A Possible Role for the microRNA-276 Gene Duplication in Specifying Sex-Related Neuronal Functions

Nathan Pomper
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wuurd_vol12

Recommended Citation
https://openscholarship.wustl.edu/wuurd_vol12/157
A Possible Role for the microRNA-276 Gene Duplication in Specifying Sex-Related Neuronal Functions

Nathan Pomper

Mentor: Yehuda Ben-Shahar

MicroRNAs (miRNAs) are short, non-coding, pleiotropic RNAs, which play a role in post-transcriptional regulation of protein coding genes. Genomic data suggest that novel miRNA genes often evolve via genomic duplication events. However, the phenotypic significance of most miRNA gene duplications are still unknown. One example is the miR-276 gene, which is represented by a single copy in most arthropod genomes. However, a gene duplication found in Drosophila and other muscomorpha genomes (e.g., the house fly) has resulted in two miR-276 paralogs, an ancestral miR-276a and a derived miR-276b, which differ by only a single nucleotide. I tested the hypothesis that the miR-276 gene duplication plays a functional role via the regulation of novel genetic networks. To test the hypothesis, I utilized a combination of genetic, imaging, and behavioral approaches in Drosophila to determine whether the two miR-276 genes play independent roles in regulating neuronal and behavioral phenotypes. Insights gained from our studies have the potential to uncover an explanation for why some miRNA gene duplications have been retained in certain phylogenetic clades, and the role these duplications play in the emergence of novel phenotypes.