for the co-binding of
SU(HW) and CTCF to class 12 sites.

Schwartz et al.
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revealed no characteristic motifs other than the SU(HW) recogni-

tion sequence. The RNAi knock-down of SU(HW) results in its

efficient depletion from chromosomes and also in depletion of

CP190 from the majority of gypsy-like sites, but not from other

kinds of CP190 sites (Fig. 2B; Supplemental Fig. S2). Unexpectedly,

CP190 depletion also causes loss of both proteins from class 3 (gypsy-

like) sites (Fig. 2B), indicating that the binding of SU(HW) and CP190

to these sites is mutually dependent. CP190 RNAi has little effect on

the binding of SU(HW) to standalone sites (Supplemental Fig. S2),

arguing that the dependence is direct. Although other explanations

are possible, these results suggest that SU(HW) and CP190 proteins

cooperate, allowing SU(HW) to bind to a recognition sequence of

a quality or in an environment inadequate to recruit on its own.

Supporting this notion, we find that the consensus scores of the

SU(HW) motifs at class 3 (gypsy-like) sites are markedly lower than

those at class 2 (standalone SU(HW)) sites (Supplemental Fig. S3).

Finally, although more than half of SU(HW) or CTCF sites are

standalone, SU(HW) and CTCF never bind a common region un-

less together with CP190 and MOD(MDG4)67.2 (Fig. 1; class 12

sites). The apparent co-binding of CTCF and SU(HW) to class 12

sites might be attributed to the crosslinking of complexes recruited

to distinct insulator elements and bridged in trans by interactions

between CP190 and MOD(MDG4)67.2 proteins. This model pre-

dicts that the DNA sequences recognized by CTCF and SU(HW)

would rarely group together at class 12 sites. Contrary to this

prediction, class 12 sites show a high coincidence of SU(HW) and

CTCF motifs, a feature absent from sites that bind only SU(HW) or

only CTCF (Fig. 2D). This points to the DNA sequence as the pri-

mary determinant of the common binding to class 12 sites and

argues against their being the product of crosslinking of distinct

trans-interacting regions (although such trans-interactions are not

excluded).

BEAF-32 is dispensable for the recruitment of CP190
to chromatin

BEAF-32 was suggested to act as a DNA binding recruiter of CP190

(Bushey et al. 2009). Indeed the comparison of BEAF-32 and CP190

regions defined at low threshold [log2(IP/INPUT) > 0.7] shows

extensive overlap (Fig. 1). It is immediately obvious, however, that

the binding of CP190 to these sites is often weak and dispropor-

tional to BEAF-32 (hence the relatively small number of regions

listed as robustly bound by both proteins, classes 5 and 8). RNAi

depletion of BEAF-32 causes a reduction of its binding to the ma-

jority of the sites shared with CP190 (class 5 sites) (Fig. 2C). However,

it has no effect on the binding of CP190 to these sites. Conversely

CP190 depletion reduces its binding to the majority of class 5 sites

but does not affect BEAF-32 binding (Fig. 2C). We conclude that

BEAF-32 and CP190 bind chromatin independently of each other

and that their coincidence may result from a bias of both proteins

toward active transcription start sites (TSSs).

RNAi-knockdown discriminates between low- and high-affinity
binding sites

The loss of a chromatin protein from its genomic binding sites

upon RNAi knock-down is sometimes used to validate the genome-

wide mapping. The 10-fold reduction of nuclear protein levels in

the above RNAi experiments (Fig. 3A; Supplemental Fig. S4) results

in the complete loss of binding at many chromosomal sites and re-

duction of binding to the majority of them (Figs. 3B–E). Yet in all cases,

we see a number of strong sites that remain unaffected by RNAi. Im-

munoprecipitations using two antibodies independently raised

against different parts of the proteins strongly suggest that these

are genuine high-affinity binding sites, and not false positives. For

example, one of the sites with persistent BEAF-32 binding is scs9,

the prototype BEAF-32–dependent insulator (Fig. 3F). We conclude

that immunoprecipitation with two independently derived anti-

bodies is a better validation criterion than the use of RNAi de-

pletion, which in our case would reject sites with the highest af-

finity and therefore with the best functional potential.

