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ABSTRACT OF THE THESIS

Parallelization of dynamic programming recurrences in computational biology

by

Arpith Chacko Jacob

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2010

Research Advisor: Professor Jeremy Buhler

The rapid growth of biosequence databases over the last decade has led to a per-

formance bottleneck in the applications analyzing them. In particular, over the last

five years DNA sequencing capacity of next-generation sequencers has been doubling

every six months as costs have plummeted. The data produced by these sequencers

is overwhelming traditional compute systems. We believe that in the future com-

pute performance, not sequencing, will become the bottleneck in advancing genome

science.

In this work, we investigate novel computing platforms to accelerate dynamic pro-

gramming algorithms, which are popular in bioinformatics workloads. We study

algorithm-specific hardware architectures that exploit fine-grained parallelism in dy-

namic programming kernels using field-programmable gate arrays (FPGAs). We ad-

vocate a high-level synthesis approach, using the recurrence equation abstraction to

represent dynamic programming and polyhedral analysis to exploit parallelism.

ii



We suggest a novel technique within the polyhedral model to optimize for throughput

by pipelining independent computations on an array. This design technique improves

on the state of the art, which builds latency-optimal arrays. We also suggest a

method to dynamically switch between a family of designs using FPGA reconfigura-

tion to achieve a significant performance boost. We have used polyhedral methods

to parallelize the Nussinov RNA folding algorithm to build a family of accelerators

that can trade resources for parallelism and are between 15-130x faster than a modern

dual core CPU implementation. A Zuker RNA folding accelerator we built on a single

workstation with four Xilinx Virtex 4 FPGAs outperforms 198 3 GHz Intel Core 2

Duo processors. Furthermore, our design running on a single FPGA is an order of

magnitude faster than competing implementations on similar-generation FPGAs and

graphics processors.

Our work is a step toward the goal of automated synthesis of hardware accelerators

for dynamic programming algorithms.
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Unless the LORD builds the house,

its builders labor in vain.

Unless the LORD watches over the city,

the watchmen stand guard in vain.

In vain you rise early

and stay up late,

toiling for food to eat—

for He grants sleep to those He loves.

Psalm 127:1-2

He named it Ebenezer, saying,

“Thus far has the LORD helped us.”

1 Samuel 7:12b
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Chapter 1

Introduction

Dynamic programming (DP) is a computational technique based on the principle of

optimality [15], which states that the optimal solution to a subproblem is part of the

optimal solution to a larger problem. DP has been used to efficiently solve many

combinatorial optimization problems in polynomial space and time. This technique

has become widely used in fields such as control theory, operations research, finance,

computer vision, speech recognition, and computational biology.

Our domain of interest is computational biology, where DP is widely used to process

biosequence information. The recent arrival of high-throughput next-generation se-

quencing machines [134] allows researchers to generate millions of short sequence reads

in parallel at low cost. Next-generation sequencers have enabled researchers [106] to

conduct large-scale studies to detect mutations in genomes that determine phenotypes

and predict risk factors of an individual, detect antibiotic resistant pathogens [70] and

identify their integration sites in a host genome [159], and discover novel noncoding

RNAs [85]. Another major initiative aims to study the complex microbial community

that inhabit the human body [150] to understand how these organisms may regulate

the intake of nutrients by individuals (and hence their susceptibility to malnourish-

ment and obesity), drug metabolism, and immune response, and how they can even

cause behavioral and psychiatric disorders.

Fast computational analyses will play a critical, and we argue, a central role, in

enabling researchers realize this vision. In this dissertation we explore novel com-

pute architectures, high-level abstractions and efficient parallelization strategies to

accelerate DP algorithms used for bioinformatics analyses by one to two orders of

magnitude.
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1.1 Dynamic Programming in Computational Bio-

logy

The sequencing of the human genome has ushered in an era where computational

methods play a central role in understanding the molecular processes sustaining life.

The DP technique has seen use in computational biology since the early 1970s for

pairwise sequence comparison, multiple alignment and secondary structure predic-

tion [131]. In Fall 2010, a search for the phrase “dynamic programming” in the

journal of Bioinformatics, BMC Bioinformatics, and IEEE/ACM Transactions on

Computational Biology and Bioinformatics returned over 1400 articles.

Table 1.1 lists DP algorithms from the computational biology literature. It includes

25 algorithms classified under eight categories. Alignment using probabilistic [43]

and non-probabilistic [57] models is most popular and has been applied to numerous

biological problems. Hidden Markov models [73] have been applied to motif identifi-

cation [43] and gene prediction [24]. Parsing of hidden Markov models can be done

efficiently using DP. Stochastic Context-Free Grammars [129] offer a richer framework

to fold RNA and protein sequences to determine their most likely secondary structure.

Conditional Random Fields [92] are a new modeling technique introduced within the

last several years and look set to produce more accurate results on a number of these

biological problems. Most of the algorithms listed in the table represent a family

of solutions that have subtle but important variations depending on the biological

problem being solved.

Figure 1.1: A filter computes the score of inputs using a DP kernel and discards those
that do not cross a threshold. As a result, finding the score of the optimal solution
using DP is more important than the state path that leads to the solution.
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Table 1.1: A compilation of dynamic programming algorithms from computational
biology. A detailed description of these algorithms, including the time and space
growth functions, are in Appendix A. Legend for Accelerators: F - FPGA, G - GPU,
CB - IBM Cell broadband, S - SIMD extensions on a workstation, CL - Cluster of
workstations

Algorithm
Time Space

Accelerator Comments
Complexity Complexity

Alignment
Global/Local O(n2) O(n2) F, G, CB, S, CL n - sequence length.
Arbitrary Gaps O(n3) O(n2) CL

Profile HMMs
Full Viterbi O(nl2) O(nl) n - sequence length.
Full Forward O(nl2) O(nl) l - model length.
Plan7 Viterbi O(nl) O(nl) F, G, CB, S, CL
Plan7 Forward O(nl) O(nl)
Posterior-Viterbi O(nl) O(nl)
HMM-HMM Alignment O(l2) O(l2)
MSA-HMM Alignment O(nl) O(l)

Gene Prediction
GHMM Viterbi O(n3l2) O(nl) m,n - sequence length.
GHMM Forward O(n3l2) O(nl) l - model length.
GPHMM Viterbi O(mnl2d4) O(mnl) d - maximum length of
GPHMM Forward O(mnl2d4) O(mnl) observations in each state.
GeneWise O(mn) O(mn)

Secondary Structure
Nussinov O(n3) O(n2) F, CL n - sequence length.
Zuker O(n4) O(n2) CL w - window length.
Zuker and Lyngsø O(n3) O(n2) CL
PKNOTS O(n6) O(n4)
Rnall O(w3n) O(w3)

Simultaneous Sequence and Structural Alignment
Sankoff O(n6) O(n4) n - sequence length.
FOLDALIGN O(n4) O(n4)

Stochastic Context-Free Grammars
Inside/Outside O(l2n3) O(ln2) F m,n - sequence length.
CYK O(l2n3) O(ln2) F l - number of states in model.
Inside for Pair SCFGs O(n3m3) O(n2m2)

Conditional Random Fields
CRF-Forward O(nl2) O(nl) n - sequence length.
CRF-Viterbi O(nl2) O(nl) l - number of states in model.

Haplotyping Problem
MSR O(mn2) O(n) m - number of fragments.

n - number of SNP sites.
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DP kernels are often employed as filters, as illustrated in Figure 1.1. The filter may be

configured using one or more query parameters, such as a sequence or a probabilistic

model. A database of discrete inputs, such as sequences, are then streamed through

the kernel. The DP computation is applied to each input, and a score is computed;

those inputs that score above a threshold are reported for inspection by the user.

Filters often discard a majority of inputs in the database stream, which are too low-

scoring to cross the threshold of interest. As a consequence, it is more important to

be able to quickly compute the score of an optimal solution rather than the sequence

of decisions that lead to the optimal solution.

Some filters have no configuration parameters. For example, to identify novel microR-

NAs, one simply folds a stream of input sequences. In contrast, pairwise alignment

configures the filter with a query sequence and then streams a database of sequences

through. Furthermore, the filter may be repeatedly reconfigured with a new query,

and the computation repeated on the entire database. Here, the goal is to identify

query-database pairs that score above a threshold and may be of interest to the user.

In this work, we assume that the query set is always large enough so that the time

and space complexity of filters depend on the size of both the query and the database.

We will henceforth refer to all filters as search applications.

Search applications are useful for quickly identifying a small subset of sequences that

can then be studied using time-consuming, more manual analyses. For example,

we used NCBI BLAST [7] to compare a virus sequence against the NR nucleotide

database containing 14,332,765 sequences. The search completed in tens of seconds

and returned under 1934 matching sequences (< 0.14% of the database) sorted by

the statistical significance of each match.

One way of accelerating search applications is to use heuristics to approximate the

DP computation. Examples include NCBI BLAST [7] and HMMERHEAD [120] to

accelerate pairwise sequence alignment and motif finding respectively. These appli-

cations use a variety of computationally inexpensive kernels to discard a majority of

inputs before applying expensive DP. The design of heuristics is beyond the scope

of this work—we look to accelerate the full DP computation. Nevertheless, applica-

tions that use heuristics often employ a filtering pipeline consisting of progressively
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more computationally expensive DP kernels, which account for a significant fraction

of program execution time.

1.2 A Bottleneck in Computational Biology Anal-

ysis
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Figure 1.2: The growth of biosequence databases is straining computational analysis
pipelines.

An explosion of sequence information over the last decades has led to a computational

bottleneck in the DP-based applications analyzing them. DNA and protein databases

are growing in size as new organisms and environmental samples are sequenced. Fig-

ure 1.2 shows the sustained growth of popular DNA and protein databases over the

last decade. Moreover, as listed in Table 1.1, the DP algorithms that operate on this

data are compute-bound and frequently run in time quadratic or worse in the input

size.

Biologists have relied on advances in integrated circuit technology to keep pace with

the increasing computational demands of their work. Over the past four decades the

number of transistors per unit area has doubled every two years, a phenomenon re-

ferred to as Moore’s Law. Microprocessor vendors have in turn been able to achieve a

twofold increase in CPU performance every 18 months (we will henceforth refer to the
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doubling of CPU performance as Moore’s Law). Underwood [151] notes that between

1998 and 2003 clock speed improvement yielded a 12× increase in CPU performance

compared to only a 4× improvement due to architectural enhancements. Clock speed

increase has been the primary contributor to an essentially “free” performance boost

for computational biology applications.

Today, however, the increase in the performance of modern processors has slowed

down due to three reasons. First, performance may be improved by pipelining func-

tional units in the processor core. Unfortunately, beyond a certain pipeline depth—

already exceeded on modern processors—the pipeline control overhead negates any

performance benefit, and circuit design becomes significantly more complex. Second,

typical sequential instruction streams have limited usable parallelism, restricting the

ability of superscalar processors to fully exploit concurrency. The third and most

important reason, though, is that with increasing transistor density and higher clock

speeds, cooling the processor without exotic and expensive mechanisms becomes in-

creasingly difficult. There has been a trend away from high clock speeds in recent

years, which is forcing scientists to reconsider their reliance on sequential general-

purpose processors for high-speed sequence analysis.

To illustrate this problem with a concrete example, we analyzed the results of running

the SPEC CPU2006 benchmark [5] on general-purpose workstations. The benchmark

suite is designed to measure compute-intensive integer and floating-point performance

on a range of publicly available systems to gauge the capabilities of the processor,

memory, and compiler. Tests are performed by hardware vendors and reported on

the SPEC website for analysis by researchers.

For the purposes of our discussion, we analyzed the performance of one of the pro-

grams in the integer benchmarks, HMMER2 [41], a popular profile-HMM bioinfor-

matics search tool. A run of the benchmark compares a hidden Markov model repre-

senting a protein motif against the Swiss-Prot protein database version 41, released

in February 2003. From other work [35] we know that HMMER2’s runtime is domi-

nated by the Viterbi DP algorithm; HMMER2 therefore closely resembles the kinds

of applications that are of interest in this work.

The results we have accumulated are from tests performed by vendors on state-of-

the-art systems. The performance we report for each system has been normalized to
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that of a 296 MHz UltraSPARC II reference CPU. We limit our analysis to single-chip

systems, where a single chip is placed in one socket of a motherboard. A chip in turn

may have multiple cores, and each core may have one or more hardware threads.
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(a) Plot of processor frequency (MHz) of systems running the SPEC CPU2006 benchmark as a
function of hardware availability dates.
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(b) Plot of speed of a comparison of a single query HMM against the Swiss-Prot database, normalized
to an UltraSPARC CPU, as a function of hardware availability dates. The y axis is in log scale.

Figure 1.3: The two graphs plot historical trends of processor frequency and
HMMER2 speed improvement. Only single chip (socket) systems from SPEC
CPU2006 are included; however, each chip may have multiple cores.

Figure 1.3a plots processor frequency in MHz as a function of the hardware availability

date. Over the last five years, processor frequency has remained steady, and even

dropped marginally, to settle between 2 and 3 GHz. In Figure 1.3b we plot the speed of

a HMMER2 comparison of the query HMM against Swiss-Prot version 41. The speed

is the inverse of the time to sequentially compare a single query against every protein

sequence in the Swiss-Prot database and is a measure of single core performance.
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After initially tracking Moore’s law until 2006, speed is now only doubling every 30

months. If these trends hold, clearly the time to compare a query to a database on

one core will decrease rather slowly in the future.
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Figure 1.4: HMMER2 throughput measured on various multicore workstations using
Swiss-Prot version 41 as the database. This is a measure of performance assuming
that the sequence database does not grow in size.

Fortunately, many search applications in computational biology, including HMMER2,

are embarrassingly parallel ; we can easily parallelize across all cores on a single chip by

simultaneously executing multiple query-database comparisons, which are completely

independent of each other. Thus, in this environment throughput (rate) becomes a

more important metric than speed. Figure 1.4 plots this throughput metric measured

in jobs per second, normalized to the reference machine, as a function of hardware

availability dates. As more transistors are packed into the same area, and processor

manufacturers place multiple cores in a single chip, HMMER2 throughput is seen

doubling every 18 months over the last five years.

This trend at first glance seems heartening—assuming we can continue to double the

number of cores per chip every 18 months, and provide sufficient memory bandwidth

to each core. However, an important consideration not yet taken into account is the

growth of biosequence databases. The HMMER2 speed and throughput measure-

ments in Figures 1.3 and 1.4 assume the Swiss-Prot database size remains fixed—we

have already shown this to not be the case in Figure 1.2b. Figure 1.5 shows the

throughput of HMMER2 adjusted for growth in the Swiss-Prot database, which is

now only doubling every 30 months. Another way to interpret the same data is as
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Figure 1.5: HMMER2 throughput adjusted for growth of the Swiss-Prot database.
Throughput is now seen to be doubling only every 30 months.

follows. Suppose an institution buys a state-of-the-art multicore workstation (or clus-

ter) in January 2006 that simply satisfies their compute requirements. To keep up

with the growth of Swiss-Prot, they would have had to upgrade thrice in the span of

five years simply to maintain throughput.
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Figure 1.6: The graph plots bases sequenced per unit cost as a function of time.
We draw two important conclusions: a) sequencing costs are falling rapidly, while
compute performance is only tracking Moore’s law, and b) a 20× improvement in
bases sequenced per unit cost formed a chasm between the pre- and post-NGS eras
that is yet to be bridged by advances in compute performance. Cost for sequencing
was made available by Stein [140].

One of the determining factors in the growth of these databases is the cost of DNA

sequencing. Figure 1.6 plots this cost over the last decade, expressed as the number
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of bases sequenced per dollar. These costs are taken from Stein [140], who collated

them from vendor press releases, catalogs, and websites. They are not adjusted for

inflation, nor are overhead, depreciation, or personnel costs included.

Before 2005, advances in Sanger sequencing technology, which was used to sequence

entire genomes and was primarily responsible for the growth of Swiss-Prot, doubled

the number of bases sequenced per dollar every 19 months. In other words, sequenc-

ing costs halved in price every 19 months. More strikingly, starting in 2005 there

was a marked expansion in DNA sequencing with the arrival of next-generation se-

quencers (NGS) [134]. NGS allows high-throughput sequencing at a fraction of the

cost of traditional Sanger sequencing and enabled applications such as resequencing

of genomes and metagenomics, which studies the genomes of mixtures of microor-

ganisms in environments such as deep mines, ice cores, sea water, or the human gut.

Since the emergence of NGS, the number of bases that can be sequenced per dollar has

been doubling every six months as sequencing costs have plummeted (see Figure 1.6).

We expect this growth to continue in the near future (2-4 years) as companies push

toward the goal of a $1, 000 sequencing of a single human genome.

The drop in sequencing cost is reflected in the amount of DNA sequence available in

public collections post-NGS, for example in NCBI’s Sequence Read Archive (SRA) [4].

This database stores reads from next-generation sequencers made by companies such

as Roche, Illumina, and Applied Biosystems. It contained over 8.5 terabases at the

end of 2009 and was growing at the rate of 1 terabase per month1. Contrast this with

the size of the GenBank database, which was less than 50 gigabases pre-NGS.

Anecdotal evidence suggests that NGS has already made an impact on computational

pipelines of molecular biologists. One of the goals of the Human Microbiome Project

is to study microbial communities in various sites of adult humans. Samples are taken

at six body sites from 16 individuals, generating about 33 gigabases per sample per

person. Mitreva [112]2 reports that the greatest challenge is computational—it takes

over two months to process data that was sequenced in only 0.3 months!

We acknowledge that not all sequencing projects will result in an equal increase in

computational demand. While sequencing new organisms will enlarge databanks,

1http://www.bio-itworld.com/BioIT_Article.aspx?id=94069
2Available online at http://hmpdacc.org/outreach_conf.php
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resequencing projects need only store reads with unique variants, which is usually

a fraction of the size of the original genome. However, in metagenomics, where

entire microbial communities are sequenced, it is likely that only partially sequenced

genomic reads will be available, and we expect this to be a major consumer of compute

resources.

To understand how these trends may impact future sequencing projects we performed

a simple economic analysis. In addition to the DNA bases sequenced per dollar

curve in Figure 1.6, we calculated the HMMER2 throughput per dollar growth curve.

Unfortunately the total costs of the various systems used to run the SPEC workload

are not reported, even as many of the individual components are listed. This makes

it a difficult task to establish historical system costs.
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Figure 1.7: Historical growth of HMMER2 throughput per dollar on state-of-the-art
general-purpose processors.

As an alternative, we turned to the TPC benchmark3 to find historical pricing. The

mission of the TPC group is to evaluate the performance of database transaction

processing on vendor systems. Many of the group’s benchmarks measure performance

per dollar, and so include a detailed break down of the price of each machine. We

found that many of the systems used to run the TPC benchmark were similar to

those in the SPEC reports. In this analysis we decided to only include the cost

of the processor, which is the price a member of the public can expect to pay to

procure the CPU at a certified date. We were able to price sufficient processors in the

3http://www.tpc.org/
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SPEC results in this manner to discover the trend shown in Figure 1.7. HMMER2

throughput per dollar tracks Moore’s law and doubles every 18 months.

The two graphs in Figures 1.6 and 1.7 allow us to predict the scale of the computa-

tional bottleneck in the near future. Assuming the trends shown continue, there will

have to be an exponential increase in spending on compute resources to handle the

increased sequencing workload after an upgrade to simply maintain the runtime before

the upgrade. Indeed, computing expense doubles every 9 months even as sequencing

cost remains fixed. Note that this pattern holds even if the compute resource in

question is a cluster of workstations or a computing cloud such as Amazon’s EC2.

Our analysis in this section has shown that the speed of an individual DP-based

comparison is advancing at a sluggish pace, primarily because processor frequency

has stagnated. It has become necessary to parallelize search applications on multi-

cores to track the Moore’s law curve. However, low-cost sequencing is increasing the

amount of biosequence data available and is stressing computational pipelines. The

advent of NGS in 2005 created an inflection point where sequencing capacity increased

by an order of magnitude without a corresponding improvement in computational

power. Subsequently, DNA sequencing capabilities are increasing at a far higher

pace than compute performance. We assert that as costs for sequencing continue to

fall, compute performance, not sequencing, will become the bottleneck in advancing

genome science.

1.3 Rise of Non-traditional Computing Architec-

tures

Even before next-generation sequencing (NGS), biologists had turned to clusters of

commodity workstations to process their massive databases. In the post-NGS era it

is imperative that we investigate novel compute platforms that can keep up with low-

cost sequencing. In this section we evaluate clusters along with alternate computing

platforms, and advance the case for building customized hardware accelerators.
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Clusters. Workstation clusters make use of the embarrassingly parallel nature of

search applications to achieve acceleration with good scalability and relatively lim-

ited development effort. As one example, NCBI reported using a Linux cluster for

running BLAST as early as 2002 [110]. Parallel versions of popular tools include mpi-

BLAST [51], a grid implementation of NCBI BLAST, and mpiHMMER [157], used

to accelerate protein motif search on a cluster.

Cluster implementations, however, have challenges and important limitations. Lin

et al. [98] state that a key challenge for massively parallel sequence analysis tools

on clusters is in handling their irregular computation and I/O patterns. Splitting

workload among individual nodes in a cluster when performing large genome-to-

genome scale comparisons is not completely straightforward. One approach is to

segment a query set into subsets that are each compared to the entire database on

individual nodes. However, this approach does not scale well if the database cannot

fit in local memory. Conversely, segmentation partitions the database into chunks

that can fit in local memory; however, it introduces communication overhead when

results must be merged from disparate compute nodes. Moreover, it is often difficult

to predict the runtime of search tools based on their sequence sizes alone, particularly

for those that employ heuristics. Dynamic load balancing schemes must be employed

to achieve scalability on large clusters.

In addition to implementation challenges, clusters have many practical limitations:

they have a significant initial investment, are expensive to maintain, occupy large

amounts of floor space, and need effective powering and cooling solutions. Neverthe-

less, clusters are often preferred due to their relative ease of use compared to other

parallel systems.

Cloud Computing. This is a computation-for-hire paradigm, touted as an alter-

native to clusters that could potentially ameliorate some of their limitations. Ama-

zon’s Elastic Computing Cloud (EC2) is one such platform where biologists can rent

compute resources as required. Consequently, upfront capital expenditure, mainte-

nance costs, and floor space are no longer an issue, and users will be able to take

advantage of economies of scale. Renting resources is particularly attractive when

demand fluctuates, e.g., if peak performance is required only after a new release of a
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sequence database. The alternative of maintaining an idle cluster that has been over-

provisioned 2–10× of its average load can be expensive. However, a significant issue

with cloud computing is how to handle security for private databases [140]. Institu-

tional users may be unwilling to transfer sequence data outside their organization,

both to protect their intellectual property and due to legal concerns.

