
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2006-31 

2006-01-01 

Discovering Functional Modules by Clustering Gene Co-Discovering Functional Modules by Clustering Gene Co-

expression Networks expression Networks 

Jianhua Ruan and Weixiong Zhang 

Identification of groups of functionally related genes from high throughput gene expression data 

is an important step towards elucidating gene functions at a global scale. Most existing 

approaches treat gene expression data as points in a metric space, and apply conventional 

clustering algorithms to identify sets of genes that are close to each other in the metric space. 

However, they usually ignore the topology of the underlying biological networks. In this paper, 

we propose a network-based clustering method that is biologically more realistic. Given a gene 

expression data set, we apply a rank-based transformation to obtain a sparse co-expression... 

Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ruan, Jianhua and Zhang, Weixiong, "Discovering Functional Modules by Clustering Gene Co-expression 
Networks" Report Number: WUCSE-2006-31 (2006). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/182 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/182?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/182 

Discovering Functional Modules by Clustering Gene Co-expression Networks Discovering Functional Modules by Clustering Gene Co-expression Networks 

Jianhua Ruan and Weixiong Zhang 

Complete Abstract: Complete Abstract: 

Identification of groups of functionally related genes from high throughput gene expression data is an 
important step towards elucidating gene functions at a global scale. Most existing approaches treat gene 
expression data as points in a metric space, and apply conventional clustering algorithms to identify sets 
of genes that are close to each other in the metric space. However, they usually ignore the topology of the 
underlying biological networks. In this paper, we propose a network-based clustering method that is 
biologically more realistic. Given a gene expression data set, we apply a rank-based transformation to 
obtain a sparse co-expression network, and use a novel spectral clustering algorithm to identify natural 
community structures in the network, which correspond to gene functional modules. We have tested the 
method on two large-scale gene expression data sets in yeast and Arabidopsis, respectively. The results 
show that the clusters identified by our method on these datasets are functionally richer and more 
coherent than the clusters from the standard k-means clustering algorithm. 

https://openscholarship.wustl.edu/cse_research/182?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/182?utm_source=openscholarship.wustl.edu%2Fcse_research%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2006-31

Discovering Functional Modules by Clustering Gene Co-expression
Networks

Authors: Jianhua Ruan, Weixiong Zhang

Corresponding Author: jruan@cse.wustl.edu

Abstract: Identification of groups of functionally related genes from high throughput gene expression data is an
important step towards elucidating gene functions at a global scale. Most existing approaches treat gene
expression data as points in a metric space, and apply conventional clustering algorithms to identify sets of
genes that are close to each other in the metric space. However, they usually ignore the topology of the
underlying biological networks. In this paper, we propose a network-based clustering method that is biologically
more realistic. Given a gene expression data set, we apply a rank-based transformation to obtain a sparse
co-expression network, and use a novel spectral clustering algorithm to identify natural community structures in
the network, which correspond to gene functional modules. We have tested the method on two large-scale gene
expression data sets in yeast and Arabidopsis, respectively. The results show that the clusters identified by our
method on these datasets are functionally richer and more coherent than the clusters from the standard
k-means clustering algorithm.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Discovering Functional Modules by Clustering Gene Co-expression
Networks

Jianhua Ruan1 and Weixiong Zhang1,2

Department of Computer Science1 and Department of Genetics2

Washington University in St. Louis, St. Louis, MO 63130, USA
jruan@cse.wustl.edu, zhang@cse.wustl.edu

Abstract

Identification of groups of functionally related
genes from high throughput gene expression data
is an important step towards elucidating gene
functions at a global scale. Most existing ap-
proaches treat gene expression data as points in
a metric space, and apply conventional clustering
algorithms to identify sets of genes that are close
to each other in the metric space. However, they
usually ignore the topology of the underlying bi-
ological networks. In this paper, we propose a
network-based clustering method that is biolog-
ically more realistic. Given a gene expression
data set, we apply a rank-based transformation
to obtain a sparse co-expression network, and
use a novel spectral clustering algorithm to iden-
tify natural community structures in the network,
which correspond to gene functional modules. We
have tested the method on two large-scale gene
expression data sets in yeast and Arabidopsis, re-
spectively. The results show that the clusters iden-
tified by our method on these datasets are func-
tionally richer and more coherent than the clus-
ters from the standard k-means clustering algo-
rithm.

