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ABSTRACT OF THE THESIS 

Development and Evaluation of a Near-infrared (1047 nm) Photoacoustic-Nephelometer 

Spectrometer for Detection and Optical Characterization of Black Carbon Aerosol 

 By  

Yang Yu 

Master of Science in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2016 

Research Advisor: Professor Rajan K. Chakrabarty 

 

Black carbon (BC) aerosol are aggregates of small carbon spherules of <10 nm to 

approximately 50 nm in diameter. They are characterized by their strong visible light 

absorption property with a mass absorption cross-section (MAC) value above 5 m2 g −1 at a 

wavelength λ = 550 nm, which increases inversely with wavelengths from near-infrared (≈1 

µm) to ultraviolet with a power law of one. The absorbing nature of BC aerosol has been 

implicated in regional atmospheric warming, changing of monsoon patterns, and accelerated 

melting of the glaciers. The BC radiative effects over earth is currently estimated within a 

factor of four, resulting in one of the largest uncertainties in climate modeling. This uncertainty 

results from our inadequate knowledge about regional BC emission rates, and associated 

aerosol microphysical properties. Conventional methods for quantifying BC mass 

concentration in the atmosphere are filter-based techniques, which have limitations with 

respect to dynamic range, lack of a common definition of BC, and scattering aerosol 
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interferences during measurement. Contact-free measurement techniques such as 

Photoacoustic spectroscopy and nephelometry overcome these deficiencies associated with 

filter-based sampling methods. 

This thesis discusses the design and development of a novel, integrated 

photoacoustic-nephelometer (IPN) spectrometer operating at 1047 nm wavelength for 

accurate detection and measurement of BC aerosol. Choice of this wavelength was made 

because of minimal gaseous interference and availability of a high-power laser source that 

allowed for direct electronic modulation of the power at the resonator acoustic frequency. 

Simultaneous measurement of light scattering by reciprocal nephelometry within the 

photoacoustic resonator cell facilitates measurement of aerosol absorption (βabs) and 

scattering (βsca) coefficients at 1 Hz frequency. The principles behind instrument operation is 

described in detail. Also described and implemented is a robust method of instrument 

calibration and stability analysis using the Allan deviation method. The Allan deviations for 

βabs and βsca were estimated to be 0.14 and 3.42 Mm-1, respectively. The 2σ (two standard 

deviation) values, which are considered to be the detection limit for a 10-min averaged βabs 

and βsca measurements, were 1.15 and 40.14 Mm-1, respectively. The potential performance of 

this instrument at lower pressure environments (such as on aircrafts) was also evaluated. 

Finally, this instrument was used to measure the MAC and mass scattering cross-sections 

(MSC) values of BC aerosols. The measurement results were in good agreement with 

theoretical predictions.  
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1 Introduction to Black Carbon 
 

1.1 What is Black Carbon? 

Black carbon (BC), often called “soot”, is a distinct type of carbonaceous particular matter 

that is formed particularly during combustion1. It is directly emitted to the atmosphere and 

can be found throughout the earth’s environment system. BC plays a unique and significant 

role in the climate system because it absorbs solar radiation, thus impact the melting process 

of snow and ice and the formation of clouds. In measurement and modeling studies, the use 

of “black carbon” has not been limited to materials with these properties, causing a lack of 

comparability among results. Many methods used to measure the properties of black carbon 

can be biased by the presence of other chemical components2. For example, the mass 

concentration value, based on different methods can vary by 80%. 

Previous studies have shown large differences between estimates of the effect of BC on 

climate, but the reasons behind these differences are not well understood. As a preliminary to 

further discussion, this chapter provides a comprehensive introduction to black carbon’s 

properties, categories, constitution, and climate impacts.  

 

1.2 History of Black Carbon Analysis 

In 1967, McCormick and Ludwig suggested that aerosols could influence the climate3. After 

that, Charlson and Pilat pointed out that aerosol light absorption may cause warming rather 
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than cooling in 1969. Hidy’s Pasadena Smog Experiment and Aerosol Characterization 

Experiment were important milestones in the development of aerosol research4.  

In 1972, Mueller et al. showed that carbon comprised a substantial fraction of sub-micron 

Pasadena aerosol particles5. Later on, in 1973, Friedlander developed the first carbon balance 

for Pasadena aerosol, and he concluded that directly emitted carbon particles from petroleum 

powered transportations were mostly organic compounds with small portion of elemental 

carbon5. Black carbon was first isolated in urban pollution, when Rosen et al. found that 

refractory, graphitic particles were responsible for light absorption. As a result, black carbon 

appeared, at the time, to be a minor constituent of big city smog aerosol6. 

The indications that BC might be a significant part of urban air pollution aerosols motivated 

investigations to characterize and measure of BC aerosols. In 1973, Lin et al. published a 

method for light absorption measurement by measuring the transmission of green light 

through the aerosol layer collected on a transparent (nuclepore) filter7. Later on, in 1978, 

Rosen et al. employed a different method, using millipore and quartz filters for particle 

collection and a He–Ne Laser as the light source to measure the aerosol light absorption6. 

Yasa et al. reported results of black carbon characterization using a photoacoustic technique, 

which gave an independent demonstration of the light absorption by graphitic carbon in 

19798. 

In the 1980s, several analytical methods were invented to separate black from organic carbon.  

One technique, reported by Dod and Novakov, known as evolved gas analysis (EGA), also 

heats a sample on a quartz filter at a constant rate in an oxidizing atmosphere of O2 and 

neutral N2
9. After that, Huntzicker et al. developed an instrument based on the volatilization 
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of organic carbon (OC) from the filter at temperatures where the elemental carbon remains 

intact. The volatilized carbon is oxidized to CO2, reduced to CH4, and measured by a flame 

ionization detector. Elemental carbon is subsequently oxidized to CO2 and measured. The 

reflectance of the laser beam by the filter is continuously monitored to correct for charring 

artifacts10. As a result of these developments in 1980s, BC was defined as the highly 

absorbing component of soot having a graphitic microstructure. 

A variant of the thermal/optical reflectance apparatus for carbon analysis was built by Chow 

et al. in 1993, and they were used to analyze more than 27,000 samples from variety of urban 

and regional air quality studies in the USA. In this apparatus, a portion of the sample is 

exposed to a series of temperatures in a pure helium atmosphere, followed by oxidation at 

several temperature settings in a 2 % oxygen and 98 % helium atmosphere. The carbon 

content of gases that evolves at each temperature is converted to methane and quantified with 

a flame ionization detector11. 

Recently, advanced aerosol technologies capable of single particle detection and in situ 

measurement of aerosol properties with high time resolution have been developed. In 2009, 

Jimenez et al. presented a combination modeling and measurement study on organic aerosols 

using an aerosol mass spectrometer (AMS)12.  

Most of the developments mentioned above relate to air quality in urban atmospheres. The 

first indications of the role of BC in a larger global context came from studies of the Arctic 

Haze phenomenon. Analyses of filter-collected samples by Rosen et al. from 1981 to 1984 

showed surprisingly large BC concentrations throughout the Arctic troposphere13, 14. From the 

analysis of the collected data, they concluded that the absorbing component of the Arctic 
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Haze was come from high temperature combustion, presumably from anthropogenic sources, 

because the only other contributor could be forest fires, which should be negligible. Recent 

measurements of BC at ground level stations and from aircraft in the Arctic have shown a 

downward trend compared to the BC values in the 1980s. These downward trends have been 

attributed to reduced emissions in northern Eurasia. BC in the snow has been recently 

measured by Doherty et al.15. These values are, within experimental error, similar to those 

found in the 1980s. As energy use increases dramatically in the next several decades, the 

future trends of BC in the Arctic and elsewhere will depend on the mix of combustion 

technologies and the fuel mix used to support this energy growth. 

An important milestone in the realization of the importance of black carbon was the 1st 

International Conference on Carbonaceous Particles in the Atmosphere, held at Lawrence 

Berkeley National Laboratory in 1978. Its organization reflected the view of a number of 

early participants in the aerosol field that carbonaceous particulate material may be a very 

important component of atmospheric aerosols, with implications for atmospheric chemistry 

and physics, climate, air quality, and public health. This conference was followed by a series 

of ten international conferences on carbonaceous particles in the atmosphere, held 

alternatively in the US and in Austria. In 2000, a number of papers pointed out that black 

carbon may bear one-third as much responsibility as CO2 for atmospheric warming16-18. 
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1.3 Physical and Chemical Properties of Black Carbon 

Black carbon is formed by incomplete combustion of carbon-based fuels. It is distinguishable 

from other forms of carbon compounds in the atmosphere because it has a unique 

combination of physical properties: 

1. Black carbon strongly absorbs visible radiation, with a mass absorption cross-section 

(MAC) of at least 5 m2g-1 at 550 nm19. 

2. It is refractory, which means black carbon can endure high temperature, and its 

vaporization temperature near 4000K20. 

3. Black carbon is insoluble in water, in several organic solvents (such as acetone and 

methanol) and in other components of atmospheric aerosols21. 

4. Black carbon commonly presents as a chain aggregate of elemental spherical carbon 

particles. 

Among all physical properties, strong absorption of visible light is the distinctive 

characteristic for black carbon. No other aerosol in the atmosphere in significant quantities 

has such strong light absorption per unit mass. This unique property has raised the interest of 

many scientists investigating atmospheric radiation transfer.  

Although black carbon has very low chemical reactivity in the atmosphere, for impure black 

carbon, various functional groups exist on the surface. Oxidizing black Carbon, with a large 

amount of hydroxyl groups gives it a greatly enhanced utility in print inks or varnishes, 

showing excellent dispersibility. 
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1.4 Sources of Black Carbon 

BC is generated from both natural and anthropogenic sources. Fig. 1.1 shows the 

multi-faceted interaction of black carbon with the environment. Burning of forests and 

savannas, solid fuel burning for cooking and heating, and combustion by diesel engines are 

the largest global sources. Industrially generated black carbon is also a significant fraction of 

global black carbon emission, while, aviation and shipping emissions, are minor contributions. 

After being emitted, black carbon undergoes regional and internationally transported by the 

atmosphere and finally deposited on the ground. The average atmospheric lifetime for black 

carbon is about a week. 

 

Figure 1.1 Overview of the primary black carbon emission sources and the processes that 

control the distribution of black carbon in the environment2 
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In the year 2000, global black carbon emissions were estimated to be 7500 Gg yr-1, using 

bottom-up inventory methods2. The primary sources of black carbon are shown in Fig 1.2. As 

mentioned, although a variety of sources generate black carbon, there is an agreement that the 

three largest contributors are open biomass burning, transport, and domestic/residential solid 

fuel burning. In the US, transport is the main source, while cooking is a major source in 

India.  

 

Figure 1.2 The primary sources of black carbon emissions in globally and in the US (2010) 

 

The difficulty in quantifying emissions from such diverse sources contributes to uncertainty 

in analyzing black carbon’s climatic role. In 2000, Novakov et al. reported a method using 

the ratio of total carbon to black carbon in aerosols to classify black carbon sources17. 
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Another method was reported by Brodowski et al., who distinguish source-based differences 

in shapes, sizes, surface properties, and partial oxidation of the black carbon aerosols from 

vegetation fire and coal combustion sources22.  

