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Abstract of The Dissertation

Essays on Macro-Finance Asset Pricing Models and Estimation

by

Kyu Ho Kang

Doctor of Philosophy in Economics

Washington University in St. Louis, 2010

Professor Siddhartha Chib, Chair

In my dissertation, I focus on theoretical asset pricing models and the development

of Bayesian econometric methods to estimate them, particularly in the area of bond

pricing.

The first essay theoretically and empirically examines structural changes in a

dynamic term-structure model of zero-coupon bond yields. To do this, we develop a

new arbitrage-free one latent and two macro-economics factor affine model to price

default-free bonds when all model parameters are subject to change at unknown

time points. The bonds in our set-up can be priced straightforwardly once the

change-point model is formulated as a specific unidirectional Markov process. We

consider five versions of our general model - with 0, 1, 2, 3 and 4 change-points -

to a collection of 16 yields measured quarterly over the period 1972:I to 2007:IV.

Our empirical approach to inference is fully Bayesian with priors set up to reflect

the assumption of a positive term-premium. The use of Bayesian techniques is

particularly relevant because the models are high-dimensional and non-linear, and

because it is more straightforward to compare our different change-point models

from the Bayesian perspective. Our estimation results indicate that the model

with 3 change-points is most supported by the data and that the breaks occurred
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in 1980:II, 1985:IV and 1995:II. These dates correspond (in turn) to the time of

a change in monetary policy, the onset of what is termed the great moderation,

and the start of technology driven period of economic growth. We also utilize the

Bayesian framework to derive the out-of-sample predictive densities of the term-

structure. We find that the forecasting performance of the 3 change-point model is

substantially better than that of the other models we examine.

In the second essay, we develop and estimate a model of the term structure

of interest rates within the context of a Dynamic Stochastic General Equilibrium

model. The model features multiple monetary policy and volatility regimes. We

estimate this model by Bayesian methods. Our estimation results reveal that U.S.

monetary policy has become “more active” since 1995:Q2, that during this period,

the average term premium has fallen, and that the price of regime shift risk is

always significantly positive over time. These findings highlight the important role

that general equilibrium modeling can play in understanding the complex dynamics

of the term structure.
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Chapter 1

Change Points in Affine Term-Structure Models:

Pricing, Estimation and Forecasting

Kyu Ho Kang and Siddhartha Chib

1.1 Introduction

In this paper we theoretically and empirically examine structural changes in a dy-

namic term-structure model of zero-coupon bond yields. We do our analysis in the

setting of arbitrage-free multi-factor affine models of the type developed in Duffie

and Kan (1996) and Dai and Singleton (2000) though we allow for both latent and

macro-economic factors along the lines of Ang and Piazzesi (2003), Ang, Dong, and

Piazzesi (2007) and Chib and Ergashev (2009). We depart from the existing mod-

eling of structural changes, however, by relying on a change point process rather

than the Markov switching process of Dai, Singleton, and Yang (2007), Bansal and

Zhou (2002), and Ang, Bekaert, and Wei (2008).

The model we develop and estimate provides a new perspective on the dynamics

of zero-coupon bond prices and yields. One reason is because our change-point

approach reflects a different view of regime-changes. In a change point specification,
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a regime once occupied and vacated is never visited again. In contrast, in a Markov

switching model, the regimes recur, which implies that a regime occupied in the

past (whether distant or near) can occur in the future. The latter assumption may

not be germane if one believes that the confluence of conditions that determine a

regime are unique and not repeated.

Another reason is because we derive bond prices under the assumption that all

parameters in the model can change whereas in previous work some parameters are

assumed to be constant across regimes. Thus, in our formulation, we do not have

to decide which parameters are constant and which break. As we show, bond prices

can be obtained straightforwardly once the change point process is formulated in

the manner of Chib (1998) as a specific unidirectional Markov process.

A third reason is because in our empirical analysis we deal with a larger set

of maturities than in previous work. This allows us to get finer view of the term-

structure than is possible with a smaller set of maturities. In particular, we apply

our model to 16 yields of US T-bills measured quarterly between 1972:I and 2007:IV.

An added benefit of working with these many yields is that (in comparison with

models with fewer yields) the model with 16 yields produces the best forecasts of the

term-structure. The reason for this, which apparently has not been documented or

exploited before, is that the addition of new yields introduces only the parameters

that represent the pricing error variances, but because the parameters are subject to

several cross-equation restrictions, the additional outcomes are helpful in estimation

and, hence, in predictive inferences.

A notable aspect of our approach is that the prior distribution is motivated

by economic considerations. In particular, our prior on the parameters reflects

2



the assumption of a positive term-premium, following Chib and Ergashev (2009).

Another aspect is that our estimation approach which is implemented by tuned

Markov chain Monte Carlo methods, is both feasible and reliable. We apply this

approach successfully to fit a model that has 209 parameters. Models of this size in

this context would be difficult to fit by non-Bayesian methods because of the severe

non-linearities and the potential multi-modality of the likelihood function. Our

Bayesian approach is also relevant in this context because it offers a straightforward

way to compare different change point models through marginal likelihoods and

Bayes factors.

Our empirical analysis is organized around 5 different versions of the general

model. These models, which we label asM0,M1,M2,M3 andM4, contain 0, 1, 2,

3 and 4 change-points, respectively. Our main findings are as follows. The 3 change

point model, M3, is the one that is most supported by the data (in comparison

with models with 0, 1, 2 and 4 change-points) and that the breaks occurred in

1980:II, 1985:IV and 1995:II. These change-points can be attributed, in turn, to

changes in monetary policy, the onset of what is termed the great moderation,

and the start of the technology driven period of economic growth. Thus, the most

recent break occurs in 1995, not 1985, as is commonly believed. That the underlying

distribution of the term-structure is different in the regimes isolated by these change-

points can be seen in Figure 1.1 where we display the 5%, 50% and 95% quantiles

of the yield curve data categorized by regime. As we discus below, the model

estimation reveals that the parameters across regimes are substantially different,

which provides support to our approach of letting all the parameters vary across

regimes. We find, for instance, that the mean-reversion parameters in the factor

3



dynamics and the factor loadings are regime-specific. We conclude our empirical

analysis by predicting the yield curve out-of-sample and find that the predictive

performance of our best model is substantially better than that of the other models

we consider.
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Figure 1.1: Term structure of interest rates

The rest of the paper is organized as follows. In Section 1.2 we present our change

point term-structure model and derive the resulting bond prices. We outline the

prior-posterior analysis of our model in Section 1.3, deferring details of the MCMC

simulation procedure to the appendix of the paper. Section 1.4 deals with the

empirical analysis of the real data and Section 1.5 has our conclusions.

1.2 Model Specification

In this section we develop our model of bond pricing under regime changes. Essen-

tially, we will explain the dynamics of bond prices in terms of the evolution of a

discrete time, discrete-state variable {st} that takes one of the values {1, 2, ..,m+1}

such that st = j indicates that the time t observation has been drawn from the jth
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regime, and in terms of the evolution of three continuous factors ft consisting of

one latent variable ut and two observed macroeconomic variables mt. Let Pt(st, τ)

denote the price of the bond at time t in regime st that matures in period (t + τ).

Then, under risk-neutral (or arbitrage-free) pricing, we have that

Pt(st, τ) = Et [κt,st,t+1Pt+1(st+1, τ − 1)] (1.2.1)

where Et is the expectation over (ft+1, st+1), conditioned on (ft, st), under the physi-

cal measure, and κt,st,t+1 is the stochastic discount factor (SDF) that converts a time

(t+1) payoff into a payoff at time t in regime st. The corresponding state-dependent

yields for each time t and maturity τ are thence available as

Rt,τ,st = − logPt(st, τ)

τ

Our goal now is to characterize the stochastic evolution of st and the factors ft

and describe our model of the SDF κt,st,t+1 in terms of the short-rate process and

the market price of factor risks. Given these ingredients, we then derive the prices

of our default-free zero coupon bonds that satisfy the preceding risk-neutral pricing

condition.

1.2.1 Change Point Process

We assume that the process of regime-changes is governed by st ∈ {1, 2, ...,m+ 1}.

When st = j, the tth observation is assumed to be drawn from regime j. We refer

to the times {t1, t2, ..., tm} at which st jumps from one value to the next as the

5



change-points. We will suppose that the parameters in the (m+ 1) regimes induced

by these m change-points are different. As mentioned in Section 1, we describe the

stochastic evolution of st in terms of a change point instead of a Markov switching

process. In this we follow Chib (1998). We suppose that from one time period to

the next st can either stay at the current value j or jump to the next higher value

(j + 1). In this sense {st} can be viewed as a unidirectional process. Thus, in this

formulation, return visits to a previously occupied state are not possible. Then,

it follows that the jth change point occurs at time (say) tj when stj−1 = j and

stj = j + 1 (j = 1, 2, ..,m). We further assume that st follows a Markov process

with transition probabilities given by

P =



p11 1− p11 0 · · · 0

0 p22 1− p22 · · · 0

0 0 p33 0

...
...

. . .

0 0 0 pm+1,m+1


(1.2.2)

where pjk = Pr[st+1 = k|st = j] and, pjk = 1 − pjj, k = j + 1 and pm+1,m+1 = 1

(j = 1, 2, ..,m).

A feature of this specification is an absorbing terminal state. This is intentional

because in any setting with a finite observation window one must have an upper

limit on the number of change-points (equivalently, the number of possible regimes).

An upper limit on the number of change-points does not rule out, however, the

possibility of breaks beyond the observation window. Although such breaks can

occur it is not possible to make inferences about them from the sample data without

6



making consequential and unverifiable assumptions.

An interesting point is that we can assume that the (infinitely lived) economic

agents face a possible infinity of change-points. Regardless of the number of change

points, however, as is typical in finance and economic theorizing, we assume that

these agents know the parameters in the various regimes. Furthermore, in the asset

pricing context, we assume that these agents know the current value of the state

variable. The central uncertainty from the perspective of these agents is that the

state of the next period is random - either the current regime continues or the next

possible regime emerges.

This formulation of the change point model in terms of a restricted unidirectional

Markov process facilitates bond pricing (as we show below). It also makes obvious

how the change point assumption differs from the Markov-switching regime process

in Dai et al. (2007), Bansal and Zhou (2002) and Ang et al. (2008) where the

transition probability matrix is unrestricted and previously occupied states can be

revisited. As we have argued above, there are strong reasons for looking at the term

structure from the change point perspective.

1.2.2 Factor Process

Next, we suppose that the distribution of ft+1, conditioned on (ft, st, st+1), is deter-

mined by a Gaussian regime-specific mean-reverting first-order autoregression given

by

ft+1 = µst+1
+ Gst+1(ft − µst) + ηt+1 (1.2.3)

7



where on letting N3(., .) denote the 3-dimensional normal distribution, ηt+1|st+1 ∼

N3(0,Ωst+1), and for st and st+1 ranging from j = 1 to m + 1, µj is a 3× 1 vector

and Gj is a 3× 3 matrix. In the sequel, we will express ηt+1 in terms of a vector of

i.i.d. standard normal variables ωt+1 as

ηt+1 = Lst+1ωt+1 (1.2.4)

where Lst+1 is the lower-triangular Cholesky decomposition of Ωst+1 .

Thus, the factor evolution is a function of the current and previous states (in

contrast, the dynamics in Dai et al. (2007) depend only on st whereas those in

Bansal and Zhou (2002) and Ang et al. (2008) depend only on st+1). This means

that the expectation of ft+1 conditioned on (ft, st = j, st+1 = k) is a function of

both µj and µk. The appearance of µj in this expression is natural because one

would like the autoregression at time (t + 1) to depend on the deviation of ft from

the regime in the previous period. Of course, the parameter µj can be interpreted

as the expectation of ft+1 when regime j is persistent. The matrices {Gj} can also

be interpreted in the same way as the mean-reversion parameters in regime j.

1.2.3 Stochastic Discount Factor

We complete our modeling by assuming that the SDF κt,st,t+1 that converts a time

(t + 1) payoff into a payoff at time t in regime st is given by

κt,st,t+1 = exp

(
−rt,st −

1

2
γ ′t,stγt,st − γ ′t,stωt+1

)
(1.2.5)

8



where rt,st is the short-rate in regime st, γt,st is the vector of time-varying and

regime-sensitive market prices of factor risks and ωt+1 is the i.i.d. vector of regime

independent factor shocks in (1.2.4). The SDF is independent of st+1 given st as in

the model of Dai et al. (2007).

We suppose that the short rate is affine in the factors and of the form

rt,st = δ1,st + δ′2,st(ft − µst) (1.2.6)

where the intercept δ1,st varies by regime to allow for shifts in the level of the

term structure. The multiplier δ2,st : 3 × 1 is also regime-dependent in order to

capture shifts in the effects of the macroeconomic factors on the term structure.

This is similar to the assumption in Bansal and Zhou (2002) but a departure from

both Ang et al. (2008) and Dai et al. (2007) where the coefficient on the factors is

constant across regimes. A consequence of our assumption is that the bond prices

that satisfy the risk-neutral pricing condition can only be obtained approximately.

The same difficulty arises in the work of Bansal and Zhou (2002).

We also assume that the dynamics of γt,st are governed by

γt,st = γ̃st + Φst(ft − µst) (1.2.7)

where γ̃st : 3 × 1 is the regime-dependent expectation of γt,st and Φst : 3 × 3 is a

matrix of regime-specific parameters. We refer to the collection (γ̃st , Φst) as the

factor-risk parameters. Note that in this specification γt,st is the same across ma-

turities but different across regimes. A point to note is that negative market prices

of risk have the effect of generating a positive term premium. This is important to

9



keep in mind when we construct the prior distribution on the risk parameters.

It is easily checked that E [κt,st,t+1|ft, st = j] is equal to the price of a zero coupon

bond with τ = 1:

E [κt,st,t+1|ft, st = j] =

j+1∑
st+1=j

pjst+1E [κt,st,t+1|ft, st = j, st+1] (1.2.8)

= exp (−rt,j) , j ∈ {1, 2, ..,m}

In other words, the SDF satisfies the intertemporal no-arbitrage condition (Dai

et al. (2007)).

We note that regime-shift risk is equal to zero in our version of the SDF. We make

this assumption because it is difficult to identify this risk from our change-point

model where each regime-shift occurs once. Regime risk cannot also be isolated in

the models of Ang et al. (2008) and Bansal and Zhou (2002) for the reason that it

is confounded with the market price of factor risk.

1.2.4 Bond Prices

Under these assumptions, we now solve for bond prices that satisfy the risk-nuetral

pricing condition

Pt(st, τ) = Et [κt,st,t+1Pt+1(st+1, τ − 1)] (1.2.9)

10



Following Duffie and Kan (1996), we assume that Pt(st, τ) is a regime-dependent

exponential affine function of the factors taking the form

Pt(st, τ) = exp(−τRt,τ,st) (1.2.10)

where Rt,τ,st is the continuously compounded yield given by

Rt,τ,st =
1

τ
ast(τ) +

1

τ
bst(τ)′(ft − µst) (1.2.11)

and ast(τ) is a scalar function and bst(τ) is a 3 × 1 vector of functions, both de-

pending on st and τ .

We find the expressions for the latter functions by the method of undetermined

coefficients. By the law of the iterated expectation, the risk-neutral pricing formula

in (1.2.9) can be expressed as

1 = Et

{
Et,st+1

[
κt,st,t+1

Pt+1(st+1, τ − 1)

Pt(st, τ)

]}
(1.2.12)

where the inside expectation Et,st+1 is conditioned on st+1, st and ft. Subsequently,

as discussed in Appendix A, one now substitutes Pt(st, τ) and Pt+1(st+1, τ − 1)

from (1.2.10) and (1.2.11) into this expression, and integrate out st+1 after a log-

linearization. We match common coefficients and solve for the unknown functions.

When j ∈ {1, ..,m} and k = j + 1, this procedure produces the following recursive

system for the unknown functions

aj(τ) =

(
pjj pjk

) δ1,j − γ̃jL′jbj(τ − 1)− bj(τ − 1)′LjL′jbj(τ − 1)/2 + aj(τ − 1)

δ1,j − γ̃jL′kbk(τ − 1)− bk(τ − 1)′LkL′kbk(τ − 1)/2 + ak(τ − 1)


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bj(τ) =

(
pjj pjk

) δ2,j + (Gj − LjΦj)
′ bj(τ − 1)

δ2,j + (Gk − LkΦj)
′ bk(τ − 1)

 (1.2.13)

where τ runs over the positive integers. These recursions are initialized by setting ast(0) =

0 and bst(0) = 03×1 for all st. It is readily seen that the resulting intercept and factor

loadings are determined by the weighted average of the two potential realizations in the

next period where the weights are given by the transition probabilities pjj and (1− pjj),

respectively. Thus, the bond prices in regime st = j (j ≤ m) incorporate the expectation

that the economy in the next period will continue to stay in regime j, or that it will switch

to the next possible regime k = j+ 1, each weighted with the probabilities pjj and 1−pjj ,

respectively.

Note that when we consider inference with a given sample of data, and the number

of change points m is a finite number, the above recursions are supplemented by the

expressions

aj(τ) = δ1,j − γ̃jL′jbj(τ − 1)− bj(τ − 1)′LjL′jbj(τ − 1)/2 + aj(τ − 1)

bj(τ) = δ2,j + (Gj − LjΦj)
′ bj(τ − 1) (1.2.14)

for j = m+ 1.