Analysis of insulator function

A comparison of the genomic distributions of different classes

of binding sites to genes and gene activity shows very clear dif-

ferences. The majority of class 3 (gypsy-like), standalone SU(HW)

(class 2), and CTCF (class 4) sites and about a half of class 9

(CTCF+CP190) sites are situated within introns of transcriptionally

inactive genes or in intergenic regions (Fig. 4A,B). In contrast, the

other half of class 9 (CTCF+CP190), as well as ZW5, BEAF-32, and

standalone CP190 sites, tend to reside within 2 kb of transcrip-

tionally active TSSs (Fig. 4A,B). None of the classes of binding sites

have significant preference for positions situated between an ac-

tive and a silent gene.

The distinct genomic location of different classes of binding

sites raises the question of whether they have the same functions

or insulating properties. To examine insulator function, we se-

lected two representative 1-kb DNA fragments from each major

class and measured their ability to block the activation of the yellow

reporter gene by the upstream wing- and body-specific enhancers

when placed between these enhancers and the promoter. Unlike

general repressors, insulators are expected to block the upstream

enhancers without affecting the activation of the yellow promoter

by the downstream bristle specific enhancer (Fig. 4C, S5; Geyer and

Corces 1992). Five randomly chosen 1-kb genomic fragments that

showed no association with any of the insulator proteins in our

ChIP-chip experiments and the 680-bp gypsy insulator element

were tested in the same reporter assay as negative and positive

controls. Initially all reporter constructs were integrated in the same

51D landing site by targeted fC31 att recombination (Bischof et al.

2007), which allowed direct comparison of the effects produced by

different test fragments in the same chromosomal environment.

Subsequently, the transgenes were mobilized from the 51D site us-

ing P-element–mediated transposition to assess the robustness of

the enhancer blocking effect in different chromosomal contexts.

As summarized in Figure 4D, Table 1, and Supplemental

Tables S19 and S20, the transformation of flies lacking yellow

function with negative control constructs restores their phenotype

to nearly wild type. The pigmentation of the body and wings in

these flies varies somewhat depending on the site of insertion

but is always much stronger than in flies transformed by the

positive control construct that carries the gypsy insulator, which

have black bristles but completely yellow wings and a very light

body cuticle. Of the 16 insulator protein binding sites tested, only

two (BC1, class 5; CP1901, class 6) block the upstream enhancers to

the same extent as the gypsy insulator construct. The enhancer

block is robust, evident at all tested chromosomal locations, and

completely reversed upon FLP-mediated excision of tested frag-

ments. In addition, we find four fragments (CTCFC1, class 9; B1,

class 7; CP1902, class 6; and BC2, class 5) whose enhancer blocking

ability is less strong than that of BC1 (class 5) and CP1901 (class 6)

and varies depending on the surrounding chromatin context.

Fragment BC2 (class 5) represents the most striking example of

Genomics of Drosophila insulator proteins
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variability, with extremely good enhancer blocking at some in-

sertion sites and complete lack of it at others.

None of the class 3 (gypsy-like) sites tested displayed enhancer

blocking activity, in agreement with the results of Nègre et al.

(2011), who tested several other fragments of this class using a

different enhancer-blocking assay based on the eve stripe 2 and 3

enhancers. On the other hand, the class 3 (gypsy-like) binding sites

from the yellow-achaete and 62D regions have been shown to ro-

bustly block yellow enhancers in transgenic tests (Golovnin et al.

2003; Parnell et al. 2003; Kuhn-Parnell et al. 2008). This suggests

that the simple recruitment of CP190, MOD(MDG4)67.2, and

SU(HW) to a chromosomal site is not sufficient for robust enhancer

blocking and that additional unknown factors or specific chromatin

configurations are required for gypsy-like binding sites to have this

function.

Overall, we conclude (1) that, unlike the prototype insulators,

the majority of insulator protein binding sites are not robust en-

hancer blockers; (2) that the complement of binding proteins at

each class of sites is a poor predictor of whether a site can act as an

enhancer blocker; and (3) that a given site can act as an enhancer

blocker in one genomic context but not in another. The latter

implies the possibility that a site that does not appear to act as an

enhancer blocker might become such if the chromatin environ-

ment changes. Some functional regulatory elements can be pin-

pointed based on their high DNA sequence conservation. This

appears not to be the case for insulator protein binding sites. Thus

the sequences of BC1 (class 5) and CP1901 (class 6) fragments,

which show the best enhancer blocking in the transgenic test, and

the sequences of the sites from these classes in general show sur-

prisingly low conservation (Supplemental Fig. S6–S8; Supplemental

Results).