 

1.5 Categories of Black Carbon 

BC particles, formed from random collisions between dispersed monomers, have random 

shapes. The structure of BC particles was described as “fluffy” or “grainy”, have been known 

for years. This fractal geometry was first reported by Mandelbrot in 197523. 

BC fractal structures present repeating branching structures, like the toy model of a tree 

shown in Fig.1.3. It first starts with the trunk rising from the ground, then split into two 

branches; those two branches continue and at some point split again to four branches, and 

repeat this process. The tree looks the same at all length scales, if you were to break off a 

twig from this model tree and compare it to the whole, a zoomed-in view of the twig would 

look like the entire tree24. The particles composing the aggregates are called “monomers” or 

“primary particles”. Ideally they are spherical with point contacts and are all the same size, 

but this description is an approximation25 
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Figure 1.3 Example of model tree with a fractal structure 

 

The fractal structure of BC is described by the mass-radius scaling law: 

N =  𝑘0(
Rg

𝑎
)𝐷𝑓 ,                                                         (1.1) 

where N is the number of monomers of a given radius in the BC, also refer as the “mass” of 

the BC fractal aggregate. Rg is the radius of gyration of BC fractal aggregate, which is a 

measure of its linear size and it is defined as root-mean-square radius. 𝐷𝑓 is the fractal 

dimension, a value less than the spatial dimension, d. 𝑘0 is the scaling prefactor. Equation 

(1.1) is considered to be the defining relationship for fractal aggregates26. From equation (1.1), 

we can obtain 

Rg~ 𝑁(1/𝐷𝑓).                                                           (1.2) 

The mean nearest neighbor separation Rnn is controlled by the spatial dimension, d. It is 

related to total number of clusters Nc in a system of volume V by 

𝑅𝑛𝑛~ (𝑁𝑐/𝑉)−(1/𝑑).                                                      (1.3) 
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In a mass conserving system, the total number of monomers, Nm, in the system is constant. 

Under the assumption that the aggregates have the same size, we get  

𝑁𝑚 =  𝑁𝑐𝑁.                                                            (1.4) 

Then, substituting equation (1.4) into equation (1.3), we get 

𝑅𝑛𝑛~ 𝑁1/𝑑.                                                            (1.5) 

Typically, in a given particle, the aggregates are far apart relative to their average nearest 

neighbor separations, i.e., Rnn >> Rg. However, as aggregation proceeds, as described by the 

increasing cluster mass N, equations (2) and (5) show that since d >Df, Rg increases faster 

than Rnn and eventually catches up with it. When it does, i.e., when Rnn ~ Rg, the system gels 

(see below), as mentioned by Kolb et al27. and Vicsek28. Thus, simply said, systems gel 

because Df < d, as displayed in Fig. 1.4. 

 

Figure 1.4 The evolution of the two primary length scales in an aggregating sol versus the mean 

number of monomers per aggregate <N>29 
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 The length scales are the aggregate radius of gyration, Rg, and the aggregate mean nearest 

neighbor separation, Rnn. The functionalities of these length scales are governed by the 

aggregate fractal dimension, Df, and the spatial dimension, d > Df. Cluster dilute (Rnn ≫ Rg) 

and cluster dense (Rnn ≥ Rg) regimes are indicated. The ideal gel point is when these two 

length scales are approximately equal. 

 

Fig. 1.4 sketches the behavior of Rg and Rnn as a function of the mean number of monomers 

per aggregate <N>, which grows with time as the aggregation proceeds. When Rnn ≫ Rg, 

the aggregates are relatively very far apart, a condition we call cluster dilute. As aggregation 

proceeds, both Rnn and Rg grow, but the relative cluster separation Rnn/Rg decreases with time. 

Below we show that when this ratio decreases to about 10, changes occur in the aggregation 

kinetics due to cluster crowding. Thus the system enters what we call the cluster dense 

regime. These two regimes are identified in Fig. 1.4. Well into the cluster dense regime, the 

aggregates grow to the point that they fill the entire system volume. Then neighboring 

clusters touch and the cluster volume fraction equals one. We define this point as the ideal gel 

point. Its approximate condition is when Rnn ~ Rg, as indicated in Fig. 1.4. Beyond the ideal 

gel point, the fractal clusters interdigitate. Eventually a system spanning cluster forms, 

marking the physical gel point. Continued aggregation after the gel point involves 

incorporation of the remaining material into the spanning gel until every monomer is part of 

the same network, a point called the final gel state. 

In this study, the black carbon aggregates’ Df is 1.8, and the aggregate forms in the cluster 

dilute regime, while the fractal dimension for black carbon percolated aggregates is 2.6, and 
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the particles are form after the ideal gel point. Further discussion will be provided in the 

results and discussion section. 

 

1.6 Black Carbon’s Climatic Impact  

BC impacts the formation of clouds, snow, and ice. After emission, black carbon is mixed 

with other aerosol components in the air during its transportation. This process increases its 

light absorption, its ability to form liquid cloud droplets and ice nuclei, and its atmospheric 

removal rate. 

Black carbon changes the number of liquid cloud droplets and enhances precipitation in 

mixed-phase clouds, changing their ice particles as well as influencing the extent of the cloud. 

These direct effects cause a radiative change in the clouds, an indirect effect of black carbon. 

However, light absorbed by black carbon alters the temperature structure inside or outside of 

the clouds and finally change the cloud distribution, a semi-direct effect.  

The best estimate of industrial-era climate change from black carbon cloud effects is positive, 

with substantial uncertainty (+0.23 Wm-2, with a -0.47 to 1 Wm-2 90% uncertainty range). 

Very few climate model studies have isolated the influence of black carbon in these indirect 

effects. 

Black carbon deposited on ice and snow alters the radiative forcing, the snow-albedo 

feedback. The combination of all these effects causes positive climate forcing. The best 

estimation of climate forcing from black carbon deposition on snow and ice in the industrial 

era is +0.13 Wm-2, with 90% uncertainty bounds of +0.04 to +0.33 Wm-2. The estimated 
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all-source present-day climate forcing, including preindustrial emissions, is higher than +0.16 

Wm-2. The enhanced climate feedback is included in the +0.13 Wm-2 forcing estimate2. 

 

1.7 Black Carbon’s Optical Properties  

Fundamental optical properties, such as absorption and scattering coefficients (m-1), are 

important in evaluating the environmental impact of BC. Absorption and scattering per mass 

of BC are described as the mass absorption cross section (MAC) and mass scattering cross 

section (MSC), respectively. Ideally, we would know these values at all wavelengths. A 

comprehensive review of black carbon’s optical properties has been given by Bond and 

Bergstrom, suggesting a refractive index of 1.95+0.79i and a mass absorption efficiency of 

7.5 ± 1.2 m2/g at 550 nm2. 

From field measurements, MAC can be calculated as the absorption coefficient (βabs) divided 

by the mass concentration. Throughout this method, we often refer to MAC that is 

determined for BC alone (MACBC). MACBC is calculated by dividing the absorption 

coefficient attributable to BC by the BC mass concentration. The simple term MAC indicates 

the value determined by the βabs divided by the total mass concentration of BC-containing 

particles, which is smaller than the MACBC value. All other properties are usually measured 

for BC-containing particles, not for pure BC. Optical properties depend on refractive index, 

density, size distribution, mixing state, and particle shape. The percentage of water absorbed 

in the BC-containing particles affects the MSC and MAC values, as well as the particles’ 

ability to form cloud droplets, and their atmospheric lifetime due to removal by precipitation. 
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For sub-saturated conditions (relative humidity below 100%), this water uptake capability is 

characterized in terms of hygroscopicity or the growth factor30.  

The MAC was mentioned earlier as a distinguishing feature of BC. Values of MAC and MSC 

are fundamental inputs to the radiative transfer models which were required for all aerosols or 

aerosol components. These quantities are necessary to translate mass concentrations 

simulated by chemical transport models to their effects on radiative transfer. The wavelength 

dependence of MAC must also be represented in models for the full solar spectrum. BC 

strongly absorbs light at all visible wavelengths. The quantity generally used to characterize 

the spectral dependence of light absorption is the absorption Angstrom exponent, and it is 

expressed as 

Å =
−log (

𝑀𝐴𝐶(𝜆1)
𝑀𝐴𝐶(𝜆2)

)

log (
𝜆1

𝜆2
)

,                                                    (1.6) 

where 𝑀𝐴𝐶(𝜆1) and 𝑀𝐴𝐶(𝜆2) are the mass absorption cross sections at wavelengths 𝜆1 

and 𝜆2. Another way to calculate Å  is to use βabs data at two different wavelengths instead 

of MAC values. The value of Å for particles is usually greater than that of the bulk material. If 

the refractive index of the bulk material has no wavelength dependence, e.g., graphite31, then 

Åabs=1 for particles much smaller than the wavelength of light32. 

Measurement studies have confirmed the value of Å = 1for BC domain particles6, 33, 34. When 

BC particles are coated by other components, Å can vary in the range of 0.8 to 1.935. In contrast, 

Å for organic aerosols are reported between 3.5 to 734, 36, 37. Å for dust is normally about 2 to 3 

but can be higher for iron-rich dust33. This difference in the wavelength dependence of 
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absorption by BC versus other absorbing aerosols has been used to approximate relative 

fractions of BC versus other light-absorbing constituents. 

The single scattering albedo (ω) is another distinguishing feature of BC containing particles. 

It is expressed as 

ω =
𝑀𝑆𝐶

(𝑀𝑆𝐶 + 𝑀𝐴𝐶)
.                                                     (1.7) 

The MAC and MSC can also be replaced by βabs and βsca. A value of ω close to 1 illustrates 

that an aerosol is mainly scattering. When ω is lower than 0.8, the particles could have a 

warming effect on climate38. 

The value that divides warming from cooling also depends on the albedo of the underlying 

surface or clouds and the fraction of light that is scattered upward by the particles39. When the 

addition of aerosol causes a local increase in the planetary albedo, more shortwave radiative 

energy is reflected back to space, and aerosol exerts a negative forcing. In contrast, when 

aerosols locally decrease the planetary albedo, the forcing is positive. MAC and ω are the 

aerosol properties most relevant to the balance between negative and positive forcing, so we 

emphasize these two parameters in this section instead of MSC. Forcing is not very sensitive 

to ω for strongly absorbing aerosols with values below 0.4.  
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1.8 Framework and Motivation of This Study 

 

1.8.1 Objectives 

Black carbon (BC) aerosol strongly absorbs visible light. The absorbing nature of BC aerosol 

have been implicated in regional atmospheric warming, changing of monsoon patterns, and 

accelerated melting of the glaciers. The BC radiative effects over earth is currently estimated 

within a factor of four, resulting in one of the largest uncertainties in climate modeling. This 

uncertainty results from our inadequate knowledge about regional BC emission rates, and 

associated aerosol microphysical properties. Conventional methods for quantifying BC mass 

concentration in the atmosphere are filter-based techniques, which have limitations with 

respect to dynamic range, lack of a common definition of BC, and scattering aerosol 

interferences during measurement. Contact-free measurement techniques such as 

Photoacoustic spectroscopy and nephelometry overcome these deficiencies associated with 

filter-based sampling methods. 

