
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

McKelvey School of Engineering Theses & 
Dissertations McKelvey School of Engineering 

Spring 5-15-2016 

Goggle Augmented Imaging and Navigation System for Goggle Augmented Imaging and Navigation System for 

Fluorescence-Guided Surgery Fluorescence-Guided Surgery 

Suman Bikash Mondal 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds 

 Part of the Biomedical Commons, and the Optics Commons 

Recommended Citation Recommended Citation 
Mondal, Suman Bikash, "Goggle Augmented Imaging and Navigation System for Fluorescence-Guided 
Surgery" (2016). McKelvey School of Engineering Theses & Dissertations. 173. 
https://openscholarship.wustl.edu/eng_etds/173 

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses & 
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/267?utm_source=openscholarship.wustl.edu%2Feng_etds%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=openscholarship.wustl.edu%2Feng_etds%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/173?utm_source=openscholarship.wustl.edu%2Feng_etds%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering & Applied Science 

Department of Biomedical Engineering 

 

Dissertation Examination Committee: 

Samuel Achilefu, Chair  

Mark Anastasio 

Joseph Culver 

Viktor Gruev 

Julie Margenthaler 

Lihong Wang  

 

 

 

 

Goggle Augmented Imaging and Navigation System for Fluorescence-Guided Surgery 

by 

Suman Bikash Mondal 

 

 

A dissertation presented to the  

Graduate School of Arts & Sciences 

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

May 2016 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016, Suman Bikash Mondal



ii 

  

Table of Contents 
List of Figures ................................................................................................................................ vi 

List of Tables ............................................................................................................................... xiii 

Acknowledgments........................................................................................................................ xiv 

Abstract ....................................................................................................................................... xvii 

Chapter 1: Real-time fluorescence-guided surgery......................................................................... 1 

1.1 Abstract ............................................................................................................................ 2 

1.2  Introduction ...................................................................................................................... 2 

1.2.1  Need for real time image-guided surgery ..................................................................... 3 

1.2.2  Current methods available for image-guided surgery .................................................. 7 

1.2.3  Optical methods amenable to image-guided surgery ................................................... 8 

1.3  Fluorescence Imaging Systems for Intraoperative Procedures ...................................... 11 

1.3.1  Fluorescence sensor parameters ................................................................................. 11 

1.3.2  Optical design parameters .......................................................................................... 21 

1.4  Current Intraoperative Optical Image Guidance Systems .............................................. 27 

1.5  Fluorescent Agents Used in Image-Guided Surgery ...................................................... 31 

1.3.1  Endogenous fluorophores ........................................................................................... 31 

1.3.2  Exogenous fluorescent agents .................................................................................... 32 

1.6  Clinical Applications of Fluorescence Image-Guided Surgery...................................... 37 

1.3.1  Sentinel Lymph Node Mapping ................................................................................. 38 

1.3.2  Tumor Imaging ........................................................................................................... 39 

1.7  Future Directions ............................................................................................................ 41 

1.7  Concluding Remarks ...................................................................................................... 42 

1.7  References ...................................................................................................................... 43 

Chapter 2: Emerging Clinical Optical Devices ............................................................................. 68 

2.1 Abstract .......................................................................................................................... 69 

2.2 Introduction .................................................................................................................... 69 

2.3 Open-field surgical guidance systems ............................................................................ 72 

2.3.1 QUEST SpectrumTM ................................................................................................... 72 



iii 

  

2.3.2 NIR Goggles ............................................................................................................... 76 

2.3.3 Fluorescence-Assisted Resection and Exploration (FLARETM) ................................ 82 

2.3.4 Fluobeam .................................................................................................................... 86 

2.3.5 FluoSTIC .................................................................................................................... 89 

2.3.6 VELscope ................................................................................................................... 92 

2.4 Minimally invasive surgical guidance systems .............................................................. 97 

2.4.1 Novadac PINPOINT endoscopic fluorescence imaging system ................................ 97 

2.4.2 High-resolution microendoscopy (HRME) .............................................................. 102 

2.5 Spectroscopic and diagnostic imaging systems ........................................................... 105 

2.5.1 SpectroPen ................................................................................................................ 106 

2.5.2 Dermainspect/MPTflex ............................................................................................ 109 

2.5.3 Handheld spectral domain OCT (SD OCT) ............................................................. 113 

2.6 Barriers to clinical translation ...................................................................................... 115 

2.6.1 Design Considerations .............................................................................................. 116 

2.6.2 Standardization of imaging systems and imaging methods...................................... 117 

2.6.3 Regulatory approval ................................................................................................. 117 

2.6.4 Clinical Trial Design ................................................................................................ 118 

2.7 Conclusions .................................................................................................................. 119 

2.8 References .................................................................................................................... 120 

Chapter 3: Goggle Augmented Imaging and Navigation System ............................................... 131 

3.1 Abstract ........................................................................................................................ 132 

3.2 Introduction .................................................................................................................. 132 

3.3 Materials and Methods ................................................................................................. 135 

3.3.1 Contrast Agents ........................................................................................................ 135 

3.3.2 GAINS Development ............................................................................................... 136 

3.3.3 In Vitro Phantom Studies ......................................................................................... 144 

3.3.4 In Vivo Mouse Studies ............................................................................................. 145 

3.3.5 Histology .................................................................................................................. 146 

3.3.6 Pilot Human Studies ................................................................................................. 146 

3.3.7 Statistical Analysis ................................................................................................... 146 

3.4 Results .......................................................................................................................... 147 



iv 

  

3.4.1 Development of GAINS ........................................................................................... 147 

3.4.2 In-vitro Studies ......................................................................................................... 148 

3.4.3 In vivo Mouse Studies .............................................................................................. 150 

3.4.4 Human Pilot Studies ................................................................................................. 156 

3.5 Discussion .................................................................................................................... 158 

3.6 Acknowledgements ...................................................................................................... 160 

3.7 Author Contribution Statement .................................................................................... 161 

3.8 Additional Information ................................................................................................. 161 

3.8.1 Competing Financial Interests .................................................................................. 161 

3.9 References .................................................................................................................... 161 

Chapter 4: Optical-see through GAINS ...................................................................................... 169 

4.1 Abstract ........................................................................................................................ 170 

4.1.1 Background ............................................................................................................... 170 

4.1.2 Methods .................................................................................................................... 170 

4.1.3 Results ...................................................................................................................... 170 

4.1.4 Conclusions .............................................................................................................. 171 

4.2 Introduction .................................................................................................................. 171 

4.3 Methods ........................................................................................................................ 172 

4.3.1 Fluorescence-Guided Surgery .................................................................................. 172 

4.3.2 Animal Studies ......................................................................................................... 174 

4.3.3 Pilot Human Study.................................................................................................... 175 

4.3.4 Statistical Analysis ................................................................................................... 176 

4.4 Results .......................................................................................................................... 177 

4.4.1 Tumor resection in mice ........................................................................................... 177 

4.4.2 Lymphatic Tracking in Pigs ..................................................................................... 180 

4.4.3 SLN Biopsy in Human Breast Cancer Patients ........................................................ 182 

4.5 Discussion .................................................................................................................... 187 

4.6 Acknowledgements ...................................................................................................... 190 

4.7 References .................................................................................................................... 191 

Chapter 5: Tumor margin assessment ......................................................................................... 196 

5.1 Abstract ........................................................................................................................ 197 



v 

  

5.1.1 Background ............................................................................................................... 197 

5.1.2 Methods .................................................................................................................... 197 

5.1.3 Results ...................................................................................................................... 197 

5.1.4 Conclusions .............................................................................................................. 198 

5.2 Introduction .................................................................................................................. 198 

5.3 Methods ........................................................................................................................ 200 

5.3.1 Fluorescence-Guided Surgery .................................................................................. 200 

5.3.2 Animal Studies ......................................................................................................... 201 

5.3.3 Pilot Human Study.................................................................................................... 201 

5.3.4 Statistical Analysis ................................................................................................... 203 

5.4 Results .......................................................................................................................... 203 

5.4.1 Tumor Resection in Mice ......................................................................................... 203 

5.4.2 Tumor Margin Assessment in Human Breast Cancer Patients ................................. 207 

5.5 Discussion .................................................................................................................... 210 

5.6 References .................................................................................................................... 213 

Chapter 6: Future Directions ....................................................................................................... 217 

6.1 Introduction .................................................................................................................. 218 

6.2 Improved prototype design........................................................................................... 218 

6.3 Combined microscopic and macroscopic image guidance .......................................... 220 

6.4 Clinical translation of a targeted near-infrared contrast agent ..................................... 224 

Chapter 7: Conclusions ............................................................................................................... 227 

 

 

 

 

 

 

 



vi 

  

List of Figures 
Figure 1: Surgical margins of resection in breast cancer. .............................................................. 6 

Figure 2: Model of signal to noise ratio of an imaging sensor with read-out noise of 10e- and 

maximum well depth capacity of 100 ke-. ................................................................... 16 

Figure 3: MTF of fluorescent imaging system and components. ................................................ 18 

Figure 4: Example of a fluorescent imaging system setup. Dotted lines show the transmission of 

the corresponding filters. The blue dotted line is the bandpass filter used to trim the 

excitation light, the black dotted line is the longpass filter to keep the emitting light. 

Green solid line shows QE of the imager, and red solid line is the spectral response of 

the LED output light. The brown circle marks the light leakage from the excitation 

light. ............................................................................................................................. 21 

Figure 5:  Goggle system overview. We have developed a NIR contrast agent that is selectively 

retained in tumors. After injection of this agent our system excites the contrast agent. 

The NIR fluorescence and color reflectance images are captured and processed to 

generate a superimposed image where fluorescence is highlighted in a false color on 

the normal view. This superimposed image is seen in the head mounted display in real 

time, by the surgeon, which allows him to visualize the tumor boundary, thus 

providing image guidance for cancer surgery. ............................................................. 29 

Figure 6: The Quest Spectrum (Artemis) NIR imaging system. The ring light (1) and lens (2) 

that have to be attached to the handheld camera (3) to obtain NIR fluorescence images. 

For minimally invasive applications, a scope (4) can be attached to the handheld 

camera instead. Reproduced with permission.4............................................................ 74 

Figure 7: Near infrared fluorescence guided imaging of colorectal liver metastasis. Images were 

acquired 24 h after injection of indocyanine green. Metastatic lesions are recognizable 

due to their fluorescent rim (I and II). Benign lesion (III) could be identified by 

fluorescence without the rim and was confirmed by histology. Images shown depict 

white light image (A) NIR fluorescence signal (B) and real-time overlay (C). 

Reproduced with permission.4 ..................................................................................... 76 

Figure 8: (A) Schematic demonstration of the information flow through different modules of the 

GAINS system. (B) Photograph of the NIR light source. (C) Photograph of the 

integrated display and imaging module, along with the processing module, which are 

worn by the user. Reproduced with permission.8 ......................................................... 77 

Figure 9: White light, NIR and overlay images acquired by GANS in three different scenarios – 

(A) NIR image shows excised SLN in a melanoma patient not identified by blue dye. 



vii 

  

(B) NIR images shows high fluorescence area from non-apparent sentinel lymph node 

by visual inspection and no blue dye in a breast cancer patient. (C) In the same patient, 

the lymph node was apparent and blue spot was visible after removal of superficial 

tissue while NIR image showing a larger clear high fluorescence area. Reproduced 

with permission.8 .......................................................................................................... 81 

Figure 10: The Mini-FLARE portable near-infrared fluorescence imaging system composed of 

electronics/monitor cart and counterweighted imaging system pole (A) and the sterile 

drape/shield attached to the imaging head (B). Excitation and emission light paths, and 

filtration (C). (DM- 650 nm dichroic mirror). Reproduced with permission.92 ........... 82 

Figure 11: Mini-FLARE guided intraoperative NIR fluorescence imaging of primary and 

metastatic paragangliomas. Intraoperative NIR fluorescence imaging of the surgical 

field shows a bright, patchy fluorescent signal was identified at the location of the 

tumor (dashed circle). A second, small, lesion located approximately 5 cm cranial to 

the main lesion, was also identified using NIR fluorescence imaging (arrow). 

Reproduced with permission.20 .................................................................................... 86 

Figure 12: The Fluobeam preclinical system. ............................................................................... 86 

Figure 13: Fluobeam acquires planar fluorescence image after injection of ICG providing 

lymphatic imaging with guidance to the SLN: Local enrichment after ICG retention 

(A), after incision of the skin with clearer visualization of afferent vessels and the SLN 

(B), after dissection into a depth between 1.5- 2 cm and identification of 2 LNs with 

clear, high definition (C), and after excision, the afferent lymphatic vessels are still 

clearly visualized (D). .................................................................................................. 89 

Figure 14: The Fluostick™, optical head and control box. Reproduced with permission.41 

Copyright 2015 Springer International Publishing. ..................................................... 90 

Figure 15: Fluostick™ assisted surgery of hepatic metastasis of adenocarcinoma of the left colon. 

The circumference of the metastasis is made fluorescent through the injection of ICG. 

Reproduced with permission.41 Copyright 2015 Springer International Publishing. .. 92 

Figure 16: VelScope VX enhanced oral system. ........................................................................... 93 

Figure 17: Velscope device guided detection of occult disease enhanced oral system. (A) White 

light image showing occult lesion (B) identification by fluorescence image (C) 

corresponding histology showing moderate dysplasia. Reproduced with permission.45 

Copyright 2007 John Wiley & Sons Inc. ..................................................................... 96 

Figure 18: The Novadaq PINPOINT system. Reproduced with permission.52 Copyright 2015 

ACPGBI. ...................................................................................................................... 98 



viii 

  

Figure 19: Novadaq PINPOINT provide image guidance to detect perfusion in macroscopically 

critical segments by which the segments could be preserved in a case of mesenteric 

ishemia. (A) White light image (B) NIR fluorescence signal (C) Overlay image. 

Reproduced with permission.55 Copyright 2015 ACPGBI. ....................................... 101 

Figure 20: (A) Schematic diagram of the high-resolution microendoscope. (B) Photograph of the 

system, packaged in a 10" x 8" x 2.5" enclosure. Reproduced with permission.59 .... 102 

Figure 21: HRME classification of tissue at various stages of pathological development. 

Reproduced with permission.64 Copyright 2014 Nature Publishing Group. .............. 105 

Figure 22: (A) Photograph showing the SpectroPen held in the operator’s hand in a surgical 

setting. (B) Optical beam paths of the SpectroPen. Ex = excitation fiber, Coll = 

collection fiber, BP = band pass filter, LP = long pass filter, D = dichroic filter, M = 

reflective mirror. (C) Schematic diagram of the complete system for wavelength-

resolved fluorescence and Raman measurements. Reproduced with permission.69 

Copyright 2014 ACS Publications. ............................................................................ 107 

Figure 23: Photograph of bisected nodule from human adenocarcinoma patient. Reproduced with 

permission.70 .............................................................................................................. 109 

Figure 24: Dermainspect device in action. Reproduced with permission from ref 76. Copyright 

2013 John Wiley & Sons Inc. .................................................................................... 110 

Figure 25: (A) In vivo two-photon autoflourescence images of different skin layers from the skin 

surface to the lower epidermal layer up to 42 µm in depth on the facial skin. The major 

fluorophores are keratin in the stratum corneum layer, NAD(P)H in the granular and 

spinosum layer, melanin in the lower epidermal and basal layer, and elastin in the 

dermis layer. (B) Two-photon autofluorescence image of the granular layer at a depth 

of 22 µm. The main fluorophore in this image is NAD(P)H. The shape of the granular 

cell and its nucleus can be observed by its contrast of fluorescence in the field of view. 

Reproduced with permission.76 Copyright 2013 John Wiley & Sons Inc.................. 112 

Figure 26: (A) The Envisu C2300 system from Leica Microsystems. (B)The handheld OCT 

scanner........................................................................................................................ 113 

Figure 27: (A) Photograph showing the Bioptigen handheld clinical SD-OCT being used to image 

an infant eye under supine position and under endotracheal anesthesia. (B) Ret Cam 

photograph of a female infant with Shaken Baby syndrome (SBS) showing a 

hyperpigmented perifoveal ring (red arrow) and a white, elevated ring outside the 

major vascular arcades consistent with a perimacular fold. The (Bottom left) SVP, 

(Top right) enhanced B-scan, (Middle right) and registered-summed lateral repeated 

image are shown. The yellow line on the SVP marks the exact location of the 



ix 

  

enhanced B-scan (sweeping from inferior to superior), whereas the blue line represents 

the approximate location of the lateral repeated image (sweeping from temporal to 

nasal). These SD OCT images revealed a highly reflective stalk of tissue (probably 

chorioretinal fibrotic tissue; yellow arrow) centered within a full-thickness chronic 

macular hole. (Bottom right) Schematic representation. Reproduced with permission.80 

Copyright 2009 Elsevier Inc. ..................................................................................... 115 

Figure 28: GAINS. (a) Schematic demonstrates the information flow through different modules 

of the system. (b) Photograph of the NIR source. (c) Photograph of the integrated 

display and imaging module, along with the processing module, which are worn by the 

user. ............................................................................................................................ 137 

Figure 29: Spectral characterization. (a) Spectral profile of the GAINS system illumination, 

excitation filter used for illumination and emission filter used for NIR detection 

showing minimal overlap of the excitation and detected emission spectra. (b) Light 

leakage relative to NIR LED excitation with our filter choice. ................................. 138 

Figure 30: Illumination module design and prototype. (a) The schematic of the standalone NIR 

illumination sub-module showing arrangement of 16 LEDs divided in four packages, 

each consisting of 4 LEDs. Each package has a dimension that allows it to be covered 

by a 50 mm diameter excitation filter. (b) Simulation result of light output of the four 

package configuration while running at the typical forward current and at a distance of 

50 cm. (c) Tripod configuration with for illumination. Two laser pointers are attached 

on two corners of the NIR sub-module to easily point the NIR source at the region of 

interest. A fabricated flashlight mount is used to hold four high power LED flashlights 

fixed on the central column of the tripod. These flashlights provide the white light 

illumination for color reflectance imaging. The mount is designed to provide 

necessary angle for convergence of the flashlight beams with the NIR illumination 

area at typical working distances. (d) The surgical light configuration uses the 

threaded back of the NIR light source to attach it to the center of a LED surgical light. 

The surgical light provides the while illumination for color reflectance imaging. The 

white LEDs of the surgical light is covered by a filter to cut off the NIR components 

of the surgical light..................................................................................................... 140 

Figure 31: Imaging module. (a) Imaging module sensors showing the NIR sensor, color sensor 

and the conversion board. (b) Schematic of Imaging Module internal structure: 1, 

Lens; 2, dichroic beamsplitter; 3, short-pass filter for visible channel; 4, long-pass 

filter for NIR channel; 5, visible CMOS sensor; 6, NIR CMOS sensor. (c) Optical 

structure of the lens. (d) Design specifications of the dichroic beamsplitter: surface 1, 

broad band AR coating for 450-850 nm; surface 2, near-infrared band (800 nm - 900 

nm) AR coating; surface 3, visible band (450 nm - 650 nm) AR coating. ................ 142 



x 

  

Figure 32: Graphs from phantom experiments for system characterization showing SNR and 

depth resolution information. (a) Fluorescence intensity response with varying 

concentrations of ICG and LS301. (b) The SBR for different concentrations of ICG 

with 1µM straws positioned 7 mm apart. ................................................................... 149 

Figure 33: Image-guided tumor visualization in subcutaneous mouse model. (a) Color image of 

mouse with skin deflected showing tumor nodes. (b) NIR image showing high 

fluorescence area. (c) Superimposed color-NIR image showing high fluorescence area 

accurately corresponds to the tumor nodes. ............................................................... 152 

Figure 34: Image-guided exploratory tumor resection in metastatic mouse model. (a) Color image 

showing a large abdominal tumor. (b) NIR image showing high fluorescence area 

corresponding to the tumor (marked 1) and two other areas (marked 2 and 3). (c) 

Superimposed image showing color-NIR overlay image. ......................................... 153 

Figure 35: Accuracy of tumor detection in metastatic model. (a) iRFP image of harvested organs 

and tumors from one of the mice showing confirmatory high signal from tumors. (b) 

Fluorescence microscopy revealed good co-localization (yellow) of iRFP signal 

(green) and LS301 fluorescence (red). (c) Histological confirmation of the same slide 

showing cancerous growth corresponding to the areas marked by iRFP and LS301 

fluorescence. (d) ROC curve for GAINS tumor detection sensitivity and specificity at 

different imaging thresholds. ..................................................................................... 154 

Figure 36: Thresholding during image-guided tumor visualization in subcutaneous mouse model. 

(a) NIR image with minimal thresholding, showing high fluorescence area 

corresponding to tumor. (b) NIR image with optimal thresholding, showing well-

defined high fluorescence in the tumor region. .......................................................... 155 

Figure 37: Melanoma patient SLNM showing excised SLN not identified by blue dye. (a) Color 

image showing no blue dye signal although radioactively hot region was detected. (b) 

NIR image showing high fluorescence area. (c) Superimposed image showing high 

fluorescence corresponding to the hot area. ............................................................... 157 

Figure 38: Breast cancer patient SLNM showing non-apparent SLN by visual inspection. (a) 

Color image showing absence of blue dye. (b) NIR image showing high fluorescence 

area and (c) NIR-color superimposed image. ............................................................ 157 

Figure 39: The SLN was apparent after superficial tissue layer was retracted. (a) Color image 

showing retracted tissue layer and visible blue spot from blue dye. (b) NIR image 

showing a larger clear high fluorescence area. (c) Color-NIR image showing 

fluorescence corresponding to the blue dye spot. ...................................................... 158 



xi 

  

Figure 40: The illumimation module. .......................................................................................... 174 

Figure 41: Imaging system and preclinical validation a OST GAINS prototype head mounted 

display b Image-guided tumor resection in a mouse model of cancer c Lymphatic 

tracking and LN detection in Yorkshire pigs. ............................................................ 177 

Figure 42: Fluorescence-guided surgery in a mouse model of cancer. a Color image of mouse 

with exposed tumor. b Grayscale NIR image showing high fluorescence from the 

tumor. c Pseudocolored fluorescence image. d Superimposed color-fluorescence 

image at 40% opacity of projected fluorescence........................................................ 178 

Figure 43: Lymphatic tracking and LN detection in pigs. a Color image showing exposed 

popliteal LN. b Grayscale fluorescence image showing lymphatic drainage 

transcutaenously and high fluorescence in the LN. c Pseudocolored fluorescence 

image. d Superimposed color-fluorescence image as seen by surgeon with projected 

fluorescence at 40% opacity....................................................................................... 181 

Figure 44: Signal-to-background ratios. a SBR for tumors detected in mouse model of cancer 

with skin intact and skin deflected. b SBR for transcutaneous lymphatic tracking and 

exposed lymph nodes imaged in Yorkshire pigs........................................................ 182 

Figure 45: Fluorescence image-guided SLN mapping. a The surgeon wearing the GAINS during 

SLN visualization in a breast cancer patient. b The color image of the excised SLN. c 

The superimposed color-fluorescence image of the excised SLN as seen by the 

surgeon. ...................................................................................................................... 186 

Figure 46: Variable contrast of projected fluorescence on an excised SLN as viewed by the 

surgeon with projected fluorescence at a 25% opacity. b 50% opacity. c 75% opacity.

 .................................................................................................................................... 187 

Figure 47: Fluorescence-guided SLN visualization during. a Color image of excised SLN. b 

Grayscale NIR image showing areas of high fluorescence in the SLN. c Pseudocolored 

fluorescence image of the SLN. d Superimposed color-fluorescence image at 40% 

opacity of projected fluorescence............................................................................... 189 

Figure 48: Tumor detection in PyMT spontaneous mouse model of breast cancer by NIR-

fluorescence via the GAINS prototype. ..................................................................... 204 

Figure 49: After image-guided tumor resection .......................................................................... 205 

Figure 50: Tumors detection in PyMT  mouse showing a) color image, b) grayscale fluorescence 

image, c) pseudocolored fluorescence image and d) color-NIR overlay image. ....... 205 



xii 

  

Figure 51: Tumors removed from PyMT  mouse showing a) color image, b) grayscale 

fluorescence image, c) pseudocolored fluorescence image and d) color-NIR overlay 

image. ......................................................................................................................... 206 

Figure 52: Histology image from a tumor removed from the PyMT mouse showing tumor 

boundary with bordering muscle tissue...................................................................... 207 

Figure 53: Lumpectomy tissue from patient 3 showing high fluorescence using the GAINS 

prototype .................................................................................................................... 208 

Figure 54: Tumor cavity of patient 3 showing high fluorescence. .............................................. 208 

Figure 55: Removed lumpectomy tissue from patient 3 showing a) color image, b) grayscale 

fluorescence image, c) pseudocolored fluorescence image and d) color-NIR overlay 

image. ......................................................................................................................... 209 

Figure 56: Tumor cavity of patient 3 with high residual fluorescence, showing a) color image, b) 

grayscale fluorescence image, c) pseudocolored fluorescence image and d) color-NIR 

overlay image. ............................................................................................................ 210 

Figure 57: Future design of the GAINS integrated display and imaging module. ...................... 219 

Figure 58: Overview of proposed improved GAINS prototype .................................................. 220 

Figure 59: The Diono-lite hand-held microscope. ....................................................................... 221 

Figure 60: Compound localization in tumor with LS301 shown in the 800 channel and LS789 

shown in the 700 channel image for the same mouse. Image was captured using Pearl 

Imaging system (Licor Biosciences). ......................................................................... 222 

Figure 61: GAINS-guided surgery showing progressively noise images as more tissue is 

removed. In this case GAINS could not provide sufficient guidance beyond the 6th set 

of resection. ................................................................................................................ 223 

Figure 62: Bioluminescence imaging showing residual tumor signal with progressive resections. 

The dinolite microscope was able to detect signal when GAINS images had become 

noisy. .......................................................................................................................... 223 

Figure 63: High contrast with clinical formulation of LS301. .................................................... 225 

Figure 64: Overview of ongoing companion dog clinical trial to test LS301-GAINS guidance for 

cancer surgery. ........................................................................................................... 226 

  



xiii 

  

List of Tables 
Table 1: Desirable characteristics for real-time image guidance surgery. ............................... 7 

Table 2: Fluorescence image guidance systems. .................................................................... 30 

Table 3: Fluorescence contrast agents used for real-time image-guided surgery. EPR, enhanced 

permeability and retention. aPeak fluorescence emission wavelength. .................... 37 

Table 4: Open-field surgical guidance systems. NIR: near-infrared, WL: white light. ......... 72 

Table 5: Minimally invasive surgical guidance systems. ........................................................... 97 

Table 6: Spectroscopic and Diagnostic Imaging systems. ....................................................... 105 

Table 7: Clinical considerations. .............................................................................................. 115 

Table 8: GAINS specifications................................................................................................. 143 

Table 9: Statistical analyses. .................................................................................................... 179 

Table 10: Patient and tumor characteristics. .............................................................................. 183 

Table 11: SLN biopsy results. .................................................................................................... 185 

Table 12: The number of tumors detected by GAINS, Dino-lite and bioluminescence methods 

from six mice.............................................................................................................. 224 

Table 13: Toxicity assay results for LS301. ............................................................................... 225 

 

 

 

 

 

 

 

 

 



xiv 

  

Acknowledgments 
I would like to thank Dr. Samuel Achilefu, my research advisor. Dr. Achilefu is a wonderful 

mentor and teacher. I have learnt a lot about science, research and life in general over the years 

from him. I would like to thank him for providing me the opportunity, support, guidance and 

encouragement to pursue this research. I would like to thank the members of the Optical 

Radiology Laboratory, who helped me at every step. I would specially like to thank Dr. Walter J 

Akers, Dr. Rui Tang, Dr. Joseph Culver, Dr. Adam Bauer, Gail P. Sudlow, Kexiang Liang, Dr. 

Nalinikanth Kotagiri for their invaluable support, mentorship and scientific inputs. 

I would like to specially thank our collaborators Dr. Viktor Gruev and Dr. Rongguang Liang for 

their support, collaborative research and guidance which was critical for this research. I worked 

very closely with Dr. Gruev’s graduate student Dr. Shengkui Gao who worked tirelessly to help 

us develop the imaging sensor circuit electronics and image processing solutions for this 

research. I enjoyed working with Dr. Gao as a team and as a friend. I also worked closely with 

Dr. Liang’s postdoctoral fellow, Dr. Nan Zhu, whose efforts were critical in developing the 

display and optical systems for the research. I learned a lot from Dr. Zhu and I am grateful to 

have worked with him. This work would not have been possible without them. 

I would like to acknowledge my funding sources. I was supported by the Imaging Sciences 

Pathway awarded by Washington Univerity. This research was funded by National Cancer 

Institute grant R01CA171651-01A1.  

Personally, I would like to thank my parents, for ensuring I got the best education and become 

the person I am today. They instilled in me the values that have guided me throughout my life 

and made me who I am. There love and support has always been a beacon of hope for me in even 

the most difficult of times. I would like to thank my sister for her encouragement throughout this 



xv 

  

process. Talking to her even from far away always lifted my spirits. Finally, I would like to thank 

my wife for enduring love, understanding and support. Staying apart was not easy, but she was 

always there with me in spirit. She lifted me up during difficult times and was the first to 

celebrate even the most mundane of achievements. This would not have been possible without 

her by my side. 

 

Suman Bikash Mondal 

Washington University in St. Louis 

May 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

  

 

 

 

 

 

 

 

 

 

Dedicated to  

Asim Mondal, my father and philosopher;  

Kajal Mondal, my mother, and guiding star; 

Soumashree Mondal, my sister and inspiration; 

Monalisa Munsi, my wife and the love of my life. 

 

 

 

 

 

 

 

 

 

 

 



xvii 

  

ABSTRACT OF THE DISSERTATION 

Goggle Augmented Imaging and Navigation System for Fluorescence-Guided Surgery 

by 

Suman Bikash Mondal 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2016 

Professor Samuel Achilefu, Chair 

Surgery remains the only curative option for most solid tumors. The standard-of-care usually 

involves tumor resection and sentinel lymph node biopsy for cancer staging. Surgeons rely on 

their vision and touch to distinguish healthy from cancer tissue during surgery, often leading to 

incomplete tumor resection that necessitates repeat surgery. Sentinel lymph node biopsy by 

conventional radioactive tracking exposes patients and caregivers to ionizing radiation, while 

blue dye tracking stains the tissue highlighting only superficial lymph nodes. Improper 

identification of sentinel lymph nodes may misdiagnose the stage of the cancer. Therefore there 

is a clinical need for accurate intraoperative tumor and sentinel lymph node visualization. 