Keywords: clustering, Microarray, co-expression
network

1 Introduction

Many biological sub-systems considered in
systems biology can be modeled as networks,
where nodes are such entities as genes or pro-
teins, and edges are the relationships between
pairs of entities. Examples of biological networks
include protein-protein interaction networks [23],
gene co-expression networks [20], metabolic net-
works [11], and transcriptional regulatory net-
works [13]. Much effort has been devoted to the
study of their overall topological properties and
similarities to other real-world networks [10, 19,
4, 17].

A large amount of available gene expression
microarray data has provided opportunities for
identifying gene functions on a global scale.
Since genes that are on the same pathways or form
functional complexes are often co-regulated, they
often exhibit similar expression patterns under
diverse temporal and physiological conditions.
Therefore, genes are often clustered according to
their expression patterns for gene function anal-
ysis. The most popular clustering techniques in-
clude hierarchical clustering [6], k-means cluster-
ing [22], and self-organizing maps [21].

However, genes of similar expression pat-
terns may not necessarily have similar functions.
Genes could be accidentally co-regulated [20]; a
single event often activate multiple pathways that
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have distinct biological functions. On the other
hand, genes with related functions may not share
close correlation in their expression patterns. For
example, there might be time-shift between the
expression patterns of genes in the same path-
way [18].

Here, we take a network-based perspective to-
ward gene expression clustering. Given gene ex-
pression data, We first construct a co-expression
network, where the nodes in the network are
genes, and the edges reflect co-expression rela-
tionships between pairs of genes. We then de-
velop a network clustering algorithm to identify
subsets of genes that are relatively densely con-
nected to one another. Using gene expression
datasets on yeast and Arabidopsis under various
stress conditions, we show that the clusters of
genes obtained from our method are functionally
richer and more coherent than that obtained from
the gene expression data directly.

The paper is organized as follows. In section 2,
we described our methods for constructing gene
co-expression networks and the network cluster-
ing algorithm. In section 3, we present our cluster
results and compare them with the results from
the standard k-means algorithm. We conclude in
section 4.

2 Methods

Our method for identifying functional modules
from gene expression data consists of three main
steps. First, we construct a co-expression network
from the expression data. Second, we apply an al-
gorithm that we have recently developed to cluster
the co-expression network into densely connected
sub-graphs. The algorithm was designed specifi-
cally for clustering networks, and is able to au-
tomatically determine the most appropriate num-
ber of clusters. In the final step, we analyze the
enriched functional categories for genes in each
cluster, and assign putative functions to unknown
genes according to the cluster they belong to.

2.1 Constructing gene co-expression networks

Several methods have been recently proposed
for constructing a co-expression network from
gene expression data. The most straightforward
method first calculates some similarity measure
between the expression profiles of every pair of
genes, and determines a cut-off value to select
pairs of genes that should be connected [24]. The
problem with this approach, aside being arbi-
trary in choosing the cut-off, is that gene expres-
sion correlation coefficient values often exhibit
some local-scaling properties. That is, some sets
of genes are correlated to each other with very
high correlation coefficients, while some other
genes are only loosely connected to each other via
medium or low correlation coefficients. There-
fore, if we choose a cut-off too stringent, the
genes in the latter set will become disconnected
from the network. On the other hand, if we let
every gene be connected to the network, the cut-
off might be so low that a large fraction of genes
are almost completely connected, making further
partitioning a difficult task.

Here, we propose a rank-based transformation
of similarity matrices to deal with such local-
scaling property. To this end, we calculate Pear-
son correlation coefficients between every pair of
genes, and for every gene, rank all other genes by
its correlation coefficient to the former. Note that
although the correlation coefficient matrix, C, is
symmetric, i.e. C(i, j) = C(j, i), the rank of gene
i with respect to gene j, R(i, j), is in general not
equal to the rank of gene j with respect to gene i,
R(j, i). We then decide a threshold α to select co-
expression links that are ranked within top-α with
respect to some gene. By varying α, we can ob-
tain networks of different granularity. A network
constructed as this is directed, but we will ignore
the directions when clustering the network.

The above rank-based construction may seem
too simple at a first glance. Note that, however,
our purpose here is not to construct a network
of some optimality. That problem is often at-
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tacked by algorithms such as Bayesian networks
and Boolean networks [7, 12], which seek for
networks that are optimal given the data. Here,
our main focus is to construct a representative
network that would facilitate our clustering al-
gorithm to discover functional modules. Later
in the Results section we will show that cluster-
ing on such networks is indeed biologically more
meaningful than clustering the complete similar-
ity matrix as in traditional clustering. We will also
show that clustering on this seemingly arbitrary
network is rather robust, in that perturbing a large
fraction of its connections does not affect the final
clustering results significantly.