Unaddressed by our functional test is the question whether

the sites occupied by a combination of DNA binding insulator

proteins have properties markedly different from their simpler

counterparts. Future experiments should reveal, e.g., whether class

12 sites have poor enhancer-blocking ability like class 3 (gypsy-like)

sites or can block enhancer–promoter communications as well or

better than class 9 (CTCF+CP190) sites.

Figure 3. The effects of RNAi knock-down on the binding of insulator proteins to chromatin. BG3 cells were subjected to RNAi against key insulator
proteins followed by ChIP-chip. (A) Western blots of threefold serial dilutions of nuclear protein from cells treated with specific and mock dsRNA (indicated
above the panels) show 10-fold or greater knock-down of the corresponding proteins. The antibodies used for detection are indicated to the right, and the
loading controls are shown in Supplemental Figure S4. The comparison of average binding for (B) SU(HW), (C ) CTCF, (D) CP190, and (E) BEAF-32 after
mock and specific RNAi shows that the binding is reduced at the majority of sites (data points below red dashed line). (Blue dots) The sites with consistent
reduction in both replicate experiments (estimated conservatively with unpaired t-test; z-scores < �3); (green dots) others. (F) scs9 is one of the BEAF-32
high-affinity binding sites resistant to RNAi. The BEAF-32 ChIP-chip signals after BEAF-32 and mock RNAi are plotted along the segment of chromosome
3R. (White circles) Peaks affected by BEAF-32 knock-down; (red circles) peaks that remain unchanged. The genes shown above the coordinate scale are
transcribed from left to right, those below the scale from right to left.

Schwartz et al.
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Finally, we note that both fragments tested to represent class 6

(standalone CP190 sites) and class 5 (BEAF-32+CP190) sites display

a degree of enhancer blocking and include the only robust en-

hancer blockers found in our tests (Table 1). Considering the fact

that the CP190 binds to class 5 (BEAF-32+CP190) sites indepen-

dently of BEAF-32, this underscores the importance of the novel

pathway of CP190 recruitment to chromatin and suggests that it

may be utilized at the majority of robust enhancer blocking ele-

ments in Drosophila.

Standalone SU(HW) binding sites act as general repressors

In these assays we found no evidence of enhancer blocking by class

2 and 4 (standalone CTCF or SU[HW]) binding sites, although we

cannot exclude the possibility that some may be active in specific

tissues where they acquire CP190, as recently proposed by Wood

et al. (2011). Instead, at many chromosomal locations, the two

representative class 2 (standalone SU[HW]) binding fragments

S1 and S2 cause loss of yellow expression not only in wings and

body but also in bristles, indicative of general promoter re-

pression rather than enhancer blocking activity (Supplemental

Tables S19, S20). Such behavior is reminiscent of the repressive

properties of the gypsy insulator upon loss of mod(mdg4) func-

tion (Gerasimova et al. 1995) and suggests that transcriptional

repression is a general feature of SU(HW) protein when not asso-

ciated with MOD(MDG4)67.2.