 

1.8.2 Project Frame Work and Significance  

The author’s specific contribution to this large study was the construction of an integrated 

photoacoustic-nephelometer (IPN) spectroscopy with a 1047 nm laser. Laser aligned and 

calibrated to assure the accuracy. Before using the IPN spectrometers to measure the optical 

properties of aerosols, its signal stability (using the overlapping Allan deviation method) and 

detection limit were evaluated. Next, to test the accuracy for aloft measurements, 

instrumental data at different ambient pressures were collected to compare with the model.  
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Finally, in the large study, four IPN spectrometers operated at 405, 532, 671, and 1047 nm, 

were used to characterize the optical properties of black carbon aggregate (BCAgg) and black 

carbon percolated aggregate (BCPAgg) particles. A scanning mobility particle sizer (SMPS), 

PTFE filter samples, and microanalysis particle sampler were also operated at the same time. 

The mass absorption cross-section (MAC) was calculated and compared for both BCAgg and 

BCPAgg particles.  
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2 Introduction and Assembly of an 

Integrated Photoacoustic-Nephelometer 

(IPN) with 1047 nm Laser 
 

2.1 Introduction to Photoacoustic Nephelometry 

The integrated photoacoustic-nephelometer (IPN) spectrometer is a widespread and practical 

tool for trace detection and characterization of all gases and particles40. It has been used for the 

balloon based studies of nitric oxide and water vapor detected in the stratosphere, and for 

sensitive measurements of trace gases and aerosols light.32 Harren et al. discuss the history of 

photoacoustic technology can be traced back to 1880, when Alexander Graham Bell found thin 

discs exposed to a rapidly interrupted beam of sunlight could generate sound waves16. Aerosol 

light absorption measurements by photoacoustic instruments has been accomplished for more 

the more than 30 years.  

 

2.1.1 Introduction to Photoacoustic Effect 

Fig. 2.1 shows the principle of the photoacoustic effect for aerosols. Light pulses absorbed by 

the particle cause the temperature increase. Heat transfers by conduction from the particle to 

the surrounding air, creating a pressure disturbance or sound wave. Compared to the expansion 

of the surrounding air, the volumetric change of the particle is negligible. This transformation 

of light energy into sound is known as the photoacoustic effect. In the IPN spectrometer, the 

sound wave is measured by a microphone. Aerosol light absorption is quantified by use of a 
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calibrated laser power meter and a microphone. The particle temperature increase is less than 1 

K for typical aerosol sizes and the laser power applied. 

 

Figure 2.1 Principle of photoacoustic effect for aerosols 

(A) Light is incident on a particle. (B)Some of the incident light is absorbed by the particle, 

some is transmitted, and some is scattered. The particle is heated by light absorption. (C)Heat 

transfers from the particle to the surrounding air. (D)The surrounding air expands upon 

receiving heat, resulting in an outgoing acoustic wave. 

 

In the evaporation of semi-volatile compounds such as water vapor, the mass transfer from the 

heated particles to the ambient environment can also contribute to the acoustic pressure. 

Compared to heat transfer, mass transfer is less efficient because part of the laser energy is 

needed as latent heat to transform the liquid to vapor phase41. Particles need to be dried first to 

avoid ambiguity in distinguishing between heat and mass transfer, because water is the most 

common semi-volatile compound. Thus, quantifying light absorption of aerosols with a high 

percentage of liquid components is still an open question. 
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A small dry aerosol of radius r, illuminated by a laser of irradiance I, undergoes a temperature 

change ΔT(t) and volume expansion. The temperature change ΔT(t) at time t = 0 is given by 

Chan42 as a function of time as: 

ΔT(t) =  T∞ [1 − exp (
−t

τ
)],                                              (2.1) 

where the T∞ is the final particle temperature and it is expressed as 

T∞ =  ΔT(t = ∞) =
I𝑄𝑎𝑏𝑠𝑟

4к𝑎
,                                               (2.2) 

Qabs is the efficiency of light absorption, κa is the thermal conductivity of air, and τ is the 

characteristic time for the particle to heat up (or cool to ambient when the beam is turned off). τ 

is defined as 

τ =  
𝑟2𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑐𝑝_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

3к𝑎
,                                                (2.3) 

where ρparticle is the particle mass density and Cp_particle is the particle heat capacity per unit mass. 

Thermal relaxation (i.e., the time it takes for heat to transfer out of a particle compared to the 

frequency ν used to modulate the laser beam power in continuous wave photoacoustics) reduct 

the photoacoustic signal by a factor of f, with 

𝑓 =  
1

1 − 𝑖2𝜋𝑣τ
= |𝑓| exp(𝑖𝜃),                                             (2.4) 

where  is the phase shift between the light modulation and the resulting microphone signal. 

Table 2.1 gives a series of signal reduction factors, f, for different aerosol diameters, d, for 

common parameters. 
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Table 2.1 Signal reduction factors, f, as function of particle diameter, d, for typical parameters 

 

 

2.1.2 Photoacoustic Resonator Design for Measuring Optical Properties of 

Aerosols 

Cylindrical acoustic resonators have been widely employed for aerosol light absorption 

measurements applying the photoacoustic method. Radial, azimuthal, and longitudinal plane 

wave modes have been used. The radial mode is the fundamental breathing mode of a circular 

cross section resonator, and the plane wave mode has pressure fluctuations along the cylinder 

axis. The operating frequency and heat transfer from particles to the surrounding air during the 

acoustic cycle determine the maximum dimension of the resonator. The resonator design is a 

tradeoff between the practical need to allow the laser beam and sample to pass though the 

resonator and optimal acoustic pressure level for maximizing the instruments performance. 

Also, it is desirable to have continuous flow through the resonator. For the measurements by 

IPN systems, a signal only appears only when an absorber is detected. Microphones have a 

very large dynamic measurement range and thus provide ideal sensors for instruments. 

 

2.1.3 Radial and Azimuthal Wave Resonator 

Fig. 2.2 shows a schematic cross-section of the radial wave photoacoustic resonator. Aerosol 

flow enters and exits the resonator at pressure nodes while the laser beam passes though the 
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resonator. The microphone is located at the center of the wall. The radial mode is circularly 

symmetry about the center of the microphone. An early adaptation of radial resonators for trace 

gas detection proved the advantage of acoustic amplification of the acoustic standing wave 

amplitude43. This work was followed by an acoustic resonator design that makes use of a 

cylinder axis ratio facilitating Brewster’s angle windows for operation of the acoustic cell 

within a laser cavity44. A comparison of radial and azimuthal mode cylindrical resonators 

indicated some practical signal advantages of the azimuthal mode resonator45 using NO2 as a 

calibration gas, though this finding may be due to differences in the acoustic background levels 

at the different operating frequencies used (around 2 kHz for the azimuthal mode, 4 kHz for the 

radial mode).   

 

Figure 2.2 Schematic diagram of the radial wave photoacoustic resonator 

 

2.1.4  ½ Wavelength Plane Wave Longitudinal Resonator 

Fig. 2.3 shows a schematic cross section of the ½ wavelength longitudinal mode plane wave 

resonator. Pressure nodes are toned at the ends of the acoustic resonator. Larger buffer volumes 
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are applied in order to simulate a pressure release boundary condition. Buffer volumes would 

also detune noise from the inlet and from light absorption by aerosol deposited on the windows. 

The aerosol sample air flow is pulled continuously though the resonator with a fixed flow rate 

(0.7 – 1.4 Lpm).  

A multipass resonator of this type has been developed for aerosol light extinction and 

absorption measurements46. This instrument has been thoroughly characterized with 

laboratory-generated aerosol and was recently used to identify a 40% bias for aerosol light 

absorption measurements by a commonly used filter-based method when a substantial fraction 

of the aerosol mass is organic carbon47. 

 

Figure 2.3 Schematic cross-section of the ½ wavelength longitudinal mode plane 

 

2.1.5 Full Wavelength Plane Wave Longitudinal Resonators 

The full wavelength plane wave longitudinal resonator, also known as a banana resonator was 

developed for trace gas detection48. A modified version was developed and employed for 

aerosol light absorption analyzation49, 50. The idea of the full wavelength plane wave 

longitudinal resonator was extended to the U-shaped resonator shown in Fig. 2.4, which has 
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been discussed in multiple publications51, 52. In a resonator, the aerosol light absorption is 

defined as49 

β𝑎𝑏𝑠 =  
𝑝𝑚𝐴𝑟𝑒𝑠𝜋2𝑣

𝑃𝐿(𝛾 − 1)𝑄
,                                                     (2.5) 

where 𝑝𝑚  is the microphone pressure at the resonance frequency 𝑣 , 𝑃𝐿  is the Fourier 

component of the laser power fluctuating at the same frequency, 𝐴𝑟𝑒𝑠 is the resonator cross 

section area, 𝛾 is the ratio of isobaric and isochoric specific heat, and 𝑄 is the resonator 

quality factor. The accuracy of the equation for aerosol light absorption has been confirmed by 

experiments using light absorbing calibration gases (such as NO2)
18. 

The full wavelength plan wave longitudinal resonator has been applied to measure aerosol light 

absorption from ambient and sampling sources. Examples have been shown in Table 2.2 

below: 

 

Table 2.2 Examples of reported aerosol light absorption measurements using full wavelength 

plane wave longitudinal resonator 

Place Source Laser Wavelength (nm) 

China Particles from urban area 532 

Amazon Amazon Basin wildfires 532 

South Texas and north 

central Oklahoma 

Emissions from biomass 

burning 
532 

Two sites near Mexico City Black carbon emission 870 

Aloft above Monterey, 

California, and north central 

Oklahoma 

Emissions from biomass 

burning and urban area 
676 

Near border between United 

States and Mexico 
Black carbon from vehicles 1047 

United States 
Laboratory generated 

biomass burning emissions 
405 and 870 
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Fig. 2.4 reveals some practical considerations necessary for quantitative photoacoustic 

spectroscopy. The microphone and piezoelectric transducers are located at pressure antinodes, 

the inlet and outlet ports are located at pressure nodes to allow for sample air and laser beams to 

enter and exit. To maintain the quality of the acoustic signal, a critical orifice is employed to set 

the flow rate and to send loud pump noise back downstream towards the pump instead of into 

the instrument. A pressure equilibration capillary maintains the condenser microphone at 

ambient pressure so that the microphone sensitivity is held constant even when the sample inlet 

is connected to a sampling plenum at pressure substantially lower than ambient. A scattering 

sensor in the middle part of the resonator provides reciprocal nephelometer measurements of 

aerosol light scattering53, and blocks the low frequency sound outside the resonator. Detuning 

tubes act as band stop filters at the operating frequency to reflect unwanted sound from the 

coupling regions away from the main resonator region, especially coherent sounds created by 

light absorption of particles on the resonator window. The piezoelectric transducer is used 

periodically to determine the resonator resonance frequency and quality factor for use in Eq. 