Figure 1.2 summarizes the economy that we have just described in terms of a directed

acyclic graph. In the beginning of period t, a regime realization occurs. This realization

is governed with the regime in the previous period as indicated by the direction of the

arrow connecting st−1 to st. Then given the regime at time t, the corresponding model

parameters Θt are taken from the full collection of model parameters. These determine

the functions ast(τ) and bst(τ) according to the recursions in (1.2.13) and (1.2.14). Con-

ditioned on the parameters and ft−1, ft is generated by the regime-specific autoregressive

12



Θt Θt+1Θt−1

ft+1ftft−1

st−1 st st+1

Rt+1RtRt−1

Figure 1.2: Directed graph of model linkages

process in (1.2.3). Finally, from (1.2.11), ast(τ), bst(τ) and ft determine the yields of all

maturities. Notice that in Dai et al. (2007) the dashed line in figure 1.2 is absent since ft

is assumed to be drawn independently of st.

1.2.5 Regime-specific Term Premium

As is well known, under risk-neutral pricing, after adjusting for risk, agents are indifferent

between holding a τ -period bond and a risk-free bond for one period. The risk adjustment

is the term premium. In the regime-change model, this term-premium is regime specific.

For each time t and in the current regime st = j, the term-premium for a τ -period bond

can be calculated as

Term-premiumτ,t,st = (τ − 1)Cov
(
lnκt,st,t+1, Rt+1,st+1,τ−1|ft, st = j

)
(1.2.15)

= −pjjbj(τ − 1)′Ljγt,j − pjkbk(τ − 1)′Lkγt,j
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where k = j + 1. One can see that if Lj , which quantifies the size of the factor shocks

in the current regime st = j, is large, or if γt,j , the market prices of factor risk, is highly

negative, then the term premium is expected to be large. Even if Lj in the current regime

is small, one can see from the second term in the above expression that the term premium

can be big if the probability of jumping to the next possible regime is high and Lk in that

regime is large. In our empirical implementation we calculate this regime-specific term

premium for each time period in the sample.

1.3 Estimation and Inference

In this section we consider the empirical implementation of our yield curve model. In order

to get a detailed perspective of the yield curve and its dynamics over time we operationalize

our pricing model on a data set of 16 yields of US T-bills measured quarterly between

1972: I and 2007: IV on the maturities given by

{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 20, 24, 28, 36, 40}

quarters. As far as we know, this is the largest number of yields that have been considered

in the setting of affine yield curve models. For these data, we consider five versions of our

general model, with 0, 1, 2, 3 and 4 change points and denoted by {Mm}4
m=0. The largest

model that we fit, namely M4, has a total of 209 free parameters. We fit these various

models by tuned Bayesian methods as we discuss below and then compare the competing

models through marginal likelihoods, Bayes factors and the predictive performance out of

sample.
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To begin, let the 16 yields under study be denoted by

(Rt1, Rt2, .., Rt16)′ , t = 1, 2, ..., n, (1.3.1)

where Rt,τ denotes the yield of τ -period maturity bond at time t, Rti = Rt,τi and τi is the

ith maturity (in quarters). Let the two macro factors be denoted by

mt = (mt1, mt2) , t = 1, 2, ..., n

where mt1 is the inflation rate and mt2 is the real GDP growth rate. We also let

Sn = {st}nt=1

denote the sequence of (unobserved) regime indicators.

We now specify the set of model parameters to be estimated. First, the unknown

elements of Gst and Φst are denoted by

gst = {Gij,st}i,j=1,2,3 and φst = {Φjj,st}j=1,2,3

where Gij,st and Φij,st denote the (i, j)th element of Gst and Φst , respectively. The

unknown elements of Ωst are defined as

λst = {l21,st , l
∗
22,st , l31,st , l32,st , l

∗
33,st}
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where these are obtained from the decomposition Ωst = LstL
′
st with Lst expressed as


1/400 0 0

l21,st exp(l∗22,st) 0

l31,st l32,st exp(l∗33,st)

 (1.3.2)

The elements of λst are unrestricted. Next, the parameters of the short-rate equation

are expressed as δst = (δ1,st × 400, δ′2,st)
′ and those in the transition matrix P by

p = {pjj , j = 1, 2, ..,m}. Finally, the unknown pricing error variances σ2
i,st

are collected

in reparameterized form as

σ∗2 = {σ∗2i,st = diσ
2
i,st , i = 1, .., 7, 8, .., 16 and st = 1, 2, ..,m+ 1}

where d1 = 30, d2 = d16 = 40, d3 = d12 = 200, d4 = 350, d5 = d6 = d11 = 500, d7 = 3000,

d9 = 1500, d10 = 1000, d13 = d14 = d15 = 200. These positive multipliers are introduced

to increase the magnitude of the variances.

Under these notations, for any given model with m change-points, the parameters of

interest can be denoted as ψ = (θ,σ∗2, u0) where

θ = {gst , µm,st , δst , γ̃st , φst , λst , p}m+1
st=1

and u0 is the latent factor at time 0. Note that to economize on notation, we do not index

these parameters by a model subscript.
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1.3.1 Joint distribution of the yields and macro factors

We now derive the joint distribution of the yields and the macro factors conditioned on

Sn and ψ. This joint distribution can be obtained without marginalization over {ut}nt=1

if we assume (following, for example, Chen and Scott (2003) and Dai et al. (2007)) that

one of the yields is priced exactly without error. This is the so-called basis yield. Under

this assumption the latent factor can be expressed in terms of the observed variables and

eliminated from the model, as we now describe.

Assume that Rt8 (the eighth yield in the list above) is the basis yield which is priced

exactly by the model. Let Rt denote the remaining 15 yields (which are measured with

pricing error). Define āi,st = ast(τi)/τi and b̄i,st = bst(τi)/τi where ast(τi) and bst(τi)

are obtained from the recursive equations in (1.2.13) - (1.2.14). Also let ā8,st (āst) and

b̄8,st (b̄st) be the corresponding intercept and factor loadings for Rt8 (Rt), respectively.

Then, since the basis yield is priced without error, if we let

b̄8,st =

 b̄8,u,st

b̄8,m,st

 (1.3.3)

we can see from (1.2.11) that Rt8 is given by

Rt8 = ā8,st + b̄8,u,stut + b̄′8,m,st(mt − µm,st) (1.3.4)

On rewriting this expression, it follows that ut is

ut =
(
b̄8,u,st

)−1 (
Rt8 − ā8,st − b̄′8,m,st(mt − µm,st)

)
(1.3.5)

Conditioned on mt and st, this represents a one-to-one map between Rt8 and ut. If we
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let

zt =

 Rt8

mt

 ,

αst =

 (
b̄8,u,st

)−1 b̄′8,m,stµm,st −
(
b̄8,u,st

)−1
ā8,st

02×1

 , and (1.3.6)

Ast =

 (
b̄8,u,st

)−1 −
(
b̄8,u,st

)−1 b̄′8,m,st

02×1 I2


then one can check that ft can be expressed as

ft = αst + Astzt (1.3.7)

It now follows from equation (1.2.11) that conditioned on zt (equivalently ft), st and the

model parameters ψ, the non-basis yields Rt in our model are generated according to the

process

Rt = āst + b̄st(ft − µst) + εt, εt ∼ iidN (0,Σst) (1.3.8)

where

Σst = diag(σ2
1,st , σ

2
2,st , .., σ

2
7,st , σ

2
9,st , .., σ

2
16,st).

In other words,

p(Rt|zt, st,ψ) = p(Rt|ft, st,ψ) (1.3.9)

= N15(Rt|āst + b̄st(ft − µst),Σst)

In addition, the distribution of zt conditioned on zt−1, st and st−1 is obtained straight-

forwardly from the process generating ft given in equation (1.2.3) and the linear map
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between ft and zt given in equation (1.3.7). In particular,

p(zt|zt−1, st, st−1,ψ) = p(ft|ft−1, st, st−1,ψ) det (Ast) (1.3.10)

= N3(µst + Gst(ft−1 − µst−1
),Ωst)|

(
b̄8,u,st

)−1 |

If we let

yt = (Rt, zt) and y = {yt}nt=1

it follows that the required joint density of y conditioned on (Sn,ψ) is given by

p(y|Sn,ψ) =
n∏
t=1

N15(Rt|āst + b̄st(ft − µst),Σst) (1.3.11)

×N3(µst + Gst(ft−1 − µst−1
),Ωst)|

(
b̄8,u,st

)−1 | (1.3.12)

1.3.2 Prior Distribution

Because of the size of the parameter space, and the complex cross-maturity restrictions

on the parameters, the formulation of the prior distribution can be a challenge. Chib

and Ergashev (2009) have tackled this problem and shown that a reasonable approach for

constructing the prior is to think in terms of the term structure that is implied by the

prior distribution. The implied yield curve can be determined by simulation: simulating

parameters from the prior and simulating yields from the model given the parameters.

The prior can be adjusted until the implied term structure is viewed as satisfactory on

a priori considerations. Chib and Ergashev (2009) use this strategy to arrive at a prior

distribution that incorporates the belief of a positive term premium and stationary but

persistent factors. We adapt their approach for our model with change-points, ensuring

that the yield curve implied by our prior distribution is upward sloping. We assume, in

addition, that the prior distribution of the regime specific parameters is identical across
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regimes. We arrive at our prior distribution in this way for each of the five models we

consider - with 0, 1, 2, 3 and 4 change-points.

We begin by recalling the identifying restrictions on the parameters. First, we set

µu,st = 0 which implies that the mean of the short rate conditional on st is δ1,st . Next,

the first element of δ2,st , namely δ21,st , is assumed to be non-negative. Finally, to enforce

stationarity of the factor process, we restrict the eigenvalues of Gst to lie inside the unit

circle. Thus, under the physical measure, the factors are mean reverting in each regime.

These constraints are summarized as

R = {Gj , δ21,j |δ21,j ≥ 0, 0 ≤ pjj ≤ 1, |eig(Gj)| < 1 for j = 1, 2, ..,m+ 1} (1.3.13)

All the constraints in R are enforced through the prior distribution.

The free parameters in θ and σ∗2 are assumed to be mutually independent. Our prior

distribution on θ is normal N (θ̄, V̄θ) truncated by the restrictions in R. In particular,

the N (θ̄, V̄θ) distribution has the form

m∏
st=1

N (pstst |p̄stst , V̄pstst
)

×
m+1∏
st=1

{
N (gst |ḡst , V̄gst

)N (µm,st |µ̄m,st , V̄µm,st
)N (δst |δ̄st , V̄δst

)
}

×
m+1∏
st=1

{
N (γ̃st |γ̄st , V̄γ̃st

)N (φst |φ̄st , V̄φst
)N (λst |λ̄st , V̄λst

)
}

which we explain as follows.

First, the prior on pjj (j = 1, ..,m) is normal with a standard deviation of 0.33,

truncated to the interval (0, 1). The mean of these distributions is model-specific. For

example, in the M1 model, the mean is 0.986, so that the a priori expected duration of
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stay in regime 1 is about 70 quarters in relation to a sample period of 140 quarters. In

theM2,M3 andM4 models, the prior mean of the transition probabilities is specified to

imply 50, 40 and 33 quarters of expected duration in each regime. It is important to note

that we work with a truncated normal prior distribution on these transition probabilities

instead of the more conventional beta distribution because āst and b̄st in the equation

(1.3.8) are a function of pjj , which eliminates any benefit from the use of a beta functional

form. Second, we construct ḡst from the matrix

Ḡst = diag(0.95, 0.8, 0.4)

and let V̄gst
be a diagonal matrix with each diagonal element equal to 0.1. This choice of

prior incorporates the prior belief that the latent factor is more persistent than the macro

factors. Third, we assume that µ̄m,st×400 = (4, 3)′ and V̄µm,st
×4002 = diag(25, 1). Thus,

the prior mean of inflation is assumed to be 4% and that of real GDP growth rate to be

3%. The standard deviations of 5% and 1% produces a distribution that covers the most

likely values of these rates. Fourth, based on the Taylor rule intuition that the response

of the short rate to an increase of inflation and output growth tend to be positive, we let

δ̄st = (6, 0.8, 0.4, 0.4)

and the let the prior standard deviations be (5, 0.4, 0.4, 0.4). Fifth, we assume that

γ̄st = (−0.5,−0.5,−0.5) and V̄γ̃st
= diag(0.1, 0.1, 0.1)

where the prior mean of γ̃st is negative in order to suggest an upward sloping average

yield curve in each regime. Sixth, we assume that

φ̄st = (1, 1, 1) and V̄φst
= diag(1, 1, 1)
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where the positive prior is justified from the intuition that positive shocks to macroeco-

nomic fundamentals should tend to decrease the overall risk in the economy. Seventh, we

let

λ̄st = (0, 0, 0, 0, 1) and V̄λst
= diag(4, 4, 4, 4, 4)

which tends to imply reasonable prior variation in the implied yield curve.

Next, we place the prior on the 15×m free parameters of σ∗2. Each σ∗2i,st is assumed

to have an inverse-gamma prior distribution IG(v̄, d̄) with v̄ = 4.08 and d̄ = 20.80 which

implies a mean of 10 and standard deviation of 14.

Finally, we assume that the latent factor u0 at time 0 follows the steady-state distri-

bution in regime 1

u0 ∼ N (0, Vu) (1.3.14)

where Vu =
(

1−G2
11,1

)−1
.

To show what these assumptions imply for the outcomes, we simulate the parameters

50,000 times from the prior, and for each drawing of the parameters, we simulate the

factors and yields for each maturity and each of 50 quarters. The median, 2.5% and 97.5%

quantile surfaces of the resulting term structure in annualized percents are reproduced

in Figure 1.3. Because our prior distribution is symmetric among the regimes, the prior

distribution of the yield curve is not regime-specific. It can be seen that the simulated

prior term structure is gently upward sloping on average. Also the assumed prior allows

for considerable a priori variation in the term structure.
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Figure 1.3: The implied prior term structure dynamics

1.3.3 Posterior Distribution and MCMC Sampling

Under our assumptions it is now possible to calculate the posterior distribution of the

parameters by MCMC simulation methods. Our MCMC approach is grounded in the

recent developments that appear in Chib and Ergashev (2009) and Chib and Ramamurthy

(2010). The latter paper introduces an implementation of the MCMC method (called the

tailored randomized block M-H algorithm) that we adopt here to fit our model. The idea

behind this implementation is to update parameters in blocks, where both the number

of blocks and the members of the blocks are randomly chosen within each MCMC cycle.

This strategy is especially valuable in high-dimensional problems and in problems where

it is difficult to form the blocks on a priori considerations.

The posterior distribution that we would like to explore is given by

π(Sn,ψ|y) ∝ p(y|Sn,ψ)p(Sn|ψ)π(ψ) (1.3.15)

where p(y|Sn,ψ) is the distribution of the data given the regime indicators and the

parameters, p(Sn|ψ) is the density of the regime-indicators given the parameters and the
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initial latent factor, and π(ψ) is the joint prior density of u0 and the parameters. Note that

by conditioning on Sn we avoid the calculation of the likelihood function p(y|ψ) whose

computation is more involved. We discuss the computation of the likelihood function in

the next section in connection with the calculation of the marginal likelihood.

The idea behind the MCMC approach is to sample this posterior distribution itera-

tively, such that the sampled draws form a Markov chain with invariant distribution given

by the target density. Practically, the sampled draws after a suitably specified burn-in

are taken as samples from the posterior density. We construct our MCMC simulation

procedure by sampling various blocks of parameters and latent variables in turn within

each MCMC iteration. The distributions of these various blocks of parameters are each

proportional to the joint posterior π(Sn,ψ|y). In particular, after initializing the various

unknowns, we go through 4 iterative steps in each MCMC cycle. Briefly, in Step 2 we

sample θ from the posterior distribution that is proportional to

p(y|Sn,ψ)π(u0|θ)π(θ) (1.3.16)

The sampling of θ from the latter density is done by the TaRB-MH method of Chib

and Ramamurthy (2010). In Step 3 we sample u0 from the posterior distribution that is

proportional to

p(y|Sn,ψ)p(Sn|ψ)π(u0|θ) (1.3.17)

In Step 4, we sample Sn conditioned on ψ in one block by the algorithm of Chib (1996).

We finish one cycle of the algorithm by sampling σ∗2 conditioned on (Sn,θ) from the

posterior distribution that is proportional to

p(y|Sn,ψ)π(σ∗2) (1.3.18)
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Our algorithm can be summarized as follows.

Algorithm: MCMC sampling

Step 1 Initialize (Sn,ψ) and fix n0 (the burn-in) and n1 (the MCMC sample size)

Step 2 Sample θ conditioned on (y,Sn, u0,σ
∗2)

Step 3 Sample u0 conditioned on (y,θ,Sn)

Step 4 Sample Sn conditioned on (y,θ, u0,σ
∗2)

Step 5 Sample σ∗2 conditioned on (y,θ,Sn)

Step 6 Repeat Steps 2-6, discard the draws from the first n0 iterations and save the

subsequent n1 draws.

Full details of each of these steps are given in appendix B.

1.3.4 Marginal Likelihood Computation

One of our goals is to evaluate the extent to which the regime-change model is an im-

provement over the model without regime-changes. We are also interested in determining

how many regimes best describe the sample data. Specifically, we are interested in the

comparison of 5 models which in the introduction were named asM0,M1,M2,M3 and

M4. The most general model isM4 that has 4 possible change points, 1 latent factor and

2 macro factors. We do the comparison in terms of marginal likelihoods and their ratios

which are called Bayes factors. The marginal likelihood of any given model is obtained as

m(y) =

∫
p(y|Sn,ψ)p(Sn|ψ)π(ψ)d(Sn,ψ) (1.3.19)
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This integration is obviously infeasible by direct means. It is possible, however, by the

method of Chib (1995) which starts with the recognition that the marginal likelihood can

be expressed in equivalent form as

m(y) =
p(y|ψ∗)π(ψ∗)
π(ψ∗|y)

(1.3.20)

where ψ∗ = (θ∗,σ∗∗2, u∗0) is some specified (say high-density) point of ψ = (θ,σ∗2, u0).