Notwithstanding the flexibility of the cloud, we wanted to investigate if Amazon’s EC2

is economical for sustained compute-intensive workloads. We suggest that this is not

the case by using an analytical model from the literature to compare the performance

per dollar of Amazon’s EC2 to that of a cluster.

A report from U.C. Berkeley attempts to compare the economics of using Amazon’s

EC2 service versus a user-owned cluster [9]. Assuming a CPU-bound application,

which is reasonable for the domain under consideration, the authors calculate that in

2008, $1 bought 128 hours on a user-owned 2 GHz CPU. The cost to rent the same

compute resource on EC2 was $2.56. Even assuming that power, cooling, and amor-

tized cost of floor space doubles this cost of computation on a cluster [9], Amazon’s

cloud computing service was still 28% more expensive.

To illustrate the price difference with a concrete example, we refer to a recent study by

Wall et al. [156] that documents the migration of a comparative genomics algorithm,

reciprocal smallest distance, to the cloud. The application executes NCBI BLAST and

ortholog estimation, with the former taking 58% of total runtime in their experiments.

The authors rented 136 hours on 50 High-CPU Extra Large instances (approximately

ten 2 GHz CPUs each) on Amazon’s EC2, for a total cost of $6, 256. This price

includes the cost of the compute resource and the cost of using the Elastic MapReduce

framework, but does not include cost of storage or data transfer into or out of the

cloud. Assuming a user cluster of the sort discussed in the prior paragraph that has

an amortized cost of $2 for 128 hours on a 2 GHz CPU, renting was over 5× more

expensive.

Nonetheless, companies such as DnaNexus4 and GenomeQuest5 hope to leverage the

flexibility and low investment advantages of cloud computing to enable analysis of

NGS data loads.

4http://www.dnanexus.com/
5http://www.genomequest.com/
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Specialized Architectures. Special-purpose hardware is becoming increasingly

popular to accelerate algorithms in domains such as computational biology, signal

processing, and computational science. Their specialized architectural features enable

exploitation of parallelism available in algorithms to realize several fold speedup over

general-purpose processors. Accelerators for applications in computational biology

have been built on network processors [162], graphics processors (GPUs) [71], the

IBM cell [48, 101], and field programmable gate arrays (FPGAs) [35, 66, 95].

FPGAs are an attractive target architecture because they are a relatively cost-effective

medium to deploy customized accelerators and can exploit the fine-grained paral-

lelism available in many DP algorithms. We have previously used FPGAs to acceler-

ate sequence analysis algorithms such as Smith-Waterman for local similarity search

(100×) [65], NCBI BLAST (30×) both for DNA [86] and protein [80] comparison, and

HMMER (190×) [79]. El Ghazawi et al. [46] compare the performance of DNA Smith-

Waterman alignment on an SRC-6 system comprising four FPGAs and an Opteron

processor. They report that the accelerator is 1138× faster, i.e., it is equivalent in

performance to a 1138-node Opteron cluster. Compared to this cluster, the FPGA

solution is 6× cheaper, occupies 34× less floor space, and consumes 313× less power.

GPUs are inexpensive, commodity co-processors that exploit the single instruction,

multiple data stream (SIMD) paradigm. Although primarily intended for accelerating

graphics rendering, they are being successfully applied to general purpose computing.

A GPU’s main advantages are its high memory bandwidth and a large number of

parallel processors that efficiently implement floating point arithmetic. GPUs also

run at higher clock speeds than FPGAs; for example, benchmark applications in a

recent study [30] are clocked up to 6.5× faster on a GPU than on an FPGA (for

comparable 90 nm technology devices).

It is instructive to study the advantages and disadvantages of FPGAs and GPUs.

Our analysis uses two recent comparative studies, one by Che et al. [29], and the

other by Cope et al. [30]. The major advantage of an FPGA is that we can build an

accelerator that has been customized to an application. A GPU on the other hand

exploits SIMD parallelism, but performance is adversely affected in the presence of

irregular computations such as conditional branching. An advantage of GPUs is the

availability of high-bandwidth memories, but modern FPGAs provide a large number
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of distributed on-chip memory blocks that can be better utilized to accelerate DP

kernels. We believe that the advantages of modern FPGA devices make them more

suitable for implementing DP accelerators.

The primary motivation for using an FPGA is to build circuits customized for the

specific datapath of a DP kernel. In effect, we can build an application-specific

instruction set, whereas on a GPU, the kernel must be mapped onto a fixed instruction

set architecture. Because we can customize the hardware, FPGAs are able to better

exploit parallelism and pipelining than GPUs. The physical architecture of FPGAs is

well suited for DP accelerators, which have a regular structure with a near-neighbor

communication network. While floating-point operations on FPGAs are expensive,

fixed-point arithmetic, which is most common in DP kernels, can be implemented

efficiently; moreover, bitwidths can be customized according to the desired precision

to improve resource utilization and application performance.

Che states that a GPU is ideal for exploiting algorithms that do not have a large

number of data dependencies; unfortunately, we expect many DP kernels to include

such dependencies. On an FPGA we have more freedom to explore various paral-

lelization strategies to hide the effect of dependencies. Another major disadvantage

of the SIMD paradigm of GPUs is its inability to efficiently implement conditional

branching. Such control code can be found in DP kernels, which serializes computa-

tion in a SIMD execution unit. In contrast, on an FPGA we can expend redundant

computational units to handle branches more efficiently.

A major benefit of GPUs is their access to an off-chip high-bandwidth, high-capacity

memory store. To use this resource efficiently, computation must dominate in order to

hide the high latency for off-chip memory access. FPGAs, on the other hand, make

available a large number of distributed on-chip memory blocks that in aggregate

provide higher bandwidth than the low-latency memories in GPUs (for example,

texture memory). Cope quotes a peak bandwidth on a Virtex-4 XC4VSX25 FPGA

of 288 GB/sec, five times higher than a GeForce 7900 GTX (both 90 nm technology).

Moreover, the distributed memory blocks can be integrated into the datapath of the

application unlike on the GPU. In cases where off-chip memory access is required,

FPGAs can more effectively exploit data reuse to mitigate the effect of low bandwidth.
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A comparison by Che of the Needleman-Wunsch DP kernel shows that an FPGA

outperforms a GPU for pairwise sequence comparisons of lengths of up to 2048 char-

acters each. This is true despite the fact that their hardware implementation uses

floating point operations and does not use the entire FPGA die area.

All of the factors we have highlighted suggest that FPGAs will outperform GPUs

from a purely throughput perspective when accelerating DP kernels. Because GPUs

are commodity devices capital expenditure is significantly less than for FPGA sys-

tems. However, FPGAs typically have one to two orders of magnitude higher energy

efficiency [84, 145]. This is an important factor when considering the lifetime cost of a

large cluster of compute nodes, which is essential for high-throughput bioinformatics.

1.4 Challenges of Development in Hardware Lan-

guages

While the performance boost of FPGA accelerators over a general-purpose CPU is

significant, a major impediment to their widespread use is development cost. Cus-

tom circuits on FPGAs are typically described using hardware description languages

(HDLs), which require a paradigm shift from sequential languages. HDLs are used

to program at the logic gate level and provide little abstraction. Another frustrating

aspect is code reusability. Often a hardware module is tailored to one algorithm, and

the implementation is dependent on a specific set of parameters. For example, though

the underlying computations in a Smith-Waterman and a HMMER accelerator are

comparable, their hardware implementations share little similarity. HDL designs are

difficult and time-consuming to develop, are hard to debug, and scale poorly to large

designs.

In response, researchers have developed high-level hardware languages that aim to

provide a conventional software-like programming language for parallel hardware.

Ideally, a supporting compiler should automatically extract parallelism from the high-

level language and generate hardware arrays with performance close to that of hand-

optimized HDL designs. Examples of such languages include Streams-C [55], Impulse-

C, ASC [111], Sea Cucumber [148], and Trident [147, 149]. Recent comparisons
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of a high-level language to an HDL show a reduction in development time. For

example, researchers [45, 163] demonstrate an up to 2.5× reduction in development

time using Impulse-C, but performance is only about half that of manually optimized

HDL designs.

While high-level hardware languages abstract the underlying architecture with vary-

ing degrees of success, we raise a new issue that is just as important: existing high-level

languages provide no freedom for the compiler to explore the large design space of

arrays optimized for throughput, latency, or area. This is important for a DP ker-

nel, which may have a large number of non-obvious parallel arrays in the accelerator

design space.

  for (i = 1; i <= M; i++) {
    for (j = 1; j <= N; j++) {
      X[i][j] = min { ... };
    }
  }

(a) Standard sequential imple-
mentation.

  for (j = 1; j <= M+N-1; j++) {
i = max {1, j-M+1};

    for (d = min {j, M}; d >= 1 && i <= M; d--) {
      X[i][d] = min { ... };

i++;
    }
  }

(b) Antidiagonal parallel implementation.

Figure 1.8: Two implementations of the Smith-Waterman algorithm in a C-like high-
level hardware description language.

As an example, Figure 1.8 shows two implementations of the Smith-Waterman DP

recurrence in a C-like high-level language. They perform identical subproblem compu-

tations but in different order: the first is a typical implementation used on sequential

processors, while the second has parallelism in the inner loop. Most existing hardware

compilers do not generate the parallel implementation given the sequential one, or

do so only for limited cases. The onus is on the user to carefully select the appro-

priate subproblem ordering. Moreover, exploring various parallelization strategies to

generate an array that is guaranteed to have optimal throughput, latency, or area is

beyond the capabilities of most high-level compilers.

A central goal of this thesis is to use an automatic procedure to explore the design

space of possible subproblem orderings, with a guarantee on optimal performance.

The techniques we will propose and demonstrate in this dissertation are a first step

toward a compiler that can automatically explore and synthesize accelerators from
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high-level representations of DP kernels and thus significantly reduce the costs asso-

ciated with FPGA implementations.

1.5 A New Approach to an Old Problem

In this work, we represent DP kernels as systems of recurrence equations [83] and use

polyhedral theory [96] to generate application-specific systolic arrays [90]. A systolic

array is a regular, synchronized grid of locally-connected processors well-suited to

exploit the fine-grained parallelism available in DP. The polyhedral model is a pow-

erful theoretical framework that can represent and analyze regular loop programs (or

DP) with static dependencies and can generate efficient systolic arrays. Loop trans-

formations such as interchange, skewing, unrolling, and tiling can be investigated

systematically to expose far more parallelism than ad hoc methods. Our aim is to

use and extend these techniques to explore the design space of possible systolic arrays

optimized for throughput or latency subject to resource constraints.

Before we proceed further, it is worthwhile questioning why we see promise in application-

specific systolic arrays. Since their introduction in the 1980s to build efficient, verifi-

able VLSI designs, systolic arrays have had a long history and yet were replaced by

general-purpose superscalar processors with principles quite contrary to the systolic

philosophy of simplicity, locality, and regularity. Are we revisiting ideas that have

been previously tested and found wanting?

We believe that a number of recent trends merit reconsideration of the systolic phi-

losophy in a new light [96].

1. General-purpose computing was so successful largely due to an ability to con-

sistently boost the clock frequency of microprocessors. As has been noted,

however, this trend has ceased, and focus has shifted to parallel programming.

2. High-level synthesis of recurrence equations offers an excellent abstraction and a

well-studied formal framework to automatically exploit parallelism in the kinds

of applications we are interested in.
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3. FPGAs have increased in popularity as a relatively cheap method to prototype

and deploy hardware circuits. The underlying fabric of FPGAs rewards simple,

locally connected, and regular circuits—an ideal match for systolic arrays. Ad-

vances in FPGA technology, such as increased logic and memory resources and

low-latency high-bandwidth coupling with CPUs are a very recent phenomenon.

4. Most importantly, we have in computational biology a domain with abundant

algorithms that can be efficiently parallelized. These DP kernels comprise a sig-

nificant fraction of execution time of popular applications and are performance-

limited by rapidly expanding datasets.

1.6 Dissertation Overview

The overarching question we ask in this dissertation is:

How do we best exploit parallelism in dynamic programming kernels, and

how can we build efficient hardware accelerators that are guaranteed to be

throughput-, latency-, or area-optimal?

Currently, researchers choose from a number of standard accelerator configurations us-

ing ad-hoc design selection criteria. Choices include cached shared versus distributed

memory designs, and instruction-based execution units versus processors with a fixed

datapath. Often, there is no way to determine if the selected design with its param-

eter choices has optimal latency, throughput, or area usage. Our goal is to assemble

a formal framework to analyze and exploit parallelism in DP kernels. Accordingly,

we ask, what are good high level abstractions for representing DP, and how do we

synthesize efficient accelerators while optimizing performance and resource usage?

Rather than target every parallel program (or conversely, just one specific applica-

tion) as is often done, we choose to focus on a class of algorithms, namely dynamic

programming, which is specific in its scope, yet encompasses a large set of problems,

even outside the confines of computational biology. Indeed, researchers from U.C.

20



Berkeley [10] distinguish DP as one of 13 important classes of problems for paralleliza-

tion. By narrowing our focus to DP, we are able to apply specialized parallelization

techniques that would be less beneficial for general programs.

1.6.1 Brief Background

To help illuminate our research objectives, we use the Nussinov RNA folding DP al-

gorithm [117], which is used to find an optimal structural folding of an RNA molecule

S. Nussinov defines a two-dimensional variable X(i, j) that holds the score of the op-

timal folded structure formed by the subsequence Si...j; hence, this optimal structure

for the entire RNA of length N is at X(1, N). Chapter 4 introduces RNA folding in

more detail and the reasons for accelerating it.

The Nussinov DP algorithm can be succinctly described by the recurrence

X(i, j) = max


X(i+ 1, j)

X(i, j − 1)

X(i+ 1, j − 1) + δ(Si, Sj)

max
i<q<j

[X(i, q) +X(q + 1, j)].

(1.1)

Note how the score X(i, j) of the optimal folding of subsequence Si...j is computed

using four cases that cover all possible ways of folding the subsequence. These are

in turn computed using smaller subproblems X(i+ 1, j), X(i, j − 1), X(i+ 1, j − 1),

X(i, q), and X(q + 1, j). If we build from smaller to larger subproblems and cache

solutions in a table, DP can solve the problem in O(N3).

Building from smaller to larger subproblems in DP is analogous to the concept of

dependencies in a recurrence. Consider the score X(i+ 1, j) of the optimal folding of

subsequence Si+1...j. Because we need the score at X(i+ 1, j) before we can compute

X(i, j), we say the latter depends on the former. This dependency can be represented

by a constant vector [1, 0], which is computed by subtracting the two sets of indices.

Note that this dependency holds when computing the optimal folding of any subse-

quence of the RNA. Such constant vector dependencies are termed uniform. Other
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uniform dependencies in the algorithm are [0,−1] and [1,−1]. Uniform dependen-

cies are preferred for efficient systolic array synthesis because they translate to data

movement between adjacent processors.

In contrast, the fourth term in the recurrence gives rise to affine dependencies, for

example, X(i, j) depends on cell X(q + 1, j) such that the difference q + 1 − i is

not constant. In this case the length of the dependencies vary according to the

subsequence of the RNA being considered. Affine dependencies translate to inefficient

arrays in hardware. Fortunately, many affine dependencies can be made uniform by

a process called localization [123].

1.6.2 Summary of our Approach

We systematize the acceleration of dynamic programming by following the workflow

illustrated in Figure 1.9. While we have focused on FPGAs in this work, many

problems we pose and their solutions are also applicable to ASICs, and partially, to

other implementation targets.

We start by representing any DP algorithm as a recurrence and apply existing local-

ization techniques to transform it to a purely uniform recurrence. Note that a larger

class of loop programs can also be represented as uniform recurrences and accelerated

with the techniques we develop. However for the purposes of this dissertation we will

focus only on dynamic programming.

In the course of building special-purpose accelerators for a uniform recurrence, we

find one or more array mappings. An array mapping fully describes the properties of

a systolic array to be built, including the processor configuration, the interconnection

network, and the synchronized movement of data.

We consider two categories of array mappings. An unconstrained mapping assumes

a large enough FPGA target is available and builds an array that exploits all avail-

able parallelism. In contrast, resource-constrained mappings restrict parallelism in

exchange for using fewer processors. Such mappings are useful if the target device

has limited logic resources, or if the DP algorithm is resource-intensive.
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Figure 1.9: Overview of the research conducted in this dissertation, which transforms
dynamic programming algorithms into special-purpose accelerators.

A natural question that arises is “what constitutes a good array mapping?” We could

seek mappings that are optimized for latency. The state of the art is to identify

a single latency-space optimal array. Such an array computes a single instance of

the recurrence with the lowest latency, or in our example, folds a single RNA in

the shortest time possible. Among all such arrays, the one that requires the fewest

processors is then selected. Latency-optimal arrays are useful in cases where a DP

computation must be accelerated for realtime applications.

Throughput, however, is often the most important performance metric for search

applications in computational biology. In our example, the time to fold any single

RNA is less important than the time to fold an entire database of them. We propose

to build arrays optimized for throughput, even at the expense of latency, by pipelining

the computation of multiple input instances.
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Next, we show that “good” array mappings are not necessarily intuitive and that

finding them is not straightforward. The space of possible mappings is large, and

we need efficient algorithms to search and evaluate the design space. We propose

an enumerative procedure to find optimal high throughput mappings for any input

recurrence. Finally, we suggest the use of multiple throughput-optimized accelerators

for a single recurrence. Our search algorithm suggests arrays that can tradeoff area

on the FPGA for higher throughput.

We then turn to the problem of resource-constrained mappings and apply an existing

technique to discover such arrays for dynamic programming recurrences. Once array

mappings are identified for a DP recurrence, we can synthesize them on the target

FPGA. While we do not tackle the problem of code generation in this dissertation,

we give a number of general techniques for efficient implementation of our arrays on

FPGA fabrics.

Figure 1.10 describes the optimization problem for DP recurrences. Given a DP ker-

nel we may build throughput-, latency-space-, or area-optimal arrays depending on

the implementation constraints. Throughput-optimized arrays, which we introduce

in this work, exploit maximum parallelism but also use the most logic and memory

resources. Resource-constrained arrays severely limit area usage in exchange for ex-

ploiting limited parallelism; latency-space optimal arrays, on the other hand, are a

compromise between the two. Note that while by definition there is only one latency-

space optimal array of interest, there may be several useful throughput-optimized and

resource-constrained arrays that tradeoff area for increased parallelism. The figure

shows examples of the three types of arrays we will derive in subsequent chapters for

the three-dimensional Nussinov RNA folding algorithm (after localization).

Modern FPGA platforms allow the programming and re-programming of hardware

circuits in hundreds of milliseconds through a process called reconfiguration. We in-

vestigate its use to further speed up search applications by quickly switching between

a library of array mappings for a recurrence based on input size. The goal is to use

high throughput, resource-intensive mappings for inputs (e.g. RNAs) of small size

while switching to lower-throughput mappings when area becomes an issue. We give

an algorithm to select appropriate mappings and their sequence of execution given

this objective and demonstrate the effectiveness of reconfiguration.
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Figure 1.10: Three performance criteria that may be optimized when building cus-
tomized hardware accelerators for a DP kernel. Selecting one of the three branches
affects the amount of parallelism exploited and the resources consumed.
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Finally, we apply these techniques to accelerate the Nussinov and Zuker RNA fold-

ing algorithms. We implement and test a large number of newly discovered array

mappings and experimentally verify a one-to-two order of magnitude speedup over

software implementations. We show that these novel arrays outperform even compet-

ing accelerator platforms.

1.6.3 Research Questions

The specific research questions we address in this dissertation are as follows:

1. Thus far the state of the art has been to build a single latency-space optimal

array using polyhedral theory for recurrence equations. This has also tended

to be the practice when building DP accelerators in computational biology.

However, we ask:

Can we exploit pipeline parallelism to build throughput-optimized ar-

rays? Can we model throughput analytically and design an efficient,

automated search procedure to identify throughput-optimized arrays?

2. In studying the problem of resource-constrained arrays, we apply existing pro-

cedures to accelerate DP. We investigate:

How well do these techniques apply to finding high-performance array

mappings for DP? How do we implement these arrays to effectively

use resources on modern FPGA fabrics?

We also compare the systolic philosophy, in particular the use of distributed

memory and pipelined data flow, to processor architectures with shared caches.

The choice of architecture determines how data flows to processors in the array

and the mechanism for synchronization. We would like to identify the advan-

tages and disadvantages of each and ascertain the right architecture for our

purpose.

How well do systolic arrays perform compared to shared-memory ar-

chitectures?
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3. We know that many search applications operate on inputs of varying sizes,

be it biosequences, profile hidden Markov models, or stochastic context-free

grammars. We are able to design a library of accelerators that are optimal for

distinct ranges of input sizes.

Can we use FPGA reconfiguration to use this library of accelerators

to accelerate DP computation of an entire database of inputs?

4. Finally, we would like to demonstrate these techniques on DP algorithms in

computational biology.

Can we improve the performance of the Nussinov and Zuker RNA

folding algorithms on FPGAs using the techniques proposed in this

dissertation? How do our FPGA accelerators compare to multi-core

and GPU implementations?

1.6.4 Contributions

A detailed list of our contributions follows.

1. We extend polyhedral theory to build throughput-optimized systolic arrays for

any recurrence equation [76], and our technique is able to exploit more paral-

lelism than current methods.

• We are able to exploit pipeline parallelism on systolic arrays by simulta-

neously operating on multiple inputs. We demonstrate that these arrays

process a database of inputs faster than a latency-optimal array.

• We develop a novel integer-linear-programming formulation to analytically

model throughput of systolic arrays.

• We prove that the throughput is dependent on the processor configuration

and is independent of the timing of data flow. This surprising but impor-

tant discovery simplifies design space exploration and allows us to search

the two components of an array mapping independently.
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• We give an efficient, automatic search procedure to find throughput-optimized

array mappings. This enumerative procedure optimizes throughput and

resource usage using system input bandwidth and resource bounds.

• We further boost performance of arrays by improving the clock frequency

of these designs. We do so by pipelining iterations on individual proces-

sors using the retiming circuit optimization. We develop an integer linear

program to select appropriate array mappings according to the desired

number of pipeline stages in a processor. This allows hardware synthesis

tools to automatically pipeline processors without any additional program-

mer effort.

• Our design procedure has implications on I/O properties. Because we

demonstrate that latency can be sacrificed as long as throughput is opti-

mized, we are able to design arrays with lower instantaneous I/O.

• We have written a computer program intended to be a plugin to a com-

piler backend that accepts descriptions of any input recurrence and auto-

matically suggests throughput-optimized arrays using the ideas we have

developed.

Our emphasis on throughput is relevant for a wider domain of problems beyond

dynamic programming and computational biology. We believe optimizing for

throughput rather than latency is more appropriate for domains such as audio,

video, and signal processing.