The impact of insulator proteins on gene expression

It is surprising that most of the insulator protein binding sites

tested appear to lack robust enhancer blocking activity, raising the

possibility that the transgenic assay may underestimate the frac-

Figure 4. Functional evaluation of classes of insulator protein binding sites. (A,B) Sites bound by different combinations of insulator proteins show
distinct biases in their distribution relative to genes and gene activity. Class 2–4 sites are rarely close to TSSs, while class 5–7 sites are primarily TSS-proximal.
In rare cases when class 2–4 sites are TSS proximal, these promoters tend to be inactive. In contrast, BEAF-32 (classes 5 and 7) binds predominantly next to
active TSSs. While many standalone CP190 sites are next to active TSSs, some are not. The proximity to TSSs and genes in A is defined based on a 2-kb
margin, and the binding to TSSs in B is defined on a 1-kb margin. The background distribution expected by chance is shown as the rightmost bar in A and is
derived from 10 times the number of positions sampled randomly but with the same chromosome representation. (C ) The schematic of the transgenic
enhancer blocking assay. A DNA fragment of interest (black rectangle) is cloned in the FRT cassette positioned between the upstream wing and body
enhancers (green ovals) and the promoter of the reporter yellow gene (yellow rectangle). The resulting construct is injected into yellow minus flies. DNA
fragments capable of enhancer blocking (red rectangle) prevent the activation of the reporter yellow gene by upstream enhancers but allow the activation
of the gene by the downstream bristle enhancer (‘‘br’’ green oval). This yields transgenic flies with pigmented bristles but a yellow body and wings.
Ineffectual DNA fragments (green rectangle) allow activation of the reporter gene in all tissues and yield wild-type transgenic flies. The fragments
harboring repressive activity (blue rectangle) block the expression of transgenic yellow in all tissues, which results in flies devoid of any pigmentation. The
results of transgenic tests are summarized in D.

Genomics of Drosophila insulator proteins

Genome Research 2193
www.genome.org



tion of functional binding sites because they require their native

genomic context. Therefore, as an independent measure of an

insulator protein impact on the genome, we evaluated genomic

changes in gene expression after depletion of SU(HW), CTCF,

BEAF-32, or CP190 in BG3 cells. Consistent with the notion that

only a small fraction of insulator protein binding sites corresponds

to functional insulators, significant depletion of any single insulator

protein does not lead to major alterations in gene expression (Fig.

5A). We see no widespread switching on of the inactive genes by the

adjacent ‘‘active’’ chromatin environment or repression of ac-

tive genes by encroaching ‘‘repressive’’ chromatin states

The few changes in gene expression that we can detect are

consistent with the results of the transgene tests (Fig. 5A). Of 39

genes affected by SU(HW) RNAi, the expression of 24 genes is up-

regulated. The magnitude of the expression increase at these genes

is much higher than the reduction at genes where the expression

goes down, which fits well with the repressive properties of stand-

alone SU(HW) sites seen in the transgenic assay. The transgenic

assay also suggests that CP190 bound sites, especially standalone,

tend to block enhancer–promoter communications. If they func-

tion as pure insulator elements, one would expect that in some cases

their loss might cause inappropriate activation of a gene, while in

other cases, it might lead to inappropriate repression. We find in-

stead that the genes affected by CP190 knock-down tend to reduce

their expression. It is possible that this apparent stimulatory role of

CP190 stems from a consistent bias for using CP190-dependent

insulators to block long-range transcriptional repression. However,

we favor an alternative explanation that the most frequent role of

CP190 complexes is to aid chromatin folding to bring distant acti-

vators to their appropriate targets.

Insulators and Polycomb silencing

Broad domains of histone H3 trimeth-

ylated at K27 (H3K27me3) mark loci re-

pressed by Polycomb group (PcG) pro-

teins (Schwartz et al. 2006). In Drosophila,

these proteins are recruited to the target

genes by Polycomb response elements

(PREs), from which the H3K27me3 mark

spreads by a chromatin looping mecha-

nism (Kahn et al. 2006; Comet et al. 2011).

The gypsy insulator can interfere with

the looping of PRE-bound complexes

and block the spreading of H3K27me3

(Kahn et al. 2006; Comet et al. 2011).

Visual inspection shows that half of the

H3K27me3 domain edges (110 of 221)

display a gradual decline to background

level (exemplified by the left edge of the

sens-2 domain in Fig. 5B). The remaining

111 edges are sharp enough to define

a distinct domain boundary (Fig. 5C),

which we will refer to as H3K27me3

domain borders. Two genomic features

correlate with the presence of domain

borders (Fig. 5D); 54% of the domain

borders coincide with robust insulator

protein binding sites, and 78% of the

borders coincide with the 59 or 39 ends

of active transcripts. At least one of

the two features is present at 97% (108

of 111) of definable borders, suggesting

that both may contribute to limiting the spread of H3K27

trimethylation.