Provided we have an estimate of posterior ordinate π(ψ∗|y) the marginal likelihood can

be computed on the log scale as

ln m̂(y) = ln p(y|ψ∗) + lnπ(ψ∗)− ln π̂(ψ∗|y) (1.3.21)

Notice that the first term in this expression is the likelihood. It has to be evaluated only at

a single point which is highly convenient. The calculation of the second term is straight-

forward. Finally, the third term is obtained from a marginal-conditional decomposition

following Chib (1995). The specific implementation in this context requires the technique

of Chib and Jeliazkov (2001) as modified by Chib and Ramamurthy (2010) for the case

of randomized blocks.

As for the calculation of the likelihood, the joint density of the data y = (y1, ...,yn)

is, by definition,

p(y|ψ) =
n−1∑
t=0

ln p (yt+1|It,ψ) (1.3.22)

where

p (yt+1|It,ψ) =
m+1∑
st+1=1

m+1∑
st=1

p (yt+1|It, st, st+1,ψ) Pr[st, st+1|It,ψ]

is the one-step ahead predictive density of yt+1, and It consists of the history of the

outcomes Rt and zt up to time t. On the right hand side, the first term is the density

of yt+1 conditioned on (It, st, st+1,ψ) which is given in equation (1.3.11), whereas the
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second term can be calculated from the law of total probability as

Pr[st = j, st+1 = k|It,ψ] = pjk Pr[st = j|It,ψ] (1.3.23)

where Pr[st = j|It,ψ] is obtained recursively starting with Pr[s1 = 1|I0,ψ] = 1 by the

following steps. Once yt+1 is observed at the end of time t + 1, the probability of the

regime Pr[st+1 = k|It,ψ] from the previous step is updated to Pr[st+1 = k|It+1,ψ] as

Pr[st+1 = k|It+1,ψ] =
m+1∑
j=1

Pr[st = j, st+1 = k|It+1,ψ] (1.3.24)

where

Pr[st = j, st+1 = k|It+1,ψ] =
p [yt+1|It, st = j, st+1 = k,ψ] Pr[st = j, st+1 = k|It,ψ]

p [yt+1|It,ψ]

(1.3.25)

This completes the calculation of the likelihood function.

1.4 Results

We apply our modeling approach to analyze US data on quarterly yields of sixteen US

T-bills between 1972:I and 2007:IV. These data are taken from Gurkaynak, Sack, and

Wright (2007). We consider zero-coupon bonds of maturities 1, 2, 3, 4, 5, 6, 7, 8, 10, 12,

16, 20, 24, 28, 36, and 40 quarters. We let the basis yield be the 8 quarter (or 2 year)

bond which is the bond with the smallest pricing variance. Our macroeconomic factors

are the quarterly GDP inflation deflator and the real GDP growth rate. These data are

from the Federal reserve bank of St. Louis.

We work with 16 yields because our tuned Bayesian estimation approach is capable
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of handling a large set of yields. The involvement of these many yields also tends to

improve the out-of-sample predictive accuracy of the yield curve forecasts. To show this,

we also fit models with 4, 8, and 12 yields to data up to 2006. The last 4 quarters of 2007

are held aside for the validation of the predictions of the yields and the macro factors.

These predictions are generated as described in Section 1.4.4. We measure the predictive

accuracy of the forecasts in terms of the posterior predictive criterion (PPC) of Gelfand

and Ghosh (1998). For a given model with λ number of the maturities, PPC is defined as

PPC = D + W (1.4.1)

where

D =
1

λ+ 2

λ+2∑
i=1

T∑
t=1

Var (ỹi,t|y,M) , (1.4.2)

W =
1

λ+ 2

λ+2∑
i=1

T∑
t=1

[yi,t − E (ỹi,t|y,M)]2 (1.4.3)

{ỹt}t=1,2,..,T are the predictions of the yields and macro factors {yt}t=1,2,..,T under model

M, and ỹi,t and yi,t are the ith components of ỹt and yt, respectively. The term D is

expected to be large in models that are restrictive or have redundant parameters. The

term W measures the predictive goodness-of-fit. As can be seen from Table 1.1, the

model with 16 maturities outperforms the models with fewer maturities. The reason

The number No change point model
of maturities(λ) D W PPC

4 6.293 4.821 11.114
8 5.827 4.758 10.585
12 4.621 4.191 8.812
16 4.011 3.520 7.531

Table 1.1: Posterior predictive criterion

for this behavior is simple. The addition of a new yield introduces only one parameter
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(namely the pricing error variance) but because of the many cross-equation restrictions

on the parameters, the additional outcome helps to improve inferences about the common

model parameters, which translates into improved predictive inferences.

1.4.1 Sampler Diagnostics

We base our results on 50,000 iterations of the MCMC algorithm beyond a burn-in of

5,000 iterations. We measure the efficiency of the MCMC sampling in terms of the

metrics that are common in the Bayesian literature, in particular, the acceptance rates

in the Metropolis-Hastings steps and the inefficiency factors (Chib (2001)) which, for any

sampled sequence of draws, are defined as

1 + 2
K∑
k=1

ρ(k), (1.4.4)

where ρ(k) is the k-order autocorrelation computed from the sampled variates and K is

a large number which we choose conservatively to be 500. For our biggest model, the

average acceptance rate and the average inefficiency factor in the M-H step are 72.9% and

174.1, respectively. These values indicate that our sampler mixes well. It is also important

to mention that our sampler converges quickly to the same region of the parameter space

regardless of the starting values.

1.4.2 The Number and Timing of Change Points

Table 1.2 contains the marginal likelihood estimates for our 5 contending models. As can

be seen, the M3 is most supported by the data. We now provide more detailed results

for this model.
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Model lnL lnML n.s.e. Pr[Mm|y] change point
M0 -1488.1 -1215.5 1.39 0.00
M1 -1279.4 -955.5 1.77 0.00 1986:II
M2 -935.1 -665.4 1.92 0.00 1985:IV, 1995:II
M3 -473.4 -256.1 2.27 1.00 1980:II, 1985:IV, 1995:II
M4 -313.8 -281.4 2.62 0.00 1980:II, 1985:IV, 1995:II, 2002:III

Table 1.2: Log likelihood (lnL) and log marginal likelihood (lnML)

Our first set of findings relate to the timing of the change-points. Information about

the change-points is gleaned from the sampled sequence of the states. Further details

about how this is done can be obtained from Chib (1998). Of particular interest are the

posterior probabilities of the timing of the regime changes. These probabilities are given in

Figure 1.4. The figure reveals that the first 32 quarters (the first 8 years) belong to the first

regime, the next 23 quarters (about 6 years) to the second, the next 38 quarters (about

9.5 years) to the third, and the remaining quarters to the fourth regime. Rudebusch and

Wu (2008) also find a change point in the year of 1985. The finding of a break point in

1995 is striking as it has not been isolated from previous regime-change models.

We would like to emphasize that our estimates of the change points from the models

without macro factors are exactly the same as those from the change point models with

macro factors. We do not report those results in the interest of space. In addition, the

results are not sensitive to our choice of 16 maturities, as we have confirmed.

1.4.3 Parameter Estimates

Table 1.3 summarizes the posterior distribution of the parameters. One point to note is

that the posterior densities are generally different from the prior given in section 1.3.2,

which implies that the data is informative about these parameters. We focus on various
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Figure 1.4: Model M3: Pr(st = j|y)

aspects of this posterior distribution in the subsequent subsections.
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Regime 1 Regime 2 Regime 3 Regime 4

0.90 0.07 0.15 0.95 -0.01 0.03 0.92 0.15 0.31 0.93 0.04 0.23
(0.06) (0.10) (0.15) (0.03) (0.07) (0.06) (0.06) (0.21) (0.17) (0.04) (0.17) (0.29)

G -0.24 0.67 -0.07 -0.07 0.73 -0.10 0.15 0.35 0.08 0.02 0.91 0.01
(0.26) (0.23) (0.12) (0.05) (0.05) (0.03) (0.06) (0.14) (0.08) (0.02) (0.13) (0.06)
-0.06 -0.16 0.26 0.09 -0.35 0.52 -0.04 0.00 0.34 -0.03 -0.37 0.19
(0.25) (0.23) (0.17) (0.17) (0.24) (0.17) (0.09) (0.21) (0.13) (0.08) (0.26) (0.15)

µ 0.00 4.99 3.54 0.00 5.88 2.63 0.00 2.56 2.62 0.00 1.49 3.22
×400 (2.17) (0.90) (0.41) (1.00) (0.41) (0.49) (0.80) (0.53)

1.00 1.00 1.00 1.00

L 0.11 1.72 0.10 1.48 0.11 0.74 -0.47 0.82
×400 (0.40) (0.19) (0.44) (0.13) (0.34) (0.13) (0.59) (0.12)

-0.67 -0.62 4.28 0.24 0.27 4.58 -0.55 -0.18 2.00 -0.13 -0.20 2.03
(0.88) (0.39) (0.14) (0.62) (0.41) (0.17) (0.56) (0.14) (0.12) (0.89) (0.14) (0.11)

δ1 9.23 2.78 4.42 4.34
×400 (1.69) (1.60) (1.18) (1.00)

δ2 1.16 0.09 0.17 1.29 0.25 0.16 0.72 0.31 0.26 0.57 0.56 0.10
(0.13) (0.23) (0.22) (0.16) (0.23) (0.15) (0.09) (0.26) (0.21) (0.07) (0.37) (0.25)

γ -0.28 -0.40 -0.22 -0.34 -0.65 -0.21 -0.58 -0.56 -0.05 -0.34 -0.25 -0.19
(0.28) (0.30) (0.26) (0.25) (0.21) (0.26) (0.28) (0.33) (0.24) (0.25) (0.25) (0.27)

Φ 0.99 0.98 0.93 0.53 0.89 0.65 0.91 0.94 0.98 0.98 0.93 0.98
(1.08) (1.09) (1.08) (1.07) (1.08) (1.12) (1.08) (1.09) (1.09) (1.09) (1.10) (1.09)

p00 0.934
(0.028)

p11 0.986
(0.004)

p22 0.987
(0.003)

Table 1.3: Model M3: Parameter estimates

Factor Process

Figure 1.5 plots the average dynamics of the latent factors along with the short rate.

This figure demonstrates that the latent factor movements are very close to those of the

short rate. The estimates of the matrix G for each regime show that the mean-reversion

coefficient matrix is almost diagonal. The latent factor and inflation rate also display

different degrees of persistence across regimes. In particular, the relative magnitudes of

the diagonal elements indicates that the latent factor and the inflation factor are less mean-

reverting in regime 2 and 4, respectively. For a more formal measure of this persistence,
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we calculate the eigenvalues of the coefficient matrices in each regime. These are given by

eig(G1) =


0.851

0.709

0.267

 , eig(G2) =


0.978

0.814

0.401



eig(G3) =


0.935

0.312

0.366

 , eig(G4) =


0.913 + 0.044i

0.913− 0.044i

0.204


It can be seen that the second regime has the largest absolute eigenvalue close to 1.

Because the factor loadings for the latent factor (δ21,st) are significant whereas those for

inflation (δ22,st) are not, the latent factor is responsible for most of the persistence of the

yields.

Furthermore, the diagonal elements of L3 and L4 are even smaller than their counter-

parts in L1 and L2. This suggest a reduction in factor volatility starting from the middle

of the 1980s, which coincides with the period that is called the great moderation (Kim,

Nelson, and Piger (2004)).
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Factor Loadings

The factor loadings in the short rate equation, δ2,st are all positive, which is consistent with

the conventional wisdom that central bankers tend to raise the interest rate in response

to a positive shock to the macro factors. It can also be seen that δ2,st along with Gst and

Lst are different across regimes, which makes the factor loadings regime-dependent across

the term structure as revealed in figure 1.6. This finding lends support to our assumption

of regime-dependent factor loadings.
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Figure 1.6: Model M3: Estimates of the factor loadings, b̄st

Term Premium

Figure 1.7 plots the posterior distribution of the term premium of the two year maturity

bond over time. It is interesting to observe how the term premium varies across regimes.

In particular, the term premium is the lowest in the most recent regime (although the

.025 quantile of the term premium distribution in the first regime is lower than the .025

quantile of term premium distribution in the most current regime). This can be attributed
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to the lower value of factor volatilities in this regime. Moreover, we find that these changes

in the term premium are not closely related to changes in the latent and macro-economic

factors. A similar finding appears in Rudebusch, Sack, and Swanson (2007).
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Figure 1.7: Model M3: Term premium

Pricing Error Volatility

In Figure 1.8 we plot the term structure of the pricing error standard deviations. As

in the no-change point model of Chib and Ergashev (2009), these are hump-shaped in

each regime. One can also see that these standard deviations have changed over time,
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primarily for the short-bonds. These changes in the volatility also help to determine the

timing of the change-points.
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Figure 1.8: Model M3: Term Structure of the Pricing Error Volatility

1.4.4 Forecasting and Predictive Densities

A principle objective of this paper is to compare the forecasting abilities of the affine

term structure models with and without regime changes. In the Bayesian paradigm, it is

relatively straightforward to simulate the predictive density from the MCMC output. By

definition, the predictive density of the future observations, conditional on the data, is the

integral of the density of the future outcomes given the the parameters with respect to

the posterior distribution of the parameters. If we let yf denote the future observations,

the predictive density under model Mm is given by

p(yf |Mm,y) =

∫
ψ
p(yf |Mm,y,ψ)π(ψ|Mm,y)dψ (1.4.5)

This density can be sampled by the method of composition as follows. For each MCMC

iteration (beyond the burn-in period), conditioned on fn and the parameters in the current

terminal regime (which is not necessarily regime m+1), we draw the factors fn+1 based on

the equation (1.2.3). Then given fn+1, the yields Rn+1 are drawn using equation (1.3.8).
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These two steps are iterated forward to produce the draws fn+i and Rn+i, i = 1, 2, .., T .

Repeated over the course of the MCMC iterations, these steps produce a collection of

simulated macro factors and yields that is a sample from the predictive density.

We summarize the sampled predictive densities in Figure 1.9. The top panel gives
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Figure 1.9: Predicted yield curve

the forecast intervals from theM0 model and the bottom panel has the forecast intervals

from the M3 model. Note that in both cases the actual yield curve in each of the four

quarters of 2007 is bracketed by the corresponding 95% credibility interval though the

intervals from the M3 model are tighter.

For a more formal forecasting performance comparison, we tabulate the PPC for
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model M0 M1 M2 M3 M4 M0

sample period (1972:I-2006:IV) (1995:II-2006:IV)
D 12.548 5.401 4.156 4.720 4.599 4.011
W 5.678 4.896 4.201 3.415 2.902 3.520
PPC 18.226 10.297 8.357 8.126 7.501 7.531

(a) forecast period: 2007:I-2007:IV

model M0 M1 M2 M3 M4 M0

sample period (1972:I-2005:IV) (1995:II-2005:IV)
D 12.606 5.799 4.157 4.097 7.011 4.271
W 2.137 5.658 4.432 1.817 3.036 2.390
PPC 14.743 11.457 8.589 5.914 10.047 6.661

(b) forecast period: 2006:I-2006:IV

model M0 M1 M2 M3 M4 M0

sample period (1972:I-2004:IV) (1995:II-2004:IV)
D 13.474 5.187 3.572 4.609 7.190 3.919
W 2.367 5.787 4.442 1.977 2.657 2.359
PPC 15.841 10.974 8.014 6.587 9.847 6.278

(c) forecast period: 2005:I-2005:IV

Table 1.4: Posterior predictive criterion

each case in Table 1.4. We also include in the last column of this table an interesting

set of results that make use of the regimes isolated by our M3 model. In particular,

we fit the no-change point model to the data in the last regime but ending just before

our different forecast periods (2005:I-2005:IV, 2006:I-2006:IV and 2007:I-2007:IV). As

one would expect, the forecasts from the no-change point model estimated on the sample

period of the last regime are similar to those from theM3 model. Thus, given the regimes

we have isolated, a poor-man’s approach to forecasting the term-structure would be to

fit the no-change arbitrage-free yield model to the last regime. Of course, the predictions

from the M3 model produce a smaller value of the PPC than those from the no-change

point model that is fit to the whole sample. This, combined with the in-sample fit of the

models as measured by the marginal likelihoods, suggests that the change point model
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outperforms the no-change point version. These findings not only reaffirm the finding of

structural changes, but also suggest that there are gains to incorporating regime changes

when forecasting the term structure of interest rates.

1.5 Concluding Remarks

In this paper we have developed a new model of the term structure of zero-coupon bonds

with regime changes. This paper complements the recent developments in this area be-

cause it is organized around a different model of regime changes than the Markov switching

model that has been used to date. It also complements the recent work on affine models

with macro factors which has been done in settings without regime changes. The models

we fit involve more bonds than has ever been attempted in the literature. This in turn

leads to a better fit to the data. Furthermore, we incorporate some recent developments

in Bayesian econometrics that make it possible to estimate the large scale models in this

paper.