(2.5), and to determine the peak acoustic pressure at resonance. Recently, a modified version 

microphone that includes both microphone and piezoelectric functions has been applied in 

resonator systems (such as our IPN). The production of sound by the photoacoustic method 

occurs in the horizontal part of the resonator section, where the laser beam overlaps with the 

sample air near, and at the pressure anti-node located at the center of this section. 
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Figure 2.4 Schematic of a full wavelength plane wave longitudinal resonator 

 

2.1.6 Nephelometer and Extinction-Minus-Scattering Techniques 

One direct method to characterize the aerosol absorption coefficient is to measure both the 

aerosol extinction coefficient and scattering coefficient. The absorption coefficient can be 

calculated from the difference between the extinction and scattering coefficients. Ideally, both 

measurements are performed simultaneously and in the same sample volume to minimize 

systematic errors due to the inhomogeneous nature of the sample. 

In 1979, H. E. Geber developed a 12 L portable cell with a 633 nm He-Ne laser54. The 

extinction coefficient measured by alternating measurements at ≈ 20 Hz of the laser power 

entering and exiting the multi-pass cell. The result was a transmittance measurement with a 

mean resolution of ±0.16%, corresponding to an extinction resolution of ≈ ±10-4 m-1, limited by 

the mechanical stability of the cell, which was onboard a Navy vessel at sea54. At the same time, 

the scattering coefficient was measured by a cosine sensor with a mean resolution of ±5×10-6 
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m-1. The instrument was calibrated by using filtered air, and the span of the reciprocal 

nephelometer was measured using Freon 12. 

The next generation of extinction-minus-scattering instruments was developed by Weiss et al. 

at the University of Washington. It was a single-pass, ≈ 100 L volume extinction cell with a 

length of 2.4 m and the extinction resolution of ≈ 10-5 m-1 55. This cell was operated at a 

wavelength of 538 nm together with a three-wavelength nephelometer to measure the 

scattering coefficient. The absorption coefficient was obtained from intercomparison with 

those determined by an integrating plate technique7. Further work from Weiss et al. resulted in 

a computer-operated system based on a single-pass, 6.4 m extinction cell with a laser at 538 nm. 

The system was calibrated with a non-absorbing aerosol whose scattering coefficient was the 

same as its extinction coefficient56. A temperature-regulated reference detector was used to 

normalize the measured intensity to constant lamp brightness yielding a lower detection limit 

for the extinction coefficient of ≈ 2×10-5 m-1. In another study, a three-wavelength 

nephelometer was used to measure the absorption coefficient of airborne aerosol from forest 

fires57 and oil fires58. In 2005, Virkkela et al. reported a modified version of this instrument. 

Different from the older version, the system employed a dual-pass extinction with a 3.3 m 

sample volume resulting in a 6.6 m extinction path. The scattering coefficient was measured by 

a three-wavelength TSI nephelometer (model 3963, TSI, St. Paul, MN, USA) at 367, 530 and 

660 nm. The extinction coefficient was calculated from the ratio of the signal and reference 

detectors after calibration with filtered air. An in-depth analysis of laboratory measurements 

yielded a detection limit (defined as three times the standard deviation of the noise) of 5×10-6 

m-1, and an accuracy (defined as the difference of extinction and scattering coefficient for 
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non-absorbing aerosols) of ≈ 10% in the worst and < 1% in the best laboratory experiments59. 

This instrument was operated together with a TSI nephelometer (model 3963) for the 

absorption coefficient measurement. Measurements spelled out during the Reno Aerosol 

Optics Study (RAOS)60 agreed in general to better than 10% with those data of a photoacoustic 

instrument59, 60. 

In 2005, Schnaiter et al. reported an extinction-minus-scattering system with a wider spectral 

range (190 to 1500 nm) and better spectral resolution (≈ 2 nm)61. A 7.6 L, 5 m dual-pass sample 

tube resulted in a 10 m extinction path. The sampling light source was a deuterium-halogen 

lamp, coupled to the sample tube with a UV-stabilized optical fiber. The transmitted light was 

coupled through fiber optics with an acceptance angle of ≈ 4 mrad to a two-channel diode array 

spectrometer. The second spectrometer channel was employed to monitor the emission of the 

lamp maintain the accuracy of measurements. A thermally insulating box was used to reduce 

thermal drift. The aerosol absorption coefficient was measured by a three-wavelength TSI 

nephelometer (model 3963). The SSA for soot and biomass burning was 0.2 and 0.74, which 

was in good agreement with photoacoustic50 and other extinction-minus-scattering 

measurement techniques60, 61.  

The extinction-minus-scattering technique is a promising method to measure aerosol light 

absorption. However, the path length is limited, and thus so are the detection limited of the 

extinction coefficient measurements. As a result, extinction-minus-scattering technique 

instruments are commonly used to measure laboratory generated particles or near-source 

aerosol plumes in the ambient atmosphere with relative low SSA. The detection limit should be 

below 1 Mm-1 to ensure the accuracy of the instrument’s measurement62. A different type of 
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extinction instrument, based on cavity ring-down (CRD) techniques, uses high quality optical 

cavities with highly reflecting mirrors (e.g., R = 99.995%) to realize effective optical path 

lengths of multiple kilometers in a compact (length < 1 m) cell. Such intruments have recently 

been used to measure aerosol extinction with detection limits well below 1 Mm-1 63. CRD 

instruments have been applied to measure a variety of aerosols, such as airborne aerosols64, 

biomass burning65, coating aerosols66 and single particles67, 68. 

In order to avoid error during measurements, it is preferable to use the same sample volume for 

both scattering and extinction measurements. Newer Instruments combine aerosol CRD 

components and reciprocal nephelometers together in the same volume and laser beam64. In 

2003, Strawa et al. developed an instrument that utilizes a CRD ring resonator and a diode laser 

at 690 nm63. The reciprocal nephelometer uses a detector with a diffuser to achieve a truncation 

angle of about 15°, about two times worse than the TSI nephelometer (model 3963). In 2008, to 

characterize individual particles, Sanford et al. use an external cavity cw diode laser operating 

at 672 nm frequency-locked to a CRD ring resonator together with a reciprocal nephelometer 

based on a unique spherical/ellipsoidal mirror pair with a truncation angle of 8.5°69. In addition, 

this instrument measure near-forward scattering (4.2° to 8.5°) within the near-forward 

truncation angle for particle sizing. This additional measurement might also be useful for 

further reducing or correcting truncation errors.   

Although these CRD and nephelometer combination instruments increase the sensitivity of 

ambient aerosol light absorption and SSA measurements, in-depth testing and intercomparison 

with photoacoustic and other techniques still need to be completed. There are several sources 

of error in extinction-minus-scattering techniques: errors can be introduced when measuring 
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pure-scattering aerosols, due to the subtraction of near-identical values for extinction and 

scattering coefficients, and the influence of nephelometer errors can affect measurements of 

large particles70. Moreover, near-forward scattering corrections for finite acceptance angle 

extinction measurements have not been analyzed for the stable resonators used for CRD 

extinction measurements, and the use of separate instruments for extinction and scattering 

measurements can lead to errors. For hydroscopic particles at high relative humidities, 

potentially different sample temperatures can result in different relative humidities and 

consequently different particle sizes. 

 

2.2 Instrumentation Design and Assembly  

The design of IPN used in this work is modified from the design from Dr. William Patrick 

Arnott at the University of Nevada Reno50. In this project, we constructed an IPN operating at 

1047 nm. Fig. 2.5 shows a schematic view of the IPN. The principle of operation is as 

follows. The laser is modulated at the acoustic resonance frequency of the IPN. The 

scattering detector and laser power meter convert laser power to acoustic pressure through 

aerosol expansion. A microphone measures the acoustic signal and converts it to absorption 

values. In this section, we will discuss the construction of the measurement system, laser 

alignment, component assembly, and calibration process. 
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Figure 2.5 Block diagram of the Photoacoustic-Nephelometer (PA) system 

 

2.2.1 Individual Parts of the IPN spectrometer 

A resonator (Fig. 2.6) is commonly used to increase the acoustic pressure at the microphone. It 

is made of a cylindrical stainless steel acoustic cell with two notch filters, and two copper tubes 

as the inlet and the outlet for the aerosol flow, an aperture cell, and a window on each side of the 

acoustic cell. At the front side, two mirrors (with four tuning knobs to adjust the angle) reflect 

the laser illumination into the acoustic resonator. A laser power meter is attached at the end of 

the resonator to detect the laser power loss. The laser and resonator are fixed on a stainless steel 

board with two rubber damping absorption blocks on the bottom. Finally, the stainless steel 

board is fastened to the bottom of a steel box (Fig 2.7).  
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Figure 2.6 View of the acoustic resonator 

 
Figure 2.7 View of the resonator installed in the enclosing (assembly) box. 
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Two Helmholtz resonators (Fig. 2.7) were placed at the aerosol inlet port on the steel box to 

absorb the noise out of the IPN, and it was connected with the aerosol inlet on the resonator 

with static dissipative silicone tubing. For the outlet port, a valve was installed to stabilize the 

flow rate in the system (0.7-1.3 lpm). After that was the RH and temperature sensor and a 

HEPA filter are inline with a tee adaptor with one side connected to the pressure broad and the 

other side attached to the outlet on the resonator. 

The other components (Fig. 2.8, 9, 10, and 11) include a microphone board, power/relay board, 

USB DAQ, pressure board, power board, and breakout board, all fastened around the walls of 

steel box.  

 

Figure 2.8 View of the resonator installed in the box- Horizontal Top View 
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Figure 2.9 View of the resonator installed in the box- Parallel Top View 

 

Figure 2.10 View of the resonator installed in the box 
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Figure 2.11 View of the resonator installed in the box- Side View 

 

2.2.2 Laser Alignment 

After the assembly of the components, careful alignment of laser and resonator is needed to 

ensure that the laser is not diffracted by the edges of the apertures in the resonator or reflected 

back to the scattering photodiode.  

To begin the calibration, we replaced the laser power meter at the end of the resonator with a 

portable laser power detector. All the apertures were set to the largest opening. We then 

carefully turning the four knobs to adjust the angle of mirrors until the value of the laser power 

detector reached the maximum. Then we place a laser target at the end of the resonator, and 

adjusted the size of the apertures to concentrate the laser beam. We repeated the two steps 

above until the laser power reached a maximum and the spectrum is concentrated. Alignment 

was achieved when an acceptable balance is found between maximum laser power and 

minimum stray light detected by the scattering photodiode. 



 

40 

 

Once the instrument was aligned, the laser power meter was calibrated by measuring the raw 

voltage output of the detector as well as the laser power directly with a commercial laser power 

meter. A calibration factor in mW/V was derived and programmed into the instrument’s 

LabVIEW program. 

 

2.2.3 Assembly of the Components 

As shown in Fig. 2.12, the instrument is well sealed against dust and moisture and is mounted 

in a road case designed for standard 19” rack equipment, along with the computer that operates 

the instrument, a HEPA filter and valve for self-calibration, the laser power source, and a line 

filter for clean power. 

     

Figure 2.12 View of IPN packed in the rack
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3 Instrument Calibration, Evaluation and 

Performance  
 

3.1 Instrument Calibration  

After assembling of the instrument, we calibrated the absorption and scattering measurement. 