Forty-four percent of the borders are marked only by the

presence of adjacent transcriptional activity, and 33% of the

borders coincide with both the ends of active transcription and

insulator protein binding sites (Fig. 5D), consistent with the

tendency of BEAF-32 and CP190 proteins to bind in the 59 region

of active genes. Transcriptional activity itself may be sufficient

to prevent the spread of H3K27me3 by the associated histone

H3 replacement, H3K27 acetylation, or inhibition of the his-

tone methyltransferase activity of PcG complexes by H3K4me3

(Schmitges et al. 2011). This appears to be the case as only three

H3K27me3 domains bordered by active transcripts are extended

after RNAi knockdown of insulator proteins (3% of all domain

borders associated with transcriptional activity). We conclude that

if putative insulator elements contribute to the establishment of

the borders adjacent to active loci, they are dispensable for their

maintenance in most cases.

In contrast, at 75% (18 out of 24) of domain borders that

contain insulator protein binding sites but no active genes, RNAi

knock-down of the corresponding insulator proteins results in

expansion of the H3K27me3 domains. The affected boundaries

coincide with class 12, class 3 (gypsy-like), class 9 (CTCF+CP190),

and class 6 (standalone CP190) binding sites, consistent with the

idea that such sites can act as functional insulators.

In ;5% (five out of 110) of cases, the knockdown of insulator

proteins leads to the extension or changes in the shape of the

gradually declining H3K27me3 domains. In these cases, exempli-

fied by the left tail of the sens-2 domain (Fig. 5B), the affected

domains contain class 3 (gypsy-like) and/or class 9 (CTCF+CP190)

Table 1. The results of enhancer blocking assay

Fragment class
Construct

name
Pigmentation
at 51D sitea

Pigmentation
after fragment

excision
Mean after

mobilization

Negative control random1 4/5/5 4.7/4.7/5.0
Negative control random2 5/4/5 4.7/3.8/5.0
Negative control random3 4/3/5 4.0/3.1/5.0
Negative control random4 4/3/5 4.0/3.2/5.0
Negative control random5 5/3/5 4.6/3.4/5.0
2b S1 4/2/5 5/4/5 3.4D/2.8D/3.2D

2b S2 4/2/5 5/4/5 3.9/3.0D/3.4D

3 SCM2 3/2/5 3.4D/3.1/5.0
3 SCM3 5/4/5 4.1/3.6/5.0
4 CTCF1 4/3/5 4.3/3.6/5.0
4 CTCF2 4/3/5 4.3/3.6/5.0
9d CTCFC1 3/3/5 3.4D/2.9D/5.0
9 CTCFC2 4/3/5 4.1/4.1/5.0
7d B1 4/3/5 3.3D/3.0D/5.0
7 B2 3/3/5 3.6D/3.3/5.0
5e BC1 1/1/5 5/4/5 2.0D/1.8D/5.0
5c BC2 3/3/5 3.1D/3.0/5.0
1 ZW3 4/3/5 4.2/3.0D/5.0
1 ZW4 5/4/5 4.4/3.9/5.0
6e CP1901 2/2/5 5/4/5 1.9D/1.4D/5.0
6d CP1902 3/3/5 3.6D/2.9D/5.0
Positive control SuHw680 SmaI-ClaI 1/2/5 5/4/5

aWing, body, bristles scores are shown. (1) No pigmentation; (5) wild-type pigmentation.
bContext dependent repression.
cRear context dependent insulation.
dContext dependent insulation.
eRobust insulation.
The mean scores after mobilization marked with D are significantly different from control (P-value <
0.05 in both unpaired t-test and Wilcoxon sum rank test; see Supplemental Table S19 for scores at each
insertion site).
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Figure 5. Functional effects of insulator protein withdrawal. (A) Affymetrix GeneChip expression analysis of cells from the RNAi experiments described in
Figure 3. The average fold change between the two specific and two mock RNAi experiments (y-axes) was plotted against the highest average expression
value detected in the mock or specific RNAi samples (x-axes). Each graph point represents one transcript interrogated by the microarray. Transcripts robustly
expressed before or after specific RNAi treatment are to the right of the vertical dashed lines. Of these, those showing consistent twofold or greater change
after specific RNAi treatment in both replicate experiments are circled. (B) As evident from ChIP-chip of H3K27me3 from mock RNAi-treated BG3 cells, the
sens-2 gene is repressed by PcG. The right border of the corresponding H3K27me3 domain is sharp and coincides with a standalone CP190 site (marked by
a vertical green dashed line) and with the Rca1 transcript. The ChIP-chip with H3K4me3 and H3K36me3 indicates that Rca1 is transcriptionally active. The left
side of the H3K27me3 domain declines gradually with no obvious border. It harbors gypsy-like and CTCF+CP190 binding sites marked by orange and purple
dashed lines, respectively. The knock-downs of insulator proteins have no effect on the position of the right border of the H3K27me3 domain but change the
shape of its left tail. The changes in histone methylation profile are best seen on the relative difference browser tracks. (C ) twi is also repressed by PcG
mechanisms in BG3 cells. The right border of the corresponding H3K27me3 domain is set by the presence of an active transcript. The left border is maintained
by a gypsy-like (class 3) insulator (vertical orange dashed line), as evident from the extension of K27 trimethylation after SU(HW) or CP190 knock-down.
(D) The pie chart shows the frequencies of various genomic features associated with definable H3K27me3 domain borders.