Conventional imaging modalities such as x-ray computed tomography, positron emission 

tomography, magnetic resonance imaging, and ultrasound are excellent for preoperative cancer 

diagnosis and surgical planning. However, they are not suitable for intraoperative use, due to 

bulky complicated hardware, high cost, non-real-time imaging, severe restrictions to the surgical 

workflow and lack of sufficient resolution for tumor boundary assessment. This has propelled 

interest in fluorescence-guided surgery, due to availability of simple hardware that can achieve 

real-time, high resolution and sensitive imaging. Near-infrared fluorescence imaging is of 

particular interest due to low background absorbance by photoactive biomolecules, enabling 
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thick tissue assessment. As a result several near-infrared fluorescence-guided surgery systems 

have been developed. However, they are limited by bulky hardware, disruptive information 

display and non-matched field of view to the user. 

To address these limitations we have developed a compact, light-weight and wearable goggle 

augmented imaging and navigation system (GAINS). It detects the near-infrared fluorescence 

from a tumor accumulated contrast agent, along with the normal color view and displays 

accurately aligned, color-fluorescence images via a head-mounted display worn by the surgeon, 

in real-time. GAINS is a platform technology and capable of very sensitive fluorescence 

detection. Image display options include both video see-through and optical see-through head-

mounted displays for high-contrast image guidance as well as direct visual access to the surgical 

bed. Image capture options from large field of view camera as well high magnification handheld 

microscope, ensures macroscopic as well as microscopic assessment of the tumor bed. Aided by 

tumor targeted near-infrared contrast agents, GAINS guided complete tumor resection in 

subcutaneous, metastatic and spontaneous mouse models of cancer with high sensitivity and 

specificity, in real-time. Using a clinically-approved near-infrared contrast agent, GAINS 

provided real-time image guidance for accurate visualization of lymph nodes in a porcine model 

and sentinel lymph nodes in human breast cancer and melanoma patients with high sensitivity. 

This work has addressed issues that have limited clinical adoption of fluorescence-guided 

surgery and paved the way for research into developing this approach towards standard-of-care 

practice that can potentially improve surgical outcomes in cancer.
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Chapter 1: Real-time fluorescence-guided 

surgery 
This chapter is based on a published article (1): Suman B. Mondal, Shengkui Gao, Nan Zhu, 

Rongguang Liang, Viktor Gruev, Samuel Achilefu, Chapter Five - Real-Time Fluorescence 

Image-Guided Oncologic Surgery, In: Martin G. Pomper and Paul B. Fisher, Editor(s), Advances 

in Cancer Research, Academic Press, 2014, Volume 124, Pages 171-211, ISSN 0065-230X, 

ISBN 9780124116382. I wrote the manuscript in collaboration with the co-authors, compiled the 

information, made illustrations and edited the manuscript. 
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1.1 Abstract 
Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients 

rely on surgical intervention for curative outcomes.  This requires a careful identification of the 

primary and microscopic tumors, and the complete removal of cancer.  Although there have been 

efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer 

from several constraints such as large hardware footprint, high operation cost, and disruption of 

the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and 

intuitive operation, optical imaging methods have received tremendous interests for use in real-

time image-guided surgery. To improve imaging depth under low interference by tissue 

autofluorescence, many of these applications utilize light in the near-infra red (NIR) 

wavelengths, which is invisible to human eyes.  With the availability of a wide selection of 

tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, 

surgeons are able to combine different attributes of NIR optical imaging techniques to improve 

treatment outcomes. The emergence of diverse commercial and experimental image guidance 

systems, which are in various stages of clinical translation, attests to the potential high impact of 

intraoperative optical imaging methods to improve speed of oncologic surgery with high 

accuracy and minimal margin positivity. 

1.2  Introduction 
Imaging plays a central role in advancing biomedical and clinical research by providing critical 

information about molecular and functional processes of normal and diseased states of the body. 

Today, medical imaging methods have become indispensable in oncologic diagnosis, treatment 

planning, and monitoring treatment response. In oncology, the need for accurate visualization of 

tumors during surgery to ensure successful removal of all of the cancerous tissue in the first 
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attempt while preserving healthy tissue has spurred the application of image guidance in the 

operating room. To be successful, the imaging methods are expected to detect tumors in the 

surgical suite in real-time with high sensitivity and specificity.  Importantly, displaying the 

information in an accessible, easy to comprehend fashion to the surgeon will facilitate adoption 

of the method in clinics.  

Although real-time image guidance is highly desirable in the operating room, it imposes 

technological hurdles, notably a minimum of 24 frames per second data acquisition and image 

display. As a result, the imaging time must be short (in the millisecond range) and any image 

processing must be very fast to allow display of images without latency to the surgeon. An 

approach to improve tumor-to-background ratio, which is needed for rapid assessment of 

suspicious lesions, is to incorporate molecular imaging agents in the imaging procedure. 

Molecular probes suitable for this application have been an area of enhanced research in the last 

two decades. This review discusses the need for real-time image guidance in oncologic surgery, 

current methods available for image guidance, along with their limitations and their advantages. 

Because fluorescence methods hold the most promise for clinical translation, emphasis on 

fluorescent molecular probes, imaging system design considerations, and current fluorescent 

image guidance systems highlights the promise and challenges of translating optical methods to 

humans within the context of oncologic image-guided resection of cancer. 

1.2.1  Need for real time image-guided surgery 
Cancer remains a major public health problem in the US and poses a huge economic burden (2). 

One in 4 deaths in the USA is caused by cancer (3).  Although chemotherapy radiotherapy 

continue to play major roles in cancer treatment, surgery remains the primary curative option for 

most solid cancers (4). An important goal of oncologic surgery is to remove all cancerous tissue 
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while preserving as much of the healthy tissue as possible. In this process, it is critical to avoid 

iatrogenic damage to vital organs and anatomic structures. With this overarching goal, 

delineation of tumors and their infiltration into healthy surrounding tissue will facilitate surgical 

resection with low margin positivity. Although the primary tumor mass are readily detectable, 

the boundary of the tumor and microscopic tumors are difficult to identify with unaided eyes. 

Currently, preoperative imaging modalities such as magnetic resonance imaging (MRI), 

computed tomography (CT), and positron emission tomography (PET) provide exquisite 

structural or functional images that highlight the location of cancerous tissues. These modalities 

have facilitated early tumor detection, improved diagnostic accuracy, and helped in better staging 

and preoperative planning (5). Unfortunately, these systems are not currently amenable to use in 

the operating room because of their large hardware footprint, slow image reconstruction, lack of 

microscopic imaging capability, use of ionizing radiation, prohibitive cost, and specialized 

operator requirement (6, 7). Currently, surgeons rely only on their sight and touch to distinguish 

tumors from surrounding tissue. Human eyes cannot see deeper than the tissue surface, while 

human touch may not be able to distinguish small tumor nodes from the surrounding healthy 

tissue. It is even more difficult to distinguish diffuse tumors from healthy tissue merely by visual 

inspection and palpation. This may lead to incomplete tumor removal or resection of healthy 

tissue. Inaccurate delineation of the extent of the tumor tissue can endanger vital structures such 

as the nerves, leading to iatrogenic damage. Without image guidance, the accurate identification 

of tumors can be subjective and relies heavily on the surgeon’s experience. This creates 

significant variability in surgical outcomes. 

Ex vivo histologic validation of excised tissue is used to determine if the resected tissue harbors 

tumors on the margins (Fig. 1). In some organs, a significant volume of healthy tissue is removed 
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to minimize the chances of positive margins. However, this luxury is not available for certain 

organs such as the brain, where debulking of tumors is tailored to avoid disruption of brain 

functions. In breast cancer patients undergoing breast conserving surgery (BCS), between 20-

70% have positive margins, typically indicating the presence of cancerous cells at or near the 

surgical margins (8-10). Invasive ductal carcinoma (IDC), the most common form of invasive 

breast cancer, has worse outcome for BCS, due to its poorly-defined tumor boundaries, rendering 

mastectomy a more reliable procedure (11). The issue of positive margins is prevalent in cancers 

at other locations as well. For example the standard 0.5 cm margin recommended for melanoma 

in-situ leads to 14%-50% of patients with positive margins that need subsequent re-excision (12-

14). Therefore the gold standard remains histopathology, a procedure that renders its verdict after 

the patient has left the operating room (6). These cases generally necessitate repeat surgery, 

which is not only expensive, but has limited success because of the difficulty in seeing 

microscopic tumors or diffuse cells. Additionally, scar tissue formation also perturbs the surgical 

planes, making it more difficult for the surgeon to identify the remnant tumor tissue. Some 

studies suggested that surgery is a major perturbing factor for metastasis development in lab 

animals and in breast cancer (15) and that the neovasculature spawned after surgery may actually 

promote metastatic tumor growth (16). These studies underline the added importance of 

complete tumor removal in the first surgery. Thus, adoption of real-time image-guided surgery 

may help in reducing recall rates for oncologic surgery and prevent residual tumors from 

proliferating because of the perturbations from surgery. 
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Figure 1: Surgical margins of resection in breast cancer. 

 

These studies illustrate the tremendous interest in developing intraoperative image guidance 

systems that can help surgeons to visualize tumors in real-time and improve the accuracy of 

tumor resection without disrupting the normal surgical workflow. Some general requirements for 

such a system are summarized in Table 1.  
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Table 1: Desirable characteristics for real-time image guidance surgery. 

Characteristic Description 

Intraoperative Hardware conducive to be used in the operating room, during surgery 

Real-time ≥ 24p frames per second image acquisition and display to surgeon without latency 

High specificity Contrast agent that very specifically accumulates in the tumor being imaged. 

Low false negatives 

High sensitivity High detection sensitivity of imaging system 

Detection of low fluorescence signal and small tumors 

High resolution Detection of small tumors and interrogation of the tumor boundary 

Wearable Ergonomic, hands-free unrestrictive movement 

Non-interfering Information display in a form that does not distract surgeon from the surgical bed 

User friendly Requires minimal training and no specialized operators 

 

1.2.2  Current methods available for image-guided surgery 
Some traditional imaging methods are currently used for surgical navigation. These include 

fluoroscopy and intraoperative ultrasonography (IUS). However, X-ray-based techniques such as 

fluoroscopy suffer from many challenges, including the exposure of patients to ionizing 

radiation, need for high concentration of contrast agents to compensate for the poor detection 

sensitivity, inability to detect microscopic lesions, and difficulty in miniaturizing X-Ray 

equipment. IUS can be used for tumor detection based primarily on tissue morphology, leading 

to significant false positive and negative rates (17-20). Moreover, IUS is a contact based method, 

which is less useful for identifying tumor boundaries or microscopic tumors during open 

surgeries, hampering detection of superficial and small tumors (21). Advanced instruments that 

mimic global positioning systems have been developed, where preoperative CT or MR image 

can be projected onto the appropriate anatomical structures. These systems suffer from 
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limitations of the pre-operative imaging method, unsatisfactory registration due to tissue 

deformation and motion, and the inability to interrogate surgical margins for the presence of 

tumors. Intraoperative versions of MRI and CT systems have been developed, which are useful 

for preoperative staging and intraoperative guidance during tumor resection, especially in 

neurosurgery (6). Recent studies have shown that intraoperative MRI has is more effective than 

conventional neuro-navigation-guided surgery in increasing the extent of glioblastoma 

multiforme resection, enhancing quality of life, and prolonging survival after surgery (22). 

However, these systems have a large hardware footprint, require a complex infrastructure, 

specialized surgical suites and currently configured for neurosurgical applications only (23). 

Using MRI or CT in the operating room severely restricts the reach of the surgeon due to the 

small area in the scanner bore and the required compatibility of surgical instruments with the 

system’s magnetic field. Additionally, the preoperative view provided by these imaging 

modalities does not correspond to the field of view of the surgeon, which could disrupt normal 

surgical workflow. These limitations created a niche for intraoperative optical imaging systems 

for use in the operating room.  

1.2.3  Optical methods amenable to image-guided surgery 
Optical imaging techniques extract diagnostic information from light-tissue interactions. This 

imaging platform enjoys a combination of interesting features that uniquely makes it amenable to 

surgical applications. These include the ease of detection, high spatial and temporal resolution, 

and availability of a wide variety of contrast agents with unique signaling mechanisms. For these 

reasons, various optical techniques have been developed, which are at different stages of 

development or clinical translation. 
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Spectroscopic imaging, for example, uses spectral analysis methods to identify unique optical 

signatures that are characteristic of a target tissue. This approach has been used extensively to 

improve early detection of gastrointestinal malignancies (24), for intraoperative assessment of 

breast cancer margins (25) and detection of other forms of cancer (26). The vibrational spectra of 

biological specimens has been used to identify the biochemical constituents of tissue, but the 

relatively low sensitivity and limited spatial and temporal resolutions of this technique limits its 

application for in vivo use. Much stronger vibrational signals can be obtained with coherent anti-

Stokes Raman scattering (CARS), a nonlinear Raman technique (27). CARS microscopy is 

useful for mapping lipid compartments, protein clusters and water distribution. Utilization of 

these spectral imaging methods for real-time image-guided surgery has not fully materialized, 

but they can readily play a role in characterizing focal suspicious lesions in situ. This could 

accelerate medical decision in the operating room. 

Optical coherence tomography (OCT) is another optical technique that is used to provide 

surgical guidance. OCT is a nondestructive, high-resolution optical approach that uses low-

coherence light and interferometry techniques to generate cross-sectional depth resolved two-

dimensional (2D) and three dimensional (3D) images (28). The technique is similar in principle 

to ultrasound imaging, but, rather than measuring back reflected sound echoes from the tissue, it 

measures the amount of backscattered light (29).  Intraoperative OCT can provide both 

qualitative and quantitative three-dimensional information. A recent study utilized OCT in many 

surgical specialties, especially in ophthalmology imaging (30-37) and coronary imaging (38-40). 

Intraoperative evaluation of breast tumor margins using OCT has also been reported (41). 

Several commercially OCT systems are available, including portable handheld OCT scanners for 

intraoperative applications (30, 33, 35, 37, 42). The handheld OCT scanner can be positioned in 
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close proximity to a patient. The scanning head can be operated from any angle, facilitating the 

scanning of patients in the supine position. Difficulties with handheld OCT scanners principally 

involve stability and sterility, which necessitates the wrapping of the OCT probe and attached 

cord in sterile drapes before use in the operative field. Resolution and reproducibility are limited 

by operator stability. Newer OCT systems hold more promise for intraoperative applications. 

Examples include the Bioptigen OCT instrument (Bioptigen, Inc., Research Triangle Park, NC), 

iVue (Optovue, Inc., Fremont, CA) and Spectralis (Heidelberg Engineering). Wide applications 

of OCT in the operating room are envisaged in future.  

Photoacoustic imaging is an emerging hybrid imaging technology that uses short laser pulses to 

irradiate chromophores in tissue, inducing localized thermo-elastic expansion that is detectable 

by wide-band ultrasonic transducers. Photoacoustic tomography offers improved depth 

resolution in the 3–20 mm range (43). Taking advantage of the high absorption coefficient of 

blood, photoacoustic imaging can display exquisite images of vascular network around tumors 

without the need for exogenous contrast agents. Ironically, fluorescent dyes with high absorption 

coefficient but low fluorescent quantum efficiency (which are not optimal for fluorescence 

imaging) are excellent contrast agents for photoacoustic imaging. A handheld photoacoustic 

probe system was recently developed for image-guided needle biopsy of sentinel lymph nodes 

for use in the operating room (44). With current efforts to miniaturize the technology, it is hoped 

that this imaging method could become an enabling platform for diverse surgical procedures. 
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1.3  Fluorescence Imaging Systems for Intraoperative 

Procedures 
 

Fluorescence guided surgical resection of tumors 

Although methods such as light scattering, absorption spectroscopy, Raman spectroscopy, 

bioluminescence imaging, and optical coherence tomography continue to make major advances, 

fluorescence techniques have dominated the field of intraoperative image-guided surgery recently. 

Accordingly, the remaining sections of this review focus on current and future status of 

fluorescence-based methods for real-time image guidance in the operating room. 

1.3.1  Fluorescence sensor parameters 
In this section, we consider the detection sensitivity of an imaging system for fluorescent signals. 

There are many factors that influence the performance of the fluorescence detection. These 

include the sensors’ quantum efficiency in the emission wavelengths of the fluorescent dye, 

signal-to-noise ratio of the imaging sensor, transmission and optical density of both excitation 

and emission filters, and optical and electrical crosstalk between photodiodes, which is typically 

modeled via an overall modulation transfer function of the entire system. All of these effects 

contribute to the contrast ratio and the signal-to-noise ratio of the fluorescence signal. Each one 

of these factors is examined in details below. 
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Quantum efficiency of a photodiode 

Quantum efficiency (QE) of a photodiode describes the amount of electron-hole pairs that are 

generated for a given number of incident photons per wavelength. QE is mathematically modeled 

via equation (1). 

𝑄𝐸(𝜆) =
𝑁𝑠𝑖𝑔(𝜆)

𝑁𝑝ℎ(𝜆)
          (1) 

In equation (1), Nsig is the signal charge in one pixel, and Nph is the number of incident photon in 

one pixel. For example, if there are 100 incident photons at 780 nm and 30 electron-hole pairs are 

generated by the photo detectors, the quantum efficiency of the photo-detector is 30%. Higher 

quantum efficiency is preferred over lower one in order to detect the smallest amount of emitted 

photons by the detector. Most imaging sensors are tailored for maximum quantum efficiency in 

the green wavelengths (~550 nm), where the human visual system is highly sensitive. The quantum 

efficiency in the NIR is determined by the depth of the p-n (positively doped silicon and negative 

doped silicon) photo sensitive junction, as well as the doping concentration of the p-n junctions. 

In silicon photo-detectors, 99% of the incident NIR photons will penetrate and will get absorbed 

up to 20 microns. Most imaging sensors are fabricated on anepitaxial silicon, where the maximum 

depth of the photodiode is around 3 to 5 microns. Hence, most of the NIR photons will not get 

absorbed by the photodiode. This is the chief reason for the poor NIR sensitivity in complementary 

metal–oxide–semiconductor (CMOS) photo-detectors. Older CMOS process, such as 0.5 micron 

feature technology, tends to have deeper p-n junction, but they suffer from lower silicon doping. 

Hence, the overall benefit of deeper junctions is lost and the quantum efficiency in the NIR region 

remains around 30%. Nevertheless, semiconductor systems can drastically increase quantum 
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efficiency in the NIR, but the size of the market prevents manufacturers from investing in the 

necessary resources to develop these sensors. 

  

Signal-to-noise ratio (SNR)of an imaging sensor 

The SNR is a metric that quantifies the smallest signal that can be detected by the imaging 

system in the presence of noise. The SNR of an imaging sensor can be computed by the equation 

(2): 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔
𝑆

𝑁
 [dB]         (2) 

In equation (2), S is the number of electron-hole pairs generated for a given incident photon flux 

and N is noise in the detected signal.  

To understand the SNR performance of a sensor, all noise sources in a sensor should be 

analyzed. There are two dominant noise sources in an imager. The first noise contributor is the 

read-out noise of the sensor or the thermal and 1/f noise of the read-out electronics in a sensor. 

This comprises source follower amplifier and switch transistors in the pixel, current source 

biasing transistor at the periphery of the imaging array, sample and hold circuit necessary for 

correlated double sampling operation, and an analog-to-digital converter (ADC). Once the photo-

voltage, which is in an analog format, is digitized or quantized, there are no additional thermal 

noise contributors to the photo-signal. The thermal noise of the reset transistor, also known as 

reset noise, can be cancelled via a technique known as correlated double sampling (CDS). This 

technique subtracts the photodiode voltage from a known reference voltage using special charge 
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transfer transistors, a technique borrowed from the charge-coupled device (CCD) imaging arena, 

and cancelling the thermal noise of the reset transistor. The CDS operation also effectively 

cancels 1/f noise because subtraction of the two voltages mentioned above is performed at high 

speed (~10 MHz to ~100 MHz), while the 1/f noise fluctuations have maximum bandwidth of 

100 kHz. The biasing circuitry (typically a current mirror or cascoded current mirror), the sample 

and hold circuitry and the ADC circuitry introduce minimal thermal noise to the photo-signal. 

Since these circuits are placed outside the imaging array, where silicon real-estate is relatively 

cheap compared to the pixel’s real-estate, which has prime value due to the small pixel pitch 

requirements, circuit designers utilize the silicon space to design low noise read-out circuits. 

Today’s state-of-the-art imaging sensors have read-out noise close to few electrons, a remarkable 

feat allowing for extraordinary image quality in low light settings. 

The second noise contributor in the imaging system is the photodiode shot noise. The shot noise 

arises from the uncertainty that an electron-hole pair, which is generated by the absorption of a 

photon, will pass though the depletion region of the p-n junction. This uncertainty is modeled as 

a Poisson distribution, which gives the typical approximation estimate of the shot noise power as 

N e-2, where N is the total number of generated electron-hole pairs. From the two dominant noise 

sources, i.e. read-out noise of the electronic circuitry and photodiode’s shot noise, the SNR of the 

imaging sensor can be computed via the equation (3): 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔(
𝑆−𝐵

√𝑛𝑟𝑒𝑎𝑑
2 +𝑛𝑝ℎ𝑜𝑡𝑜𝑛 𝑠ℎ𝑜𝑡

2
)[dB]     (3) 
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It is important to differentiate which one of the two noise sources is dominant and how to 

optimize the SNR performance for a given illumination conditions (or a photon flux). For low 

light conditions, the read-out noise is the dominant noise source in the system (Fig. 2). In this 

region of operation, the SNR of the imaging sensor can be approximated by equation (4): 

𝑆𝑁𝑅 ≈ 20𝑙𝑜𝑔 (
𝑆−𝐵

𝑛𝑟𝑒𝑎𝑑
) [dB]        (4) 

Under bright light conditions, the performance of the imaging sensor is limited by the shot noise 

of the photodiode (Fig. 2). For example, if the read-out noise is 10 e-, and there are 10,000 

electron-hole pairs generated by the photodiode, the shot noise will be 100 e-. Since the read-out 

noise and shot noise powers are added, the total noise in the system is √(102 + 1002) =100.5 e-. 

Hence, the contribution of the read-out noise is 0.5% from the total noise figure in the system 

and therefore is negligible. The SNR performance of the imaging sensor in this region of 

operation can be approximated via equation (5): 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝑆−𝐵

𝑛𝑝ℎ𝑜𝑡𝑜𝑛−𝑠ℎ𝑜𝑡
) = 20𝑙𝑜𝑔 (

𝑆−𝐵

√𝑆
)
𝐵≪𝑆
→  ≈ 20𝑙𝑜𝑔(√𝑆)[dB] (5) 

To maximize the SNR performance, the imaging sensor should be used close to the saturation 

level of the sensor or close to the full well-depth capacity of the pixel. For a given light intensity, 

the integration time (also known as exposure time) of the sensor can be adjusted such that the 

total number of integrated electrons does not exceed the total pixel well-depth capacity. Also the 

integration time should not exceed 33 msec to ensure 33 frames per second read out speed. This 

will guarantee that the sensor is limited by the shot noise and will give the maximum SNR 
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performance of the sensor. In this configuration, the sensor will be able to discern signal from 

noise with the highest confidence. 

 

Figure 2: Model of signal to noise ratio of an imaging sensor with read-out noise of 10e- and maximum well 

depth capacity of 100 ke-. 

 

Electrical and optical crosstalk 

Electrical and optical crosstalk is another important aspect of the imager performance. The 

electrical cross talk refers to portion of the electron-hole pairs that are generated by incident 

photons from one photodiode but registered by neighboring pixels. In other words, the photo-

voltage from a given photodiode contains contributions from photons absorbed by this 
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photodiode as well as a portion from photons absorbed from neighboring photodiodes. Today’s 

state-of-the-art imaging sensors try to mitigate this effect via various vertical trenches between 

photodiodes, but the crosstalk is not completely eradicated. The optical crosstalk is due to the 

lenses, filters, antireflective coatings and other optical elements used in the imaging system. The 

effect causes light to reflect and refract multiple times within the imaging system, such that light 

that should be absorbed by one photo-detector will be absorbed by neighboring photo-detectors 

causing optical crosstalk. 

The electrical and optical crosstalk has two fold negative effects on the performance of the 

imaging sensor. First, the photodiode signal is diminished because part of the dynamic range is 

“wasted” on the neighboring photons. Computational models can mitigate this effect at the 

expense of reduced SNR. The second effect is related to the decrease of resolution or decrease in 

the modulation transfer function (MTF) of the system. MTF is a measure of the electrical 

response of the imaging system when a sinusoidal pattern with varying spatial frequency is 

presented. The amplitude ratio of the sinusoidal function for a given spatial frequency defines the 

MTF parameter for that particular spatial frequency. Ideally this number should be 1, but due to 

low pass filtering from the lenses and optics integrated with the sensor, the MTF tends to 

decrease with increase of the spatial frequency. 

The MTF of the entire imaging system is composed of the MTF of the imaging lens, MTF of the 

optical filters and MTF of the sensor (Fig. 3). The MTF of the lens is determined by the various 

lenses included in the lens system, as well as the material used to construct the lenses. The MTF 

of the optical filter is typically a weak function of spatial frequency and the MTF of the sensor is 

determined by the pixel pitch and the electrical crosstalk between pixels. The overall MTF 

function is a product of all three MTF functions as shown by equation (6): 
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𝑀𝑇𝐹𝑆𝑦𝑠𝑡𝑒𝑚(𝜆) = 𝑀𝑇𝐹𝐿𝑒𝑛𝑠(𝜆) ⋅ 𝑀𝑇𝐹𝐹𝑖𝑙𝑡𝑒𝑟(𝜆) ⋅ 𝑀𝑇𝐹𝐼𝑚𝑎𝑔𝑒𝑟(𝜆) (6) 

The mixing of information between a neighborhood of pixels has the same effect as a low pass 

filtering of the image, which tends to blur the image. Once the image is low pass filtered, high 

resolution components are removed and details of the image are compromised. These blurring 

effects are a function of wavelengths due to the dependency of the photon absorption depth as a 

function of wavelength. Hence, red photons tend to blur images more than blue photons. 

 

Figure 3: MTF of fluorescent imaging system and components. 
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Transmission and optical density of excitation and emission filters 

Transmission and optical density of the filters used for both the excitation light source and the 

emitted light are equality important in the overall imaging sensor design. The transmission 

wavelength of the excitation light source is tailored to coincide with the maximum absorption 

coefficient of the dye used to tag the desired molecules. For example, the maximum absorption 

coefficient of ICG is at about 780 nm. Hence, the emission filter for the light source should allow 

transmission of 780 nm with high efficiency and block higher wavelengths with high optical 

density factor. A typical filter in this case will have transmission efficiency of ~90% at 780 nm 

and optical density of 6 at 800 nm. The emission filter is then placed on the imager side to block 

the emission light and pass higher wavelengths.  

 

Overall SNR and contrast ratio of fluorescence signal 

In most of the fluorescence imaging experiments, background signal could generate large 

amounts of photons at the same wavelength as the fluorescent light. Therefore, the background 

interference has to be considered in the SNR computation, and SNR computation using equation 

(7): 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔 (
𝑆−𝐵

𝑁
) [dB]        (7) 

The contrast ratio is the ratio of the fluorescent light intensity to the total incoming light intensity 

received by the imaging sensor, as shown in equation (8): 

  



20 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐼𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑡 𝐿𝑖𝑔ℎ𝑡

𝐼𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑔ℎ𝑡
=
𝐼𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑔ℎ𝑡−𝐼𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐿𝑖𝑔ℎ𝑡

𝐼𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑔ℎ𝑡
   (8) 

The ideal contrast ratio should be 1. However, most organic NIR fluorescent dyes have a narrow 

band gap between the excitation light and emitting light (narrow Stokes shift), with significant 

spectral overlap between excitation and emission spectra (Fig. 4). This feature results in 

significant excitation light leakage, which is reflected by the object in the same emergent angle 

as the fluorescent light. Therefore, the contribution of the interfering light should be subtracted 

from the captured light to enhance the detection sensitivity and accuracy. To obtain high contrast 

ratio and precision, high optical density filters are placed on both imager side and the light 

source side. The longpass filter on the sensor side eliminates the visible spectrum interference. 

The bandpass filter on the light source side is used to ensure only the light of appropriate 

wavelength excites the target tissue. 



21 

 

 

Figure 4: Example of a fluorescent imaging system setup. Dotted lines show the transmission of the 

corresponding filters. The blue dotted line is the bandpass filter used to trim the excitation light, the black dotted line 

is the longpass filter to keep the emitting light. Green solid line shows QE of the imager, and red solid line is the 

spectral response of the LED output light. The brown circle marks the light leakage from the excitation light. 

 

1.3.2  Optical design parameters 
The design parameters for a fluorescence imaging system include the power and homogeneity of 

the excitation light, the field of view (FOV) and numerical aperture (NA) of the detection system 

that collects the emission light, the sensitivity and noise characteristics of the detector, and the 

transmission and blocking capabilities of the fluorescence filters.  
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At low concentration of molecular probes in tissue, fluorescence signals are usually weak and 

require long exposure time for data acquisition. Therefore, the design of an optical system for 

fluorescence analysis must consider the entire optical path. Low fluorescence signal requires a 

highly efficient optical system to improve light-capturing abilities for a higher throughput, to 

provide a higher dynamic range that accommodates the vast differences in fluorophore 

concentrations across the sample, and to reduce crosstalk between sample spots through 

improved optical resolution. 

 

Lens and filter strategy 

The basic requirements for good fluorescence detection systems include high-resolution and 

high-fluorescence signal collection and transmission. Generally, high resolution and high light-

collection efficiency are related through the NA. The larger the NA is, the higher the resolution 

and light-collection efficiency. In cases where the fluorescence signal is more critical than the 

resolution, the imaging lens is often designed with a large NA, but a lower aberration correction 

(fewer optical elements). As a general guideline, the optical elements in the detection and 

excitation paths should be as few as possible to increase light transmission and minimize the 

autofluorescence of the optical components.  

An infinite-conjugate imaging system is preferred, but not required, when the excitation and 

emission share the same objective lens, so that the dichroic mirror and other components can be 

inserted or removed between the objective lens and the tube lens without introducing aberrations 

and image shift. Generally, a telecentric imaging system is desirable, especially for off-axis point 
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scanning, so that the collection efficiency of fluorescence signal is uniform across the entire 

FOV. 