The idea of using rank-transformation to con-
struct co-expression networks has been adopted
previously by [20, 1]. In their studies, they ap-
plied statistical analysis to choose co-expression
links whose ranks were consistently high in mul-
tiple data sources or multiple organisms. Given
only a single data set, we have tried to use boot-
strapping to remove some of the high-ranked
edges that may be due to noises. We found that,
in general, such statistical treatment did improve
clustering quality to a limited extent. As these are
not the focus of this paper, we will ignore them in
the subsequent discussion.

2.2 Network clustering

We have recently proposed a spectral clustering
algorithm that was designed specifically for net-
works. The method has several unique features.
First, it considers local neighborhood information
for any node, and therefore greatly improves clus-
tering quality of networks. Second, it combines a
modularity function Q to automatically determine
the most appropriate number of clusters in a net-
work, which is a difficult problem for any clus-
tering algorithm. Third, a greedy algorithm has
been developed to recursively partition a network
to optimize Q. The greedy algorithm can handle
networks of several thousands of nodes in a few
minutes, several orders of magnitude faster than

a previous algorithm [15], while often achieving
comparable clustering qualities. We have tested
the algorithm extensively on many simulated net-
works and networks with known structures, as
well as several real applications such as protein-
protein interaction networks and scientific collab-
oration networks, all indicating that our method is
both efficient and effective.

The detailed description and analysis of the
algorithm will be reported elsewhere. Here we
briefly describe the key steps in the algorithm.
Given a graph or network G = (V, E), where V is
a set of nodes, and E a set of edges, let A = (Aij)
be the adjacency matrix of G, i.e. Aij = 1 if
(vi, vj) ∈ E, or 0 otherwise. Let D be the di-
agonal degree matrix of A, where Dii =

∑
j Aij .

Further define
B = D−1/2

× A2
× D−1/2

· (1 − I),

C = D−1/2
× A2

× D−1/2
· A · (1 − I), and

H = α × A + β × B + C,

where I is an identity matrix, “×” represents or-
dinary matrix multiplication and “·” means entry-
wise multiplication.

The matrices B and C compute the numbers
of length-2 paths and triangles connecting every
pair of nodes, respectively, scaled by the num-
ber of edges that each node has. Therefore, they
captures some local neighborhood information of
each node. Node pairs within the same cluster of-
ten have higher weights in the B or C matrix than
those belonging to different clusters. The matrix
H is a combination of A, B and C, while α and
β are two free variables. We have found that in
most cases, clustering the H matrix by taking the
values of α and β such that α × A, β × B and C

have the same maximal weight can results in the
best clustering accuracy.

To determine the most appropriate number of
clusters, we adopt a modularity function, Q, pro-
posed by Newman and Girvan [15], which is de-
fined as:

Q(Γk) =
k∑

i=1

(eii − a2

i ),
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where Γk is a particular clustering that partitions
a graph into k groups, eii is the fraction of the
edges that fall within cluster i, and ai the frac-
tion of edges each of which has at least one end
connecting to cluster i. Intuitively, the Q function
measures the percentage of edges fully contained
within clusters, subtracted by the percentage that
one would expect by chance. Empirically, New-
man and Girvan have shown that higher Q values
correspond to better clusters in general.

The spectral greedy algorithm k-cuts works as
follows. Given the derived matrix H from a net-
work G, we apply the standard spectral clustering
algorithm [16] to obtain k = 2, 3, · · · , K clus-
ters, where K is a small integer (K < 10 typi-
cally). For each clustering Γk returned, we cal-
culate the Q measurement, and pick the Γk that
gives the best Q value. Then, for each cluster
that has not be tried, we recursively partition it
into k = 2, 3, · · · , K clusters, and measure the
Q value on the full network. If the Q value is
improved, we accept the partition; otherwise we
move on to the next cluster.

