Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2006-27

2006-01-01

Fast Packet Classification Using Bloom Filters

Sarang Dharmapurikar, Haoyu Song, Jonathan Turner, and John Lockwood

While the problem of general packet classification has received a great deal of attention from
researchers over the last ten years, there is still no really satisfactory solution. Ternary Content
Addressable Memory (TCAM), although widely used in practice, is both expensive and
consumes a lot of power. Algorithmic solutions, which rely on commodity memory chips, are
relatively inexpensive and power-efficient, but have not been able to match the generality and
performance of TCAMSs. In this paper we propose a new approach to packet classification,
which combines architectural and algorithmic techniques. Our starting point is the well-known
crossproducting algorithm, which... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Dharmapurikar, Sarang; Song, Haoyu; Turner, Jonathan; and Lockwood, John, "Fast Packet Classification
Using Bloom Filters" Report Number: WUCSE-2006-27 (2006). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/176

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/176?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/176

Fast Packet Classification Using Bloom Filters

Sarang Dharmapurikar, Haoyu Song, Jonathan Turner, and John Lockwood

Complete Abstract:

While the problem of general packet classification has received a great deal of attention from researchers
over the last ten years, there is still no really satisfactory solution. Ternary Content Addressable Memory
(TCAM), although widely used in practice, is both expensive and consumes a lot of power. Algorithmic
solutions, which rely on commodity memory chips, are relatively inexpensive and power-efficient, but have
not been able to match the generality and performance of TCAMs. In this paper we propose a hew
approach to packet classification, which combines architectural and algorithmic techniques. Our starting
point is the well-known crossproducting algorithm, which is fast but has significant memory overhead due
to the extra rules needed to represent the crossproducts. We show how to modify the crossproduct
method in a way that drastically reduces the memory required, without compromising on performance.
We avoid unnecessary accesses to off-chip memory by filtering off-chip accesses using on-chip Bloom
filters. For packets that match p rules in a rule set, our algorithm requires just 4 + p + @ independent
memory accesses on average, to return all matching rules, where ¢ ##4 1 is a small constant that
depends on the false positive rate of the Bloom filters. Each memory access is just 256 bits, making it
practical to classify small packets at OC-192 link rates using two commodity SRAM chips. For rule set
sizes ranging from a few hundred to several thousand filters, the average rule set expansion factor
attributable to the algorithm is just 1.2. The memory consumption per rule is 36 bytes in the average case.

https://openscholarship.wustl.edu/cse_research/176?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/176?utm_source=openscholarship.wustl.edu%2Fcse_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2006-27

Fast Packet Classification Using Bloom Filters

Authors: Sarang Dharmapurikar; Haoyu Song; Jonathan Turner; John Lockwood

Corresponding Author: sarang@arl.wustl.edu

Web Page: http://www.arl.wustl.edu/~sarang

Abstract: While the problem of general packet classification has received a great deal of attention from
researchers

over the last ten years, there is still no really satisfactory solution. Ternary Content Addressable Memory
(TCAM), although widely used in practice, is both expensive and consumes a lot of power. Algorithmic solutions,
which rely on commodity memory chips, are relatively inexpensive and power-efficient, but have not been able
to match the generality and performance of TCAMs.

In this paper we propose a new approach to packet classification, which combines architectural and algorithmic
techniques. Our starting point is the well-known crossproducting algorithm, which is fast but has significant
memory overhead due to the extra rules needed to represent the crossproducts. We show how to modify the
crossproduct method in a way that drastically reduces the memory required, without compromising on
performance. We avoid unnecessary accesses to off-chip memory by filtering off-chip accesses using on-chip
Bloom filters. For packets that match p rules in a rule set, our algorithm requires just

4 + p + ǫ independent memory accesses on average, to return all matching rules, where ǫ a1 is a

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Fast Packet Classification Using Bloom Filters

Sarang Dharmapurikar
Haoyu Song

Jonathan Turner

John W. Lockwood

WUCS-2006-27

May 12, 2006

Department of Computer Science
Applied Research Lab
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130

Abstract

While the problem of general packet classification has vecea great deal of attention from researchers
over the last ten years, there is still no really satisfacgmiution. Ternary Content Addressable Memory
(TCAM), although widely used in practice, is both expensiawvel consumes a lot of power. Algorithmic
solutions, which rely on commodity memory chips, are re&dyi inexpensive and power-efficient, but have
not been able to match the generality and performance of TEAM

In this paper we propose a new approach to packet classficatthich combines architectural and
algorithmic techniques. Our starting point is the well4umocrossproducting algorithm, which is fast but
has significant memory overhead due to the extra rules neledexpresent the crossproducts. We show
how to modify the crossproduct method in a way that dradyicalduces the memory required, without
compromising on performance. We avoid unnecessary acscéssgf-chip memory by filtering off-chip
accesses using on-chip Bloom filters. For packets that matales in a rule set, our algorithm requires just
4 + p + e independent memory accesses on average, to return allingatehes, where < 1 is a small
constant that depends on the false positive rate of the Bfidtars. Each memory access is just 256 bits,
making it practical to classify small packets at OC-192 liates using two commodity SRAM chips. For
rule set sizes ranging from a few hundred to several thouBkers, the average rule set expansion factor
attributable to the algorithm is just 1.2. The memory congtiom per rule is 36 bytes in the average case.

1 Introduction

The general packet classification problem has receivedat deal of attention over the last decade. The
ability to classify packets into flows based on their pacledders is important for QoS, security, virtual
private networks (VPN) and packet filtering applicationen€eptually, a packet classification system must
compare each packet header received on a link against adatg# rules, and return the identity of the
highest priority rule in the set that matches the packetéwe@dl in some cases, all matching rules). Each rule
can match a large number of packet headers, since the rulificpéon supports address prefixes, wild cards
and port number ranges. Much of the research to date hasrtcateel on algorithmic techniques which use
hardware or software lookup engines, which access datetstes stored in commodity memory. However
none of the algorithms developed to date have been ableftadesTCAMSs, in practical applications.

TCAMs offer consistently high performance, which is lagggldependent of the characteristics of the
rule set, but they are relatively expensive and use largaiata@f power. A TCAM requires a deterministic
time for each lookup, and recent devices can classify mane 100 million packets per second. Although
TCAMs are a favorite choice of network equipment vendorterahtive solutions are still being sought,
primarily due to the high cost of the TCAM devices and thegithpower consumption. The cost per bit of a
high performance TCAM is about 15 times larger than a conipar@RAM [2], [1] and they consume more
than 50 times as much power, per access [16],[13]. This gapeean SRAM and TCAM cost and power
consumption makes it worthwhile to continue to exploredyedtgorithmic solutions.

In this paper we introduce an algorithmic solution which aghbfast and highly memory efficient. It is
based on the well-known “Crossproducting Algorithm” [1T]he crossproducting algorithm decomposes
the packet classification problem into a set of single fietdkigp problems and combines the results to form a
key to retrieve the best matched rule from a direct-lookiptetaFrom the throughput perspective, the single
field lookups are the only real performance bottleneck. Hanehe major problem with this algorithm is
its prohibitively high memory consumption due to the largenter of additional “crossproduct rules” that
must be added to the rule set. Even small rule sets can rempractically large amounts of memory.

Leveraging recent advances in algorithms and architestuve introduce some new ideas to address
these problems. In particular, our Multi-Subset Crosspetidg Algorithm significantly reduces this mem-
ory overhead while preserving the overall speed of the @lguor First of all, we perform the single field
lookup by longest prefix matching (LPM) on each field, using thst and memory efficient Bloom filter
based algorithm introduced in the Chapter [4]. Using thimedthm, on an average, only one off-chip mem-
ory access is needed for each single field lookup. Therefatk,very high probability, the longest prefix
matching can be performed on the source and destinatioresgil and the source and destination ports in
just four memory accesses.

To reduce memory consumption, we divide the rules into mpleltisubsets and then construct a
crossproduct table for each subset. This reduces the beeoakproduct overhead drastically. In addi-
tion, instead of a direct lookup table, a hash table is usddrtber reduce the size of the crossproduct
lookup table. Since the rules are divided into multiple stihswe need to perform a lookup in each subset.
However, we can use Bloom filters to avoid lookups in subg®st d¢ontain no matching rules, making it
possible to sustain high throughput. In particular, we slioat the highest priority matching rule can be
found using onlyp more memory accesses, wheris the number of rules a packet can match. In summary,
we demonstrate a method, based on Bloom filters and hasls talhée can classify a packet 4+ p + €
memory accesses wherés a small constank 1 determined by the false positive probability of the Bloom
filters. With two memory chips, one for the LPM tables and thieeofor rule tables, the LPM phase of 4
memory accesses and rule lookup phasememory accesses can be pipelined. With pipelining, the mem-
ory accesses per packet can be reducedde{4,p}. We also show how a special case of our algorithm
is in fact a highly optimized variant of the well-known TupgBpace Search algorithm proposed by Srini-
vasan et. al. [10] We also discuss the underlying architactasues in realizing this method in hardware.

We leverage some of the existing work on Bloom filters and Wward implementation to design our packet
classification system. Our results show that our architeatan handle large rule sets, containing hundreds
of thousands of rules, efficiently with an average memorysaamption of 30 to 36 bytes per rule.

The rest of the chapter is organized as follows. In the nesticse we discuss the related work. We
describe the naive crossproducting algorithm in more etaiSection 3. In Section 4, we discuss our
Multi-Subset Crossproducting Algorithm. In Section 5 wect&e our heuristics for intelligent partitioning
of the rules into subsets to reduce the overall crosspredéaally, in Section 6 we discuss the architectural
issues in implementing our algorithm in hardware. Sectieontludes the chapter.

2 Related Work

There is a vast body of literature on packet classificatiomeRcellent survey and taxonomy of the existing
packet classification algorithms and architectures caoined in [13]. Here, we discuss only the algorithms
that are closely related to our work.

Algorithms that can provide deterministic lookup throughis akin to the basic crossproducting algo-
rithm [11]. The basic idea of the crossproducting algoritisno perform a lookup on each field first and
then combine the results to form a key to index a crosspradbét. The best-matched rule can be retrieved
from the crossproduct table in only one memory access. Tugesfield lookup can be performed by direct
table lookup as in the RFC algorithm [6], or by using any rasgarching, or LPM algorithm. The BV [7]
and ABV [3] algorithms use bit vector intersections to regléhe crossproduct table lookup. However, the
width of a bit vector equals to the number of rules and eachuewalue on each field needs to store such a
bit vector. Hence, the storage requirement is significahtckvlimits its scalability.