Our empirical analysis suggests that the term structure has gone through three change

points, and that the term structure and the risk premium are materially different across

regimes. Our analysis also shows that there are gains in predictive accuracy by incorpo-

rating regime changes when forecasting the term structure of interest rates.
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Chapter 2

Term Structure of Interest Rates in a DSGE

Model with Regime Changes

Kyu Ho Kang, Siddhartha Chib and Srikanth Ramamurthy

2.1 Introduction

In this paper, we develop and estimate a general equilibrium model of the term structure

of interest rates that features regime changes in monetary policy and volatilities of struc-

tural shocks. The model we construct is a New Keynesian dynamic stochastic general

equilibrium (DSGE) model that comprises a representative household, a continuum of in-

termediate goods producers, a representative final goods producer, the government sector

(which issues bonds of various maturities) and the central bank. The various agents in the

model are intertemporal optimizers that face uncertainty arising from exogenous shocks

to productivity, monetary policy and government expenditure. Since we are particularly

interested in the role that monetary policy plays in shaping the dynamics of the term-

structure, an important focus of our model is on the specification of the monetary policy

rule. We specify the central bank’s monetary policy function in terms of the generalized

Taylor (1993) rule (Davig and Leeper (2007)). Following this rule, the central bank ad-

justs the nominal short rate in response to deviations of inflation and output from their
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target levels. An important aspect of this policy function is that the inflation and output

coefficients are time varying to model the possibility of policy changes between active and

less active regimes. Because of the way we formulate the model we are able to isolate the

effect of such changes in monetary policy on the term-structure, factor risks and on the

bond risk premium.

The second important aspect of our general equilibrium formulation is that the nom-

inal pricing kernel and no arbitrage conditions are derived endogenously in the model.

Because this pricing kernel is a function of the underlying model parameters, it (along

with the equilibrium dynamics of the other aggregates) is affected by changes in the pol-

icy rule. We use this regime-dependent pricing kernel to find the arbitrage-free prices of

bonds of various maturities by standard recursive methods.

The empirical implications of our model are isolated by econometric methods for

DSGE models based on Bayesian ideas and MCMC simulation techniques that have

emerged in the last few years (Chib and Ergashev, 2009, Chib and Ramamurthy, 2010).

Despite the complex nature of the likelihood/posterior surface, our fitting method is effi-

cient in terms of the metrics that are used to evaluate MCMC procedures.

The work in this paper can be viewed as a continuation of a recent line of enquiry into

general equilibrium modeling of the term structure, as exemplified in Wachter (2006),

Rudebusch and Swanson (2008b), and Wu (2006). Unlike these papers, however, we

allow for structural changes (a feature that has been shown to be important in the partial

equilibrium models of Rudebusch and Wu (2007) and Chib and Kang (2010)), and employ

econometric methods to estimate the model, as opposed to calibrating it by simulation

methods.

Our estimation results for U.S. quarterly data from 1986:Q4 to 2008:Q4, with bonds

of maturities up to 20 quarters, reveal that (a) U.S. monetary policy has become “more
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active” since 1995:Q2, and that during this period, the average term premium and its

volatility have fallen (b) the price of regime shift risk, while small compared to factor

risk, is always significantly positive over time (c) although the term premium explains

a significant portion of the term spread in the (“less active”) first regime, its relative

importance has fallen in the second regime2 and (d) the volatility of technology shock

accounts for most of the volatility in the term premium.

The rest of the paper is organized as follows. In Section 2.2 we develop the model,

discuss the solution procedure and derive the bond prices. Section2.3 provides the econo-

metric details and Section 2.4 contains the empirical results. Concluding remarks are in

Section 2.5.

2.2 Model

In this section we discuss the key aspects of our New Keynesian DSGE model with multiple

monetary policy and volatility regimes. We present the model, derive the implied pricing

kernel and compute the arbitrage-free τ maturity bond prices through the τ -forward

iterations of the log-linearized Euler equation.

The model economy comprises a representative household, a continuum of interme-

diate goods producers indexed by j ∈ [0, 1], a representative final good producer, the

government sector and the central bank. The household maximizes its utility by supply-

ing labor to the intermediate goods sector, consuming the finished good and making a

portfolio decision over bonds of various maturities issued by the government. All firms

maximize profits. A standard way of introducing market frictions in these models is to

assume that the firms in the intermediate good sector face short run nominal rigidities in

the form of quadratic price adjustment costs. In its goal to stabilize the economy, the cen-
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tral bank, following the Taylor (1993) rule, adjusts the short interest rate in response to

output and inflation. As mentioned earlier, this policy function is time varying, depending

on the (stochastic) state of the economy. The aggregate macroeconomic fluctuations in

this model are driven by three structural shocks, namely a technology shock, a fiscal shock

and a monetary policy shock. To capture the heteroskedastic nature of these shocks, we

assume that their volatilities follow a two-state discrete time Markov switching process.

As we show later in this section, these shocks play the analogous role of factors in the

partial equilibrium framework.

In this economy, therefore, the agents’ behavior is shaped by three sources of uncer-

tainty - the policy regime st, the volatility regime vt and the shocks themselves. The

fundamental assumption regarding the agents’ expectation of the future realizations of

the aggregate variables (which are functions of the underlying uncertainties) is that they

are based on rational expectations. That is, their expectations at time t, denoted Et, is

based on the complete information set at time t that includes current and past realiza-

tions of all decision variables in the model, the regime sequences, {st, st−1, st−2,...} and

{vt, vt−1, vt−2,...}, and the shocks. We denote this period-t information set as It and

use Et [Xt+j ] and E [Xt+j |It] interchangeably throughout the text to denote the j-period

ahead expectation of X conditioned on It. The agents also know the structural parameters

of the model. The only unknowns in their information set are the future realizations of

the shocks and the regimes. Given a specific stochastic process for the evolution of these

regimes, the agents can form one step ahead expectations of the regimes and thus solve

for the growth path of the macroeconomic aggregates as a function of the shocks.
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2.2.1 The Representative Household

The representative household faces a consumption-leisure choice, deriving utility from

consuming Ct units of the finished good purchased from the final good producer at the

nominal price Pt and supplying Ht units of labor to the intermediate goods sector in return

for a real wage rate of Wt. In addition to the wage income, the household earns real profits

Qt from the intermediate goods firms. Finally, the household carries a portfolio {Bτ
t }τ

∗

τ=1

of nominal τ -quarter maturity zero-coupon bonds Bτ
t with current prices P τt at any time

t. We assume that the agent cares only about the time to maturity of the various bonds

and not the date at which the bonds are issued. In other words, at time t, she is indifferent

between holding a (τ + 1) period maturity bond bought at time t − 1 and a (τ) period

maturity bond bought at time t, so that Bτ+1
t−1 = Bτ

t . The government issues the multiple

maturity bonds at a face value of unity. Current income and financial wealth brought

over from the previous period t− 1 are allocated between consumption, purchases of new

bonds and a lumpsum real tax Tt levied by the government. The budget constraint of the

household therefore satisfies

PtCt +
τ∗∑
τ=1

P τt B
τ
t + Tt ≤ PtWtHt +

τ∗−1∑
τ=1

P τt B
τ+1
t−1 +B1

t−1 + PtQt. (2.2.1)

The household then maximizes her expected utility function1

Et

[ ∞∑
s=0

δs

(
(Ct+s/At+s)

1−γ − 1

1− γ −Ht+s

)]
(2.2.2)

1The simpler log utility function (where γ is fixed at 1) is not meaningful in this context because
it generates a bond risk premium that is too small and stable relative to the data (Rudebusch and
Swanson, 2008b). Alternatively, preferences could display habit persistence (modeled through a
lagged consumption variable), as in Buraschi and Jiltsov (2007), Wachter (2006) and Rudebusch
and Swanson (2008b), which can improve the model’s ability to to fit the term premium and the
nonlinearity of the spot rate process. We leave the examination of this possibility for future work
because at the moment DSGE models with both habit persistence and multiple regimes cannot
be solved.
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subject to the intertemporal budget constraint (2.2.1) and available information up to time

t. Here the variable At captures the general productivity level or aggregate technology, so

that Ct/At measures the effective consumption per unit of technology. We assume that

the growth rate of technology at = At/At−1 follows an autoregressive process

ln at = (1− φa) ln a∗ + φa ln at−1 + εa,t (2.2.3)

where |φa| < 1 and the innovation εa,t is normally distributed with mean 0 and a regime-

switching volatility process σ2
a,vt,a . Specifically, we assume that the volatility regime vt,a

follows a two-state discrete time Markov process. The economic interpretation of these

two regimes is that the economy transits between high volatility and low volatility states.

Accordingly, we impose the identification restriction σa,2 > σa,1, so that vt,a = 2 denotes

the higher volatility regime. The associated transition probability matrix for the volatility

process is given by

Qa =

 qa11 1− qa11

1− qa22 qa22

 (2.2.4)

where qaij = Pr[vt+1,a = j|vt,a = i].

2.2.2 The Final Good Sector

A representative firm in the finished goods sector combines a continuum of intermediate

goods Yt(j) indexed by j ∈ [0, 1] using the constant returns to scale production technology

(∫ 1

0
Yt(j)

ζ−1
ζ dj

) ζ
ζ−1

≥ Yt (2.2.5)

where ζ > 1 measures the elasticity of demand for each intermediate good. In each period

t = 0, 1, 2, . . ., it chooses the output level given the price Pt of the finished good and input
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prices Pt(j). Profit maximization implies that the demand for intermediate goods is given

by

Pt(j) =

(
Yt
Yt(j)

)1/ζ

Pt. (2.2.6)

The aggregate price level is determined by the zero profit condition under competitive

equilibrium as

Pt =

(∫ 1

0
Pt(j)1−ζdj

) 1
1−ζ

. (2.2.7)

2.2.3 The Intermediate Good Sector

The intermediate good sector is characterized by a continuum of monopolistically com-

petitive firms. Each firm indexed by j produces a unique, imperfectly substitutable, per-

ishable good Yt(j) using a linear production technology with respect to the labor input

Nt(j) given the exogenous aggregate technology At in the economy

Yt(j) = AtNt(j). (2.2.8)

As mentioned earlier, the firms in the intermediate goods sector face nominal rigidities

in the form of an explicit price adjustment cost. As is conventional in the literature, this

price adjustment cost takes the quadratic form

ACt(j) =
ϕ

2

(
Pt(j)

π∗Pt−1(j)
− 1

)2

Yt (2.2.9)

where ϕ > 0 measures the degree of price stickiness, πt = Pt/Pt−1 is the inflation and π∗ is

the inflation target of the central bank in terms of the price of the final good. When selling

its output to the final goods sector, each intermediate-good firm j chooses a sequence of
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input prices Pt(j) to maximize the expected profits

Et

[ ∞∑
s=0

Λt,t+sQt(j)

]
(2.2.10)

where the real profit at time t is

Qt(j) =
Pt(j)

Pt
Yt(j)−WtNt(j)− ϕ

2

(
Pt(j)

π∗Pt−1(j)
− 1

)2

Yt (2.2.11)

and

Λt,t+s = δs
(
Ct+s
At+s

)−γ (Ct
At

)γ At
At+s

(2.2.12)

is the representative household’s “real” stochastic discount factor.

2.2.4 The Fiscal Authority

In addition to issuing bonds, the fiscal authority consumes a stochastic fraction ρt of the

aggregate output Yt. The government also levies a lump-sum tax or issues a subsidy

to finance any shortfalls in government revenues. The government’s (balanced) budget

constraint is therefore given by

PtGt +
τ∗−1∑
τ=1

P τt B
τ+1
t−1 +B1

t−1 = Tt +
τ∗∑
τ=1

P τt B
τ
t (2.2.13)

where Gt = ρtYt is the real government expenditure. Here, the aggregate government

spending shock is modeled as

ln gt = (1− φg) ln g∗ + φg ln gt−1 + εg,t (2.2.14)
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where gt = 1/(1− ρt), |φg| < 1, and, as in the case of the technology shock εa,t, the fiscal

innovation εg,t is assumed to be normally distributed with mean 0 and a regime-switching

volatility process σ2
g,vt,g . We denote the transition probability matrix for the volatility

process of the fiscal shock as

Qg =

 qg11 1− qg11

1− qg22 qg22

 (2.2.15)

where qgij = Pr[vt+1,g = j|vt,g = i].

2.2.5 Symmetric Equilibrium, Nonstochastic Values and

the Linearized Model

From the utility maximization problem, the first-order condition with respect to the short

term bond B1
t has the form

P 1
t = Et [Mt,t+1] (2.2.16)

where

Mt,t+1 = δ

(
ct+1

ct

)−γ 1

at+1

1

πt+1
(2.2.17)

is the nominal stochastic discount factor (SDF) and ct = Ct/At is the stochastically

detrended consumption at time t. Given the form of the SDF derived from our model, we

use this condition in section 2.2.9 to price bonds of various maturities.

The aggregate labor supply from the household’s problem is derived as

1 =
Wt

At
c−γt (2.2.18)
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In this economy, each intermediate goods producer faces the same marginal cost.

Hence, in a symmetric equilibrium, Yt(j) = Yt, Ht(j) = Ht, Pt(j) = Pt and Qt(j) =

Qt. Thus, the representative intermediate-goods firm’s first order condition for profit

maximization implies

1 = ζ − ζcγt + ϕ
( πt
π∗
− 1
)( πt

π∗

)
− ϕEt

[
Λt,t+1

(πt+1

π∗
− 1
)(πt+1

π∗
Yt+1

Yt

)]
(2.2.19)

Finally, the aggregate resource constraint must hold in equilibrium:

Yt = Ct +Gt +ACt and Ht = Nt =

∫ 1

0
Nt(j)dj (2.2.20)

which implies that

ct =

(
1− ϕ

2

( πt
π∗
− 1
)2
)
xt (2.2.21)

where xt = Yt/At denotes detrended output.

Further, from the Euler equation, the implied nonstochastic value of the gross nominal

interest rate Rt = 1/P 1
t denoted by R∗ is

R∗ = a∗π∗/δ (2.2.22)

Also the equation (2.2.21) implies that the nonstochastic value of the detrended output

is determined by

x∗ =
c∗

(1− ρ∗) (2.2.23)

where the nostochastic value of the detrended consumption, c∗ is

[
ζ − 1

ζ

] 1
γ

(2.2.24)
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In the absence of shocks, the economy converges to a steady-state growth path along

which all the stationary variables are constant over time.

Letting hats denote the percentage deviation of the variables from their respective

steady state levels, for instance, ĉt = ln(ct/c
∗), the model whose equilibrium dynamics is

summarized by the equations (2.2.16), (2.2.20) and (2.2.19) can be cast in its log-linearized

form as follows

π̂t = δEt [π̂t+1] + κĉt with κ =
ζγ (c∗)−γ

ϕ
(2.2.25)

ĉt = Et [ĉt+1]− 1

γ

(
R̂t − Et [π̂t+1]− Et [ât+1]

)
(2.2.26)

ĉt = x̂t − ĝt. (2.2.27)

2.2.6 The Central Bank

We assume that the central bank follows the modified Taylor (1993) rule for conducting

monetary policy. According to this rule, the bank adjusts the short term nominal interest

rate Rt in response to deviations of inflation πt from the target π∗, and stochastically

detrended output xt = Yt/At from its non stochastic value x∗

lnRt = lnR∗ + αst (lnπt − lnπ∗) + βst (lnxt − lnx∗) + ln et. (2.2.28)

Defining êt = ln(et) and R̂t, π̂t and x̂t as in linearized model above, this interest rate rule

can be written as

R̂t = αst π̂t + βst x̂t + êt. (2.2.29)
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where êt is assumed to follow a stationary AR(1) process

êt = φeêt−t + εe,t. (2.2.30)

with εe,t ∼ N (0, σ2
e,vt,e). That is, the volatility of the monetary policy shock εe,t also

follows a two-state Markov switching process. Following the notation for the two other

shock volatilities, we denote the transition probability matrix for the volatility process of

the monetary shock as

Qe =

 qe11 1− qe11

1− qe22 qe22

 (2.2.31)

where qeij = Pr[vt+1,e = j|vt,e = i].

Notice that in the above short rate equation the target inflation is assumed to be

constant over time2. As we show below, the virtue of this simplifying assumption is that

it allows us to isolate all monetary policy regime changes solely through changes in the

reaction coefficients of the inflation and output gaps.

Except for the fact that the monetary policy coefficients α and β are regime dependent,

as indicated by the subscript st, this is a standard representation of the Taylor rule. The

interpretation of regime dependency is that the response coefficients are allowed to change

between active and passive (or less active) regimes. We model these regime changes as

a change point process which we characterize in the manner of Chib (1998). Specifically,

an m change point process is described in terms of a (m+1)-state unidirectional discrete

2In contrast, Moreon, Bekaert, and Cho (2010) and Davig and Doh (2009) assume that the
target inflation is a stochastic time-varying process.

51



time Markov process with transition probability matrix P of the form

P =



p11 1− p11 0 · · · 0

0 p22 1− p22 · · · 0

0 0 p33 0

...
...

. . .

0 0 0 pm+1,m+1


(2.2.32)

where pjk = Pr[st+1 = k|st = j], pjk = 1−pjj , k = j+1 and pm+1,m+1 = 1 (j = 1, 2, ..,m).

Under this process, once a policy regime has been vacated, it is never occupied again. In

economic terms, this accommodates, for instance, the realistic belief that the pre-Volker

regime will never return, an assumption that is also made by Farmer, Waggoner, and Zha

(2008).

2.2.7 Summary of the Regime Processes

Recall that there are three structural shocks in this model: the technology shock εa,t, the

fiscal shock εg,t and the monetary shock εe,t. We assume that these shocks are independent

of one another. Combining this assumption with the notation for the regime-dependent

volatilities introduced earlier, we summarize the shock processes as follows

f̄t =


ât

ĝt

êt

 = φf̄ t−1 + εt (2.2.33)
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where

φ =


φa 0 0

0 φg 0

0 0 φe

 , and εt =


εa,t

εg,t

εe,t

 ∼ N
03×1,Ωvt =


σ2
a,vt,a

σ2
g,vt,g

σ2
e,vt,e


 .