sites within their tails and change their length and/or shape upon

RNAi knockdown of CP190, SU(HW), or CTCF. We interpret this

to indicate that the block imposed by class 3 (gypsy-like) or class

9 (CTCF+CP190) insulator elements is not always robust: Some

H3K27me3 may bleed through the insulator, but in its absence,

spreading of the histone methylation is more efficient and longer-

range. Finally, we note that standalone CTCF sites are never

found at H3K27me3 domain borders, supporting the idea that

these are not insulators and cannot block the spreading of histone

methylation.

Overall, we conclude that insulators participate in shaping

the genomic distribution of H3K27me3. However, in cultured

cells, their contribution is small and used primarily to prevent the

extensive H3K27 trimethylation of transcriptionally inactive genes

adjacent to PcG target regions. This role may be most important

when Polycomb repression is first established in the embryo.

Discussion
The binding sites of insulator proteins are often taken to represent

elements that partition the genome into independent regulatory

domains and demarcate chromosomes into regions of ‘‘active’’ and

‘‘repressed’’ chromatin. The results presented here give little sup-

port to this view as a general principle of genome organization,

although it may be true in certain regions. Instead we would like

to argue that: (1) Insulator proteins bind to genomic sites in spe-

cific combinatorial patterns; (2) the properties of sites bound by

key insulator proteins SU(HW) and CTCF are markedly different

depending on whether the two co-bind with CP190; (3) many of

the known insulator proteins sites do not function as robust

enhancer blockers; and (4) at least in cultured cells the depletion

of insulator proteins has a limited impact on genome-wide gene

expression.

Combinatorial binding patterns

Classifications of combinatorial binding of insulator proteins have

been described previously (Bushey et al. 2009; Nègre et al. 2010).

These classifications relied on the overlapping of bound regions

defined according to arbitrary statistical thresholds and the posi-

tion of these regions relative to TSSs. Because they did not take

into account the relative strengths of binding, such classifications

grouped together binding sites with very different biochemical

and functional properties.

In contrast, we define the persistent co-binding patterns

based on the strength of binding of the associated proteins, treat-

ing regions strongly bound by a combination of proteins differ-

ently from regions at which the same proteins are detected

according to a statistical threshold but where the extent of their

binding is disproportional. We argue that our approach retains the

information on biochemical interrelations between the co-bound

proteins and separates the sites with different functional proper-

ties. The strongest support for our argument comes from RNAi

knock-down experiments, which demonstrate that the effect of

the loss of one insulator protein on the binding of another in-

sulator protein is constrained to a specific class of co-bound re-

gions. For example, the knock-down of SU(HW) results in the

loss of CP190 from class 3 (gypsy-like) sites but not from class 9

(CTCF+CP190) or class 5 (BEAF-32+CP190) sites.

Our approach to select the sites representative of each co-

binding class is conservative and inevitably excluded a fraction of

binding sites from downstream analyses. For example, strong

SU(HW) binding sites assigned to class 14 by initial overlap com-

parison (Fig. 1) were not analyzed further due the uncertainty of

their co-binding by CP190. We therefore caution readers that our

selection of representative binding sites (Supplemental Tables S1–

S18) is not a complete genomic catalog, and advise to use the ChIP-

chip binding profiles, deposited to GEO and modMINE, to gauge

whether their locus of interest has a strong insulator protein

binding site.