Using a similar reduction tree, the DCFL [12] algorithm ubash tables rather than direct lookup tables
to implement the crossproduct tables at each tree level.edexvdepending on the lookup results from the
previous level, each hash table needs to be queried mulimpés and multiple results are retrieved. For
example, at the first level, if a packet matchesiested source IP address prefixes amgsted destination
IP address prefixes, we need x n hash queries to the hash table with the keys that combine thas
fields and the lookups typically result in multiple valid puts that require further lookups. For a multi-
dimensional packet classification, this incurs a largequeréince penalty.

TCAMs are widely used for packet classification. The lateSAM devices also include the banking
mechanism to reduce the power consumption by selectivetyniy off the unused banks. Traditionally,
TCAM devices needed to expand the range values into prefixegtdring a rule with range specifications.
The recently introduced algorithm, DIRPE [8], uses a cldgehnique to encode ranges differently which
results in less overall rule expansion compared to thetioadil method. The authors also recognized that
in modern security applications, it is not sufficient to stie@ matching process after the first match is found
but all the matching rules for a packet must be reported. Hesised a multi-match scheme with TCAMs
which involves multiple TCAM accesses.

Yu et. al. described a different algorithm for multi-matchckget classification based on geometric
intersection of rules [15]. A packet can match multiple subecause the rules overlap. However, if the rules
are broken into smaller sub-rules such that all the rulesrareially exclusive then the packet can match
only one rule at a time. This overlap-free rule set is obtitheough geometric intersection. Unfortunately,
the rule set expansion due to the newly introduced rules dyntiersection can be very large. In [16], they
describe a modified algorithm called SSA which reduces tteradivexpansion. They observe that if the
rules are partitioned into multiple subsets in order to oedilne overlap then the resulting expansion will
be small. At the same time one would need to probe each suimkgiendently to search a matching rule.
In a way, our algorithm is similar to SSA in that we also try &mluce the overlap between the rules by
partitioning them into multiple subsets and thus reduceotlerall expansion. However, while SSA only

cares about an overlap in all the dimensions, our algoritbnsiders the overlap in any dimension for the
purpose of partitioning. Hence the partitioning technique different. Moreover, SSA is a TCAM based
algorithm whereas ours is memory based. Finally, SSA requarprobe of all the subsets formed, one by
one, requiring as many TCAM accesses as there are subsetalgotthm needs only memory accesses,
just as many as the number of matching rules per packet.

3 Naive Crossproducting Algorithm

The naive crossproducting algorithm works as follows. Lefiva-tuple rule be specified as =
[v1,v2,v3,v4, v5] Where eachy; is a prefix of fieldi. LetV; = Uv; i.e. V; is a set of all the distinct prefixes
of the field: present in the rule set. The crossproducting algorithmteseall the possible rules of the form
r’ = [v],vh, v, v}, v5] wherev, € V;. In other words, the algorithm simply produces the crosdipco
setV) x V4 x V3 x Vi x Vi. Given a five-tuple of the packet header, a matching rule easelarched as
follows. First we perform an independent search on each &ettifind the most specific prefix i.e. the
longest matching prefix . After having obtained these lohgesching prefixes for each field, we create
a unique key = [u1, ug, us, ug, us] and use it to directly index the crossproduct rule table hiate in the
crossproduct table is either the original rule or an aréficule generated in the process of crossproducting.
Moreover, each extra rule either corresponds to an origilalor does not correspond to anything. Hence,
upon a match, we either get the ID of an original rule or we tigat any ID implying there was no match.
Thus, when there is a match, the correct matching rule caayahlwe found. This can be illustrated with
the example shown in Figure 1. Here, we show only a two dinoeasirule set where each field is four bits
wide for the purpose of illustration. The original rule setshown in Figure 1(A). Figure 1(C) shows the
crossproduct table for this rule set. Figure 1(B) shows dpeasentation of the rules using a trie.

In this rule set, the first field contains 4 unique prefixés, 00*, 01*, 101*} which can be labeled as
{1,2, 3,4} respectively. Likewise, the second field contains 4 uniqedxes{*, 00*, 11*, 100*}, which
can also labeled afl, 2, 3,4} respectively. A straightforward crossproduct table wilhtain4 x 4 = 16
entries. Among the these 16 entries are the six originakr(dite colored rows) and the remaining are
generated due to the crossproduct. There are crosspradestthat correspond to an original rule, i.e. a
match of these crossproduct rule implies a match for one oembthe original rules. We call these rules
“pseudo-rules” (blue colored rows). Take for instance the p; = [101*, 00%]. If there is a match for this
rule then it implies a match for original rules andr, sincep; is more specific to both; andr,. There
are also some entries which do not map to any original rugg, [©1*, 1*], which we call “empty rules”
(green colored rows). To illustrate the rule matching psscassume that we get a packet with header value
[1011, 0011]. We perform the longest prefix matching on eddhese fields and find that these prefixes
are 101 with label 4 and 00 with lab2l The entry at the locatioh x 2 = 8 in the table can be look up for
a match. Since there is a matching rple we can declare a match for the original matching ruleandrs.

This algorithm has two problems: 1) A large number of emptgs2) A very large number of pseudo-
rules. The first problem can be mitigated by using a hash taslead of direct lookup table. The crossprod-
uct table maintains all the possible entries generated fh@crossproduct so that it can be directly indexed.
Since there are several empty rules, the sparsity can lzeedtiio compress the table further by using a hash
table. This is a trivial modification to the crossproductiéatHenceforth we assume that the crossproduct
table contains only the rules that correspond to at leasbbtiee original rules, i.e. we have only pseudo-
rules and the original rules but no empty rules. A trie baspdasentation of the pseudo-rules along with the
original rules is shown in Figure 1(D). We will use this triaded representation to illustrate our algorithm
further. We build a trie for each field. We mark the nodes gpoading to the prefixes involved in the rules.
A connection between the marked nodes of each field repseaente.

With this representation, it is easy to see that after thetgmybes are removed from the crossproduct

table, the remaining pseudo-rules are the rules such tha Keep following themarkedancestors of the
nodes of each field then there is at least one combination dfedaancestors that represents one of the
original rules. In fact, now we can create the crossprodulet set with an alternative and more efficient
procedure described below. First, we introduce the folhganotations.

e Let R denote the set of original rules antthe set of rules after crossproduct.

e Letu < v denote that: is a prefix ofv. (Note thatv < v always holds). Since each prefix corresponds
to a marked node in the trie, we will use the terms prefix anckethnode interchangeably. Hence,
u < v also denotes that the nodds the marked ancestor of marked nade

e Letr denote arule. Let.v; denote the prefix of fieldin the rule. Let~.Id denote the set of rule IDs
associated with this rule.

e LetT; denote the trie built from the prefixes of field

The pseudo-code for the crossproduct algorithm is desthiséow:

BuildCrossproductTable(S)
1.foreachr € R

2. foreachfieldi

3. InsertinTrief.v;, T;)

4.foreachr € R

5. for eachfieldi

6. Vi — V; Urw; UGetAllM arkedDescendants(r.v;, T;)
7. for eachnodev; € V4

8. for eachnodew, € V5

9. for each nodevs € V3

10. for eachnodevy, € V;,

11. C.U1 < V1, C.U9 < V2,...C.UL — Vi
12. ifceC

13. cld —clIdUr.Id

14. else

15. cld — r.Id

16. C+—Cuc

Thus, to build a crossproduct table, we first build a trie factefield with the prefixes of that field in
all the rules (line 1-3). Then we pick rules one by one and &mhewe locate the node corresponding to
each field prefix in the corresponding trie and get the setldhalcorresponding descendants (line 5-6)
including the node under consideration. A set of such detosis for fields, including the given node
itself, is denoted by;. Then we take the crossproduct of these sets and insertsbkimg rules into the
crossproduct set. Note that this crossproduct set willialdade the original rule since we are also including
the nodes of the original rule in the crossproduct. Eacheftiossproduct rules points to the original rule
under consideration for which the crossproduct is beingegged. While doing so, we see if the rule is
already inserted into the table while considering any otiigyinal rule. If it is then we just need to append
the ID of the original rule under consideration to the seudd tDs associated with this pseudo-rule (line 12-
13). Thus, a match for this pseudo-rule will mean a matchlfaha rule IDs of the original rules associated
with it. If the rule is not present in the table then it is ad@ded the associated rule ID is set to the original
rule ID (line 14-16). The resulting rule sétconsists of both the original rules and the crossproduesrul

5

ClassifyPacket(P)

1. for eachfield

2. rw; < LPM(P.f;)

3. {match,{Id}} — HashTableLookup(r)

The packet classification process is simple:

As the algorithm describes, we first execute LPM on each fialdevf; of packetP and assign the
longest matching prefix to a rule Then we look up this rule in the hash table. The result of ltha&up
indicates if the rule matched or not and also outputs a setadEiming rule IDs associated with a matching
rule.

It is evident that the crossproduct algorithm is efficienténms of memory accesses: the memory
accesses are required for only LPM on each field and the firshl teble lookup to search the rule in the
crossproduct table. For 5-tuple classification, we doréde perform the LPM for the port field; it can be a
direct lookup in a small on-chip table. Moreover, if we use Bloom filter based LPM technique described
in the previous chapter, we would need approximately one ongiaccess per LPM. Therefore, the entire
classification process takes five memory accesses with vginypinobability to classify a packet.

ri: 1* *
r2: 1* 00*
r3: 01* 100*
r4: 101* 100*
r5: 101* 11*
r6 : 00* *

(A)

p6
p7

1*

*

rl

1*

00*

r2

1*

11*

rl

1*

100*

rl

00*

*

r6

00*

00*

r6

00*

11*

6

00*

100*

r6

01*

*

01*

00*

01*

11*

01*

100*

3

101*

*

rl

101*

00*

rl

101*

11*

5

101*

100*

r4

(©

—p3- s

Figure 1:lllustration of basic ideas. (A) Rule set (B) Rule represerdtion using trie (C) Crossproduct table (D)

Representation of original rules and pseudo-rules using te

However, the overhead of pseudo-rules can be very largeach éeld has 100 unique values in the
rule set (ignoring the protocol field) then the expanded setecan be potentially as large B%)* making it

impractical to scale for larger rule sets.