We further assume that the change point process for the policy regimes st is inde-

pendent of the volatility regimes vt. For notational convenience, we aggregate the regime

indicators comprising of both st and vt into dt as follows (shown here for the number of

policy regimes m = 2 and the number of volatility regimes v = 8).

dt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

st 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
vat 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
vgt 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
vet 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

This aggregation enables us to denote any possible distinct combination of the policy

and volatility regimes with a single notation. For instance, dt = 1 captures the first state

for the policy regime as well as for each of the three volatility regimes. Thus, the total

number of regimes d equals (m + 1) × v. The corresponding “aggregated” transition

probability matrix can therefore be written as Z = Qe⊗Qg⊗Qa ⊗P.

In section 2.2.10, we show that the recurrence of the volatility regimes, combined with

the fact that vt,a, vt,g, vt,e and st are independent, implies that both the model-implied

term premium and the expected excess returns are time-varying in each monetary policy

regime.

53



2.2.8 Model Solution and Determinacy Restrictions

For concerns of theoretical tractability as well as econometric convenience, we focus on

the (local) behavior of the economy around its deterministic, non-stochastic steady state.

Hence, our interest lies in the linearized system of equations (2.2.25)-(2.2.29) and (2.2.33).

On substituting (2.2.27) and (2.2.29) into (2.2.26), this system collapses to

0 = δEt [π̂t+1]− π̂t + κ (x̂t − ĝt) (2.2.34)

0 = Et [π̂t+1] + γEt [x̂t+1]− αst π̂t − (βst + γ)x̂t + φaât − γ(φg − 1)ĝt − êt (2.2.35)

We now have a simultaneous system of two equations in two key aggregated variables of

interest (output deviation from its steady state, x̂t , and, deviation of inflation from its

target, π̂t) and three unobservable shocks (to technology ât, government expenditure ĝt

and monetary policy êt).

To analyze the evolution of the two variables of interest we first need to solve this

model. The solution process rids the system of the unobservable expectational terms

by casting them as a linear function of the underlying shock processes. In the context of

regime-switching DSGE models, Davig and Leeper (2007) show how to construct a unique

(determinate) and bounded solution. Specifically, their approach relies on the minimal

state variable (MSV) representation as follows3

 π̂it

x̂it


︸ ︷︷ ︸

m̂it

=

 haπ(st = i) hgπ(st = i) heπ(st = i)

hax(st = i) hgx(st = i) hex(st = i)


︸ ︷︷ ︸

f̄t

H̄st=i

(2.2.36)

3Farmer, Zha, and Waggoner (2009) derive a class of non-MSV solutions to the quasi-linear
system (2.2.25)-(2.2.29). In their approach, determinacy conditions for the quasi-linear model are
not feasible unlike in Davig and Leeper (2007)’s method.
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where π̂it and x̂it denote the state-contingent (st = i) values of inflation gap and output

gap, respectively.

On inserting this linear solution into the system of equations (2.2.34)-(2.2.35), the

conditional expectation of the one-period ahead inflation gap and output gap are

Et
[(

π̂t+1 x̂t+1

)′
|st = i

]
= Et

[
H̄st+1 f̄t+1|st = i

]
(2.2.37)

= pi1H̄st+1=1φf̄ t + pi2H̄st+1=2φf̄ t

Equivalently, on letting hjπ,i ≡ hjπ(st = i) and hjx,i ≡ hjx(st = i), (j = a, g, e),

Et [π̂t+1|st = i] can be expressed as

pi1

[
haπ,1φaât + hgπ,1φg ĝt + heπ,1φeêt

]
+ pi2

[
haπ,2φaât + hgπ,2φg ĝt + heπ,2φeêt

]
(2.2.38)

and Et [x̂t+1|st = i] as

pi1

[
hax,1φaât + hgx,1φg ĝt + hex,1φeêt

]
+ pi2

[
hax,2φaât + hgx,2φg ĝt + hex,2φeêt

]
(2.2.39)

Next, to compute the regime-dependent solutions H̄st , we rely on the method of unde-

termined coefficients, setting the coefficients of ât, ĝt and êt equal to zero and solving for

the resulting solution in terms of the coefficients in H̄st . Further computational details

of the solution are in C.

Note that because we use a first-order approximation of the equilibrium conditions of

households and firms, the solution coefficients H̄st depend only on the monetary policy

regime st and not the volatility regimes vt. In addition, recall that lnπt = π̂t + lnπ∗ and

ln (Yt/At) = x̂t + lnx∗. Hence, the solution for the DSGE model in equation (2.2.36) can
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be rewritten as lnπt

lnYt


︸ ︷︷ ︸

mt

=

 lnπ∗

lnx∗


︸ ︷︷ ︸

+

J

 haπ(dt = i) hgπ(dt = i) heπ(dt = i) 0

hax(dt = i) hgx(dt = i) hex(dt = i) 1


︸ ︷︷ ︸

Hdt=i

 f̄t

lnAt


︸ ︷︷ ︸

ft
(2.2.40)

This representation of the solution is needed in the estimation of the model as we show

in section 2.3.1.

It is important to note that that the coefficients in H̄st are highly non-linear, compli-

cated mappings of the deep parameters. This mapping can only be calculated numerically

given values of the parameters. Because of this complicated nonlinearity, the likelihood

function of the model (which we present below) tends to be highly irregular with multiple

local maxima, abrupt discontinuities and flat regions. This aspect of the likelihood func-

tion is well acknowledged in the DSGE literature and is an important reason why (over

the last decade) Bayesian estimation techniques aided by MCMC methods have emerged

as the primary tools for estimating DSGE models.

2.2.9 The Bond Prices

The first order conditions for the short and long term bonds Bτ
t (1 ≤ τ ≤ τ∗), which are

absent in standard DSGE models without long term bonds, can be shown to have the

form

P τt = Et [Mt,t+τ ] (2.2.41)

where

Mt,t+τ = δ

(
ct+τ
ct

)−γ 1

at+τ

1

πt+τ
(2.2.42)
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is the intertemporal marginal rate of substitution between time t and t + τ . These first

order conditions provides the demand function for long term bonds. Assuming that the

supply of these bonds is perfectly elastic, and using the law of iterated expectation, one

has the standard asset-pricing conclusion that

P τt = Et [Mt,t+1 ×Mt+1,t+τ ] (2.2.43)

= Et [Mt,t+1 × Et+1 [Mt+1,t+τ ]]

= Et
[
Mt,t+1 × P τ−1

t+1

]
This equation implies that the equilibrium bond prices at time t, denoted by P (τ)

dt,t
, satisfy

the following no-arbitrage condition

P
(τ)
dt,t

= E
[
Mt,t+1P

(τ−1)
dt+1,t+1 |̄ft, dt

]
(2.2.44)

and are a function of the model-determined pricing kernel which itself is a function of dt

and the exogenous shocks.

To calculate the form of these prices, we express the nominal pricing kernel in log-

linearized form as

lnMt,t+1 = mt,t+1 ≈ cdt+1+λdt,dt+1 f̄t+Ldt+1εt+1 (2.2.45)

where

cdt+1 = − lnR∗ − 1

2
Ldt+1Ωdt+1L

′
dt+1

(2.2.46)

λdt,dt+1 = −
(

1 γ

)
H̄dt+1φ+

(
0 γ

)
H̄dt +

(
−1 γ 0

)
φ−

(
0 γ 0

)
(2.2.47)
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Ldt+1 = −
(

1 γ

)
H̄dt+1 +

(
−1 γ 0

)
(2.2.48)

Following Ang et al. (2008), we assume that the one period bond is risk-free by augmenting

the Jensen’s inequality term to equation (2.2.46). This assumption is necessary to generate

a positive average term premium in our formulation. Also note that the market price of

risk, which is associated with the structural shocks εt+1, is given by the elements in

Ldt+1Ω
1/2
dt+1

.

Let p(τ)
dt,t
≡ lnP

(τ)
dt,t

denote the log price of a τ -period maturity bond at time t in regime

dt and suppose that

−p(τ)
dt,t

= adt(τ) + bdt(τ)′f̄t. (2.2.49)

Under this guess and the form of the pricing kernel above we can use the method of

undetermined coefficients to derive the following recursive expressions for i ∈ {1, 2, ..,d}

ai(τ) = lnR∗+
d∑
j=1

pij

(
aj(τ − 1) + LjΩjbj(τ − 1)′ − 1

2
bj(τ − 1)′Ωjbj(τ − 1)

)
(2.2.50)

bi(τ)′ =
d∑
j=1

pij
(
bj(τ − 1)′φ− λi,j

)
. (2.2.51)

Further details of this derivation are provided in D. These recursions are initialized by

the no-arbitrage condition at τ = 0

ai(0) = bi(0) = 0 for all i (2.2.52)

Then, the continuously compounded yield to maturity r
(τ)
dt,t

for the zero-coupon nominal

bond is given by

r
(τ)
dt,t

=
−pτdt,t
τ

= ādt(τ) + b̄dt(τ)′f̄t (2.2.53)
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with ādt(τ) =
adt(τ)

τ
and b̄dt(τ) =

bdt(τ)

τ
.

It is useful to note that the factor loadings b̄dt(τ) are independent of the volatility regimes

because λi,j is determined by the parameters in the linearized Euler equation (2.2.45).

Importantly, the equilibrium short rate obtained from these recursions when τ = 1

is exactly the same as the value of the short rate from the Taylor rule at equilibrium

(obtained by substituting the equilibrium values of output and inflation into the Taylor

rule). This agreement is a consequence of the fact that bond pricing as exemplified here

comes from the dynamic general equilibrium solution of the model.

2.2.10 Measures of Long-Term Bond Risk

We focus on three different measures of riskiness of long-term bonds in each regime: the

term premium, the expected excess return on the long-term bond and the slope of the

yield curve. We now discuss the characteristics of each of these measures.

The term spread is simply the difference between the long-term bond yield and the

short rate. As is well-known, it can be rewritten as the sum of two components

r
(τ)
dt,t
− r(1)

dt,t
=

[
1

τ

τ−1∑
l=0

Et
[
r

(1)
dt+l,t+l

]
− r(1)

dt,t

]
︸ ︷︷ ︸

EH

+
1

τ

τ−1∑
i=1

exr(τ+1−i)
dt,t︸ ︷︷ ︸

Term Premium

, (2.2.54)

where exr(τ)
dt,t

denotes the one-period expected excess return to holding the τ -period bond.

The first component on the right is the expectation hypothesis. Under risk-neutral pricing,

after adjusting for risk, agents are indifferent between holding a long term bond and a one

period risk-free bond. The risk adjustment is the term premium, captured by the second

term on the right.
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Two important points emerge from equation (2.2.54). First, the term spread depends

on the expected excess returns as well as the expected average future short rate. Second,

the term premium reflects the expected excess return to all bonds of maturities less than

τ -periods, not just expected excess return to the τ -period bond.

The one-period expected excess return of the τ -period bond at time t is then defined

as

exr(τ)
dt,t

=
[
Et
[
p

(τ−1)
dt+1,t+1

]
− p(τ)

dt,t

]
− (−p(1)

dt,t
) (2.2.55)

= Et
[
− (τ − 1) r

(τ−1)
dt+1,t+1 + τr

(τ)
dt,t

]
− r(1)

dt,t

The first term on the right side of (2.2.55) is the expected one-period return to holding

the bond and the second term is the one-period risk-free rate. Importantly, exr(τ)
dt,t

can

be expressed as a sum of the factor risk component FR(τ)
dt=i

and the regime-shift risk

component RS(τ)
dt=i,t

exr(τ)
dt=i,t

= FR(τ)
dt=i

+ RS(τ)
dt=i,t

(2.2.56)

where

FR(τ)
dt=i

=
d∑
j=1

pijLjΩjbj(τ − 1)− 1

2

d∑
j=1

pijbj(τ − 1)′Ωjbj(τ − 1) (2.2.57)

RS(τ)
dt=i,t

=

 d∑
j=1

pijKj,t

 d∑
j=1

pijWi,j,t

− d∑
j=1

pijWi,j,tKj,t (2.2.58)

− 1

2

d∑
j=1

pijK
2
j,t +

1

2

 d∑
j=1

pijKj,t

2
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and

Wdt,dt+1,t = cdt+1+λdt,dt+1 f̄t (2.2.59)

Kdt+1,t = −adt+1 − bdt+1(τ − 1)′φf̄ t

Similarly, it is straightforward to decompose the term premium, denoted by TP(τ)
dt=i,t

, in

equation (2.2.54) as the sum of two averages.

The proof of these results is given in E. Notice that the terms in the factor risk

component FR(τ)
dt=i

are all associated with the structural shocks in the following period.

Not surprisingly, the compensation demanded for holding long term bonds depends largely

on the size of the factor shocks Ω
1/2
j bj(τ − 1) and the price of the risks LjΩ

1/2
j . This

market price of the risks is maturity-independent and determines how much one unit of

risk translates into an expected excess return. Meanwhile, the regime-shift risk component

RS(τ)
dt=i,t

will be absent under either a single regime model or a regime switching model with

market price of regime shift risk equal to zero as pointed out by Dai et al. (2007). Finally,

it is interesting that FR(τ)
dt=i

is a regime-specific constant, whereas RS(τ)
dt=i,t

depends on

the current values of the time-varying factors. Consequently, the expected excess return

is time varying and so is the term premium4. Moreover, our regime-dependent factor

loadings, generated by the monetary policy regime shifts, allow for the term premium

to vary independently of factor volatility. This additional flexibility helps improve the

forecast accuracy of future yields, as pointed out in Duffee (2002).

4An alternative way of achieving a time-varying term premium is to work with a second-order
or third-order approximation of the optimality conditions (Doh (2009) and Bansal and Yaron
(2004)). However, a suitable solution method for such non-linear models under a multi-regime
specification currently does not exist.
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2.3 Estimation methodology

2.3.1 State Space Formulation

We begin by recalling the solution to the DSGE model in equation (2.2.40)

 lnπt

lnYt


︸ ︷︷ ︸

mt

=

 lnπ∗

lnx∗


︸ ︷︷ ︸

+

J

 haπ(dt = i) hgπ(dt = i) heπ(dt = i) 0

hax(dt = i) hgx(dt = i) hex(dt = i) 1


︸ ︷︷ ︸

Hdt=i

 f̄t

lnAt


︸ ︷︷ ︸

ft
(2.3.1)

Note that the short rate r(1)
t , which is set by the central bank following the Taylor (1993)

rule, incorporates the monetary policy shock. Thus, as in the estimation of standard

DSGE models, we assume that the final outcomes (mt, R̂t) are generated without addi-

tional (measurement) errors. As we show in F, the benefit of this assumption is that,

given the regime process Dn and the initial value of the technology shock lnA0, the shock

process f̄t can be solved entirely in terms of the observable quantities ln (Pt/Pt−1), lnYt

and R̂t, where lnA0 is treated as an additional parameter to be estimated. This, in

turn, substantially simplifies the calculation of the likelihood function conditioned on the

regimes.

We implement our model on a data set that comprises 5 yields of US T-bills measured

on a quarterly basis. We denote these quarterly maturities of interest as

{τ1, τ2, τ3, τ4, τ5} = {1, 2, 4, 8, 20}

and let

Rt =

(
r

(τ1)
t r

(τ2)
t r

(τ3)
t r

(τ4)
t r

(τ5)
t

)′
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where r
(τi)
t = ri,t. We assume that all bonds with maturity greater than 1 pe-

riod are priced with errors - that is, the short rate is treated as a basis yield. Let

ādt = (ādt(τ1), ādt(τ1), .., ādt(τ1))′ and b̄dt =
(
b̄dt(τ1), b̄dt(τ2), .., b̄dt(τ5)

)′. Then the ob-

servable quantities mt and Rt are stacked to obtain the measurement equation

 mt

Rt


︸ ︷︷ ︸

yt

=

 J

ādt


︸ ︷︷ ︸

+

adt

 Hdt

b̄dt 05×1


︸ ︷︷ ︸

ft+

bdt

 03×4

I4


︸ ︷︷ ︸

et

Ty

(2.3.2)

where et ∼ N4 (0,Σ); Σ = diag(σ2
2, σ

2
3, σ

2
4, σ

2
5). We complete the state space formulation

by combining equation (2.2.33) with the technology shock process lnAt = ln a∗+lnAt−1 +

ât and write the transition equation as

 f̄t

lnAt


︸ ︷︷ ︸

ft

=

 03×1

ln a∗


︸ ︷︷ ︸

+

µ

 φ3×3 03×1

φa 0 0 1


︸ ︷︷ ︸

G

 f̄t−1

lnAt−1


︸ ︷︷ ︸

ft−1

+

 I3

1 0 0


︸ ︷︷ ︸

εt

Tf

(2.3.3)

with εt ∼ N (03×1,Ωdt). For notational convenience, we let θ denote the free parameters

in adt , bdt , Σ, µ, G and Ωdt .

2.3.2 Prior Distribution

We formulate the prior on the parameters to reflect the belief that (under the prior) the

average term premium is positive (Chib and Ergashev (2009)). This prior is, of course,

restricted to the subset of the parameter space that implies a unique determinate solution

to the model. Finally, various blocks of parameters are assumed to be a priori independent.