2.3 Functional analysis

To assess the functional significance of ob-
tained gene clusters, and suggest putative func-
tions for genes with unknown functions, we cal-
culate the enrichment of gene ontology (GO) [9]
molecular function, biological process and cellu-
lar component terms for the genes within each
cluster. The significance of enrichment is mea-
sured by an accumulative hypergeometric test [3],
and the P -values are adjusted by Bonferroni cor-
rections for multiple tests [3]. The search of the
GO trees is performed with a computer program
GO:TermFinder [5].

3 Results

3.1 Clustering the yeast co-expression network

We first applied our method to cluster a co-
expression network in the budding yeast. We ob-

tained the yeast gene expression data measured in
173 different time points under various stress con-
ditions [8]. We selected 3000 genes that showed
the most variations in their expression data, and
constructed a network with α = 2, 3, 4 and 5, re-
spectively. That is, we let each gene connect to
its top-α correlated genes (see section 2.1). Some
statistics about the networks are listed in Table 2.
We then applied the k-cuts algorithm to cluster
each network. The best numbers of clusters for
the four networks are 24, 20, 12 and 12, respec-
tively.

To validate the biological significance of the
clusters we had, we counted the number of GO
terms enriched in the clusters at various signif-
icance levels. To rule out the possibility that
a single cluster may contain a very large num-
ber of enriched GO terms and therefore predom-
inates the contribution from other clusters, we
also counted the number of clusters that had at
least one enriched GO term at a given significance
level. For comparison, we also applied the stan-
dard k-means algorithm directly on the expres-
sion data, using Pearson correlation-coefficient as
the distance measure, and specified the number of
clusters k = 24, 20, 12 and 12 respectively. Fur-
thermore, we randomly shuffled our clustering re-
sults for the α = 3 network by fixing the size
of each cluster and randomly assigning genes to
clusters.

Fig. 1 shows the results of the GO analysis on
these clustering results. As can be seen, com-
paring to random clustering, our method and the
k-means algorithm both identified strongly func-
tionally correlated clusters. More importantly,
the gene clusters identified by our methods con-
tain significantly higher number of GO terms
than the standard k-means algorithm at all sig-
nificance levels and for different number of clus-
ters (Fig. 1(a)-(d)). Furthermore, the numbers of
clusters containing at least one enriched GO terms
are also larger for our methods than for k-means
(Fig. 1(e)-(h)).

Table 1 shows the number of genes within each
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Figure 1. Enrichment of GO terms in yeast co-expression network clusters. The legends in (e)-(h) are
the same as in (a)-(d), respectively.
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cluster and the most significant GO terms as-
sociated with each cluster. As can been seen,
most clusters contain highly coherent functional
groups, e.g. clusters 1 (retrotransposon nucle-
ocapsid), 6 (ribosome), 7 (ribosome biogenesis)
and 13 (generation of precursor metabolites and
energy). Our algorithm identified several small
clusters with size < 15. Interestingly, those small
clusters correspond to very specific functional
groups. For example, 8 of 10 genes in cluster 2
are in nuclear nucleosome, while there are a to-
tal of 12 in the genome, an enrichment of 480
folds; cluster 11 contains 4 of the 7 galactose
metabolism genes, an enrichment of 823 folds.
More than half of the genes in two small clusters
(8 and 14) have unknown cellular components
and no other enriched GO terms. It is very likely
that those two clusters represent specific func-
tional modules that have not be studied. Several
large clusters (3, 15 and 16) contain both a large
fraction of genes with unknown functions, and
groups of genes with significantly enriched com-
mon functions. Cluster 3 contains 42 genes with
oxidoreductase activities and 53 gene responsive
to stress, while the functions of many other genes
in the cluster are unknown. It is possible that these
genes also have similar functions.

Since gene expression measurement contains
some inherent variability, and our method only
used the top-ranked co-expression links to con-
struct the co-expression network, we wanted to
evaluate whether the clusters were stable with re-
spect to perturbations in the network structure. To
evaluate this, we removed all the top-ranked co-
expression links from the α = 3 network. That
is, each gene is now connected only to its sec-
ond and third-best correlated genes. This network
has about the same connectivity as the α = 2
network, but very different connections. Surpris-
ingly, most of the clusters are very similar to those
obtained from the α = 2 network, and 55% of the
gene-pairs are conserved between the two clus-
ters. Furthermore, the clusters still contain signif-
icantly more enriched GO terms than the clusters

identified by k-means (data not shown).
Previous studies have analyzed the topologies

of various real networks, including biological net-
works, and suggested a common scale-free prop-
erty [10, 19, 4, 17]. In a scale-free network, the
probability for a node to have n edges obeys the
power-law distribution, i.e. P (n) = c × n−γ ,
where c is a constant. The result of the scale-
free property is that a few nodes in the network
are highly connected, acting as hubs, while most
nodes are of low degree. In contrast, in a ran-
dom network where the connections are spread
uniformly most nodes have similar degrees. Real
networks also differ in random network in that
they often have high clustering coefficient [14].