In order to get a sense of the amount of expansion the naigsmmducting algorithm can cause, we
experimented with several real life rule sets as well ash®fitt rule sets which preserve the structure of
the real rule sets. We used the synthetic rule set generédesBench [14]. The real life rule sets obtained
from access control lists (ACL), firewalls (FW) and IP chafiaC) were used as seeds to generate larger
rule sets with approximately ten thousand rules (all the sglts with name ending in ‘s’ in Table 1). Note
that our algorithm needs the ranges to be expanded into gsefixue to this expansion, the size of the rule
set increases. The reported number of rules in each set ruthber after the range to prefix expansion.
The number of rules in each set and the expansion fatadter the naive crossproduct is shown in Table 1.
As the table shows, the expansion factor can be very large shiallest expansion was observed to be
200 times the original rule set size and the largest as< 10° times! Clearly, the naive crossproducting
algorithm is impractical for large rule sets.

So how can we reduce the overhead of the pseudo-rules anuratsve the fast speed of the algorithm?
We present our Multi-subset Crossproducting Algorithnt izhieves this objective.

4 Multi-subset Crossproducting Algorithm

In the naive scheme we require just one hash table access tteegest of matching rules. However, if we
allow ourselves to use multiple hash table accesses theamaptit the rule set into multiple smaller subsets
and take the crossproduct within each of them. With thissgeanent, the total number of pseudo-rules can
be reduced significantly compared to the naive scheme. 3iilastrated in Figure 2. We divide the rule set
into three subsets. Within each subset, we take a crossgraataining only the rules that correspond to
one of the original rules within that subset. This resultsserting pseudo-rules; in subset 1) andp,

in subset 2@2). All the other pseudo-rules vanish and the overhead isfgigntly reduced. Why does the
number of pseudo-rules reduce drastically? This is becdngserossproduct is inherently multiplicative in
nature. When the number of overlapping prefixes of a figiet reduced by a factor af due to partitioning,
the resulting reduction in the crossproduct rules is of fiiedIxz; and hence large.

After having reduced the crossproduct memory overheadhdependent hash table can be maintained
for each rule subset and an independent rule lookup can Bmped in each. The splitting introduces two
extra memory access overheads: 1) The entire LPM procesk thie fields needs to be repeated for each
subset 2) a separate hash table access per subset is nekxbddipothe final rule. We now describe how to
avoid the first overhead and reduce the second overhead.

With reference to our example in Figure 2, due to the pantitig of rules into subset§,, G, andGj,
the sets of valid prefixes of the first field &rev;, m4} for Gy, {mq, ms} for Go and{ms} for G3. Hence,
the longest prefix for one subset might not be the longestqiretither subset requiring a separate LPM for
each subset.

However, this can be easily avoided by modifying the LPM daitacture. For each field, we maintain
only one global data structure which contains the uniquéixar® of that field from all the subsets. When
we perform the LPM on a field, the matching prefix is the longes across all the subsets. Therefore, the
longest prefix for individual subsets is either the prefix timatches or its sub-prefix. With each prefix in
the LPM table, we can maintain a list of sub-prefixes, one &mhesubset, which is the longest prefix for
that subset.

Conceptually, the LPM table for field consists of entries where each entgyconsists of a prefix
t;.v which is the lookup key portion of that entry and the assedianhformation consists of entries,
t;.u[l] ... t;.u[g] whereg is the number of subsets formed. Eaghu[j] is eitherNULL or has a value
such thatt;.u[j] is the longest matching prefix of fieldin subsetj which obeyst;.u[j] < t;.v. |If
t;.u]j] == NULL then there isn’t any prefix af.v which is the longest prefix in that subset.

After a global LPM on the field, we have all the information weed about the matching prefixes in

G1

rg_;@
| %

(A)
Gl G2 G3 Gl G2 G3
1* 111(- * -10|0
00* -1-12 00* 200
01* -12|- 11~ 2/0/0
101* 3|1(- 100* 3(3|0
LPM Table for field 1 LPM Table for field 2

(B)

Figure 2:Dividing rules in separate subsets to reduce overlap. The c@sponding LPM tables.

individual subsets. Secondly, sinGeu[j] is a prefix oft;.v, we do not need to maintain the complete prefix
t;.u]j] but just the length of the prefi.u[j]. The prefixt;.u[j] can always be obtained by considering the
correct number of bits of;.v.

The LPM table for the example shown in Figure 2(A) is shownigufe 2(B). In this example, since we
have three subsets, with each prefix we have three entriescea®sponding to a subset. For instance, the
table for field 1 tells us that if the longest matching prefixtbis field in the packet is 101 then there is a
sub prefix 0f101 of length 3 (which isLO1=m, itself) that is the longest prefix &', there is a sub prefix
of length 1 (which isl =m;) that is the longest prefix if¥5 and there is no sub prefix (indicated by —) of
101 that is the longest prefix itvs.

Likewise, the table for field 2 says that if the longest matghprefix for this field in the packet header
is 100 then there is a sub prefix @00 of length 3 (which isL00=n,) that is the longest prefix i&';, there
is a sub prefix of length 3 (hence agdif0=n,) that is the longest prefix itry and finally there is a sub
prefix of length 0 (hence = n,) that is the longest prefix it¥s. Thus, after finding the longest prefix of
a field, we can read the list of longest prefixes for all the stsdand use it to probe the hash tables. For

example if101 is the longest matching prefix for field 1 ad@O0 for the field 2 then we will probe thé&';
rule hash table with the kejf 01, 100), theG rule hash table with the kéy, 100) and we don’t need
to probe the7; hash table.

The classification algorithm is described below.

ClassifyPacket(P)

. for eachfield i

t; — LPM(P.f;)

. for each subsetj

for eachfield i
if(t;.u[j] # NULL) r.v; = t;.ulj]
elsebreak

{match,{Id}} «— HashTableLookup;(r)

NookrwhpE

Thus, even after splitting the rule set into multiple subsenly one LPM is required for each field
(line 1-2). Hence we maintain a similar performance as theenzrossproduct algorithm as far as LPM is
concerned. After the LPM phase, individual rule subsetsblre probed one by one with the keys formed
from the longest matching prefixes within that subset (li¥¥.3However a probe is not required for a subset
if there is no sub-prefix corresponding to at least one fietdiwithat subset. In this case, we simply move to
the next subset (line 5-6). Hence, the number of rule subbld probed can be less than the actual number
of subsets, depending on the actual prefix values in the atleHowever, for the purpose of analysis, we
will stick to a conservative assumption that all the fieldgehsome sub-prefix available for each subset and
hence all they subsets need to be probed.

We will now explain how we can avoid probing all these subbgtssing Bloom filters. If a packet can
match at the mogi rules and if all these rules reside in distinct hash tables tinlyp of theseg hash table
probes will be successful and return a matching rule. Othremary accesses are unnecessary, which can be
filtered out using on-chip Bloom filters. We maintain one Bioblter in the on-chip memory corresponding
to each off-chip rule subset hash table. We first query theflélters with the keys to be looked up in the
subsets. If the filter shows a match, we look up the key in thelip hash table. The flow of our algorithm
is illustrated in the Figure 3.

From equation [4], the average number of hash table accesegshe LPM on fieldi, with length;
ist; =1+ ijgl_l [j» where f; is the false positive probability of Bloom filtgr. If we tune the Bloom
filters to exhibit the same false positive probabilify,by allocating the appropriate amount of memory and
the number of hash functions then the average hash tablesmscen field can be expressed as:

ti=1+W;—1)f (1)

For IPv4, we need to perform LPM on the source and destindi@uadress (32 bits each) and the source
and destination ports (16 bits each). The protocol field @lbked up in a 256 entry direct lookup array
kept in the on-chip registers. We don’t need memory accdssgsotocol field lookup. We can use a set of
32 Bloom filters to store the source and destination IP addve=fixes of different lengths. While storing
a prefix, we tag it with its type to create a unique key (foramse, source IP type = 1, destination IP type
= 2 etc.). While querying a Bloom filter with a prefix, we cre#tte key by combining the prefix with its
type. Similarly the same set of Bloom filters can be used teedtte source and destination port prefixes as
well. The Bloom filters 1 to 16 can be used to store the sourceppefixes and 17 to 32 can be used for
destination port prefixes. Hence the total number of hadle &dresses required for LPM on all of these
four fields can be expressed as

fieldl field2

1011 1001
l LPM table field1 l LPM table field2
1* 1|1~ * -10]|0
00* -|1-12 00* 2|10|0
01* -|2]|- 11* 2|10|0
101* 3|1]- 100* 3/3|0
| longest matching prefixes |
101* 3|1|-

100* 3/3]|0

i intersection
off—chip memory

101* 3|1 G3 BE accesses G3
100* 3[3 hash table| matching rules
G2
———> —>
<1, 100> G2 BF <1, 100> hash table p2
> Gl > 4
<101, 100> G1BF <101, 100> hash table
Bloom filter queries
on—chip parallel rule tables for all subsets
Bloom filters in the off-chip memory

Figure 3: lllustration of the flow of algorithm. First, LPM is performe d on each field. The result is used to
form a set of g tuples, each of which indicates how many prefix bits to use foconstructing keys corresponding
to that subset. The keys are looked up in Bloom filters first. Oty the keys matched in Bloom filters are used to
query the corresponding rule subset hash table kept in the d¢fchip memory.

Tpm = (1+31f)+ 1 +31f)+ (1 +15f)+ (1 +15f)
= 44 92f (2)
We needy more Bloom filters for storing the rules of each subset. Oythre rule lookup phase, when
we query the Bloom filters of all thg subsets, we will have up tetrue matches and the remainipg- p

Bloom filters can show a match, each with false positive poditya of f. Hence the hash probes required
in the rule matching are

Ty=p+(g—p)f ®3)
The total number of hash table probes required in the entoegss of packet classification is

T=Ty+Typm=4+p+(2+g—p)f=4+p+e¢ 4)

wheree = (924 g — p) f. By keeping the value of small (e.g. 0.0005), thecan be made negligibly small,
giving us the total accesses equakta + p. It should be noted that so far we have dealt with the number of
hash table accesses and not the memory accesses. A cacefudlyucted hash table requires close to one
memory access for a single hash table lookup.

10

Secondly, our algorithm is a “multi-match” algorithm as oppd to the priority rule match. For our
algorithm, priorities associated with all the matchingeruheed to be explicitly compared to pick the highest
priority match.

As the equation 4 shows, the efficiency of the algorithm ddpemm how smally and f are. In the next
section, we explore the trade-off involved in minimizing tralues of these two system parameters.