Single scattering albedo (SSA), which is defined as the ratio of the scattering coefficient to 

extinction coefficient, is measured by the integrate photoacoustic-nephlometer (IPN) 

spectrometer. The sensitivity of the scattering coefficient measurement was initially examined 

using pure scattering aerosol (SSA close to 1) and comparing the measured scattering 

coefficient with the extinction coefficient calculated by the Beer-Lambert law. The sensitivity 

of the absorption coefficient was calibrated using strong light absorption aerosol (SSA close to 

0) by comparing the obtained absorption coefficient with the difference of the extinction and 

scattering coefficients, which was already calibrated in the first step. 

 

3.1.1 Introduction to Photoacoustic Calibration 

The absorption and scattering calibrations are based on the measurement of single-pass light 

extinction. To measure the accuracy of βsca, βabs, and βext, the scattering calibrations are carried 

out using non-absorbing aerosols (salt). Absorbing aerosols (black carbon aggregate) are used 

for absorption calibrations. The calibration coefficients are determined by comparing the 

scattering signal (βsca) and absorption signal (βabs) to the extinction signal (βext). The 

relationship of these three parameters is given by 
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β𝑒𝑥𝑡 =  β𝑎𝑏𝑠 + β𝑠𝑐𝑎,                                                    (3.1) 

                    

where βext is calculated by the Beer-Lambert law: 

I =  𝐼0 exp(−β𝑒𝑥𝑡𝐿),                                                     (3.2)

                            

and I is the laser output strength measured by the photodiode at the end of the resonator, and I0 

is the initial laser power, which is found by testing. L is the length of the cell. 

The calibration correction factor for the scattering coefficient may depend on the particle size 

because of the truncation error. Moreover, no reference has derived the relationship of the 

scattering correction factor as a function of particle size for IPN spectrometers, so we did not 

consider the influence of particle size on the scattering calibration in this study. Also, although 

the long-term stability of calibration correction factors and environmental parameter variations 

may affect the correction factors, these conditions are not discussed in this project. 

 

3.1.2 Experimental Setup 

Salt particles were used to calibrate the scattering coefficient. Fig. 3.1 is the experimental set 

up of the scattering calibration. Salt vapor was generated by a humidifier that sonicated salt 

solution. The salt vapor was dried by a diffusion dryer (Fig. 3.2). A control system was used to 

monitor the concentration of aerosol analyzed by the IPN spectrometers: a triangular control 

system (Fig. 3.3) with two pathways was used to monitor the consentration of aerosol. In the 

first pathway, a ball valve controlled the coneentration. The second pathway consisted a HEPA 

fiter and a second ball valve, which always open. 
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Figure 3.1 Experimental setup for scattering calibration (using salt particles) 

 

Figure 3.2 Diffusion drier 
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Figure 3.3 The triangular particle control setup 

For absorption coefficient calibration, soot particles generated by a kerosene lamp were used. 

Fig. 3.4 shows black carbon aggregate particles were generated by the kerosene lamp and then 

dried by a diffusion dryer. During the generation of soot particles, a large quantity of NOx is 

also generated, which absorbs strongly at short wavelengths (375 and 405 nm). The absorption 

by NOx would affect the absorption coefficient measurement. In order to minimize this 

influence, a dilution barrel was used to collect and mix the black carbon aggregate particles 

from the diffusion drier. The dilution barrel was first filled with soot and NOx, and then allowed 

to sit for 10-15 mins to let NOx settle to the bottom of the drum (the molecular weight of NOx is 

heavier than air), then the soot particles are pumped from the top of the drum to the measuring 

instruments. The triangular control system described above was used to control the 

concentration of soot aerosols analyzed by the IPN spectrometers. 
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Figure 3.4 The black carbon sub-micron aggregate generator 

 

3.1.3 Calibration Process 

The calibration of scattering and absorption measurements relies on the relationship between 

βabs, βsca, and βext. Because βext is equal to the sum of βabs and βsca, we expect that the βsca of 

purely scattering aerosol (salt) is equal to its βext (measured by the laser power meter and 

calculated using equation (3.2)). By controling the concentration of salt particles, a variety of 

βsca data could be collected. Then calibration software plotted the βsca as a function of βext (Fig. 

3.5), and the slope was taken as the calibration factor of the scattering measurement to calculate 

the new correction factor, using the formula below: 
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Figure 3.5 Calibration software screenshots and example of calibration result 

 

New Scattering (absorption)Factor = Old Scattering(absorption) Factor ∗

Calibration Factor                                                       (3.3) 

 

After saving the new correction factor was saved in LabVIEW software (Fig. 3.6), the IPN 

spectrometer needed about 10 mins to stabilize. After that, we repeated all steps until the 

calibration factor was close to 1, usually, we stopped at 0.95. 

 

Figure 3.6 The correction factors in our custom-made PA LabVIEW program 
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Similarly, we expect the same 1:1 relationship between βabs and βext using pure absorption 

aerosol (soot). The calibration factor for absorption is derived in the same way as for scattering. 

However, for the 375nm and 405nm IPN spectrometers, it is hard to increase the absorption 

calibration factor over 0.90 because the effects of NOx. 

 

3.1.4 Measuring Stability using Allan Deviation 

The measurement resolution of IPN spectrometers is limited by similar random fluctuations of 

the measured quantity, which creat noise. At the same time, IPN experience some degree of 

variation with time, which is known as drift. Both noise and drift affect the signal value and 

limit measurement accuracy. In order to better understand the instrument’s performance, noise 

and drift must be considered, which requires determining of frequency dependence of the noise 

and drift components during the measurement.  

The most commonly used method is standard deviation: a low standard deviation indicates that 

the data tend to be close to the mean value, while a high standard deviation means the data tend 

to spread out over a larger range of values. However, standard deviation cannot distinguish 

noise or drift types. In contrast, Allan deviation analysis is a useful tool for evaluating the 

stability and precision of measurement signals.71 In the plot of Allan Deviation, different types 

of noise and drift can be identified in the different plot regimes by their slope.72 Here we 

explain and illustrate the methods of Allan Deviation and Overlapping Allan Deviation.  
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3.1.5 Allan Variance and Allan Deviation 

The Allan variance is a two-sample variance formed by the average of the squared differences 

between successive values of a regularly measured quantity taken over sampling periods from 

the measuring interval up to half the maximum measurement time (Allan 1987).73 The Allan 

deviation is defined as the square root of the Allan variance. Similar to the standard deviation, 

Allan deviation measures partial frequency fluctuations, but has the advantage of being 

convergent for most types of noise.  

The original Allan variance is a time domain measure of frequency stability, which is defined 

as: 

σ𝐴
2(𝜏) =  

1

(M − 1)
∑ [𝑦𝑖+1 − 𝑦𝑖]

2

𝑀−1

𝑖=1

,                                         (3.4) 

where 𝑦𝑖  is the 𝑖th of M fractional frequency values averaged over the sampling time interval 

𝜏. 

If phase data are used, the Allan Variance becomes: 

σ𝐴
2(𝜏) =  

1

2(M − 1)𝜏2
∑[𝑥𝑖+2 − 2𝑥𝑖+1 + 𝑥𝑖]

2

𝑁−2

𝑖=1

,                              (3.5) 

where 𝑥𝑖 is the 𝑖th sample of the N = M+1 phase value while 𝜏 is the measurement time 

interval. 

The Allan deviation is, like the standard deviation, the square root of the variance 

σ𝐴(𝜏) =  √
1

(M − 1)
∑ [𝑦𝑖+1 − 𝑦𝑖]2

𝑀−1

𝑖=1

,                                       (3.6) 

or, for phase data, 
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σ𝐴(𝜏) =  √
1

2(M − 1)𝜏2
∑[𝑥𝑖+2 − 2𝑥𝑖+1 + 𝑥𝑖]2

𝑁−2

𝑖=1

,                             (3.7) 

Compared to ordinary deviation, Allan deviation can characterize a variety of noise types and 

convert them to a value that only depends on the number of samples. 

 

3.1.6 Overlapping Samples and Overlapping Allan Deviation  

Overlapping samples can be used to calculate the signal stability: the analysis is accomplished 

by utilizing all possible combinations of the data set74. As shown in Fig. 3.7, the overlapping 

samples method includes all possible pairs in the time period. The result has less statistical 

uncertainly and provides a better signal/noise ratio, but requires a longer computational time.   

 

Figure 3.7 Example of overlapping samples 

 

Overlapping Allan deviation is a form of the Allan deviation, σ𝐴(𝜏), which makes maximum 

use of a data set by forming all possible overlapping samples time interval 𝜏. It can be 

determined from a series of M frequency measurements for averaging time 𝜏 = m𝜏0, where m 

is the averaging factor and 𝜏0 is the measurement time interval. The formula 
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σ𝐴(𝜏) =  √
1

2𝑚2(M − 2m + 1)
∑ { ∑ [𝑦𝑖+𝑚 − 𝑦𝑖]

𝑗+𝑚−1

𝑖=1

}

2
𝑀−2𝑚+1

𝑖=1

.                  (3.8) 

This expression is rarely used for large data sets because it is computationally intense. For 

phase data, the overlapping Allan deviation can be estimated as: 

σ𝐴(𝜏) =  √
1

2(N − 2m)𝜏2
∑ [𝑥𝑖+2𝑚 − 2𝑥𝑖+𝑚 + 𝑥𝑖]2

𝑁−2𝑚

𝑖=1

,                        (3.9) 

where N (N= M+1) is the number of measurements. The confidence interval of an overlapping 

Allan deviation estimate is better than that of a normal Allan deviation estimation because, 

even though the additional overlapping differences are not all statistically independent, they 

nevertheless increase the number of degrees of freedom and thus improve the confidence in the 

estimation. 

  

3.1.7 Operation and Data Analysis 

In our experiments, noise and drifts were studied by operating the IPN spectrometers with 

filtered air for 8 hours. Thirteen sets of data (104 hours in total) were collected for stability and 

detection limit analysis. An IPN spectrometer is considered to be stable over a length of time 

when the signal is free of drift. Averaging the signal over this period would reduce the 

influence of noise and hence the minimum detection limit of the instrument. For a signal which 

includes noise and drift, the overlapping Allan deviation is a helpful analytic tool.  

We modified the MATLAB code provided by Fabian Czerwinski to calculate the overlapping 

Allan deviation for the absorption coefficient, scattering coefficient, and laser power signal at λ 

= 375, 405, 532, 671, and 1047 nm42, 75. The averaging time interval for all signals is 60 s, and 
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we abandoned data collected during instrument is auto-zeroing process, because the valve 

which switch the flow path to zeroing mode, introduced substantial signal deviations. 