The transmission of both the excitation and emission light should be as high as possible. 

Antireflection (AR) coatings are essential for achieving high transmission. Depending on the 

excitation and emission wavelengths, as well as the locations of the optical elements, various 

types of coatings can be applied. For optical elements used in both the excitation and emission 

paths, either a W-shaped AR coating with two minimal reflection bands or a broadband AR 

coating is required. For elements used only in the excitation path, a V-shaped AR coating is 

enough to minimize the reflection of the excitation light. Similarly, a V-shaped AR coating with 

minimal reflection at the emission wavelength can be sufficient for the elements in the detection 

path. 

Most of optical glasses and plastics have good transmission performance in NIR spectrum up to 

1500 nm or even longer. Therefore, a traditional lens designed for visible spectrum can be used 

in the spectrum for fluorescence image-guided surgery. The optical surfaces in a visible lens are 

normally optimized for visible spectrum (400-700 nm). For use in fluorescence image-guided 

surgery, optics with surface coating optimized for NIR is needed to have maximum transmission 

in the working spectrum. 

To optimize the detection of a fluorescence signal, excitation filters are selected to maximize 

blocking in the transmission passband of the emission filter in the illumination path and to 

maximize blocking in the corresponding transmission passband of the excitation filter in the 

detection path. In general, it is preferable to block out-of-band light with an excitation filter 

instead of an emission filter so that the sample will be exposed to less radiation. In addition, 

fewer components and less-complicated optical systems re required in the detection path. 
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The optimal position of the excitation filter is where the range of the ray angle is small and away 

from the light source to reduce the angular effect of the optical coatings and autofluorescence of 

the components in the illumination path. The emission filter should be placed in front of other 

optical components in the detection path to reduce autofluorescence from those components. 

However, in many applications, it is not practical to place the emission filter as the first element. 

For a very compact device where there is not enough space for the emission filter in front of the 

objective lens, the next optical location is where the range of the ray angle is small. 

 

Illumination design 

In fluorescence imaging, it is desirable to closely match the excitation wavelength of the light 

source with the maximum excitation wavelength of the fluorophore to achieve a high-contrast 

image. Wavelength is also the major factor in determining the imaging depth because the 

penetration depth of light in tissue strongly depends on the wavelength. Light-source intensity is 

another factor in fluorescence imaging; it determines how much excitation light can reach the 

sample. For fluorophores with low quantum yields, high power light sources are needed to 

sufficiently excite enough molecules for fluorescence capture by detectors such as a 

photomultiplier tube (PMT), avalanche photodiodes (APDs), a CCD, or a CMOS sensor. The 

human eye is less sensitive than most electronic detection systems, and thus, applications involving 

visual observation require higher levels of illumination intensity. 

Noncoherent and coherent light sources are used in fluorescence imaging. Noncoherent light 

sources are usually broadband and are typically used in fluorescence spectrometers and large area 

imaging systems. The spectral output of noncoherent light sources can be tuned to a narrow band 

of excitation light or a predefined spectrum by using gratings, filters, and spatial light modulators, 
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such as liquid crystal devices or digital micromirror devices. Mercury and xenon arc lamps are the 

most common noncoherent light sources used in fluorescence imaging. Historically, mercury high-

pressure arc lamps (commonly referred to as HBO lamps) were the most prevalent light source for 

fluorescence imaging. The light intensity of a mercury lamp is not evenly distributed from 

ultraviolet (UV) to NIR region, with peaks of intensity at 313, 334, 365, 406, 435, 546, and 578 

nm. Between these peaks, the excitation energy of the light source is very low. If these lines 

coincide with or are close to the peak of the fluorophore’s excitation spectrum, a mercury lamp is 

the optimal light source. HBO lamps are suitable for applications that need blue or UV light to 

excite fluorescence. They typically have a short life span (~300 hours), necessitating relatively 

frequent bulb changes. 

In contrast, xenon arc (XBO) lamps have a relatively flat emission across the visible spectrum. 

The uniform emission levels and lower fluctuations make XBO lamps better suited for applications 

in ratio imaging and other quantitative applications. XBO lamps also have stable emission intensity 

over time, contributing to the long life span of these lamps (400–2000 hours).  

The xenon-mercury arc lamp has the best characteristics of both xenon and high-pressure mercury 

lamps. The spectral distribution of a mercury-xenon lamp includes a continuous spectrum from 

the UV to the infrared and the strong mercury line spectrum. This combination is an ideal source 

for some applications because it provides extremely high excitation energy over large spectral 

bandwidth.  

Metal halide (HXP) white-light sources have an emission spectrum similar to that of mercury 

lamps. HXP lamps have an emission output featuring pressure-broadened versions of the 

prominent mercury arc spectral lines in addition to higher radiation levels in the continuous regions 

between lines. Therefore, HXP lamps usually produce much brighter images of fluorophores, 
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which have absorption bands in the spectral regions between the mercury lines. Commercial HXP 

lamps have extended arc-lamp lifespans (up to 2000 hours).   

To eliminate traditional alignment problems and provide uniform illumination across the entire 

FOV, a liquid light guide or fiber light guide is often used to couple the light out from the arc lamp. 

The light guide acts as a scrambler to homogenize the arc output and create an even field of 

illumination. The light guide also has the advantage of reducing heat transfer from the light source 

to the sample. 

One advantage of arc lamps is that one light source can be used to excite several fluorophores 

independently or to excite several fluorophores simultaneously. They can also be used as a light 

source for white-light illumination. One disadvantage of using arc lamps is that one or more filters 

are required to select the spectrum for optimal fluorescence excitation. There are several other 

issues related to arc lamps. The bulbs may explode because of high working temperatures and 

pressures, although the possibility of explosion is low. For all gas-discharge lamps, reaching 

optimal working conditions usually takes time, and restarting them after they are turned off 

requires a certain period of time. The light intensity may fluctuate and drop throughout the lifetime 

of the lamp. 

For simple fluorescence imaging systems, the excitation light is delivered directly to the sample 

from a light source without any additional optics. For most fluorescence imaging systems, 

illumination optics is needed for efficient and uniform delivery of the excitation light to the sample. 

Because of the relatively weak fluorescence signal, the efficiency of the light delivery system 

becomes critical to optimize fluorescence imaging systems. Thus, uniform illumination is required 

because the fluorescence signal at each point is proportional to the illumination light at that 

location. Beam-shaping elements (such as a lenslet array, light pipe, or aspheric elements) are 
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usually used to provide spatially uniform excitation light to the samples. For some applications, 

an array of light sources, typically LEDs, provide sufficient excitation light with reasonable 

uniformity. 

It is also important to protect the sample, especially in live-cell imaging applications, from 

overexposure and heat from the light source during illumination. This can be achieved by 

attenuating the light intensity and by limiting the duration of the illumination to exactly the 

exposure time of the sensor.  

1.4  Current Intraoperative Optical Image Guidance 

Systems 
Several complete intraoperative NIR fluorescence imaging systems are now available for pre-

clinical and clinical studies (45, 46). Although differing in their technical specifications, all of 

these systems provide the surgeon with an image of the NIR fluorescence signal that would 

otherwise be invisible to the human eye (Table 2). Some of these systems have been approved by 

the U.S. Food and Drug Administration (FDA) for use in humans. For example, the Novadaq 

SPY system is an intraoperative imaging system that uses indocyanine green (ICG) fluorescence 

for a variety of surgical procedures, including for guidance in coronary artery bypass grafting, 

plastic and reconstructive surgeries, and organ transplant (47, 48). Another system, the 

photodynamic eye (PDE) developed by Hamamatsu is a handheld imaging system that can detect 

ICG fluorescence. The majority of clinical studies published to date use this imaging system to 

identify sentinel lymph nodes (SLNs) in breast cancer patients (49) and to perform image-guided 

surgical resection of hepatocellular carcinoma (HCC) (50). Other commercially available 

handheld imaging systems are Fluobeam (Fluoptics, France) and Artemis (Quest Medical 
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Imaging BV, Netherlands). They are capable of perfusion imaging, and display the acquired 

information in a remote monitor.   

Because of the clear advantage of these fluorescence image-guided systems for intraoperative 

procedures, a variety of newer experimental systems have emerged in various laboratories and 

evaluated in humans. These include the fluorescence assisted resection and exploration (FLARE) 

system and head mounted display devices. 

The FLARE system is an intraoperative real-time imaging system developed by the Frangioni 

team. This system has been successfully used for SLN mapping in breast cancer patients (51). A 

smaller and more portable version has also been developed and validated for SLN mapping in 

human breast cancer patients (52). Other successful applications of this system include the SLN 

imaging in cervical (52) and vulvar (53) cancer patients. Although the FLARE system can detect 

NIR fluorescence with high sensitivity in real-time, it is not portable and has a large hardware 

footprint. 

Another experimental fluorescence image-guided system in early stages of clinical studies is a 

goggle assisted imaging and navigation system for intraoperative image guidance (54). Initial 

prototypes have been validated in extensive small animal studies (55) and also shown to work 

well in HCC detection in human patients (56). Further improvements were made in the system to 

improve wearability and video rate image display. The current system is capable of detecting 

both color and fluorescence signals from the surgical bed using a very small camera. Using fast 

processing, real-time superimposed images are displayed on the head mounted display worn by a 

surgeon. This allows image guidance without any disruption of the normal surgical workflow 

(Fig. 5). High detection sensitivity, ease of usage, ergonomic design and wearablity make it an 
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attractive candidate for wide clinical adoption. At Washington University in St. Louis, the 

system is undergoing pilot human studies with breast cancer and melanoma patients. Using ICG 

as the contrast agent for SLN mapping the goggles system compared favorably against 

traditional radioactive and blue dye methods (57). 

 

Figure 5:  Goggle system overview. We have developed a NIR contrast agent that is selectively retained in 

tumors. After injection of this agent our system excites the contrast agent. The NIR fluorescence and color 

reflectance images are captured and processed to generate a superimposed image where fluorescence is highlighted 

in a false color on the normal view. This superimposed image is seen in the head mounted display in real time, by 

the surgeon, which allows him to visualize the tumor boundary, thus providing image guidance for cancer surgery. 
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Other experimental systems under development for clinical applications are making significant 

progress. For example, the HyperEYE system was successfully used for intraoperative graft 

assessment using ICG fluorescence (58). A frequency domain photon migration (FDPM) system 

was developed for integration into commercial small animal imaging scanners for fluorescence 

tomography (59). It has now been used for non-invasive dynamic lymphatic mapping in humans 

(60). Finally, a multispectral fluorescence imaging system, SurgOptix, was developed (61) and 

used to assess SLN detection in cervical (62) and ovarian (63) cancer patients. 

Table 2: Fluorescence image guidance systems. 

System Real-

time 

NIR-color 

overlay 

Display Status References 

Mounted      

SPY  No Remote Monitor Commercially available. 

FDA approved 

(47, 64) 

FLARE Yes Yes Remote Monitor Clinical Studies (51) 

SurgOptix Yes Yes Remote Monitor Clinical Studies (61-63) 

ArteMIS Yes No Remote Display Commercially available (65) 

HyperEye  Yes Remote Display Experimental (58) 

FDPM  No Remote Display Experimental (59, 60) 

Handheld      

Fluobeam  Yes Remote display Commercially available (66) 

PDE  No Remote display Commercially available. 

FDA approved 

(49) 

Wearable      

Goggle 

System 

 Yes Head mounted 

display 

Clinical studies. (54, 67) 
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1.5  Fluorescent Agents Used in Image-Guided Surgery 
Fluorescence imaging techniques are able to report molecular events with exceptionally high 

detection sensitivity because of the low background signal prior to excitation of the target tissue 

with light of the appropriate wavelength. The high detection sensitivity clearly favors the 

application of fluorescence in image-guided surgery. Fluorescence signal can be mediated by 

endogenous or exogenous fluorophores. The differential expression of endogenous fluorophores 

(autofluorescence) or selective accumulation of extrinsic fluorescent molecular probes in the 

diseased versus normal tissue provides the source of contrast for fluorescence imaging (Table 3).  

1.3.1  Endogenous fluorophores 
Tissues and cells express some biomolecules that can serve as a source for autofluorescence 

imaging. These biomolecules are typically upregulated or downregulated in diseased versus 

healthy tissues. In autofluorescence imaging, the tissue may be excited by UV, visible, or NIR 

light with sufficient irradiance to induce specific fluorescence for diagnostic purposes (68, 69). 

In particular, autofluorescence-based spectroscopic imaging has been used for clinical 

differentiation of cancerous, inflamed and normal tissue in cervical cancer patients (70), and for 

the diagnosis of bladder cancer (71). Simple handheld devices has been shown to identify oral 

cancer (43) and decrease oral cancer recurrence rate in human patients (72, 73). To visualize 

these lesions, intravital and other microscopic techniques are widely used in autofluorescence 

imaging (74), as demonstrated by their use to distinguish malignancies from benign and healthy 

tissues (75).  

A major advantage of autofluorescence imaging and spectroscopy in the context of intraoperative 

image-guided surgery is that exogenous fluorophore are not needed. With minimal regulatory 

hurdles compared to the use of exogenous fluorescence dyes or nanomaterials, the approach is 
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readily translatable to clinics. If the goal is to detect microscopic lesions or clearly define tumor 

boundaries in real time, low tumor-to-background autofluorescence signal may be inadequate. In 

addition, the shallow penetration of light in the UV and visible spectrum (∼400-600 nm) allows 

the sampling of only superficial tissue. Recent application of intravital multiphoton microscopy 

promises to improve the imaging depth and spatial resolution, but requires sufficiently large field 

of view and real-time image display to be practically useful to guide surgical resection of tumors. 

1.3.2  Exogenous fluorescent agents 
To overcome some of the above challenges of autofluorescence imaging, exogenous imaging 

agents are widely used to enhance signal specificity, interrogate molecular events, and improve 

tumor-to-background contrast in intraoperative fluorescence guided surgery. Exogenous 

fluoresce is generally provided by synthetic dyes or nanoparticles. The use of exogenous dyes for 

fluorescence imaging has been in existence as early as 1955, when fluorescent porphyrin was 

administered and used to detect tumors (76). Although many fluorescent agents in clinical use 

are not designed to target specific tissue, efforts to improve detection specificity and sensitivity 

have led to the development of tumor-targeted or activatable molecular imaging probes. Earlier 

studies focused on visible fluorophores because of the availability and experience in handling 

those dyes, as well as the potential to visualize the emitted light with the unaided eye. However, 

new emphasis on low background signal and improvement in imaging depth has stimulated 

interest in the development of NIR fluorophores and dedicated camera systems for image-guided 

oncologic surgery. Human tissue has low optical absorption and scattering in the NIR window 

(600 to 1000 nm) that can allow the NIR light to penetrate several centimeters or even further in 

tissue (51, 77). The narrow NIR window between 750 and 900 nm is particularly useful to 

minimize tissue autofluorescence (78, 79). Recent studies suggest that the 1300 nm spectral 
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range further improves imaging depth (80) and has generated interest in the second optical 

window of 1000 nm - 1350 nm which can afford much higher depths of penetration (81). An 

additional benefit of  working in the NIR spectrum is that human eyes are insensitive to this 

light, thereby minimizing interference with the surgical field, especially under conditions where 

high intensity continuous or pulsed light source is used (82). The most widely used fluorescent 

agents for fluorescence image-guided surgery in human patients are summarized below. 

 

Fluorescein 

Fluorescein was one of the early dyes used to highlight tumors against surrounding normal tissue 

(83). The first clinical report of fluorescence imaging in the operating room dates back to 1948, 

when Moore et al. (84) used fluorescein to localize brain tumors during neurosurgery. Specific 

visualization of colorectal carcinomas in vivo in patients was accomplished by labeling 

carcinoembryonic antigen-targeted antibody with fluorescein. This bioconjugate selectively 

binds to the antigen overexpressed on colon cancer cells. The study was vital in demonstrating 

the clinical potential of this approach during surgery (85). Although antibodies are highly 

specific for their target antigens, the slow clearance from circulation contributes to high 

background fluorescence for several days. As a result, small ligands for cell surface receptors 

overexpressed by tumors are viable alternatives to large biomolecules because their fluorescein 

derivatives can achieve rapid extravasation, tumor uptake, and excretion of the unbound 

molecular probe from circulation. An example of this approach is the use of folate-fluorescein 

conjugate to visualize ovarian cancer intraoperatively and to guide cancer debulking in the 

operating room (63). Although these landmark studies successfully demonstrate the feasibility of 

using fluorescein for fluorescence guided surgery, fluorescein suffers from the limitation of most 
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visible dyes. These include high autofluorescence that could confound image analysis, and 

shallow penetration of light that only interrogates superficial lesions.  

 

Methylene Blue 

Methylene blue is a small molecular weight dye that is widely used in many intraoperative 

procedures. The ease of visualizing the dark blue color of methylene blue with unaided eyes 

during surgery facilitated its use for sentinel node mapping. However, high concentration of this 

dye is needed to visualize the blue color (absorption mode). Recent studies have shown that 

methylene blue fluorescence at about 700 nm can provide a mechanism to detect the distribution 

of this dye with highly sensitive sensor systems (7, 46). This high detection sensitivity of the 

fluorescence signal facilitates the use of low doses of this dye for image-guided surgery, thereby 

minimizing the side effects of the dye in some patients. This fluorescence approach has found 

wide application in identifying the ureters during surgery (86), detecting extrahepatic bile ducts, 

(86) and assessment of cardiac perfusion (87). The dye has also been applied to the detection of 

neuroendocrine tumors, such as insulinoma (88). Although some studies have demonstrated that 

methylene blue can accumulate in some tumors, this uptake can be sporadic and depends of the 

tumor type. In addition, relatively high concentration must be used to overcome 

autofluorescence. Because of the need to detect small tumors during surgery, methylene blue 

may not be suitable for image-guided surgical margin assessment in real-time. The dye also 

suffers from limitation of other visible dyes because of the excitation in the 600 nm range.  
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5-Aminolevulinic acid  

5-Aminolevulinic acid (5-ALA) is a small molecule involved in the early phase of porphyrin 

biosynthesis, which is responsible for heme production in mammals. Through this pathway, 5-

ALA serves as the major substrate for protoporphyrin IX (PpIX) synthesis, a naturally 

fluorescent molecule that is overexpressed in cancerous tissue, especially malignant gliomas and 

meningiomas. 5-ALA has been used clinically for tumor detection (fluorescence imaging) and 

treatment (photodynamic therapy). The compound, which is typically administered in topical or 

oral form, induces the biosynthesis and accumulation of PpIX in epithelial and neoplastic tissues 

(89, 90). PpIX has two major emission peaks, with its second emission peak centered at 700 nm, 

which is at the fringes NIR fluorescence. A growing area of application is in managing brain 

cancer. For example, the PpIX  precursor has been used for quantitative fluorescence imaging 

and debulking of gliomas (91) and for image-guided resection of glioblastoma, where it was 

shown to improve tumor free survival in patients (90). Previous studies reported the use of 5-

ALA as a biomarker for distinguishing normal brain tissue from low and high grade gliomas via 

quantitative fluorescence imaging of PpIX (92).  5-ALA has also been used to identify urothelial 

cancer using fluorescence guided cystoscopy(93). A persistent concern with 5-ALA approach is 

the poor sensitivity and a negative predictive value, especially for surgical guidance of glioma 

resection (94).  

 

Indocyanine Green 

ICG is the workhorse imaging agent for NIR fluorescence image-guided surgery in human 

subjects because it is currently FDA approved for use in humans (95). ICG can be excited at 780 
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nm and the fluorescence is captured around 810 - 830 nm (96). In blood, ICG interacts with 

lipids and plasma proteins which enhance its NIR fluorescence and increase its hydrodynamic 

diameter (96). This allows ICG to remain in circulation for a longer duration and accumulate in 

tumor via the enhanced permeability and retention effect, before being cleared through the liver 

(7). Intravenous ICG injection is currently used for  NIR angiography of blood vessels (87, 97, 

98), identification of the extrahepatic bile ducts (86), and identification of liver metastases 

(99). Subcutaneous ICG injection has been used for sentinel lymph node (SLN) mapping in 

breast cancer (51), gastric cancer (100, 101), gastrointestinal cancer (102), skin cancer (103) and 

squamous cell carcinoma (104).  The major limitation of this imaging agent is the lack of 

specificity for tumors. New NIR molecular probes targeted to tumors have shown impressive 

results in preclinical studies. Unfortunately, these molecular probes have not been approved for 

use in humans by the US FDA. 
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Table 3: Fluorescence contrast agents used for real-time image-guided surgery. EPR, enhanced 

permeability and retention. aPeak fluorescence emission wavelength. 

Agent λem
a 

(nm) 

Tumor 

targeting 

Applications References 

ICG 820 EPR effect SLNM in breast, skin, cervical 

cancer 

Tumor imaging in HCC 

Reconstructive surgery 

(51, 53, 77, 105, 106) 

Fluorescein 520 EPR effect Image guided resection of 

glioblastoma 

(107) 

Methylene 

Blue 

680 EPR effect SLNM 

Insulinoma 

(108, 109) 

5-ALA 635 Porphyrin IX 

expression 

Glioma resection 

Glioma grade biomarker 

(90, 92) 

  

1.6  Clinical Applications of Fluorescence Image-Guided 

Surgery  
Fluorescence-guided surgery is widely used today in oncologic and other intraoperative 

procedures (7, 110). Most of the clinical studies have focused on NIR fluorescence. Because the 

human eye is not sensitive for light in the NIR region, dedicated camera systems are required to 

detect the fluorescence signals emission from these molecules. Fluorescence imaging 

instruments are relatively inexpensive, simple and can be very compact to adapt many kinds of 

surgeries. However, optical image guidance has certain limitations and scope. For example, 

tumors that have a high incidence of positive margins would mostly benefit from this procedure. 

The choice of contrast agent and its application route is determined by the patient tolerance to the 
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contrast agent and the anatomical position of the area of interest. The major areas of oncologic 

applications are summarized below.   

1.3.1  Sentinel Lymph Node Mapping 
The SLN is the first drainage site of disseminating cancer cells from the primary tumor. Thus, 

the SLN positivity or negativity is used to stage the metastatic potential of some solid tumors 

(111). Negative SLN suggests that the tumor is confined to the primary tissue, and could be 

readily treated by surgical resection. In contrast, positive SLN suggests the potential of cancer 

metastasis, which triggers a high level of diagnostic assessment and therapeutic regimens. SLN 

staging is frequently used in the staging of breast cancer and melanoma, and the procedure is 

under investigation for use in colorectal, gastric, esophageal, head and neck, thyroid, and non-

small cell lung cancers (112). During SLN biopsy, the tissue is first identified and removed for 

histologic verification of the lymph node status. Currently, SLN mapping is performed by 

tracking a radiotracer, a visible blue dye, or a combination of both radiotracer and dye (113, 

114). 

Blue dyes such as methylene blue are injected in the vicinity of the primary tumor and allowed to 

drain to the sentinel lymph node. Because of the high concentration of the injected dose, the 

stained tissue is readily visible with the naked eye. Since the human eye can only visualize 

superficial tissue, this technique is complemented by administering tracer levels of radionuclides. 

Using a gamma counter, the radioactivity is track to identify the general location of the SLN, 

which can then be confirmed by visualizing the blue dye. In addition to the poor detection 

sensitivity of the blue dyes, the procedure exposes health professionals to frequent ionizing 

radiation and the gamma probe suffers from poor spatial resolution (115). In contrast, NIR 

fluorescence imaging with dyes such as ICG enables detection of the SLN with high sensitivity 
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at low doses of a fluorescent dye. ICG passively accumulates in SLNs, but the small size of the 

molecule facilitates its further migration to adjacent nodes.   To address this issue, SLN selective 

tracer was designed to bind mannose-binding protein receptor found in reticuloendothelial cells 

of lymph nodes (116). This agent has satisfactory performance both as a radiolabeled and 

fluorescent imaging agents for SLN detection (117) It was recently approved by the FDA for 

SLN mapping based on results from a phase 2 clinical trials in breast cancer and melanoma 

patients (118). 

Although the NIR fluorescence imaging approach improves imaging depth, good resolution 

images are still confined to 5-15 mm deep from the tissue surface. To address this limitation, a 

combination of NIR fluorescence and radioactive tracers are currently used for SLN mapping in 

head and neck melanoma (91, 119), prostate cancer (120) and squamous cell carcinoma of the 

oral cavity(115). Future studies will determine potential of using NIR fluorescence imaging 

without the need for administering radioactive materials (121).  

1.3.2  Tumor Imaging 
A major application of real-time fluorescence –guided surgery is to visualize tumors in the 

operating bed in real-time. ICG was first used clinically to visualize colorectal hepatic metastases 

and HCC (122). Different spatial distribution of ICG in liver tumors has been reported, ranging 

from a rim of fluorescence around hepatic metastases to localize fluorescence within HCC (50, 

123-125). A recent report suggests that ICG-mediated NIR fluorescence image-guided surgery 

could identify small HCC nodules in the liver, which was not detected by preoperative CT (126). 

Similar findings were reported in the detection of hepatic metastases of pancreatic cancer (127) 

or colorectal metastases (7) in the liver that were not visible by preoperative CT, MR, 

intraoperative US, visual inspection, or palpation. These studies illustrate the potential of using 
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fluorescence image guidance to survey the operating bed and ensure the removal of small tumor 

lesions that could readily be missed during surgery. Beyond focused tumors, ICG videography 

was successfully used for image-guided resection of spinal cord hemangioblastoma (128), CNS 

tumors(129) and dynamic imaging during hemangioblastoma surgery (130). 

Other than ICG, methylene blue has served as important cancer imaging agent because of its 

intrinsic affinity to cancer cells. This important feature has been known several decades ago, 

including the selective staining of parathyroid glands after high dose intravenous injection of the 

dye (131) or detection of insulinomas after intra-arterial injection (131, 132). Recent studies have 

now demonstrated successfully the use of methylene blue fluorescence to  identify insulinomas 

in preclinical models (88) and as well as visualizing rare solitary fibrous tumors of the pancreas 

in a patient (133), though it remains to be clinically approved for insulinoma imaging. The 

application of 5-ALA in image-guided surgery was discussed above.  With the ongoing 

development of new fluorescent systems for surgical applications, it is important to identify areas 

of high clinical impact in order to support the introduction of another imaging tool into the 

already hectic surgical environment. 

Protecting vital organs is critical during oncologic imaging because surgery can cause 

unintended iatrogenic damage to vital structures such as the nerves or sensitive surrounding 

tissue. For example, nerve damage during rectal cancer surgery may cause urinary and fecal 

incontinence (134), while nerve damage during bladder and prostate cancer surgery may result in 

sexual dysfunctions (135). Damage to ureters or bile duct may lead to renal dysfunction and 

biliary peritonitis (136, 137). ICG, which is removed from circulation by the liver, is used for 

intraoperative NIR fluorescence cholangiography (138, 139). The clinical significance of 

preserving vital organs has stimulated the development of simple dyes that selectively 
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accumulate in specific tissue, as well as high throughput fluorescence imaging devices for real-

time delineation of these tissues during surgery. 

1.7  Future Directions  
With recent advances in molecular medicine, high resolution and wide FOV systems could 

inform clinical research about molecular processes pertinent to the disease in real-time (5). By 

coupling imaging with optional therapy, it is anticipated that the procedure will also guide 

treatment planning and monitor treatment response. These efforts could improve patient 

outcomes, reduce hospital revisits, and enhance the quality of life. Some specific areas for 

improvement are summarized below. 

From molecular imaging perspective, cancer-targeted fluorescent molecular will improve the 

specificity and sensitivity of fluorescence-guided surgery. The molecular agents could be 

designed for instant activation of fluorescence after topical application during surgery to improve 

the tumor-to-background fluorescence. New activatable molecular probes were recently reported 

to have this desirable property (140). An alternative approach is to design fluorescent molecular 

probes that can be trapped in cancer cells for several days, allowing the surgeons flexibility to 

conduct surgery at any time during that period (54, 141). 

From device development perspective, the rapid development of CMOS process and modern 

digital imaging technology has improved the performance of recent CMOS imaging sensor used 

in fluorescence imaging system. High performance sensors can provide more accurate and 

stronger fluorescence signal as image output. Using the latest 130 nm - 180 nm analog 

fabrication process, commercial CMOS imaging sensor are optimized to obtain high SNR and 

much higher image resolution than previous systems. Furthermore, vertically stacked 3-D 
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technology offers high resolution of pixel array, and nearly 100% fill factor by stacking 

photodiode structure, row/column readout circuit, and storage logic onto different layers. 

Although the fabrication process of 3-D chip still needs a lot of optimization, it provides an 

alternative way for CMOS sensor to achieve high resolution and better sensitivity (142). Finally, 

imaging sensor research on detection of special light property has increased recently. For 

example, recent development of division of focal plane polarization imaging sensor enables real-

time, high resolution polarization detection, which could be embedded in future fluorescence 

imaging system for additional polarization information detection (143). 

System-on-chip (SOC) CMOS imaging sensor can offer flexibility in fluorescence imaging 

system design. By moving ADC readout circuitry and image pre-processing unit on chip, the 

imaging sensor system becomes much more compact and power efficient (144). Further 

reduction in the size and weight of the sensor system is achieved because less peripheral circuits 

and components are needed for SOC sensor system. This configuration will benefit the compact 

fluorescence imaging system design.  

1.7  Concluding Remarks  
Real-time image-guided surgery is gaining interest because of its potential to improve patient 

outcome following oncologic surgery. Not only can this approach guide intraoperative surgical 

margin assessment, the approach is uniquely positioned to detect microscopic tumors or residual 

lesions that are readily missed during surgery. Numerous types of optical imaging devices are 

available today to guide surgery. With the ever increasing miniaturization capability, simpler, 

smaller, and more efficient optical imaging systems will become available for clinical use in high 

and low resource clinical centers. Current bottleneck preventing full realization of the potential 

benefits of NIR fluorescence guided surgery is the lack ok FDA approved tumor-selective 
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molecular imaging agents. This missing link is expected to be rectified soon because of 

dedicated efforts by many investigators and some federal funding agencies such as the National 

Institutes of Health to support early phase clinical trials with novel imaging agents. Beyond 

identifying tumors, coupling therapeutic options to either the device or molecular probe arm of 

the technology could further enhance its potential clinical impact. 5-ALA is currently capable of 

achieving this goal by providing both imaging and therapeutic capabilities. Alternative 

theranostic platforms can be developed to harness the modular design of contrast agents and 

light-triggered drug release.  
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2.1 Abstract 
Imaging plays a critical role in disease diagnosis and medical interventions. Conventional 

medical imaging modalities such as MRI, X-Ray, PET and CT provide excellent diagnostic 

information. However, these modalities are usually costly, bulky and have poor resolution. 