2. We analyze the Nussinov RNA folding algorithm and apply transformations

such as localization to make it more amenable to parallelization [74]. We then

design and implement novel systolic arrays accelerating RNA folding on a Xilinx

Virtex 4 FPGA.

• We design two latency optimal arrays, FS-A and FS-B, that are similar to

those previously proposed for string parenthesization.

• We increase performance of array FS-A four-fold by pipelining multiple

inputs on the array as suggested by our previous contribution. The same

technique can be used to improve performance of the decades-old array [60]

for string parenthesization.
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• We propose a novel throughput-optimal array, FS-C, that is 2× faster than

the latency-space optimal array while using the same number of processors.

This array also has better instantaneous I/O properties than the latency-

space optimal array.

• Our software tool also suggests a number of other arrays for Nussinov RNA

folding that trade off area for increased throughput. We implement and

test one such array.

• We apply the technique to automatically pipeline iterations on processors

by building a parametrized implementation of array FS-C. By varying the

number of pipeline stages, the synthesis tools is able to clock the design

2× faster than the unpipelined design with only a 37% increase in area

usage.

3. We apply resource-constrained array mapping to design and implement a num-

ber of arrays for Nussinov that can be used to fold long sequences. We also

suggest and verify the efficiency of a number of implementation techniques to

improve clock frequency and area usage of systolic arrays on modern FPGAs.

• We propose an unpartitioned 1-D array for Nussinov that can be used for

RNAs of length N ≤ 545 bases with execution time Θ(N2).

• We propose a partitioned 1-D array for Nussinov that can be used for

RNAs of length N ≤ 597 bases with execution time Θ(N2W ).

• We propose a partitioned 2-D array for Nussinov that can be used for

RNAs of length N ≤ 305 bases with execution time Θ(NW ).

Here W is the partition width, which controls how much parallelism is sacrificed

to save area. By modifying this parameter, we are able to design a family of

arrays suitable for various sequence lengths.

4. We demonstrate FPGA reconfiguration on our platform and the performance

boost it brings to a DP application [75].

• Given a family of parametrized designs, we suggest a novel dynamic pro-

gramming algorithm to select an optimal set of arrays, their sizes, and

the sequence of configuration on an FPGA. A second algorithm is also

proposed to select an optimal set of at most k designs. This is useful
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in situations where the circuit configurations must be stored in limited

on-board memory.

• We implement these algorithms in a computer program to operate on any

family of accelerators and input distribution.

• We test these ideas by folding a database of pyrosequencing reads of various

lengths using the Nussinov algorithm and reconfiguring among multiple

arrays.

5. We then turn our attention to the Zuker RNA folding algorithm. This algo-

rithm is more challenging to accelerate because it consists of a larger number of

more complex dependencies, and uses resource-intensive tables in the DP com-

putation. We are able to apply a number of novel transformations to reduce

its time complexity and simplify the dependencies, making it more amenable to

parallelization [77].

• We build a highly efficient 1-D array for Zuker that is able to fold RNAs

of length N ≤ 273 bases in Θ(N2) time.

• We qualitatively compare our architecture to shared memory implementa-

tions of the algorithm on FPGAs and show better scalability. We quantify

the performance of our array and show that it outperforms other acceler-

ators on FPGAs, GPUs, and multicores.

The software tools and hardware arrays developed during the course of this research

are made available at http://www.cse.wustl.edu/~jarpith/.

1.6.5 Outline

We now introduce the various chapters of the dissertation. We have organized our

exposition to build up our work according to the workflow in Figure 1.9.

We gather related work in Chapter 2 that is relevant to our high-level goal. We first

describe high-level code generation approaches for DP-based computational biology

applications. We also give a brief overview of a number of research compilers for
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synthesizing hardware from recurrence equations into which the software tools we

have developed may be integrated.

Chapter 3 introduces systolic arrays, recurrence equations, and the basics of polyhe-

dral theory. We describe the localization transformation and summarize state-of-the-

art methods to build latency-space optimal arrays.

We parallelize the Nussinov RNA folding algorithm in Chapter 4 by applying the

general techniques introduced in the previous chapter. We go through the various

steps of localization and derive two latency optimal arrays.

In Chapter 5, we answer the question of how to exploit pipelining to improve through-

put of systolic arrays. We show how to pipeline computation on independent inputs

in the array as well as pipeline iterations in each processor.

We use existing techniques to build resource-constrained array mappings for the

Nussinov DP kernel in Chapter 6. We suggest implementation techniques to im-

prove clock frequency and area usage on modern FPGA fabrics and experimentally

verify results on our platform.

Chapter 7 introduces the potential of FPGA reconfiguration to speed up search ap-

plications. We use the various arrays developed for the Nussinov computation in the

previous chapters to demonstrate the capabilities of reconfiguration.

We analyze and parallelize the Zuker RNA folding algorithm in Chapter 8. We design

and implement a 1-D array and compare its performance to related work.

Finally, in Chapter 9 we discuss the conclusions we have arrived at after answering the

research questions raised in this dissertation. We discuss directions for exploration

in the future and speculate on how our work may help designers of large compute

systems for computational biology and other workloads.
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Chapter 2

Related Work

In this chapter we survey high-level code generation tools relevant to accelerating

dynamic programming in computational biology. Related work that is pertinent to

individual aims in our dissertation is included in the corresponding chapters; for

example, Zuker accelerators from the literature are surveyed in Chapter 8.

The purpose of this review is three-fold. First, it serves to show the interest of the

computational biology community in source-to-source transformation tools that ease

the development of both sequential and parallel DP-like programs. In particular,

we survey several tools that are specific to dynamic programming. High-level tools

for computational biology have an important role in providing abstractions suitable

for the domain expert. For example, they may provide user-friendly constructs for

pairwise sequence alignment or for representing Hidden Markov Models. We will see

that these tools use DP to implement their search algorithms but are limited in their

scope; they only accept a subset of possible DP algorithms. We also discuss a number

of unique high-level abstractions for DP that complement the recurrence abstraction

we have selected in this work.

Second, we point out that most related work aims to generate correct code from a high-

level abstraction, not necessarily high performance programs. Moreover, most tools

generate sequential code rather than parallel programs; very few target accelerator

platforms. This is not necessarily due to a lack of interest but is more likely due

to a lack of know-how within the community that has developed these solutions. In

contrast, this dissertation motivates the need to parallelize dynamic programming

and suggests a methodology to do so. An important distinction in our work is that
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we seek a way to optimize performance of generated code. In our work we develop

design-space exploration algorithms that can optimize various performance criteria.

Finally, the review of related work shows that we can significantly enhance these

tools by incorporating the methods developed in this dissertation. We can extend

the tools by transforming the parsed input program descriptions of these high-level

languages to recurrence equations and then following the workflow we introduced in

the previous chapter. We can use these domain-specific tools as a vehicle to further

our work and achieve acceptance by the wider community.

Figure 2.1: A Venn diagram documenting the relationships among related projects
surveyed in this chapter. We are interested in tools that generate serial or paral-
lel code for dynamic programming algorithms in computational biology. Here we
consider FPGA, GPU, and multi-core accelerators. Three works–MMAlpha, PARO,
and PLUTO–target general recurrence equations, rather than computational biology
specifically, but are included for their significance.

Figure 2.1 shows the relationship between the various projects within the purview

of our dissertation. In this work, we consider tools for accelerating computational

biology applications using parallel systems. In particular, we are interested in a

subset of these applications that use the DP paradigm. We have considered FPGA,

GPU, and multi-core accelerator platforms.

In the next section, we survey high-level code-generation tools for computational bio-

logy algorithms. Most of these tools generate only sequential program code. Next,
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we look at work done on high-level hardware synthesis tools for computational bio-

logy. Finally, we survey high-level hardware and software synthesis tools for general

recurrence equations, which provide a strong basis for our work.

2.1 High-Level Code-Generation Tools for Com-

putational Biology

There have been several attempts in the research community to ease the development

of DP algorithms in computational biology by providing high-level abstractions.

Figure 2.2: A frame maintenance aligner represented by a weighted finite-state ma-
chine is entered graphically into the visual programming environment developed by
Searls and Murphy [135]. The figure is taken from that paper.
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Finite-state automata. Finite-state automata are a natural and elegant abstrac-

tion that has been shown to model alignment algorithms. Karp and Held [82] estab-

lished their use to model DP algorithms. Searls and Murphy [135] develop the use of

weighted finite-state automata to represent mechanisms of biological mutation. One

such example, a frame maintenance aligner, is shown in Figure 2.2. This aligner is

able to model positions of nucleotide triplets (which code for amino acids) in DNA

sequences to improve alignment accuracy. The authors augment each state in these

machines with a recursive score function of inputs, transitions, and edge weights,

allowing the machine’s use for pairwise alignment algorithms.

A visual programming environment generates sequential Prolog and C++ code from

these representations. The Prolog code performs DP top-down with the memoization

optimization (i.e., caching results of computations) to conserve runtime; nevertheless,

the recursive overhead results in two orders of magnitude slowdown compared to the

C++ code. No details are given on the C++ backend, which performs DP bottom-up.

This is a non-trivial task, as at a minimum, an analysis of the dependencies is required

to generate correct code. The authors mention no effort to explore the design space

of possible orderings of the computation of subproblems in order to improve runtime.

Although the authors do not compare the machine-generated code to hand-optimized

implementations, they acknowledge that the latter will always be faster. The authors

believe their tool is useful for quickly prototyping new alignment algorithms even

though the generated code is not optimal.

Searls and Murphy note that the automata abstraction enables optimizations such

as reduction of the number of states (recurrence variables) using standard techniques

for finite-state automata, reduction in the dimensionality of recurrence variables, and

even the use of sparse matrices to save space. While this is not the problem we

are tackling in this dissertation, it is possible to convert DP recurrences into finite-

state automata and perform the same optimizations. We believe the finite-state

automata abstraction brings ease of use and will help domain experts understand

and develop complex DP kernels. Integrating our work into the backend of this visual

programming environment will enable a direct path to FPGA implementations.
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Figure 2.3: Code for the Smith-Waterman alignment algorithm in the Dynamite
language. Note the use of the keyword state to represent recurrence variables, source
to indicate dependencies, and keywords offi and offj to specify dependency offsets.
Only two-dimensional recurrences can be expressed in Dynamite. The example is
taken from [20].

Dynamite [18, 20]. This is a code-generation tool that produces C code from

an abstract definition of a sequence analysis DP recurrence. Finite-State Machines,

though entered in a textual format, are again used to represent the recurrence. One of

the innovations of Dynamite is the use of domain-specific constructs to ease develop-

ment of sequence search tools. Dynamite is designed explicitly for searching a query

against a target sequence—and therefore supports only two-dimensional recurrences—

with specific syntax provided to represent states (data variables), transitions (depen-

dencies), and computations for each variable. Common domain-specific types to rep-

resent protein and DNA sequences are provided, as well as efficient database search

routines. Special states are used to represent complex initialization and boundary

conditions and to allow multiple matches of the query sequence to the target. Fig-

ure 2.3 shows a code sample of the popular Smith-Waterman alignment algorithm

represented in the Dynamite language.
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Dynamite is capable of generating dynamic programming C code to find the optimal

solution to sequence alignment problems in linear space and to recover the best align-

ment by traceback. The program was used extensively in generating models for the

gene-structure prediction programs GeneWise and Genomewise [19]. In addition, the

authors report its use for other biological sequence applications, musical copyright

databases, and econometrics6.

Dynamite is limited to the small subset of pairwise DP alignment algorithms. The

RNA folding algorithms we accelerate in this dissertation are beyond Dynamite’s

scope. Dynamite always selects a fixed ordering when computing a two-dimensional

DP algorithm and assumes the programmer has coded the input description to satisfy

dependencies. No dependence analysis is performed to select a feasible ordering, nor is

any design space exploration done to choose an optimal one. Furthermore, Dynamite

only generates sequential C code.

Slater and Birney [136] extended Dynamite to automatically generate heuristics for

biological sequence comparison. Heuristics are algorithmic approximations to a DP

kernel and are used when the original DP-based application is prohibitively expensive.

Heuristics can significantly speed up runtime but sacrifice the accuracy of results.

While the use of approximations is a legitimate approach to accelerating DP, we are

interested here in a faithful acceleration that maintains accuracy of results.

Algebraic Dynamic Programming (ADP). Another recent effort uses an alge-

bra to describe DP in a high-level language [53]. ADP imposes a structure to DP

that firstly describes subproblem decomposition and secondly provides a mechanism

to score decompositions. A regular tree grammar, which applies to trees rather than

strings, is used to define problem decomposition. The grammar implicitly defines all

possible solutions to a DP problem, i.e., the grammar constructs the search space.

An accompanying algebra provides a mechanism to score every possible solution of

the tree grammar. An ADP example of the Smith-Waterman alignment algorithm is

shown in Figure 2.4.

Converting an ADP to recurrence equations is straightforward, but generating im-

perative code is more challenging. The authors use dependence analysis to select a

6http://www.ebi.ac.uk/Dynamite/
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Figure 2.4: Sample code for the Smith-Waterman algorithm in the ADP language,
which includes a grammar and an evaluation algebra. The code is taken from [53]
and scores a match with +1 and a mismatch or a gap with −1.

feasible computation ordering, though no effort is made to optimize for runtime. An

extension of the compiler [139] generates parallel GPU code. However, the authors

assume a limited set of possible dependencies and use a predetermined parallelization

strategy. For example, the strategy the authors use works well for the Nussinov RNA

folding algorithm but is infeasible for the Smith-Waterman algorithm.

HMMoC. Lunter [102] wrote a code generator for first- and higher-order hidden

Markov models (HMMs) specified in XML format. The input is in a domain-specific

language used to describe HMMs. HMMoC automatically generates efficient C++ im-

plementations for DP algorithms on HMMs such as Forward, Backward, and Viterbi.

The generated code includes commonly used optimizations such as log-space compu-

tation and banding to restrict DP to a certain region.

Summary. Tools such as Dynamite, ADP, and HMMoC play an important role in

easing development of DP algorithms for domain experts and show interest of the

computational biology community in domain-specific abstractions and compilation.
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Most of these tools can only generate sequential code, or exploit limited forms of

parallelism, whereas our contribution is in the use of polyhedral theory to parallelize

any DP kernel. Our work is complementary to these tools; they can be augmented

to generate recurrence equation descriptions, which can be analyzed and parallelized

using the methods we introduce in this dissertation.

2.2 High-Level Hardware Synthesis Tools for Com-

putational Biology

Researchers have recently begun to tackle the problem of easing the development of

hardware accelerators for sequence analysis applications.

LAMP. Van Court and Herbordt describe their approach in several papers [32,

152] and a Ph.D. thesis [31]. They state that one of the reasons for the lack of

special-purpose accelerators in wide use in this field is the brittleness of solutions, i.e.,

their inflexibility in handling the customizations required by the biologist. Instead

of focusing on point solutions, they stress the importance of developing a family of

implementations.

Van Court [32] describes an architecture for general sequence search composed of

modules that are independent and customizable. The Logic Architecture Model

Parametrization (LAMP) tool suite [31, 152] provides mechanisms to automate and

ease the development of an accelerator from a model describing a family of algorithms.

Designing an accelerator in LAMP is based on roles assigned to the hardware designer

and a domain expert.

The LAMP model describes the control, dataflow, and overall organization of an

architecture. It is specified by a hardware designer in a markup language embedded in

a standard HDL. Significant manual effort must be expended to keep the architecture

as general as possible. The domain expert implements the functionality for each

module in the model, customized for a point solution. A stated aim is to provide
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a set of parametrized modules to the domain expert, though new modules are still

written in an HDL.

Our research differs significantly from that of Van Court in its high-level approach.

Van Court acknowledges a semantic gap between application authors and the FPGA

fabric. He sees little hope for this gap to be bridged in the general case. His solu-

tion is to clearly delineate the work of the hardware designer and the domain expert.

Although the LAMP tool suite enables easier development of families of any appli-

cation (such as approximate string matching or rigid molecule interactions) and is

not limited to DP, the burden on the hardware designer has not been decreased. Ad-

ditionally, since a specific architecture is selected by the designer, it provides little

freedom for design space exploration by the compiler.

Other Tools. Benkrid et al. [16] describe a parametrized skeleton for sequence

alignment that is written in the high-level HDL Handel-C. Ayala-Rincón et al. [11]

use rewriting logic to model systolic architectures for families of DP algorithms.

Summary. All of the work we have described relies on the designer to explore the

design space and decide on a specific array configuration. As we will demonstrate

in subsequent chapters, this requires considerable skill for all but the simplest of DP

algorithms. Providing algorithms for automated analysis greatly eases the burden on

the developer.

2.3 High-Level Synthesis Tools for Recurrence Equa-

tions

High-level synthesis tools for recurrence equations are the most general class of com-

pilers in our survey. These tools attempt to automatically parallelize high-level code

for execution on FPGA systems or multicore platforms. They are limited to compiling

recurrence equations specified in a custom language or sequential loop programs.
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PLUTO [22]. This is a recently developed open-source compiler to synthesize par-

allel openMP code for multicore systems. The compiler accepts subsets of C loops

and automatically generates tiled, parallel C code. The compiler performs design

space exploration to improve cache locality and exploit parallelism in tiled code. Be-

cause PLUTO targets multicores, not custom hardware, the optimization criteria and

techniques used are not an ideal match for our use. For example, we optimize for

throughput and have the freedom to build custom hardware.

MMAlpha. The MMAlpha tool [61, 154] is a semi-automatic compiler that gen-

erates synthesizable VHDL code describing systolic arrays. The compiler accepts

input descriptions in a custom, single assignment language that represents recur-

rence equations. Localization to remove broadcast dependencies is supported in a

semi-automatic fashion. MMAlpha can synthesize a single latency-space optimal ar-

ray. Design space exploration is limited to a single component of the array mapping,

namely, to finding a latency optimal schedule—space optimization is not performed.

Resource-constrained array mappings are also beyond the capability of the compiler.

An advantage of MMAlpha is that it is freely available as an open-source download.

PARO [63]. Over the last decade, a more complete systolic array compiler for VLSI

systems has been developed. Resource-constrained array mapping is supported, as

is partitioning to process large input problems. The approach in PARO is to build

a single optimal latency-space or resource-constrained array. While the compiler is

not publicly available, the authors state that it performs design space exploration to

optimize latency and area usage.

Summary. While PLUTO does not target hardware accelerators, MMAlpha and

PARO are multi-decade research efforts that come closest to our goal of synthesizing

hardware accelerators that exploit parallelism using polyhedral analysis. While these

tools target loop programs, we have in turn applied polyhedral analysis to the class

of dynamic programming algorithms.
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The ideas developed in this dissertation differs significantly from the existing compiler

projects. First, neither project considers throughput-optimized arrays. This is a novel

paradigm within the polyhedral framework that we have proposed, which is able to

exploit far more parallelism than existing techniques. None of these compilers is able

to pipeline independent instances on the array, nor pipeline iterations in a processor

to improve clock frequency. Hence, these tools will be less suitable for domains such

as computational biology and media processing, where throughput is the primary

concern; certainly, the novel arrays we have developed for Nussinov RNA folding

would not have been discovered using the techniques implemented in the surveyed

compilers.

Furthermore, all these approaches maintain that a single optimal array, whether

latency-space, or resource-constrained, is sufficient as a hardware accelerator for any

computation kernel. While appropriate for ASIC design, we will show in this disser-

tation that when applied to FPGAs, we can exploit reconfiguration to select from a

range of arrays that tradeoff resources for increase parallelism, and so are optimal for

various input size ranges. Selecting from our throughput-optimized arrays, as well as

various resource-constrained arrays, we are able to show a several-fold speedup versus

using a single resource-constrained or latency-space optimal array.

We note that the extensions that have been proposed in this work can augment

MMAlpha and PARO. The software tools we have developed can be integrated into

the optimization phase of these compilers to optimize for throughput, and support

FPGA reconfiguration.
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Chapter 3

Background: Parallelization of

Dynamic Programming

In this chapter we introduce the background necessary to follow the parallelization

techniques employed in this dissertation. We start by characterizing the class of

dynamic programming algorithms targeted in this work. Since we are primarily in-

terested in FPGAs as our implementation target, we focus our attention on an efficient

hardware array architecture, the systolic array.

Next, we define the powerful systems of recurrence equations (SRE) abstraction and

show how they may be utilized to represent both DP kernels and systolic arrays. The

problem of identifying an appropriate systolic array to accelerate a DP kernel is trans-

lated to the problem of identifying the right recurrence-to-recurrence transformation.

We give a brief overview of polyhedral theory and show its use to transform SREs

representing DP into those representing a systolic array. Finally we summarize state-

of-the-art methods to build unconstrained latency-space optimal array mappings from

DP recurrences. We have adapted much of the introductory material in this chapter

from texts by Lavenier et al. [96] and others [144].

3.1 Dynamic Programming

In this dissertation we will tackle only discrete-input dynamic programming algo-

rithms. By discrete we mean that the underlying decision process operates on an
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ordered list of distinct input data items such as biosequences, alignments of multiple

sequences, motifs represented by a hidden Markov model, or an ordered list of graph

vertices.

In Section 3.4, we describe a popular classification for DP algorithms with the help

of the recurrence equations abstraction. In general, DP algorithms from all classes

can be parallelized using the techniques we employ. However, we briefly mention a

subset of DP algorithms that cannot be efficiently accelerated using the parallelization

technique and the accelerator architecture we employ.

Finally, we note that our parallelization strategy holds when the underlying deci-

sion process is either deterministic or stochastic. Supporting stochastic processes is

important because they abound in computational biology, for example, probabilistic

hidden Markov models and stochastic grammars.

3.2 Systolic Arrays

A systolic array [90] is a synchronous, data-driven computing network with simple,

modular, processing elements (PE) and a regular interconnecting network. Data is

passed through the network in a pipelined fashion synchronized by a global clock.

The systolic paradigm is data-driven, unlike Von Neumann architectures, and is well

suited for accelerating parallel, compute-bound applications. An important feature

of the systolic approach is that a data item, once retrieved from memory, is processed

through the entire array before being retired.

Biosequence Score

Figure 3.1: A linear, four-processing-element systolic array. In this example pipeline
based parallelism occurs and, for long sequences, a speedup of four over a single
processor is possible.

Figure 3.1 shows a four-PE linear systolic array used for a sequence alignment al-

gorithm. The input sequence is fed into the leftmost PE, processed internally, and
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transferred to its right neighbor. The final score is emitted by the rightmost PE in

the array.

Systolic arrays can exploit the high degree of parallelism typically available in DP

algorithms. The local and regular communication network simplifies routing costs

and enables implementation of highly scalable designs in hardware.