5 Intelligent Grouping

Note that the number of subsefsand the false positive probability of the Bloom filters are related. If
we try to create fewer subsets with a given rule set then ibssible that within each subset there is still a
significant number of crossproducts. Hence more rules reebd tnserted in the set, which will consume
more memory in the Bloom filter in order to maintain the santgsf@ositive probability. Hence, decreasing
g can increasg if our memory budget is fixed. On the other hand, we do not wasetra large number of
subsets because it will need a large number of Bloom filtemsineg more hardware resources. Hence we
would like to limit g to a moderately small value. The key to reducing overheadedigho-rules is to divide
the rule set into subsets intelligently to minimize the spreducts. The following questions arise. How
can we reduce the number of subsets as well as the pseud@-itiese appear to be conflicting goals. The
pseudo-rules are required only when there are overlappefges of different rules. So, is there an overlap-
free decomposition into subsets such that we don't needstartimny pseudo-rules at all? Alternatively, we
would also like to know: given a fixed number of subsets, howwa create them with minimum number
of pseudo-rules? We address these questions in this section

5.1 A Problem Formulation

The problem of constructing subsets of overlap-free rulesifa given rule set can be modeled as graph
coloring problem. We represent the rule set with a grép (V, E) in which each vertex iV’ represents

a rule. We add an edge between two vertices if the two ruledagpvén at least one dimension, i.e. the
two rules create extra crossproduct rules if they are kefitédrsame subset. Now, we want to color all the
vertices with minimum number of colors such that no two wedi connected by an edge have the same
color. A color is equivalent to a subset. Graph coloring iewn to be an NP-complete problem.

With the graph theoretic problem formulation and heuristiutions, potentially a tight bound can be
found on the number of such subsets. However, we avoid thghdheeoretic solutions and seek a simpler
heuristic solution that is specific to this problem. Our lig of forming subsets is based on the concept
of Nested Level Tuple (NLT) explained in the next sectionr &alution is simple and provides a loose yet
practical upper bound on the number of subsets. Moreoveggiires very little computation. In fact, it
turns out to be a highly optimized variant of the Tuple Spaear&h algorithm. We will discuss the relevance
of this in the next section.

Although obtaining subsets of overlap-free rules is oueotde, potentially such a partitioning can
result in a large number of subsets. Instead, we fix a paaticulmber of subsets and try to partition the
rules in them such that the overall pseudo-rules are mimichiFlow can we create such subsets? We provide
an approximate model of this problem by extending the graptehdescribed above. We create a graph
G = (V, E) as described above and assign weights to each edge, whexeitite equals the number of
crossproduct rules due to the overlap of the two rules cporeding to the vertices connected by the edge
(i.e. pairwise crossproduct rules). Given this weighteapr we wish to color the vertices withcolors
such that the sum of the weights on the edges connectinge®iif the same color is minimum. Since the
rules with the same color go in the same subset, we wish tomideithe sum of pairwise crossproduct rules
between all of them, hence the sum of the weights should bamam. This problem is a standard MIN

11

K-PARTITION problem which is also NP-complete.

This is an approximate model of the problem because in theexbof our problem, the total number
of crossproduct rules can be less than the sum of the paiordssproduct rules. This is because, some of
the crossproduct rules can be common to multiple sets ofviggrcrossproduct rules and thus redundant.
However, the sum of the pairwise crossproduct rules is aemppund on the amount of expansion within
a subset. Hence, the approximation is quite close to theaecmodel.

Again, although a graph theoretic solution is possible tig problem, we avoid this approach and seek
a simpler solution by taking advantage of the nature of tiodlpm. We describe a simple heuristic solution
in Section 5.3.1 which modifies the NLT based solution forfttet problem. Specifically, we use the first
heuristic to produce an overlap-free grouping. Given a fixechber of subsets (colors), we pick as many
most populated subsets and merge the remaining subsetntontth the objective of reducing the overall
crossproduct rules generated by merging.

5.2 Owerlap-free Grouping

A loose bound on the number of overlap-free subsets is thdauof prefix length tuples. We now describe
the Tuple Space Search (TSS) algorithm. While TSS provigeslaose bound, we seek a much tighter
bound by modifying TSS using a simple technique. We desatsenodifications at the end of this section.

5.2.1 Tuple Space Search (TSS)

A Prefix Length Tuple (PLT) is the combination of prefix lengibf different fields. For instance, the PLT
[32, 24, 16, 7, O] implies that the source IP prefix length istB2 destination IP prefix length is 24, the
source port prefix length is 16, the destination port prefigth is 7 and the protocol prefix length is O
(wild-card). Each rule is contained within a tuple. For IPA4uple packet classification, the PLT space
consists 0f33 x 33 x 17 x 17 x 2 = 629442 PLTs. In the worst case, each rule can represent a unique
tuple and hence the number of PLTs will be the number of rifesinstance, the tuples associated with the
rules in our example rule set are [1, 0], [1, 2], [2, 3], [3, @, 2], and [2, 0] each containing a single rule.
However, in reality, the number of PLTs is smaller than themhar of rules.

The TSS algorithm maintains all the rules belonging to a RL&n independent hash table. Upon re-
ceiving a packet, it simply looks up all the hash tables by them with the keys formed by considering
the appropriate number of bits of each field correspondirthabPLT. This naive approach requires several
hash lookups. However, they can be significantly reducedéytuple pruning technique. The TSS algo-
rithm first gets the longest matching prefix of each field. eéch longest matching prefix of a given field,
a list of PLTs corresponding to the given prefix as well as dmyrter prefix is maintained. After reading
the list of PLTs associated with the longest matching prefigazh field, only the PLTs in the intersection
of these lists need to be looked up. We can illustrate thegssowith our example rule set. The algorithm
is illustrated in Figure 4 which uses our example rule set.thisfigure shows, each LPM table contains
prefix entries and a list of PLTs that the prefix as well as itsstefixes are associated with. For instance,
the prefix 1* of the first field is associated with rules= [1x, x| andry = [1%, 00«] which are contained in
the PLTs [1, 0] and [1, 2] respectively. Hence, the LPM enttyol.the first field contains these two PLTs
in the list. Likewise, the prefix 101* of the first field is asged with PLTs [3, 2] and [3, 3]. Since, 1*is
a sub-prefix of 101*, the PLTs [1, 0] and [1, 2] are also corgdiin the list associated with 101*.

If the matching prefixes of the two fields were 101* and 100*tilee common PLT list will contain
[3, 3] and [1, 0]. Hence, itimplies that it is likely that theles{101*, 100*} and{1*, * } are contained in
the table. These keys are used to probe the respective et éad matching entries are found.

Before we elaborate on the relevance of this algorithm tatgorithm, it is important to mention that the
actual TSS algorithm as proposed in [10] does not performM fd? source and destination port. Instead, a

12

different technique based étange IDis used. The authors observed that when the port rangesrarertax
into prefixes, the resulting expansion could be large. Tadas expansion, a unique ID is assigned to each
range. LPM is performed only on source and destination addee The hash key is constructed by taking
the appropriate bits from these addresses and combinimgrilge IDs associated with source and destination
ports. Range ID can be obtained from the port number usirigrdift techniques, including a search tree
or a direct lookup. While the search tree based lookup reguitore memory accesses, the direct lookup
array requires more memory, potentially two arrays coimgi®4K entries each. Secondly, for assigning a
unique ID to a given range, all the ranges must be non-ovgirigp If they are overlapping then the overlap
must be removed by breaking a single range into multiple lemanges which are mutually exclusive. This
division of overlapping rangs into smaller non-overlagpmnges essentially means geometric intersection
on for each port which results in some rule expansion.

Instead of using the range ID approach, we will use the raogwdfix conversion approach for our
algorithm. This will allow us to use the Bloom filter based LR&thnique for port matching as opposed to
the search tree based technique for Range ID matching. Mergaotentially it will consume less memory
compared to the direct lookup array for Range ID matchinghaly, it will not restrict us to using non-
overlapping ranges and allow flexible specification of rang€osnidering these factors, we will use the
version of TSS algorithm that deals with the prefix represtion of port ranges and performs LPM for each
field.

fieldl field2
1011 1001
l LPM table field1 l LPM table field2
1* [1,0][1,2] * [1,0] [2,0]
00* [2,0] 00* [1,2] [1,0][2,0]
01* [2,3] 11* [3,2] [1,0][2,0]
101* [3,2][3,3] [1,0][1,2] 100* [2,3][3,3] [1,0][2,0]
| matching prefixes |
v v a0 Lo fon
101* [3,21[3,3] [1,01[1,2] [1.2] \
100* [2,3] [3,3] [1,0] [2,0] '
l PLT intersection [2.0] .
matching rules
101* [3,3] [1,0] (2,3]
100* [3,3] [1,0] [3.2]
<101, 100>
33 p—>ra

Create Keys

PLT rule tables

Figure 4:lllustration of the Tuple Space Search algorithm

We can now draw a parallel between TSS and our algorithm. tiiatethe rules contained in the same
PLT share the same prefix lengths of each field. Thereforengraay two prefixes of the same prefix
length, none is the ancestor of the other. Due to this prgpime rules contained within the same PLT do
not need crossproducts. Indeed, the number of distinct RLTee rule set is essentially one loose upper

13

bound on the number of overlap-free subsets. In fact, whenseehe PLTs as the subsets, our algorithm is
the same as TSS except for a few differences in arrangingattaestructures. With each prefix in the LPM
tables, TSS maintains a list of PLTs. Instead, we maintaiareay with the number of entries equal to the
total number of PLTs, each entry containing the length ofpttedix within that PLT. This is illustrated with
the Figure 5. For instance, consider the prefix 101* of the fietdd. There are six entries next to it, each
corresponding to a subset (or a PLT). The PLTs are orderethdesed. As the figure shows, PLT [1,0] is
first, [1,2] is second and so on. The first entry among the sixwgich implies that the given prefix has
a sub-prefix which corresponds to a rule contained in theRit3t (which is [1,0]) and the length of this
sub-prefix is 1. Likewise, the fifth entry, which is 3 implidsat the given prefix has a sub-prefix which
corresponds to a rule contained in the fifth PLT (which is])Bsd the length of this sub-prefix is 3. When
the entry is ‘-’, it means that there is no sub-prefix of theegiyprefix belonging to any rule in that PLT. In
other words, the prefix and its sub-prefixes have nothing twitto that PLT. When we perform LPM on
each field and read the array, the intersection becomes\asyeed to consider only those PLTs for which
the prefix length in each field is specified. If at least one piedis -’ for a given PLT then it can be ignored.
As the figure shows, after LPM on 1011 and 1001 respectivadyptly remaining PLTs are the first and the
sixth. The prefix lengths of the individual fields are [1,0048,3]. Now the appropriate number of bits can
be considered to construct the keys and the PLT rule setsecgudyied.

fieldl field2
1011 1001
l LPM table fieldl l LPM table field2
1* 11|-|-|-|- * 0|-|0|-|-|-
00* -1-12|-|-|- 00* 0|2|0|-|-|-
01* -|-|-12]|-|- 11* 0|-|0]|-]2]|-
101* 1[1/-[-]3]3 100* 0/-/0[3]|—-|3
| matching prefixes
<1, *>
v v [10] p—>r11
101* 1/1/-/-13]|3
100* 0/-/0]3|—-|3 [1.2] \
l PLT intersection [2.0] .
matching rules
101* 1 3 [2.3]
100 0 3 [3.2]
[83] > r4
<101, 100>
Create Keys PLT rule tables

Figure 5:lllustration of the Tuple Space Search algorithm with an alternative LPM table structure. It equiva-
lent to our algorithm with overlap-free rule subsets.