For a signal which includes random noise and instrumental drift, the Allan deviation first 

decreases proportionally with the reciprocal of the square root of the averaging time and then 

increases as instrumental drift becomes significant. From Fig. 3.8, the Allan deviation for 

absorption signal at all five wavelengths reach the peak between 0 to 2000 s and then remained 

stable in a certain range which did not increase significantly. A similar trend has been observed 

in scattering signal, unlike the findings of Uchiyama et al. and Shamar et al.76, 77. The stable 

trend after decreasing indicated that our instruments could be considered free of drift after a 

long warm up. But for laser power signal, epically for 671 nm laser, overlapping Allan 

deviation increased significantly after the curve reach the lowest, which means 671 nm laser 

cannot keep stable after a long time operation. Thus, 671nm IPN spectrometer need zeroing 

more often than other instruments when it is used for experimental measurement. 
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Figure 3.8 Overlapping Allan deviation plot 

 

3.1.8  Results and Discussion 

The typical Allan deviations (σA) for βabs (and βsca) at λ = 375, 405, 532, 671, and 1047 nm 

were estimated to be 2.60 (13.87), 0.98 (0.44), 1.35 (1.46), 1.18 (7.65) and 0.14 (3.42) Mm-1, 

respectively. Uchiyama et al. perfomed Allan deviation analysis for βabs (and βsca), based on a 

photoacoustic extinctiometer (PAX) at λ = 375 nm and a three-wavelength photoacoustic soot 

spectrometer (PASS-3) at λ = 405, 532, and 781 nm for a 60 second integration time. Their 

reported values for the PAX were 0.82(0.81). The PASS-3 values for βabs (and βsca) were 

0.55(0.15), 1.20(0.18) and 0.71(0.61) Mm-1, respectively76. Sharma et al. reported a 

multi-wavelength photoacoustic-nephelometer spectrometer (SC-PNS), and the Allan 

deviation for βabs (and βsca) at λ = 405, 532, and 781 nm to be 0.4 (0.2), 8 (1.7), and 0.3 (0.8) 

Mm-1, respectively77.  

In our study, the Allan deviations for βabs at 405 nm and 532 nm were in good agreement with 

the data provided by Uchiyama et al., but the βabs at 532nm was smaller by a factor of 6-8 

compared to data from Shamar et al.. At 375 nm, the Allan deviation for our PA was 3 times 

larger than the result reported by Uchiyama et al.. The Allan deviations for βsca at 375, 405 and 

532 nm determined from our systems are all greater than those reported by Uchiyama et al. and 

Shamar et al., while βsca (375nm), βsca (405nm) and βsca (532nm) were larger by factors of 17, 3, 

and 9 respectively77. There is no reference to evaluate IPN spectrometers with laser at 1047 nm 

or 671 nm using Allan deviation, so we do not have any data to compare.  
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3.2 Detection Limit 

The minimum in the Allan plot indicates the optimum integration time. However, in the present 

study, it is difficult to observe a minimum point in all the Allan plots, so, following Uchiyama 

et al., we set the optimum integration time to 600 s for all signals to calculate the absorption and 

scattering detection limit for all IPN spectrometers. In the current study, the IPN spectrometers 

were set up to automatically zero the signal every 5 min to minimize the effect of signal drift. 

Using the same data that was used for Allan deviation study, Fig. 3.9 presents histograms for 

104 h data by applying total 28 bins to each signal. For both βabs and βsca at all wavelengths, 

roughly Gaussian distributions are observed. The 2σ value for each distribution is considered to 

be the detection limit for 10 min averaged absorption and scattering measurements. At λ = 375, 

405, 532, 671 and 1047 nm, βabs (βsca) were estimated to be 23.59 (102.32), 4.67 (3.38), 16.86 

(65.93), 8.84 (72.29) and 1.15 (40.14) Mm-1, respectively.  
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Figure 3.9 Histograms for 104 h data by applying total 28 bins for both βabs and βsca at all 

wavelengths 

 

3.3 Assessment of 1047 nm IPN Measurements in 

Airctafts: Pressure Sensitivity Analysis and Model 

Fitting 

 

3.3.1 Considerations of Photoacoustic Aloft: Model Description  

Photoacoustic-Nephelometer has been used both in source and ambient sampling of light 

absorbing aerosol. The absorption coefficient of PA is obtained from 

β𝑎𝑏𝑠 =  
𝑃𝑚𝑖𝑐

𝑃𝑙𝑎𝑠𝑒𝑟

𝐴𝑟𝑒𝑠

γ(RH) − 1

𝜋2𝑓0(𝑇, 𝑃, 𝑅𝐻)

𝑄(𝑇, 𝑃, 𝑅𝐻)
=

𝑃𝑚𝑖𝑐

𝑃𝑚𝑖𝑐
 

𝐴𝑟𝑒𝑠

γ − 1

𝜋2𝑓0

𝑄
,                  (3.10) 

where 𝑃𝑚𝑖𝑐  is the microphone pressure, 𝑃𝑙𝑎𝑠𝑒𝑟 is the laser power, 𝐴𝑟𝑒𝑠 is the cross-sectional 

area of the resonator, γ is the ratio of isobaric to isochoric specific heats, 𝑓0 is the resonance 

frequency, and 𝑄 is the quality factor of the resonator. The first form of equation (3.10) 

indicates the explicit dependencies on pressure, temperature, and RH. Relative humidity, 

temperature, and pressure are measured downstream of the photoacoustic resonator. 

Equation (3.11) indicates that several parameters are a function of relative humidity (RH), 

temperature and pressure. To consider these parameters further, we first define the fraction of 

water vapor molecules as h, given by 

h = 0.01RH(%)
𝑒(𝑇)

𝑃
,                                                   (3.11) 

 

where the saturation vaper pressure of water vapor at temperature T is  
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e(T) = 6.11(mb) exp [
𝑎(𝑇 − 𝑇0)

𝑇 − 𝑏
],                                        (3.12) 

where 𝑎 = 17.269, 𝑏 = 35.860, and 𝑇0 = 273.15 for T > 273.15 K. The value of γ for 

moist air is  

γ =  
7 + ℎ

5 + ℎ
.                                                           (3.13) 

The variation of γ with air pressure and relative humidity in equation (2.15) is generally 

negligible, though of course one could easily take it into account since the requisite 

measurements to obtain it are available. 

The speed of sound in the moist air is  

c =  √γ
1000𝑅𝑇

29 − ℎ
,                                                      (3.14) 

where R is the universal gas constant and MKSA units are used78. The denominator of 

equation (2.19) is the average molecular weight of moist air, and equation (2.18) arises from 

the water vapor molecules having one more degree of rotational freedom than the main 

diatomic 

constituents of air. The density of moist air, ρ, is 

ρ =  
𝑃(𝑚𝑏)

𝑅𝑇
(2.9 − 1.1ℎ).                                                (3.15) 

The resonator quality factor can be expressed as 

1

𝑄
=  

𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 𝐶𝑦𝑐𝑙𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑒𝑑
 =

1

𝑄𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
+

1

𝑄𝑙𝑜𝑠𝑠
,                         (3.16) 

where 𝑄𝑙𝑜𝑠𝑠 is other fractional losses which include microphone signal fluxing due to its 

compliance, bulk acoustic losses in the gas mixture, and other fluid dynamical motions of the 

gas, such as vortex section generation where the resonator takes a perpendicular corner60.  
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𝑄𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, the resonator quality factor associated with transport losses of thermal conduction 

and viscosity, is expressed as  

𝑄𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =  √
𝜋𝑓0𝑃(𝑚𝑏)(2.9 − 1.1ℎ)

𝑅𝑇ŋ
𝑟

√𝑁𝑝𝑟

√𝑁𝑝𝑟 + γ − 1
,                       (3.17) 

where the resonator radius (r) equals 1.3 cm, and ŋ is the velocity of the moist air. 𝑁𝑝𝑟 is 

the Prandtl number, expressed as 

𝑁𝑝𝑟 =  
ŋ𝑐𝑝

к
,                                                           (3.18) 

whereк is the thermal conductivity and 𝑐𝑝 is the isobaric heat capacity per unit mass. The 

Prandtl number of dry air at standard conditions is near 0.7. 

The resonator is operated in an acoutic mode so that one full acoustic wavelength is spanned 

by the resonator length L = 5.76 cm. This approach assumes that at the resonator ends, the 

acoustic velocity goes to zero. However, because of dissipation of acoustic potential energy at 

the resonator terminations in thermal boundary layers at the microphone, this boundary 

condition is only approximate. This effect is small for the resonator discussed here. The 

resonance frequency can be expressed in terms of the sound speed, quality factor, and 

resonator length as 

𝑓0 =  
𝑐
𝐿

[1 −
1

2𝑄𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

] .                                                 (3.19) 

Assuming the frequency shift is due entirely to wall absorption, and acoustic resonator would 

provide a frequency (𝑓0) equals to c/L. 

Equations (3.18) and (3.19) show that the primary variations of the resonator quality factor 

and resonance frequency scale as the square root of the ambient pressure, 

Q ∝  √𝑃.                                                            (3.20) 
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The temperature for the measurement is actually the instrument temperature rather than the 

ambient temperature of the outside air, so temperature variations are less of an issue than 

pressure variations. Relative humidity changes will have a secondary effect on these 

resonator parameters when the local environment is heated. 

Another important component of the photoacoustic absorption signal model is pressure. More 

specifically, pressure is related to the peak pressure at resonance (𝑝0), and it is given by  

𝑝0 =  
ρ𝑐𝑣0

π
𝑄.                                                          (3.21) 

The acoustical resonator is periodically calibrated for determination of Q and resonance 

frequency by a piezoelectric transducer (already assembled as a component of the 

microphone in our IPN spectrometers). The microphone pressure is a function of the 

piezoelectric transducer velocity (𝑣0).  

 

3.3.2 Data Collection and Model Fitting for 1047nm IPN  

Combining equations (3.16) and (3.20) yields a model that shows the dependence of the 

quality factor on ambient pressure. Fig 3.10 shows measurements and the model fit for 

simulated measurements made abroad on aircraft, accomplished by using a needle valve at 

the instrument inlet to reduce the pressure inside instrument when the sample pump was 

operated. This model fits the measurements quite well at higher pressures (> 700 mb), and 

could be used to verify measurements aloft. But when the pressure is lower than 700 mb, the 

data and model deviate by up to 20%. 
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Figure 3.10 Resonator quality factor as a function of the ambient pressure, obtained with a 

valve on the inlet to simulate flight conditions 

 

Fig. 3.11 shows a comparison of measurements of the peak acoustic pressure at resonance 

compared with model results from equation (3.21), as a function of ambient pressure in the 

range from 300 mb to 1000 mb as before. The linear behavior of the measured peak acoustic 

acoustic pressure in the range from 23 to 20 mb shows that the microphone calibration does 

not vary with ambient pressure, so light absorption measurements made aloft with the 

microphone will be accurate. But when the peak acoustic pressue is smaller than 20 mb, the 

collected data presents deviates from the value caculated from the model, which also shows 

that the method used for the microphone static pressure equilibration works well at lower 

pressure.  
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Figure 3.11 Comparison of measurements of the peak acoustic pressure at resonance compared 

with model 

 

3.3.3 Conclusion 

In summary, the acoustic performance of the 1047 nm IPN is adequate and characterized well 

enough for accurate measurements of the aerosol light absorption coefficient in aircrafts 

provided ambient pressue is higher than 700 mb. At lower pressures, the measuring data 

produced by 1047 nm IPN starts to deviate. This study has not taken into acount humidity, 

vibration, and ambient noise, which might also affect the accurcy of the IPN signals. Further 

study should be conducted to calculate the correction factor for airborne measurements at 

lower ambient pressure. 
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3.4 Instrument Performance 

3.4.1 Experimentalal Set-up for Black Carbon Aggregate (BCAgg) 

Measurements              

The experimental set-up for Black Carbon Aggregate (BCAgg) characterization is shown in 

Fig. 3.12. BCAgg were generated by incomplete combustion of kerosene in a laminar 

diffusion burner and pumped through static dissipative silicone tubing to a 55-gallon stainless 

steel dilution barrel, where the particles tended to remain at the top while NOx settled to the 

bottom. Particles for characterization were draw from the upper layer of the barrel’s contents. 