To determine the topological characters of the
co-expression network, we plotted the number of
genes having n connections as a function of n in
a log-log scale. To compare, we constructed net-
works based on a randomly shuffled version of the
original gene expression data. As shown in Fig. 2,
the real co-expression networks exhibit a power-
law degree distribution for all the α values consid-
ered, indicating that an overall scale-free topology
is a fairly robust feature of the co-expression net-
work. In comparison, the co-expression networks
constructed from the randomized expression data
are more similar to random networks and contain
much smaller number of high-degree nodes.

Second, we calculated the clustering coeffi-
cients of the co-expression networks derived from
true expression data and randomly shuffled ex-
pression data. As shown in Table 2, the true co-
expression networks have much higher clustering
coefficients than the random network, indicating
that the co-expression networks are highly modu-
lar. To ensure that the high clustering coefficient
is not an artifact of scale-free networks, we per-
muted the co-expression networks through ran-
dom rewiring [2]. The rewiring procedure pre-
serves the degree for each node, thus does not
change the scale-free property of the networks.
As shown in Table 2, the clustering coefficients of
the rewired networks are significantly lower than
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Table 1. Functional modules in the yeast co-expression network.

cluster size GO term Genes in cluster/genome Enrichment P-value∗
1 21 retrotransposon nucleocapsid 17 / 94 62.0 1.2E-29
2 10 nuclear nucleosome 8 / 12 480.0 1.2E-22
3 514 biological process unknown 200 / 1772 1.6 6.3E-14

molecular function unknown 234 / 2393 1.4 1.3E-09
oxidoreductase activity 42 / 235 2.5 1.9E-08
response to stress 53 / 350 2.1 8.9E-08

4 144 telomere maintenance 6 / 35 8.6 5.8E-05
5 12 asparagine catabolism 4 / 5 480.0 2.2E-11
6 206 ribosome 124 / 276 15.7 4.0E-132
7 553 ribosome biogenesis 127 / 196 8.4 1.7E-96
8 17 cellular component unknown 9 / 1063 3.6 2.6E-04
9 63 amino acid metabolism 21 / 176 13.6 4.8E-19

10 11 helicase activity 9 / 83 71.0 1.2E-16
11 5 galactose metabolism 4 / 7 822.9 1.6E-12
12 205 macromolecule catabolism 34 / 231 5.2 9.5E-16
13 140 generation of precursor metabolites

and energy
46 / 216 11.0 1.4E-36

14 15 cellular component unknown 8 / 1063 3.6 5.4E-04
15 216 molecular function unknown 106 / 2393 1.5 7.4E-07

monosaccharide metabolism 13 / 89 4.9 2.1E-06
16 298 cellular component unknown 112 / 1063 2.5 2.4E-23

molecular function unknown 159 / 2393 1.6 2.3E-13
biological process unknown 126 / 1772 1.7 6.1E-12
spore wall assembly 9 / 24 9.1 2.4E-07
vitamin metabolism 14 / 69 4.9 6.3E-07
pyridoxine metabolism 5 / 7 17.3 2.3E-06

17 97 nitrogen compound metabolism 18 / 127 5.9 8.3E-10
18 23 aryl-alcohol dehydrogenase activity 5 / 8 195.7 1.2E-11
19 435 catalytic activity 186 / 1853 1.7 1.2E-15

cellular localization 69 / 464 2.5 7.5E-13
20 15 purine base metabolism 6 / 15 192.0 1.3E-13

∗the P-values shown here were not adjusted
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the original networks, indicating that high mod-
ularity is indeed a property of the co-expression
networks.