Note that there is a bit of redundancy in the LPM data strectunich can be used to simplify it further,
as proposed in original TSS algorithm. Instead of maintarihe prefix length in each entry, we can simply
set a bit to indicate that the given prefix or its sub prefix bgto that PLT. Thus, the array can be replaced
by a bit map with the number of bits equal to the number of PObstake the intersection, we just perform

14

a bit-wise AND. Finally, for all the remaining PLTs after émsection, we just lookup a table to get the
associated prefix lengths for each field and after havingrddathose, we can construct the keys as before
to probe the appropriate PLT rule tables. This is illustfateFigure 6. Note that this optimization is possible
only because we know that there is a unigue prefix length df &ald associated with a PLT. In the context
of a generic crossproduct, it is not true that a given subisetles contains prefixes of a specific length for
each field; there can be multiple prefixes with different thsgvithin the same subset. Hence this bit-map
data structure can be used only in this special case.

fieldl field2
1011 1001
l LPM table field1 l LPM table field2
1* 1)1|-|-|—-|- * 1|-1|-|-|-
00* -|=-11|-|-|- 00* 111|1|-|-|-
01* == |1|-|- 11* 1|/-/1|-|1|-
101* 1/1|-]-|1]1 100* 1/-]1|1|-]1
| matching prefixes
Vo <
» [1,00 > rl
101* 111|-|-|1]1
100* 1/-11|1|-|1 [1.2] \
l PLT intersection [2.0] .
matching rules
101* 1 1 [2.3]
*
100 1 1 [3.2]
+—, _+
» [33] > r4
PLT table <101, 100>

L[1.01][2.2][[2.,0]] [2.3]] [3.2]] [3.3]]
|

PLT rule tables

Y Y

——>»| Create Keys

Figure 6:The LPM table can be compressed further by using a bit map.

After having discussed the original TSS algorithm, we nosedss the differences between our approach
and TSS.

e The original TSS algorithm used conventional trie baselrtieges for LPM. In our case, we use the
Bloom filter based LPM algorithm which is fast.

e The original TSS algorithm probes all the PLTs obtainedraftaning whereas we use one more stage
of filtering using on-chip Bloom filters. Thus all the PLT qig=r after pruning can be passed through
Bloom filters so that only the potentially successful onggpfaximately »’) will be executed.

By using Bloom filters for memory access filtering, the altjori performance can be accelerated sig-
nificantly. However, one important drawback of the systemnisiming Bloom filters and TSS is that the
number of PLTs and hence the number of Bloom filters can be higty. We experimented with our rule
sets and found that the number of PLTs can be as high as 110&t 25,000 rules as indicated by the Ta-
ble 1. It is impractical to support such a large number of Biddters. However, this problem can possibly

15

be mitigated by using the same sepbiysicalBloom filters to host a large set wirtual Bloom filters. When
we store an item in a Bloom filter, we can combine tyyge of the item along with the actual item in order
to create a unique key, as discussed before. Thus itemsfefatif types can reside in the same physical
Bloom filter. When we query the filter with an item, we can conebihe type with the key. Therefore, only
the item belonging to the correct type will match. This isigglent to having as many Bloom filters as key
types, superimposed on the same physical substrate Blaem Flence we call them virtual Bloom filters.
In this fashion, if we havd physical Bloom filters to suppoB PLTs, we can design a mapping such that
each physical Bloom filter will get to host [B/b] PLTs. We can time multiplex the probing of all the PLT
Bloom filters by probing of them at a time and thus covering all tBeprobes in[B/b] iterations (or clock
cycles). Moreover, after pruning the PLTs, only a few remaibe checked and hence the actual number of
probes can be much less than the worst casg.din spite of that, the number of PLTs to be checked can
still be high and variable.

Secondly, it is impractical to maintain an array with eachfigrhaving 11,000 entries. Neither the
bit-map technique is practical for the same reason. Heneanust use the original TSS technique which
maintains a list of PLTs along with each prefixes entry. Utfioately, this will make the process of taking
the intersection of the PLT lists associated with the matghurefixes of all the fields very difficult. The
problem can be formulated as follows. We are giveets of numberss,..,S;, seti containingn,; numbers.
Each number is taken from a large univefse How can we take the intersection of all the s&tsin
hardware? Note that the intersection would have been vesny iéthe universd/ was small. In that case,
we could maintain a bit-map gt/| bits for each sef; and set the bits indexed by the numbers present in
that set. Intersection is just the bit-wise AND.

In the light of the drawbacks mentioned above, we now ilatstra technique to reduce the number of
subsets substantially. In other words, we proved a tighteeubound on the humber of overlap-free rule
subsets a rule set can be partitioned into. When the numtsibskts is substantially reduced, the bit-map
technique can be used which in turn makes the intersectimeeps easier. This reduction in the number of
subsets is based on the concept of Nested Level Tuple whetplained below.

5.2.2 Nested Level Tuple Space Search (NLTSS) Algorithm

We begin by constructing an independent binary prefix-tiiga the prefixes of each field in the given rule
set just as shown in Figure 1(B). We will use some formal didims given below.

Nested Level: The nested level of a marked node in a binary trie is the nurabproper ancestors of this
node which are also marked. We treat the root node as if it weaeked. For example, the nested level of
nodems andms is 1 and the nested level of node is 2.

Nested Level Tree:Given a binary trie with marked nodes, we construct a Nest@aLtree by removing
the unmarked nodes and connecting each marked node to isst@acestorFigure 7 illustrates a nested
level tree for fieldf, in our example rule set.

Nested Level =

Nested Level =

@ ¢
@ @ Nested Level =

Figure 7:lllustration of Nested Level Tree

16

Nested Level Tuple (NLT): For each field involved in the rule set, we create a Nested IL&kee
(See Figure 8). The Nested Level Tuple (NLT) associated awitlie r is the tuple of nested levels as-
sociated with each field prefix of that ruleor instance, in Figure 8, the NLT fog is [1,0] and forr, is [2,1].

6 16.
< o
rl-
K @ - A 3 ~ 2
\— B 3
5

@k\ r4
5
6
rl-
/ /—‘ r2-
] |]
3 — r4
5
Nested Level Tuple =[1, 0] Nested Level Tuple =[1, 1] Nested Level Tuple =[2, 1]

Figure 8:Overlap free grouping of rules

From the definition of the nested level, it is clear that amttregnodes at the same nested level, no one
is the ancestor of the other. Therefore, the prefixes repreddoy the nodes at the same nested level in a
tree do not overlap with each oth&ince there is no overlap between the prefixes contained indtsame
nested level of the tree, the set of rules contained in the saNested Level Tuple do not create any
crossproduct. This is illustrated in Figure 8. This gives us one bound onrthmber of subsets such that
each subset contains overlap-free rules.

We experimented with our rule sets to obtain the number of NinTeach of them. The numbers are
presented in the Table 1. While a consistent relationshimoabe derived between the number of rules and
the number of NLTs from the observations of the rule sets dear that even a large rule set containing
several thousand rules can map to less than 200 NLTs. ThemaaxNLTs were found to be 151 for about
25,000 rules. Given that there are very few NLTs comparetlddPiTs, it becomes feasible to use the bit-
map to indicate the subsets a prefix belongs to. Therefausatbecomes feasible to take an intersection of
the bit-maps associated with the longest matching prefiaoifiéield for pruning the rule subsets to lookup.

However, given an NLT, we just know the nested level assediatith each prefix. We don’t know
the exact prefix length to use to form our query key for that MWE set. Therefore, we need to maintain
another bit map with each prefix which gives a prefix lengthested level mapping. We call this bit-map
a PL/NL bit-map. For instance, for an IP address prefix, weldvooaintain PL/NL bit-map of 32 bits
in which a bit set at a position indicates that the prefix of toeresponding length is present in the
rule set. Given a particular bit that is set in the PL/NL bi#m we can calculate the nested level of
the corresponding prefix just by summing up all the numberitsf $et before the given bit. Let’s illus-
trate this with an example. Consider an 8 bit IP address anBItNL bit-map associated with it as follows:

IP address : 10110110

PL/NL bit-map : 10010101
Thus, the prefixes of this IP address available in the rulareetl* (nested level 1), 1011* (nested level

2), 101101* (nested level 3) and 10110110 (nested levela@yet the nested level of the prefix 101101*
we just need to sum up all he bits set in the bit map up to thedsiesponding to this prefix. If we are

17

interested in knowing the prefix length at a particular rees¢gel then we can keep adding the bits in the
PL/NL bit-map until it matches the specified nested level@tdrn the bit position of the set bit as the prefix
length. Thus, we can construct the PLT from a NLT using theNRLidit-maps associated with the involved
prefixes. The PLT tell us which bits to use to construct the \hbile probing the associated rule set (or
Bloom filter). The modified data structures and the flow of tigedthm is shown in Figure 9. As the figure
shows, each prefix entry in the LPM tables has a PL/NL bit-nrapa@NLT bit-map. For instance, prefix
101* of field 1 has a PL/NL bit map of 1010 which indicates thre sub-prefixes associated with the prefix
are of length 1 (i.e. prefix 1*) and 3 (i.e. prefix 101* itseMherefore, the nested level associated with the
prefix 1* is 1 and with 101* is 2. Another bit-map, NLT bit-mapontains as many bits as the number of
NLTs. The bits corresponding to the NLTs to which the prefig anb-prefixes belong are set. Thus 101*
belongs to all the three NLTs whereas 1* belongs to NLT 1 andffer the longest matching prefixes are
read out, the associated NLT bit-maps are intersected tdtimdommon set of NLTs that all the prefixes
belong to. As the figure shows, since the prefixes belong tthalNLTs, the intersection contains all the
NLTs. From this intersection bit-map we obtain the indicéshe NLTs to check. From the NLT table,
we obtain the actual NLTs. Combining the knowledge from théNIR. bit maps of each field, we convert
the nested level to the prefix length and obtain the list of RLTThis list tells us how many bits to consider
to form the probe key. The probe is first filtered through thecbip Bloom filters and only the successful
ones are used to query the off-chip rule tables. As the exasipws, the keyl, 100) gets filtered out and
doesn’t need the off-chip memory access.