Because the laser power of the IPN spectrometer takes hours to stabilize, the IPN 

spectrometer were turned on the night before any experimentation. At the same time, pump 2 

was turned on and drew in air at 1.5 Lpm through the input ports of the IPN spectrometers. 

Hours later, when the lasers showed stable outputs, we turned on the burner and allowed the 

flame to visibly stabilize. Then we connected the IPN spectrometers to the barrel with pump 

1 still running. Next we turned on pump 1 and let it run at 10.5 Lpm for 20 minutes. At that 

time, we turned off pump 1 and disconnected the sub-micron aggregate generator from the 

barrel. The IPN spectrometers continued to draw samples from the barrel. 

The mass flow rate was measured by a 47 mm diameter in-line filter holder with a PTFE 

membrane (Pall Corporation, NY). The volumetric flow rate was set to 10 Lpm. The mass of 

BCAgg (or BCPAgg) collected on the membrane was measured by a Cahn C-35 

microbalance (Thermo Electron Corporation, MA). 

The absorption coefficient (βabs) and scattering coefficient (βsca) were measured by five IPN 

spectrometers operating at laser wavelengths of 375 nm, 405 nm, 532 nm, 671 nm, and 1047 
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nm, respectively. In a IPN spectrometer, pulses of light energy are absorbed by particles and 

increase their temperature. Heat is conducted from the particle to the surrounding air, thereby 

expanding the air and creating a pressure disturbance or sound wave. This sound waves, 

which can be measured by a frequency-modulated, highly sensitive microphone, is directly 

proportional to the amount of light absorbed by the particles.  

 

Figure 3.12 Schematic diagram of experimental set-up for BCAgg characterization 

 

3.4.2 Experimental Set-up for Black Carbon Percolated Aggregate 

(BCPAgg) Measurements 

The experimental set-up for Black Carbon Percolated Aggregates (BCPAgg) is shown in fig. 

3.13. The BCPAgg Generator set-up has been illustrated by Pai et al79. A Burke-Schumann 

type coflow diffusion flame burner was operated in down-fired configuration. The burner 

consists of two concentric stainless steel tubes with 16 and 70 mm inner diameters, 
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respectively. A honeycomb flow straightener was placed to straighten the coflow stream. A 70 

mm outer diameter quartz tube sheathed the burner to stabilize the flame. Ethylene (C2H4) 

served as the fuel for this work was delivered through the central tube with a volumetric flow 

rate 3.5 Lpm. oxygen (O2) and nitrogen (N2) were mixed and delivered though the annular 

tube of the burner at volumetric flow rates were 10 and 20, Lpm respectively. A sample 

collector was placed under the flame outflow region collect the falling BCPAgg particles. 

After approximately 10 minutes, the burner was turned off and disconnected from the sample 

collector. A 15 psi compressed air supply was connected to the collector and propelled 

BCPAgg particles into a resuspension chamber, breaking the aggregates into smaller particles. 

The resuspension chamber was connected to the measurement system in the location formerly 

occupedy be the dilution barrel. The PTFE filter remained in place and pumps 1 and 2 

operated as before. 

Measurements of the BCPAgg size distribution and morphology were conducted by using a 

microanalysis particle sampler (Model MPS-3, California Measurements Inc, Sierra Madre, 

CA) with a sampler for SEM analysis on each stage. The volumetric flow rate was set as 2 

Lpm with a 1:19 dilution. The size distribution was obtained from processing the SEM 

images from the samplers using MATLAB code. 
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Figure 3.13 Schematic diagram of experimental set-up for: BCPAgg characterization 

 

3.4.3 Calculation of Mass Absorption Cross-section (MAC), Mass 

Scattering Cross-section and Mass Extinction Cross-section 

The mass absorption cross-section (MAC), measured in m2/g, was determined by dividing the 

absorption coefficients by the particle concentration. MAC is an important variable 

representing absorption in radiative-transfer models. Theoretically, MAC can be calculated for 

each aerosol type using Mie theory, particle size, mixing state, and refractive index.35 In this 

study, MAC was calculated as 

𝑀𝐴𝐶 (
𝑚2

𝑔
) =

β𝑎𝑏𝑠

𝜌
=  β𝑎𝑏𝑠(𝑚𝑚−1)

𝑓𝑣 (
𝑚3

𝑠 )

𝑓𝑚 (
𝑔
𝑠)

,                                (3.22) 

where 𝜌 is the density of particle, 𝑓𝑣 is the Volumatic flow rate and 𝑓𝑚 is the mass flow rate. 
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3.4.4 Morphology of BCAgg and BCPAgg  

Black carbon aggregate (BCAgg) is obtained during the combustion of kerosene when oxygen 

is insufficient for complete combustion. A complex series of reactions forms the precursors of 

BCAgg. In the STEM image in Fig. 3.14, a BCAgg particle displays predominantly chain 

agglomerates, with spherical primary particles of ≈ 10 nm diameter clearly discernible.  

 
Figure 3.14 STEM image of black carbon aggregate (BCAgg) 

 

Black carbon Percolated Aggregate (BCPAgg), shown in SEM image in Fig. 3.15 is formed 

from the percolation of carbon aggregates in the flame, and its size is around 20 microns. It 

retains the fractal structure with pores trapped inside.  
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Figure 3.15 SEM image of black carbon percolated aggregate (BCPAgg) 

 

3.4.5 Size distribution of BCAgg and BCPAgg 

The size distribution of BCAgg was measured by Scanning Mobility Particle Sizer (Model 

3938, TSI Inc, Shoreview, MN). The sheath flow rate was set at 3 lpm and the range of 

measurement was 10-750nm. Fig. 3.16a shows the size distribution function of BCAgg, for 

which the median, mean, geometric mean, and mode diameter are 272.14, 303.14, 258.39, and 

315.99 nm, respectively. The size distribution of BCPAgg was obtained by the SEM sampler 

from the first two stages of microanalysis particle sampler (Model MPS-3, California 

Measurements Inc, Sierra Madre, CA) (Fig. 3.16b). For the first stage, the measurement range 

of the radius of gyration (Rg) was from 1 to 25µm, and the mean size was 9 µm. For the second 

stage, the range of Rg was between 0.25 and 6.75 µm while the mean size was 1.75µm. 
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Figure 3.16 Size distribution for: (left) Black carbon aggregate (r) Black carbon percolated 

aggregate 

 

3.4.6 Optical properties of BCAgg and BCPAgg 

To compare the effect of wavelength on the optical properties of BC, we calculated the MAC 

of BCAgg and BCPAgg particles (Fig. 3.17). The Angstrom exponent was calculated for each 

parameter above to evaluate their wavelength dependence. The measurements were 

performed at λ = 405, 532, 671, and 1047 nm. 

 

Figure 3.17 MAC plot for BCAgg and BCPAgg 
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The MAC value for BCAgg at λ = 405, 532, 671, and 1047 nm presents a decreasing trend 

which whose values are 7.13, 6.70, 3.93, and 2.40 m2/g, respectively. The Angstrom exponent 

is piecewise continuous. From 405 nm to 532 nm, the Angstrom exponent was 0.14. Then it 

increased to 2.29 between 532 nm and 671 nm, and finally dropped to 1.11 between 671 nm 

and 1047 nm.  

In contrast to the results for BCAgg, the trend of the MAC value and its Angstrom exponent for 

BCPAgg were both flat. The MAC values at λ = 405, 532, 671, and 1047 nm were 3.68, 3.79, 

3.74, and 3.52 m2/g, respectively. The Angstrom exponent remained around 0.04 at all 

wavelengths.  

 

3.4.7 Results and Discussion 

In order to analyze experimental data, a series of simulation was performed. BCAgg particles 

were simulated using an off-lattice diffusion limited cluster-cluster aggregation (DLCA) 

algorithm. Numerous experimental studies have shown that DLCA accurately predicts the 

formation of real-world BCAgg. The DLCA simulations were performed in two configurations: 

monomer dilute in which aggregates developed with the dimension of Df=1.8 and monomer 

dense that produced aggregates similar in nature to those made under site percolation with 

Df=2.5. The Df=1.8 aggregates are referred to as simply just aggregates and the Df=2.5 

aggregates are referred to BCPAgg particles. 

The Maxwell-Garnet effective medium theory conveniently provides a way to calculate the 

effective complex index of refraction meff of inhomogeneous porous particles. A porous object 
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would have a significantly reduced meff compared to an equivalent sphere with homogeneous 

index m.  In the case of void-filled aggregates, the theory describes meff by the relation: 

𝑓𝑣 (
𝑚2 − 1

𝑚2 + 2
) = (

𝑚𝑒𝑓𝑓
2 − 1

𝑚𝑒𝑓𝑓
2 + 2

),                                              (3.23) 

where fv is the fraction of the particle volume filled. Based on the Bond et al.30, refractive index 

homogeneous BC, monomer index was set m=1.96+0.79i. For simulated aggregates fv is found 

by aligning the aggregates along the principal axis and constructing the smallest inclosing 

ellipsoid and then fv is the ratio of the volumes of the aggregates constituent monomers to the 

volume of the containing ellipsoid. As shown in Fig. 3.18a the aggregates fv scales with the 

mobility diameter Dm[µm] as: 

𝑓𝑣 = 0.017𝐷𝑚
−1.4.                                                       (3.24) 

And in Fig. 3.18b fv of the percolated aggregates scales as:  

𝑓𝑣 = 0.045𝐷𝑚
−0.55.                                                       (3.25) 

By using the equations for fv in the expression for the complex meff, the real mRe and complex 

mIm parts of meff for aggregates and percolated aggregates are presented in Figs. 3.18c and d 

respectively. The mIm and mRe-1 scale as a power with Dm. For the aggregates mIm and mRe-1 

follow a -1.39 exponent while the percolated aggregates follow a -0.46 exponent.  

The phase shift parameter ρ, accounts for the accumulated phase difference of light passing 

through a particle of refractive index meff and is defined as: 

𝜌 =
4𝜋

𝜆
𝑅|𝑚𝑒𝑓𝑓 − 1|,                                                    (3.26) 

where λ is the wave length of the incident light and R is the characteristic radius of the particle.  

ρ is used to predict the crossover between the Rayleigh optics when ρ<1 and geometric optics 
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when ρ>1. For aggregates and percolated aggregates ρ is plotted versus Dm for in Figs. 3.18e 

and f respectively.   