3.2.1 History of Systolic Arrays

Systolic arrays were first introduced by Kung [90] in the early 1980s to exploit massive

parallelism. Systolic arrays have been architected to accelerate image processing, text

search, neural networks, finite element methods, and many other applications. We

refer the interested reader to an overview by Lavenier et al. [96] for more details.

In this section, we give a brief history of systolic arrays that have been used for

computational biology analysis.

An early example of a systolic array was the Splash 2 machine [67], which was used

for sequence matching with the Needleman-Wunsch dynamic programming algorithm.

The machine consisted of 16 boards, each with 16 Xilinx 4010 FPGAs connected in

a linear array. The authors implemented a linear systolic array for the algorithm

in VHDL, with each of the 16 FPGAs implementing 14 PEs. A single board of

the Splash 2 machine achieved three orders of magnitude speedup over a SPARC

10/30GX workstation.

SAMBA [59] was a 128-PE fully custom systolic array specifically designed to imple-

ment the Smith-Waterman sequence matching algorithm. The Kestrel processor [72]

was a linear VLSI array consisting of 512 PEs. Although originally designed with

sequence alignment in mind, the array is general-purpose and was used to acceler-

ate graph problems, machine learning, and a computational chemistry application.

Programming systolic arrays has always been a challenge that has never been sat-

isfactorily addressed. The authors of the Kestrel processor developed a compiler

to generate code for it but never used it to program the array, preferring to write

hand-optimized assembly language programs.
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3.3 Systems of Recurrence Equations

A recurrence equation is a variable that is defined at all integral points z in an n-

dimensional domain D by an equation of the form:

X(z) =


...

ei(. . . X(f(z)) . . .) if z ⊆ Di.
...

(3.1)

Here:

• z =

[ i1
...
in

]
is an integral iteration vector of n dimensions. It can be thought of

as the indices of an n-dimensional nested for loop implementing the recurrence

computation. We will alternatively refer to z as a computation point, or simply

a point.

• X is a data variable indexed by z. It may be thought of as an n-dimensional

array. X(z) denotes the value of the variable at a specific point.

• A variable may have multiple disjoint definitions (cases), also known as domains,

represented here by Di. A domain is a set of points in Zn where the data

variable is defined. The domain of variable X is the union of the domains of

the individual definitions. In this work, we consider only domains that can be

represented as convex integer polytopes (see Section 3.6).

A recurrence domain may be parametrized, i.e., it may have one or more size

parameters, such as the length of an input sequence.

• The value of X at a point z ∈ Di is given by evaluating the expression ei. The

expression is a strict (always evaluates its arguments), single-valued function

of its arguments and elementary operators. Each expression is evaluated only

when its guarding predicate z ⊆ Di is satisfied.

We will refer to the collective list of expressions as the body of the recurrence,

which is analogous to the body of a loop implementing this recurrence.

• f(z) is a dependency function, f : Zn → Zn. Given variable values at two

computation points X(z1) and X(z2), we say that X(z1) depends on X(z2)

46



if the latter is required for the computation of the former. We denote this

dependency by X(z1)← X(z2), and there exists a dependency function f such

that z2 = f(z1).

There may be multiple references to the data variable X in the right-hand-side

definitions, each with a possibly distinct dependency function f .

An affine recurrence equation (ARE) has all its dependency functions in the form

f(z) = Az + b where A is constant n × n matrix and b is a constant n-vector. A

uniform recurrence equation (URE) has all dependency functions in the form f(z) =

z + b; i.e, a URE is an ARE where A is the identity matrix.

A system of recurrence equations (SRE) is a set of recurrence equations of the form

in Equation 3.1 defining data variables X1 · · ·Xm. These definitions may be mutually

recursive. Systems of affine recurrence equations (SAREs) have affine dependencies

and permit each data variable to be of varying dimension. Systems of uniform re-

currence equations (SUREs) require that dependencies be uniform and force all data

variables to be of the same dimension.

Recurrence equations with all uniform dependencies can be implemented on a systolic

array with a resource efficient near-neighbor interconnection network. However, affine

dependencies induce long-range communication and require broadcasts of data vari-

ables. In this work we only target SUREs for acceleration; we employ a process called

localization, described in Section 3.6.4, to make recurrences with affine dependencies

uniform.

Example. We illustrate these concepts with the following simple system of uniform

recurrence equations.

C(i, j) =

{
0 if j = 0 and 1 ≤ i ≤M

C(i, j − 1) + aj,i ·B(i, j) if 1 ≤ j ≤M and 1 ≤ i ≤M
(3.2)

B(i, j) =

{
bj if i = 1 and 1 ≤ j ≤M

B(i− 1, j) if 2 ≤ i ≤M and 1 ≤ j ≤M .
(3.3)

Here:
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• z =
[
i
j

]
is the iteration vector of the two-dimensional recurrences.

• There are two data variables, B, and C, both indexed by
[
i
j

]
. The labels a and

b represent input data items made available to the recurrence and are not data

variables.

• Variable C has two disjoint domains:

1. D1 = { i, j | 1 ≤ i ≤M ; j = 0 }.

2. D2 = { i, j | 1 ≤ i ≤M ; 1 ≤ j ≤M }.

The complete domain of variable C is D1∪D2 = { i, j | 1 ≤ i ≤M ; 0 ≤ j ≤M }.
In fact, both variables share the same computation domain.

The example is a parametrized system of recurrence equations with one param-

eter, M .

• The first of two dependencies in this example is C(i, j)← C(i, j−1); we say that

C(i, j) depends on C(i, j−1) because the latter is required for the computation

of the former. The second dependency is B(i, j)← B(i− 1, j).

We can represent the dependency in Recurrence 3.2 by the dependency function

f1(
[
i
j

]
) = A1

[
i
j

]
+ b1, where A1 = [ 1 0

0 1 ] and b1 = [ 0
−1 ]. Since A1 is the identity

matrix, the dependency is uniform. Similarly, the dependency in Recurrence 3.3 is

given by the dependency function f2(
[
i
j

]
) = A2

[
i
j

]
+ b2, where A2 = [ 1 0

0 1 ] and

b2 = [ −1
0 ]. Because both dependencies are uniform, the example is a system of

uniform recurrence equations.

3.4 Dynamic Programming as Systems of Affine

Recurrence Equations

We know that all DP algorithms satisfy the principle of optimality [15]. Bellman

gave a mathematical equation for this principle which is in a functional form. It is

straightforward to see that this representation is equivalent to a system of recurrence

equations.
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Indeed, various models that are used for DP easily translate to systems of recurrence

equations. Karp and Held [82] use a finite-state-automata-based model for DP, and

Giegerich and coworkers [53] use a tree grammar, which is analogous to context-free

grammars. Both works establish that a recurrence can always be derived from the

respective models if a certain monotonicity property on the cost function, akin to the

principle of optimality, is satisfied.

3.4.1 Classification of Dynamic Programming

We now describe a classification scheme for DP due to Wah et al. [155] that is useful

for the informed reader to understand the kinds of DP algorithms accepted by our

work. We will use the recurrence abstraction to illustrate the distinguishing features

of each class.

DP formulations may be divided according to the form of the recurrence expres-

sion and the nature of the dependency. A DP formulation is termed monadic if

its expression uses only a single recursive dependency, otherwise it is polyadic. An

example of a monadic formulation is X(i) = min
j<i
{ X(j) + ci,j }. The single de-

pendency is the data variable X(j). Note, that ci,j is not a data variable but

rather a precomputed table of cost values. An example of a polyadic formulation

is X(i, j, k) = min{ X(i, k, k − 1) + X(k, j, k − 1) }, which uses two recursive X

terms.

Serial DP formulations have expressions that depend on recursive data variables from

an immediate predecessor. Non-serial DP formulations have arbitrary dependencies.

An example of a serial formulation is X(i, j) = min{ X(i − 1, j), X(i, j − 1) }, and

an example of a non-serial formulation is X(i, j) = min
i≤k≤j

{ X(i, k) +X(k, j) }.

Dynamic programming problems are therefore classified as monadic serial, monadic

non-serial, polyadic serial, and polyadic non-serial.

Monadic and polyadic formulations pose no problem to efficient hardware accelera-

tion. Moreover, serial formulations can use a simple nearest-neighbor network when

implemented on a systolic array. Non-serial formulations are more problematic be-

cause an accelerator that implements such algorithms must broadcast data values,
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resulting in limited scalability and expensive interconnection networks. Fortunately

many non-serial formulations in important DP algorithms do not have arbitrary de-

pendencies but rather follow specific patterns that can be recognized and converted to

a serial formulation. Our parallelization technique can handle non-serial DP kernels

whose dependencies are defined as affine functions. We can then use the localization

transformation to make such dependencies uniform.

A set of non-serial DP formulations that pose a serious challenge to acceleration

using the techniques we employ are those that have recursive dependencies decided

by input values. Consider a decision process over an input graph G = (V,E) where

V is the graph’s vertices and E its edges. Let there be some DP algorithm for this

process to find the minimum cost X at some vertex vi with the formulation: X(vi) =

min
(vi,vj) ∈ E

{ X(vj)+c(vi) }. Here X(vi) depends on X(vj), where j 6= i, only if (vi, vj) ∈

E. Our parallelization technique requires that all recurrence dependencies be known

at compile time and cannot easily handle non-serial formulations that are dependent

on the input (in this case, the edge set). We must rewrite such recurrences to remove

the dependency on the input. In this example, we force an ordering on the vertices

and rewrite the recurrence as: X(vi) = min
1≤vj≤|V |

{ X(vj) + c(vi) + exclude(vi, vj) },

where the function exclude returns ∞ if (vi, vj) /∈ E. This does, however, result in

worst-case runtime behavior.

Summarizing this discussion more formally, our work is suitable to accelerate any DP

algorithm that can be represented as an affine system of recurrence equations over

an integral domain. Even with these limitations, we are able to accelerate a large

number of DP kernels used in computational biology and other domains.

3.5 Systolic Arrays as Systems of Uniform Recur-

rence Equations

Every systolic array can be described by a SURE [96], where:

• All data variables of the recurrences have the same number of dimensions;
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(a) A linear, M -PE systolic array that uses two distinct PE types. Registers are clocked by a global
clock (not shown).

C(p, t) =

{
0 if t = 0 and 1 ≤ p ≤M
C(p, t− 1) + at,p ·B(p, t) if 1 ≤ t ≤M and 1 ≤ p ≤M

B(p, t) =

{
bt if p = 1 and 1 ≤ t ≤M
B(p− 1, t) if 2 ≤ p ≤M and 1 ≤ t ≤M

(b) A system of uniform recurrences corresponding to the systolic array with PE index p and time
index t. This is similar to the example recurrence above, but with the indices reinterpreted.

Figure 3.2: Every systolic array can be described by a system of uniform recurrence
equations.
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• The time dimension is represented by a single element of the iteration vector,

and the remaining elements represent the processing element coordinates;

• The computation pipeline in a processor (PE) is equivalent to the computation

in the body (expressions) of the recurrence;

• Each link in the regular interconnection network of the systolic array has an

equivalent uniform dependency in the recurrence;

• External input into the array is represented by input variables in the SURE and

is used exactly once.

Figure 3.2 illustrates a systolic array and its equivalent system of uniform recurrence

equations (which are the same as the example in Section 3.3). The recurrences’

iteration vector can be reinterpreted as having one element representing the PE index

in the systolic array, and the other element as time. The array uses two types of PEs:

one at p = 1, and the second when p > 1. Each PE implements a custom datapath

described by the recurrence body. A recurrence data variable is implemented in a PE

by a register—in this example, two registers correspond to variables B and C.

There are two uniform dependencies in the SUREs, B(p, t) ← B(p − 1, t), and

C(p, t) ← C(p, t − 1). As shown in the figure, the former corresponds to a spa-

tial dependency that results in inter-PE, left-to-right communication, while the latter

corresponds to a temporal dependency within a PE.

A multiplexer is used to initialize variable C. The multiplexer is controlled by a

one-bit signal that is high when the predicate t = 0 is satisfied. The labels a and b

correspond to input data values fed into the array by a controller.

3.6 Parallelization of Uniform Recurrences

We now describe how any DP algorithm that is represented by a uniform recurrence

can be parallelized to generate a systolic array. We use polyhedral theory [122] to

analyze and exploit the parallelism in recurrence equations.

52



3.6.1 Preliminaries of the Polyhedral Representation

In this dissertation, we target recurrence equations whose computation domain D
can be described by a convex integer polytope. The set of iteration vectors z of these

recurrences is defined by a set of inequalities representing an n-dimensional convex

space:

D = { z ∈ Zn | Qz ≤ q }. (3.4)

Here Q is a d × n matrix and q is a d-vector, where d is the number of inequalities

describing the convex space. A data variable X in this recurrence is defined at every

point in the domain, and X(z) denotes the value of the variable at point z.

The convex domain has an equivalent dual representation called its generating sys-

tem. The generating system is given as a linear combination of its vertices V =

{ υ1, . . . , υw }

D = { z ∈ Zn | z =
w∑
i=1

aiυi } (3.5)

where ai are rationals and
∑w

i=1 ai = 1.

The two representations of the computation domain are a succinct representation of a

computation kernel and are useful for analysis and exploitation of the kernel’s paral-

lelism. Traditional high-level hardware synthesis tools unroll the loop representation

of these kernels and must analyze every statement for parallelism (equivalent to in-

specting every point in the computation domain). In contrast, polyhedral analysis

operates on the kernel’s polytope and is able to make broad generalizations on the

availability of parallelism by only considering a few points in the polytope (such as

its vertices).

In the next section, we show how the polyhedral representation may be used to

discover and exploit parallelism in recurrence equations. We do so by finding a linear

function termed an array mapping that transforms recurrence equations representing

dynamic programming to equations that can be used to generate a parallel array.
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3.6.2 Array Mappings for Recurrence Equations

A uniform recurrence is converted into a systolic array by finding a space-time ar-

ray mapping. For all iteration vectors z computed by the recurrence, this mapping

specifies:

• A schedule or a timing function, which gives the execution time of each point in

the computation domain. This function is specified by an affine transformation

τ .

• An allocation function, which determines the physical PE executing each point.

The allocation is specified by a linear transformation π.

• The systolic array is then generated, executing computations in parallel and

respecting the schedule.

Scheduling

Given a SURE, the scheduling function maps each data variable instance X(z) to a

computation time τ(z) : Zn → Z such that:

• τ(z) ≥ 0, ∀ z ∈ Zn (positivity condition)

• X(z1)← X(z2)⇒ τ(z1) > τ(z2), ∀ z1, z2 ∈ Zn (causality condition).

The positivity condition is for convention and ensures that all points are computed at

non-negative time. The causality condition ensures that all dependencies are satisfied,

i.e., before scheduling point z1, we must schedule its dependent value at z2. Note that

the scheduling function assumes that the entire body of the recurrence is executed in

a single clock cycle.

We may derive a distinct schedule for every data variable in the SURE, which allows

fine-grained control and pipelining of operations in the body of the recurrence; how-

ever, in this work, we will assume a global schedule for all variables in the system of

recurrences.
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A scheduling function need not exist, for example, when there are cyclic dependencies

in the recurrences. Computability of the scheduling function is undecidable in the

general case but is known to be decidable for uniform recurrences, when all data

variables have the same computation domain, and when the recurrence body is a

strict (always evaluates its arguments), single-valued function [96].

An important point to note is that the schedule must be a closed-form function

and cannot be specified by enumerating the execution times of every point in the

domain. We are able to derive a compact representation for the schedule because the

computation domain of the recurrence is a convex polytope.

We specify closed-form schedules as an affine function given by:

τ(z) = λ · z + α, (3.6)

where λ is a n−vector and α is a constant. Finding a good schedule for the recurrence

involves finding suitable λ and α values.

Allocation

Once a schedule has been determined, we need to assign the computation of every

instance X(z) to a PE. We define an allocation function π(z) : Zn → Zn−1 such that:

• τ(z1) = τ(z2)⇒ π(z1) 6= π(z2), ∀ z1, z2 ∈ Zn (injectivity condition).

The allocation function is a linear transformation specified by the matrix π of di-

mension n-1 × n. It can be equivalently specified by a direction vector u such that

πu = 0. This vector is the direction along which the n-dimensional computation

domain is projected, for execution, on an (n-1)-dimensional PE array. Given only a

projection vector, the allocation function π can be constructed from it.

The injectivity condition ensures that if two points are executed at the same time

instant, they will be computed on different PEs. This condition is given by the

constraint λ · u 6= 0, for a schedule τ(z) = λ · z + α.
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The space-time array mapping is given by the linear transformation [ πλ ] and trans-

forms a DP recurrence with iteration vectors

[ i1
...
in

]
into a systolic array recurrence

with iteration vectors

[ p1
...

pn−1
t

]
. Note the single time index and the n-1 PE indices.

Systolic Array Generation

The allocation transformation maps the computation domain onto the processor

space, such that each integer point in the processor space instantiates a PE. Enu-

merating these integer points in a space is a classic problem called scanning of a

polyhedron and is implemented using an algorithm such as Fourier-Motzkin elimina-

tion [8].

The datapath in each PE is implemented by a direct translation of the recurrence

expressions. If a data variable has multiple disjoint definitions (cases), a multiplexer

must be generated to select the appropriate expression value when its guarding pred-

icate is satisfied.

Each uniform dependency f(z) = z + b in the recurrence is converted to a link in

the direction π(b) with a latency of λ · b clocks. If π(b) is the zero vector, the

dependency is a temporal link within a PE; otherwise, it is a spatial link resulting

in inter-PE communication. Because all dependencies are uniform, not affine, the

inter-PE communication network is regular and efficient to synthesize in hardware.

3.6.3 Latency-Space Optimal Array Mappings

For any DP algorithm, there are a large number of possible accelerator configurations

that implement it. Most projects that build application-specific accelerators for DP

algorithms use an ad-hoc design process, often with no guarantee on the optimality

of the design choices. Fortunately, the polyhedral method provides a framework to

characterize important properties of the recurrence and build an optimized accelera-

tor. In our study, this problem can be framed as finding the right space-time array

mapping.
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Since an array mapping embodies the processor configuration and schedule of execu-

tion on an accelerator, a natural idea is to find a mapping for a latency-space optimal

array [96]. Such an array can compute the recurrence using the lowest-latency sched-

ule; among all possible arrays with latency-optimal schedules, we select the one that

requires the fewest processors.

Typically, there are a large number of possible schedules and allocations for an input

recurrence, and it is expensive to enumerate every single one for evaluation. In this

section, we summarize work done by researchers to efficiently explore this design

space. The approach is to first, find a latency-optimal schedule using an integer

linear program formulation [13, 99, 108], and second, find a compatible space-optimal

allocation using a bounded search [161].

Latency-Optimal Schedules: Vertex Method

Recall that since a schedule is given by the affine function τ(z) = λ · z + α, finding

a good schedule involves finding suitable λ and α values with the constraint that the

positivity and the causality conditions are met.

We describe the vertex method [13, 99, 108], which uses the polytope representation

of recurrences to efficiently evaluate schedule candidates. It depends on the property

that linear constraints are satisfied at all points in a convex polytope if and only if

they are satisfied at its extremal vertices. This property allows us to derive a compact

set of constraints to efficiently search for good schedules.

We may find a minimum-latency schedule by solving the following optimization prob-

lem.
min ( max

z1,z2 ∈ D
τ(z1)− τ(z2) ) subject to

τ(z1) ≥ 0

τ(z1) > τ(z2) if X(z1)← X(z2)

(3.7)

for every point z1 and z2 in the computation domain. The objective function aims

to minimize the maximum difference in execution times of any two points in the

computation domain. The two constraints are added to satisfy the positivity and

causality conditions respectively of Section 3.6.2. Unfortunately, the objective and
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constraints are non-linear and can be made linear only by enumerating all points in

the domain. However, this is impractical as it leads to an explosion in the number of

constraints.

Fortunately, we can use a compact representation of a polytope to derive an integer

linear program and efficiently solve the above optimization problem. We know that

the positivity and causality constraints are satisfied at all points in the computation

domain if and only if they are satisfied at the domain’s vertices. We therefore use the

vertex set V from the generating system representation of the recurrence’s compu-

tation domain (see Section 3.6.1) to derive the following integer linear optimization

problem to solve for λ and α.

min ( max
d ∈ C

λ · d ) subject to

λ · υ + α ≥ 0 ∀ υ ∈ V
λ · bi < 0 ∀ fi(z) = z + bi

(3.8)

where C = { υ1 − υ2 | υ1, υ2 ∈ V }. The first constraint, applied at every vertex

of the polytope, is a result of the positivity requirement. The second constraint is

applied for all distinct uniform dependencies of the recurrence and is a result of the

causality requirement.

The size of the integer linear program specification depends on a small number of

vertices and uniform dependencies in the recurrence. In practice, we are able to solve

this optimization problem in fractions of seconds using modern integer linear program

solvers.

Optimizing Allocation

Once a schedule has been selected, the next task is to find a compatible optimal

allocation transformation. There are a number of criteria that may be optimized,

including the number of PEs instantiated in the array, the length and number of

inter-PE communication links, and the number of PEs performing I/O from the

array.
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Most important, however, is the area cost, which may be reduced by finding a

minimum-PE allocation. Unfortunately, there is no known technique to formulate a

linear optimization problem for finding a space-optimal allocation because the num-

ber of PEs instantiated by any allocation on a n-dimensional polytope cannot be

computed by a linear objective [33]. Instead, we use an approach by Wong and De-

losme [161] that enumerates all candidate allocations for inspection. The authors

derive bounds that can be used to limit the size of the search space and find a space-

optimal allocation in reasonable time.

3.6.4 Localization

Before we end this chapter, we give an overview of how to handle recurrences with

affine dependencies. Non-serial DP kernels with affine dependencies require broad-

casting of variable dependencies and cannot be implemented on a regular inter-

PE communication network. Fortunately we can make these dependencies uniform

through a procedure called localization.

Figure 3.3: (a) Affine dependencies result in data broadcasts. (b) We can derive an
equivalent uniform recurrence by pipelining broadcasts.

Localization is done by pipelining data broadcasts, which is explained with an ex-

ample in Figure 3.3. Suppose a variable value X(zd) is an affine dependency for

X(z1), . . . , X(zm). Rather than broadcast X(zd) to all dependents as shown in Fig-

ure 3.3a, we may first deliver it to z1, then transfer it from z1 to z2, from z2 to z3,

and so forth up to zm. If each of these transfers is uniform, we achieve a regular

interconnection network.
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In this section, we describe two situations where the technique of localization is ap-

plied. Data pipelining is used to make affine dependencies uniform. Control pipelining

is used to efficiently synthesize predicates that guard expressions in the body of the

recurrence, without using expensive comparator circuits.