Note that the bit-map technique can be used instead of thix pgagth array only because there is a
unique nested level or prefix length associated with a sdbsatparticular field. For a generic multi-subset
crossproduct, we can use the bit-map technique since therbemultiple sub-prefixes of the same prefix
associated with the same sub-set. Therefore, we need tbdistdividual prefix lengths, just as shown in
Figure 5 or 3.

5.3 Limiting the Number of Subsets

While the NLT based grouping works fine in practice, we migk,as there still room for improvement?
Can the number of subsets be reduced further? This bringsaksd our second question: how can we limit
the number of subsets to a desired value? While the NLT tqualengives us crossproduct-free subsets of
rules, we can still improve upon the it by merging some of tlhd&®and applying the crossproduct technique
to them in order to limit the number of subsets. Fewer sutalets means fewer Bloom filters and hence
a more resource efficient architecture. In the next sulmsgolve describe our NLT merging technique and
the results after applying the crossproduct algorithm.

5.3.1 NLT Merging and Crossproduct (NLTMC) Algorithm

In order to reduce the subsets to a given threshold, we ndeditthe NLTs that can be merged. We exploit
an observation that holds across all the rule sets we arthlylze distribution of rules across NLTs is highly
skewed. Most of the rules are contained within just a few NIHigure 10 shows the plot of the cumulative
distribution of rules across the number of NLTs.

This indicates that we can take care of a large fraction afsrwith just a few subsets. Hence what we
need is an NLT merging algorithm whereby we start with therlagefree NLT set, retain the most dense
NLTs equal to the specified subset limit and then merge thesrui the remaining NLTs to these fixed
subsets with the objective of minimizing the pseudo-rulerbead. It is possible to devise clever heuristics
to meet this objective. Here, we provide a simple heuristat proved very effective in our experiments.
Our NLT merging algorithm works as follows.

e Sort the NLTs according to the number of rules in them.

18

field1l field2

1011 1001
l LPM table field1 l LPM table field2
1* 11000|1|1|- * 00001 |- |-
00* (0100|1 |- |- 00* |0100|1|1 |-
01* |0100|-|1 |- 11* |0100|1 |- |1
101*1010|1 |1 |1 100*/0010|1 |1 |1
matching prefixes |\
prefixes NLT bit-map
101*1010||1 |1 |1 NL/PL bit-map
100*/0010||1 |1 |1
l PLT intersection
101* 10101 |1
100*/0010(|1 |1

TR

l_,

[1,0]] [1,2]] [2,1]] NLT table

v v v

Create PLT
v

<1, *> 0] L i
oF |
<1, 100>; [18,'5] [1,1] matching rules
<101, 10(1> [2,1] - 21 > ra
Create Keys BF
Blo(:)r;(;i?ti:rs NLT rule tables

Figure 9: Using NLT based grouping to form the subsets. Each prefix enyr in LPM table needs a NL/PL
bit-map and another bit-map indicating the NLTs to which the prefix or its sub-prefixes belong.

e Pick the most densgNLTs wherey is the given limit on the number of subsets. Merge the remgini
NLTs to thesey NLTs.

e While any of the remaining NLTs can be merged with any one gnbe fixedg NLTs, a blind
merging will not be effective. To optimize the merging presewe choose the most appropriate NLT
to merge with as follows. Take the “distance” between the NLand each of the fixeg NLTSs.

We merge the NLTi with an NLT having minimum distance. In case of a tie, chodse NLT
with minimum rules to merge with. We define the distance betwie two NLTs to be the sum of
differences between individual field nested levels. Faainse, the NLT [4, 3, 1, 2, 1]and [4, 1, O, 2,
1] have a distance d8 — 1| + |1 — 0| = 3. The intuition behind the concept of distance is that when
the distance between the NLTs is large, it is likely that ond Mill have several descendant nodes
corresponding to the nodes in another NLTs thereby potintigeating a large crossproduct. Shorter
distance will potentially generate fewer crossproducts.

e Although, merging helps us reduce the number of NLTSs, it ddhresult in a large number of
crossproducts. At this point, while merging a NLT with arathwe try to insert a rule and see

19

acll ——
acl2 _
ac|3
aclg -
acl5 B
acl1s
acl2s -
acl3s -
aclds -
aclss ——— |
fw1i

fwz
fw3 1
: fwis

fw2s
0.3 i fw3s - |
ipcl -
0.2 ipc2 o
ipc;s —
ipc2s
0.1 P .
0 20 40 60 80 100 120 140 160

#NLTs

Cumulative fraction of rules

Figure 10:Cumulative distribution of the rules across NLTs. More than 90% rules are contained within just
40 NLTs.

how many pseudo-rules it generates. If the number excedd®shold then we don't insert it. We
consider it to be a “spoiler”. We denote byhis threshold on pseudo-rules to consider a rule spoiler.
All the spoilers can be taken care of by some other efficiasitriigue such as a tiny on-chip TCAM.
We emphasize that such an architecture will be significastiBaper and power efficient compared to
using a TCAM for all the rules. As we will see, our experimesti®w that the spoilers are typically
less than 1% to 2% and hence the required TCAM is not a signtfmaerhead.

In summary, given a fixed number of subsets, we begin by foomaf NLTs. If the the NLTs are greater
than the subset limit, we pick the most dense NLTs equal totneber of subsets and merge the remaining
NLTSs to these fixed NLTs. While merging, we isolate the spsild his proves to be an effective technique
to meet the objective of containing the tuples as well asaeduthe spoilers, as indicated by the results
presented in Table 1. We denote dyhe ratio of the size of the new rule set after executing ogorgthm,
to the size of the original rule set (after range to prefix egoan). We experimented with different values
of g, i.e. the desired limit on NLTs. The pseudo-rule threshodd arbitrarily fixed ta = 20.

From the results it is clear that even with the number of sishas small as 16, the rule set can be
partitioned without much expansion overhead. The averagarsion factor foy = 16 is just 1.43. Among
the 20 rule sets considered above, the maximum expansiombeasved to be almost four times (acl3s)
for 16 subsets. For all the other rule sets, the expansiasssthan two times. Furthermore, it can also be
observed that as we increase the number of subsets, thesexpdecreases as expected. However this trend
has an exception for fw3s where bath= 24 andg = 32 show larger expansion comparedgte= 16. This
is because the = 16 configuration throws out more spoilers compared te 24 andg = 32. Thus, our
algorithm in this particular case trades off more spoilerddss expansion. Overall, it can also be observed
that the spoilers are very few, on an average: 2%. As we increase the number of subsets, the spoilers
are reduced significantly. Clearly,= 32 is the most attractive choice for the number of subsets dtieeto
small number of spoilers and the small expansion factor.

20

TZ

g=16 g=24 g=32

rule set| rules | ¢ PLT | NLT | prefixes| a | 3 a |p a |p

acll 1247 | 2.4e+4| 79 31 610 1.03| 0.00| 1.03| 0.00 | 1.00| 0.00
acl2 1216 | 7.6e+3| 195 57 437 1.93(4.19|1.24| 1.40 | 1.17| 0.00
acl3 4405 | 2.3e+5| 367 63 1211 1.29|4.45| 1.16| 0.75 | 1.14| 0.25
acla 5358 | 4.3e+5| 397 107 | 1445 1.74| 7.95| 1.52| 2.24 | 1.20| 0.62
acls 4668 | 7.0e+2| 69 14 304 1.00| 0.00| 1.00| 0.00 | 1.00| 0.00
aclls 12507 | 3.2e+4| 1349 | 45 1524 1.03| 0.28| 1.00| 0.10 | 1.00| 0.00
acl2s 18589 | 1.0e+3| 6131 | 107 | 626 1.12|2.32|1.14| 056 | 1.14| 0.39
acl3s 17395| 2.5e+4| 4136 | 81 947 3.99| 0.71| 227|054 | 2.26| 0.21
acl4ds 16291 | 4.4e+4| 4003 | 130 | 1090 146 2.22| 1.45| 0.53 | 1.42| 0.42
acl5s 13545| 2.3e+4| 1197 | 31 2401 1.03| 0.00| 1.00| 0.00 | 1.00| 0.00
fwl 914 3.0e+5| 221 37 205 1.37(0.11| 1.10| 0.11 | 1.03| 0.00
fw2 543 7.4e+3| 159 21 132 1.06| 0.00| 1.00| 0.00 | 1.00| 0.00
fw3 409 1.6e+4| 169 29 147 1.25(0.00| 1.03| 0.00 | 1.00| 0.00
fwls 32135| 5.7e+6| 237 50 337 1.92(10.80| 1.15| 0.012| 1.09 | 0.006
fw2s 26234 | 1.5e+3| 11016 95 271 1.60(2.81|1.46| 1.47 | 1.46| 0.42
fw3s 24990| 6.7e+3| 11296 | 151 | 460 1.53|6.45| 205|145 | 1.80| 0.94
ipcl 2179 | 1.9e+5| 244 83 396 1.73|5.69| 2.10| 1.19 | 1.41| 0.73
ipc2 134 3.1e+2| 8 8 72 1.00| 0.00| 1.00| 0.00 | 1.00| 0.00
ipcls 12725| 6.0e+4| 3433 | 65 519 1.86(1.09| 1.12| 0.26 | 1.03| 0.09
ipc2s 9529 | 1.7e+4| 782 11 4596 1.00| 0.00| 1.00| 0.00 | 1.00| 0.00

lavg | \ \ \ \ | 1.43]1.95]1.28[0.70 | 1.20] 0.34 |

Table 1:Results with different rule sets.§ denotes the expansion factor on the original rule set afteraive crossproducta denotes the expansion factor on
the original rule set after Multi-subset Crossproduct. 3 denotes thepercentagef the original rules which are treated as spoilers.

6 Architecture

In this section we describe the architecture of the entiséesy and discuss some of the engineering consid-
erations in a hardware implementation of our algorithm.

6.1 Hash Table Architecture

An important issue in any hash table based algorithm is afaied hash collisions. To reduce the collisions
in the hash table, Song et. al. propose a Fast Hash Table (&idfitecture [9]. We borrow the example
from [9] and show how FHT functions using Figure 11(A). As flgares shows, four items, y, z andw

are being inserted in the hash table and the counters of thetsuto which they hash are incremented. After
the hash table is pruned by removing the unnecessary cdpies ikems, it looks as shown in Figure 11(B).
This hash table significantly reduces the collisions whictkes it suitable for our purpose. In fact, all we
need to do is to convert our ordinary Bloom filter into a congtBloom filter and associate a hash bucket
with it. Each hash bucket keeps the pointer to the list of #émmshed to it. As will be explained in the next
subsection, we use the ratio of 16 hash buckets per item. #i&hatio, using the results from [9], it can
be shown that among 128K items, there are only less than M5 itieat collide. This is an acceptably small
number of collisions and the colliding items can be kept end¢h-chip memory. Therefore, it is reasonable
to assume that the with FHT, we need only one memory accesadoan item from the hash table.