Optical imaging can fill these needs by enabling real-time high resolution imaging at a low cost 

and small form factor. As a result optical imaging methods are being rapidly developed since the 

past few decades. In this review, we list some of the emerging optical imaging systems that are 

being now used in the clinic or undergoing clinical investigation with high probability of 

inclusion in clinical practice. We also provide our perspective on the barriers to wide adoption of 

optical imaging and possible solutions to these issues as we move forward to translate the 

promise of optical imaging for better human health. 

2.2 Introduction 
Medical imaging has brought about a revolution in the management of diseases by enabling early 

diagnosis, better treatment planning and guiding surgical interventions. Clinical imaging 

modalities consisting of X-rays, CT, MRI, PET and ultrasound scans are routine investigative 

tools used in clinical centers today to diagnose and treat illness and injury. While these 

modalities provide excellent diagnostic capabilities for deep seated disease, they lack the 

resolution necessary to detect microscopic lesions or residual diseased tissue. In addition these 

modalities are typically complicated, bulky and costly hardware, lack real-time imaging 

capabilities and may involve use of ionizing radiation that puts patients and caregivers at risk. 

Alternatively, optical imaging can enable real-time high resolution imaging with simple 

hardware, amenable to miniaturization. Intuitive visualization make it very user-friendly. Optical 

methods can obtain images of soft tissue structures across a wide range of sizes and tissue types. 
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The wide range of colors in the visible spectrum can be exploited to study various light-tissue 

interactions and visualize different photo-excitable properties simultaneously. It is also widely 

preferred over other imaging modalities to image superficial and certain subsurface features 

since patients are not exposed to harmful ionizing radiation, the scans are significantly faster and 

can be used to monitor disease progression over time. Moreover, it is the only imaging modality 

that can capture both macroscopic and microscopic details simultaneously in an in vivo setting. 

Optical imaging has been used in the clinic for many years.1, 2 It was pioneered by 

ophthalmologists for imaging ocular diseases. Among optical methods, fluorescence imaging, 

OCT and spectroscopic methods have been most widely used in clinical investigations. 

Fluorescence imaging vis-à-vis white light optical imaging also provides higher contrast through 

the use of fluorescent reporters to tag diseased tissue. Development of novel fluorescent reporters 

such as fluorescent proteins, peptides, organic dyes, inorganic nanoparticles and other probes is an 

area of active research. Reporters with high molecular selectivity to surface receptors and enzyme 

cleavable activatable probes, specific to a disease event, are already available and many currently 

in clinical trials. Alongside the progress in fluorescent molecular probes, there has been 

tremendous enthusiasm and a surge in activity in the design and development of fluorescence 

imaging hardware. While novel fluorescent molecular reporters are essential to enhance pertinent 

features in tissues of interest through improved contrast, the development of next-generation 

advanced fluorescence imaging systems also relies on imaging endogenous fluorophores such as 

NADH and tryptophan with improved sensitivity. OCT methods have been used in the clinic 

especially for ophthalmic applications. Recently they are being investigated for cancer diagnosis 

and image guidance. Spectroscopic methods can tell about tissue composition through label free 
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contrast and is widely being investigated for disease diagnosis and more recently for guiding 

interventions like surgery. 

With recent advances in development of ultrasensitive charge-coupled devices (CCD) and 

complementary metal-oxide-semiconductor (CMOS) imaging sensors, optical imaging is 

transitioning well to the portable domain, at the same time offering high resolution imaging and 

scanning rates permitting real-time image acquisition. In this review we will cover some of the 

clinically used optical systems and also currently in development that have shown high 

translational potential. We will cover open surgical guidance systems typically used for surgical 

navigation, minimally invasive endoscope based probes typically used to image lesions in the 

gastrointestinal tract and diagnostic imaging systems typically based on OCT and spectroscopic 

methods. We will then provide an overview of the barriers to routine clinical usage of optical 

methods and possible solutions, followed by our concluding remarks and perspectives. 
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2.3 Open-field surgical guidance systems 
Table 4: Open-field surgical guidance systems. NIR: near-infrared, WL: white light.  

System Description Clinical Application Approval 

QUEST 

Spectrum 

(Artemis) 

Handheld dual-channel fluorescence 

and WL imaging. Laparoscope 

compatible. 

Liver metastasis (NCT02106598) CE, FDA 

GAINS Wearable NIR fluorescence and WL 

imaging. Head mounted display. 

SLNM breast cancer and melanoma 

(NCT02316795) 

No 

FLARE Standalone dual channel fluorescence 

and WL imaging. 

SLN mapping (NCT01468649, 

NCT02142244), solid tumor and 

non-cancer surgeries. 

? 

Fluobeam Handheld co-axial NIR fluorescence 

and WL imaging. Fits on extended arm. 

Liver surgery (NCT01738217), 

Thyroid surgery (NCT02089542, 

NCT01598727),  perforator flaps 

(NCT01681797) 

CE, FDA 

FluoSTIC Handheld NIR fluorescence and WL 

imaging. Miniaturized for intra cavital 

access. 

Ex vivo visualization of colorectal 

carcinomatosis 

CE, FDA 

510(k) 

pending 

VELscope Handheld auto- fluorescence imaging Oral cancer surgery and diagnosis 

NCT02251639 

NCT00655421NCT01816841 

FDA, Health 

Canada 

 

 

2.3.1 QUEST SpectrumTM  

Principle 

The Quest Spectrum is a handheld dual-channel fluorescence imaging system designed to 

provide image guidance in both open and minimally invasive surgical applications. It was 

developed by a consortium including the University Medical Centre in Leiden (LUMC) and 

Quest Medical Imaging (BV, Middenmeer, Netherlands) under the umbrella of the public-private 

partnership CTMM (Center for Translational Molecular Medicine).3  
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Hardware 

A picture of the second generation Quest Spectrum is shown in Fig. 6.4 The system features has 

been adapted for both open surgical and minimally invasive surgical laparoscopic procedures by 

using a detachable ring light or a laparoscope can be attached interchangeably to the handheld 

camera head. This procedure is designed to be easy and smooth so that it can be performed if need 

arises during surgery.  According to the product website, many customizable versions of the 

system has been realized, for example for imaging with indocyanine green (ICG), methylene blue, 

fluorescein and such other dyes. Light sources determine which fluorophores can be imaged and 

are housed in the spectrum light engine module that can deliver both visible (four LEDs with peak 

at blue, cyan, green and red) and light to excite the fluorophore (for example 793 nm for near 

infrared (NIR) fluorophore).  The camera uses a prism technology that enables object viewing on 

three different sensors (one white light and two fluorescence) simultaneously, and thereafter 

smooth overlaying of the visible image and one fluorescence image for the surgeon at video mode. 

The images are overlaid very well (being off by 0.25 pixels at maximum). For example, for a single 

channel NIR fluorescence imaging, the reflected excitation light is blocked by a notch filter (750–

800 nm). The light then enters a prism containing a dichroic coating (<785 mm) which separates 

the visible and NIR light. The visible light is passed through a low-pass filter (<640 nm) and the 

NIR light through a high-pass filter (>808 nm). Both white and NIR images are acquired by a Sony 

ICX618 sensor with Baylor configuration (640x494) pixels. 4 The system uses a proprietary white 

light feedback mechanism that can measure and adjust the required amount of NIR light irradiance 

in order to prevent unnecessary overexposures.  Spectrum Capture Suite software allows several 

functions including image acquisition, display, recording data and patient information, and 

controlling the hardware modules. The whole system is positioned on a portable trolley cart with 
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compact installation. Customized drapes with optimal fitting are available for the camera, arm, 

laparoscope base, camera, cables while the laparoscope unit itself is autoclavable.  

 

Figure 6: The Quest Spectrum (Artemis) NIR imaging system. The ring light (1) and lens (2) that have to be 

attached to the handheld camera (3) to obtain NIR fluorescence images. For minimally invasive applications, a 

scope (4) can be attached to the handheld camera instead. Reproduced with permission.4   

 

Applications  

The system is a Class 1 CE certified medical device according to the medical device directive. 

Also, it is a US FDA approved class II medical device based on a 510(k).3 The Artemis camera 

system was used for investigating a FDA investigational new drug approved dual modal 

nanoparticle (optical-PET) for sentinel lymph node mapping, stratifying nodal tumor burden and 

monitoring treatment response in a spontaneous miniswine model of melanoma.5 The authors 
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chose the Artemis system primarily because the handheld camera allowed its easy positioning thus 

enabling viewing otherwise difficult anatomical locations such as the head and the neck. Apart 

from that, the capability to acquire motion free high resolution images, simultaneous multispectral 

image acquisition and the ability to control the camera system based on the imaging feedback were 

added benefits over other similar systems. This combined contrast agent and imaging system are 

currently under clinical trials for as mentioned in Table 4. 6 

The system was characterized and evaluated in a recently published study using two fluorescence 

guidance surgical procedures – sentinel lymph node mapping in mice and imaging liver metastasis 

in human using different fluorescent dyes and injection protocols. 4 (Fig. 7) Through this 

preliminary results the authors pointed out possible improvements needed which are generally 

applicable to any intraoperative fluorescence guidance system. The field of view needs to be 

illuminated homogenously in order to minimize location dependency of the signal and increase 

imaging reliability. In the current system the illumination dropped sharply at the edges of the field 

which introduced location dependency in measurements. The need for better filtering of the 

reflected excitation light arises. In the current configuration, the filters being used to block the 

excitation light cannot block most specular reflections. The authors propose use of filters with 

higher optical density or usage of cross polarization or the same. Also, currently the camera has a 

low depth and no autofocus mechanism, and so the focus needs to be adjusted frequently. The 

focal lengths between the visible and NIR images requires changing of the focus between them at 

close imaging distance (<15 cm), which is clearly undesirable for simultaneous acquisition. The 

dynamic range of the camera can be improved from the current status. 
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Figure 7: Near infrared fluorescence guided imaging of colorectal liver metastasis. Images were acquired 24 

h after injection of indocyanine green. Metastatic lesions are recognizable due to their fluorescent rim (I and II). 

Benign lesion (III) could be identified by fluorescence without the rim and was confirmed by histology. Images shown 

depict white light image (A) NIR fluorescence signal (B) and real-time overlay (C). Reproduced with permission.4   

 

2.3.2 NIR Goggles 

Principle  

An NIR goggles system for intraoperative image guidance has been developed by team led by 

the Achilefu Lab at Washington University in St. Louis (Fig. 8). The unique feature of the 

system is the use of head mounted display (HMD) for the surgeon instead of monitor projection 

aimed at making a compact, wearable, battery operated and affordable image guidance system. 

In addition to the HMD exclusively for the surgeon, the system is capable of simultaneous 

display of information on a PC for the rest of the surgical team. Thus the goggle system is able to 

provide hands free operation and image guidance to the surgeon bypassing potentially disruptive 

information display on a monitor unlike other such devices. 
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Figure 8: (A) Schematic demonstration of the information flow through different modules of the GAINS 

system. (B) Photograph of the NIR light source. (C) Photograph of the integrated display and imaging module, along 

with the processing module, which are worn by the user. Reproduced with permission.8   

 

Hardware 

The conceptual design of the most recent prototype, also known as the goggle augmented 

imaging and navigation system (GAINS) is shown in Fig. 8. The authors mention that the major 

challenges in developing the GAINS system was to avoid bulky optics and yet be able to perform 

sensitive simultaneous acquisition of the color image which has abundant signal and the 
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relatively photon starved  NIR fluorescence image. This challenge was addressed by using a 

single color-NIR lens instead of separate lenses and a compact lightweight camera. The signal 

acquisition module separates the acquired color and NIR signals with a custom beam splitter and 

focuses them onto color and NIR complementary metal-oxide semiconductor (CMOS) sensors 

equipped with 694 nm shortpass and 805 nm longpass filters respectively. Independent exposure 

times are used for the color and NIR sensors to be able to acquire adequate signal at spatial 

resolution of 320 µm. The data processing unit is also custom designed and is able generate 

video rate superimposed NIR and color images (disparity <0.1 mm at 50 cm distance) displayed 

via a lightweight 1080 p high resolution HMD system from Carl Zeiss. The software running the 

system provides a GUI that can be used to perform multiple functions including displaying 

images, recording data, image processing. It allows displaying images on the HMD for the 

surgeon and a PC for simultaneous information availability to the surgical team. The software 

platform has designed to be user friendly and compatible with any windows based PC system. 

In the current system, the light source consists of sixteen 760 nm LEDs with 769±41 nm 

bandpass filter. These hardware components were chosen after careful analysis their spectral 

properties in order to obtain optimal spectral separation and minimal light leakage for fluorescent 

dyes such as indocyanine green (ICG). The number and arrangement of LEDs were also 

optimized with simulations. White light for the color reflectance image can be provided either by 

surgical lights or high power LED flashlights covered with shortpass filters. The LEDs can be 

mounted on a tripod along with the flashlights setup or on the surgical light. To help with 

pointing the NIR light to the region of interest the stand incorporate two laser pointers at the 

corners of the LED submodule.  
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Applications  

The initial prototypes of the device was validated in a series of small animal studies and also 

applied in a pilot study involving surgical resection of hepatocellular carcinoma in human 

patient.7  The current system was characterized in small imaging and phantom studies and its 

clinical feasibility was recently demonstrated in a pilot study involve 15 human patients during 

sentinel lymph node (SLN) mapping (cite paper again). Using ICG as the contrast agent, GAINS 

was able to visualize 30 sentinel lymph nodes in 10 breast cancer and 5 melanoma patients.  The 

system was compared to conventional methods of tracking SLN using methylene blue dye, 

99mTc-sulfur colloid radioactive tracking and gold standard histology, and demonstrated superior 

sensitivity to all. In multiple patients GAINS was able to pick up deeply seated SLNs the 

traditional methods failed. (Fig. 9).8 

Through this pilot study, it was established that GAINS can provide high sensitivity detection of 

NIR fluorescence for surgical guidance in the OR. The superior sensitivity can allow the 

detection of low expression cancer biomarkers in the future applications. The compact system 

results in substantial reduction in hardware footprint in the OR compared to currently portable 

yet bulky systems. While it increases usable space in the OR, allows more flexibility, the hands 

free operation means lesser training needs for the surgeon compared to current handheld systems. 

Use of miniaturized components makes it considerably low cost than current systems and favors 

use of GAINs in low resource areas. 

The authors point out limitations of the current system, which are critical for any such imaging 

systems. There is need to incorporate autofocus feature in the current prototype which will 
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prevent image blurring upon large changes of working distance. To further reduce hardware 

footprint and expand user’s radius of movement the wired connections between the computer 

and the google system needs to be converted to wireless connections. Wireless transmission will 

also enable telemedicine applications such as remote guidance from exports and remote surgical 

training. 
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Figure 9: White light, NIR and overlay images acquired by GANS in three different scenarios – (A) NIR 

image shows excised SLN in a melanoma patient not identified by blue dye. (B) NIR images shows high 

fluorescence area from non-apparent sentinel lymph node by visual inspection and no blue dye in a breast cancer 

patient. (C) In the same patient, the lymph node was apparent and blue spot was visible after removal of superficial 

tissue while NIR image showing a larger clear high fluorescence area. Reproduced with permission.8 
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2.3.3 Fluorescence-Assisted Resection and Exploration (FLARETM) 

Principle  

The FLARE and later the more compact Mini-FLARE system intraoperative system, developed 

by the J.V. Frangioni group is the first surgical imaging system with NIR imaging capabilities in 

real time. (Fig. 10) It is currently in clinical trials and have been used in a large variety of such 

studies till date. 

 

Figure 10: The Mini-FLARE portable near-infrared fluorescence imaging system composed of 

electronics/monitor cart and counterweighted imaging system pole (A) and the sterile drape/shield attached to the 

imaging head (B). Excitation and emission light paths, and filtration (C). (DM- 650 nm dichroic mirror). 

Reproduced with permission.92 
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Hardware 

The FLARE™ system and subsequently the more recent mini-FLARE™ system, developed to 

reduce make the system cost competitive, have been described in details in the previously 

published papers.9, 10 (Fig. 10) The light sources consist of LEDs: a white LED light source 

(filtered at 450 nm – 650 nm), to illuminate the surgical field and to acquiring the color image, 

and two NIR LED light sources for generating 670 nm and 760 nm fluorescence excitation light.  

The filtered white is needed to isolate it form the NIR lights, unlike in standard surgical lighting 

system which generate light above 650 nm. The acquired signal is divided by dichroic mirrors 

onto the independent and simultaneous 12-bit dynamic range CCD cameras with 400-650 nm 

bandpass, 689-725 nm bandpass and 800 nm – 848 nm bandpass filters for the color, and NIR 

channels respectively. Simultaneous and overlaid color-NIR image are displayed on monitors for 

surgeon and for technologist in  separate monitors in real time using custom designed software. 

Hands free operation is achieved by using a 6-pedal foot switch. The hardware is housed on a 

portable cart. Sterility required for intraoperative use is achieved using a splash shield /drape 

combination covering the imaging head, arm and cart and can be applied in the OR. The authors 

mention that the first clinically used model of the device costs approximately $120,000 USD, 

which however can be reduced once manufactured and assembled in bulk.10 

Applications  

The FLARE™ or mini-FLARE™ systems have been used in a number of clinical studies. 

Specifically the dual channel capability has given it flexibility to work with more than one 

contrast agent in small animals and humans. However, the large hardware footprint and thus 

space needed for the system in the OR and the expense remain important thing to be considered 
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during its application. Below we provide a summary including the major clinical studies being 

done with the system. 

Sentinel lymph node mapping (SLNM): The FLARE™, and subsequently the mini-FLARE™ 

systems were used for studies involving in vivo and ex vivo mapping of sentinel lymph nodes in 

cancers of the breast10-13, cervix14, 15, vulva15, 16, colon/rectus12, 13, 16, head and neck17, and 

melanoma13, 18. In these studies, ICG combined with human serum albumin or ICG alone was 

used/evaluated as the contrast agent to arrive at optimal formulations and doses. The system was 

compared to and other fluorescence image guidance systems and conventional methods for 

sentinel lymph node mapping. For example, in a recent published study, a pre-optimized dose of 

ICG (1.6 mL of 0.5 mM) was used for the mini-FLARE™ system in SLNM in breast cancer 

patients19.  

Imaging solid tumor and metastasis: The feasibility of using mini-FLARE™ system for image 

guidance during breast cancer surgery using methylene blue (MB) was recently demonstrated.20 

(Fig. 11) MB is a visible blue stain and have been evaluated for intraoperative detection of 

tumors, primarily neuroendocrine tumors.  Its fluorescence in the 700 nm channel was used for 

the mini-FLARE™ system. In one study aimed at neuroendocrine tumors in a patient, 

unexpectedly an extremely rare solitary fibrous tumor was identified in the pancreas.21 In another 

study with breast cancer resection, NIR fluorescence detection of tumor corresponded to 

histological presence in at least 83% cases.22 Using ICG as a contrast agent, mini- FLARE was 

used for intraoperative guidance of liver cancer resection.23 24 

Non-cancer surgeries: The FLARE™ system has also been used for surgical guidance in a 

variety of non-oncologic surgeries as well. Using ICG as contrast agent, the ability to visualize 



85 

 

vasculature in real time was used for identification of perforator flap location and size, and flap 

perfusion in breast reconstructive surgeries.25, 26 According to the authors, FLARE™ provided 

advantages over conventional ICG angiography methods as it provides better resolution, easier 

real time assessment of flap perfusion, simultaneous color + NIR acquisition, and avoids laser 

excitation. Using MB for contrast in patients undergoing lower abdominal surgeries, the ureters 

could be visualized in order to avoid the commonly encountered iatrogenic ureteral injury. This 

method can provide an alternative to current investigational methods using radioactivity, 

however, application of MB limited to patients with uncompromised renal function.27 In a 

similar approach, ICG contrast was used with the mini-FLARE system for NIR cholangiography 

and it was demonstrated that a long interval between administration of contrast agent and the 

surgical procedure could minimize background fluorescence from the liver.28 

In a recent pre-clinical study, the Frangioni group utilized the dual channel of the FLARE™ system 

image guidance during pancreatic surgery with pancreas specific 700 nm emitting fluorophores 

and 800 nm emitting fluorophores targeting blood vessel, kidney, lymph node and adrenal tissue. 

29 Such studies, if and when they can be translated to humans, will be able to provide 

comprehensive image guidance in complex surgeries for fairer outcome and minimal risk of 

collateral tissue injury. 
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Figure 11: Mini-FLARE guided intraoperative NIR fluorescence imaging of primary and metastatic 

paragangliomas. Intraoperative NIR fluorescence imaging of the surgical field shows a bright, patchy fluorescent 

signal was identified at the location of the tumor (dashed circle). A second, small, lesion located approximately 5 cm 

cranial to the main lesion, was also identified using NIR fluorescence imaging (arrow). Reproduced with permission.20 

 

2.3.4 Fluobeam 

Principle  

The Fluobeam is a handheld intraoperative camera system marketed by Fluoptics, Grenoble, 

France30 (Fig. 12).   

   

Figure 12: The Fluobeam preclinical system. 
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Hardware  

The Fluobeam consists of a handheld camera head that can also be fixed on an extended arm for 

fixed imaging in both pre-clinical and clinical settings30. Excitation is provided by 100 mW, 690 

nm continuous wave laser, passing through a diffuser to provide 2.6 mW/cm2 of homogenous (> 

30% field homogeneity) to an area of 6-8 cm in diameter. White light is provided co-axially 

passing through a bandpass filter (350 – 650 nm) to provide 7 X 103 of irradiance. The emitted 

fluorescence passes through a 700 nm longpass filter and imaged using a 12-bit CCD camera 

using a fixed focus lens, with exposure times in the 1 to 1,000 ms range. IT was found that 

exposures of 10- 20 ms provided tumor to background contrast. The spatial resolution was 0.17 

mm/pixel. The system is operated by a desktop computer where the fluorescence is displayed in 

real-time. 

Applications  

The initial report evaluated the system in rat models of breast cancer and colorectal cancer for 

intraoperative image guidance30. The authors showed that Fluobeam allowed fluorescence-

guided resection of primary mammary tumors with a tumor-to-background ratio of 2.34 at 10 ms 

camera exposure time. They also demonstrated utility in visualizing metastatic colorectal tumors 

in rats. However, use of cathepsin based probes led to high background signal in abdominal 

organs. The system was also evaluated for detection and visualization of peritoneal 

carcinomatosis in mice31. The system was able to detect all tumor nodules compared to only 50.6 

% detect visually. It was also able to decrease surgery time from 19 minutes to 14 minutes. The 

smallest tumors nodules detected had as little as 227 tumor cells. Fluobeam was subsequently 

used to interrogate surgical margins in an orthotopic syngeneic rat model of primary breast 
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cancer32. Real-time image guidance allowed complete resection of 17 tumors with minimal 

excision of healthy tissue. The tumor free margin ranged from 0.2 to 1.3 mm. Fluobeam also 

enabled identification of residual tumors in the surgical cavity. Fluobeam has also been used for 

intraoperative detection of colorectal metastasis in a syngeneic rat model33. The authors detected 

a two-fold higher NIR signal in colorectal metastasis compared to healthy liver tissue. The 

tumor-to-background ratio was independent of imaging time point when comparing 24 hr vs 48 

hr post injection of ICG and thus allowed flexible surgical planning. Additionally the size of 

metastatic nodules correlated with the fluorescence intensity. Other studies have evaluated the 

Fluobeam for preclinical fluorescence imaging of peritoneal dissemination of ovarian 

carcinomas34,  and for imaging cancer in mice using quantum dot bioconjugates35. Fluobeam was 

shown to guide complete tumor resection and preserve more healthy tissue using fluorescence 

contrast from AngioStamp (marketed by Fluoptics) that targets αvβ3 integrins, in an orthotopic 

rat model of metastatic osteosarcoma36. Using methylene blue contrast Fluobeam was shown to 

be able to differentiate thyroid and parathyroid glands in rabbits37. Orthotopic glioblastoma in 

mice was successfully visualized and resected under guidance of Fluobeam, using novel 

alkylphosphocholine analogs CLR1501 and CLR11502 contrast38.  

Recently the Fluobeam system has been used for imaging the lymphatic system and sentinel 

lymph nodes in pigs39 (Fig. 13). Using ICG fluorescence, Fluobeam was able to identify a mean 

of 2 lymphatic vessels and 1-2 sentinel lymph nodes in 20/20 lymph node stations in 5 pigs. This 

study demonstrated its potential for clinical translation in lymphatic reconstruction surgery and 

sentinel lymph node biopsy.  It is being evaluated in several clinical trials listed in Table 4.  



89 

 

 

Figure 13: Fluobeam acquires planar fluorescence image after injection of ICG providing lymphatic imaging 

with guidance to the SLN: Local enrichment after ICG retention (A), after incision of the skin with clearer 

visualization of afferent vessels and the SLN (B), after dissection into a depth between 1.5- 2 cm and identification 

of 2 LNs with clear, high definition (C), and after excision, the afferent lymphatic vessels are still clearly visualized 

(D). 

 

2.3.5 FluoSTIC 

Principle  

FluoSTIC is a handheld miniaturized near infrared image guidance system. (Fig. 14) It is 

optimized for use during oral cancer and intra cavital surgery and imaging where the features of 

interest are not easily acessible. It utilizes a novel miniature lipstick camera for image capture 

and cylindrical fiber array for white light and NIR illumination. It has comparable performance 

to large image guidance systems, while being extremely small (22 mm diameter, 200 mm height) 

and lightweight (< 200 g). 
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Figure 14: The Fluostick™, optical head and control box. Reproduced with permission.41 Copyright 2015 

Springer International Publishing. 

 

Hardware  

The initial prototype was developed in consultation with surgeons to impose a size limitation of 

25 mm in diameter and < 250 mm in length40. Additionally the authors specified a goal of 

working distance > 100 mm and a field of view of 20 - 50 mm. The prototype used an off-the 

shelf 17 mm diameter “lipstick” camera with cylindrical geometry, with 1/3 rd inch monochrome 

CCD sensors, 656 X 494 pixel resolution with maximum 120 fps and 10 bits of dynamic range. 

A 15-mm focal objective lens adjusted for F/2.0 was used for achieving high depth of field. NIR 

illumination was provided by a SMA-coupled 500 mW 740- nm laser diode and white light was 

provided by a SMA-coupled 7 mW cold white LED. Both NIR and whitle light was combined 

using a custom coupler consisting of NIR and white light filters, three collimating lenses, a 

dichroic mirror and a diffuser to ensure a homogenous illumination. The combined NIR-white 

light was delivered to a custom multifiber bundle. The multifiber bundle composed of 19 fiber 

bundles composed of individual 300 µm, 0.37 NA fibers spaced equally on a three 1.5 mm thick 
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17 mm inner diameter brass rings. The bottom ring controls the exit angle of the fibers and an 

exit angle of 3 degrees was found to provide maximum illumination field flatness. The lipstick 

camera is secured inside of the hollow brass rings of the multifiber system. Emitted fluorescence 

was collected from 772 to 857 nm. This scheme while using sub-optimal excitation for ICG, 

allowed a wider collection band that could accommodate larger number of fluorophores and was 

shown to have comparable performance to typical illumination and filtration schemes.  

The assembled FLuoSTIC system measured 22 mm in diameter, 200 mm in length and weighed 

180 g. It has a field of view of 30 – 40 mm at a working distance of 126 mm and delivers 8 

mW/cm2 of NIR excitation and 1000 lux of white light. The system resolution is 70 µm and a 

depth of field of 20 mm. The camera exposure time is adjustable from 32.5 µs to 2 s and custom 

Labview software was used for image capture and storage functions. 

Applications  

FluoSTIC was validated in vivo in preclinical image guided resection of positive tumor nodules 

in the peritoneal cavity in mice40. Positive nodules could be easily visualized by FluoSTIC and 

excised during surgery. It was eventually commercialized by Fluoptics, France under the trade 

name of FluoStick Clinical System. This system directly houses the laser and LED and camera in 

the handheld unit that has an oblong cross section providing better performance and 

ergonomics41 (Fig. 15). The FluoStick Clinical System was used in an orthotopic mouse model 

of head and neck squamous cell carcinoma to guide resection during survival surgery42. It was 

shown that FluoStick enabled fluorescence guided surgery increased the disease free survival by 

50% by detecting fluorescent cancer residues as small as 185 µm, which were not otherwise 

detected visually. The FluoStick Clinical System is currently being evaluated for ex vivo 
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visualization of colorectal peritoneal carcinomatosis in human patients41. Tissue excised by 

conventional surgery was examined by the system to visualize NIR fluorescence to delineate the 

periphery of the peritoneal metastasis. Fluostick was also recently used for ex vivo visualization 

of metastatic hepatic tumors using ICG fluorescence43. Fluostick enabled identification of tumors 

with positive margins that would have been missed by standard of care ultrasound. 

 

Figure 15: Fluostick™ assisted surgery of hepatic metastasis of adenocarcinoma of the left colon. The 

circumference of the metastasis is made fluorescent through the injection of ICG. Reproduced with permission.41 

Copyright 2015 Springer International Publishing. 

 

2.3.6 VELscope 

Principle  

VELscope is a handheld device for visualization of autofluorescence in oral cancer patients. (Fig. 

16) It was developed in close collaboration of imaging scientists and dental surgeons. VELscope 

allows coaxial illumination and visualization of autofluorescence directly by the user in a 
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handheld format. It was designed for easy usability and intuitive operation for facilitating 

intraoperative surgical guidance and regular screening of patients for early detection of oral 

cancer.  

 

Figure 16: VelScope VX enhanced oral system. 

 

Hardware  

The initial device design consisted of a bench-top light source coupled to a handheld unit for 

direct user visualization44. The light source consisted of a 120-W metal halide arc lamp with an 

integral elliptical reflector optimized for near-UV/blue light output. The excitation light was 

coupled with user defined power input to a 0.59 numerical aperture, 3 mm diameter liquid light 

guide that delivers it to the handheld unit. The excitation light passes through a 2 lens system (f = 

25 mm) which nearly collimates it and projects on to the tissue through a 425/60 nm bandpass 

excitation filter. A dichroic mirror allows co-axial excitation and emission pathway. The emitted 
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fluorescence is sent through a 475 nm longpass filter and a notch filter that divides the emitted 

fluorescence into red and green components. This instrument has since then been 

commercialized. The most recent version called VELscope Vx has battery powered blue light 

source integrated into the handheld unit. 