It is not surprising to find out that co-expression
network is yet another example of scale-free net-
works. However, several previous studies on a
number of gene co-expression networks have sug-
gested that there might exist formal topological
differences between gene co-expression networks
and other biological networks [20, 1]. In these
studies, it has been observed that the exponent
γ for the power law degree distribution of co-
expression networks was consistently less than
2, while in most other scale-free networks, γ is
within the range [2, 3] (see the networks listed in
[14, 2] for examples). As have been proved [14],
scale-free networks with γ < 2 have no finite
mean degree when the network grows to infin-
ity, and is dominated by nodes with large de-
grees. To determine the γ values for the co-
expression networks we have constructed, we fit-
ted a linear regression to each log-log plot to cal-
culate the slope. The γ values for different net-
works are shown together with the fitted lines
in Fig. 2. As can be seen, γ is consistently
within the range [2, 3] in our networks, similar
to most other real-world networks and biologi-
cal networks such as protein interaction networks
and metabolic networks. This apparent similarity
to other types of real networks but difference to
previous co-expression networks may have been
caused by our method to select the co-expression
links. Although more work is required, we spec-
ulate that the networks constructed by our meth-
ods may better represent the underlying biological
networks than previous co-expression networks.

3.2 clustering the plant cold-stress regulated
genes

To see if our network clustering method also
works for higher organisms, we applied it to a
co-expression network of Arabidopsis genes.
We downloaded the normalized expression data

of Arabidopsis genes from the AtGenExpress
database (http://www.uni-tuebingen.
de/plantphys/AFGN/atgenex.htm).
The data set contains the expression data of
≈ 22k Arabidopsis genes in the root or shoot
tissues in 12 time points following cold stress
treatment. We selected the genes that are up- or
down-regulated by at least four folds in at least
one of the 12 time points. We constructed the
co-expression network by connecting each gene
to its top three correlated genes (α = 3). We
then made the network undirected by ignoring
the directions. This process produces a network
with 2545 genes and 5838 co-expression links.

Our clustering algorithm partitioned the net-
work into 19 clusters, with a Q value 0.81, indi-
cating strong modular structures. We counted the
number of GO terms enriched in the clusters at
various significance levels, as in the previous ex-
periments. We also applied the standard k-means
algorithm to cluster the gene expression data into
19 clusters and repeated the GO analysis.

Fig. 3 shows the number of enriched GO terms
in the clusters with respect to the genes in the net-
work, and the total number of clusters with at least
one enriched GO term at various significance lev-
els. As can be seen, the clusters identified by our
network-based clustering algorithm are function-
ally more coherent than that identified by the k-
means algorithm, similar to what we observed in
the yeast co-expression network. Table 3 shows
the most enriched functional categories for each
cluster. Some clusters are known to be related
to cold stress responses, e.g. clusters 7 (photo-
synthesis), 11 (circadian rhythm), 14 (response to
heat), 15 (antiporter activity) and 18 (lipid bind-
ing).

4 Conclusions and discussion

In this paper, we proposed a network-based
method for clustering microarray gene expression
data. We introduced a simple rank-based method
to construct gene co-expression networks from
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Table 2. Summary of network statistics.
α = 2 α = 3 α = 4 α = 5

m 5432 8103 10775 13432
kavg 1.8 2.7 3.6 4.5
c 0.089 0.124 0.144 0.159
crandom 0.010 ± .002 0.015 ± .002 0.018 ± .001 0.020 ± .001
cscalefree 0.002 ± .0002 0.003 ± .0001 0.004 ± .0001 0.005 ± .0001
m: number of edges; kavg : averge node degree; c: clustering coefficient; crandom: clus-
tering coefficient of the network constructed from permuted expression data; cscalefree:
clustering coefficient of the rewired network.
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Figure 2. Distribution of the number of co-expression links for each gene.
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Table 3. Functional modules in the Arabidopsis co-expression network.

cluster size GO term Genes in cluster/network Enrichment P-value∗
1 199 - - - -
2 141 - - - -
3 79 - - - -
4 180 catalytic activity 99 / 1133 1.6 4.1E-09

amino acid and derivative
metabolism

18 / 74 4.4 3.9E-08

5 284 endomembrane system 79 / 572 1.6 3.5E-06
6 238 oxidoreductase activity 40 / 214 2.6 7.7E-09

secondary metabolism 18 / 80 3.1 9.9E-06
7 65 photosynthesis 11 / 17 32.6 8.7E-16
8 261 RNA binding 11 / 30 4.6 9.2E-06
9 186 galactolipid biosynthesis 3 / 3 17.6 1.8E-04