We modify FHT to further reduce the memory consumption by pm@ssing the pointer arrayNote
that the bucket associated with a non-empty item list issspar an FHT. This sparsity can be exploited to
compress the pointer array. Figure 11 explains how exaat\c@mpress the pointer array. Lktbe the
number of items stored in@&-bucket array wheré, < m. We divide the array into smaller segmentssof
buckets. For each bucket we maintain a bit indicating if aésupied or not. Then we keep a pointer to the
first item falling in that segment. The first item of all the etHists in that segment are kept in successive
memory locations in the item memory. Each of these items eaascbessed with reference to the pointer to
the firstitem. When an item in a bucket is to be accessed, wek¢besee if the bucket is occupied or not. If
it is, then we count the number of bits set to 1 within that sexghup to the given bucket and add this offset
to the base pointer to get the required item. For instanagsider the bucket number 4 in the figure which
contains the item. To access this item, we first see if the bit correspondindpédoucket is set. Then we
count the number of bits set to 1 before the given bit withiat #egment. There is just one bit set before
the bit corresponding te. Hence we add the offset 1 to the base pointer associatedhaitlsegment and
access the required item. Here, the base pointer pointsatad 2 is arranged right next to it. Hence we
retrievez.

With this technique, we need justsabit vector and a pointer to the first item within that segmast
opposed ta pointers. If the length of a pointer ihits, it results in a space reduction frombits tos + ¢
bits. The bit-vector and the base pointer can be arrangegactiy in the SRAM as shown in the figure
(D). This compression technique using bit-vector is not.néwhas been used in various data structures
previously including the encoding of the multibit-trie [SHowever, its application in the context of hash
table compression is new. Any hash table can be compressbdhig bit-vector technique. In the next
subsection, we will evaluate the amount of memory requicedHe counting Bloom filters and the pointer
array to achieve a desired performance.

6.2 Memory Requirement

There are three data structures in our algorithm that coesmemory. First is the counting Bloom filter,
second is the pointer array, and the third is the actual itermary.

1This compression scheme was jointly developed by Haoyu &nddSarang Dharmapurikar.

22

2 —~x I~ w { 2 —x I~ w {
0 / 0 /
N 5 x -y [wll & | [7
1 z 1 —{z |
y o)z y 0 /
2 — X y N 2| [/
. 0)z z 0 /
1 z 1 /
w 2 z i~ wl{ w 2 4
0 / 0 /
1 —{y 1 —=y K
0 / 0 /
(A) Basic EBF (B) EBF after pruning
2| [a] 4 [—Fx [F{w]K
0 0 z
3 | o °
X L1
1 1 ¢
y o [of [7]
2 | O]
Z 0 70 11 0/ 0| 1 X
1 0 0| 0| 0] O / z
w 2 | o] 0| 0| 1] 0 y
0 | 0] w
] [[Ty K :
. 0 Pointer memory Item memory
(C) Compressed EBF (D) Memory layout

Figure 11:lllustration of Fast Hash Table and its compression. The exaple is borrowed from [9]. (A) The
basic FHT (B) FHT after pruning (C) Compressing pointer array (D) Arranging pointer array compactly in
memory

Item Memory: The item memory consists of two types of items: prefixes fidhal four fields and rules.
The prefix entries in the LPM table depend on the algorithm @se. When we implement the NLTSS
algorithm explained in Section 5.2, the optimized prefixrershown in Figure 9 contains the 32-bit IP
prefix, 32 bits for the PL/NL bit-map, angbits for the NLT bitmap for as many NLTs. For a port prefix, we
need 16 bits of prefix and 16 bits of PL/NL bitmap, hence 32Ibi#s. However, for the sake of uniformity,
we will use the same amount of space for port prefixes as useg sdress prefixes. Hence a prefix entry
needs 644+2 bits, the last 2 bits being used for specifying the paldictield out of source/destination IP
and source/destination port. We round it up to the nearelttpteuof 36 since SRAM memory is available
with this word size. Thus, a single prefix entry requibgs,rss bits given as follows.

bnrrss = [(66 + g)/36] x 36 (5)

For the NLTMG, algorithm, the LPM data structure is as shown in Figure 2(B each prefix, we
maintain a word which contains the prefix length informatadrall the g subsets. Each entry in this array
takes a value between 0¥ or NULL whereW is the maximum length of the prefix. Therefore, there are
W + 2 possible values requirinffog2 (W + 2)] bits per entry, which is 6 bits for the IP addresses and 5
bits for the ports. For an IP prefix, we would need 33 bits tacBpea prefix of arbitrary lengthg x 6 bits
to maintain the sub-prefix information for tlgesubsets, and finally 2 more bits to indicate the field that the

23

prefix belongs to. Totally, we nedid + 34 bits to store prefix item for this algorithm. Rounding it upthe
nearest multiple of 36 gives ws;.71:c, bits per entry given as follows.

bNLTMCg = [(69 + 34)/361 x 36 (6)

The actual rule can be specified by using 33 bits for each scamd destination IP, 17 bits for each
source and destination port, and 9 bits for protocol. If weligbits for the next pointer, a rule item requires
126 bits totally. Again, we round it up to 144.

To compute the average numbeiitefn byteer original rule, incorporating all of the above paramster
we use the following formula:

#rules X ag x 144 + #prefizes x b)
#rules x 8

where,b is byr7ss Of byrrmc, depending on the algorithm. amg, is 1 for NLTSS and as specified in
Table 1 for the NLTMC withg = 16, 24 and 32 subsets.

Bloom filters and pointer array: Now we compute the memory required for Bloom filters and pint
array.

We usek = 12 hash functions and set buckets per item to 16 {h¢n = 16) which gives a false positive
probability of 0.00046, low enough for our purpose. Keepimg ratio ofi/n fixed, we experiment with
different values ofn. Since FHT needs a counting Bloom filter, each bucket of tlo@l filter is a counter
of 2 bits. Moreover, associated with each bucket of the Blditer is a hash table bucket containing
the pointer to the actual items. Therefore, we haveointers forn items. If we restrict the maximum
number of items in each Bloom filter to 64K, then we can use aitlpdinter. We compress the array as
described earlier using = 16 as the segment length. Thus, for every 16 entries of the ,amayhave a
16-bit vector and 16-bit pointer. Therefore, the memorystonption per bucket due to the pointer array is
((m/16) x (16 4+ 16))/m = 2 bits. The total memory consumptigrer bucketue to the pointer array and
the counting Bloom filter together is ndv+ 2 = 4 bits. Since there are 16 buckets per itenyt = 16),
the number of bits per item isx 16 = 64. The total number of items in the system is simply the number o
rules after expansion (#ruleso) plus the unique prefixes of all the fields. Hence the memongamption
per original rule inbytesdue to the Bloom filters and the pointer array is

M,y =

64 x (ag x #rules + #prefizes) ®)
H#rules X 8

Again, o, = 1 for the NLTSS algorithm. The average bytes required peimalgule is therefore just the
sum of the two components:

Mon =

M = M,s + M,, 9)

We evaluated this memory requirement for each of our ruke seid the numbers are shown in Table 2.

As the table shows, the NLTSS algorithm requires fewer byoespared to all the configurations of the
NLTMC algorithm. This is due to two reasons. First, thereukerset expansion due to crossproducts in
NLTMC which is absent from the NLTSS algorithm. Second, NLEMequires a wider word for each prefix
entry in the LPM table. As we increase the number of subseis ft6 to 32, some interesting observations
can be made about memory requirement for different rule setmsider for instance acll rule set. With
increase in the number of subsets, the LPM entry becomeg atidhence requires more off-chip memory
per rule. On the other hand, acl4 shows exactly oppositel tr&his is because, with fewer subsets, acl4
shows a higher factor of rule set expansion due to crossptedidence, with fewer subsets, the overall
memory required per rule is larger. A combination of botht@de factors can be seen in acl2 where the
memory requirement is highest fgr= 16 subsets, lowest fay = 24 subsets and between these two values
for g = 32 configuration. This is because, with 16 subsets, there isach rule set expansion that dwarfs

24

T4

rule set NLTSS NLTMC
g =16 g=24 g =32

Memory Throughput Memory Throughput Memory Throughput Memory Throughput
My, | Moy | <416 |8 || Moy | Mog | <416 |8 | Moy | Moy | <46 |8 | My, | Moy | <46 |8
acll 12 25 38 [25]19| 12 28 38 | 25|19 12 30 25 [25(19]12 34 19 | 19|19
acl2 11 25 38 [25|19 18 42 38 | 25|19 13 31 25 [25(19]12 33 19 | 19|19
acl3 10 23 38 [25]19| 12 29 38 | 25|19 11 28 25 [25(19 |11 30 19 | 19|19
acl4 10 25 25 [25|19 16 37 38 | 25|19 14 34 25 [25(19]12 31 19 | 19|19

acls 8 19 38 2519 8 20 38 |125/19|8 20 25 | 25|19 8 21 19 |19 19
aclls 9 21 38 2519 9 21 38 |25/19|9 21 25 |25/19|9 22 19 |19 19
acl2s 8 19 25 |25]119] 9 21 38 251199 22 25 |25/19|9 22 19 |19 19
acl3s 8 20 25 | 25]19]| 33 73 38 | 25|19 19 43 25 | 25|19 19 43 19 |19 19
aclds 8 20 25 | 25119 12 28 38 | 25|19 12 28 25 | 25|19 12 28 19 |19 19
acl5s 9 21 38 |25]19]| 9 22 38 251199 22 25 |25/19|9 24 19 |19 19

fwl 10 22 38 | 25|19 13 29 38 | 25|19 10 25 25 | 25|19 10 26 19 |19 19
fw2 10 22 38 | 25|19 10 24 38 | 25|19 10 24 25 | 25|19] 10 26 19 |19 19
fw3 11 23 38 | 25|19 13 29 38 |25]/19|11 27 25 | 25|19| 11 30 19 |19 19
fwls 8 19 38 | 25|19 15 35 38 |25/19|9 21 25 |25/19|9 20 19 |19 19
fw2s 8 19 25 | 25]19]| 13 29 38 | 25|19 12 27 25 | 25|19 12 27 19 |19 19
fw3s 8 19 19 | 19|19 12 28 38 | 25|19 17 38 25 | 25|19 15 33 19 |19 19
ipcl 9 23 25 | 25119 15 35 38 | 25|19 18 42 25 | 25|19 13 32 19 |19 19
ipc2 12 26 38 | 25|19 12 28 38 | 25|19 12 31 25 | 25|19 12 35 19 |19 19
ipcls 8 19 38 | 25|19 15 35 38 251199 22 25 | 25|19 8 20 19 |19 19
ipc2s 12 25 38 | 25|19 12 27 38 | 25|19 12 29 25 | 25|19 12 34 19 |19 19

lavg |10 [22 [34 [25]19[14 |31 |38 [25[19]12 [29 [25 [25|19|12 [29 |19 [19]19]