Applications  

VELscope has been used for guiding surgical resection in oral cancer patients and routine patient 

screening. In the pilot study with 44 oral cancer patients, the device achieved a sensitivity of 

98% and specificity of 100% in discriminating normal mucosa from severe dysplasia/carcinoma 

in situ or invasive carcinoma44. It was also shown that the device was able to detect clinically 

occult lesions in patients during longitudinal follow-up, that were not otherwise detected using 

conventional white-light examination45 (Fig. 17). This highlighted the ability of the device to 

sensitively indicate the occurrence of high-risk changes in patients. Based on these initial studies 

the device was used to guide surgical resection in the operating in 20 consecutive patients with 

early stage oral cancer46. The authors first visually marked the margin for clinically apparent 

tumor followed by marking of the loss of autofluorescence areas. Autofluorescence based 

surgical margins went beyond the clinical margins in 19/20 cases and extended from 4 to 25 mm 

beyond the clinically defined margin. Biopsies from these areas defined by fluorescence by 

outside of the clinical margin showed that they were either cancerous, low grade dysplasia or 

precancerous tissue at high-risk of becoming cancerous due to high-risk molecular clones and 

loss of heterozygosity.  

These studies indicated the applicability of using autofluorescence visualization as a tool for 

patient diagnosis, surgical guidance and treatment follow-up. VELscope was approved for usage 
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by FDA and Health Candae in 2008 and since then has been widely used by dentists for 

screening patients for oral cancer and high risk precancerous tissue or low-grade dysplasia. 

VELscope mediated autofluorescence guidance for surgical resection is currently being 

evaluated in the ongoing Candian Optically-guided approach for Oral Lesions Surgical (COOLS) 

trial47. It is a randomized 9-cenetr trial that aims to recruit 400 patients with severe dysplasia or 

carcinoma in situ (n = 160) and invasive squamous cell carcinoma (n = 240) and randomly 

divide them into fluorescence-guided and visual surgery. The primary endpoints are to evaluate 

recurrence at or within 1 cm of the surgery site and evaluation of further treatment due to 

presence of severe dysplasia or higher degree of change at the follow-up. The latest study update 

shows that it has reached close to its patient accrual targets and is beginning to get patients at the 

primary endpoints48. While final analysis remains pending, this trial has already led to the 

building of the first pan Canadian surgical network for oral cancer control. Velscope is widely 

used in the clinic today and many studies have evaluated its efficacy. In a prospective 

randomized trial, Velscope was found to have higher detection sensitivity for detection of oral 

cancer49. In a single blinded clinical evaluation, Velscope was shown to have higher detection 

sensitivity for oral premalignant lesions50. It was also found to be suitable as tool to visualize 

necrotic areas of the bone in patients with bisphosphate related osteonecrosis of the jaw51. 
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Figure 17: Velscope device guided detection of occult disease enhanced oral system. (A) White light image 

showing occult lesion (B) identification by fluorescence image (C) corresponding histology showing moderate 

dysplasia. Reproduced with permission.45 Copyright 2007 John Wiley & Sons Inc. 
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2.4 Minimally invasive surgical guidance systems 
Table 5: Minimally invasive surgical guidance systems. 



System Description Clinical Application Approval 

Novadaq 

PINPOINT 

Handheld/standalone 

NIR/blue fluorescence 

and WL laparoscopic 

imaging 

Low anterior resection (NCT02205307), Left 

anterior resection (NCT01560377), Colorectal 

surgery (NCT02459405), Biliary and hepatic 

(NCT02070068), SLNM in oral cancer 

(NCT02478138) SLNM in cervical cancer 

(NCT02209532), Bowel perfusion. 

Yes? 

HRME Handheld visible 

fluorescence imaging. 

High resolution optical 

biopsy. 

Esophageal cancer (NCT01384708, NCT02018367, 

NCT02029937), Digestive track (NCT01321892), 

Head & neck cancer (NCT01456143), Oral cancer 

(NCT01269190), Gastric cancer (NCT02207959), 

Barret’s esophagus (NCT01694511), Bladder cancer 

(NCT02340650), Cervical cancer (NCT02714439, 

NCT02494310, NCT02206048, NCT02420665), 

Liver cancer, pancreatic cancer, colorectal polyps 

? 

 

 

2.4.1 Novadac PINPOINT endoscopic fluorescence imaging system 
 

Principle 

The Novadaq PINPOINT is a commercially available high definition video laproscopy system 

that combines conventional white light laparoscopy with near-infrared fluorescence imaging 

using indocyaninegreen (ICG). (Fig. 18) 
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Figure 18: The Novadaq PINPOINT system. Reproduced with permission.52 Copyright 2015 ACPGBI. 

 

 

 



99 

 

Hardware 

The technical description of the system has been published earlier.52 Here we have provided a 

summary of the same. The system’s basic hardware is that of a laparoscope. The camera sensor 

used is sensitive to both NIR and visible light. Additionally, the optics are coated with an anti-

reflective material in order to be able to transmit both visible and NIR light.  Reflected NIR 

signal is rejected by using a filter before forming the image. The camera produces high 

resolution and smooth video by projecting the true high-definition signal at a 1080p frame rate 

(60 Hz). Both white light and NIR images can be overlaid for viewing or toggled as needed. The 

camera is made user-friendly by equipping with a series of switches which can be activated by 

the user’s thumb to control several functions such as the power focus of the camera. The camera 

can be very easily attached to the laparoscope  by inserting the eyepiece into the springloaded 

coupler at the camera’s front and detached  by applying a short rotation to the thumb lever of the 

coupling ring on the camera. The system parts are sealed in the portable PINPOINT camera 

housing and thus are protected from contamination and damage during use.   

Applications 

The laparoscopic capability of PINPOINT enable its applications for image guidance in many 

minimally invasive procedures where open surgical systems may not be used. It has been used 

extensively in human studies to evaluate tissue perfusion with the help of ICG fluorescence. It 

was initially used in an ethics review board approved study to evaluate colorectal anastomotic 

perfusion in 20 patients undergoing low anterior resection. The authors hypothesized an NIR 

image guidance system which has been useful in evaluation tissue perfusion in other surgical 

situations could also be applied here. 53 The PINPOINT system which is designed for 

laparoscopy was modified for transanal use by using a custom built introducer. It produced high 
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resolution overlaid angiographic image in real time that helped the surgeon to distinguish 

between normal and abnormal angiograms, and the course of treatment thereafter. However, at 

this time the data was not quantitative but subjective, and hence it limited any conclusions on the 

predictive value for an abnormal angiogram. In a similar study, this system was for visualizing 

tissue perfusion in a laparoscopic colorectal surgery of 30 patients.54 In another study, the 

application was extended for evaluating bowel perfusion patients with the emergency situations 

of mesenteric ischemia.55 (Fig. 19)The system proved to be easy to handle, fast, and produced 

angiographic images showing perfusion in tissue which helped surgeons to recover them. The 

subjective evaluation of NIR fluorescence signal, however, again was a limitation of this study. 

In a recent case report, the system was used for image guidance to prevent liver and bile duct 

injury during laparoscopic cholecystectomy in one patient. 
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Figure 19: Novadaq PINPOINT provide image guidance to detect perfusion in macroscopically critical 

segments by which the segments could be preserved in a case of mesenteric ishemia. (A) White light image (B) NIR 

fluorescence signal (C) Overlay image. Reproduced with permission.55 Copyright 2015 ACPGBI. 
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2.4.2 High-resolution microendoscopy (HRME) 

Principle 

HRME is a low-cost optical biopsy technique with sub-cellular resolution. This compact, robust, 

and inexpensive system is based around wide-field LED illumination, a flexible 1 mm diameter 

fiber-optic bundle, and a color CCD camera (Fig 20). It allows for subcellular imaging at 1000x 

magnification at 4 micrometer resolution. Use of wide-field imaging through a coherent fiber 

bundle eliminates all scanning requirements. Due to use of LED illumination and CCD imaging, 

this system is both simple to implement and robust in use. Low-cost (<$2000) and low learning 

curve makes HRME an effective complementary imaging tool to white-light endoscopy. 

 

Figure 20: (A) Schematic diagram of the high-resolution microendoscope. (B) Photograph of the system, 

packaged in a 10" x 8" x 2.5" enclosure. Reproduced with permission.59 
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Hardware 

The HRME device was first reported by Muldoon et al56 and is also described subsequently57. It 

primarily consists of a light source, a fiber-optic bundle, a microscope objective lens, and a CCD 

camera. The excitation light is provided by a LED light source (455 nm, 20 nm FWHM) and is 

directed via a collimator, an infinity corrected objective lens (10x/0.25 NA) and a 475 nm cut-off 

dichroic mirror to the proximal end of a flexible fiber-optic bundle (3 m long, 30,000 individual 

fibers). The fiber bundle coherently transfers the excitation light to the distal end which is in 

direct contact with the sample, delivering 1 mW excitation power and can be easily passed 

through the biopsy port of a standard endoscope. The emitted fluorescence is collected by the 

same fiber and transmitted through the dichroic mirror and imaged onto a CCD camera by a 

magnifying tube lens. The tube lens magnification was chosen to optimize between requirements 

of sampling individual fibers with a sufficient number of pixels at the CCD and confining the 

magnified image of the bundle to the area of the CCD array. The CCD camera used a Bayer 

mask for color imaging and was digitized at 8-bit resolution. The field of view of the system was 

determined by the diameter of the active area of the fiber bundle and was reported as 750 

microns. The spatial resolution of the system was determined by the spacing of the individual 

fibers and the system used a fiber bundle with individual fiber core size of 2.2 µm, and a center-

to-center spacing of <4 µm, achieving a spatial resolution of 4.4 µm. The total cost of the fiber 

microendoscopy system was $2500 using a standard CCD camera, and $11,000 using a 

scientific-grade unit. 
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Applications 

The HRME prototype was initially used to access subcutaneous tumors in an in vivo murine 

model, allowing direct comparison of microendoscopy images with macroscopic images and 

histopathology56. A surgically resected tissue specimen from the human oral cavity was imaged 

across the clinical margin, demonstrating qualitative and quantitative distinction between normal 

and cancerous tissue based on sub-cellular image features. Finally, the fiber-optic 

microendoscope was used on topically-stained normal human oral mucosa in vivo, resolving 

epithelial cell nuclei and membranes in real-time fluorescence images.  

It was then used for high-resolution imaging of Barret’s esophagus and compared with 

pathologic findings57. A quantitative image analysis criteria was developed to identify neoplastic 

lesions in patients with Barret’s esophagus58. In situ cellular imaging was also demonstrated59. 

Its feasibility for use in the clinic for Barrett’s esophagus was demonstrated60. It used in liver and 

pancreatic cancer61. A classficication system was developed for colorectal polyps62. The 

accuracy and interrater reliability for Barret’s esophagus was evaluated63. The accuracy of in 

vivo diagnosis of colorectal polyps was reported64 (Fig. 21). It has also been evaluated for a 

variety of other applications such as imaging of the inner ear cholesteatoma65, and diagnosis of 

esophageal squamous cell carcinoma66, and has had consistently good performance in evaluation 

of various diseases67. 

 

Other similar systems are the Karl Stroz fluorescence endoscopes.68
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Figure 21: HRME classification of tissue at various stages of pathological development. Reproduced with 

permission.64 Copyright 2014 Nature Publishing Group. 

 

2.5 Spectroscopic and diagnostic imaging systems 
Table 6: Spectroscopic and Diagnostic Imaging systems. 



System Description Clinical Application Approval 

Dermainspect Standalone autofluorescence and WL 

imaging 

Skin cancer, dermatological disorders, 

ageing, leg ulcers, ocular tissue. 

? 

SpectroPen Handheld NIR fluorescence and 

Raman spectral imaging 

Ex vivo evaluation of lung cancer 

(NCT02280954) 

No 

SD OCT Handheld OCT imaging Macular degeneration 

(NCT00734487), Intraocular surgery 

(NCT01588041), retinal development 

in premature babies 

FDA CE? 

 

 



106 

 

2.5.1 SpectroPen 

Principle 

The SpectroPen connects a hand-held sampling head, via a fiber optic cable, to a spectrometer 

that can record fluorescence and Raman signals69 (Fig. 22). The ability to resolve NIR 

fluorescent and Raman signals from background tissue arises from the optical filtering that takes 

place in the hand-held portion of the SpectroPen. The laser light is transmitted through the 

excitation fiber into the pen. A first lens collimates the excitation light. Wavelength selectivity is 

provided by a band pass filter. Excitation light is then focused onto the sample of interest. Back 

scattered light is collected through the same lens. A dichroic mirror and a long pass filter 

attenuate Rayleigh scattering by a factor of 108 in the collection fiber. Thus, only Stokes-shifted 

light is transmitted to the spectrometer. Silica Raman bands arising from the optical fibers are 

attenuated by physical filtering in both the excitation and emission optical paths. The device’s 

overall performance was evaluated by comparing the polystyrene Raman spectra obtained with 

the SpectroPen and a standard Raman spectrometer. The results show well matched Raman 

signals between the two spectrometers and also with the literature spectra of polystyrene. The 

differences in peak positions (wavenumbers) are less than 0.5% across the entire range of 200–

2000 cm−1. In general, the SpectroPen system performs as well as the standard Raman 

spectrometer as judged by signal-to-noise ratio, resolution, and wavelength accuracy. 
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Figure 22: (A) Photograph showing the SpectroPen held in the operator’s hand in a surgical setting. (B) 

Optical beam paths of the SpectroPen. Ex = excitation fiber, Coll = collection fiber, BP = band pass filter, LP = long 

pass filter, D = dichroic filter, M = reflective mirror. (C) Schematic diagram of the complete system for wavelength-

resolved fluorescence and Raman measurements. Reproduced with permission.69 Copyright 2014 ACS Publications. 

 

Hardware 

A RamanProbe™ sampling head and connecting fiber optics were purchased from InPhotonics 

(Norwood, MA). The cylindrical stainless steel sampling head (diameter = 1.3 mm, length = 10 

cm) was integrated with a 5 m two-fiber cable, one for laser excitation and the other for light 

collection. The sampling head and fiber cable were coupled via an FC connector to a 

spectrometer designed by Delta Nu (Laramie, WY). The combined sampling head and 

spectrometer system has a wavelength range of 800–930 nm with 0.6 nm spectral resolution for 
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fluorescence measurement, and a Raman shift range of 200–2000 cm−1 with 8 cm−1resolution for 

Raman measurement. Laser excitation was provided by a continuous-wave 200 mW diode laser 

emitting at 785 nm.  

Applications 

The SpectroPen allows sensitive detection of both fluorescent and SERS contrast agents. A linear 

relationship is found between the recorded signal intensity and contrast agent concentration. The 

minimum spectrally resolvable concentrations (that is, limits of detection) are 2–5 × 10−11 M for 

ICG and 0.5–1 × 10−13 M for the SERS agent. For both fluorescence and Raman measurements, 

the SpectroPen provides a 50–60 fold dynamic range. This finding has significance because 

weak tumor-margin signals that are 50–60 fold lower than the central tumor signals can be 

measured simultaneously without adjusting the data acquisition parameters. The background 

signal of fat can be accurately subtracted, allowing nearly pure ICG contrast signals. The 

background Raman spectrum can be subtracted to reveal predominantly the SERS contrast 

signals. SpectroPen can detect sub-surface signal. Recently the spectroPen was used for ex vivo 

evaluation of resected tissue from lung cancer patients in order to detect pulmonary nodules70 

(Fig. 23). It was compared with two other imaging instruments and its performance was found to 

be better than or as good as these instruments in quantifying the fluorescence information and 

predicting presence of cancer. 
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Figure 23: Photograph of bisected nodule from human adenocarcinoma patient. Reproduced with 

permission.70  

 

2.5.2 Dermainspect/MPTflex  

Principle 

The DermaInspect system is a CE-certified class 1 device that can perform non-invasive in vivo 

multiphoton tomography of the human skin with capability of submicron spatial resolution and 

250-ps temporal resolution71 (Fig. 24). The system use multiphoton excitation for obtaining auto 

fluorescence or second harmonic generation signals of endogenous fluorophores in skin such as 

melanin, NAD(P)H, flavins, porphyrins, elastins, collagens. Molecular and structural information 

from these images are used to detect abnormalities of pathological importance. Non-invasive 

optical biopsies give this device advantages of being painless, allowing examination under in situ 

conditions, rapid diagnosis, and possibility of longitudinal studies on the same region of interest. 
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Figure 24: Dermainspect device in action. Reproduced with permission from ref 76. Copyright 2013 John 

Wiley & Sons Inc. 

 

Hardware  

The system hardware has been described in the publications and on the product website.71-73 (Fig. 

24). The excitation source consists of a compact, turn-key tunable (750 nm-850 mm) 

femtosecond NIR Ti:sapphire laser.  The scanning module consists of a computer controlled 

motorized beam attenuator and a shutter, a fast x-,y- galvoscanner and of piezo driven optical 

parts and a trigger for the TCSPC module. Signal detection is performed PMT detectors with 

short rise time. Bandpass filters have been used when needed for separating signals. The system 

is controlled by a control module containing all power supplied and a single photon counting 

board, and the signal/image processing hardware and software. The basic DermaInspect system 

can be upgraded with the additional hardware in order to be able to perform fluorescence lifetime 

imaging and spectral imaging and provide 4-D and 5-D data. 

 



111 

 

Applications 

The DermaInspect system was majorly developed for the diagnosis of skin cancer, particularly 

melanoma and other dermatological disorders; for wound healing and skin ageing research as 

well as quantification of uptake of drug molecules useful for monitoring of treatment response. 

The combined fluorescence lifetime imaging provides additional information in many such 

studies. The system was first assessed in 2003 for multiphoton tomography of normal and 

dermatological disorder containing human skin biopsies at submicron spatial resolution and 250-

ps temporal resolution.72 The system also collected data from the skin on the forearm of two 

caucasians human volunteers. Single cells, extracellular materials such as keratin, sub cellular 

components such as NAD(P)H containing mitochondria’s, as well as transitions between various 

tissue layers could be visualized from the auto fluorescence signals. Unlike histological methods 

to study dermal matrix composition, DermaInspect’s capability to image the same in vivo was 

utilized to assess skin ageing in white European volunteers.27 The authors mention that specific 

quantitative features such as ratio of dermal elastin to collagen content of can be evaluated by in 

the multiphoton tomography; and attribute differences form previously published data to external 

factors such as optical system properties and movement artifact. This in in turn calls for 

standardization of optical systems and analysis algorithms so as to enable comparison between 

data collected by different devices. In another study, compared to conventional biophysical 

measurements, DermaInspect was able to produce consistent information of skin matrix 

composition in various skin aging cases.74 In a different approach, a miniaturized GRIN lens 

microendoscope was attached to the DermaInspect system for imaging the skin.75 Although 

spatial resolution of this microendoscopic system was reduced due to lower numerical aperture, 

the miniaturization allowed visualization of the largely damaged skin regions with complex 
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topography in chronic leg ulcers patients. Cellular NAD(P)H contents in the facial skin of young 

and old women were quantified using DermaInspect/MPTflex system, and statistically 

significant difference values were observed.76 (Fig. 25) 

DermaInspect has been used to study non-skin tissues as well, where its capability to extract 

valuable functional information from in vivo measurements has been utilized. In such a work, the 

potential of the system to extract quantitative functional information from ocular tissue was 

demonstrated by studying freshly excised ocular surface.77 Collagen fibrils could be visualized 

with high spatial resolution as well as lifetime measurements allowed detection of various cell 

types such as nerve clusters, goblet cells and erythrocytes. This shows DermaInspect can be used 

for imaging cases where there is lack of tissue for biopsy and high chances of functional loss. 

 

Figure 25: (A) In vivo two-photon autoflourescence images of different skin layers from the skin surface to 

the lower epidermal layer up to 42 µm in depth on the facial skin. The major fluorophores are keratin in the stratum 

corneum layer, NAD(P)H in the granular and spinosum layer, melanin in the lower epidermal and basal layer, and 

elastin in the dermis layer. (B) Two-photon autofluorescence image of the granular layer at a depth of 22 µm. The 

main fluorophore in this image is NAD(P)H. The shape of the granular cell and its nucleus can be observed by its 

contrast of fluorescence in the field of view. Reproduced with permission.76 Copyright 2013 John Wiley & Sons Inc. 
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2.5.3 Handheld spectral domain OCT (SD OCT) 

Principle 

SD OCT allows is a fast, non-invasive, and non-contact method for imaging intraocular tissue. 

The limitation associated with a conventional SD-COT system which needs the patient in upright 

position has been addressed by developing a handheld OCT scanner.  The handheld OCT 

scanner that enables for patients in supine position, for uncooperative pedriatic patients or 

patients with limited mobility.  

 

Figure 26: (A) The Envisu C2300 system from Leica Microsystems. (B)The handheld OCT scanner. 
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Hardware 

Here we have provided the description of Envisu C2300, the world’s only FDA cleared handheld 

OCT system from Leica microsystems (who have started producing OCT systems after acquiring 

Bioptigen Inc. in 2015).78 The system consists of a handheld OCT probe connected to the SD-

OCT system by a flexible fiberoptic cable. (Fig. 26). The system uses 870 nm imaging 

wavelength for imaging and is capable of producing images with resolution upto 3 um. The 

handheld scanner can be available with various types of lenses for posterior and anterior imaging 

suiting various patient needs.  For example, the high-resolution anterior lenses can produce 

images with 8 um lateral resolution whereas the general retina lens gives a 70 degree field of 

view with a working distance of 13 mm. These retinal and cornea lens can be switched quickly. 

The system can operated via the InVivoVue OCT management software. The whole system sits 

on a mobile cart. Foot pedal click through allows for hands free operation. Also this system can 

be mounted on a surgical microscope for steady, high quality live imaging. Further details can be 

found at the product website.78 (Fig. 26) 

Applications 

Here, we have discussed some applications using the handheld SD OCT system from Bioptigen 

Inc. The development of this system was pioneered by Dr. Cynthia Toth at Duke University with 

a vision of employing a handheld scanner to address challenges associated with pediatric 

patients.79 In a landmark study, the prototype was used for imaging and gather new insights into 

retinal development in premature babies with and without sedation.80 (Fig. 27). Later, the system 

was improved for imaging children, neonates and children by incorporating calculated optical 

parameters from such subjects.81 The system since has the Bioptigen system has been used for 

many imaging applications in such patients.82-85  The Toth group also applied the handheld OCT 
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for other application such as for intraoperative imaging during macular surgery, where the 

handheld probe could allow imaging in patents in supine position.86  

 

Figure 27: (A) Photograph showing the Bioptigen handheld clinical SD-OCT being used to image an infant 

eye under supine position and under endotracheal anesthesia. (B) Ret Cam photograph of a female infant with 

Shaken Baby syndrome (SBS) showing a hyperpigmented perifoveal ring (red arrow) and a white, elevated ring 

outside the major vascular arcades consistent with a perimacular fold. The (Bottom left) SVP, (Top right) enhanced 

B-scan, (Middle right) and registered-summed lateral repeated image are shown. The yellow line on the SVP marks 

the exact location of the enhanced B-scan (sweeping from inferior to superior), whereas the blue line represents the 

approximate location of the lateral repeated image (sweeping from temporal to nasal). These SD OCT images 

revealed a highly reflective stalk of tissue (probably chorioretinal fibrotic tissue; yellow arrow) centered within a 

full-thickness chronic macular hole. (Bottom right) Schematic representation. Reproduced with permission.80 

Copyright 2009 Elsevier Inc. 

 

2.6 Barriers to clinical translation 
 

Table 7: Clinical considerations. 



Feature Detail 

Hardware Real-time operation, non-disruptive, sensitive, user-friendly 

Standardization Camera performance, optical phantoms, detection sensitivity and specificity, signal 

quantification 

Regulatory PMA and 510(k), combination product 

Clinical Trials Trial outcome definition, disease and patient selection 
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2.6.1 Design Considerations 

The hardware design needs to follow some considerations that we have previously discussed in 

more details91. These considerations include should focus on functionality and ease of integration 

in the surgical workflow. For surgical guidance systems real-time operation is critical. This 

translates to image capture, processing and display with >24 frames per second. Operating at less 

than real-time will lead to image breaks and perceptibly slower response times. Similarly, how 

the information is displayed has an impact on ease of usage, especially for open surgery guidance 

applications. If the information is displayed on a remote monitor, surgeons are forced to look 

away from the surgical bed, which can be distracting. A possible solution may to use head-

mounted displays. However, this may not be a big issue in minimally invasive surgery where 

surgeons are trained to look at a remote monitor and operate while not looking directly at the 

surgical region of interest. In terms of ergonomics, a hands free design may be better compared 

to a handheld one, because that then frees the operating surgeon to use both hands for the 

surgery. Using a handheld system then would involve fixing it on stand or a member of the 

surgical team to hold it while the surgeon operates, which are non-ideal situations.  

Diagnostic systems are not bound by the constraints of real-time operation and non-disruptive 

information display. However, both diagnostic as well as image guidance systems should have 

high sensitivity of detection as well as a compact design so that it may be easily integrated in the 

operating room or physician office. In addition if the system has a great learning curve, it may 

require a specialized operator, which can add cost. If any or a combination of these 

considerations are not met then it becomes difficult for a system to be readily integrated into 

clinical practice. 
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2.6.2 Standardization of imaging systems and imaging methods 

Standard and widely accepted metrics are needed to compare the performance of imaging 

systems and the imaging method. A commonly used metric is detection sensitivity and 

specificity for diseased tissue. The gold standard used is often histology. However using 

histology as the gold standard provides its own unique challenges. It often suffers from sampling 

errors. Therefore a tissue extracted by say fluorescence signal detected in a large lump of tissue 

may be called negative by histology because the small cancerous part was not sampled by the 

histology. This can lead to false positives.  

The threshold for a metric beyond which the tissue is considered diseased versus healthy should 

be ideally defined. For image guidance systems another key metric is tumor-to-background ratio. 

However the background must defined clearly. A widely accepted threshold is a TBR of 2 to 

designate cancerous versus healthy tissue. A better method may be to use a patient matched 

tissue sample as the normalization tissue such as skin or muscle. However these would depend 

on the system, contrast method and disease condition. However global thresholds like this may 

lead to ignoring of small tumor nodules that may have a small amount of contrast agent uptake, 

leading to lower detection sensitivity. 

 

2.6.3 Regulatory approval 

Optical imaging systems are usually considered low-risk devices. They must approved through a 

PMA use in humans. The 510(k) pathway allows approval if substantial equivalence can be 

demonstrated with a previously approved device through the PMA. Current practice for medical 

devices is to pair devices to contrast agents. This is known as combination product. People 

generally tend to specify pre-approved agents such as ICG as the conjugate contrast agent to 

potentially ease the approval process. Typically, if a device can successfully image a 
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fluorophore, then it can be applied to any targeting agent linked to that fluorophore87. Similarly, 

if a device can successfully image a specific range of wavelengths, it can be used to image any 

fluorophore with excitation/emission spectrum that fall within that range. However, it is not clear 

that moving forward, if FDA will still require optical imaging systems to be paired with a 

specific contrast agent for the review and approval process. Furthermore, it remains unclear how 

industry will view an open format device approach compared to a combination device strategy. 

Our view is that it is best to consult FDA early in the application process to get necessary 

clarification as this is an evolving area. 

Another approach used by researchers is to use a FDA cleared device with established 

installation base for clinical trials in order to expedite the approval process for a investigative 

application and or an use of an investigative contrast agent. However, this may be counter-

productive if the device is not optimized for that particular imaging application and agent and 

may lead to falsely discouraging results. Additionally adapted devices may not match the ideal 

hardware and performance features for a particular application, such as detection sensitivity, 

ergonomics and ease of use etc.  

2.6.4 Clinical Trial Design 

Endpoints in clinical trials should be designed carefully keeping in mind the application and 

device being tested. For initial evaluation of an investigational device it may be beneficial to start 

with a small pilot study, focusing on proof-of-concept demonstration of the feasibility of using 

the device in the operating room. Typically no medical decision is made based on the device 

output in these trials and they are used for data collection and system evaluation. Pilot studies 

can accelerate the firs-in-human experience, data collection and clinical feedback from 

physicians who may become the end user for an investigational device. Usually, in these cases, a 
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human approved contrast agent such as ICG is used. Our view is that these pilot studies have a 

better chance of getting IRB approval from an institution compared.  

Pilot studies can be followed by a larger traditional clinical trial evaluating the safety and 

efficacy of the intervention based on the investigational device. For example, endpoints for 

surgical guidance systems may include evaluation of the efficacy of visualizing the diseased 

tissue versus the normal tissue enabled by the system under investigation as compared to 

standard of care surgery. Metrics to compare may be disease detection sensitivity and specificity, 

rate of tumor margin positivity or predictive values. These trials will typically need descriptive 

animal usage data with the system showing benefit of the intervention proposed. If medical 

decision is to be based on the device intervention, then it is our view that a pre-approved contrast 

agent be used for the trial, as it might have a better chance of being approved by the IRB. 

However, if investigators wish to use an investigational contrast agent, then an IND application 

is required. Typically a second pilot study is often done to evaluate the safety and disease-

specific uptake of the investigational contrast agent, which is then imaged using the 

investigational device. However, no medical decisions are based on the imaging information and 

standard-of-care procedure is followed. Once this trail demonstrates the safety of the method and 

proof-of-concept of clinical usage, investigators can apply for a larger trial to base medical 

decision on the investigational imaging intervention. 

2.7 Conclusions 
Optical imaging is on the cusp of routine clinical usage due to its various advantages. However 

before its wide adoption in the clinic is possible, the issues relating to standardization of methods 

need to be resolved and better clinical trials showing clear benefits must be conducted. 
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Chapter 3: Goggle Augmented Imaging and 

Navigation System 
This chapter is based on a published article: Suman B Mondal*, Shengkui Gao*, Nan Zhu*, Gail 

P Sudlow, Kexiang Liang, Avik Som, Walter J Akers, Ryan C Fields, Julie Margenthaler, 

Rongguang Liang, Viktor Gruev, Samuel Achilefu. Binocular Goggle Augmented Imaging and 

Navigation System provides real-time fluorescence image guidance for tumor resection and 

sentinel lymph node mapping. Sci. Rep. 5:12117 (2015). * These authors contributed equally. I 

developed the prototype in collaboration with Dr. Gruev, Dr. Gao, Dr. Liang and Dr. Achilefu, 

performed the characterization tests, animal studies and led efforts for clinical studies. I assisted 

the surgeons during the clinical procedures. I analyzed the data for characterization tests, animal 

studies and human studies and wrote the manuscript with inputs from co-authors. 
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3.1 Abstract 
The inability to identify microscopic tumors and assess surgical margins in real-time during 

oncologic surgery leads to incomplete tumor removal, increases the chances of tumor 

recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have 

developed a wearable goggle augmented imaging and navigation system (GAINS) that can 

provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time 

without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence 

from tumors and the natural color images of tissue onto a head mounted display without 

latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous 

and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ±5%). 

Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that 

the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to 

guide tumor resection and sentinel lymph node mapping promises to improve surgical 

outcomes, reduce rates of repeat surgery, and improve accuracy of cancer staging. 

3.2 Introduction 
Surgical resection is the standard of care for many solid tumors such as breast cancer and 

melanoma, and sentinel lymph node (SLN) mapping is used for cancer staging(1). Incomplete 

tumor removal increases the chances of cancer recurrence and necessitates repeat surgery, 

whereas inaccurate SLN identification may misdiagnose the cancer stage. Despite recent 

advances in pre-operative imaging methods, surgeons rely on visual inspection, palpation, and 

tactile evaluation to distinguish cancerous from uninvolved tissue intraoperatively, leading to 

subjective decision-making and variable outcomes. For example, 14-50%(2-4) and 20-70%(5-

7)
 
of patients undergoing melanoma in situ and breast conserving surgery, respectively, require 
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repeat surgery. Similarly, inaccurate SLN removal often requires additional surgical 

interventions(8). Surgery is most effective when performed before cancer becomes a metastatic 

disease. Assessment of the SLN for the presence of cancer cells is a standard of care for staging 

breast cancer and melanoma(1). Conventionally, patients are injected peritumorally with 99mTc 

sulfur-colloid and a visible lymphotrophic dye. A handheld gamma-counter is used to localize 

the region of highest radioactivity and the blue dye can be used to visualize the SLN. However, 

radioactive SLN tracking exposes patients and health professionals to ionizing radiation, 

without SLN visualization capability. Although blue dyes can be visualized, SLN tracking by 

this method is limited to inspection of only superficial lymph nodes and requires high dose of 

the dye, which may lead to harmful side-effects(9, 10). 

The above challenges have spurred interest in developing methods for accurate intraoperative 

imaging of tumors and SLNs. Conventional modalities such as magnetic resonance imaging , 

computed tomography , and positron emission tomography  can provide exquisite anatomic and 

functional information(11, 12). However, they are not amenable for use in the operating room 

(OR) due to their large hardware footprint, specialized operator requirement, prohibitive cost, 

and the use of ionizing radiation. Slow image reconstruction, lack of microscopic imaging 

capability, and disruptive information display on a remote monitor affects their wide adoption 

in the OR for real-time image guidance(13). Intraoperative ultrasonography can be used for 

tumor detection based primarily on tissue morphology, leading to significant false positive and 

negative rates(14-17). As a contact based method with relatively poor resolution, intraoperative 

ultrasonography is less useful for identifying tumor boundaries or microscopic tumors during 

open surgeries. Advanced instruments that mimic global positioning systems have been 

developed, where pre-operative computed tomography or magnetic resonance images can be 
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projected onto the appropriate anatomical structures. These systems suffer from limitations of 

the pre-operative imaging method, unsatisfactory registration due to tissue deformation and 

motion during surgery, and the inability to directly interrogate boundaries of tumors. 

Alternatively, optical imaging uses nonionizing radiation and simple imaging setup for real-

time readout and detection of microscopic lesions(18, 19). In particular, near-infrared (NIR) 

fluorescence imaging in the 700 – 900 nm range is attractive because the low absorption by 

intrinsic photoactive biomolecules minimizes tissue autofluorescence and facilitates thick tissue 

assessment. The use of nonionizing radiation decreases safety hazards in the OR(18-20). 

Additionally, several tumor-targeted optical contrast agents have been developed(21) including 

peptide(22) and nanoparticle-based agents with promising features(23). These advantages have 

generated interest in NIR fluorescence image-guided surgery (NIR-FIGS). To date, several 

NIR-fluorescence image guided surgery (NIR-FIGS) systems have been developed, and 

successfully used for intraoperative tumor imaging and SLN mapping (SLNM), including 

FLARE(24), Fluobeam(25), SPY(26), and Hamamatsu PDE(27). However, each of these 

systems have some limitations, including the use of bulky hardware, potentially disruptive 

information display on a remote monitor, mismatch between the system’s and surgeon’s field of 

view (FOV), and require support from other workers to control the device. 

Adaptation of head mounted displays (HMDs) for surgery(28-33) could overcome the issue of 

disruptive information display. We have previously demonstrated the feasibility of using 

wearable cameras and HMDs for FIGS(34-36). Our initial prototypes used a monocular 

projection eyepiece, which posed perception problems during surgery, or a binocular system, 

which only captured white light reflectance and fluorescence images sequentially using the 

same sensor, thereby preventing display of real-time composite color-fluorescence images. 
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Additionally, the issues of camera and user FOV mismatch, bulky design, non-optimized optics, 

and fast processing to generate real-time color-fluorescence composite images with minimum 

latency remain unaddressed. The primary goal of this study is to test the hypothesis that 

simultaneous, sensitive detection of color and NIR fluorescence information, fast image 

processing and image output via a HMD would allow non- disruptive access to accurately co-

registered color-NIR images for real-time image guidance in oncologic surgery. Toward this 

goal, we have developed a new wearable goggle aided imaging and navigation system (GAINS) 

and evaluated the accuracy of using the well-characterized system for real-time intraoperative 

tumor visualization and image-guided tumor resection in small animals, as well as SLNM in 

human breast cancer and melanoma patients.  

3.3 Materials and Methods 
Animal and human study protocols were approved respectively by the Animal Studies 

Committee and the Institutional Review Board of Washington University. The human procedure 

was carried out in accordance with the approved guidelines. All patients gave informed consent 

for this HIPAA compliant study. 

3.3.1 Contrast Agents 

ICG (Cardio green, Sigma-Aldrich, MO) and LS301(35) were used as NIR contrast agents. 

Clinical grade ICG for human SLNM was provided by the Siteman Cancer Center (Washington 

University in St. Louis, MO). ICG and LS301 have similar spectral profiles, allowing the 

translation of findings with the tumor-targeted LS301 in small animals to humans using FDA- 

approved ICG, under similar conditions, without major changes in the detection scheme. 
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3.3.2 GAINS Development 

GAINS conceptual design is summarized in Fig. 28a. To maximize spectral separation and 

minimize light leakage, we recorded an excitation scan of ICG using a fluorimeter (Horiba 

Jobin) to identify the best excitation wavelengths (Fig. 29). We then measured the spectral 

profiles of LEDs using a spectrometer (Ocean Optics) to identify suitable LEDs and the 

appropriate excitation and emission filters. 
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Figure 28: GAINS. (a) Schematic demonstrates the information flow through different modules of the 

system. (b) Photograph of the NIR source. (c) Photograph of the integrated display and imaging module, along with 

the processing module, which are worn by the user. 
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Figure 29: Spectral characterization. (a) Spectral profile of the GAINS system illumination, excitation filter 

used for illumination and emission filter used for NIR detection showing minimal overlap of the excitation and 

detected emission spectra. (b) Light leakage relative to NIR LED excitation with our filter choice. 
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The NIR source (Fig. 28b) consists of 760 nm LEDs (Roithner, Vienna, Austria) with 

769±41 nm bandpass filter (Semrock, Rochester, NY). The LED numbers and positions (Fig. 30) 

were optimized using simulations (LightTools). A prototype light output of 5 mW/cm2 at a 

distance of 50 cm was used. White flashlights or surgical light (Steris, Mentor, OH) covered with 

shortpass filters (Cool mirror 330, 3M, St Paul, MN) served as the white light source (Fig. 30). 
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Figure 30: Illumination module design and prototype. (a) The schematic of the standalone NIR illumination 

sub-module showing arrangement of 16 LEDs divided in four packages, each consisting of 4 LEDs. Each package 

has a dimension that allows it to be covered by a 50 mm diameter excitation filter. (b) Simulation result of light 

output of the four package configuration while running at the typical forward current and at a distance of 50 cm. (c) 

Tripod configuration with for illumination. Two laser pointers are attached on two corners of the NIR sub-module to 

easily point the NIR source at the region of interest. A fabricated flashlight mount is used to hold four high power 

LED flashlights fixed on the central column of the tripod. These flashlights provide the white light illumination for 

color reflectance imaging. The mount is designed to provide necessary angle for convergence of the flashlight beams 

with the NIR illumination area at typical working distances. (d) The surgical light configuration uses the threaded 

back of the NIR light source to attach it to the center of a LED surgical light. The surgical light provides the while 
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illumination for color reflectance imaging. The white LEDs of the surgical light is covered by a filter to cut off the 

NIR components of the surgical light. 

 

The imaging module collects combined color-NIR signal via a custom F/1.75 glass lens (Fig. 

31). The incoming signal was divided into visible and NIR components by a custom dichroic 

beamsplitter cube and directed to a color and NIR complementary metal-oxide semiconductor 

(CMOS) sensor (Aptina, San Jose, CA). The NIR and color sensors were co-registered (disparity 

<0.1 mm at 50 cm distance). An 805 nm longpass and a 694 nm shortpass filter (Semrock, 

Rochester, NY) were placed in front of the NIR and color sensors, respectively, which work in 

stereoscopic mode (25 MHz clock frequency, 24 frames per second (fps)). A single pair low-

voltage differential signaling communicated 16-bits data (8-bits from each sensor) to the 

processing module at 480 MHz (25 MHz x 18) data transmission rate (Table 8). 
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Figure 31: Imaging module. (a) Imaging module sensors showing the NIR sensor, color sensor and the 

conversion board. (b) Schematic of Imaging Module internal structure: 1, Lens; 2, dichroic beamsplitter; 3, short-

pass filter for visible channel; 4, long-pass filter for NIR channel; 5, visible CMOS sensor; 6, NIR CMOS sensor. (c) 

Optical structure of the lens. (d) Design specifications of the dichroic beamsplitter: surface 1, broad band AR 

coating for 450-850 nm; surface 2, near-infrared band (800 nm - 900 nm) AR coating; surface 3, visible band (450 

nm - 650 nm) AR coating. 
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Table 8: GAINS specifications. 


Characteristics GAINS Specification 

Sensor pixel size 6 µm X 6 µm 

NIR sensor quantum efficiency 36% at 810 nm 

Lens F/1.75, focal length= 19.6 mm, full diagonal FOV = 

15.5° and working distance = 850 mm 

Disparity <0.1 mm 

Weight 30 gm (camera) 

330 gm (camera + HMD) 

Display VST HMD 

Camera Dual modal complementary metal-oxide 

semiconductor (CMOS, monochrome & RGB) 

Processing FPGA and PC 

Detection limit 1 nM ICG, 50 cm, 5 mW/cm2 illumination, 24p fps 

Illumination 16 LED light, 760 nm, 5 mW/cm2 at 50 cm 

Spatial resolution 320 µm 

Depth resolution 5 mm, 1 µM ICG solution 

  

 

The processing module consists of a customized printed circuit board connection board and a 

field-programmable gate array integration module (Opal Kelly, Portland, OR). The printed 

circuit board powers the imaging module and deserializes the imaging data, which were pre-

processed on the field-programmable gate array via optimized Verilog code, and buffered in the 

on-board 64MB DDR SDRAM. The pre-processed data were transmitted through a high speed 

USB 2.0 port to a PC (or laptop). The PC runs C++ program using OpenCV and QT C++ 

libraries that can execute on any regular Windows x64 PC, without extra software and 
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configuration. The program generates superimposed color-NIR images, creates a GUI that gives 

access to functions such as display/store/process image data and duplicates images for display on 

the PC and a HMD module simultaneously. The GUI also allows use of different exposure times 

for the photon-saturated visible channel and photon-starved NIR channel, as well as color 

correction for best image quality. 

The display module consists of a 1080p high resolution HMD (Carl Zeiss, Oberkochen, 

Germany). Adjustable mechanical mounting and a counter balance for the imaging module were 

added to match the camera and user FOV for improved user experience (Fig. 28c). 

3.3.3 In Vitro Phantom Studies 

All characterization studies were performed at 50 cm imaging distance, 5mW/cm2 illumination, 

and 24p fps. 

For detection sensitivity, spatial average intensity (30×30 pixels) was extracted from GAINS 

images of freshly prepared triplicate samples with different concentrations of ICG (300 pM – 50 

µM) and LS301 (1 nM – 10 µM) dissolved in DMSO and imaged in clear glass vials. The 

spatially averaged intensity values were plotted against concentration to create the intensity 

detection profile for GAINS. The SBR was calculated for each concentration by using images 

acquired in pure DMSO as the background and plotted against dye concentration. 

For depth sensitivity, plastic straws of 3 mm diameter were filled with 1 µM ICG and imaged at 

different depths in a tissue mimicking phantom (µa = 0.1, µ́s = 5 cm-1), prepared using intralipid 

and 2% India ink(37). Pixel intensities corresponding to multiple points on the straw and 

background were used to calculate SBRs and plotted against depth. For depth resolution, two 3 

mm straws filled with 1 µM of ICG were kept 7 mm apart and imaged at various depths in the 

tissue mimicking phantom. The signal intensity from a cross section of the image were used to 
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create intensity maps and plotted against the depth. Error in color-NIR superimposition was 

measured by focusing the camera at 50 cm and imaging a target at 50 cm ±5 cm. 

3.3.4 In Vivo Mouse Studies 

Six to eight-week old nude mice (n=10) were injected subcutaneously in both flanks with 5 ×105 

4T1luc murine breast cancer cells. At 5-7 mm tumor size (7-10days post implantation), these 

mice received lateral tail vein LS301 (100 µL, 60 µM in 20% aqueous DMSO) injection. At 1, 4 

and 24 h post injection, the mice were imaged noninvasively using the Pearl small animal imager 

(LI-COR, Lincoln, NE) and the GAINS. After 24 h, the GAINS was used for intraoperative 

imaging and image-guided resection of tumors. The resected tissues were preserved for 

histologic analysis. 

 Additional 6-8 week old nude mice (n=3) were injected intraperitoneally with 1 × 107 

SKOV3 human ovarian cancer cells, stably transfected with iRFP (38). When tumors were 

palpable (5-10 mm, 3 weeks post implantation), mice received lateral tail vein LS301 (100 µL, 

60 µM in 20% aqueous DMSO) injection and were imaged noninvasively using the Pearl system 

and GAINS at 1, 4, and 24 h post injection. At 24 h post injection, GAINS guided the 

intraoperative tumor visualization and resection. Resected tissue were imaged for iRFP signal 

using the Pearl system and then frozen for histologic analysis for determination of GAINS tumor 

detection sensitivity and specificity. The imaging threshold was varied retrospectively from 6.3 

% to 7.8% of maximum pixel intensity, and the sensitivity and specificity were calculated for 

each threshold. ROC analysis was used to calculate the optimal imaging threshold for this model. 
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3.3.5 Histology 

Fresh-frozen, 10 µm tissue sections were imaged for NIR fluorescence, stained with hematoxylin 

and eosin (H&E) and same areas were imaged under brightfield for co-registration with NIR 

fluorescence using a epifluorescence microscope (BX51 Olympus, Center Valley, PA). 

3.3.6 Pilot Human Studies 

Participants were breast cancer patients (n=10) undergoing lumpectomy, partial mastectomy, or 

radical mastectomy, as well as melanoma patients (n=5) undergoing wide excision of skin 

lesions, along with SLNM. Breast cancer patients, were given post-anesthesia, peritumoral 

injection of a mixture of 99mTc-sulfur colloid (834 µCi) and methylene blue (5 mL of 1% 

solution) immediately followed by ICG (5 mg/mL; 5 mL) and site massage for approximately 5 

min. At 10-15 min post injection, the surgeon removed the tumor mass. A handheld gamma   

probe guided site of axillary incision and invasive SLN identification, which were then examined 

for presence of blue color and visualized using the GAINS via ICG fluorescence. The cavity was 

inspected with the GAINS to identify other fluorescence SLNs, which were then checked for 

blue color and radioactivity, before excision and preservation for histology. A similar procedure 

was followed in melanoma patients, except that only 1 mL of ICG solution (5 mg/mL) was 

injected. In all cases, the GAINS was operated at 24p fps with a 40-millisecond acquisition time. 

NIR-white light illumination during system usage was provided by our illumination module. 

3.3.7 Statistical Analysis 

Statistical analysis was performed using OriginPro8 (OriginLab Corp., Northampton, MA). 

SBRs, sensitivity and specificity were expressed as mean and standard deviation. Paired t-tests 

were used to compare fluorescence signal in tumors and background tissue in mouse models 

and sensitivity of SLN detection by GAINS, radioactivity and blue dye methods. P <0.05 were 

considered statistically significant. 
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3.4 Results 

3.4.1 Development of GAINS 

The accuracy of image guidance depends on the sensitivity and resolution of the system, as well 

as the accuracy of fluorescence to color image overlay. The system detection sensitivity is 

determined by the fluorescence detection sensitivity because the visible light channel has 

abundant signal compared to the photon-starved fluorescence channel. The system resolution is 

determined by the sensor and optics of the system, with smaller sensor pixel pitch and smaller 

lens aperture leading to higher resolution. So there is a trade-off between using a high resolution 

lens and large aperture lens that allows high fluorescence signal capture for more sensitive 

detection. Furthermore, the requirement of wearability imposed additional restrictions of 

compact, lightweight, and ergonomic design. This precluded the use of different cameras with 

dedicated lenses for both color and fluorescence channels, and large aperture heavy glass lenses 

that could capture very large amount of fluorescence signal. The amount of fluorescence signal 

collected may be increased by using large exposure times. However, the requirement of real-time 

image guidance constrained the imaging exposure to acquire both fluorescence and color 

information. Therefore, the challenges in developing the GAINS were achieving sensitive 

simultaneous imaging in the photon-saturated color channel and photon-starved fluorescence 

channel, real-time image processing, and non- disruptive display, while maintaining a wearable 

form factor. We overcame these challenges by developing a single lens, color-NIR (Fig. 31), and 

compact lightweight camera (Table 8), with independent exposure times for both sensors and 

spatial resolution of 320 µm (Table 8). GAINS conceptual design is summarized in Fig. 28a. The 

processing unit generates co-registered composite color-fluorescence images, which are 

displayed in real-time via a lightweight high resolution HMD unit. The NIR source (Fig. 28b) 
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consists of 760 nm light-emitting diodes (LEDs) with 769±41 nm bandpass filter. The display 

module consists of a 1080p high resolution HMD. Adjustable mechanical mounting and a 

counter balance for the imaging module were added to match the camera’s weight and user FOV 

for improved user experience (Fig. 28c). Additional information on the system development can 

be found in the Materials and Methods section. 

3.4.2 In-vitro Studies 

We used GAINS to determine the fluorescence intensity profile with increasing concentrations of 

NIR contrast agents indocyanine green (ICG) and LS301(35) (Fig. 32a). In the 1 nM to 10 nM 

range, significant fluorescence was detected, but the signal is close to the sensor noise floor, 

indicating noise contribution to the net intensity signal. The intensity did not follow a linear 

trend.  A similar profile was observed when signal-to-background ratios (SBRs) were plotted 

against concentration (Fig. 32b). Therefore, there was no appreciable increase in fluorescence 

intensity (Fig. 32a) or the SBR (Fig. 32b) from 1 nM to 10 nM. At concentrations higher than 10 

nM we observed a rapid increase in the fluorescence intensity and SBR with increasing 

molecular probe concentrations. The result suggests that the GAINS was able to detect 1 nM 

solutions of both ICG and LS301, while maintaining an SBR of ≥1.2 (Fig. 32b). This threshold 

represents the system’s detection limit in homogenous dimethyl sulfoxide (DMSO) solution.  
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Figure 32: Graphs from phantom experiments for system characterization showing SNR and depth resolution 

information. (a) Fluorescence intensity response with varying concentrations of ICG and LS301. (b) The SBR for 

with 1µM straws positioned 7 mm apart. 

 

Analysis of depth and spatial resolution shows that the system is capable of detecting 1 µM ICG 

inside a tissue mimicking phantom up to a depth of 5 mm and can resolve two 3 mm diameter 

objects kept 7 mm apart up to a depth of 5 mm with an SBR of ≥1.2 (Fig. 32c and 32d). At the 

surface, the SBR for 1 µM ICG was 4.9 (Fig. 32c). This is much lower than the SBR observed 

for 1 µM solution of ICG in DMSO, which was used to calculate the GAINS’ detection limit 

(Fig. 32b). Whereas DMSO solvent has minimal scattering and absorption of light at NIR 

wavelengths, the tissue mimicking liquid phantom (intralipid and India ink(37)) used for depth 

sensitivity measurement  has significantly higher scattering and absorption than DMSO. As a 
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result, the background signals were higher for depth than sensitivity detection experiments, 

leading to a decrease in the SBR for studies with tissue phantoms at equivalent ICG 

concentration. 

Time needed for complete surgical resection of tumors can vary from minutes to several hours. 

Surgeons are trained to have very steady head movements during tumor removal, but they may 

experience involuntary head movement. This could cause inaccurate fluorescence overlay if the 

image becomes out of focus. Our tests indicate that if an object is within ± 2.54 cm of the focal 

plane of the camera at the typical working distance of 50 cm, the accuracy of the fluorescence 

overlay on the color image will be within 670 µm. Because involuntary head movement and 

breathing are within the tested range, the error in fluorescence overlay will be minimal. This 

suggests that there is no need to keep GAINS perfectly stationary during surgery. 

3.4.3 In vivo Mouse Studies 

We used a subcutaneous breast cancer mouse model to test in vivo GAINS function. Using 

LS301 fluorescence, the GAINS clearly identified all tumors (n=10 mice), with a mean SBR of 

1.21±0.1 and guided resection in real-time (Fig. 33). The fluorescence signal in the tumors was 

significantly higher than surrounding tissue (P <0.05). Histologic analysis confirmed resected 

tissue as cancerous. In the metastatic mouse model of ovarian cancer, the GAINS identified 27 

tumor nodules in 3 mice, with a mean SBR of 1.19±0.03 (Fig. 34), compared to only 10 tumor 

nodules identified visually alone. Several tumors that were under the visceral organs (3-5 mm 

deep) were not visible without GAINS guidance. However, real-time visualization of sub-surface 

fluorescence guided exploratory surgery revealed tumors that would have been otherwise left 

behind. The fluorescence signal from suspected tumors were significantly higher than 

surrounding tissue (P <0.05), facilitating detection of the smallest tumor (3 mm in diameter). All 



151 

 

resected tissues were confirmed to be tumors through infrared fluorescent protein (iRFP)(38) 

imaging and histologic analysis, which showed close overlap of iRFP signal with the LS301 

fluorescence (Fig. 35). Imaging threshold provides guidance in delineating the tumor region for 

resection (Fig. 36) and affects the accuracy of tumor detection. We used receiver operator 

characteristic (ROC) analysis to determine the best imaging threshold for the metastatic mouse 

model. The sensitivity and specificity of tumor detection for all images were calculated at several 

thresholds within the range of 7.8 % to 6.3 % of maximum pixel intensity. Using the best case 

threshold for each image, the sensitivity and specificity of tumor detection was calculated to be 

100% and 98.33% ±5%, respectively. Using the average detection sensitivity and specificity for 

each threshold tested, ROC analysis shows that a threshold of 7.5 % of maximum pixel intensity 

is a reasonable imaging threshold to obtain optimal sensitivity and specificity with GAINS, due 

to high LS301 uptake in tumor and low tissue autofluorescence (Fig. 35). This threshold was 

used to identify the tumor region prior to resection. The threshold was manually adjusted during 

tumor resection to accommodate changes in the residual fluorescence intensities. Our graphical 

user interface (GUI) has the option of adjusting the threshold of the superimposed images so that 

only fluorescence intensity above the threshold will be displayed in pseudocolor representation 

in the color-NIR channel. This approach optimizes the tumor detection sensitivity and specificity 

for each case. 
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Figure 33: Image-guided tumor visualization in subcutaneous mouse model. (a) Color image of mouse with 

skin deflected showing tumor nodes. (b) NIR image showing high fluorescence area. (c) Superimposed color-NIR 

image showing high fluorescence area accurately corresponds to the tumor nodes. 
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Figure 34: Image-guided exploratory tumor resection in metastatic mouse model. (a) Color image showing a 

large abdominal tumor. (b) NIR image showing high fluorescence area corresponding to the tumor (marked 1) and 

two other areas (marked 2 and 3). (c) Superimposed image showing color-NIR overlay image. 
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Figure 35: Accuracy of tumor detection in metastatic model. (a) iRFP image of harvested organs and tumors 

from one of the mice showing confirmatory high signal from tumors. (b) Fluorescence microscopy revealed good 

co-localization (yellow) of iRFP signal (green) and LS301 fluorescence (red). (c) Histological confirmation of the 

same slide showing cancerous growth corresponding to the areas marked by iRFP and LS301 fluorescence. (d) ROC 

curve for GAINS tumor detection sensitivity and specificity at different imaging thresholds. 
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Figure 36: Thresholding during image-guided tumor visualization in subcutaneous mouse model. (a) NIR 

image with minimal thresholding, showing high fluorescence area corresponding to tumor. (b) NIR image with 

optimal thresholding, showing well-defined high fluorescence in the tumor region. 
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3.4.4 Human Pilot Studies 

Clinical feasibility was demonstrated in 15 patients during SLNM after lumpectomy/mastectomy 

or wide excision surgeries. Surgeons used the system comfortably, with minimal disruption to 

the surgical workflow. The GAINS allowed clear visualization of 30 SLNs from 10 breast cancer 

(Supplementary Vid. S1) and 5 melanoma (Supplementary Vid. S2) patients. Using histologic 

analysis as the gold standard, the GAINS had a detection sensitivity of 100% in comparison to 

92.86% ±17.5% for the blue dye and 96.43% ±12.9% for radioactive tracking. There was no 

statistically significant difference in sensitivity of SLN detection sensitivity by GAINS compared 

to radioactive tracking (P = 0.34) or blue dye tracking (P = 0.36) methods. In one melanoma 

patient (Fig. 37), blue dye did not identify two deep-seated SLNs. Similarly, in one breast cancer 

patient, initial visual inspection did not reveal the SLN (Fig. 38) and in another patient, 

radioactive tracking was unable to identify two SLNs by. In these cases, the LNs were clearly 

identified by GAINS. Although the imaging depth with reasonable resolution is about 5 mm, 

high fluorescence signal from deep-seated SLNs is readily projected to the surface, allowing 

visualization of SLNs at >5 mm deep after deflection of the overlying tissue layer (Fig. 39). This 

demonstrates the potential clinical utility of the system for rapid identification of SLNs during 

surgery. 
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Figure 37: Melanoma patient SLNM showing excised SLN not identified by blue dye. (a) Color image 

showing no blue dye signal although radioactively hot region was detected. (b) NIR image showing high 

fluorescence area. (c) Superimposed image showing high fluorescence corresponding to the hot area. 

 

 

Figure 38: Breast cancer patient SLNM showing non-apparent SLN by visual inspection. (a) Color image 

showing absence of blue dye. (b) NIR image showing high fluorescence area and (c) NIR-color superimposed 

image. 
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Figure 39: The SLN was apparent after superficial tissue layer was retracted. (a) Color image showing 

retracted tissue layer and visible blue spot from blue dye. (b) NIR image showing a larger clear high fluorescence 

area. (c) Color-NIR image showing fluorescence corresponding to the blue dye spot. 

 

 

3.5 Discussion 
We have developed a wearable FIGS system that can provide accurate intraoperative 

visualization of tumors and SLNs in real-time. The ability to detect low NIR fluorescence favors 

the use of GAINS for molecular imaging of low- and high-expression cancer biomarkers. We 

used lightweight components that are robust, durable, low-weight and ergonomic. Our compact 

design allowed dramatic reduction of hardware footprint in the space-starved OR, compared to 

large standalone systems such as early version FLARE(24) and SPY(26) systems. Compact 

camera design and ergonomic HMD allow wearability and hands-free functionality with minimal 

training requirements, compared to handheld guidance systems such as Fluobeam(25) and 

PDE(27) that disrupt the normal surgical workflow. The position adjustable camera mounted on 

the HMD ensures matching of camera and surgeon’s FOV. Our robust image processing 

algorithm generates composite color-fluorescence images in real-time that are simultaneously 
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displayed on surgeon’s HMD and adjacent personal computer (PC) allowing non-disruptive 

information display to the operating surgeon and simultaneous information availability to the 

surgical team in the OR. These features are not available in other FIGS systems (24-27). The 

software and GUI are easy to use and compatible with any Windows-based PC. Importantly, 

superimposed fluorescence information on the normal visual landscape, allows rapid 

intraoperative visualization of tumors. 

In conjunction with LS301, our method clearly identified local and metastatic tumors in murine 

cancer models, demonstrating the potential for using GAINS to improve the accuracy of tumor 

resection and decrease the rates of repeat surgeries. Our method allows SLNM with relatively 

low concentrations of the NIR contrast agent, eliminating exposure to ionizing radiation and 

minimizing the risk of adverse reactions in patients(9). The GAINS SLN detection sensitivity 

was slightly higher than radioactivity and blue dye tracking, although we did not find any 

statistically significant differences between the methods. Our findings agree with previous 

studies that have showed ICG fluorescence has comparable or better SLN detection sensitivity 

compared to radioactivity and blue dye methods(10, 39-42). Although other emerging clinical 

systems have reported capability of fluorescence detection in the OR, this is the first 

demonstration of “direct” visualization of NIR fluorescence-color images by surgeons. 

A current limitation is the lack of automated focusing, which may lead to image blurring due to 

large changes in viewing distance. We also currently require a wired connection to a PC 

for final image processing that restricts the user’s radius of movement. We envision future 

versions that will automate detection of working distance and adjust the focus according to the 

working distance of users. We currently use a single camera to capture the user’s FOV, which is 

displayed in 2D. Future versions will transition to two-camera stereoscopic system to allow 3D 



160 

 

information capture and display for enhanced surgical guidance. We are also developing robust 

wireless transmission of image data to enable constraint-free movement. This feature will enable 

telemedicine applications, remote guidance from experts, and remote training of surgical fellows. 