10 19 branched-chain-amino-acid
transaminase activity

3 / 3 172.6 1.7E-07

11 117 starch metabolism 4 / 7 16.0 5.0E-05
circadian rhythm 6 / 22 7.6 8.5E-05

12 271 protein modification 37 / 210 2.1 4.3E-06
13 268 methyltransferase activity 8 / 21 4.7 1.4E-04
14 13 response to heat 8 / 23 87.7 1.9E-15
15 223 antiporter activity 10 / 24 6.1 1.5E-06
16 151 transcription regulator activity 60 / 428 3.0 2.5E-17
17 200 zeaxanthin epoxidase activity 3 / 3 16.4 2.2E-04
18 17 lipid binding 5 / 20 48.2 2.9E-08

membrane 12 / 869 2.7 1.8E-04
19 249 calcium ion binding 13 / 53 3.2 1.1E-04

∗the P-values shown here were not adjusted
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Figure 3. Enrichment of GO terms in the Ara-
bidopsis co-expression network clusters.

microarray data, and applied a spectral cluster-
ing algorithm that we developed recently to clus-
ter networks into densely connected sub-graphs.
We applied our method to two co-expression net-
works in yeast and Arabidopsis, respectively, and
showed the new network-based clustering can
produce biologically more meaningful clusters
than traditional methods such as k-means. The
clusters identified by our methods always contain
more significantly enriched GO terms than the k-
means algorithm.

It is rather surprising that the simple method
we proposed to construct co-expression networks
worked well. The connections in such a co-
expression network are obviously very different
from exact biological interactions. Nevertheless,
at a higher level, the co-expression network we
constructed can capture most topological prop-
erties in the true underlying network. Genes on
the same pathway tend to be close to one another
in the co-expression network and vice versa. We
expect that a more sophisticated method for con-
structing co-expression networks will improve the
discovery of function modules even further.

The co-expression networks that we con-
structed posses a unique topological feature that

is different from the co-expression networks re-
ported in the literature. In our network, the ex-
ponent of the power-law degree distribution falls
in the range of [2, 3], similar to most other real-
world networks, whereas the exponent of co-
expression networks reported in the literature is
below a critical value of 2. We are currently look-
ing for the causes of this discrepancy and exam-
ining their effects on our clustering algorithm.

Acknowledgements

This research was supported in part by an NSF
grants ITR/EIA-0113618 and IIS-0535257, and a
grant from Monsanto Corporation.

References

[1] A. Aggarwal, D. Guo, Y. Hoshida, S. Yuen,
K. Chu, S. So, A. Boussioutas, X. Chen,
D. Bowtell, H. Aburatani, S. Leung, and P. Tan.
Topological and functional discovery in a gene
coexpression meta-network of gastric cancer.
Cancer Res, 66(1):232–41, Jan 2006.

[2] R. Albert and A. Barabasi. Statistical mechan-
ics of complex networks. Reviews of Modern
Physics, 74:47, 2002.

[3] D. G. Altman. Practical Statistics for Medical
Research. Chapman & Hall/CRC, 1991.

[4] A. Barabasi and Z. Oltvai. Network biology:
understanding the cell’s functional organization.
Nat Rev Genet, 5(2):101–13, Feb 2004.

[5] E. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein,
J. Cherry, and G. Sherlock. Go::termfinder - open
source software for accessing gene ontology in-
formation and finding significantly enriched gene
ontology terms associated with a list of genes.
Bioinformatics, pages D258–61, Aug 2004.

[6] M. Eisen, P. Spellman, P. Brown, and D. Bot-
stein. Cluster analysis and display of genome-
wide expression patterns. Proc. Natl. Acad. Sci.
USA, 95:14863–8, 1998.

[7] N. Friedman, M. Linial, I. Nachman, and D. Peer.
Using bayesian networks to analyze expression
data. J Comput Biol., 7:601–20, 2000.

11



[8] A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel,
M. Eisen, G. Storz, D. Botstein, and P. Brown.
Genomic expression programs in the response of
yeast cells to environmental changes. Mol Biol
Cell, 11(12):4241–57, Dec 2000.