Table 2:The performance of different algorithms with different par ameters. M,,, and M, denote the average on-chip and off-chip memory in bytes per
rule. The throughputis in Million Packets per second. Throughput was computed for different number of matching rules pe packets,p < 4,p = 6,p = 8.
When p < 4, LPM is the bottleneck and throughput is decided by how wide he LPM entry is.

the effect of shorter LPM entry, thereby requiring a largeioant of memory per rule. With 24 subsets, the
expansion gets reduced and its effect dominates the ircieabe LPM entry size. With 32 subsets, the
LPM entry becomes wider and hence results in more memoryupewhile the effect of reduced expansion
is not much. Thus, different NLTMC configurations are sugdbr different rule sets. Although, it is clear
that, NLTSS always beats all the configurations of NLTMC mrtg of memory efficiency due to the reasons
mentioned above.

On the other hand, NLTMC requires fewer and fixed number obstshof rules whereas the NLTSS
requires many more, potentially up to 151 as the results bfeTa indicate. Fewer subsets also implies
a fewer Bloom filters and hence a more resource efficient @atire. Thus, potentially we can save a
significant amount of logic gates resources required toempht Bloom filters if we choose NLTMC, but
at the cost of more memory.

6.3 Classification Throughput

The speed of the classification depends on multiple parameigcluding the implementation choice
(pipelined/non-pipelined), the number of memory chipsdufse off-chip tables, the memory technology
used, and the number of matching rules per packet (i.e. the wép). We will make the following assump-
tions.

Memory technology: We will assume the availability of a 300 MHz DDR SRAM chips wi6-bit
wide data bus which are available commercially. Such SRAMalbow reading two 36-bit words in each
clock cycle of a 300 MHz clock. The smallest burst length is tmords (72 bits).

Pipelining: We will use a pipelined implementation of the algorithm. Tingt stage of pipeline executes
the LPM on all the fields and the second stage executes théonKaep. In order to pipeline them, we will
need two separate memory chips, the first containing the Ladi$ and the second containing rules. Here,
we will also need two separate sets of Bloom filters, the fosLPM and the second for rule lookup. Let
Tipm denote the time to perform a single LPM lookup in the off-chipmory in terms of the number of
clock cycles of the system clock. Likewise, let,;. be the time required for a single rule lookup. If a
packet matcheg rules in a rule set then, with a pipelined implementationaekpt can be classified in time
max{47ypm, pTrule }- Typically, p is < 6 as noted in [8] [6]. We will evaluate the throughput for ditfat
values ofp.

Choice of algorithm: As before, we have a choice between NLTSS and NLTMC. It shbalcecalled
that depending on the algorithm and the configuration udea width of an LPM entry can be differ-
ent. Therefore, LPM lookup timerg,,,) is different for these two algorithms and different confafions
of NLTMC. Secondly, for the NLTSS, the LPM entry width difeewith the rule set under consideration
whereas it is constant with a specific configuration for NLTM@ evaluate the throughput for each rule
set. Finally, we always need to read the data in the burstg bftg (2 words, 36 bits each) due to which we
might need to read more words than we actually need. This tibaffect the throughput. Letr,,,, nr7s5)
and7(,m, N1 M C,) denote the time in clock ticks (of 300MHz clock) to read a LPMrg for NLTSS and
NLTMC,, respectively. These can be expressed as follows.

Tpm,NLTSS) = |bNLTSS/T2] (10)
and
Tpm,NLTMCy) = [ONLTMC,/T2] (11)
Recall that each rule can fit in 144 bits and needs exactly tackaycles to read. Hencg.,,. = 2.
The throughput can be given as

300 x 106
maz{47(pm NLTSS)s 2P}

RyiTss = packets/second (12)

26

and
300 x 106

Maz{ 4T (1pm, NLTMC,)> 2P}

The throughput is shown in the Table 2. Let's consider thee aasNLTSS. Whenp < 4, the
maz{ 4T pm NLTSS) 2P} = 4Tpm,NLTSs) @nd hence, the LPM phase becomes the bottleneck in the
pipeline hence throughput depends on how wide the LPM estnyitican be seen that a throughput of
38 million packets per second (Mpps) can be achieved for sueesets having fewer NLTs and hence
shorter LPM entry. When the matching rules per packet iragaule matching phase becomes the bottle-
neck and limits the throughput. With= 6, the throughput is 25 Mpps and with= 8, it is 19 Mpps. In
some cases, such as fw3s, the LPM entry is so wide that the LtRigepcontinues to be the bottleneck and
limits the throughput to 19 Mpps even if the matching rulespzeket is 8.

Now, let's consider the NLTMgalgorithm. As mentioned before, for each valuegaghe LPM entry
has a fixed width across all the rule sets. Therefore thrautgispconstant for all the rule sets. As can be
seen from the table, just like

Forg = 16 andp < 4, LPM is bottleneck but since the LPM word is short due to seralumber of
subsets, the throughput can be as high as 38 Mpppg.idgeases, throughput decreases since rule matching
becomes the bottleneck. Likewise, fpe= 24, LPM is the bottleneck up tp = 6 and throughput is limited
to 25 Mpps. Withp = 8, rule matching is the bottleneck and throughput reduce® tdlfips. Forg = 32,
whenp < 4, the throughput is 19 Mpps because LPM is the bottleneck@wede entry and it continues to
be the bottleneck evenif = 8.

With NLTMC, it is clear that the configuration with fewer s@s gives better throughput due to shorter
LPM words. On the other hand, it should be recalled that it @iap cause more memory consumption
due to more crossproducts as discussed above. Hence tletmade-off between throughput and memory
requirement. Another interesting point to note is that imeaases, NLTSS shows a better throughput than
NLTMC;6 and in some cases it is the opposite. In case of fw3s, all thEMML configurations offer a
consistently high throughput because there are 151 bitseitNLT bit-map of the LPM entries of NLTSS
which slows it down. Hence, in such cases, restricting thaber of subsets to a smaller value through
merging and crossproducts makes sense. Overall, it carebetlsat the throughput depends on the nature
of the rule set and appropriate configuration can be chosrstiits the requirements.

Ryrrme, = packets/second (13)

7 Summary

TCAM is widely used for high-speed packet classification. wieeer, due to the excessive power con-
sumption and the high cost of TCAM devices, algorithmic 8ohs that are cost-effective, fast and power-
efficient are still of great interest. In this paper, we pragpan efficient solution that meets all of the above
criteria to a great extent. Our solution combines BloomrBliemplemented in high-speed on-chip memories
with our Multi-Subset Crossproducting Algorithm. Our alijlom can classify a single packet in oyt p
memory accesses on an average wipdssthe number of rules a given packet can match. The cladsifica
reports all then matching rules. Hence, our solution is naturally a multichaalgorithm. Furthermore, the
pipelined implementation of our algorithm can classify kggte inmaxz{4, p} memory accesses.

Due to its primary reliance on memory, our algorithm is poeftficient. It consumes about an average
30 to 36 bytes per rule of memory (on-chip and off-chip coretdin Hence rule sets as large as 128K can
be easily supported in less than 5MB of SRAM. Using two 300MB8zbit wide SRAM chips, packets can
be classified at OC-192 speed.

References

(1]

(2]

(3]
(4]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

IDT Generic Part: 71P72604
. http://www.idt.com/?catiD=58745&genID=71P72604.

IDT Generic Part: 75K72100
. http://www.idt.com/?catIiD=58523&genID=75K72100.

Florin Baboescu and George Varghese. Scalable Packssifitation. IACM SIGCOMM 2001.

Sarang Dharmapurikar, P. Krishnamurthy, and Dave Taylmngest Prefix Matching using Bloom Filters. ACM SIG-
COMM, August 2003.

Will Eatherton. Fast IP Lookup Using Tree Bitmayashington University Master Thesi®©99.
Pankaj Gupta and Nick McKeown. Packet classification aitiple fields. INACM SIGCOMM 1999.

T. V. Lakshman and D. Stiliadis. High-speed policy-bdgacket forwarding using efficient multi-dimensional ramgatch-
ing. InACM SIGCOMM 1998.

K. Lakshminarayanan, Anand Rangarajan, and SrinivA&nkatachary. Algorithms for Advanced Packet Classiforati
using Ternary CAM. IMACM SIGCOMM 2005.

Haoyu Song, Sarang Dharmarpurikar, Jonathan TurndrJahn Lockwood. Fast Hash Table Lookup Using Extended Bloom
Filter: An Aid to Network Processing. IACM SIGCOMM 2005.

V. Srinivasan, Subhash Suri, and George Varghese. éP@ikssification Using Tuple Space SearchAGM SIGCOMM
1999.

V. Srinivasan, George Varghese, Subhash Suri, and éllvaldvogel. Fast and Scalable Layer Four Switching AGM
SIGCOMM 1998.

David Taylor and Jon Turner. Scalable Packet ClassifindJsing Distributed Crossproducting of Field Labels. IFEE
INFOCOM, July 2005.

David E. Taylor. Survey and taxonomy of packet clasatfin techniquesiashington University Technical Report, WUCSE-
2004 2004.

David E. Taylor and Jonathan S. Turner. Classbench: gkéeClassification Benchmark. IEEE INFOCOM 2005.

Fang Yu and Randy H. Katz. Efficient Multi-Match Packédassification with TCAM. INnIEEE Hot InterconnectsAugust
2003.

Fang Yu, T. V. Lakshman, Martin Austin Motoyama, and Bai. Katz. Ssa: a power and memory efficient scheme to
multi-match packet classification. KINCS '05: Proceedings of the 2005 symposium on Architedtureetworking and
communications systenf2005.

28

	Fast Packet Classification Using Bloom Filters
	Recommended Citation
	Fast Packet Classification Using Bloom Filters

	tmp.1418149444.pdf.KtXew