Low cost prototype development and minimal learning curve for the user favors the use of 

GAINS in low resource areas. 

In summary, we have developed an ergonomic wearable real-time fluorescence image guidance 

system that has high detection sensitivity and resolution. The GAINS was able to successfully 

address the existing limitations of current image guidance systems, including large hardware 

footprint, field of view mismatch, disruptive information display and real-time image guidance. 

In conjunction with a tumor-selective NIR probe, the GAINS successfully detected tumors and 

occult metastatic nodes with high accuracy for guided tumor resection in rodents. Importantly, 

the GAINS was successfully implemented in the OR for identifying SLNs in human breast 

cancer and melanoma patients with equivalent or better accuracy than standard methods, 

although larger sample size is needed to validate this finding. Features such as the non-disruptive 

real-time image guidance and need for minimal training will potentially facilitate wide adoption 

of this technology by clinicians. Further improvements will enable the detection of microscopic 

lesions in the surgical field, which might otherwise be missed, and possibly prevent damage to 

nearby uninvolved vital structures such as nerves.  
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Chapter 4: Optical-see through GAINS 
This chapter is based on a pending article: Suman B. Mondal, Julie Margenthaler, Shengkui Gao, 

Nan Zhu, Walter J. Akers, Rongguang Liang, Viktor Gruev, and Samuel Achilefu. In vivo 

evaluation of an optical see-through binocular goggle augmented imaging and navigation system 

for real-time fluorescence-guided surgery for tumor resection, lymphatic tracking and sentinel 

lymph node mapping. To be submitted. I designed the experiments, conducted the preclinical 

studies, led efforts for the clinical studies, helped surgeons during clinical procedures, analyzed 

the data and wrote the manuscript. 
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4.1 Abstract 

4.1.1 Background 

Intraoperative near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) can 

potentially improve sentinel lymph node (SLN) mapping in breast cancer patients. However, it is 

not widely used due to limitations of NIR FGS systems. 

4.1.2 Methods 

We evaluated in vivo an optical see-through (OST) goggle augmented imaging and navigation 

system (GAINS) which had a minimal hardware footprint and allowed direct visual access to the 

surgical field while projecting fluorescence information. For pre-clinical validation, three mice 

with subcutaneous tumors were injected with a tumor targeted NIR contrast agent LS301 (60µM, 

100µl) and subjected to fluorescence-guided surgery. Three 35-kg female Yorkshire pigs 

received 300 ul of 5 mg/ml ICG, intradermally at their hind leg and lymphatics were tracked to 

the popliteal lymph node from the injection site. Four consecutive breast cancer patients 

scheduled to undergo partial mastectomy and SLN biopsy received 99mTc-sulfur and 5ml, 

5mg/ml ICG retroareolarly. SLN biopsy was done using handheld gamma probe and OST 

GAINS enabled ICG imaging. 

4.1.3 Results 

The OST GAINS allowed direct visual access to the surgical bed while projecting fluorescence 

information directly to surgeon’s eyes. It guided complete tumor resection in the subcutaneous 

mouse model of cancer with a SBR of 1.45 ± 0.19. It non-invasively tracked lymphatics in pigs 

with a SBR of 2.74 ± 1.74 and accurately identified 4 popliteal LNs in three pigs with a SBR of 

3.19 ± 1.81. A total of 11 SLNs were identified from 4 patients. Radioactive tracking SLN 

identified 9 (81.82%) SLNs with a detection sensitivity of 86.67± 0.27% and the OST GAINS 
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identified 11 (100%) SLNs with a detection sensitivity of 100% and SBR of 2.14±0.83. There 

was no statistically significant difference in the detection sensitivities of the two methods 

(P=0.374). 

4.1.4 Conclusions 

The see-through GAINS prototype is feasible for use in the operating room for NIR FGS for 

lymphatic tracking transcutaneously and SLN mapping in breast cancer patients. 

4.2 Introduction 
Sentinel lymph node (SLN) mapping(1) is the standard-of-care in breast cancer for disease 

staging(2). Conventional radioactive and blue dye tracking can achieve 95-97% SLN 

detection(3-6). However, radioactive tracers expose patients and caregivers to ionizing radiation, 

require involvement of nuclear medicine trained personnel, increasing costs and difficulty in 

scheduling surgery. Additionally, radioactive tracers may not be available everywhere readily. 

Blue dyes stain the tissue and so are not appropriate for visualizing deep seated lymph nodes. 

They also pose the risk of anaphylactic reactions in 1-2% of patients. 

Near-infrared (NIR) fluorescence using indocyanine green (ICG) injection has been shown to 

enable intraoperative SLN mapping(7-15). Several intraoperative ICG imaging systems have 

been developed and tested clinically(13, 16-18). However, they often suffer from a large 

hardware footprint that may be difficult to accommodate in the crowded operating room (OR). 

The field of view (FOV) of the system cameras are usually different than the surgeon’s FOV 

which necessitates a learning curve for system usage. These systems display images on a 

computer monitor that requires the surgeon to look away from the surgical bed. Additionally, 

handheld devices require the surgeon to stop working or need someone from the surgical team to 
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operate the instrument. The combination of these factors disrupt the normal surgical workflow 

and may increase surgery time. 

In our previous work we reported the goggle augmented imaging and navigation system 

(GAINS) for real-time fluorescence-guided surgery (FGS) that can detect both anatomic color 

reflectance information and NIR fluorescence from contrast agents, displaying accurately aligned 

superimposed color-NIR images to a video see-through (VST) head-mounted display (HMD) 

worn by the surgeon(19). The VST GAINS guided complete tumor resection in a subcutaneous 

and metastatic mouse model of cancer using a tumor-taregeted NIR contrast agent and identified 

SLNs using ICG fluorescence in 10 breast cancer and 5 melanoma patients with 100% 

sensitivity, compared to 93% and 96% detection sensitivity for blue dye and radioactive tracking. 

However, the opaque VST HMD did not allow direct visual access to the surgical field, which 

limited its usage for only SLN visualization and not for tissue resection.  

Based on surgeon feedback, we have developed an optical see-through (OST) HMD based 

GAINS prototype that allows direct visualization of the surgical bed with provision to project 

fluorescence information directly to the user’s eyes(20). In this study we performed in vivo 

evaluation of the OST GAINS prototype in a subcutaneous mouse model of cancer for guiding 

tumor resection, lymphatic tracking in a porcine model and SLN mapping in human breast 

cancer patients. 

4.3 Methods 

4.3.1 Fluorescence-Guided Surgery 

Real-time intraoperative fluorescence-guided surgery was performed using the OST GAINS 

prototype (Fig. 41) as described earlier(20). Briefly, it uses a focus-adjustable single camera to 

capture color reflectance and NIR fluorescence images, which are processed to generate an 
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accurately aligned color-NIR superimposed image. The color, NIR or superimposed images are 

directly projected to the user’s eyes via a custom OST HMD. This OST HMD allows direct 

visual access to the surgical field, with contrast- and transparency-adjusted projection of 

augmented fluorescence information. NIR illumination was provided by a 780 nm, 0.8 W laser 

(BW Tek), while white light illumination is provided by a surgical light covered with a short-

pass film filter(21) (Fig. 40). The optical head for the NIR laser was mounted on a flexible neck, 

allowing easy movement to point it on the surgical bed as necessary. Adjusting the laser 

direction took 1-3 minutes. However this was usually done when the surgeon was using the 

gamma probe to locate the SLN, since the NIR channel even if it is not being visibly projected to 

the surgeon’s HMD, can be seen on the laptop as it is continuously being recorded. So light 

adjustment was done simultaneously with regular surgical processes and did not add significant 

time to the overall surgery. The pointing red laser on top of the NIR laser optics allowed us to 

visible know where the invisible NIR laser was pointing. The camera mounted HMD (worn on 

head) and pre-processing module (carried in a wais pouch under the sterile gown) constitute the 

wearable part of the system. The laptop used for final processing (carried on a cart) and 

illumination modules form separate standalone parts of the system. 
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Figure 40: The illumimation module. 

 

4.3.2 Animal Studies 

All animal studies were approved by the Washington University Animal Studies Committee. TO 

evaluate tumor resection, a subcutaneous mouse tumor xenograft model was developed by 

injecting 106 PNEC cells in left hind flanks of three 6 week-old Balb/c nu/mu mice. They were 

injected with a tumor-targeted NIR contrast agent LS301 (60 µl, 100µl) via tail vein injection, 

10-12 days after tumor implantation. At 24 h post-injection, the mice were anaesthetized using 

2% isolfluorane and OST GAINS prototype was used to visualize NIR fluorescence from the 

tumors and guide surgical resection. After debulking the tumor bed was surveyed for presence of 

residual fluorescence and all suspected tumor tissue were resected. The animals were sacked by 

cervical dislocation, its organs were harvested and resected tissue were preserved for frozen 

section histopathologic analysis.  
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To evaluate SLN biopsy, three 35-kg female Yorkshire pigs were premedicated with atropine 

(0.04 mg/kg given intramuscularly) and a cocktail consisting of Telazol (tiletamine and 

zolazepam), ketamine, and xylazine (1 mL/50 lb [22.7 kg] of body weight given intramuscularly) 

prior to induction and maintenance of anesthesia with isoflurane (1-5% v/v in O2) by intubation. 

Vital signs were monitored during anesthesia. ICG (5 mg/ml) was dissolved in sterile water 

(Sigma Aldrich, St. Louis, MO) and injected intradermally (0.3 ml) into the leg using a 29-gauge 

needle insulin syringe.  The lymphatic movement of the ICG were tracked using the OST 

GAINS prototype in real-time, transcutaneously to locate the popliteal LN and guide its 

resection. The resected LN was preserved in formalin. All pigs were euthanized after FGS by 

intravenous potassium chloride. 

4.3.3 Pilot Human Study 

This pilot human study to evaluate clinical feasibility of using the GAINS prototype for 

intraoperative visualization of SLNs and comparison with conventional radioactive tracking was 

approved by the Institutional Review Board at Washington University and was performed in 

accordance with the approved ethical guidelines. The study was registered on clinicaltrials.gov 

website (NCT02316795). Women, 18 years or older with newly diagnosed clinically node-

negative breast cancer, negative nodal basin clinical exam and scheduled to undergo partial 

mastectomy with SLN biopsy were eligible for the study. Exclusion criteria were 

contraindication to surgery, receiving any investigational agents, history of allergic reaction to 

iodine, seafood and ICG, presence of uncontrolled inter-current illness, pregnant or 

breastfeeding. All patients gave informed consent for this HIPAA-compliant study and data was 

deidentified.  
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Patients received 99mTc-sulfur colloid (834 µCi) 2- 3 hours before surgery for needle localization 

and then brought to the operating room. Patients were injected with ICG (5mg/mL; 5 mL) in the 

retroareolar breast, followed by site massage for 5 min. About 10-15 min after injection, the 

surgeon performed standard-of-care partial mastectomy and the tumor mass was removed with a 

rim of grossly normal tissue. The tissue was marked with sutures to indicate orientation before 

submission for standard-of-care histologic evaluation. A handheld gamma probe was used by the 

surgeon to identify the site of axillary incision. The exposed SLNs were examined for 

radioactivity and then visualized using the OST GAINS via ICG fluorescence. The cavity was 

inspected with the GAINS to identify other fluorescent SLNs, which were then checked for 

radioactivity, before excision and preservation for histology. The surgeon wore the waist pouch 

carrying the image pre-processing module for the OST GAINS under the sterile gown. The 

camera mounted HMD was fitted onto the surgeon’s head and connections to the camera, laptop, 

HMD and power sources were established without compromising the sterile field. In all cases, 

the GAINS was operated at 24p fps with a 40-millisecond acquisition time. NIR-white light 

illumination during system usage was provided by our illumination module. A remote laptop 

used for final image processing, mirrored the surgeon’s view. The camera focus, projected 

fluorescence contrast and transparency of pseudocolored fluorescence overlay was adjusted 

using the laptop based on surgeon’s verbal feedback to ensure optimal viewing experience. 

4.3.4 Statistical Analysis 

Statistical analysis was performed using OriginPro8 (OriginLab Corp., Northampton, MA). 

Signal-to-background ratios (SBRs), and sensitivity were expressed as mean and standard 

deviation. Paired t-tests were used to compare fluorescence signal for non-invasive and invasive 

imaging in the mouse model of tumor, fluorescence signal during transcutaneous lymphatic 
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tracking and exposed lymph nodes in pigs and sensitivity of SLN detection by GAINS and 

radioactive tracking. P < 0.05 were considered statistically significant. 

4.4 Results 

4.4.1 Tumor resection in mice 

The OST GAINS allowed direct visual access to the surgical bed while projecting real-time high-

contrast fluorescence information to guide complete tumor resection in three mice (Fig. 41). 

Transcutaneous tumor fluorescence was observed with a SBR of 1.41±0.24 and guided the 

incision to deflect the skin and expose the tumor. Exposed tumor fluorescence was observed with 

a SBR of 1.49±0.1 and guided tumor resection (Fig. 42). Exposed tumor fluorescence was 

significantly higher than transcutaneous tumor fluorescence (P<0.05) as expected due to optical 

scattering by tissue. However the background signal after skin deflection was also significantly 

higher than that for intact skin (P<0.1) (Table 9), probably because the peritoneum is more 

reflective than the skin. There was no statistically significant difference between the SBR for 

transcutaneous and exposed tumor fluorescence (P=0.37) (Fig. 44). Survey of the tumor bed for 

residual fluorescence ensured no suspected tumor tissue was left behind. All tissue were 

confirmed to be cancerous through histology. 

 

 

Figure 41: Imaging system and preclinical validation a OST GAINS prototype head mounted display b 

Image-guided tumor resection in a mouse model of cancer c Lymphatic tracking and LN detection in Yorkshire pigs. 
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Figure 42: Fluorescence-guided surgery in a mouse model of cancer. a Color image of mouse with exposed 

tumor. b Grayscale NIR image showing high fluorescence from the tumor. c Pseudocolored fluorescence image. d 

Superimposed color-fluorescence image at 40% opacity of projected fluorescence. 
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Table 9: Statistical analyses. 



Characteristic Mean ± SD P value 

Mouse study   

Transcutaneous tumor signal 24.18 ± 5.49 0.03961 

Exposed tumor signal 26.62 ± 2.1 

Transcutaneous background signal 16.58 ± 1.12 4.71768E-5 

Exposed background signal 17.83 ± 0.54 

Transcutaneous tumor SBR 1.45 ± 0.24 0.3681 

Exposed tumor SBR 1.49 ± 0.13 

Overall SBR 1.45 ± 0.19  

Pig study   

Transcutaneous lymphatics signal 99.04 ± 70.12 1.88848E-4 

Exposed LN signal 123.89 ± 77.23 

Transcutaneous lymphatics background 

signal 

34.25 ± 7.68 1.12583E-13 

Exposed LN background signal 37.44 ± 6.97 

Transcutaneous lymphatics SBR 2.74 ± 1.74 0.01082 

Exposed LN SBR 3.19 ± 1.81 

Human study   

SLN signal 69.05 ± 39.9  

SLN background signal 30.95 ± 13.15  

SLN SBR 2.14 ± 0.82  

SLN detection sensitivity by radioactive 

tracking 

86.67 ± 0.3 % 0.3739 

SLN detection sensitivity by OST GAINS 

and ICG 

100% 
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4.4.2 Lymphatic Tracking in Pigs 

Using ICG fluorescence, the GAINS prototype allowed real-time transcutaneous lymphatic 

tracking in three pigs, from the injection site in the leg to the popliteal LN (Fig 41) with a SBR 

of 2.1±0.84. Along with surgeon’s a priori knowledge of porcine anatomy and palpation, the NIR 

lymphatic tracking identified the location of the popliteal LN (Fig. 43) and guided the incision 

for its resection (Vid. 1) without the use of radioactive tracking. A total of 4 popliteal LNs were 

detected with a SBR of 3.87±1.94 and allowed their accurate resection. The exposed LN 

fluorescence signal as well as background tissue signals were significantly higher than the 

transcutaneous fluorescence from lymphatics and background from skin (P<0.1) (Table 9) as 

seen in the mouse model of tumor. The LN SBR was significantly higher than the SBR for 

transcutaneous lymphatic tracking (P<0.05) (Fig. 44). 
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Figure 43: Lymphatic tracking and LN detection in pigs. a Color image showing exposed popliteal LN. b 

Grayscale fluorescence image showing lymphatic drainage transcutaenously and high fluorescence in the LN. c 

Pseudocolored fluorescence image. d Superimposed color-fluorescence image as seen by surgeon with projected 

fluorescence at 40% opacity. 
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Figure 44: Signal-to-background ratios. a SBR for tumors detected in mouse model of cancer with skin intact 

and skin deflected. b SBR for transcutaneous lymphatic tracking and exposed lymph nodes imaged in Yorkshire 

pigs. 

 

4.4.3 SLN Biopsy in Human Breast Cancer Patients 

The study aimed to study to evaluate clinical feasibility of the see-through GAINS prototype in 

guiding SLN biopsy using ICG fluorescence in breast cancer patients, in comparison to 

conventional radioactive tracking method. Four consecutive patients underwent standard-of-care 

partial mastectomy with wire localization and SLN biopsy using 99mTc-sulfur with the addition 

of OST GAINS guided SLN visualization using ICG fluorescence. The patient and tumor 

characteristics are listed in Table 10. In one patient the partial mastectomy was also carried out 

by the surgeon while wearing the OST GAINS prototype, using the unhindered visual access for 

standard-of-care partial mastectomy surgical procedure. The fluorescence information was 

projected as and when the surgeon requested, for visualizing the SLN. No adverse reactions 

associated with the use of ICG or the OST GAINS prototype occurred. No postoperative 

complications of the SLN procedure were observed. 
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Table 10: Patient and tumor characteristics. 



Characteristic N 

No. of patients 4 

Age (median, range) 63.5, (39-76) 

Diagnosis  

Left Breast Cancer 2 (50%) 

Right Breast Cancer 1 (25%) 

Bilateral Breast Cancer 1 (25%) 

Type of operation  

Partial mastectomy with needle localization 4 (80%) 

Partial mastectomy with ultrasound guidance 1 (20%) 

Partial mastectomy with GAINS guidance 1 (20%) 

No. of tumors excised 5 

Tumor type  

Invasive ductal carcinoma 5 (100%) 

Tumor size (mm) (median, range) 14 (9-28) 

Tumor localization  

8’o clock 1 (20%) 

9’o clock 1 (20%) 

10’o clock 1 (20%) 

Unspecified 2 (40%) 

Histological grade  

I 3 (60%) 

III 2 (40%) 

Margin status  
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Positive 2 (40%) 

Negative 3 (60%) 

Ductal carcinoma in situ status  

Present 4 (80%) 

<5% of total tumor tissue 3 (75%) 

10-15% of total tumor tissue 1 (25%) 

DCIS nuclear grade  

Low 1 (25%) 

Intermediate 2 (50%) 

High 1 (25%) 

Final tumor staging  

Stage I A 4 (80%) 

Stage II B 1 (20%) 

 

 

A total of 11 SLNs were identified from 4 patients with a mean of 2.2 ± 0.98 SLNs identified per 

patient (Table 11). Radioactive tracking identified 9 (81.82%) of SLNs with a detection 

sensitivity of 86.67± 0.27%. The OST GAINS, using ICG fluorescence, identified 11 (100%) of 

the SLNs with a detection sensitivity of 100% (Fig 45). The detection sensitivity of the 

fluorescence method was not significantly different than that of the radioactive tracking 

(P=0.374). The fluorescence from the SLNs were observed with a SBR of 2.14±0.83 (Table 9).  
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Table 11: SLN biopsy results. 


Characteristic N 

Total no of sentinel lymph node biopsies 5 

Type of procedure  

SLN biopsy with radioactive tracking 5 (100%) 

SLN biopsy with ICG and GAINS guidance 5 (100%) 

Injection site ICG  

Retroareolar 5 (100%) 

SLNs identified  

Total 11 

Mean ± SD 2.2 ± 0.98 

Method of detection  

Radioactive tracking 9 (81.82%) 

ICG-OST GAINS 11 (100%) 

Detection sensitivity  

Radioactive tracking, mean ± SD 86.67 % ± 0.27 

ICG-OST GAINS, mean ± SD 100% ± 0.0 

SBR for fluorescence detection, mean ± SD 2.14 ± 0.83 

Histology of SLN  

Negative 10 (90.91%) 

Macrometastases 1 (9.09%) 
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Figure 45: Fluorescence image-guided SLN mapping. a The surgeon wearing the GAINS during SLN 

visualization in a breast cancer patient. b The color image of the excised SLN. c The superimposed color-

fluorescence image of the excised SLN as seen by the surgeon. 

 

The user experience was very favorable due to the unhindered visual access to the surgical field 

(Fig 45). The contrast of projected fluorescence on to the surgeon’s eyes were controlled 

remotely based on surgeon feedback and ambient to light to ensure fluorescence information 

availability as well as tissue visibility (Fig 46). This allowed the surgeon to perform tissue 

incision and resection while wearing the GAINS HMD with minimal fluorescence projection 

contrast with the option of turning on high-contrast user requested contrast of projected 

fluorescence as required. Additionally this enabled all FGS to be performed with the surgical 

light on. These factors in combination with the compact, wearable and portable system design, 

allowed easy and non-disruptive integration in to the normal surgical workflow. Some fogging 

was observed after 15 minutes of usage due to breath condensation on the inner surface of the 

HMD. This was easily addressed by using anti-fogging face masks with adhesive upper lining to 

seal in the warm breath, which prevented fogging for up to 45 minutes of continued usage. 
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Figure 46: Variable contrast of projected fluorescence on an excised SLN as viewed by the surgeon with 

projected fluorescence at a 25% opacity. b 50% opacity. c 75% opacity.  

 

4.5 Discussion 
NIR FGS for SLN mapping has emerged as an important tool recently. It is currently limited by 

the standalone or handheld FGS systems that are not able to match the camera and user field of 

view, are bulky and show the information in a remote display. The combination of these factors 

disrupt the normal surgical workflow and has led to minimal adaptation of FGS in clinics beyond 

research initiatives and small clinical trials. Disruptive information display may be addressed by 

using a HMD(22, 23). There has been a lot of interest in doing surgical planning and navigation 

using HMDs especially in the neurosurgical community(24). It has been shown that a VST HMD 

can improve surgical performance in endoscopic surgeons(25-27). In our previous work we 

applied a VST HMD to cancer surgery and demonstrated that the video see-through GAINS has 

very sensitive SLN detection comparable to conventional radioactive and blue dye tracking(19). 

However it was limited due to no direct visual access to the surgical field. The advantages of 

OST HMDs are well accepted(22) and its ability to provide direct visual access to the surgical 

field is critical for open surgery. However very limited work has been done on using OST HMDs 

for surgical navigation(28) due to technical challenges involved(22, 23). We reported the first 
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OST HMD developed specifically for fluorescence-guided surgery(20) and this is the first report 

to the best of our knowledge of clinical evaluation of an OST HMD based system for 

fluorescence-guided SLN mapping and cancer surgery. Our current study demonstrates that the 

OST GAINS, by providing direct visual access to the surgical field with option of projected 

fluorescence information significantly improves the usability of the system. The see-through 

feature allows direct visualization with the provision of fluorescence information whenever 

needed. In one patient the OST GAINS was used by the surgeon throughout the partial 

mastectomy using the direct visual access, while during the SLN biopsy the fluorescence 

projection was turned on as and when requested by the surgeon. The surgeon had the option of 

having the grayscale fluorescence, pseducolored fluorescence (blue through red color indicating 

low through highest NIR fluorescence intensity) or superimposed pseudcolored fluorescence-

color images to be projected (Fig. 47). All surgeries were done with OR surgical lights on, which 

did not put major hindrance to the NIR imaging, unlike other FGS systems that require to turn 

off the surgical light. This allowed seamless integration of FGS in to the regular surgical 

workflow.  

 



189 

 

 

Figure 47: Fluorescence-guided SLN visualization during. a Color image of excised SLN. b Grayscale NIR 

image showing areas of high fluorescence in the SLN. c Pseudocolored fluorescence image of the SLN. d 

Superimposed color-fluorescence image at 40% opacity of projected fluorescence. 

 

A major issue in FGS is complex image adjustment based on surgeon feedback, without 

disrupting the surgical workflow or compromising sterility. Solutions like foot pedals cannot 

implement complex image adjustments, while voice commands may have difficulty operating in 

the high noise atmosphere in the operating room. In our system the surgeon’s view is mirrored 

on the remote laptop and a custom graphical user interface (GUI) allowed real-time 

modifications of imaging parameters by a member of the surgical team to incorporate surgeon 

feedback immediately, without stopping the surgery, while ensuring highest quality user 

experience. Camera focus was adjusted to compensate for large head movements and to ensure 

the image was always in focus. Contrast of the projected fluorescence was adjusted as requested 
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by the surgeon to ensure optimal visibility of fluorescence information on the HMD. 

Additionally the built-in fail-safe of the see-through feature can allow surgeons to carry-on 

regular surgery in case of system failure.  

The OST GAINS was able to guide complete tumor resection in a mouse model of tumor. It also 

allowed non-invasive transcutaneous lymphatic tracking in pigs and allowed identification of the 

sentinel lymph node with fluorescence guidance only. Recent studies have reported the 

feasibility of using ICG for SLN mapping and our results agree well with these studies. Our 

results indicate that it is feasible to detect SLNs with the same sensitivity as radioactive tracking. 

Though, our patient data set is very small and we would need a larger patient study to support 

our statement, our initial findings are very encouraging.  

The system currently performs final image processing on the laptop, tethering the surgeon to the 

cart carrying the laptop using a wired connection. Additionally, a mismatch in the perceived 

distance of the projected fluorescence and actual object distance as seen by the surgeon may 

cause parallax. Efforts are currently under way to ensure complete onboard image processing, 

with wirelsess data and GUI transmission to the laptop as well as to ensure minimal parallax by 

remote adjustment of perceived distance of projected fluorescence images.  
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Chapter 5: Tumor margin assessment 
This chapter is based on a pending article: S. B. Mondal, J. Margenthaler, S. Gao, N. Zhu, G. P. 

Sudlow, K. Liang, W. J. Akers, V. Gruev, R. Liang, S. Achilefu. Real-time fluorescence image 

guidance for tumor margin assessment in a spontaneous mouse model of breast cancer and 

clinical feasibility in breast cancer patients. To be submitted. I designed the animal experiments, 

conducted them and analyzed the animal data. I assisted the surgeon during clinical procedure, 

collected the clinical data and analyzed them. I wrote the manuscript. 
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5.1 Abstract 

5.1.1 Background 

Intraoperative near-infrared (NIR) fluorescence imaging can potentially provide accurate 

assessment of tumor margin status in breast conserving surgery and improve outcomes. 

However, it is not widely used due to limitations of NIR FGS systems.  

5.1.2 Methods 

We evaluated in vivo an optical see-through (OST) goggle augmented imaging and navigation 

system (GAINS) which had a minimal hardware footprint and allowed direct visual access to the 

surgical field while projecting fluorescence information. For pre-clinical validation, five PyMT-

MMTV mice were used that developed spontaneous breast cancer all along their mammary fat 

pad. These mice were injected with a tumor targeted NIR contrast agent LS301 (60µM, 100µl) 

and subjected to fluorescence-guided surgery, 24 hour post-injection. Three consecutive breast 

cancer patients scheduled to undergo partial mastectomy received 5ml, 5mg/ml ICG 

retroareolarly. Standard-of-care partial mastectomy was done followed by GAINS-guided 

fluorescence imaging of the tumor tissue and the tumor cavity to predict tumor margin status. 

5.1.3 Results 

The OST GAINS allowed direct visual access to the surgical bed while projecting fluorescence 

information directly to surgeon’s eyes. A total of a total of 97 tumors were resected with a mean 

of 19.4 ± 7.53 tumors per mouse. GAINS identified 89.61 ± 9.27% of the tumors with a 

sensitivity of 86.91 ± 11.11% and specificity of 80.0 ± 26.67%. Visual detection identified 78.08 

± 8.16% of the tumors with a sensitivity of 68.84.48 ± 9.57% and specificity of 100 ± 0%. The 

percentage of tumors detected and tumor detection sensitivity by GAINS were significantly 

higher than visual only method (P=0.00166, P=0.0022). A combined GAINS-visual approach 
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identified 93.52 ± 7.33 % of the tumors with a sensitivity of 92.36 ± 7.4% and specificity of 80.0 

± 26.67%. GAINS accurately predicted margin status in all three patients, including clear 

margins in patients 1 and 2 and positive margins in patient 3. GAINS predicted margin status 

were confirmed by the final pathology report. 

5.1.4 Conclusions 

Combined GAINS and visual identification provide best guidance for tumor and margin 

detection in spontaneous mouse model of breast cancer and it is feasible to use the GAINS for 

intraoperative margin assessment using ICG in human breast cancer patients.  

 

5.2 Introduction 
Breast cancer is the most common cancer in women and the leading cause of cancer death in 

women in the US(1). For early stage breast cancer, breast conserving surgery (BCS) is the 

standard-of-care because it has the same survival advantage as compared to the radical 

mastectomy. However in BCS a major challenge is the identification of tumor margins and 

ensure a negative margin resection(2). Margin status is an important factor for preventing local 

recurrence. Achieving negative margin resection can lead to a two-fold decrease in ipsilateral 

tumor recurrence(3). However, surgeons rely on visual inspection and palpation to distinguish 

cancer from healthy tissue during BCS. This often leads to subjective choice of surgical margins. 

Approximately 25% of women undergoing BCS require repeat surgery due to incomplete 

surgical resection of tumors in the initial BCS surgery, leading to additional costs, anxiety, 

complications and cosmetic concerns(3). However, significant variability exist based on the 

facility where the surgery is performed, surgeon experience, and patient’s age and tumor 

characteristics(4-6).  
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Intraoperative margin assessment in BCS may reduce the recall rate and improve surgical 

outcomes. There are several methods currently available for intraoperative margin assessment in 

breast cancer. Frozen section analysis and imprint cytology are time consuming, have variable 

accuracy depending on the institution and may not be available everywhere(7-10). Introperative 

ulatrsound has faster imaging but has poor identification of ductal carcinoma in situ(10). 