Table 2.1 summarizes our prior.
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Parameter density mean S.D.
δ beta 0.9992 0.0006
φa beta 0.3688 0.1189
φg beta 0.8472 0.1092
φe beta 0.6123 0.1293
p11 beta 0.9745 0.0221
qa11 beta 0.8995 0.0401
qa22 beta 0.8997 0.0401
qg11 beta 0.8997 0.0401
qg22 beta 0.8997 0.0401
qe11 beta 0.8997 0.0401
qe22 beta 0.8997 0.0401
400× lnR∗ normal 4.4426 0.3141
κ gamma 0.4985 0.3036
α1 normal 1.5154 0.2965
α2 normal 1.9972 0.3161
β1 normal 0.9968 0.3139
β2 normal 1.0067 0.3117
γ gamma 39.952 10.011
400× ln a∗ normal 1.6575 0.3147
lnx∗ gamma 0.9988 0.0978
lnA0 normal 2.3115 0.1009
2.0× 104 × σ2

a,1 inverse gamma 0.9539 0.1895
2.0× 105 × σ2

g,1 inverse gamma 0.9596 0.1937
3.0× 104 × σ2

e,1 inverse gamma 0.9603 0.1951
1.0× 104 × σ2

a,2 inverse gamma 0.9635 0.1941
1.0× 105 × σ2

g,2 inverse gamma 0.9635 0.1956
2.5× 103 × σ2

e,2 inverse gamma 0.9613 0.1943
1.4× 107 × σ2

2 inverse gamma 0.9623 0.1927
3.0× 106 × σ2

3 inverse gamma 0.9620 0.1948
1.2× 106 × σ2

4 inverse gamma 0.9605 0.1942
6.0× 105 × σ2

5 inverse gamma 0.9611 0.1979

Table 2.1: Prior distribution for the 16-regime model parameters

Under this prior, the annual short interest rate is centered at 4.4% with a standard

deviation of 0.32%. The steady state technology growth ranges from 1.13% to 2.17%.

For the variance of the structural shocks and the risk aversion parameters, the respective

marginal prior distributions are set to generate an average positive term premium. The
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marginal prior distributions of the other parameters are set to be consistent with the

existing empirical literature on the term structure and new Keynesian DSGE models.

For example, the prior distribution of the slope parameter κ in the Phillips curve is from

Lubik and Schorfheide (2004)and the transition probabilities are consistent with Chib

and Kang (2010). It is important to note that the values of the hyperparameters in

these marginal distributions are chosen to allow the parameters to vary considerably in

the domain supported by the determinacy condition. Furthermore, in this change point

setup for the policy regime, it is not necessary to impose any restrictions on the relative

magnitudes of βst=1, βst=2, αst=1 and αst=2. In contrast, we normalize the labels for the

volatility regimes by restricting that all diagonal elements in Ωd are greater than those

in Ω1. Finally, we note that our prior is quite symmetric across regimes in order to avoid

the identification of the regimes through the prior information.
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Figure 2.1: The prior-implied inflation and output growth dynamics

To understand what the prior distribution implies for the outcomes, we sample the

parameters 20,000 times from the prior, and then for each drawing of the parameters,

we simulate the shocks, macroeconomic variables and yields according to the structural

model. The sampled sequences for each macroeconomic variable in annualized percents

are shown in Figure 2.1. As one can see from those figures, this prior implies a deviation of

roughly 5% for output growth and 7% for inflation. Similarly, the implied term structure
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Figure 2.2: The prior-implied term structure dynamics

in annualized percents for each time period is reproduced in Figure 2.2. As one can see, the

implied average term structure is gently upward sloping in each regime with considerable

a priori variation.

2.3.3 Posterior Distribution and MCMC Sampling

We now have the necessary ingredients to calculate the posterior distribution of the pa-

rameters. Let Dn = {dt}t=0,1,..,n denote the sequence of the unobserved regime indicators,

Fn = {f t}t=0,1,..,n the sequence of the factors and y = {yt}t=0,1,..,n the full set of observ-

ables (date set). Then, the posterior distribution that we would like to analyze is given

by

π(θ,Fn,Dn|y) ∝ f(y|θ,Fn,Dn)p(Fn,Dn|θ)π(θ) (2.3.4)

where f(y|θ,Fn,Dn) is the distribution of the data given the regime indicators and the

parameters, p(Fn,Dn|θ) is the density of the latent factors and the regime-indicators

given the parameters, and π(θ) is the prior density of θ. Note that by conditioning on
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Dn we avoid the calculation of the likelihood function f(y|θ) whose computation is more

involved.

We summarize this complex posterior distribution by MCMC simulation methods.

The basic idea behind the MCMC approach is to produce correlated (Markov distributed)

drawings from the posterior distribution whose invariant distribution is the target density

(Chib and Greenberg (1995)). Practically, the sampled draws after a suitably specified

burn-in phase are taken as samples from the posterior density. We construct our simu-

lation procedure by sampling various blocks of parameters and latent variables in turn

within each MCMC iteration. The distributions of these various blocks of parameters are

each proportional to the joint posterior π(θ,Fn,Dn|y). In particular, after initializing the

model parameters θ and the regimes Dn, we go through an iterative sequence of steps in

each MCMC cycle. First, we sample θ from the posterior distribution that is proportional

to

f(y|θ,Dn)π(θ) (2.3.5)

where f(y|θ,Dn) is obtained from the standard Kalman filtering recursions given the

regime indicators Dn. The sampling of θ from the latter density is done by the TaRB-

MH method following Chib and Ramamurthy (2010). The use of this MCMC method is

essential to improve the mixing of the draws when there is no natural way of grouping the

parameters. In the next step we solve for Fn in terms of the observable macro quantities

and the short yield. Finally, we sample Dn conditioned on Fn and θ in one block by the

algorithm of Chib (1996). These steps of the MCMC algorithm are summarized below.

A more detailed description can be found in F.

Algorithm: MCMC sampling

Step 1 Initialize (θ,Dn) and fix n0 (the burn-in) and n1 (the MCMC sample size)
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Step 2 Sample θ conditioned on (y,Dn)

Step 3 Sample Fn conditioned on (y,θ,Dn)

Step 4 Sample Dn conditioned on (y,θ,Fn)

Step 5 Repeat Steps 2-4, discard the draws from the first n0 iterations and save the

subsequent n1 draws.

2.3.4 Model Comparison

From the perspective of the data, we are interested in knowing whether a multi-regime

model improves on a single regime model. Furthermore, we are also interested in learning

which of these multi-regime specifications best describes the data. To address these ques-

tions, we compare the following models: a single regime model (M1), a model with one

regime change in monetary policy but no regime shifts in the shock volatilities (2 policy

regimes,M2), a model with one regime change in monetary policy together with simulta-

neous regime shifts in all three volatilities (2 policy regimes and 2 volatility regimes,M4),

a model with one regime change in monetary policy together with independent regime

shifts in each of the three volatilities (2 policy regimes and 8 volatility regimes,M16), and,

finally, a model with two regime changes in monetary policy together with independent

regime shifts in each of the three volatilities (3 policy regimes and 8 volatility regimes,

M24).

Md # of monetary policy regimes(m+ 1) # of volatility regimes(v)
M1 1 1
M2 2 1
M4 2 2
M16 2 8
M24 3 8
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Within the Bayesian context, these models are compared in terms of the marginal

likelihoods m(y|Md) and their ratios (Bayes factors). Following Chib and Jeliazkov

(2001) an estimate of the log marginal likelihood can be calculated from the following

fundamental identity

ln m̂(y|Md) = ln f(y|θ∗,Md) + lnπ (θ∗,Md)− ln π̂(θ∗|y,Md) (2.3.6)

where d=1, 2, 4, 16, and 24, and θ∗ is a high density point in the support of the parameter

space. Notice that the first term on the right hand side of this expression is the likelihood

ordinate. The second term is the prior ordinate. Both of these are readily available. The

third term, the posterior ordinate π(θ∗|y,Md), is estimated from a marginal-conditional

decomposition (Chib (1995)). The specific implementation in this context requires the

technique of Chib and Jeliazkov (2001) as modified by Chib and Ramamurthy (2010) for

the case of randomized blocks. For details we refer the interested reader to these papers.

2.3.5 Prediction

We are also interested in examining the forecasting performance of the proposed model

in relation to other models. Forecasts are generated by sampling the Bayesian predictive

density (the density of the future quantities conditioned on the sample data, marginalized

over the parameters and other unknowns). This sampling is done by the method of

composition. For each draw of the parameters from the posterior distribution, we draw the

regimes and the structural shock processes. Then, given the factors and the parameters,

we sample the yields and the macroeconomic variables. The resulting sample can be

shown to be from the predictive density.

Algorithm: Sampling the predictive density of the macroeconomic
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variables and yields

Step 1 For j = 1, 2, .., n1 :

(a) t = 1, 2, .., T :

(i) Compute Z(j) and draw dn+t given dn+t−1 and Z(j)

(ii) Compute µ(j), G(j), Ω
(j)
dn+t

, Σ(j), a(j)
dn+t

and b(j)
dn+t

(iii) Compute f (j)
n+t = µ(j) +G(j)f (j)

n+t−1 +Tfε
(j)
n+t where ε(j)

n+t ∼ N3

(
0,Ω(j)

dn+t

)
(iv) Compute y(j)

n+t = a(j)
dn+t

+ b(j)
dn+t

f (j)
n+t + Tye

(j)
n+t where e(j)

n+t ∼ N4

(
0,Σ(j)

)
(b) Set y(j)

f =
{

y(j)
n+1,y

(j)
n+2, ..,y

(j)
n+T

}
Step 2 Return yf =

{
y(1)
f ,y(2)

f , ..,y(n1)
f

}

2.4 Results

Our empirical results are based on the collection of historical yields of treasury bills with

maturities 1, 2, 4, 8 and 20 quarters, GDP per capita and inflation for the sample period

1986:Q4 to 2008:Q4. This data is available online from the Board of Governors of the

Federal Reserve System (Gurkaynak et al. (2007)). From the DSGE model perspective,

the relevance of this sample period is that it is known for its relative stability compared

to the major oil price shocks during the 1970s, the monetary policy experiment and the

Volcker disinflation period in the early 1980s.

2.4.1 Change-Point and Structural Shocks

Table 2.2 confirms the existence of one time break in the policy in 1995:Q2 based on the

marginal likelihoods. As can be seen in this table, the 4-regime model is most supported
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by the data. Notice that even the change point model without regime switching variance

(M2) gives the same estimate of the breakpoint. From this we infer that the U.S. monetary

policy has been in an absorbing regime since 1995:Q2. Although, it is difficult to pinpoint

the specific reason behind the policy change, the timing of this change is consistent with

the finding of Chib and Kang (2010) who fit a change point model under the partial

equilibrium approach. Figure 2.3 shows the persistence of the policy regimes. In contrast,

figures 2.4 and 2.5 reveal that the volatility regimes are far less persistent than the policy

regimes. Finally, Figure 2.7 plots the estimated exogenous shock processes ât, ĝt and êt.
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(b) More active policy regime (st = 2)

Figure 2.3: Model M16 : The posterior probability of monetary policy regimes

The coincidence of the technology shock process ât and business cycles is quite striking

in this figure.
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(a) Low technology volatility regime (va
t = 1)
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(b) High technology volatility regime (va
t = 2)

Figure 2.4: Model M16 : The posterior probability of technology volatility regimes

2.4.2 Model Parameters

We next discuss the posterior estimates of the parameters. Table 2.3 summarizes the

posterior distribution of the parameters based on 20,000 of the MCMC algorithm beyond

a burn-in of 5,000. We measure the efficiency of the MCMC sampling in terms of the

acceptance rate in the M-H step and the inefficiency factors5 (Chib (2001)). These values

5The inefficiency factors approximate the ratio of the numerical variance of the estimate from
the MCMC chain relative to that from hypothetical iid draws. For a given sequence of draws the
inefficiency factor is computed as

1 + 2
L∑

l=1

ρk(l)

where ρk(l) is the autocorrelation at lag l for the kth sequence, and L is the value at which the
autocorrelation function tapers off (the higher order autocorrelations are also downweighted by a
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(a) Low government expenditure volatility regime (vg
t = 1)
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(b) High government expenditure volatility regime (vg
t = 2)

Figure 2.5: ModelM16 : The posterior probability of government expenditure volatility
regimes

on average are 62.3% and 28.3, respectively, indicating a well mixing, efficient sampler.

Also, the sampler converges quickly to the same region of the parameter space regardless

of the starting values. Finally, as one can see in Figure 2.8, the posterior densities of the

parameters are mostly different from the prior given in Table 2.1. This implies that the

data carries information distinct from that contained in the prior distribution.

Two notable features emerge from the table. First, the estimates indicate that the

Fed’s response to the macro fundamentals is markedly different across policy regimes.

windowing procedure, but we ignore this aspect for simplicity). A well mixing sampler results in
autocorrelations that decay to zero within a few lags (and therefore lead to low inefficiency factors),
whereas a poorly mixing sampler exhibits persistent correlations even at large lags. Further details
are available in Chib (2001).
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(a) Low monetary policy volatility regime (ve
t = 1)
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(b) High monetary policy volatility regime (ve
t = 2)

Figure 2.6: ModelM16 : The posterior probability of monetary policy volatility regimes

The reaction coefficient for the output gap is 0.8 during the policy regime 1 whereas

in the second policy regime it is 1.35. At the same time, the short rate adjustment to

inflation gap is more aggressive. One possible explanation for this is that because inflation

has been reasonably stable during the sample period, the Fed’s reaction to output gap

became relatively more aggressive, marking the break point.

The second important point to note is that the risk-aversion parameter γ has a large

posterior mean of 68. This is closely related to the “bond premium puzzle”. Rudebusch

and Swanson (2008b) show that many DSGE models with standard macroeconomic pa-

rameterizations fail to account for the magnitude of risk premium even with habit forma-

tion in the household’s utility function. This is often termed the “bond premium puzzle”.
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model lnL lnML n.s.e. change point
No change point (M1) 3025.64 3076.71 0.14 -
2-Regime (M2) 3114.29 3208.77 0.42 1995:Q2
4-Regime (M4) 3247.35 3383.52 0.42 1995:Q2
16-Regime (M16) 3344.31 3471.43 0.41 1995:Q2
24-Regime (M24) 3346.31 3468.95 0.42 1995:Q2, 2002:Q2

Table 2.2: Log likelihood (lnL) and log marginal likelihood (lnML)

Like in the equity premium puzzle, one possible resolution is a very large value of risk-

aversion parameter. Therefore, such large value of γ is essential to account for the level

of the term premium.6

2.4.3 Changes in the Long Term Bond Risk

In this paper, the benchmark long-term bond is the five-year Treasury note. Its regime-

specific risk is computed by the three different measures as discussed in the section 2.2.10.

Figure 2.9 plots the posterior mean of the term premium for the long-term bond over time.

Not surprisingly, this risk measure is strictly increasing in maturity (although it is not

reported here). It clearly indicates that the average bond risk has diminished since the

break, which is consistent with the finding of Chib and Kang (2010).

Moreover, Table 2.4 also reveals that, regardless of the maturity, the average term

spread is noticeable lower in the recent regime than in regime 1. Recall that this regime-

dependence of the bond risk is solely attributed by the change in the reaction coefficients.

This implies that a more active regime on average generates a flatter yield curve. A

6In a standard CRRA preference, high risk aversion (low intertemporal elasticity of substitu-
tion) may lead to high real interest rates. However, the average annual real rate implied by our
model is 1.884%, which almost matches the observed annual real interest rates of 2.012%. On
the other hand, in a calibration exercise, Rudebusch and Swanson (2008a) show that Epstein-Zin
preference with a relatively small risk aversion parameter can generate a large risk premium in
the context of a single regime DSGE model.
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Figure 2.7: Model M16 : The exogenous shock process

plausible argument here is that here is that a more aggressive response by the monetary

authority can potentially mitigate the effect of the (negative) shocks. This in turn leads

the risk-averse agents to expect lower volatility in the macro variables. Hence they price

bonds with a smaller market price of risk.
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Figure 2.8: Model M16 : Marginal prior-posterior plots for some selected parameters

On the other hand, Figure 2.10 presents the result for the decomposition of the term

premium of the 5-year bond over time. Interestingly, most of variation of the term pre-

mium is explained by the factor risk component. One possible explanation is that sizable

factor shocks occur frequently whereas regime shifts happen relatively less frequently.