For aggregates with Df=1.8 the phase shift scales with Dm as:  

𝜌 = 𝐶𝜆𝐷𝑚
−0.232,                                                         (3.27) 

where Cλ is a prefactor that decreases with increasing wavelength. As aggregates grow with 

low Df<2 they become more void filled and thus ρ decreases with higher Dm. The percolated 

aggregates have Df>2 and gain phase as they grow and scale with a power law with Dm as: 

𝜌 = 𝐶𝜆𝐷𝑚
0.45,                                                           (3.28) 

where Cλ again decreases with increasing wavelength. 
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Figure 3.18 The volume fraction fv, effective refractive index meff and phase shift parameter ρ 

for aggregates and percolated aggregates 

The volume fraction in (a) for aggregates made in DLCA simulation scales as fv=0.017∙Dm
-1.4 

which in turn leads to the components of the meff to scale with exponent of -1.39 in (c) and 

finally in (e) the phase shift follows the power law relation 𝜌 = 𝐶𝜆𝐷𝑚
−0.232. Dense DLCA 

system produced percolated aggregates where their volume fraction in (b) goes as 

fv=0.045∙Dm
-0.5. The components of meff follow a power law with exponent of -0.45 in (d) and in 

(f) the phase shift follows the power law relation 𝜌 = 𝐶𝜆𝐷𝑚
0.45. 
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The BCAgg’s size distribution peaked at Dm=200nm for λ>405nm the aggregates have a ρ<1 

at peak Dm while at λ=405 ρ approached unity. Assuming that aggregates are in the Rayleigh 

regime the absorption cross-section is then: 

𝐶𝑎𝑏𝑠 = 𝑁 ∙ 𝐶𝑎𝑏𝑠,𝑚𝑜𝑛𝑜 ,                                                    (3.29) 

Where N is the number of monomers in the aggregate and Cabs, mono is the absorption cross 

section for the monomer. The mass absorption cross section (MAC) is the particle Cabs divided 

by particle mass which for Rayleigh particles becomes: 

𝑀𝐴𝐶 =
𝑁 ∙ 𝐶𝑎𝑏𝑠,𝑚𝑜𝑛𝑜

𝑁 ∙ 𝑚𝑚𝑜𝑛𝑜
=

𝐶𝑎𝑏𝑠,𝑚𝑜𝑛𝑜

𝑚𝑚𝑜𝑛𝑜
= 𝑀𝐴𝐶𝑚𝑜𝑛𝑜 .                              (3.30) 

In the Rayleigh regime the MAC of the aggregate is equal to the MAC value of the monomer. 

The Cabs,mono for Rayleigh monomer is 

𝐶𝑎𝑏𝑠,𝑚𝑜𝑛𝑜 = 4𝜋
2𝜋

𝜆
𝑎3𝐼𝑚 (

𝑚2 − 1

𝑚2 + 2
),                                        (3.31) 

where a is the monomer radius. Thus the spectral response for Rayleigh aggregate MAC 

values is expected to be: 

𝑀𝐴𝐶 ∝ 𝜆−1,                                                           (3.32) 

which matches the experimental collected for BCAgg particles. 

The BCPAgg’s size distribution peaked at Dm=9µm for all three wavelengths the aggregates 

have a ρ>1 at peak. Thus, BCPAgg particles are in the geometric optics regime and their 

spectral response for MAC values is expected to be: 

𝑀𝐴𝐶 ∝ 2𝜋𝑅2,                                                          (3.33) 



 

74 

 

which means the MAC values is related to the diffraction cross-section of the particles and it 

is not wavelength dependent. This theoretical reasoning is in line with the observation of flat 

trend observed for BCPAgg experimental data. 
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4 Conclusions  
 

I assembled an integrated photoacoustic-nephelometer (IPN) spectrometer operated in the 

near-IR (1047 nm) wavelength. Laser alignment, scattering, and absorption calibration were 

performed comprehensively on this instrument. The instrument staility and dectection limit 

was evaluated using the Allan deviation method. Results showed that this spectrometer’s 

measurements could be considered drift-free and stable after it has undergone a long initial 

warm up. The detection limits for absorption and scattering coefficients were 1.15 and 40.14 

Mm-1, respectively. 

In order to evaluate the instrument performance during aircraft measurements, pressure 

sensitity analysis was performed. Comparing our experimental data with model predictions, it 

was found that the instrument performance is adequate and characterized well for accurate 

measurements of the aerosol absorption and scattering coefficients with ambient pressure 

higher than 700 mb. At pressures lower than this value, the measurements started to deviate 

up to 20%. 

The instrument performance was evaluated by measuring the optical properties of fractal 

black carbon aggregates (BCAgg) and peroclated aggregates (BCPAgg). The IPN was 

co-located with three other IPN spectrometers operated at 405, 532 and 671 nm, respectively 

during this measurement. Dipole-dipole Approximation electromagnetic simulation for the 

MAC values of BCAgg and BCPAgg was used to explain the experimetal data. The result 

showed that BCAgg particles were in Rayleigh regime, with 𝑀𝐴𝐶 ∝ 𝜆−1, while BCPAgg 
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particles were in the geometric regime with 𝑀𝐴𝐶 ∝ 2𝜋𝑅2 . The experimental findings 

compared very well with the theoretical predictions. 
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Appendix  

MATLAB code for Allan Deviation calculation 

 

function [avar]=allan(data, tau) 

  

% Compute various Allan deviations for a constant-rate time series 

% [AVAR]=allan(DATA, TAU)  

% 

% INPUTS: 

% DATA should be a struct and has the following fields:  

%  DATA.freq    the time series measurements in arb. units 

%  DATA.rate    constant rate of time series in (Hz) 

%               (Differently from previous versions of allan.m, 

%               it is not possible to compute variances for time- 

%               stamp data anymore.) 

% TAU is an array of the tau values for computing Allan deviations 

% 

% OUTPUTS:  

% AVAR is a struct and has the following fields (for values of tau): 

%  AVAR.sig     = standard deviation 

%  AVAR.sig2    = Allan deviation 

%  AVAR.sig2err = standard error of Allan deviation 

%  AVAR.osig    = Allan deviation with overlapping estimate 

%  AVAR.osigerr = standard error of overlapping Allan deviation 

%  AVAR.msig    = modified Allan deviation  

%  AVAR.msigerr = standard error of modified Allan deviation 

%  AVAR.tsig    = timed Allan deviation 

%  AVAR.tsigerr = standard error of timed Allan deviation 

%  AVAR.tau1    = measurement interval in (s) 

%  AVAR.tauerr  = errors in tau that might occur because of initial 

%  rounding 

% 

% NOTES: 

% Calculations of modified and timed Allan deviations for very long time 

% series become very slow. It is advisable to uncomment .msig* and .tsig* 

% only after calculations of .sig*, .sig2* and .osig* have been proven 

% sufficiently fast. 

% 

% No pre-processing of the data is performed. 

% For constant-rate time series, the deviations are only calculated for tau 
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% values greater than the minimum time between samples and less than half 

% the total time. 

% 

% versionstr = 'allan v3.0'; 

% FCz OCT2009 

% v3.0  faster and very plain code, no plotting; various Allan deviations 

%       can be calculated; script and sample data are availabie on 

%       www.nbi.dk/~czerwin/files/allan.zip 

%       (Normal, overlapping and modified Allan deviations are calculated in one 

function, 

%        in strong contrast to MAHs approach of splitting up among various functions. 

This might be beneficial for individual cases though.) 

%  

% MAH 2009 

% v2.0 and others 

% 

% FCz OCT2008 

% v1.71 'lookfor' gives now useful comments; script and sample data are 

%       availabie on www.nbi.dk/~czerwin/files/allan.zip 

% v1.7  Improve program performance by mainly predefining matrices outside 

%       of loops (avoiding memory allocation within loops); no changes to 

%       manual 

% 

% early program core by Alaa MAKDISSI 2003 

% (documentation might be found http://www.alamath.com/) 

% revision and modification by Fabian CZERWINSKI 2009 

% revision and modification by Yang Yu 2016 

% 

% For more information, see: 

% [1] Fabian Czerwinski, Andrew C. Richardson, and Lene B. Oddershede, 

% "Quantifying Noise in Optical Tweezers by Allan Variance," 

% Opt. Express 17, 13255-13269 (2009) 

% http://dx.doi.org/10.1364/OE.17.013255 

  

tau = (60:60: (60*324))'; 

data.rate = 1/60   % frequency 

[num,txt,raw]=xlsread('C:\Users\Yang\Desktop\LASER.xlsx','671')  %example 

data.freq = num (:,7)       

% Load IPN data into MATLAB  

 

n=length(data.freq); 

jj=length(tau); 

m=floor(tau*data.rate); 
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avar.sig     = zeros(1, jj); 

avar.sigerr  = zeros(1, jj); 

avar.sig2    = (zeros(1, jj))'; 

avar.sig2err = zeros(1, jj); 

avar.osig    = (zeros(1, jj))'; 

avar.osigerr = zeros(1, jj); 

% avar.msig    = zeros(1, jj); 

% avar.msigerr = zeros(1, jj); 

% avar.tsig    = zeros(1, jj); 

% avar.msigerr = zeros(1, jj); 

  

tic; 

  

for j=1:jj 

    % fprintf('.'); 

         

    D=zeros(1,n-m(j)+1); 

    D(1)=sum(data.freq(1:m(j)))/m(j); 

    for i=2:n-m(j)+1 

        D(i)=D(i-1)+(data.freq(i+m(j)-1)-data.freq(i-1))/m(j); 

    end 

     

    %standard deviation 

    avar.sig(j)=std(D(1:m(j):n-m(j)+1)); 

    avar.sigerr(j)=avar.sig(j)/sqrt(n/m(j)); 

     

    %normal Allan deviation  

    avar.sig2(j)=sqrt(0.5*mean((diff(D(1:m(j):n-m(j)+1)).^2))); 

    avar.sig2err(j)=avar.sig2(j)/sqrt(n/m(j)); 

     

    %overlapping Allan deviation 

    z1=D(m(j)+1:n+1-m(j)); 

    z2=D(1:n+1-2*m(j)); 

    u=sum((z1-z2).^2); 

    avar.osig(j)=sqrt(u/(n+1-2*m(j))/2); 

    avar.osigerr(j)=avar.osig(j)/sqrt(n-m(j)); 

     

%     %modified Allan deviation 

%     u=zeros(1,n+2-3*m(j)); 

%     z1=D(1:m(j)); 

%     z2=D(1+m(j):2*m(j)); 

%     for L=1:n+1-3*m(j) 

%         u(L)=(sum(z2-z1))^2; 

%         z1=z1-y(L)+y(L+m(j)); 
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%         z2=z2-y(L+m(j))+y(L+2*m(j)); 

%     end 

%     avar.msigerr(j)=avar.msig(j)/sqrt(n-m(j)); 

%     uu=mean(u); 

%     avar.msig(j)=sqrt(uu/2)/m(j); 

%      

%     %timed Allan deviation 

%     avar.tsig(j)=tau(j)*avar.msig(j)/sqrt(3); 

%     avar.tsigerr(j)=avar.tsig(j)/sqrt(n-m(j)); 

  

    % toc 

     

end; 

  

avar.tau1=m/data.rate; 

avar.tauerr=tau-avar.tau1; 

  

toc; 

end 
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