The role of CP190 in insulation

The prevailing model in the field suggests that CP190 is recruited

to different insulator elements by DNA binding proteins where it

serves as a universal adapter that mediates interactions between

different insulator elements (Bushey et al. 2009). Our results

present a more complex picture. First, RNAi knock-down experi-

ments demonstrate that the binding of SU(HW) protein to class 3

(gypsy-like) sites is dependent on CP190, indicating that CP190 is

not passively tethered to common sites by SU(HW) and instead

plays an active role in recruitment and/or stabilization of the bound

complex. Second, the sequence analysis of class 9 (CTCF+CP190)

sites suggests that the binding of both proteins to these sites is

likely due to the coincidence of cognate recognition sequences.

Third, RNAi knock-down experiments indicate that BEAF-32 is

dispensable for CP190 binding at shared sites. Clearly CP190 plays

an active role in the selection of sites shared with SU(HW), CTCF,

or BEAF-32. It is still possible that once it co-binds, or binds suffi-

ciently close to another insulator protein, it may mediate the trans-

interactions of the bound sites. However, such interactions would

have to be rather transient, at least in cultured cells, as they are not

easily detected in our ChIP-chip data.

The class of sites in which CP190 is not accompanied by any

of the insulator proteins tested indicates the existence of a novel

pathway of CP190 recruitment to chromatin.

Notably, our functional tests suggest that the sites employ-

ing this pathway (i.e., class 6 [standalone CP190] and class 5

[CP190+BEAF-32] sites) may constitute the major pool of robust

insulator elements in flies. This conclusion is supported by func-

tional analyses of Nègre et al. (2011), who found enhancer block-

ing activity by three DNA fragments that we would classify as class

6 (standalone CP190) sites and one fragment that we classify as

a class 5 (CP190+BEAF-32) site. Interestingly, Nègre et al. (2011)

found some degree of CTCF binding at these sites in embryos. Our

results show that these sites bind no CTCF in S2 or BG3 cultured

cells. Furthermore, unlike most CTCF binding sites (Fig. 2D), these

regions contain no CTCF recognition motif. Whether and how

such sites can actually recruit CTCF in embryonic cells but not in

cultured cells will require further investigation.

Is transcriptional repression the primary function of SU(HW)
protein?

SU(HW) is not required for Drosophila viability, but mutant flies

display defective oogenesis and female sterility (Parkhurst et al.

1988). As follows from the experiments presented here and pre-

viously (Golovnin et al. 2003; Parnell et al. 2003; Kuhn-Parnell

et al. 2008), the class 3 (gypsy-like) sites do not have a direct im-

pact on gene promoters, and some can act as enhancer blockers.

In contrast, our results show that standalone SU(HW) protein

binding sites tend to repress transcription rather than insulate.

Remarkably, a recent study indicates that neither CP190 nor

MOD(MDG4)67.2 is required for oogenesis (Baxley et al. 2011),

Schwartz et al.

2196 Genome Research
www.genome.org



which suggests that the role of SU(HW) in the control of this process

is distinct from its enhancer-blocking function. We hypothesize

that the SU(HW) function critical for oogenesis is transcriptional

repression exerted at standalone binding sites, consistent with

the up-regulation of gene expression we observe after depletion of

SU(HW) in cultured cells.

Insulator proteins and chromatin states

Previously, we have shown that the fly genome can be partitioned

based on nine combinatorial patterns of 18 histone modifications

(Kharchenko et al. 2011). Contrary to initial expectations, we find

little correlation between the positions of insulator protein bind-

ing sites and the boundaries of these combinatorial chromatin

states (data not shown). In agreement with this result, the trans-

genic tests suggest that only a small fraction of insulator protein

binding sites can robustly block enhancer–promoter communica-

tion, and we see no major changes in gene expression after RNAi

knock-down of insulator proteins. Taken together, these observa-

tions suggest that insulator proteins are unlikely to play a general

role in partitioning of the fly genome into distinct domains of

different chromatin states.

We realize that the incomplete loss of insulator proteins after

RNAi knock-downs may cause an underestimate of the potential

changes in gene expression and the extent of H3K27me3 domains.

We believe the underestimated changes are likely to be few, and

their accounting would not influence our overall conclusions.