Nevertheless, because the regime shift risk component is consistently positive over time,

it should not be neglected.
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Numerical 90% credibility Inefficiency Acceptance
mean S.E. interval factor rate

δ 0.9989 0.0017 [0.9947, 1.0000] 109.03 42.41
φa 0.3212 0.0802 [0.1940, 0.4581] 13.93 53.78
φg 0.9779 0.0080 [0.9637, 0.9902] 413.06 49.66
φe 0.9546 0.0126 [0.9335, 0.9756] 414.39 50.41
p11 0.9718 0.0174 [0.9405, 0.9996] 184.32 48.29
qa11 0.8957 0.1072 [0.6684, 0.9941] 13.98 32.16
qa22 0.8959 0.1072 [0.6706, 0.9938] 9.68 32.22
qg11 0.9371 0.0348 [0.8733, 0.9855] 128.02 52.60
qg22 0.9770 0.0220 [0.9310, 0.9987] 33.56 42.60
qe11 0.8509 0.0274 [0.8025, 0.8911] 134.79 52.00
qe22 0.7466 0.0875 [0.6009, 0.8865] 184.42 52.40
400× lnR∗ 4.4463 0.1197 [4.2524, 4.6460] 16.23 53.00
κ 0.0734 0.0583 [0.0129, 0.1897] 400.34 49.91
α1 0.9590 0.2596 [0.5379, 1.3711] 204.91 51.70
α2 1.4430 0.2641 [1.0469, 1.9034] 166.47 52.04
β1 0.7998 0.2804 [0.3634, 1.2874] 113.07 52.50
β2 1.4834 0.3179 [0.9501, 2.0055] 170.02 51.79
γ 61.678 14.929 [41.883, 90.290] 216.32 51.15
400× ln a∗ 1.6815 0.1134 [1.4980, 1.8733] 6.26 53.40
lnx∗ 0.9817 0.1182 [0.7926, 1.1802] 145.91 49.29
lnA0 2.2852 0.1182 [2.0867, 2.4750] 146.32 50.10
2.0× 104 × σ2

a,1 1.1002 0.2549 [0.7468, 1.5637] 76.56 52.00
2.0× 105 × σ2

g,1 0.4054 0.0754 [0.2992, 0.5380] 13.73 52.03
3.0× 104 × σ2

e,1 0.4350 0.0870 [0.3119, 0.5879] 25.98 51.73
1.0× 104 × σ2

a,2 0.5221 0.1115 [0.3651, 0.7153] 69.70 51.81
1.0× 105 × σ2

g,2 0.6778 0.1999 [0.3779, 1.0225] 15.35 50.80
2.5× 103 × σ2

e,2 1.8018 1.5077 [0.4647, 4.7115] 276.00 51.62
1.4× 107 × σ2

2 0.4294 0.1574 [0.2303, 0.7163] 115.12 52.09
3.0× 106 × σ2

3 0.7350 1.7407 [0.2073, 1.8182] 36.42 48.76
1.2× 106 × σ2

4 2.4980 1.4150 [0.9006, 5.2584] 199.50 52.40
6.0× 105 × σ2

5 1.1772 0.5835 [0.5359, 2.4199] 332.15 51.93

Table 2.3: Posterior distribution for the 16-regime model parameters

Figure 2.11 indicates the regime-dependence of the factor loadings. The yields in the

more active regime are less affected by the shocks to the technological progress and the

government expenditure in comparison with those in the less active regime.
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Less active regime (st = 1) More active regime (st = 2)
(1987:Q1-1995:Q1) (1995:Q2-2008:Q4)

One-year term spread 0.5000 0.2818
Two-year term spread 1.0051 0.5285
Five-year term spread 1.6133 0.9574

Table 2.4: Regime-specific average term spreads
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Figure 2.9: The term premium and the EH component of the 5-year bond

2.4.4 Counterfactual Analysis

Since the change point model enables us to estimate the parameters corresponding to each

of the regimes, we can perform a time series counterfactual experiment. This exercise is

very useful to measure the magnitude of the effect of the monetary policy change on the
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Figure 2.10: Model M16 : Decomposition of the term premium of the 5-year bond

macro-economy and the asset prices.

Figure 2.12 plots the results for the short rate and the term spread. As seen in the

figure, the short rate would have been more volatile and the slope of the yield curve steeper

without the break. On the contrary, if the more active regime prevailed over the entire

sample period, then the term spread in regime 1 would have been smaller. As a result, the

average yield curve differs across regimes due to the policy change. Figure 2.13 confirms

these findings. For instance, the graph on the top clearly shows that the parameters under

the more active regime reproduces a much steeper average yield curve than the actual

average during the period corresponding to the less active regime. However, Figure 2.14

indicates that inflation and the output growth exhibit little difference, no matter what
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Figure 2.11: Model M16 : The factor loadings

policy regime in existence. Therefore, monetary policy regime change mostly impacts

the term structure rather than inflation and output growth. This echoes the findings in

Gallmeyer, Hollifield, Palomino, and Zin (2008), who also report, within the context of a

partial equilibrium model, that the nominal term premium can be highly sensitive to the

monetary policy regime.
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Figure 2.12: Model M16 : Counterfactual analysis: interest rates

2.4.5 Out-of-Sample Prediction

As described in section 2.3.5, we forecast the four quarters in 2008 using the data up to

2007:Q4. Following Chib and Kang (2010), the predictive accuracy is measured in terms

of the posterior predictive criterion (PPC, Gelfand and Ghosh (1998)). PPC favors models

to minimize a sum of goodness-of-fit and penalty term on model complexity. Table 2.5

clearly displays that the proposed model outperforms the alternatives, which is consistent

with the marginal likelihood results (i.e. in-sample forecasting).
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Figure 2.13: Model M16 : Counterfactual analysis: average yield curve

model PPC
No change point (M1) 84.299
2-Regime (M2) 56.202
4-Regime (M4) 50.451
16-Regime (M16) 48.845
24-Regime (M24) 50.467

Table 2.5: Posterior predictive criterion

2.5 Conclusion

In this paper we propose and estimate a general equilibrium model of the term structure

of interest rates with regime changes. The main goal of our work is to examine the term

structure of interest rates from a combined macro-finance perspective. Interest in such
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Figure 2.14: Model M16 : Counterfactual analysis: inflation and output growth

combined modeling is growing and the general equilibrium model we have described, the

solution method we have used, and the econometrics we have employed, can all be adapted

for other similar purposes. Such work should appear quite rapidly.

Our empirical results reveal that, in its goal of stabilizing the economy, monetary

policy has been more responsive to the macro fundamentals since 1995:Q2 with important

effects on the dynamics of the term structure. Because in a more active regime agents

anticipate less volatility in the macro variables, bonds are priced with a lower market

price of risk. As a result, the average term premium is smaller in this regime and the

slope of the yield curve is flatter on average.

Furthermore, during the more active policy period, both the average term premium
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and its volatility have fallen, and consequently, whereas the term premium explains a

significant portion of the term spread in the less active regime, the relative share of the

market expectations has increased in the second regime.

Finally, our empirical findings reveal the important role that incorporating regime

changes can play in improving forecasts of the term structure.
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Appendix A

Essay 1: Bond Prices under Regime Changes

By the assumption of the affine model, we have

Pt(st, τ) = exp
(
−ast(τ)− bst(τ)′(ft − µst)

)
(A.0.1)

and Pt+1(st+1, τ − 1) = exp
(
−ast+1(τ − 1)− bst+1(τ − 1)′(ft+1 − µst+1

)
)
.

Let hτ,t+1 denote

Pt+1(st+1, τ − 1)

Pt(st, τ)
(A.0.2)

= exp
[
−ast+1(τ − 1)− bst+1(τ − 1)′(ft+1 − µst+1

) + ast(τ) + bst(τ)′(ft − µst)
]

It immediately follows from the bond pricing formula that

1 = Et

[
κt,st,t+1

Pt+1(st+1, τ − 1)

Pt(st, τ)

]
(A.0.3)

= Et [κt,st,t+1hτ,t+1] .

Then by substitution

κt,st,t+1hτ,t+1 (A.0.4)

= exp[−rt,st −
1

2
γ ′t,stγt,st − γ ′t,stL−1

st+1
ηt+1

− ast+1(τ − 1)− bst+1(τ − 1)′
(
ft+1 − µst+1

)
+ ast(τ) + bst(τ)′

(
ft − µst

)
]
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= exp[−rt,st −
1

2
γ ′t,stγt,st −

(
γ ′t,stL

−1
st+1

+ bst+1(τ − 1)′
)
ηt+1 + ζτ,st,st+1 ]

= exp[−rt,st −
1

2
γ ′t,stγt,st −

(
γt,st + bst+1(τ − 1)′Lst+1

)
ωt+1 + ζτ,st,st+1 ]

= exp[−rt,st −
1

2
γ ′t,stγt,st +

1

2
Γt,τΓ′t,τ + ζτ,st,st+1 ] exp[−1

2
Γt,τΓ′t,τ − Γt,τωt+1]

where

ζτ,st,st+1 = ast(τ) + bst(τ)′
(
ft − µst

)
− ast+1(τ − 1)− bst+1(τ − 1)′Gst+1

(
ft − µst

)
Γt,τ = γ ′t,st + bst+1(τ − 1)′Lst+1

and ωt+1 = L−1
st+1

ηt+1 ∼ N (0, Ik+m). Given ft, st+1 and st, the only random variable in

κt,t+1hτ,t+1 is ωt+1. Then since

Et

(
exp[−1

2
Γt,τΓ′t,τ − Γt,τωt+1]

)
= 1 (A.0.5)

we have that

E [κt,st,t+1hτ,t+1|ft, st+1, st] = exp[−rt,st −
1

2
γ ′t,stγt,st +

1

2
Γt,τΓ′t,τ + ζτ,st,st+1 ].

Using log-approximation exp(y) ≈ y + 1 for a sufficiently small y leads to

E [κt,st,t+1hτ,t+1|ft, st+1, st] (A.0.6)

= exp[−rt,st −
1

2
γ ′t,stγt,st

+
1

2

(
γ ′t,st + bst+1(τ − 1)′Lst+1

) (
γ ′t,st + bst+1(τ − 1)′Lst+1

)′
+ ζτ,st,st+1 ]

≈ −rt,st + γ ′t,stL
′
st+1

bst+1(τ − 1) +
1

2

(
bst+1(τ − 1)′Lst+1L

′
st+1

bst+1(τ − 1)
)

+ ζτ,st,st+1 + 1

= −
(
δ1,st + δ′2,st

(
ft − µst

))
+
(
γ̃st + Φst

(
ft − µst

))′ L′st+1
bst+1(τ − 1)

+
1

2

(
bst+1(τ − 1)′Lst+1L

′
st+1

bst+1(τ − 1)
)

+ ζτ,st,st+1 + 1
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Given the information at time t,(i.e. ft and st = j), integrating out st+1 yields

E [κt,st,t+1hτ,t+1|ft, st = j] =
∑

st+1=j,k

pjst+1E [κt,st,t+1hτ,t+1|ft, st+1, st = j] (A.0.7)

= 1 where k = j + 1.

Thus we have

0 =
∑

st+1=j,k

pjst+1 {E [κt,st,t+1hτ,t+1|ft, st+1, st = j]− 1} since
∑

st+1=j,k

pjst+1 = 1 (A.0.8)

= pjj (E [κt,st,t+1hτ,t+1|ft, st+1 = j, st = j]− 1)

+ pjk (E [κt,st,t+1hτ,t+1|ft, st+1 = k, st = j]− 1)

≈ −pjj
(
δ1,j + δ′2,j

(
ft − µst

))
+ pjj

(
γ̃j + Φj

(
ft − µst

))′ L′jbj(τ − 1)

+
1

2
pjj
(
bj(τ − 1)′LjL′jbj(τ − 1)

)
+ pjjζτ,j,j

− pjk
(
δ1,j + δ′2,j

(
ft − µst

))
+ pjk

(
γ̃j + Φj

(
ft − µst

))′ L′kbk(τ − 1)

+
1

2
pjk
(
bk(τ − 1)′LkL′kbk(τ − 1)

)
+ pjkζτ,j,k

Matching the coefficients on ft and setting the constant terms equal to zero we obtain

the recursive equation for ast(τ) and bst(τ) given the initial conditions ast(0) = 0 and

bst(0) = 03×1 implied by the no-arbitrage condition. Finally imposing the restrictions on

the transition probabilities establishes the proof.
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Appendix B

Essay 1: MCMC Sampling

This section provides the details of the MCMC algorithm given in section 3.4. The

algorithm is coded in Gauss 9.0 and executed on a Windows Vista 62-bit machine with a

2.66 GHz Intel Quad Core2 CPU. About 12 days are needed to generate 50,000 MCMC

draws in the 3 change-point model. In contrast, a random-walk M-H algorithm takes

about 2 days to complete 1 million iterations but with unknown reliability and much less

efficient exploration (Chib and Ramamurthy (2009)).

Step 2 Sampling θ

We sample θ conditioned on (Sn, u0,σ
∗2) by the tailored randomized block M-H

(TaRB-MH) algorithm introduced in Chib and Ramamurthy (2010). The schemat-

ics of the TaRB-MH algorithm are as follows. The parameters in θ are first randomly

partitioned into various sub-blocks at the beginning of an iteration. Each of these

sub-blocks is then sampled in sequence by drawing a value from a tailored proposal

density constructed for that particular block; this proposal is then accepted or re-

jected by the usual M-H probability of move (Chib and Greenberg (1995)). For

instance, suppose that in the gth iteration, we have hg sub-blocks of θ

θ1, θ2, . ., θhg

If ψ−i denotes the collection of the parameters in ψ except θi, then the pro-

posal density q
(
θi|y,ψ−i

)
for the ith block conditioned on ψ−i is constructed by

89



a quadratic approximation at the mode of the current target density π
(
θi|y,ψ−i

)
.

In our case, we let this proposal density take the form of a student t distribution

with 15 degrees of freedom

q
(
θi|y,ψ−i

)
= St

(
θi|θ̂i,Vθ̂i

,15
)

(B.0.1)

where

θ̂i = arg max
θi

ln{p(y|Sn,θi,ψ−i)π(θi)} (B.0.2)

and Vθ̂i
=

(
−∂

2 ln{p(y|Sn,θi,ψ−i)π(θi)

∂θi∂θ
′
i

)−1

|θi=θ̂i
.

Because the likelihood function tends to be ill-behaved in these problems, we calcu-

late θ̂i using a suitably designed version of the simulated annealing algorithm. In

our experience, this stochastic optimization method works better than the standard

Newton-Raphson class of deterministic optimizers.

We then generate a proposal value θ†i which, upon satisfying all the constraints, is

accepted as the next value in the chain with probability

α(θ
(g−1)
i ,θ†i |y,ψ−i) (B.0.3)

= min

 p(y|Sn,θ
†
i ,ψ−i)π(θ†i )

p(y|Sn,θ
(g−1)
i ,ψ−i)π(θ

(g−1)
i )

St(θ
(g−1)
i |θ̂i,Vθ̂i

,15)

St(θ†j |θ̂i,Vθ̂i
,15)

, 1

 .

If θ†i violates any of the constraints in R, it is immediately rejected. The simulation

of θ is complete when all the sub-blocks

π
(
θ1|y,Sn,ψ−1

)
, π
(
θ2|y,Sn,ψ−2

)
, . . . , π(θhg |y,Sn,ψ−hg) (B.0.4)

are sequentially updated as above.
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Step 3 Sampling the initial factor

Given the prior in equation (1.3.14), u0 is updated conditioned on θ, m0 and

f1 = (u1 m′1)′, where m0 is given by data and u1 is obtained from the equation

(1.3.5). In the following, it is assumed that all the underlying coefficients are those

in regime 0. Then

u0|f1,θ∼N1 (ū0,U0) (B.0.5)

where

ū0 = U0

(
Σ−1
u +H∗′Ω∗11,0u

∗
1

)
, U0 =

(
Σ−1
u +H∗′Ω∗11,1H

∗)
and on letting

G0 =

 G11,1 G12,1

G21,1 G22,1

 , Ω1 =

 Ω11,1 Ω12,1

Ω21,1 Ω22,1


H∗ = G11,1−Ω12,1Ω−1

22,1G21,1, Ω∗11,1 = Ω11,1−Ω12,1Ω−1
22,1Ω21,1

u∗1 = u1 − Ω12,1Ω−1
22,1(m1 − µm,1) +

(
Ω12,1Ω−1

22,1G22,1−G12,1

)
(m0 − µm,1)

Step 4 Sampling regimes

In this step one samples the states from p[Sn|In,ψ] where In is the history of the

outcomes up to time n. This is done according to the method of Chib (1996) and

Chib (1998) by sampling Sn in a single block from the output of one forward and

backward pass through the data.

The forward recursion is initialized at t = 1 by setting Pr[s1 = 1|I1,ψ] = 1. Then

one first obtains Pr[st = j|It,ψ] for all j = 1, 2, ..,m + 1 and t = 1, 2, .., n by

calculating

Pr[st = j|It,ψ] =

j∑
i=j−1

Pr[st−1 = i, st = j|It,ψ] (B.0.6)
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where

Pr[st−1 = i, st = j|It,ψ] =
p [yt|It−1, st−1 = i, st = j,ψ] Pr[st−1 = i, st = j|It−1,ψ]

p [yt|It−1,ψ]

This can be done by the equations (1.3.22)-(1.3.25).

In the backward pass, one simulates Sn by the method of composition. One samples

sn from Pr[sn = 1|In,ψ]. We remark that in this sampling step, sn can take any

value in {1, 2, .., m+1}. For instance, if sn turns out to be m and not (m+1), then

m is taken to be the absorbing regime and the parameters of regime (m + 1) are

drawn from the prior in that iteration. In our data, however, (m+1) is always drawn

because the last change point occurs in the interior of the sample and, therefore,

the distribution Pr[sn = 1|In,ψ] has almost a unit mass on (m + 1). Then for

t = 1, 2, .., n− 1 we sequentially calculate

Pr[st = j|It, st+1 = k, St+2,ψ] = Pr[st = j|It, st+1 = k,ψ] (B.0.7)

=
Pr[st+1 = k|st = j] Pr[st = j|It,ψ]∑k

j=k−1 Pr[st+1 = k|st = j] Pr[st = j|It,ψ]

where St+1 = {st+1, .., sn} denotes the set of simulated states from the earlier steps.

A value st is drawn from this distribution and it is either the value k or (k − 1)

conditioned on st+1 = k.

Step 5 Sampling the variances of the pricing errors

A convenient feature of our modeling approach is that, conditional on the history

of the regimes and factors, the joint distribution of the parameters in σ∗2 is an-

alytically tractable and takes the form of an inverse gamma density. Thus, for

i ∈ {1, 2, .., 7, 9, .., 16} and j = 1, 2, ..,m+ 1, σ∗2i,j is sampled from

IG

{
v̄ +

∑n
t=1 I (st = j)

2
,
d̄+

∑n
t=1 di,jI (st = j)(Rti − āi,j − b̄′i,j(ft − µj))2

2

}
(B.0.8)
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where I (·) is the indicator function.
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Appendix C

Essay 2: Solution

When solving the model we enforce the condition that the stable solution is unique and

bounded. Our model solution method relies on the approach of Davig and Leeper (2007).