Data Pipelining

Localization is carried out through a procedure termed nullspace pipelining [123]. Let

X(z1)← X(zd) be an affine dependency represented by the function f(z) = Az + b.

Recall that A is not the identity matrix. Since by definition zd = f(z1), we have

X(z1)← X(f(z1)).

Nullspace pipelining aims to replaceX(f(z1)) with a new pipeline variableXpipe(fu(z1)),

such that fu(z) = z + u is a uniform dependency. The recurrence definition for the

new pipeline variable is of the form:

Xpipe(z) =

{
X(z + u′) if z = z̄

Xpipe(z + u) otherwise.
(3.9)

The recurrence simply transfers its input to the output without performing any com-

putation.

Figure 3.4: An affine dependence on point zd is made uniform using a pipeline variable
of the form in Recurrence 3.9.

Figure 3.4 illustrates a uniform pipeline for an affine dependency. Pipelining a broad-

cast involves two steps. First, we identify a vector u such that adding multiples of
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it to z1 generates z2, z3, . . ., i.e., all points that depend on zd = f(z1). Second, the

pipeline must be initialized by a uniform dependence at its first point z1.

The key question is, how do we find such a pipeline for any affine dependency? We

must be able to both generate a pipeline by finding a suitable constant vector u, and

initialize the pipeline by another constant vector u′.

Lemma 3.6.1. (Rajopadhye [123]) Two points z1 and z2 have an affine dependency

f(z) = Az + b on the same point zd if and only if they are separated by a constant

vector u in the nullspace of A.

Proof. Since z1 and z2 depend on the same point zd, Az1 + b = zd = Az2 + b. It

follows that A(z1 − z2) = 0 and hence u = z1 − z2 is in the nullspace of A.

Similarly, given a vector u in the nullspace of A, a point z1 = z2 + u has its affine

dependency on the point Az1 + b, which is Az2 +Au + b. Since u is in the nullspace

of A, Au = 0. Conclude that Az2 + b = Az1 + b.

We can use Lemma 3.6.1 to show that instead of broadcasting an affine data depen-

dence to point zm, we can instead read the same data value from a pipeline variable

through a uniform data transfer from point zm + u.

Pipeline Generation. We can find a suitable constant vector u by finding a basis

vector for the nullspace of the n× n matrix A (here we assume that the rank of the

matrix is n − 1). The basis is not unique; one must be selected from a large space

of possibilities. Furthermore, the selected basis vector must satisfy the causality

constraint for the schedule, i.e., λ · u < 0.

Pipeline Initialization. In order to initialize the pipeline, the dependent value zd

must be made available to the first stage of the pipeline, i.e., the earliest scheduled

point, identified by the predicate z = z̄. It has been shown that this initialization

is possible with a uniform dependency if A2 = A; otherwise, we may be able to use

multistage pipelining [123].
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Control Pipelining

Recurrences with multiple disjoint definitions must be handled with care in order to

synthesize efficient hardware. Consider Equation 3.9, which initializes the pipeline

when the predicate z = z̄ is satisfied. Recall from the example in Section 3.5 that

such disjoint definitions are implemented in a PE with a multiplexer. But how do we

evaluate a predicate and generate a signal to control the multiplexer?

Figure 3.5: Evaluating a predicate requires maintaining the iteration vector z of the
point being computed, and the use of arithmetic operations in every PE.

We can express such predicates as a conjunction of expressions of the form θz = α,

where θ is a constant n-vector, z =

 p1
p2
...

pn−1
t

 is the iteration vector, and α is an integer.

A naive implementation of this predicate in hardware is shown in Figure 3.5, with the

output of the circuit controlling a multiplexer. However, implementing this logic in

every PE is costly, wasting area resources and increasing complexity of the datapath.

Comparator hardware may be altogether eliminated from PEs by sharing control

information, through pipelining, among all cells that check the same predicate. This

pipeline simply transmits a single bit that is true whenever the predicate is satisfied.

To find such a pipeline, consider all computation points satisfying θ · z = α. We

first generate the pipeline by finding a basis u for the nullspace of θ that satisfies the

causality constraint of the schedule. This pipeline is initialized at the boundary of

the systolic array and is set to true whenever the predicate is satisfied. In this way,

the expensive implementation of Figure 3.5 is required only at the boundary PEs.
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3.7 Summary

In this chapter, we have described how any DP recurrence can be represented as a

system of uniform recurrence equations and analyzed using the polyhedral model to

build latency-space optimal arrays. In the next chapter, we show how to apply these

methods to parallelize the Nussinov RNA folding algorithm.
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Chapter 4

Accelerating the Nussinov RNA

Folding Recurrence

In this chapter, we are interested in the problem of folding an RNA molecule to deter-

mine their secondary structure. RNA molecules carry out diverse functions in living

cells, including catalysis of reactions [40], binding of small molecules [14], and targeted

suppression of transcription and translation [64]. Although an RNA may be viewed

as a linear sequence of characters, or bases, from the alphabet {A,C,G, U}, its func-

tion is actually determined by its secondary structure—the folded shape that results

from pairing of complementary bases (mainly A-U and C-G) within one sequence.

Determining this structure is key to analyses that identify and assign functions to

RNAs.

Since experimental determination of an RNA’s secondary structure is time-consuming,

biologists use computer programs to predict the structure of RNA molecules. Efficient

DP algorithms predict RNA structure using empirical models to estimate the free

energies of folded structures. The simplest folding algorithm, due to Nussinov [117],

uses the number of base pairs in the structure as a proxy for free energy, preferring

structures with the most base pairs. This method was refined by Zuker [166] to

predict a minimum free-energy structure using detailed and more accurate energy

models. Figure 8.1 shows an RNA molecule folded into its two-dimensional structure.

RNA folding by any of the above methods requires time cubic in the length of the

RNA. Although folding computations are generally restricted to RNAs of fewer than

than 200 bases, important biological applications, including RNA motif finding [68,
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Figure 4.1: An RNA sequence and its folded secondary structure with base pairs
highlighted in blue.

119] and search for functional RNAs in genomic DNA [93, 114], may require folding

millions of such short RNAs, which is computationally demanding.

We now introduce the simpler Nussinov RNA folding algorithm and develop parallel

accelerators for this recurrence. We will tackle the more biologically accurate and

challenging Zuker algorithm in Chapter 8. Accelerating Nussinov is important for

two reasons. First, Nussinov has the same shape and dependency structure as Zuker.

Accelerators for Nussinov represent the best-case scenario for RNA folding, allowing

the exploration of a large design space that can inform the building of an efficient

Zuker accelerator. Second, simplified versions of the Zuker algorithm that resemble

Nussinov are used in applications that require interactive response [100, 105] or that

use heuristics to predict secondary structure [12].

In the next section we introduce the Nussinov DP recurrence and describe the chal-

lenges to successful acceleration. We show how the recurrence may be finessed into a
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form more suitable for efficient acceleration. The application of the localization trans-

formation, which converts affine dependencies to uniform ones, is described in detail.

Armed with the polyhedral analysis techniques introduced in the previous chapter,

we develop two full-size, latency-optimal arrays. We have coded these arrays on an

FPGA system and conclude with an experimental evaluation of the accelerators.

4.1 The Nussinov Algorithm

Given an RNA sequence S of length N , the Nussinov algorithm computes the largest

number of base pairs X(i, j) in any folded structure of subsequence Si...j as follows:

X(i, j) = max


X(i+ 1, j)

X(i, j − 1)

X(i+ 1, j − 1) + δ(Si, Sj)

max
i<q<j

[X(i, q) +X(q + 1, j)].

(4.1)

The DP algorithm models four cases that build from smaller subproblems to compute

the best structure of subsequence Si...j. The cases, illustrated in Figure 4.2, cover all

possible ways the RNA subsequence may fold. The DP algorithm selects the case

with the maximum number of base pairs as the optimal folding of the subsequence.

As shown in the figure, we may either add an unpaired base Si onto the best structure

already computed for subsequence Si+1...j or add unpaired base Sj onto the best

structure computed for subsequence Si...j−1. Alternatively, in the third case, bases

Si and Sj are paired. The function δ evaluates to 1 if two bases are complementary

(may be paired) or 0 otherwise. Finally, we may combine two optimal substructures

of subsequences Si...q and Sq+1...j. The algorithm considers every way of forming the

two substructures by varying the base position given by index q. By evaluating all

possible ways of folding the subsequence Si...j, the Nussinov algorithm is able to select

the one with the maximum number of base pairs. We refer the interested reader to

an article by Eddy [42] for more details.

The data variable X is defined over the domain D = { i, j | 1 ≤ i < j ≤ N }, with the

score of the best structure for the entire sequence at X(1, N). In this work, we are
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Figure 4.2: The Nussinov DP algorithm builds the score of the optimal structure for
subsequence Si...j by considering all four ways of breaking up the problem. The figure
is taken from [42].

interested in accelerating only the computation of the value X(i, j); the actual folded

structures for sufficiently high-scoring RNAs may be computed later in software.

i
j
1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

5,5

Figure 4.3: Nussinov data dependencies. X(1, 5) depends on three adjacent cells (red)
plus five non-local cells (blue).

The Nussinov recurrence is challenging to accelerate because of its non-local depen-

dency structure, shown in Figure 4.3. Although the first three dependencies of X(i, j)

reference only adjacent cells of the DP matrix, the fourth term references widely sep-

arated cells. For example, X(1, 5) depends on X(1, 4), X(2, 4), and X(2, 5) but also

on X(1, 2), X(1, 3), X(3, 5), X(4, 5), and X(5, 5). On an FPGA, non-local cell depen-

dencies result in routing delays that dominate the critical path of the computation.

Worse yet, these non-local dependencies are affine; that is, X(i, j) depends on other
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cells X(r, s) such that the differences i−r or j−s are not constant but rather depend

on i and j. Affine dependencies result in a nonuniform structure that cannot easily

be mapped onto an array of identically connected processing elements.

4.2 Parallelizing Nussinov

We now describe the use of polyhedral analysis to parallelize the Nussinov RNA

folding algorithm. We first transform the recurrence described in Equation 4.1 to

make it more amenable to parallelization. We then design full-size 2-D arrays using

the parallelization techniques described in the previous chapter.

We start with Recurrence 4.1 and convert the O(N)-ary max operator to a binary

operation by aggregating the operation along a new dimension k. We then use middle

serialization [50] to derive the equivalent recurrence shown below. The transforma-

tions involved in serializing reductions are described elsewhere [62].

X(i, j, k) = max



δ(Si, Sj) if j − i = 1

X(i+ 1, j, k)

X(i, j − 1, k)

X(i+ 1, j − 1, k) + δ(Si, Sj) if k = 1

X(i, j, k + 1)

X(i, i+ k, 1) +X(i+ k + 1, j, 1)

X(i, j − k, 1) +X(j − k + 1, j, 1)

X(i, j, k + 1)

X(i, i+ k, 1) +X(i+ k + 1, j, 1) otherwise

X(i, j − k, 1) +X(j − k + 1, j, 1).

(4.2)

Note how the fourth term in Recurrence 4.1 is aggregated along the newly introduced

dimension k, where 1 ≤ k ≤ b(j − i)/2c, and the result of the max is available at

k = 1. For an RNA of size N bases, the score of the best folded structure is now

stored at X(1, N, 1).
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The terms X(i, i+ k, 1), X(i+ k+ 1, j, 1), X(i, j− k, 1) and X(j− k+ 1, j, 1) induce

four affine dependencies of the form fi(z) = Aiz + bi as seen below, which are an

obstacle for efficient array synthesis.

A1 =

 1 0 0

1 0 1

0 0 0

b1 =

 0

0

1

 ;A2 =

 1 0 1

0 1 0

0 0 0

b2 =

 1

0

1



A3 =

 1 0 0

0 1 −1

0 0 0

b3 =

 0

0

1

 ;A4 =

 0 1 −1

0 1 0

0 0 0

b4 =

 1

0

1


In the next section we make affine dependencies f1−4 uniform by introducing corre-

sponding pipeline variables X1−4. We also pipeline the input RNA sequence using

variables P and Q.

4.2.1 Pipelining Affine Dependencies

We apply the localization technique introduced in the previous chapter by searching

for basis vectors u1−4 for the nullspace of A1−4. We first note that the rank of all

four matrices is two; therefore, the nullspace in each case is one-dimensional and so

is specified by a single basis vector. We derive the following basis vectors for the four

pipelines: u1 =
[

0
−1
0

]
, u2 =

[
1
0
−1

]
, u3 =

[
0
−1
−1

]
, and u4 =

[
1
0
0

]
.

Next, we must initialize these pipelines. To see if initialization is possible with a

uniform dependency, we check for the condition A2
i = Ai (i = 1 . . . 4). Indeed,

this condition is satisfied for A2 and A3. Pipelines for these two dependencies may

be initialized at the domain boundary k = 1 using constant initialization vectors

u′2 =
[

2
0
0

]
and u′3 =

[
0
−1
0

]
. We can now construct two new uniform pipelines X2

and X3 that replace the affine dependency terms X(i+ k + 1, j, 1) and X(i, j − k, 1)

respectively.

X2(i, j, k) =

{
X(i+ 2, j, k) if k = 1

X2(i+ 1, j, k − 1) otherwise
(4.3)

X3(i, j, k) =

{
X(i, j − 1, k) if k = 1

X3(i, j − 1, k − 1) otherwise
(4.4)
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Figure 4.4: (a) Two affine dependencies f3 : G ← E and f1 : H ← E are to be
pipelined. (b) Simple pipeline X3 for dependency f3 transfers E to all cells F through
G that require it using uniform transfers. Multistage pipeline X1 for dependency f1

transfers E to all cells G through H and is initialized by X3.

Broadcast dependencies f1 and f4 generate pipelines that must be initialized at the

domain boundary k = (j − i)/2. However, neither pipeline can be initialized by a

constant vector; initialization requires another affine dependence. Fortunately, we can

pipeline this dependency too, using multistage pipelining. The pipeline for f1 can be

initialized using X3, and the pipeline for f4 using X2. We can now construct two new

uniform pipelines X1 and X4 that replace the affine dependency terms X(i, i + k, 1)

and X(j − k + 1, j, 1) respectively.

Figure 4.4a shows an example of the two affine dependencies: G ← E and H ← E,

represented by functions f3 and f1 respectively. The dependencies are shown on the

j − k plane for a fixed value of i. Figure 4.4b shows their respective pipelines. The

dependent cell E is pipelined through the set of cells that depend on it in a linear

chain (shown by the straight line). Pipeline X3 runs from F to G and is initialized

with the value at cell E by a uniform dependency (shown by the arc). Pipeline X1
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running horizontally from G to H is a multistage pipeline and uses the last stage of

X3 for initialization.

Pipelining the Input Sequence

We now deal with the input sequence S used in the score computation of the recur-

rence. The input variables Si and Sj are defined over one-dimensional domains but

are used in computing the three-dimensional variable X. We therefore align Si along

the j = 0 ∧ k = 1 line and Sj along the i = 0 ∧ k = 1 line. The affine dependencies

introduced are made uniform using nullspace pipelining. Their pipelines P and Q

propagate horizontally and vertically across the array and are initialized by the input

sequence at the domain boundary j − i = 1.

The final, transformed system of uniform recurrence equations is shown below:

X(i, j, k) = max



δ(P (i, j, k), Q(i, j, k)) if j − i = 1

X(i+ 1, j, k)

X(i, j − 1, k)

X(i+ 1, j − 1, k)+

δ(P (i, j, k), Q(i, j, k)) if k = 1

X(i, j, k + 1)

X1(i, j, k) +X2(i, j, k)

X3(i, j, k) +X4(i, j, k)

X(i, j, k + 1),

X1(i, j, k) +X2(i, j, k) otherwise

X3(i, j, k) +X4(i, j, k)

(4.5)

X1(i, j, k) =

{
X3(i, j, k) if j − i = 2k

X1(i, j − 1, k) otherwise

X2(i, j, k) =

{
X(i+ 2, j, k) if k = 1

X2(i+ 1, j, k − 1) otherwise
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X3(i, j, k) =

{
X(i, j − 1, k) if k = 1

X3(i, j − 1, k − 1) otherwise

X4(i, j, k) =

{
X2(i, j, k) if j − i = 2k

X4(i+ 1, j, k) otherwise

P (i, j, k) =

{
Si if j − i = 1

P (i, j − 1, k) if k = 1

Q(i, j, k) =

{
Sj if j − i = 1

Q(i+ 1, j, k) if k = 1.

Unique dependencies of this SURE are as follows (each Ai is the identity matrix):

b1 =

 1

0

0

 ; b2 =

 0

−1

0

 ; b3 =

 1

−1

0

 ; b4 =

 0

0

1



b5 =

 2

0

0

 ; b6 =

 1

0

−1

 ; b7 =

 0

−1

−1

 .

Control Pipelining

The two predicates in the Nussinov recurrence that must be pipelined are j − i = 2k

and k = 1. The predicate j−i = 2k may use either
[

0
−2
−1

]
or
[

1
−1
−1

]
as valid basis vectors

for its pipeline. We use the latter, which guarantees nearest-neighbor communication.

Note that the predicate is always false at odd diagonals. At the even diagonal border

j− i = 2, the control pipeline is initialized to 1 and then pipelined to subsequent even

diagonals. The control pipeline is optimized out from odd diagonals in the array.

When aggregating along the k-axis, we need to substitute the term X(i, j, k + 1) by

zero at k = b(j − i)/2c. We use a pipeline similar to the one above, except that both

odd and even diagonal pipelines are initialized to 1. For the predicate k = 1, we use

a control pipeline with basis vector
[

1
0
0

]
.

72



Figure 4.5: Points of the domain computed at time 9 and 11 are shown on hyperplanes
(2-D planes).

4.2.2 Deriving Full-Size Arrays

A latency-optimal schedule for the Nussinov recurrence is given by τ(i, j, k) = −2i+

2j− k− 1 where λ =
[ −2

2
−1

]
and α = −1. A time hyperplane, in this case a 2-D plane,

describes all points in the domain that are executed simultaneously on independent

processors. Figure 4.5 shows points on two time hyperplanes at time 9 and 11. The

total computation time for an RNA of length N is given by τ(1, N, 1)−τ(1, 3, 1)+1 =

2N − 5 clock cycles.

Once a schedule has been found, the allocation function must be computed. Recall

that an allocation can be described by an equivalent projection vector. The projection

vector projects the domain of the recurrence onto processors. In the case of Nussinov,

we project its 3-D domain along two directions as illustrated in Figure 4.6 to generate

2-D processor arrays FS-A and FS-B. The first array projection is along the direction[
0
0
−1

]
with allocation π(i, j, k) = [i, j]. The second, a space-optimal projection, is

along the direction
[
−1
0
0

]
with allocation π(i, j, k) = [j, k]. Both arrays use the same

latency-optimal schedule and have an execution time of 2N − 5 clock cycles.
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Array FS-A

A PE at location (i, j) in the array FS-A has an interconnection network computed

by substituting the constant vectors, bi, of dependencies from Recurrence 4.5 in the

processor allocation function π(i, j, k) = [i, j]. The latency of each link in the network

is computed from the schedule as λ ·bi. The network derived from the seven uniform

dependencies is shown below.

1. [i+ 1, j] Latency 2

2. [i, j − 1] Latency 2

3. [i+ 1, j − 1] Latency 4

4. [i, j] Latency 1

5. [i+ 2, j] Latency 4

6. [i+ 1, j] Latency 1

7. [i, j − 1] Latency 1

The control pipeline for predicate j−i = 2k maps to the interconnection
[
i+1
i−1

]
, which

moves data diagonally across the array with latency 3. The pipeline for predicate

k = 1 maps to
[
i+1
j

]
, which moves data vertically with latency 2.

To detect the final result X(1, N, 1), we may either use a counter to count up to the

execution time of the entire array or use control pipelines to detect the predicates

i = 1 ∧ j = N ∧ k = 1. The first two predicates are always satisfied at PE [1, N ]; for

the predicate k = 1, we use the existing control pipeline.

The FS-A array requires a total of N2−3N+2
2

PEs to fold an RNA of length N .

Array FS-B

The structure of this array, shown in Figure 4.6b, derives from the allocation function

π(i, j, k) = [j, k]. The control pipeline for predicate j − i = 2k maps to the diagonal

interconnection
[
i−1
j−1

]
and has a latency of 3. The predicate k = 1 is always true for

all PEs at the bottom row
[
j
1

]
.

The network derived from the seven uniform dependencies is as follows.
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1. [i− 1, j] Latency 2

2. [i− 1, j] Latency 2

3. [i− 2, j] Latency 4

4. [i, j + 1] Latency 1

5. [i− 2, j] Latency 4

6. [i− 1, j − 1] Latency 1

7. [i− 1, j − 1] Latency 1

In the FS-B array, the target value is computed by PE [N, 1]. We introduce a new

control signal for the predicate i = 1, which is initialized at PE [2, 1] and propagates

Figure 4.6: (a) Array FS-A projects the Nussinov computation domain along the k
axis. (b) Projecting along the i axis yields the FS-B array. The RNA sequence is fed
into PEs indicated by dashed arrows.
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left to right with a latency of 2 through the bottom row of PEs. This signal is used

to detect the result at PE [N, 1].

The number of PEs required in the array to fold a sequence of length N is N2−N
4

,

half the number required by the FS-A projection. Furthermore, just N − 1 PEs in

the FS-B array (shown shaded in Figure 4.6) implement the comparatively expensive

computations at k = 1 of Equation 4.5, unlike array FS-A, which must implement

this computation on every PE. Finally, if an implementation requires the cell values

of the entire dynamic programming matrix (for example, to traceback the optimal

secondary structure), the FS-A array requires I/O links at every PE. In contrast, the

FS-B array generates these values at the bottom row of PEs.

4.3 PE Precision and Smaller Inputs

The width of datapaths in the arrays depends on the precision of the scores required

in the RNA folding computations. Increased precision requires larger bit widths,

which use more hardware resources and increase circuit complexity (i.e., critical path

delay). We would like to use the lowest precision sufficient to produce correct results

for the Nussinov algorithm.

We can use the fact that the Nussinov recurrence uses a simple scoring scheme of +1

for each base pair. For a sequence of length N , the maximum number of base pairs

possible is N
2

. We therefore limit the bit width of datapaths in PEs to log2(N
2

+ 1).

All our arrays are designed for input sequences of length exactly N , determined at

compile time. Given this length, the target score is always computed by the same

PE. Input sequences of length < N are handled as a special case. Suppose we have

a sequence of length m < N whose final score is computed at PE π(1,m, 1). When

calculating the score of a sequence of length m + 1, by the principle of optimality

there exists at least one case in the dynamic programming recurrence that has a

direct or indirect dependency on X(1,m, 1). We can ensure that this value is always

the optimal case by evaluating δ to zero whenever i, j > m. To achieve this, we

pad the input sequence by N −m special “unpairable” characters that yield a zero
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score when paired with any other character. We can then show inductively that cell

X(1, N, 1)’s value equals that of X(1,m, 1).