[9] M. Harris, J. Clark, A. Ireland, J. Lomax,
M. Ashburner, R. Foulger, K. Eilbeck, S. Lewis,
B. Marshall, C. Mungall, J. Richter, G. Ru-
bin, J. Blake, C. Bult, M. Dolan, H. Drabkin,
J. Eppig, D. Hill, L. Ni, M. Ringwald, R. Bal-
akrishnan, J. Cherry, K. Christie, M. Costanzo,
S. Dwight, S. Engel, D. Fisk, J. Hirschman,
E. Hong, R. Nash, A. Sethuraman, C. Theesfeld,
D. Botstein, K. Dolinski, B. Feierbach, T. Berar-
dini, S. Mundodi, S. Rhee, R. Apweiler, D. Bar-
rell, E. Camon, E. Dimmer, V. Lee, R. Chisholm,
P. Gaudet, W. Kibbe, R. Kishore, E. Schwarz,
P. Sternberg, M. Gwinn, L. Hannick, J. Wortman,
M. Berriman, V. Wood, N. de la Cruz, P. Tonel-
lato, P. Jaiswal, T. Seigfried, and R. White. The
gene ontology (go) database and informatics re-
source. Nucleic Acids Res, 32 Database issue,
Jan 2004.

[10] H. Jeong, S. Mason, A. Barabasi, and Z. Oltvai.
Lethality and centrality in protein networks. Na-
ture, 411(6833):41–2, May 2001.

[11] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, and
A. Barabasi. The large-scale organization of
metabolic networks. Nature, 407(6804):651–4,
Oct 2000.

[12] S. Kauffman. A proposal for using the ensemble
approach to understand genetic regulatory net-
works. J Theor Biol., 230:581–90, 2004.

[13] T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-
Joseph, G. Gerber, N. Hannett, C. Harbison,
C. Thompson, I. Simon, J. Zeitlinger, E. Jen-
nings, H. Murray, D. Gordon, B. Ren, J. Wyrick,
J. Tagne, T. Volkert, E. Fraenkel, D. Gifford,
and R. Young. Transcriptional regulatory net-
works in saccharomyces cerevisiae. Science,
298(5594):799–804, Oct 2002.

[14] M. Newman. The structure and function of com-
plex networks. SIAM Review, 45:167–256, 2003.

[15] M. Newman and M. Girvan. Finding and evaluat-
ing community structure in networks. Phys Rev E
Stat Nonlin Soft Matter Phys, 69(2 Pt 2):026113,
Feb 2004.

[16] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In NIPS,
pages 849–856, 2001.

[17] Z. Oltvai and A. Barabasi. Systems biology. life’s
complexity pyramid. Science, 298(5594):763–4,
Oct 2002.

[18] J. Qian, M. Dolled-Filhart, J. Lin, H. Yu, and
M. Gerstein. Beyond synexpression relation-
ships: local clustering of time-shifted and in-
verted gene expression profiles identifies new,
biologically relevant interactions. J. Mol. Bio.,
314:1053–66, Dec 2001.

[19] E. Ravasz, A. Somera, D. Mongru, Z. Oltvai,
and A. Barabasi. Hierarchical organization of
modularity in metabolic networks. Science,
297(5586):1551–5, Aug 2002.

[20] J. Stuart, E. Segal, D. Koller, and S. Kim. A
gene-coexpression network for global discov-
ery of conserved genetic modules. Science,
302(5643):249–55, Oct 2003.

[21] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu,
S. Kitareewan, E. Dmitrovsky, E. Lander, and
T. Golub. Interpreting patterns of gene expres-
sion with self-organizing maps: methods and ap-
plication to hematopoietic differentiation. Proc.
Natl. Acad. Sci. USA, 96:2907–12, 1999.

[22] S. Tavazoie, J. Hughes, M. Campbell, R. Cho,
and G. Church. Systematic determination of ge-
netic network architecture. Nat. Genet., 22:281–
5, 1999.

[23] A. Tong, B. Drees, G. Nardelli, G. Bader,
B. Brannetti, L. Castagnoli, M. Evangelista,
S. Ferracuti, B. Nelson, S. Paoluzi, M. Quon-
dam, A. Zucconi, C. Hogue, S. Fields, C. Boone,
and G. Cesareni. A combined experimental and
computational strategy to define protein interac-
tion networks for peptide recognition modules.
Science, 295(5553):321–4, Jan 2002.

[24] X. Zhou, M. Kao, and W. Wong. Transitive
functional annotation by shortest-path analysis of
gene expression data. Proc Natl Acad Sci U S A,
99:12783–8, 2002.

12


	Discovering Functional Modules by Clustering Gene Co-expression Networks
	Recommended Citation
	Discovering Functional Modules by Clustering Gene Co-expression Networks

	tmp.1418149444.pdf.xDHjx