For this, we construct the auxiliary representation of the linearized equilibrium dynamics

or the stacked system which is available for any purely forward-looking rational expec-

tations model with regime changes. We begin by defining the state-contingent forecast

error as

ηπjt+1 = π̂jt+1 − Et (π̂jt+1) and ηxjt+1 = x̂jt+1 − Et (x̂jt+1) , j = 1, 2 (C.0.1)

where ŷjt+1 denotes the value of ŷt+1 conditioned on st+1 = j. Then substituting the

conditional expectations in equations (2.2.38) and (2.2.39) into the system of equations

(2.2.34)-(2.2.35) yields the following stacked system

A



π̂1t+1

π̂2t+1

x̂1t+1

x̂2t+1


= B



π̂1t

π̂2t

x̂1t

x̂2t


+ A



ηπ1t+1

ηπ2t+1

ηx1t+1

ηx2t+1


+ Cf̄ t (C.0.2)

where

A =

 δ ⊗P 02×2

P γ ⊗P

 , (C.0.3)
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B11 = Im+1, B12 = −κ× Im+1, B21 = diag(α1, α2, .., αm+1), (C.0.4)

B22 = diag(β1 + γ, β2 + γ, .., βm+1 + γ),

B =

 B11 B12

B21 B22

 , (C.0.5)

and C =



0 κ 0

0 κ 0

−φa γ (φg − 1) 1

−φa γ (φg − 1) 1


(C.0.6)

Uniqueness and boundedness of the MSV solution are equivalent to the determinacy

restriction of the solution space of this stacked system (Davig and Leeper (2007)). In terms

of the computational details, this restriction requires that all the generalized eigenvalues

of A and B lie outside the unit circle. For further discussion about necessary and sufficient

conditions for determinacy, we refer the interested reader to Davig and Leeper (2007).
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Appendix D

Essay 2: Bond Prices

This section provides the details on the derivation of the bond prices in (2.2.50) and

(2.2.51). We begin by letting Edt+1 denote an expectation conditioned on dt+1. Then the

equation (2.2.44) can be expressed as

P
(τ)
dt,t

= Edt+1

[
P

(τ)
dt,dt+1,t

]
where P (τ)

dt,dt+1,t
≡ E

[
Mt,t+1P

(τ−1)
dt+1,t+1 |̄ft, dt, dt+1

]
(D.0.1)

or

1 = Est+1
[
E
[
Mt,t+1hτ,t+1 |̄ft, dt, dt+1

]]
(D.0.2)

where

hτ,t+1 = P
(τ−1)
dt+1,t+1/P

(τ)
dt,t

(D.0.3)

= exp
[
−adt+1(τ − 1)− bdt+1(τ − 1)′f̄t+1 + adt(τ) + bdt(τ)′f̄t

]
.

If we define

Θdt,dt+1 = −adt+1(τ − 1) + adt(τ) +
(
bdt(τ)′ − bdt+1(τ − 1)′φ

)
f̄t (D.0.4)

and Γτ,dt+1 = Ldt+1 − bdt+1(τ − 1)′,
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then Mt,t+1hτ,t+1 can be rewritten as

exp

[
− lnR∗ − 1

2
Ldt+1Ωdt+1L

′
dt+1

+λdt,dt+1 f̄t+
(
Ldt+1 − bdt+1(τ − 1)′

)
εt+1 + Θdt,dt+1

]
= exp

[
− lnR∗ − 1

2
Ldt+1Ωdt+1L

′
dt+1

+λdt,dt+1 f̄t+Γτ,dt+1εt+1 + Θdt,dt+1

]
= exp

[
− lnR∗ − 1

2
Ldt+1Ωdt+1L

′
dt+1

+λdt,dt+1 f̄t+
1
2

Γτ,dt+1Ωdt+1Γ′τ,dt+1
+Θdt,dt+1

]
× exp

[
−1

2
Γτ,dt+1Ωdt+1Γ′τ,dt+1

+Γτ,dt+1εt+1

]
(D.0.5)

Since

E
[

exp

[
−1

2
Γτ,dt+1Ωdt+1Γ′τ,dt+1

+Γ′τ,dt+1
εt+1

]
|̄ft, dt, dt+1

]
= 1 (D.0.6)

the log-approximation gives

E
[
Mt,t+1hτ,t+1 |̄ft, dt, dt+1

]
(D.0.7)

≈ − lnR∗+λdt,dt+1 f̄t − Ldt+1Ωdt+1bdt+1(τ − 1)′ +
1

2
bdt+1(τ − 1)′Ωdt+1bdt+1(τ − 1)

+Θdt,dt+1 + 1

The next step is integrating out dt+1 for dt = i (i = 1, 2, 3, 4). Then the equation (D.0.1)

implies that

0 =
d∑
j=1

pij

(
− lnR∗+λi,j f̄t − LjΩjbj(τ − 1)′ +

1

2
bj(τ − 1)′Ωjbj(τ − 1)+Θi,j

)
(D.0.8)

Matching the coefficients for constant and f̄t completes the derivation of the bond prices.

97



Appendix E

Essay 2: Proof of the Term Premium and the

Expected Excess Return

This appendix provides the proof of the term premium and the expected excess return in

the equation (2.2.54) and (2.2.56).

By definition, the term spread of τ -period bond yield is given by

r
(τ)
dt,t
− r(1)

dt,t
(E.0.1)

Let x(τ)
t = pτ−1

dt+1,t+1 − pτdt,t − r
(1)
dt,t

denote the excess return. Then we have

r
(τ)
dt,t
− r(1)

dt,t
=

1

τ

τ−1∑
l=0

Et
[
r

(1)
dt+l,t+l

]
− r(1)

dt,t
+

1

τ

τ−1∑
i=1

Et
[
x

(τ+1−i)
t

]
(E.0.2)

=
1

τ

τ−1∑
l=0

Et
[
r

(1)
dt+l,t+l

]
− r(1)

dt,t
+

1

τ

τ∑
i=2

exr(i)
dt,t

=
1

τ

τ−1∑
l=0

Et
[
r

(1)
dt+l,t+l

]
− r(1)

dt,t
+ TP(τ)

dt,t

where

TP(τ)
dt,t

=
1

τ

τ∑
i=2

exr(i)
dt,t

=
1

τ

(
exr(2)

dt,t
+ exr(3)

dt,t
+ ...+ exr(τ)

dt,t

)
(E.0.3)

Now we prove the equation (2.2.56). We begin by noting that the risk-neutral pricing
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formula in the equation (2.2.44) implies

p
(τ)
dt,t

= Et
[
mt,t+1 + p

(τ−1)
dt+1,t+1

]
+

1

2
Vt

[
mt,t+1 + p

(τ−1)
dt+1,t+1

]
(E.0.4)

This equation holds exactly when the conditional distribution of bond prices and the

pricing kernel are jointly log-normal. Then it follows that

p
(τ)
dt,t

= Et
[
mt,t+1 + p

(τ−1)
dt+1,t+1

]
+

1

2
Vt

[
mt,t+1 + p

(τ−1)
dt+1,t+1

]
(E.0.5)

= Et [mt,t+1] + Et
[
p

(τ−1)
dt+1,t+1

]
+

1

2
Vt

[
mt,t+1 + p

(τ−1)
dt+1,t+1

]
= p

(1)
dt,t
− 1

2
Vt [mt,t+1] + Et

[
p

(τ−1)
dt+1,t+1

]
+

1

2
Vt

[
mt,t+1 + p

(τ−1)
dt+1,t+1

]
since p(1)

dt,t
= Et [mt,t+1] +

1

2
Vt [mt,t+1]

and thus

p
(τ)
dt,t

= p
(1)
dt,t

+ Et
[
p

(τ−1)
dt+1,t+1

]
+

1

2
Vt

[
p

(τ−1)
dt+1,t+1

]
+ Covt

[
mt,t+1, p

(τ−1)
dt+1,t+1

]
(E.0.6)

This implies that

exr(τ)
dt,t

=
[
Et
[
p

(τ−1)
dt+1,t+1

]
− p(τ)

dt,t

]
− (−p(1)

dt,t
)

= −Covt
[
mt,t+1, p

(τ−1)
dt+1,t+1

]
− 1

2
Vt

[
p

(τ−1)
dt+1,t+1

]
(E.0.7)

The covariance term is compensation for holding long term bond risk associated with the

macro structural shocks, and the variance term is the convexity effect (Jensen’s inequal-

ity).

The remaining is to compute the two terms in the equation (E.0.7). We begin by

expressing the pricing kernel and the log of bond price as

mt,t+1 ≈Wdt,dt+1,t+Ldt+1εt+1 (E.0.8)

99



p
(τ−1)
dt+1,t+1 = −adt+1(τ − 1)− bdt+1(τ − 1)′

(
φf̄ t + εt+1

)
(E.0.9)

= Kdt+1,t − bdt+1(τ − 1)′εt+1

where

Wdt,dt+1,t = cdt+1+λdt,dt+1 f̄t and Kdt+1,t = −adt+1 − bdt+1(τ − 1)′φf̄ t

We first compute the conditional covariance between mt,t+1 and p(τ−1)
dt+1,t+1 using the law of

iterative expectation as follows.

Et[p
(τ−1)
dt+1,t+1] = Et

(
Et[p

(τ−1)
t+1 |dt+1]

)
= Et

(
Kdt+1,t

)
=

d∑
j=1

pijKj,t (E.0.10)

Et[mt,t+1] = Et[Wdt,dt+1,t] =
d∑
j=1

pijWi,j,t (E.0.11)

Et[mt,t+1p
(τ−1)
dt+1,t+1] = Et[

(
Wdt,dt+1,t+Ldt+1εt+1

) (
Kdt+1,t − bdt+1εt+1

)
]

= Et[Wdt,dt+1,tKdt+1,t − bdt+1Ωdt+1Ldt+1 ]

=
d∑
j=1

pij (Wi,j,tKj,t − bjΩjLj) (E.0.12)

Therefore,

−Covt(mt,t+1, p
(τ−1)
dt+1,t+1) = Et[p

(τ−1)
dt+1,t+1]Et[mt,t+1]− Et[mt,t+1p

(τ−1)
dt+1,t+1] (E.0.13)

=

 d∑
j=1

pijKj,t

 d∑
j=1

pijWi,j,t

− d∑
j=1

pij (Wi,j,tKj,t − bjΩjLj)

For the conditional variance of p(τ−1)
dt+1,t+1,

Et
[(
p

(τ−1)
dt+1,t+1

)2
]

= Et
[(
Kdt+1,t − bdt+1(τ − 1)′εt+1

)2
]

(E.0.14)

= Et
[
K2
dt+1,t − 2Kdt+1,tbdt+1εt+1 + bdt+1(τ − 1)′εt+1ε

′
t+1bdt+1(τ − 1)

]
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= Et
[
K2
dt+1,t + bdt+1(τ − 1)′Ωdt+1bdt+1(τ − 1)

]
=

d∑
j=1

pij
(
K2
j,t + bj(τ − 1)′Ωjbj(τ − 1)

)

and thus

Vt

[
p

(τ−1)
dt+1,t+1

]
= Et

[(
p

(τ−1)
dt+1,t+1

)2
]
−
(
Et
[
p

(τ−1)
dt+1,t+1

])2
(E.0.15)

=
d∑
j=1

pij
(
K2
j,t + bj(τ − 1)′Ωjbj(τ − 1

)
−

 d∑
j=1

pijKj,t

2

which completes the proof.
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Appendix F

Essay 2: MCMC Sampling

Step 2 Sampling θ

Integrating out Fn, we sample θ conditioned on Dn by using the tailored randomized

block M-H (TaRB-MH) algorithm. In the gth iteration, we have hg sub-blocks of θ

θ1, θ2, . ., θhg

The variance of pricing errors
{
σ2

2, σ
2
3, σ

2
4, σ

2
5

}
and the initial technology level lnA0

form two fixed blocks (θhg−1 and θhg), and the others are randomly grouped (θ1,

θ2, . ., θhg−2). Then the proposal density q (θi|θ−i,y) for the ith block, conditioned

on the most current value of the remaining blocks θ−i, is constructed by a quadratic

approximation at the mode of the current target density π (θi|θ−i,y). In our case,

we let this proposal density take the form of a student t distribution with 15 degrees

of freedom

q (θi|θ−i,y) = St
(
θi|θ̂i,Vθ̂i

,15
)

(F.0.1)

where

θ̂i = arg max
θi

ln{f(y|θi,θ−i,Dn)π(θi)} (F.0.2)

and Vθ̂i
=

(
−∂

2 ln{f(Y|θi,θ−i,Dn)π(θi)

∂θi∂θ
′
i

)−1

|θi=θ̂i
.

Because the likelihood function tends to be ill-behaved in these problems, we calcu-
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late θ̂i using a suitably designed version of the simulated annealing algorithm. In

our experience, this stochastic optimization method works better than the standard

Newton-Raphson class of deterministic optimizers.

We then generate a proposal value θ†i which, upon satisfying all the constraints, is

accepted as the next value in the chain with probability

α
(
θ

(g−1)
i ,θ†i |θ−i,y

)
(F.0.3)

= min

 f
(
y|θ†i ,θ−i,Dn

)
π
(
θ†i
)

f
(
y|θ(g−1)

i ,θ−i,Dn

)
π
(
θ

(g−1)
i

) St
(
θ

(g−1)
i |θ̂i,Vθ̂i

,15
)

St
(
θ†j |θ̂i,Vθ̂i

,15
) , 1

 .

If θ†i violates any of the constraints in R, it is immediately rejected. The simulation

of θ is complete when all the sub-blocks

π (θ1|θ−1,y,Dn) , π (θ2|θ−2,y,Dn) , . . . , π
(
θhg |θ−hg ,y,Dn

)
(F.0.4)

are sequentially updated as above.

Now we explain how to calculate f (y|θ,Dn) integrating out Fn where It is the

history of the outcomes up to time t. The first step is to solve for the shock process

ft in terms of the observable quantities, ln (Pt/Pt−1), lnYt and Rt given θ and Dn.

Since there is no measurement error for inflation, output and the short rate, we

have ln (Pt/Pt−1)

lnYt


︸ ︷︷ ︸

mt

=

 lnπ∗

lnx∗ + lnAt


︸ ︷︷ ︸

+

J̄t

 haπ(dt) hgπ(dt) heπ(dt)

hax(dt) hgx(dt) hex(dt)


︸ ︷︷ ︸

f̄t

H̄dt

(F.0.5)
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=

 lnπ∗

lnx∗ + ln a∗ + lnAt−1


︸ ︷︷ ︸

+

Jt−1

 haπ(dt) hgπ(dt) heπ(dt)

1 + hax(dt) hgx(dt) hex(dt)


︸ ︷︷ ︸

f̄t

H̃dt

(F.0.6)

and thus  mt

r1t

 =

 J̄t

ādt(τ1)

+

 H̄dt

b̄dt(τ1)′

 f̄t (F.0.7)

=

 Jt−1

ādt(τ1)

+

 H̃dt

b̄dt(τ1)′

 f̄t (F.0.8)

For t = 0, the vector of the initial state variables, f̄0 is straightforwardly calculated

by m0 and r10 conditioned on lnA0 and s0 where m0 and r10 are observed in the

data.

f̄0 =

 H̄s0

b̄s0(τ1)′


−1

 m0

r10

−
 J̄0

ās0(τ1)


 (F.0.9)

For t = 1, 2, .., n− 1,

ft =

 f̄t

lnAt

 (F.0.10)

where

f̄t =

 H̃dt

b̄dt(τ1)′


−1

 mt

r1t

−
 Jt−1

ādt(τ1)


 (F.0.11)

and

lnAt = lnAt−1 + ln a∗ +

(
1 0 0

)
f̄t (F.0.12)

Notice that conditioned on yt, f̄t(or ât) depends on lnAt−1 and dt, and lnAt−1 =

(t− 1) ln a∗ +
∑t−1

i=1 âi. Thus lnAt−1 is affected by the path of regime process up to

time (t− 1). Therefore, in the time updates of ft it is very difficult to integrate out
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the regime path. This is the main reason for sampling θ conditioned on Dn.

The second step, which is prediction error decomposition, completes the likelihood

function conditioned on Dn

ln f (y|θ,Dn) =
n∑
t=1

ln f [yt|It−1, dt,θ] (F.0.13)

where

f [yt|It−1, dt,θ] = − (2π)−7/2
∣∣∣Λdt∣∣∣−1/2

× exp

[
−1

2
ηdt′t|t−1

(
Λdt
)−1

ηdtt|t−1

]
(F.0.14)

ft|t−1 = µ+ Gf t−1

ηdtt|t−1 = yt − adt − bdtft|t−1

and Λdt = bdtTfΩdtT
′
fb
′
dt + TyΣdtT

′
y

Step 3 Sampling factors

Conditioned on θ and Dn, the equations (F.0.9) - (F.0.12) give Fn.

Step 4 Sampling regimes

In this step one samples the states from p[Dn|In,θ]. This is done according to the

method of Chib (1996) and Chib (1998) by sampling Dn in a single block from the

output of one forward and backward pass through the data. We remark that in this

sampling step, sn can take any value in {1,2}. For instance, if sn turns out to be

1 and not 2, then sn = 1 is taken to be the absorbing regime and the parameters

of sn = 2 are drawn from the prior in that iteration. In our data, however, sn = 2

is always drawn because the last change-point occurs in the interior of the sample

and, therefore, the distribution Pr[sn = 2|In,θ] has almost a unit mass on 2.
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