4.4 Evaluation

In this section we evaluate the performance of our custom Nussinov arrays. We man-

ually coded the two designs in VHDL, verified functional correctness in simulation,

and then synthesized and verified correctness on our FPGA system. In this section

we outline our results and compare performance of our accelerators to a software

baseline. We start with a description of the software and hardware platforms used to

compile these results. These two systems are employed throughout this dissertation.

4.4.1 Software Baseline

Our software baseline system is a 3 GHz Intel Core 2 Duo E6850 CPU with 4 MB

L2 Cache and 4 GB system memory. The CPU was released in July 2007 and man-

ufactured on a 65 nm process technology. We used Centos Linux version 2.6.23.1-42

as our operating system and compiled the baseline software with gcc version 4.4.0.

All runtimes are the wall clock time as reported by the unix time utility. We report

both single core as well as dual core performance. To run our software on two cores,

we split the input into two equal halves in an offline transaction and processed them

using two independent instances of the software.

4.4.2 Hardware Baseline

To measure hardware performance we used an FPGA system provided by Exegy Inc7.

Our designs were built on a Xilinx Virtex 4 LX100-12 FPGA, which has 49, 152 slices

and 240 on-chip 18 kbit block RAM memories. Note that our FPGA was released

earlier than our baseline system and uses an older process technology. The Virtex 4

7http://www.exegy.com/
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family was released in June 2004 and manufactured on a 90 nm process technology.

It has since been superseded by Virtex 5, 6 and more recently 7 FPGA families from

Xilinx. We used the Virtex 4 because of easy access to this FPGA, however, we expect

accelerator performance to improve substantially on newer generations of FPGAs.

4.4.3 Results

Table 4.1: Comparison of the two full-size Nussinov systolic arrays.

Design # PEs N Total slices Slice memories Frequency (MHz)

FS-A N2−3N+2
2

41 42,137 (85%) 606 (2%) 130

FS-B N2−N
4

83 48,884 (99%) 706 (2%) 160

We synthesized our arrays post-place-and-route for the Xilinx Virtex 4 LX100-12

FPGA. Arrays FS-A and FS-B were built with a PE data width of 5 and 6 bits

and clocked at 130 and 160 MHz respectively. We expected the FS-A array to clock

faster due to its smaller data width but this advantage is negated by the expensive

recurrence body computation that must be implemented in every PE of the array.

We built the two Nussinov arrays to process as large an RNA as possible. We report

the FPGA resources used by each array in Table 4.4.3. The FS-A array can process

a sequence of length at most 41, using 85% of slices on the FPGA. In contrast, the

FS-B array can process sequences of length up to 83, 2× longer.

Table 4.2: Variation of array FS-B’s resource usage with PE precision.

Precision N Total slices Slice memories Frequency (MHz)
6 83 48,884 (99%) 706 (2%) 160
8 65 45,923 (93%) 597 (2%) 140
16 47 46,158 (93%) 552 (2%) 130

We next built the FS-B array with various cell precisions as reported in Table 4.2.

Increasing the data width noticeably increases area and so reduces the number of PEs

that fit on the FPGA. Our design’s critical path is also sensitive to the logic delays

caused by the longer combinational path of the larger bit widths and so decreases the

array clock frequency. The more complex Zuker RNA folding algorithm will need a

precision of at least 16 bits, so similar full-size arrays are unlikely to fit on our FPGA.

78



To provide a baseline to compute the speedup of our accelerator, we wrote an op-

timized version of the Nussinov algorithm (Recurrence 4.1) in C. The software was

compiled using gcc 4.4.0 with flags -O3 -march=nocona -fomit-frame-pointer. We

created two synthetic RNA databases of 10 million randomly generated sequences of

length 41 and 83 bases. The databases were of size 790 and 1, 191 MB respectively,

and easily fit in system memory. We measured the time to compute the Nussinov

scores of the two RNA databases on the dual core. We report the best of five runs

with runtime including I/O operations such as the reading of sequences from disk

into memory, although the operating system reads the database from cache after the

first run.

To measure hardware performance, we folded the same two RNA databases on our

FPGA system. We first verified correctness by matching the scores of each accelerator

to that of the software implementation. The hardware runtime measures the time

to read the database into system memory, transfer it onto the FPGA, perform the

computation, and report the results to the user. Again, we report the best of five

runs.

Table 4.3: Speedup of Nussinov arrays vs. modern x86 CPU. Runtimes are measured
in seconds.

Design N
Single core Dual core H/W Single core Dual core

runtime runtime runtime speedup speedup
FS-A, FS-B 41 210.06 105.57 6.66 31.54× 15.85×

FS-B 83 1462.35 732.70 11.32 129.18× 64.73×

Table 4.3 shows the speedups of the Nussinov arrays for various sequence lengths.

Both arrays have the same execution time of 2N − 5 clocks, but FS-B is clocked 23%

faster. FS-A can process a sequence of at most 41 bases on the Virtex 4 LX100-12

FPGA and achieves a speedup of 15× over the dual core. Our larger FS-B imple-

mentation is still faster than the dual core when processing 83 base RNAs.

Speedups increase significantly for arrays handling longer sequences because the array

runs in time Θ(N) rather than the software’s Θ(N3). Larger families and newer FP-

GAs will support even longer sequences; for example, we built a FS-B array handling

RNAs of length 100 on a Virtex-4 LX160 FPGA.
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Our study demonstrates encouraging speedups on our accelerator system over general-

purpose processors and provides a foundation for improvement in the rest of this

dissertation. Note the importance of design space exploration. Clearly, we favor

array FS-B for Nussinov RNA folding, which is more resource efficient and folds

RNAs faster than FS-A. In the next chapter we explore how to find such favorable

arrays.

4.5 Related Work

The FS-A and FS-B Nussinov arrays are similar to two classic 2-D systolic arrays for

the well-known optimal string parenthesization problem. Given a string S of length

N and a cost W (i, j) for adding parentheses around substring Si...j, this problem

seeks the minimum cost X(i, j) of any properly nested set of parentheses for Si...j.

Its recurrence mirrors the fourth case of the Nussinov algorithm: X(i, j) = W (i, j) +

min
i<q<j

[X(i, q) +X(q, j)].

A classic result of Guibas et al. [60] shows how to parallelize string parenthesization

using a 2-D systolic array. Gachet et al. [50] later proposed an alternative space-

efficient array. Arrays FS-A and FS-B are similar to these two well known designs.

To our knowledge, Guibas’ and Gachet’s designs have neither been implemented in

hardware nor adapted to perform RNA folding.

4.6 Conclusions

We have analyzed and accelerated Nussinov RNA folding by building two systolic

array designs. While the core designs draw on classic results for string parenthesiza-

tion, we have elaborated these designs into fully realized FPGA implementations and

analyzed their performance. Our designs achieve up to a 64× speedup over a modern

x86-family dual core CPU when implemented on a Virtex 4 LX100-12 FPGA. Our

realization of the Nussinov algorithm is an important starting point for designs that

more closely approximate the detailed energy models used by the Zuker algorithm.
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Chapter 5

Design Space Exploration of

Throughput-optimized Arrays

In the previous chapter, we successfully parallelized the Nussinov RNA folding al-

gorithm, building efficient hardware arrays using polyhedral analysis. However, our

attempt to apply state-of-the-art techniques to our target application domain exposed

two key limitations, which we seek to remedy in this chapter.

First, most techniques to realize systolic arrays from a recurrence seek an array that

is latency-space optimal. Such an array computes a single instance of the recurrence

with minimum latency; for example, our Nussinov arrays from the previous chapter

can fold a single RNA in the shortest time possible. In many application domains,

however, we seek to accelerate computations over large collections of small, discrete

inputs. For example, computational biology algorithms often work on large databases

of short DNA or protein sequences, while video processing may require analysis of a

stream of individual image frames. For such applications, the latency of computa-

tion on an individual input is less important than its throughput, or equivalently the

total execution time on the entire data set. As far as we are aware, the literature

of automated systolic array design places little emphasis on optimizing arrays for

throughput. We will address the problem of throughput-optimized array design in

this chapter.

Second, we seek not just a single optimal array but a library of designs optimized for

different-sized inputs. A large data set may contain inputs of many different sizes,

but a systolic array implementation is of one fixed size, requiring different-sized in-

puts to be split or padded. A single array is reasonable when the target platform is a
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fixed-function integrated circuit, but modern devices can be rapidly reconfigured with

designs optimized for different input sizes. FPGAs from Xilinx and Altera support the

loading of a new hardware circuit in tens to hundreds of milliseconds [23]. It is there-

fore feasible for one computation to use a range of array mappings, each optimized to

maximize throughput on inputs of a different size, using all available computational

resources. For example, we may use a collection of throughput-optimized arrays to

speed up the acceleration of RNA folding of a large database of sequences. When the

input size distribution is known a priori, we assign small inputs to high-throughput,

highly resource-intensive arrays and large inputs to lower-throughput, lower-resource

arrays. This results in a net speedup over using just a single latency-space optimal ar-

ray supporting the largest possible size. The effectiveness of this approach will depend

on the number of arrays used, the overhead of loading each array, and the processing

time on each array; we explore this optimization problem in detail in Chapter 7. The

software tool we introduce here can automatically design a range of arrays that trade

off area for throughput.

In this chapter, we first give a mathematical definition for the throughput of a systolic

array. We show that a useful bound on throughput can be computed solely from the

array’s allocation function, independent of the schedule of times at which these steps

are executed. This observation leads to a search strategy for finding arrays with

optimal throughput. We then describe a software tool we have written to accept

recurrence descriptions of programs and perform the aforementioned search. The

schedules and allocations generated by our tool can be fed into array synthesis software

such as MMAlpha [61], PARO [63], or PICO-NPA [133] to synthesize low-level HDL

descriptions of systolic arrays.

Finally, we present novel throughput-optimized arrays that have a 4-13× and 2-

5× speedup over the latency-optimized array for the banded Smith-Waterman and

Nussinov RNA folding algorithms respectively, when processing a large database of

inputs.
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5.1 Recapitulation of Background

In this section, we briefly recapitulate the background introduced in Section 3.3. Re-

call that we seek to accelerate a system of parametrized uniform recurrence equations.

A parametrized recurrence defines the computation of an n-dimensional data variable

X(z) over a domain D ⊂ Zn, representing the individual steps of the recurrence. The

recurrence defines a domain of points at which computation is performed. We identify

a point in the domain by its iteration vector z, whose elements are loop index values.

In what follows, we will use points and iteration vectors interchangeably.

A recurrence may be parametrized, i.e., it may have one or more size parameters,

such as the length of an input sequence. The data dependencies between iteration

vectors in D are assumed to be uniform for efficient systolic array implementation;

however, our design techniques also work for recurrences with more general affine

dependencies.

A system of recurrences can be realized as a systolic array by finding two functions

on the domain D:

1. A scheduling function, τ(z) = λ · z + α, which gives the time when X(z) is

computed for each iteration vector z ∈ D.

2. An allocation function, π(z), which gives the physical PE of the array that com-

putes each X(z). The allocation function can be fully specified by a direction

vector u along which the computation domain is to be projected.

A systolic array has a utilization, or efficiency, given by 1
|λ·u| [96]. Given the product

γ = |λ · u|, which is the initiation interval of computation points in the PE, each PE

in the array is active one of every γ clock cycles. Idle PEs are a poor use of compute

resources, so we wish to utilize each PE as much as possible.

There are two approaches to increasing the efficiency of underutilized arrays. If

throughput is most important, γ instances of the input problem can be interleaved to

execute simultaneously on the array. Alternatively, if resource usage is a constraint,

the workload of γ virtual PEs may be run sequentially on a single physically realized

PE—this is the approach taken in building a space-optimal array.
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5.2 Motivating Examples

Throughout this chapter we will reference two recurrences to illustrate the concepts

and methods introduced. Here we show only the domains of the recurrences; the

interested reader will find the entire algorithms in the referenced works.

Although the computations in these recurrences’ bodies are fairly simple integer oper-

ations, our technique applies independent of the operation complexity. Using floating

point operators, multi-cycle operations, and on-chip memories does not invalidate the

throughput optimization procedure we will describe (though it will reduce the size of

the array that can be instantiated). Another important advantage to our method is

that it is indifferent to dependencies in the recurrence; the throughput optimization

procedure we suggest in this chapter depends solely on the shape and size of the

computation domain.

Banded Smith-Waterman. This version of the Smith-Waterman algorithm for

DNA and protein sequence alignment was described by Chao [28]. The dynamic

programming recurrence aligns two sequences of lengths M and N along a band of

width w, centered on its middle diagonal. The output is a scalar representing the

score of a correspondence between the two sequences that minimizes the (weighted)

edit distance between them. The computation domain is D = { i, j | 1 ≤ i ≤
M ; max(1, i− w

2
+ 1) ≤ j ≤ min(N, i+ w

2
) }.

Nussinov. We have already introduced the Nussinov algorithm in Chapter 4. Its

computation domain is D = { i, j, k | 1 ≤ i ≤ N ; i ≤ j ≤ N ; 1 ≤ k ≤ j−i
2
}.

We say that a systolic array executes a (domain) instance I when the array evaluates

the system of recurrence equations for a particular input. This input could be, e.g.,

a certain DNA sequence. The input defines integer values for any size parameters of

the recurrence.

We illustrate this concept with the Nussinov example. Let q1 and q2 be sequences of

length N = 100 and N = 200 respectively. The Nussinov computation on the two

sequences defines distinct instances I1 and I2 respectively. The computation domain
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for q1 is D(I1) = { i, j, k | 1 ≤ i ≤ 100; i ≤ j ≤ 100; 1 ≤ k ≤ j−i
2
}, whereas the

domain for q2, D(I2), has an upper bound of 200 on i and j. Every input sequence

defines a new instance of the recurrence that is to be executed on a systolic array;

however, the domains for all sequences of the same length N have the same shape

and contain the same number of iteration vectors.

5.3 Characterizing Throughput-optimized Arrays

The computation time for an instance I, i.e. the time to evaluate all iteration vectors

in the domain D(I), is given by the latency L of the array’s schedule. L is defined

as the difference in execution times of the first and last scheduled iteration vectors:

L = max { τ(z) | z ∈ D(I) } −min { τ(z) | z ∈ D(I) }.

As we have expounded in Chapter 3, existing work in array design has focused on

finding a latency-optimal schedule Lopt to build high-performance parallel arrays. The

total execution time for m equal-sized inputs on a latency-optimal array is mLopt.

We are interested in the throughput, rather than the latency, of a systolic array.

Throughput is the deciding factor when minimizing the total execution time of a

large number of input instances. Define β, the block pipelining period of an array, as

the earliest time after an array starts to compute on an input at which computation

on a second input can be started safely, i.e., without any one PE trying to compute

on both inputs at the same time. The reciprocal of β is the throughput of the array,

measured in input instances completed per clock.

Consider the recurrence with computation domain D(I) on input instance I of some

fixed size. Let τ(z) = λ · z + α, z ∈ D(I) be some schedule for computing the

recurrence for I. Given a series of instances I2, I3, . . . of the same size as I, we would

like a pipelined schedule to compute them all efficiently. Since we know that successive

instances of the recurrence can start at intervals of β without PE contention, we define

a pipelined schedule of the kth instance as fk(z) = τ(z) + (k − 1)β. A throughput-

optimized array executes m instances of the input in time (m − 1)β + L, which is
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Figure 5.1: (a) A latency-optimal array executes five input instances in sequence and
has an execution time of 5Lopt clock cycles. (b) The array optimized for throughput
pipelines a new input every 1

3
L clock cycles. (c) When the array is not fully efficient

(here 50%), we simultaneously pipeline two input instances every 2
3
L clock cycles.

The total execution time for arrays b and c are 7
3
L clocks. Though the throughput-

optimized arrays have higher latency, they have an overall lower execution time than
the latency-optimal array.

faster than the latency-optimal array if β < Lopt and the latency L of the throughput-

optimized array is not much larger than Lopt. In optimizing for throughput, we may

have to sacrifice latency, but the higher latency can be amortized over a large number

of inputs. The advantage of throughput-optimized arrays is illustrated in Figure 5.1.

Factors contributing to throughput. Before we proceed further, we clarify our

notion of throughput as it applies to fixed-size arrays. There are several ways to in-

crease the throughput of a systolic array on an FPGA. When selecting a schedule, one

may minimize the intercommunication delay, which acts as a proxy for throughput.

The schedule of (recurrence body) operations in a PE can be optimized to improve the

clock frequency of the implementation [128]. High-level transformations on uniform

recurrences can also pipeline the computation in a PE [37].

In contrast, our method minimizes the block pipelining period between input in-

stances executed on the array. We are able to aggressively trade off area for increased

throughput and to suggest far more solutions than the other techniques. Further-

more, our design procedure does not preclude optimization of the schedule in each
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PE, which can be performed in a secondary step. See Section 5.8 for more information

on related throughput optimization techniques.

5.3.1 A Design Criterion for Throughput Optimality

Assume a system of parametrized (uniform) recurrence equations and an associated

schedule and allocation for a systolic array. We are given two instances I and I ′

of the same size, i.e., D(I) = D(I ′), so their domains contain the same number of

iteration vectors: z ∈ D(I)⇔ z ∈ D(I ′).

We would like to derive a schedule to execute both instances one after the other in

a pipelined fashion. Let the first instance I execute on the schedule τ(z), z ∈ D(I),

derived as in Section 5.1. We use a pipelined linear schedule f for I ′ given by

f(z′) = τ(z′)+β, where z′ ∈ D(I ′). If the computation on the two instances is not to

overlap execution on the array, the two schedules must satisfy the following feasibility

constraint:

∀ z ∈ D(I) and z′ ∈ D(I ′), f(z′) > τ(z). (5.1)

Because D(I) = D(I ′), we can express the same constraint as

∀ z1, z2 ∈ D(I) with π(z1) = π(z2), f(z1) > τ(z2). (5.2)

Intuitively, f is a feasible schedule only if no two iteration vectors from the two

instances are assigned for execution on the same PE at the same time. Importantly,

this constraint allows for simultaneous execution of two iteration vectors z1, z2 from

two independent instances respectively, if they execute on different PEs, i.e., π(z1) 6=
π(z2).

We clarify this concept using the example in Figure 5.2. Figure 5.2a shows a triangular

domain with its points represented by circles. The indices of the domain points at

the boundary are shown for clarity. Figure 5.2b shows two instances I and I ′ of this

domain being pipelined through the array (the time dimension is along the x-axis).

We can pipeline a new instance every β = 3 clock cycles.
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Figure 5.2: Pipelining the execution of two input instances on an array to improve
throughput. (a) The triangular domain is projected horizontally along the dashed
lines onto a linear array of PEs. The execution time of every domain point is shown
in the circle. The shaded PE executes the maximum of kmax = 3 domain points. (b)
We can therefore pipeline two instances I and I ′ of the same size with a pipelining
period β = 3 and we are guaranteed that there will be no PE contention.

The key question is, how small can we make β while satisfying constraint 5.2, i.e., how

quickly can we start the next computation after the previous one has started? The

answer clearly depends on the array mapping, and one would expect the minimal β

to be a function of both the array’s projection vector u and its schedule λ. However,

we now prove that the throughput of the array can be determined independent of the

schedule λ. This important observation allows us to efficiently optimize for throughput

by searching only the space of projection vector candidates, rather than having to

jointly consider projections and schedules.

Preliminaries. Any two iteration vectors z1 and z2 in D(I) are executed by the

same PE if and only if

z1 − z2 = ku; k ∈ Z.
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We denote the maximum number of iteration vectors executed by any PE in one

domain instance I as kmax = 1 + kilp, where

kilp = max { k | z1 − z2 = ku; z1, z2 ∈ D(I) }.

Since the domain of the system of recurrence equations can be defined as a convex

polyhedron Cz ≤ d, we can find kilp by solving the following integer linear program:

Maximize k (5.3)

z1 − z2 = ku

Cz1 ≤ d

Cz2 ≤ d.

The following theorem bounds the value of β for which f(z) forms a feasible pipelined

schedule.

Theorem 1. The feasibility constraint f(z1) > τ(z2) ∀ z1, z2 ∈ D(I) with π(z1) =

π(z2) is satisfied if and only if β > kilp|λ · u|.

Proof. For the only-if part, we know that there exist z1, z2 ∈ D(I) such that z1−z2 =

kilpu. For conflict-free pipelining, the iteration vector z1 of the first instance must

execute before z2 of the second.

We therefore have

f(z2) > τ(z1)

f(z2) > τ(z2 + kilpu)

λ · z2 + α + β > λ · (z2 + kilpu) + α

β > kilpλ · u.

Similarly, the iteration vector z2 of the first instance must execute before z1 of the

second. We have f(z2 + kilpu) > τ(z2), which simplifies to β > kilp(−λ · u), and so

the proof follows.
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For the if part, assume to the contrary that f(z1) ≤ τ(z2) for some z1, z2 ∈ D(I).

Since π(z1) = π(z2), we have z2 − z1 = ku. WLOG, we assume that k is a positive

integer. Then we have

f(z1) ≤ τ(z1 + ku)

λ · z1 + α + β ≤ λ · (z1 + ku) + α

λ · z1 + β ≤ λ · z1 + kλ · u

β ≤ kλ · u.

We know that k ≤ kilp, and since by definition β > kilp|λ ·u|, we have a contradiction.

Corollary 5.3.1. Given multiple instances of the recurrence, all of the same size, a

valid schedule for the mth instance is given by fm(z) = τ(z) + (m− 1)β.

Indeed, we can show that the schedules for the mth and m − 1th instances do not

overlap using a proof similar to that of Theorem 1. By the transitive nature of a

pipelined schedule, it follows that none of the schedules overlap.

For the example in Figure 5.2, the shaded PE computes the largest number of domain

points kmax = 3. The array being fully efficient, |λ · u| = 1, and we can pipeline a

new input instance every three clock cycles.

5.3.2 Implications for Design-Space Exploration

We have shown in Theorem 1 that the block pipelining period must be greater than

kilp|λ · u|. The product |λ · u| is the reciprocal of array utilization (see Section 5.1);

confronted with an array that is not fully efficient, we can increase its throughput by

computing |λ · u| input instances simultaneously (assuming I/O bandwidth is not a

limitation). The throughput achievable on such an array is therefore |λ·u|
kilp|λ·u|+1

, which

is one input instance every kilp+

⌈
1

|λ · u|

⌉
(= kmax) clock cycles. Thus the throughput

is exactly 1
kmax

input instances per clock cycle. We conclude that for any schedule,

regardless of the utilization, the throughput achievable on an array with projection

vector u is always one instance per kmax clock cycles.
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Knowing that the throughput of a systolic array is independent of its schedule greatly

simplifies our exploration of array design space. We can search over possible projection

vectors to find one with optimized throughput and only then derive its schedule, rather

than having to consider both allocation and schedule simultaneously.