First, we note that even partial loss of insulator proteins from

a site is sufficient to impair its ability to block the spreading of

H3K27 methylation (Supplemental Fig. S9). Conversely, if all

H3K27me3 domain borders at which the lack of expansion can be

explained by the lack of significant reduction of insulator protein

binding after corresponding RNAi are disregarded, the fraction of

affected borders remains essentially the same. Second, it is clear

that our statistical definition of the consistent reduction of bind-

ing to a site is conserved. As illustrated by Figure 3, B through E,

most of the sites, even those not deemed to reduce the binding

significantly (green dots on the scatter-plots), bind less insulator

proteins after the corresponding RNAi. The sites that remain truly

unaffected (data points on or above scatter-plot diagonals) are very

few: 81, SU(HW) binding sites; 27, CTCF binding sites; one, CP190

binding site; and seven, BEAF-32 binding sites. These numbers are

at least two orders of magnitude lower than the number of chro-

matin state partitions (Kharchenko et al. 2011) or active genes in

BG3 cells (Cherbas et al. 2011). The disparity between the actual

binding reduction and its statistical significance is greatest in the

case of BEAF-32 and CTCF RNAi (Fig. 3C,3E) and is explained by

the higher variability between the corresponding replicate exper-

iments. Since our test to detect significant expression changes re-

lies on replicate comparison, it may have underestimated the

number of changes in these two cases. In an attempt to account for

this, we have relaxed the detection criteria and looked for all

measurable twofold changes irrespective of their statistical signif-

icance. As illustrated in Supplemental Figure S10, the numbers of

expression changes increase but remain small (BEAF-32 RNAi, 16

up/36 down; CTCF RNAi, 28 up/34 down).

Perhaps not so important in the global scale, insulators may

still be critical to restrict chromatin states at a limited set of sites. In

fact, the ability of the gypsy insulator to shield reporter genes from

Polycomb repression is well documented (Sigrist and Pirrotta 1997;

Kahn et al. 2006; Comet et al. 2011, and the extension of endog-

enous H3K27me3 domains in CTCF and CP190 mutants has been

reported (Bartkuhn et al. 2009). The results of genome-wide assays

presented here confirm that insulators restrict the spreading of

H3K27me3, but only at a small number of Polycomb target re-

gions and only to prevent the repressive histone methylation of

adjacent genes that are already transcriptionally inactive. While

this has no obvious consequences in cultured cells, it may be

important in the context of the developing embryo to ensure that

genes in the vicinity of Polycomb targets do not become perma-

nently repressed.

Methods

Cell culture conditions and RNAi
Cell lines were obtained from the Drosophila Genome Resource
Center (DGRC) S2-DRSC cells (stock 181) and ML-DmBG3-c2 cells
(DGRC, stock 68) and grown according to recommendations. The
RNAi was performed as described by Schwartz et al. (2010). The
sequences of PCR primers used to produce DNA template for
dsRNA synthesis are indicated in the Supplemental Table S21.

Genome-wide mapping

The mapping of each protein was initially done in the chromatin
of S2 cells using two different independently raised antibodies
when available (for technical details, see Supplemental Table S22;
Supplemental Fig. S11; Supplemental Text). Because of the high
congruence between the two independent antibodies (Supple-
mental Fig. S12), just one was used to map the corresponding
proteins in BG3 cells. Chromatin preparation, immunoprecipita-
tion, microarray hybridization, and sequencing were done accord-
ing to the method described by Kharchenko et al. (2011).

Additional details of experimental procedures and data anal-
yses are indicated in Supplemental Methods.

Data access
All data sets reported in this study have been submitted to the
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) under accession numbers GSE32775, GSE32773,
GSE32774, GSE20811, GSE20812, GSE20760, GSE32816, GSE32777,
GSE32780, GSE32776, GSE32778, GSE20815, GSE20766, GSE20814,
GSE32781, GSE32783, GSE32782, GSE20767, GSE32749, GSE20768,
GSE32750, GSE20802, GSE23489, GSE32808, GSE32812, GSE32813,
GSE32810, GSE20808, GSE20833, GSE20809, GSE32853, GSE25373,
GSE32791, GSE32788, GSE32789, GSE32790, GSE32792) and
modMINE (http://intermine.modencode.org/; Supplemental
Table S23).
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