Specimen radiography has good sensitivity but is expensive and adds time to the surgery and 

may not be as sensitive as frozen section analysis(11). The margin probe device is based on 

radiofrequency spectroscopy that can analyses the lumpectomy sample to ascertain presence or 

absence of cancer(12, 13). Several technologies including spectroscopy, X-ray, and high-

frequency ultrasound are being investigated(9, 14). 

Due to cost effective and compact hardware design, there has been great interest in optical 

methods of intraoperative margin assessment. For example spectroscopic methods have been 

used in the clinic with good outcomes. OCT has been shown to be able to provide high rates of 

margin prediction. Of particular interest is fluorescence based methods due to availability of 

sensitive imaging systems and various tumor specific contrast agents, at least for preclinical 

studies. However these systems are often not real-time, provide image information in a remote 

monitor or disrupt the normal surgical workflow. Some of these instruments also have a large 

hardware footprint. As a result it is often difficult to integrate them into routine surgical 

procedures. 

We have developed a compact wearable goggle augmented imaging and navigation system that 

can allows real-time intraoperative fluorescence-guided surgery(15). It sensitively captures color 

and NIR images from the surgical field and transmits a superimposed color-NIR image directly 

to the surgeon’s eyes via a see-through head-mounted display. This allows direct visual access to 
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the surgical field, while providing fluorescence information for image guidance to surgeons. We 

have previously demonstrated that this system is capable of sensitive tumor detection in a 

metastatic mouse model of cancer and has slightly better sensitivity to radioactive and blue dye 

tracking for SLN detection in human melanoma and breast cancer patients. In this study we 

evaluated the ability of the GAINS prototype to assess surgical margins in a preclinical 

spontaneous mouse model of breast cancer using a tumor targeted NIR contrast agent. We also 

evaluated the GAINS for tumor margin assessment in breast cancer patients using ICG contrast. 

5.3 Methods 

5.3.1 Fluorescence-Guided Surgery 

Real-time intraoperative fluorescence-guided surgery was performed using the OST GAINS 

prototype as described earlier(16). Briefly, it uses a focus-adjustable single camera to capture 

color reflectance and NIR fluorescence images, which are processed to generate an accurately 

aligned color-NIR superimposed image. The color, NIR or superimposed images are directly 

projected to the user’s eyes via a custom OST HMD. This OST HMD allows direct visual access 

to the surgical field, with contrast- and transparency-adjusted projection of augmented 

fluorescence information. NIR illumination was provided by a 780 nm, 0.8 W laser (BW Tek), 

while white light illumination is provided by a surgical light covered with a short-pass film 

filter(17). The optical head for the NIR laser was mounted on a flexible neck, allowing easy 

movement to point it on the surgical bed as necessary. Adjusting the laser direction took 1-3 

minutes. However this was usually done when the surgeon was using the gamma probe to locate 

the SLN, since the NIR channel even if it is not being visibly projected to the surgeon’s HMD, 

can be seen on the laptop as it is continuously being recorded. So light adjustment was done 

simultaneously with regular surgical processes and did not add significant time to the overall 
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surgery. The pointing red laser on top of the NIR laser optics allowed us to visible know where 

the invisible NIR laser was pointing. The camera mounted HMD (worn on head) and pre-

processing module (carried in a wais pouch under the sterile gown) constitute the wearable part 

of the system. The laptop used for final processing (carried on a cart) and illumination modules 

form separate standalone parts of the system. 

5.3.2 Animal Studies 

All animal studies were approved by the Washington University Animal Studies Committee. For 

preclinical tumor margin assessment and tumor detection, five PyMT-MMTV mice were 

used(18, 19). Once the largest tumors were 1-2 cm large they were injected with were injected 

with a tumor-targeted NIR contrast agent LS301(15) (60 µl, 100µl) via tail vein injection. At 24 

h post-injection, the mice were anaesthetized using 2% isolfluorane and OST GAINS prototype 

was used to visualize NIR fluorescence from the tumors and guide surgical resection along with 

visual inspection. After debulking the tumor bed was surveyed for presence of residual 

fluorescence and all suspected tumor tissue were resected. The animals were sacked by cervical 

dislocation, its organs were harvested and resected tissue were preserved for frozen section 

histopathologic analysis. The tissue resected was saved in four categories to signify tissue that 

was identified as cancerous by both GAINS and visual inspection (g+ v+), by GAINS and not 

visually (g+ v-), not by GAINS, but identified visually as cancerous (g- v+) and tissue identified 

as non-cancerous both by GAINS and visual inspection (g- v-). They were preserved for 

histologic evaluation. 

5.3.3 Pilot Human Study 

This pilot human study to evaluate clinical feasibility of using the GAINS prototype for 

intraoperative inspection of lumpectomy samples and survey of the BCS cavity was approved by 
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the Institutional Review Board at Washington University and was performed in accordance with 

the approved ethical guidelines. The study was registered on clinicaltrials.gov website 

(NCT02316795). Women, 18 years or older with newly diagnosed clinically node-negative 

breast cancer, negative nodal basin clinical exam and scheduled to undergo partial mastectomy 

with SLN biopsy were eligible for the study. Exclusion criteria were contraindication to surgery, 

receiving any investigational agents, history of allergic reaction to iodine, seafood and ICG, 

presence of uncontrolled inter-current illness, pregnant or breastfeeding. All patients gave 

informed consent for this HIPAA-compliant study and data was deidentified.  

Patients received 99mTc-sulfur colloid (834 µCi) 2- 3 hours before surgery for needle localization 

and then brought to the operating room. Patients were injected with ICG (5mg/mL; 5 mL) in the 

retroareolar breast, followed by site massage for 5 min. About 10-15 min after injection, the 

surgeon performed standard-of-care partial mastectomy and the tumor mass was removed with a 

rim of grossly normal tissue. The excised tumor tissue was marked with sutures to indicate 

orientation and examined for fluorescence using the GAINS before submission for standard-of-

care histologic evaluation. The GAINS was then used to survey the tumor cavity for fluorescence 

imaging. The surgeon wore the waist pouch carrying the image pre-processing module for the 

OST GAINS under the sterile gown. The camera mounted HMD was fitted onto the surgeon’s 

head and connections to the camera, laptop, HMD and power sources were established without 

compromising the sterile field. In all cases, the GAINS was operated at 24p fps with a 40-

millisecond acquisition time. NIR-white light illumination during system usage was provided by 

our illumination module. A remote laptop used for final image processing, mirrored the 

surgeon’s view. The camera focus, projected fluorescence contrast and transparency of 
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pseudocolored fluorescence overlay was adjusted using the laptop based on surgeon’s verbal 

feedback to ensure optimal viewing experience.  

5.3.4 Statistical Analysis 

Statistical analysis was performed using OriginPro8 (OriginLab Corp., Northampton, MA). 

Signal-to-background ratios (SBRs), sensitivities, specificities and percentages were expressed 

as mean and standard deviation. Paired t-tests were used to compare GAINS, visual and 

combined GAINS and visual methods for guiding surgery in the mouse model. P < 0.05 were 

considered statistically significant. 

5.4 Results 

5.4.1 Tumor Resection in Mice 

GAINS guided complete tumor resection in all five PyMT-MMTV mice. Based on histologic 

confirmation (Fig. 52), a total of 97 tumors were resected with a mean of 19.4 ± 7.53 tumors per 

mouse. Using LS301 fluorescence, GAINS identified 89.61 ± 9.27% of the tumors (Fig 48, 49) 

with a sensitivity of 86.91 ± 11.11% and specificity of 80.0 ± 26.67%. Visual detection identified 

78.08 ± 8.16% of the tumors with a sensitivity of 68.84.48 ± 9.57% and specificity of 100 ± 0%.  

The percentage of tumors detected by GAINS was significantly higher than visual only method 

(P=0.00166). The GAINS tumor detection sensitivity was significantly higher than visual only 

tumor detection sensitivity (P=0.0022). However no statistically significant difference was found 

between the tumor detection specificities of the two methods (P=0.11). A combined GAINS and 

visual identification method was defined as tissue being classified as tumor when either GAINS 

or visual identification predicted tumor and tissue to be classified as normal only when both 

GAINS and visual identification predicted no cancer. Based on this definition, combined 

GAINS-visual approach identified 93.52 ± 7.33 % of the tumors with a sensitivity of 92.36 ± 
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7.4% and specificity of 80.0 ± 26.67%. The percentage of tumor detection using the combined 

method was significantly higher compared to visual only identification (P=0.00349), with no 

significant difference found compared to GAINS tumor detection percentage (P=0.227). The 

detection sensitivity for the combined method was significantly higher than the visual only 

method (P=0.00611), but significant difference was found in the detection specificities between 

the two methods (P=0.108). There were no statistically significant differences between the 

combined method and GAINS method for tumor detection sensitivity (P=0.20311) and 

specificity (P=1). 

 

 

Figure 48: Tumor detection in PyMT spontaneous mouse model of breast cancer by NIR-fluorescence via the 

GAINS prototype. 
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Figure 49: After image-guided tumor resection 

 

 

Figure 50: Tumors detection in PyMT  mouse showing a) color image, b) grayscale fluorescence image, c) 

pseudocolored fluorescence image and d) color-NIR overlay image. 



206 

 

 

Figure 51: Tumors removed from PyMT  mouse showing a) color image, b) grayscale fluorescence image, c) 

pseudocolored fluorescence image and d) color-NIR overlay image. 
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Figure 52: Histology image from a tumor removed from the PyMT mouse showing tumor boundary with 

bordering muscle tissue. 

 

5.4.2 Tumor Margin Assessment in Human Breast Cancer Patients 

The study aimed to study to evaluate clinical feasibility of the GAINS prototype in imaging 

lumpectomy samples and inspecting tumor cavities to assess tumor margin status. Three 

consecutive patients underwent standard-of-care partial mastectomy with wire localization with 

the addition of OST GAINS guided tumor tissue (Fig. 53) and tumor cavity visualization using 

ICG fluorescence. The patient and tumor characteristics are listed in Table 1. The fluorescence 

information was projected as and when the surgeon requested, for visualizing the SLN. No 

adverse reactions associated with the use of ICG or the OST GAINS prototype occurred. No 

postoperative complications of the SLN procedure were observed. 
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GAINS accurately predicted margin status in all three patients (Table 2). Based on tumor tissue 

assessment and cavity imaging it successfully predicted that margins were clear in patients 1 and 

2. More importantly based on high fluorescence from the lumpectomy sample surface (Fig. 53) 

and the edges of the lumpectomy cavity (Fig. 54) in the third patient, GAINS predicted presence 

of residual tumor. This prediction of positive margin status was verified through final pathology 

report. 

 

 

Figure 53: Lumpectomy tissue from patient 3 showing high fluorescence using the GAINS prototype 

 

 

Figure 54: Tumor cavity of patient 3 showing high fluorescence. 
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Figure 55: Removed lumpectomy tissue from patient 3 showing a) color image, b) grayscale fluorescence 

image, c) pseudocolored fluorescence image and d) color-NIR overlay image. 
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Figure 56: Tumor cavity of patient 3 with high residual fluorescence, showing a) color image, b) grayscale 

fluorescence image, c) pseudocolored fluorescence image and d) color-NIR overlay image. 

 

5.5 Discussion 
NIR FGS for intraoperative cancer imaging has emerged as an important tool recently. It is 

currently limited by the standalone or handheld FGS systems that are not able to match the 

camera and user field of view, are bulky and show the information in a remote display. The 

combination of these factors disrupt the normal surgical workflow and has led to minimal 

adaptation of FGS in clinics beyond research initiatives and small clinical trials. Disruptive 

information display may be addressed by using a HMD(20, 21). There has been a lot of interest 

in doing surgical planning and navigation using HMDs especially in the neurosurgical 
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community(22). It has been shown that a VST HMD can improve surgical performance in 

endoscopic surgeons(23-25). In our previous work we applied a VST HMD to cancer surgery 

and demonstrated that the video see-through GAINS has very sensitive SLN detection 

comparable to conventional radioactive and blue dye tracking(15). However it was limited due to 

no direct visual access to the surgical field. The advantages of OST HMDs are well accepted(20) 

and its ability to provide direct visual access to the surgical field is critical for open surgery. 

However very limited work has been done on using OST HMDs for surgical navigation(26) due 

to technical challenges involved(20, 21). We reported the first OST HMD developed specifically 

for fluorescence-guided surgery(16) and this is the first report to the best of our knowledge of 

clinical evaluation of an OST HMD based system for fluorescence-guided tumor imaging and 

margin assessment during breast conserving surgery. Our current study demonstrates that the 

OST GAINS, by providing direct visual access to the surgical field with option of projected 

fluorescence information significantly improves the usability of the system. The see-through 

feature allows direct visualization with the provision of fluorescence information whenever 

needed. In one patient the OST GAINS was able to successfully predict presence of positive 

surgical margins which was verified by the final pathology report. The surgeon had the option of 

having the grayscale fluorescence, pseducolored fluorescence (blue through red color indicating 

low through highest NIR fluorescence intensity) or superimposed pseudcolored fluorescence-

color images to be projected. All surgeries were done with OR surgical lights on, which did not 

put major hindrance to the NIR imaging, unlike other FGS systems that require to turn off the 

surgical light. This allowed seamless integration of FGS in to the regular surgical workflow.  

A major issue in FGS is complex image adjustment based on surgeon feedback, without 

disrupting the surgical workflow or compromising sterility. Solutions like foot pedals cannot 
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implement complex image adjustments, while voice commands may have difficulty operating in 

the high noise atmosphere in the operating room. In our system the surgeon’s view is mirrored 

on the remote laptop and a custom graphical user interface (GUI) allowed real-time 

modifications of imaging parameters by a member of the surgical team to incorporate surgeon 

feedback immediately, without stopping the surgery, while ensuring highest quality user 

experience. Camera focus was adjusted to compensate for large head movements and to ensure 

the image was always in focus. Contrast of the projected fluorescence was adjusted as requested 

by the surgeon to ensure optimal visibility of fluorescence information on the HMD. 

Additionally the built-in fail-safe of the see-through feature can allow surgeons to carry-on 

regular surgery in case of system failure.  

The OST GAINS was able to guide complete tumor resection in a spontaneous mouse model of 

breast cancer. Though, our patient data set is very small and we would need a larger patient study 

to support our statement, our initial findings are very encouraging.  

The system currently performs final image processing on the laptop, tethering the surgeon to the 

cart carrying the laptop using a wired connection. Additionally, a mismatch in the perceived 

distance of the projected fluorescence and actual object distance as seen by the surgeon may 

cause parallax. Efforts are currently under way to ensure complete onboard image processing, 

with wirelsess data and GUI transmission to the laptop as well as to ensure minimal parallax by 

remote adjustment of perceived distance of projected fluorescence images.  
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Chapter 6: Future Directions 
This chapter is based on the preliminary results from ongoing work and envisioned future 

directions of this research. I designed the studies, performed the experiments, analyzed the 

results and documented the studies. 
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6.1 Introduction 
We plan to further improve our work by addressing various scopes for improvement that we 

have identified through the course of this research. We have also identified several research 

questions that we want to investigate next. The following sections elaborate on potential 

improvements that we envision and the new applications for this research. We have already 

worked on some of these areas and our preliminary findings are presented here, while other 

sections presented here are only at a concept stage.  

6.2 Improved prototype design 
The current video-see through and optical see-through GAINS prototypes are very functional and 

robust systems. However, we believe we can further improve performance and ergonomics of the 

system. One major area of improvement is the head-mounted display. We want to make less 

bulky than it currently is. This will allow it to be used for long durations without causing 

discomfort to the surgeon. We have identified a large field of view, HMD with high 

transparency, that is only 30 gm in weight and we will be using it to develop the next generation 

of the GAINS prototype (Fig. 57). 

The current OST-HMD has a fixed perceived distance of the projected fluorescence. Also since 

the surgeon’s eyes can move independent of the head, the projected image does not always 

maximally cover the field of view of the user. To address these issues we want to add remotely 

controllable movability to the mirror used to project the fluorescence information to the user’s 

eyes, to change the perceived distance of the projected fluorescence information and thus reduce 

parallax errors. We also want to integrate LEDs on the HMD to direct the user’s gaze to the area 

where we can ensure maximal coverage of the user field of view by the projected fluorescence. 
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Figure 57: Future design of the GAINS integrated display and imaging module. 

 

Another major issue in the current prototype is that it relies on a laptop for final image 

processing. As a result the surgeon is tethered to the cart that carries the laptop. Additionally, the 

FPGA used for pre-processing and HMD video-adapter that are carried in a waist pouch by the 

surgeon, require power supply from a wall-charger. This prevents true freedom of movement for 

the surgeon, which can be critical in cases of perioperative complications, when the surgeon 

needs to move quickly and may need to reach the other side of the patient bed. To address this 

issue we have identified a mini-PC that can perform all image processing, and we plan to migrate 

to a completely battery powered operation. This will allow complete freedom of movement for 

the surgeon. The mini-PC will wirelessly communicate with a laptop in the operating room, 

which will allow access to the user interface for controlling imaging parameters, identical to 
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when having a wired connection. So we will be able to control all critical functions remotely 

without restricting the surgeon’s movement (Fig. 58). This should allow easier integration to the 

surgical workflow.  

 

 

Figure 58: Overview of proposed improved GAINS prototype 

 

6.3 Combined microscopic and macroscopic image 

guidance 
While the current GAINS modules have sub-mm resolution, we currently lack the ability to see 

cancer cell clusters of a few cells or single cells. This is particularly important in brain cancers, 

where it is critical to visualize the infiltrating edges of the cancer and it often involves very few 

cells. In order to achieve this goal we integrated a handheld fluorescence microscope (Dino-lite) 
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with single cell resolution to the GAINS, with the microscope output display on the head-

mounted display (Fig. 59). The microscope has a USB output and was run using the same PC.  

 

 

Figure 59: The Diono-lite hand-held microscope. 

  

The microscope used had an LED excitation at 630 nm and emission detection of 650 nm and 

beyond. Six balb/c mice were implanted with 4T1 luc tumors on their flanks, subcutaneously. 

The 4T1 Luc cells express the luciferase enzyme that can be used for bioluminescence imaging. 

These mice were injected with LS301 and LS789 (60 µM, 100 µl). LS789 has far red 

fluorescence, with absorbance peak at 675 nm and emission peak at 705 nm. The co-injection 

resulted in good contrast of both compounds in the mouse tumor (Fig. 60). At 24 hours post 

injection, these mice were injected with luciferin and fluorescence guided surgery was 

performed. Bioluminescence imaging was done to observe decrease in number of cancer cells. 

While fluorescence was able to guide tumor detection macroscopically, as debulking was done, 

the fluorescence signal decreased and the images became progressively noisy (Fig. 61). 
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However, the bioluminescence provided information about residual cancer and the handheld 

microscope was able to guide their resection (Fig. 62). Based on data from six mice, GAINS 

dinolite detected all of the tumors, whereas GAINS could not detect a few of them, which were 

below its detection capability due to the signal being very close to its noise floor (Table 12). 

Histologic assessment and further statistical analysis is currently underway. 

 

 

 

Figure 60: Compound localization in tumor with LS301 shown in the 800 channel and LS789 shown in the 

700 channel image for the same mouse. Image was captured using Pearl Imaging system (Licor Biosciences). 
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Figure 61: GAINS-guided surgery showing progressively noise images as more tissue is removed. In this 

case GAINS could not provide sufficient guidance beyond the 6th set of resection. 

 

 

Figure 62: Bioluminescence imaging showing residual tumor signal with progressive resections. The dinolite 

microscope was able to detect signal when GAINS images had become noisy. 
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Table 12: The number of tumors detected by GAINS, Dino-lite and bioluminescence methods from 

six mice. 



N = 6 mice GAINS Dinolite Bioluminescence 

Tumors sets 16 20 19 

 

6.4 Clinical translation of a targeted near-infrared contrast 

agent  
A major limitation of NIR FGS is the lack of a tumor targeted contrast agent that is approved for 

human usage. The only NIR contrast agent currently in the clinic is ICG. Though it has been 

used widely for clinical applications, its specificity for all types of tumors is widely variable and 

far from desirable. The contrast agent LS301 that we have developed in our lab is a promising 

contrast agent, because it is highly cancer selective and has been validated in a wide variety of 

cancer models in animals, including breast cancer, prostate cancer, colorectal cancer, ovarian 

cancer, brain cancer, multiple myeloma and skin cancer. Therefore we are very interested in 

clinical translation of LS301 to enable wide usability of this tumor-targeted dye in the clinic and 

other laboratories. Toward this effort we were able to determine the clinical formulation with 

albumin and dosage of the contrast agent to be 59 µg/kg in mice (Fig. 63). Based on this 

formulation the clinical dosage in canines was calculated to be 0.09 mg/kg for LS301-canine 

serum albumin formulation. A toxicity test with 100X clinical dosage in mice and 10X clinical 

dosage in dogs showed no harmful side-effects (Table 13). 
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Figure 63: High contrast with clinical formulation of LS301. 

 

 

Table 13: Toxicity assay results for LS301. 



Species Subjects Dosage Outcome 

Mice CD-1 IGS mice 

N= 40 male and 

female (drug) 

N= 20 male and 

female (control) 

5.9 mg/kg 

(100X) 

• No mortality was noted. 

• All animals survived until the 

planned sacrifice time points. 

• No clinical abnormalities were 

noted in any of the animals. 

• There were no hematology, clinical 

chemistry and mean organ weight 

differences between the treated and 

control groups 

Dogs 4-month-old female 

N= 3 

0.9 mg/kg 

(10X) 

• All subjects remained bright, alert 

and responsive with no abnormal 

behavior throughout the study. 

 

 

Based on these results we are currently doing a randomized clinical trial with canine cancer 

patients to test the efficacy of LS301 and GAINS for guiding cancer surgery. The study design is 

shown in Fig. 64. This will generate data for FDA application and approval of LS301 for human 

usage paving the way for targeted NIR FGS in human patients. 
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Figure 64: Overview of ongoing companion dog clinical trial to test LS301-GAINS guidance for cancer 

surgery. 
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Chapter 7: Conclusions 
Surgery remains a critical option for cancer treatment. With widespread usage of cancer 

screening, more patients are diagnosed with early cancer. This has increased the importance of 

cancer surgery, as surgery is a curative option for early stage cancer, while minimizing the 

need for radiation or chemotherapy. However, pre-operative imaging modalities cannot 

provide real-time feedback to surgeons, and as a result surgeons have to still rely on their 

vision and touch to distinguish cancer from healthy tissue intraoperatively. This often leads to 

positive surgical margins that necessitate repeat surgery to avoid the risk of cancer recurrence. 

This highlights the need for intraoperative image guidance. Adapting preoperative imaging 

modalities like CT, PET and MRI is impractical due to their large bulk, cost and specialized 

operation. This has increased interest in optical methods due to high-resolution imaging while 

using simpler hardware that can be miniaturized (Chapter 1, 2). There is particular interest in 

fluorescence-guided surgery (FGS), especially by using near-infrared (NIR) fluorescence 

which has low tissue absorbance and allows deeper imaging (Chapter 1). We have developed 

a set of requirements for an ideal image guidance system and detailed the design 

considerations for such a system. While research in NIR-FGS has progressed rapidly, use of 

various optical imaging methods for image guidance during surgery or diagnosis of diseases 

has dramatically increased (Chapter 2). The time when more and more optical imaging 

systems will be integrated into routine clinical practice is not far. We have discussed in detail 

some of the emerging optical imaging systems currently in the clinic or undergoing 

clinical investigation and also highlighted some of the barriers to routine clinical usage of 

optical imaging systems. 
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Existing NIR-FGS systems are still bulky, have disruptive information display and cannot 

match the field of view (FOV) of the user with the camera. Additionally they require the 

surgical lights to be switched-off while performing FGS. This research aimed to address the 

limitations of existing NIR FGS systems. To that effect we were able to developed a wearable 

goggle augmented imaging and navigation system (GAINS) that can provide accurate 

intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting 

normal surgical workflow (Chapter 3). GAINS projects both near-infrared fluorescence from 

tumors and the natural color images of tissue onto a head mounted display without latency. 

Aided by tumor-targeted contrast agent LS301, the system detected tumors in subcutaneous and 

metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ±5%). 

Human pilot studies in breast cancer and melanoma patients using near-infrared dye ICG show 

that the GAINS detected sentinel lymph nodes with 100% sensitivity. We were able to 

demonstrate that clinical use of the GAINS to guide tumor resection and sentinel lymph 

node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and 

improve accuracy of cancer staging. 

 Through our clinical study using the GAINS prototype to guide SLN visualization in 

human breast cancer and melanoma patients we gathered valuable feedback from surgeons that 

used the GAINS prototype. While surgeons liked the user experience from the prototype due to 

is ergonomic design and ease of integration into the surgical workflow, they helped us identify 

some limitations of the prototype. A major limiting factor was that the head-mounted display 

was video-see through and did not allow direct visual access to the surgical field. This limited 

the usage of the prototype for only visualization of the SLNs. Surgeons preferred to be able to 

directly see the tissue, while cutting and removing something. Another contributing factor to this 
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issue was that we were using our own white light illumination with the NIR tail filtered off, 

while keeping the surgical light switched-off. Given that surgeons are trained to see and evaluate 

tissue under the surgical lights, they preferred to have it on, while resecting tissue and making 

medical decisions. Additionally, the imaging module focal distance had to be changed manually. 

As a result, large head movements, such as when the surgeon wanted to get a closer look made 

the images go out of focus. 

 To address the limitations of the initial VST GAINS prototype we developed an 

optical see-through (OST) GAINS prototype that had autofocusing and autocontrast capability. 

Additionally, we developed an illumination module that used a NIR laser for fluorescence 

excitation and a film-filter to cut-off the surgical light NIR tail. We performed preclinical 

validation and clinical evaluation of the OST GAINS prototype and the combined NIR-white 

illumination module (Chapter 4). For pre-clinical validation, three mice with subcutaneous 

tumors were injected with a tumor targeted NIR contrast agent LS301 (60µM, 100µl) and 

subjected to fluorescence-guided surgery. Three 35-kg female Yorkshire pigs received 300 ul of 

5 mg/ml ICG, intradermally at their hind leg and lymphatics were tracked to the popliteal lymph 

node from the injection site. Four consecutive breast cancer patients scheduled to undergo partial 

mastectomy and SLN biopsy received 99mTc-sulfur and 5ml, 5mg/ml ICG retroareolarly. SLN 

biopsy was done using handheld gamma probe and OST GAINS enabled ICG imaging. The OST 

GAINS allowed direct visual access to the surgical bed while projecting fluorescence 

information directly to surgeon’s eyes. Using tumor targeted NIR contrast LS301, it guided 

complete tumor resection in the subcutaneous mouse model of cancer with a SBR of 1.45 ± 0.19. 

It non-invasively tracked lymphatics in pigs using ICG, with a SBR of 2.74 ± 1.74 and 

accurately identified 4 popliteal LNs in three pigs with a SBR of 3.19 ± 1.81. A total of 11 SLNs 
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were identified from 4 patients. Radioactive tracking SLN identified 9 (81.82%) SLNs with a 

detection sensitivity of 86.67± 0.27% and the OST GAINS identified 11 (100%) SLNs with a 

detection sensitivity of 100% and SBR of 2.14±0.83. There was no statistically significant 

difference in the detection sensitivities of the two methods (P=0.374). Using the combined NIR-

white illumination module, all surgeries were formed with the surgical lights on. We 

demonstrated that the see-through GAINS prototype is feasible for use in the operating 

room for NIR FGS for lymphatic tracking transcutaneously and SLN mapping in breast 

cancer patients, while keeping the surgical lights on. 

 A major motivating factor for the research was identification of small tumor nodules 

and assessment of tumor margins and we evaluated GAINS for detecting spontaneous mouse 

tumors and assessment of tumor margins in human breast cancers (Chapter 5). For pre-clinical 

validation, five PyMT-MMTV mice were used that developed spontaneous breast cancer all 

along their mammary fat pad. These mice were injected with a tumor targeted NIR contrast agent 

LS301 (60µM, 100µl) and subjected to fluorescence-guided surgery, 24 hour post-injection. 

Three consecutive breast cancer patients scheduled to undergo partial mastectomy received 5ml, 

5mg/ml ICG retroareolarly. Standard-of-care partial mastectomy was done followed by GAINS-

guided fluorescence imaging of the tumor tissue and the tumor cavity to predict tumor margin 

status. The OST GAINS allowed direct visual access to the surgical bed while projecting 

fluorescence information directly to surgeon’s eyes. A total of a total of 97 tumors were resected 

with a mean of 19.4 ± 7.53 tumors per mouse. GAINS identified 89.61 ± 9.27% of the tumors 

with a sensitivity of 86.91 ± 11.11% and specificity of 80.0 ± 26.67%. Visual detection identified 

78.08 ± 8.16% of the tumors with a sensitivity of 68.84.48 ± 9.57% and specificity of 100 ± 0%. 

The percentage of tumors detected and tumor detection sensitivity by GAINS were significantly 
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higher than visual only method (P=0.00166, P=0.0022). A combined GAINS-visual approach 

identified 93.52 ± 7.33 % of the tumors with a sensitivity of 92.36 ± 7.4% and specificity of 80.0 

± 26.67%. GAINS accurately predicted margin status in all three patients, including clear 

margins in patients 1 and 2 and positive margins in patient 3. GAINS predicted margin status 

were confirmed by the final pathology report. We demonstrated that combined GAINS and 

visual identification provide best guidance for tumor detection in spontaneous mouse 

model of breast cancer and it is feasible to use the GAINS for intraoperative margin 

assessment using ICG in human breast cancer patients.  

We are pursuing several future directions through ongoing work (Chapter 6). Based on our 

experience from animal studies and feedback from surgeons during our clinical studies, we have 

envisioned several design improvements. The improved GAINS prototype will be ergonomic 

and have complete on-board real-time image processing along with real-time wireless data 

transmission capabilities. Our current optical design allows only macroscopic image guidance. 

Microscopic resolution may broaden the scope for using GAINS for microsurgery such as brain 

cancer resections. Future GAINS prototypes will be able to switch between macroscopic and 

microscopic image guidance. The only NIR contrast agent currently approved for human usage 

is ICG which is not cancer targeted. We have developed a very cancer-specific NIR dye, LS301, 

which allowed GAINS to enable complete tumor resections in several animal models of cancer. 

We have demonstrated no toxicity for LS301 in detailed toxicity screenings and are applying for 

FDA approval for human usage of LS301 along with GAINS for surgical guidance. Expected 

regulatory approval of LS301 and GAINS will pave the way for their wide clinical adoption 

and routine clinical use of NIR-FGS.  
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