5.4 Finding Throughput-Optimized Projection Vec-

tors

We now describe a procedure for searching the space of projection vectors u for a

given set of recurrences to discover a collection of feasible, high-throughput array

mappings. We do not limit ourselves to a single design; rather, we seek a collection

of arrays with a variety of throughput/area tradeoffs.

Increasing the magnitude of the vector u decreases the number of domain points

executed by each PE in the array. This frees up PEs sooner for the next input and so

improves throughput. In theory, for any input size, we can increase the magnitude of

u without bound until each PE handles only one point of the domain, resulting in the

best possible throughput of one new instance every cycle. In practice, however, such

a design is likely infeasible—it will require more PEs than fit on the FPGA, and the

high rate of new instances may require more input bandwidth than is available. We

must search for smaller-magnitude projection vectors that are feasible on the target

FPGA device.

It has been shown that there is no closed form function that can represent the number

of processors instantiated by a projection vector [160] (for 3-D and higher dimension

recurrences); hence, an enumerative search for suitable projection vectors is required.

The space of projection vectors grows exponentially with the size of the input in-

stance. For even modest-sized inputs, this space is too large to enumerate completely

in reasonable time, especially if the recurrence involves multiple size parameters. Be-

cause it is computationally infeasible to enumerate and test every projection vector,

we need a strategy to limit the number of vectors to be tested in order to find the

best choices.
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Fortunately, to limit the number of distinct vectors u that must be tested, we can

derive and apply a priori bounds on the magnitude |u| based on our target platform’s

resource constraints. These bounds come from two sources: FPGA area constraints

and total system input bandwidth. Next, we derive these bounds using mathematical

tools first used by Wong and Delosme [161] for space optimization.

5.4.1 A Search Procedure for Projection Vectors

For convenience, suppose that the input domain’s size of a given recurrence is defined

by a single integer parameter N , and let a fixed size N0 for this parameter be given.

We say an array is feasible if it satisfies bandwidth and area constraints on the target

platform. We first compute a bound B such that no array mapping with |u| > B is

feasible for inputs of size ≥ N0 (or possibly ≤ N0 for bandwidth-limited recurrences).

We then compute throughputs for all u with |u| ≤ B; in general, these throughputs

are functions of N . The steps of this bounded search are outlined in Algorithm 1.

When many different vectors yield the same throughput, we compute array mappings

(schedules and allocations) for each and keep only the array with the smallest area

usage as estimated by the number of PEs and then the highest utilization. The

algorithm finally returns a set C of array mappings, one per distinct throughput. All

solutions are parametrized by N ; we only use a specific value N0 in the final sorting

step.

The algorithm guarantees that every array that satisfies the area and bandwidth con-

straints is explored, though it may explore more mappings than is strictly necessary.

The collection C of array mappings obtained from Algorithm 1 (using the area con-

straint) has the property that, for any input size N ≥ N0, one of the arrays in C that

is feasible for input size N has the highest throughput among all feasible arrays of

input size N . For N ′ < N0, the array mappings in C are feasible for input size N ′ but

are not necessarily throughput-optimal. N0 is therefore the lower bound for the input

size. Decreasing it proves throughput optimality for a larger number of parameter

values but also increases computational expense; hence, a tradeoff has to be made.
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Algorithm 1 Explore allocation/schedule space

procedure Explore(Recurrence, Parameter Values)
bound← min(BandwidthBound,ResourceBound)

for each projection vector u within bounds do
T ← Throughput(u)
π ← Allocation(u) . π is nullspace basis of u
τ ← Schedule(u)
γ ← Utilization(τ , u)
#PE ← NumPEs(π, τ) . Count number of PEs

end for

Sort the solutions by T , #PE, γ
Select the best array for every distinct T for C

end procedure

Given inputs of fixed size N , we may simply choose the highest-throughput array

mapping for size N from C. If, however, the input stream contains inputs of varying

sizes, we can switch among these arrays by reconfiguration to process the collection

as efficiently as possible, achieving better overall throughput than any single array.

Chapter 7 illustrates one practical reconfiguration strategy and its application to

Nussinov RNA folding.

5.4.2 Basic Definitions for Bounds

We now derive the bounds used by Algorithm 1. We start by introducing some

fundamental definitions for convex bodies. A detailed explanation is available in

standard texts [132].

Every system of recurrence equations defines a closed convex body D. The width of

D in the direction ŝ is given by w(̂s) = { z1 · ŝ− z2 · ŝ | z1, z2 ∈ D }, where ŝ is a unit

vector of dimension n. Intuitively, the width is the distance between the two support

planes of D orthogonal to ŝ and −ŝ (see Figure 5.3).

We now present three propositions that we will use in deriving our bounds. We refer

the reader to Wong and Delosme [161] for their proofs.
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Figure 5.3: Width of a convex body along the direction ŝ. The number of domain
points along the unit vector ŝ is 1 + w(̂s).

Proposition 1. Given a projection direction u (not necessarily a unit vector), the

maximum number of iteration vectors executed on any PE, kmax, is at most

1 +

⌊
w(u)

|u|2

⌋
.

Proposition 2. An upper bound on w(u) can be shown to be

w(u) ≤ |u|
√
w(e1)2 + w(e2)2 + . . .+ w(en)2,

where ei is the ith canonical row vector whose ith element is one and where other

elements are zero; w(ei) is the width of the domain along the ith dimension.

Proposition 3. If the projection of D by a vector u is Du, the number of domain

points in Du is bounded from below by

|Du| ≥
|D|

1 +

⌊
w(u)

|u|2

⌋ .

Finally, we note an assumption used for convenience in the next two sections. Because

array mappings that assign only one iteration vector per PE are not generally feasible

for realistic input sizes, we will assume that each PE must execute at least two such

iteration vectors. This assumption is not critical to the derivations but simplifies the

forms of the final bounds.
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Input Bandwidth Bound

We first develop a bound on the magnitude of the projection vector using the input

bandwidth constraint. The bandwidth requirement of the array is determined by the

data requirement per input instance and the throughput of the array. We will relate

the throughput, given by kmax, to the width function and use it to derive a bound on

|u|.

We assume that the final clock period of the array is known. For a systolic array this

is determined by the logic in a PE. We can use one of many heuristic techniques [89] or

simply synthesize a single PE to estimate its period. We then compute the normalized

system input bandwidth: m data bits per clock period of the array. We are given the

data requirements of the array, say b data bits per input instance; in general, these

requirements are a function of the input size (recurrence size parameters). In what

follows, we assume the size parameters have been fixed.

For the input bandwidth constraint to hold, the array must satisfy

b

kmax
≤ m.

Rearranging terms, we have

kmax ≥
b

m
.

We assume that b > m, since otherwise the recurrence is not bandwidth limited, and

we can select any u such that only one iteration vector is executed on every PE—there

is no need for a search.

We can use Proposition 1 to inject the projection vector into the bandwidth constraint:

1 +

⌊
w(u)

|u|2

⌋
≥ b

m
.
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From our assumption that each processor executes at least two iteration vectors,

kmax ≥ 2, and so ⌊
w(u)

|u|2

⌋
≥ 1.

Simplifying, we have

2w(u)

|u|2
≥ b

m
.

Using Proposition 2, we substitute for w(u) to get

2|u|
|u|2

√
w(e1)2 + w(e2)2 + . . .+ w(en)2 ≥ b

m
,

which simplifies to

|u| ≤ 2m

b

√
w(e1)2 + w(e2)2 + . . .+ w(en)2. (5.4)

FPGA Resource Bound

In the case of an FPGA target, we are uniquely able to exploit the resource constraint,

i.e., the number of PEs that can be instantiated on the device. Unlike an ASIC, an

FPGA has a fixed number of logic gates that may be used to instantiate PEs—there

is no penalty for using as many of them as required.

The regular nature of systolic arrays enables us to predict their resource usage ac-

curately. The primary contribution to area is the logic and on-chip memories used

within a PE, which can be estimated from the body of a recurrence. Handling ex-

pressions predicated by conditional statements in a recurrence is challenging, since,

depending on the projection direction, some PEs may not need to instantiate the logic

and so will use fewer resources. We may overcome this problem either by taking a

conservative approach, overestimating the number of PEs that can be instantiated, or

by computing the size of an “average” PE based on the sizes of disjoint subdomains.

Existing work [89] can estimate the number of logic gates used on a specific FPGA

device for any hardware circuit in a high-level description. The authors are able to
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estimate resource usage for large designs to within 5% of the true value in less than a

second. Unfortunately, we did not have access to such estimation tools, so we predict

the maximum number of PEs that can be placed on an FPGA device using actual

synthesis results. This is done by building a single PE using the Synplify synthesis

tool (execution time is on the order of minutes).

Let p be the predicted maximum number of PEs that can be instantiated on the

FPGA device. Projection of the domain D by the vector u induces the processor

space Du. To satisfy the area constraint, we must have

|Du| ≤ p.

Substituting the lower bound in Proposition 3, we get

|D|

1 +

⌊
w(u)

|u|2

⌋ ≤ p.

Using the two-iteration-vectors-per-PE constraint as in the previous section, we obtain

|D|
2w(u)
|u|2

≤ p.

Substituting Proposition 2 for w(u) and simplifying, we get the bound

|u| ≤ 2p

|D|
√
w(e1)2 + w(e2)2 + . . .+ w(en)2. (5.5)

Note the similarity between the bandwidth and area bounds.

5.4.3 Search Complexity and Application to Examples

Our search considers every projection vector u with integral coordinates that has

magnitude at most some bound derived from the above considerations. For a recur-

rence whose domain is in Zn, the number of vectors to consider grows as O(2n|u|n).

The search cost per vector is independent of the magnitude but depends on the do-

main shape and the dependencies; in practice, we can process 40-120 vectors/second
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for the recurrences considered here. To achieve overall search times of seconds to a

few minutes, a reasonable bound on u would be roughly 40 for a two-dimensional

recurrence, or 15 for a three-dimensional recurrence.

Input Bandwidth Bound. We first compute the bandwidth bound for the Smith-

Waterman and Nussinov recurrences. Our FPGA system supports an input band-

width of 64 bits per clock at 133 MHz; we assume the generated hardware arrays will

clock at least as fast.

Take an instance of the banded Smith-Waterman algorithm that aligns a query to a

target protein sequence, each of length N . The characters of a protein sequence may

be represented using 5 bits. We assume that the query is fixed, and that each input

instance is a new target sequence. The width of the domain along the canonical row

vectors is N − 1; for N = 300 and 500, the bound is |u| ≤ 37. If instead the array is

used to compare Unicode text, which requires 16 bits per character, the greater input

bandwidth imposes a smaller bound of |u| ≤ 12 for strings of length 300.

The Nussinov algorithm folds an RNA of length N , where each character of the

sequence can be represented in 3 bits. The widths of the domain along the three

canonical row vectors are N − 3, N − 3, and N−3
2

. Bounds for N = 25 and 60 are

|u| ≤ 57 and |u| ≤ 61, resulting in a far more expensive search than the previous case.

This is due to the fact that with just three bits per input character, the algorithm

is far from being bandwidth-constrained on our hardware platform. As expected,

the bandwidth bound is useful for restricting the search space principally when the

recurrence has high data requirements, or the bandwidth into the FPGA system is

limited.

FPGA Resource Bound. Returning to the Nussinov algorithm, we generated a

PE with a 6-bit datapath on a Xilinx Virtex 4 LX100-12 FPGA. From this synthesis,

we predict that at most 1680 PEs can fit on the FPGA. For N = 25 and 60, the

area bounds are |u| ≤ 90 and |u| ≤ 16, respectively. The latter constrains the search

to the range of a few minutes that we stipulated earlier. With a 32-bit datapath,

which requires substantially more resources per PE, we get a prediction of 327 PEs

and bounds of |u| ≤ 18 and |u| ≤ 5 for the two lengths.
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For the banded Smith-Waterman algorithm, we are able to support up to 480 9-bit

PEs on the FPGA device; here, the limiting factor is the number of available on-

chip block RAM memories. We used a band length of 66 and sequences of 300 and

500 characters, which are reasonable for typical protein sequences. In each case, the

bound derived is |u| ≤ 22. In a practical implementation, banded Smith-Waterman

is likely to be just one of many hardware stages on the same FPGA and will have

even fewer available resources, leading to an even better bound.

5.5 Selecting Schedules to Support Retiming

Thus far, we have focused on improving throughput by pipelining input instances on

an array. This form of throughput optimization is distinct from, and orthogonal to

any effort to improve the array’s clock period by internally pipelining each PE. We

now show that with a little additional effort, we can augment our search procedure

to select array designs that are amenable to PE pipelining. We can perform this

pipelining automatically using synthesis tools, giving us the benefits of both a high

rate of instances completed per cycle and a high clock frequency.

Manual pipelining of circuits is cumbersome and difficult to do efficiently without

knowledge of the underlying implementation fabric. Fortunately, modern synthesis

tools include a synchronous circuit optimization called retiming [97]. As shown in

Figure 5.4, a retimer can automatically move registers into a combinational logic

path to reduce the length of the critical path without affecting correctness, resulting

in designs with higher clock frequencies.

As mentioned in Section 3.6.3, we use the Vertex method to find feasible schedules,

which uses an integer linear program with constraints to satisfy causality. To enable

retiming, we modify the schedule selection procedure to provide “new” delay registers

(shown shaded in Figure 5.4) for the retimer to move into each PE. Specifically, we

relax the schedule generated for an array to introduce longer delays on dependency

links into a PE.

Recall from Section 3.6.3 that we would like to solve for the schedule τ(z) = λ · z +α

such that for every uniform dependency fi(z) = z + bi we have a linear (causality)
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Figure 5.4: (a) The unpipelined PE has three operations in its critical path. (b)
When the schedule is relaxed, new delay registers are generated on dependency links,
which are moved by the circuit retimer as shown in (c) to reduce the length of the
critical path to one operation.

constraint λ ·bi < 0 in the integer linear program. Suppose we would like to pipeline

the PE by s stages. We modify the causality constraint to be λ · bi ≤ −s. Any

schedule that satisfies this constraint is still feasible, for it satisfies the dependencies,

but is also guaranteed to include at least s delay registers on every dependency link

into a PE.

Although introducing artificial delays increases latency, the projection vector remains

unchanged, and so the throughput of the array remains equal to the bound implied by

Theorem 1. However, this bound assumes that for arrays that are not fully efficient

(i.e. where γ = |λ · u| > 1), we interleave computation on multiple input instances.

While technically feasible, interleaving is often undesirable because it increases com-

plexity and requires multiple independent buffers at the input and output sides of the

array to interleave and deinterleave the input/output. We therefore weight the objec-

tive function of our scheduling integer linear program to prioritize higher utilization

over lower latency and discard schedules that result in less than fully efficient arrays.

For completeness, we describe the complete integer linear program we have used.

The objective is to minimize the function Wγ + L, where γ and L are the efficiency

and latency of the array, and W is an appropriately selected integer (we use 2048)

that prioritizes utilization. We have also used the vertices υ ∈ V of the computation
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domain to formulate this linear optimization problem.

min (Wγ + L) (5.6)

max
υ′,υ ∈ V

λ(υ − υ′) ≤ L

|λ · u| ≤ γ

λ · u 6= 0

λ · bj ≤ −s

5.6 Software Tool

We have written a design space exploration tool in C++ implementing the ideas

described in this chapter. This tool is intended to be a plugin to an automatic

parallelization package such as MMAlpha [61], so that we can reuse such a package’s

front-end and code-generation phases. We assume the input recurrence has been

parsed and directly read in its dependencies, vertices, and the polyhedral domain of

computation from text files.

We used the Polyhedral library [3] for polyhedral manipulations, the PIP library [2]

for solving integer linear programs, and the Barvinok library [153] for counting the

number of integral points in a polyhedron.

Our tool computes the collection C of array mappings using Algorithm 1. Any se-

lected schedule and allocation pair from C may be passed on to MMAlpha for array

generation.

5.7 Results

Tables 5.1 and 5.2 show some of the projection vectors suggested by our software on

the two example recurrences. The six columns from left to right are the projection

vector, maximum number of points executed by any PE, number of PEs instantiated

for the size N0, the reciprocal of the array’s utilization, the array’s latency for a single

instance, and the predicted maximum array size that will fit on the target FPGA.
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The pipelining period can be computed as one plus the product of kmax − 1 and γ.

In both examples, the latency-space optimal array is shown in the first row.

Novel throughput-optimized arrays. For every projection vector we are able to

find a schedule that maximizes utilization, with at most a minor increase in latency

that can easily be amortized over hundreds of inputs. The average length of the links

in the array’s interconnection network increases for high-throughput arrays, but so

too do the links’ delays, which automatically pipelines communication.

Banded Smith-Waterman shows a number of attractive arrays with throughputs equal

to fractions of the width of the band. There have been numerous hardware arrays sug-

gested to accelerate the Smith-Waterman computation, all of which use the latency-

space optimal array with projection vector [ 1
1 ]. Protein sequences have lengths of

300-500 characters but can be several times longer, allowing us to use a combination

of the suggested throughput-optimized arrays for banded Smith-Waterman on a re-

configurable target. Our alternate designs are predicted to execute 4-13× faster than

the latency-optimized array.

Table 5.1: Throughput-area tradeoff for banded Smith-Waterman. Bounding was
based on sequences of length N0 = 300 and a band width of w = 66, forcing |u| ≤ 22.
The throughput of an array is given by 1

β
where β = 1 + (kmax − 1)γ.

u kmax #PEs γ Latency Max. N
1 1 N0 66 2 600 ∞
1 0 66 300 1 600 480
1 -1 33 599 1 899 240
2 -1 22 898 1 600 160

Table 5.2: Throughput-area tradeoff for the Nussinov recurrence. Bounding was
based on N0 = 61, forcing |u| ≤ 16.

u kmax #PEs γ L Max. N Speedup
A -1 0 0 N0 − 2 900 2 117 82 1.0
B 1 1 0 N0 − 2 900 1 175 82 2.0

C 0 0 -1 N0−1
2

1770 1 117 59 3.7

D 1 2 0 N0−1
2

1770 1 172 - -

E 1 1 -1 N0

3
2611 1 117 49 4.9

F 2 2 -1 N0+1
4

3423 1 117 - -
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The latency-space optimal array FS-B derived in Chapter 4 for the Nussinov algorithm

has projection direction
[
−1
0
0

]
and is shown in row A of Table 5.2. The array has a

utilization of only 50%, so standard practice is to cluster two adjacent PEs, decreasing

the space cost to 450 in the example. Unfortunately, this clustered array has a

block pipelining period equal to its latency (2N − 5 clocks) and does not optimize

throughput.

The table also includes array FS-A with projection direction
[

0
0
−1

]
in row C, which

is the second latency-optimal array derived in Chapter 4. State-of-the-art techniques

allow us to pipeline a new RNA only every 2N − 5 clocks. However, we see by

Theorem 1 that a new RNA can be pipelined every N−1
2

clocks on the same array

without processor contention, providing 4× speedup. In fact, our tool discovers an-

other array in row D that has the same throughput, but fewer PEs implementing

resource-intensive calculations at domain points with k = 1.

Our search tool discovers novel arrays that realize still greater throughput and have

better I/O properties. An alternate array, which we call FS-C, with projection direc-

tion
[

1
1
0

]
has the same area requirement of FS-B but is fully efficient. Latency of this

array increases 1.5× but it is easily amortized. Furthermore, as shown in Figure 5.5,

sequence data in array FS-C is loaded serially into just one PE rather than in par-

allel across N − 1 PEs, saving 45% of LUTs and 61% of registers in the controller.

This property can be discovered automatically by studying the subset of iteration

vectors that perform I/O. Overall, the throughput-optimized array uses 15% fewer

LUTs than the latency-optimized array when folding a sequence of length 81. Our

tool finds many other projections that trade area for higher throughput.

Figure 5.5 shows how the original computation domain of Nussinov can be projected

in three different directions to derive three full-size arrays. As a postscript to this

discussion, we add that all these array mappings are also applicable to the string

parenthesization problem, because of the similarity of its computation domain to

that of Nussinov.

We implemented some of these arrays on our target FPGA running at 150 MHz,

folded 40 million RNAs of length 41, and report speedup normalized to array A; our

arrays are 2-5× faster. A reference software implementation compiled using gcc 4.4.0

with flags -O3 -march=nocona -fomit-frame-pointer ran in 816 seconds on a single
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core of a Core II Duo 3 GHz CPU with 4 MB cache; arrays A-E are 34.8-172.3×
faster.

For comparison, we built FS-C, our newly discovered throughput optimized array,

to fold RNAs of 83 bases. We were able to route the design at 166 MHz. We then

folded 10 million randomly generated sequences and measured runtime. Recall from

Section 4.4.3 that the latency-space optimal array FS-B is 64.73× faster than our

Figure 5.5: (a) Array FS-A projects the Nussinov computation domain along direc-
tion [0, 0, -1]. (b) Projecting along direction [-1, 0, 0] yields the FS-B array. (c)
Projecting along the diagonal direction [1, 1, 0] yields the FS-C array. The RNA
sequence is fed into PEs indicated by dashed arrows.
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dual core software baseline. Array FS-C folds all 10 million RNAs in 5.60 seconds

and is 130.84× faster than two cores.

Our bounds guarantee that all projections that satisfy the bandwidth and resource

constraints are explored. As can be seen from Tables 5.1 and 5.2, the number of PEs

required by some of the projections are larger than that supported by the FPGA, so

we do explore a larger space than is strictly necessary for an input size of N0 = 61.

These alternate projections, however, can still be used for smaller input sequences;

the predicted maximum RNA size that can be executed on each array is shown in

Table 5.2 (this is an optimistic number). In any case, the execution time of the

design space exploration tool was within the stipulated range of seconds to minutes.

Searches for the Smith-Waterman recurrence ran in under 5 seconds and Nussinov in

under 4 minutes on an Intel Core 2 Duo workstation. In these two cases, 36 and 7117

candidate projection vectors were explored.

These results show that the block pipelining period is indeed significantly lower than

the latency for important recurrences. Our technique finds arrays with the same space

cost as the latency-space optimal array but with a higher throughput. This allows us

to pipeline multiple inputs, leading to a two-fold increase in speedup. Furthermore,

for most distinct kmax, we are able to find an array that is fully efficient, with at

most a minor increase in latency. These results validate our decision to optimize

throughput by minimizing the block pipelining period rather than latency.

As expected, an increase in throughput causes a proportional increase in the number of

PEs. One might be tempted simply to use multiple instantiations of the latency-space

optimal array on the FPGA device. In the Smith-Waterman example, we may use five

parallel units of array [ 1
1 ] to achieve the same throughput as array [ 1

0 ]. However, this

approach does not scale with the number of parallel instantiations. Having y parallel

units increases the number of PEs while simultaneously increasing I/O by a factor

of y. In the Nussinov example, each array has N PEs that read the input sequence.

Furthermore, each unit requires independent I/O buffers or a bus with potentially

long delays. Using a single high-throughput array does not cause a similar increase

in I/O to PEs, and each new problem instance can be loaded sequentially in time on

the same data path.
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Figure 5.6: The graph compares the pipelining period and the number of PEs required
for arrays A-E from Table 5.2 for various values of N .

Area versus throughput tradeoff. To understand how a user might select an

appropriate array mapping for a particular FPGA device, in Figure 5.6 we graph the

pipelining period and the number of PEs required for five mappings from Table 5.2.

We draw multiple curves, each for a distinct value of N , the maximum length of an

RNA that may be folded on the array. Also shown are two vertical lines representing

two modern Xilinx FPGA devices. All points on the graph to the left of one of these

two lines represents an array mapping (of a fixed N) that is predicted to fit on the

particular FPGA device.

For a given N , the user identifies the corresponding curve and selects the array with

the lowest pipelining period that is predicted to fit on the target FPGA device. As N

varies (specifically for small values of N), it may be possible to use high throughput

arrays that consume a large number of resources. We will explore this idea in more

detail in Chapter 7.

High clock speed designs. Our tool ensures that the novel arrays (B-F in Ta-

ble 5.2) have schedules that may be relaxed to allow retiming while maintaining full

utilization. We implemented array B with an 8-bit datapath (sufficient precision for
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a Nussinov PE.

this application) parametrized by RNA length and the schedule function. We also

used shift registers rather than counters (as is traditionally used) to implement the

array controller, enabling the design to be clocked at high speeds. The retiming op-

timization was turned on in the synthesis tool, but no additional programmer effort

was spent in realizing the high-speed arrays.

Figure 5.7 shows the increase in clock frequency as a function of the number of

pipelined stages in a PE after place and route on a Xilinx Virtex 4 LX100-12 FPGA.

The array derived using existing techniques clocks at 180 MHz. Arrays with pipelined

PEs are up to 2× faster with only a 37% increase in slice usage. With a 16-bit datap-

ath we can increase the clock frequency to 280 MHz before a single operation becomes

the critical path. These operators will have to be manually pipelined to see further
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speed improvement. The area increase in both cases is small because, while relax-

ing the schedule increases the number of registers instantiated on the communication

links, registers not used for retiming can be implemented as shift registers, which

are efficiently synthesized on modern FPGA fabrics. Note that the block pipelining

period of N0 − 2 clock cycles and the number of clocks to load sequence data are

constant for all relaxed schedules. On the other hand, the latency-space optimal ar-

ray A cannot be similarly pipelined to improve clock frequency without a drop in PE

utilization.

5.8 Related Work

Decades of research have gone into the automatic synthesis of systolic arrays from

systems of recurrence equations using the polyhedral model. As we have mentioned,

the practice has been to find a single latency-space optimal array. All these methods

generate an (n− 1)-dimensional array with unidimensional time from a recurrence of

n dimensions.

Wong et al. [161] detail an enumerative search technique to minimize the number of

PEs in an allocation, which is employed by PARO [63]. They derive bounds using

tools from the geometry of numbers. We have reused these ideas to derive input

bandwidth and area bounds applied to maximizing throughput.

Another option is to limit the search to allocation functions that instantiate arrays

with a local interconnection network [165]. This approach does an exhaustive search

over all allocation functions that are guaranteed to generate interconnections that

are nearest-neighbor. It works well if we are certain of the interconnection network

desired, e.g. the four nearest neighbors. However, for many recurrences, including

Nussinov, we wish to allow a small number of long-range links on our FPGA device.

Making such a compromise greatly increases the search space.

There are two major differences between our work and related work: we optimize

for throughput, and we identify multiple arrays that trade throughput for FPGA

resources. The only work we are aware of that optimizes throughput using space-

time methods is by Rosseel et al. [128]. The authors target real-time signal processing
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applications in video, speech, and image processing that must optimize throughput

rather than latency. The goal is to find a single array that matches the requested

throughput (for some fixed recurrence parameter values) and minimizes the area

requirement. They perform this search using simple enumeration.

The authors recognize that throughput is dependent on the block pipelining pe-

riod but do not directly minimize kilp; rather, they attempt to estimate the product

kilp|λ·u| through a multi-phase interleaved search through the allocation and schedule

spaces. Using the newly introduced techniques in this chapter, we are able to directly

estimate the block pipelining period using only the projection vector, allowing us to

search the two spaces independently. Of the allocation candidates that match the

requested throughput, Rosseel et al. select ones that increase average usage of the

PEs. The allocation matrices they consider have elements restricted to 0,±1, which

reduces search time but does not optimize block pipelining period; hence, they may

not find many interesting space mappings.

Rosseel’s approach gives priority to optimizing the schedule of operations in a PE by

minimizing the area-operation interval product. This step can be integrated into our

method to optimize the PE design. Rosseel’s method attempts to avoid generating

low utilization PEs since they must be clustered and could increase area requirements;

we can instead simply pipeline multiple input instances.

A technique analogous to ours is software pipelining, used to simultaneously execute

successive iterations of an inner loop on a VLIW machine. The goal is to fully utilize

all the functional units available on the VLIW machine by exploiting parallelism in

loop iterations. Lam [94] outlines a procedure to determine a modulo schedule that

permits continuous initiation of loop iterations at constant intervals. Scheduling of

operations in the loop body is constrained by the resources (availability of functional

units) and the inter-iteration dependencies. Lam suggests an iterative heuristic that

searches multiple schedules, while optimizing the initiation interval between a lower

and an upper bound.

In contrast, we pipeline iterations of multiple loops, which execute on independent

input instances. As a result, an advantage of our approach is that we do not have to

deal with dependence constraints, which requires the iterative search used by Lam.

Iterations of a single loop instance are scheduled by the linear function τ , which
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accounts for inter-iteration dependencies. An advantage of using custom hardware is

that we can simply replicate functional units (as PEs) to avoid the resource constraint.

Lam’s technique executes only iterations of the innermost loop in parallel, while we

can handle nested loops. Overall, we have more freedom to explore a larger space of

parallel solutions.

5.9 Conclusion

In this chapter we have introduced a procedure to systematically find throughput-

optimized systolic arrays from uniform recurrence equations. We are motivated by

throughput rather than latency as a performance metric and by the use of a reconfig-

urable target that can select from multiple arrays that trade off throughput for area.

We describe how to optimize for throughput by inspecting only the projection vector

space and derive bounds based on bandwidth and area constraints for an enumera-

tive search. We have shown results for banded Smith-Waterman and Nussinov RNA

folding.
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Chapter 6

Resource-limited Array Mappings

Thus far we have explored the design of latency- and throughput-optimized arrays

from recurrence equations. Both these approaches attempt to exploit as much paral-

lelism as is available in a dynamic programming algorithm. In this chapter we deal

with the case where parallelism is sacrificed in order to meet resource constraints.

There are two situations where exploiting all available parallelism is not the best

approach. Latency- and throughput-optimized full-size array mappings generate an

(n− 1)-dimensional array from an n-dimensional recurrence. When a recurrence has

a high dimension (n > 3), full-size arrays cannot be realized on modern FPGAs, since

arrays of dimension three and higher cannot easily be synthesized on a 2-D substrate.

Moreover, even for three-dimensional recurrences, such as Nussinov, we may prefer

a 1-D rather than a 2-D array in order to conserve resources. In this section, we

describe an existing technique that produces 1-D or 2-D mappings from recurrences

of arbitrary dimension.

Even with a one- or two-dimensional mapping, a generated array may require more

PEs than can fit on a given target FPGA. This may happen for a large computation

domain or for recurrences that use resource-intensive operations and lookup tables

and hence consume increased area per PE. For such arrays, we would like to trade

parallelism for decreased resource usage by partitioning the 1-D or 2-D array onto a

smaller subset of PEs.

In what follows, we apply existing techniques for resource-constrained array synthesis

within the polyhedral framework to parallelize dynamic programming recurrences.

We first describe a technique to generate 1-D and 2-D arrays. Next, we show how to
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build partitioned 1-D and 2-D arrays. In this chapter, we use these techniques to build

several novel resource-constrained arrays for the Nussinov RNA folding recurrence.

6.1 Generating 1-D and 2-D Arrays

We now outline the formal technique used to find a resource-constrained array map-

ping for a recurrence equation. We use an existing technique due to Darte et al. [34].

In this section we only state their results, giving an intuition for how the method

works. Our application to the Nussinov RNA folding problem will help the reader

understand how this method works. For complete details on the theory of this tech-

nique, we refer the interested reader to the paper.

Suppose we have a recurrence that defines the rectangular computation domain D =

{ i1, . . . , in | 1 ≤ i1 ≤ S1; . . . ; 1 ≤ in ≤ Sn }. When creating a 1-D array, we

select any one of the dimensions, say i1, as the processor index to get the allocation

function π(i1, . . . , in) = [i1]. We place a PE at every point 1 ≤ i1 ≤ S1 to derive

a S1-PE array. We assign a distinct rectangular parallelipiped of points for serial

execution by every PE in the array. For example, a PE at i1 = c serially executes the

rectangular parallelepiped of iteration vectors in the domain D = { i1, . . . , in | i1 =

c; 1 ≤ i2 ≤ S2; . . . ; 1 ≤ in ≤ Sn }.

The challenge is to find a schedule that satisfies the causality constraint on the depen-

dencies and also serially executes all points in a PE’s parallelepiped without conflict,

i.e., no two points must be scheduled on the PE at the same time. Darte et al. [34]

gave a constructive procedure to create such schedules. For the 1-D array placed

along dimension i1, the schedule is of the form (up to a permutation of the iteration

vector indices)

τ(i1, . . . , in) = a1i1 + a2i2 + a3S2i3 + . . .+ anS2 · · ·Sn−1in, (6.1)

where an = ±1 and the greatest common divisor of ak and Sk is 1. The schedule is

essentially enumerating all points in the rectangular parallelepiped corresponding to

a PE: first, along index i2, then i3, and so on.

112



Similarly, for a 2-D array we select any two dimensions, say i1 and i2, as the processor

indices and use the schedule (up to a permutation of the iteration vector indices)

τ(i1, . . . , in) = a1i1 + a2i2 + a3i3 + a4S3i4 + . . .+ anS3 · · ·Sn−1in, (6.2)

where an = ±1 and the greatest common divisor of ak and Sk is 1. Values for ai are

selected to satisfy the causality constraint and minimize the latency for computing a

recurrence.

The procedure we have outlined assumes that the DP recurrence has a computa-

tion domain that is a rectangular parallelepiped, i.e., each dimension of the do-

main has constant upper and lower bounds. For non-rectangular domains, such

as the triangular Nussinov RNA folding domain, we expand them by creating a

rectangular bounding box and assigning ∞ to data variables when computation

is outside the triangle. The new domain for Nussinov RNA folding is therefore

D = { i1, . . . , in | 1 ≤ i ≤ N ; 1 ≤ j ≤ N ; 1 ≤ k ≤ N
2
}. Figure 6.1 illustrates the

original Nussinov domain in Figure 5.5 transformed to a rectangular parallelepiped,

with newly introduced computation points shown as dashed circles. This transfor-

mation does not change the computed scores, but our array mappings now perform

more work than is strictly necessary.

6.1.1 A 1-D Array for Nussinov

We now build a 1-D array for the Nussinov computation that may be used to fold

long RNA sequences. We place N
2

PEs on the k axis, one on each point of the

dimension 1 ≤ k ≤ N
2

. The advantages of this 1-D array mapping are two-fold: first,

the compute-intensive operations on the plane k = 1 are restricted to a single PE;

placing the array on any other dimension requires replication of these operations on

every PE. Equally important, the selected allocation allows us to fold an RNA of

length N using just N
2

PEs.

The 1-D array mapping for the system of recurrence equations 4.5 is given by:

τ(i, j, k) = −k − 2i+Nj

π(i, j, k) = [k].
(6.3)
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Figure 6.1: The 1-D array for the transformed Nussinov recurrence is generated by
placing a linear array of PEs along the k axis. Computation points outside the original
Nussinov domain are shown as dashed circles. Each PE in the array sequentially
executes a rectangular plane of points as shown in the inset.

This array is illustrated in Figure 6.1. The schedule conforms to the format described

in Equation 6.1, with a1 = −1, a2 = −2, and a3 = 1. The schedule satisfies all the

dependence constraints of the recurrence and is conflict-free if the greatest common

divisor of N and 2 is 1, i.e., N must be odd. The latency of execution of an RNA of

length N is τ(1, N, 1)− τ(N, 1, 1) = N2 +N − 2 clocks.

6.2 Partitioned Arrays

In the previous section, we described a procedure to map recurrences of high dimen-

sion onto one- or two-dimensional arrays. We assumed that one PE is instantiated

for every integral value of the processor dimension. This is a major limitation on

resource-constrained FPGAs. In this section we describe the Locally Sequential,

Globally Parallel (LSGP) method [36] to partition the processor index, which allows
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Figure 6.2: A 2-D recurrence domain that is computed by a linear array. The figure
illustrates how the domain is projected onto virtual PEs and then partitioned onto
physical PEs. array.

the use of a smaller subset of PEs to serially compute a larger workload. We describe

how to construct a partitioned 1-D array and show examples of partitioned 1-D and

2-D arrays for the Nussinov algorithm.

Suppose we are given a rectangular computation domain D = { i1, . . . , in | 1 ≤
i1 ≤ S1; . . . ; 1 ≤ in ≤ Sn } with processor index i1. Instantiating a PE for every

integral value of i1 requires S1 PEs. We may instead choose to place PEs at regular

intervals of W1 on the processor index; we now need only S1

W1
PEs. We denote W1 as

the partition size; a larger partition saves computational resources but also reduces

parallelism exploited by the array due to forced serialization. We term the original S1

unpartitioned processors “virtual” PEs and the S1

W1
processors realized on the target

“physical” PEs. It is the role of a physical PE to serially compute the workload of

its partition’s W1 virtual PEs.
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Figure 6.2 shows an example of partitioning on a two-dimensional recurrence. The

i axis is selected as the processor index, with one physical PE assigned to four vir-

tual PEs. Each physical PE computes its rectangular set of computational points

sequentially, though two PEs can operate in parallel.

To perform LSGP partitioning, we must transform the recurrence description and its

domain. We replace the single processor index i1 by the tuple (p1, v1), which is related

by the equality i1 = W1(p1−1)+v1. The transformed domain of the recurrence is now

D = { p1, v1, i2, . . . , in | 1 ≤ p1 ≤ S1

W1
; 1 ≤ v1 ≤ W1; 1 ≤ i2 ≤ S2; . . . ; 1 ≤ in ≤ Sn }.

We now place S1

W1
physical PEs, one for each integral value of p1, and find a schedule

as described in the previous section.

Partitioning affects the dependencies of the recurrence that span the originally se-

lected processor index. Consider a uniform dependency X(i1, . . . , in) ← X(i1 +

1, . . . , in), which spans processor index i1. After partitioning, the dependency may

refer to a point on the same partition of a physical PE, or to one on a neighboring

PE. For example, given the recurrence

X(i1, i2, . . . , in) = max

{
X(i1 − 1, i2, . . . , in)

X(i1 + 1, i2, . . . , in),
(6.4)

partitioning transforms the two dependencies across i1 to

X(p1, v1, i2, . . . , in) = max



X(p1, v1 − 1, i2, . . . , in) if v1 > 1

X(p1 − 1,W1, i2, . . . , in) if v1 = 1

X(p1, v1 + 1, i2, . . . , in) if v1 < W1

X(p1 + 1, 1, i2, . . . , in) if v1 = W1.

(6.5)

Similar transformations can be applied for longer dependencies on 1-D arrays, as well

as dependencies that span both processor axes on 2-D arrays.
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6.2.1 A Partitioned 1-D Array for Nussinov

We now partition the 1-D Nussinov array described in Section 6.1.1 along processor

dimension k. We replace index k with two new ones (vk, k
′), where 1 ≤ vk ≤ Wk and

1 ≤ k′ ≤ d N
Wk
e. Here Wk is the width of the partition, and vk serially enumerates the

computation points in a partition that are to be executed by a single PE. The newly

introduced indices are related by the equation k = Wk(k
′ − 1) + vk.

We rewrite the Nussinov system of recurrences 4.5 to replace indices (i, j, k) by

(i, j, vk, k
′). This affects dependencies that cross the original k dimension. As an

example, a dependence of (i, j, k) on (i, j, k − 1) is transformed into

(i, j, vk, k
′) depends on (i, j, vk − 1, k′) if vk > 1

(i, j, vk, k
′) depends on (i, j,Wk, k

′ − 1) if vk = 1.
(6.6)

Similarly, the dependence of (i, j, k) on (i, j, k + 1) is transformed into

(i, j, vk, k
′) depends on (i, j, vk + 1, k′) if vk < Wk

(i, j, vk, k
′) depends on (i, j, 1, k′ + 1) if vk = Wk.

(6.7)
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The newly introduced dependencies in both cases remain uniform. Applying the

partitioning transformation on the Nussinov system of recurrence equations, we get

X(i, j, vk, k
′) = max



δ(P (i, j, vk, k
′), Q(i, j, vk, k

′)) if j − i = 1

X(i+ 1, j, vk, k
′)

X(i, j − 1, vk, k
′)

X(i+ 1, j − 1, vk, k
′)+ if k′ = 1 and vk = 1

δ(P (i, j, vk, k
′), Q(i, j, vk, k

′))

X(i, j, vk + 1, k′)

X1(i, j, vk, k
′) +X2(i, j, vk, k

′)

X3(i, j, vk, k
′) +X4(i, j, vk, k

′)

X(i, j, vk + 1, k′),

X1(i, j, vk, k
′) +X2(i, j, vk, k

′) if vk < Wk

X3(i, j, vk, k
′) +X4(i, j, vk, k

′)

X(i, j, 1, k′ + 1),

X1(i, j, vk, k
′) +X2(i, j, vk, k

′) if vk = Wk

X3(i, j, vk, k
′) +X4(i, j, vk, k

′)

(6.8)

X1(i, j, vk, k
′) =

{
X3(i, j, vk, k

′) if j − i = 2Wk(k
′ − 1) + 2vk

X1(i, j − 1, vk, k
′) otherwise

X2(i, j, vk, k
′) =


X(i+ 2, j, vk, k

′) if k′ = 1 and vk = 1

X2(i+ 1, j, vk − 1, k′) if vk > 1

X2(i+ 1, j,Wk, k
′ − 1) if k′ > 1 and vk = 1

X3(i, j, vk, k
′) =


X(i, j − 1, vk, k

′) if k′ = 1 and vk = 1

X3(i, j − 1, vk − 1, k′) if vk > 1

X3(i, j − 1,Wk, k
′ − 1) if k′ > 1 and vk = 1

X4(i, j, vk, k
′) =

{
X2(i, j, vk, k

′) if j − i = 2Wk(k
′ − 1) + 2vk

X4(i+ 1, j, vk, k
′) otherwise
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P (i, j, vk, k
′) =

{
Si if j − i = 1

P (i, j − 1, vk, k
′) if k′ = 1 and vk = 1

Q(i, j, vk, k
′) =

{
Sj if j − i = 1

Q(i+ 1, j, vk, k
′) if k′ = 1 and vk = 1.

A schedule and allocation for the partitioned array is given by

τ(i, j, vk, k
′) = −Wkk

′ − vk −Wki+NWkj

π(i, j, vk, k
′) = [k′],

(6.9)

where according to Equation 6.1, a1 = −Wk, a2 = −1, a3 = −1, and a4 = 1. To

be conflict-free, the greatest common divisor of Wk and d N
Wk
e should be 1. We are

now able to control the number of physical PEs required to accelerate the Nussinov

computation by changing Wk.

Figure 6.3: The 1-D partitioned array for the transformed Nussinov recurrence with
Wk = 2. Each PE sequentially computes two planes of points according to the
schedule illustrated in the inset.

Figure 6.3 shows the 1-D partitioned array for the Nussinov computation. We have

allocated one physical PE for every two virtual processors, so for example, PE a

executes the two rectangular planes at k = 1 and k = 2.
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The time to fold an RNA of length N using this array is τ(1, N, 1, 1)−τ(N, 1,Wk, 1) =

N2Wk − 1 clocks.

6.2.2 A Partitioned 2-D Array for Nussinov

Our final array is a partitioned 2-D array that is based on the FS-B mapping of

Section 4.2.2. In order to reduce complexity, we will partition only a single dimension.

Since the most resource-intensive operations are along the j dimension, we select the

j axis for partitioning, which allows us to control the number of resource-intensive

PEs generated.

Partitioning along dimension j is done by replacing its index by two new indices

(vj, j
′) with 1 ≤ vj ≤ Wj and 1 ≤ j′ ≤ d N

Wj
e. The three indices are related by the

equation j = Wj(j
′ − 1) + vj.

We rewrite the Nussinov system of recurrence equations to introduce the two new

indices as described in Section 6.2. For example, the dependence of (i, j, k) on (i, j −
1, k) is transformed into

(i, vj, j
′, k) depends on (i, vj − 1, j′, k) if vj > 1

(i, vj, j
′, k) depends on (i,Wj, j

′ − 1, k) if vj = 1
(6.10)
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The transformed system of recurrence equations is:

X(i, vj, j
′, k) = max



δ(P (i, vj, j
′, k), Q(i, vj, j

′, k)) if Wj(j
′ − 1) + vj − i = 1

X(i+ 1, vj, j
′, k)

X(i, vj − 1, j′, k)

X(i+ 1, vj − 1, j′, k)+ if k = 1 and vj > 1

δ(P (i, vj, j
′, k), Q(i, vj, j

′, k))

X(i, vj, j
′, k + 1)

X1(i, vj, j
′, k) +X2(i, vj, j

′, k)

X3(i, vj, j
′, k) +X4(i, vj, j

′, k)

X(i+ 1, vj, j
′, k)

X(i,Wj, j
′ − 1, k)

X(i+ 1,Wj, j
′ − 1, k)+ if k = 1 and vj = 1

δ(P (i, vj, j
′, k), Q(i, vj, j

′, k))

X(i, vj, j
′, k + 1)

X1(i, vj, j
′, k) +X2(i, vj, j

′, k)

X3(i, vj, j
′, k) +X4(i, vj, j

′, k)

X(i, vj, j
′, k + 1),

X1(i, vj, j
′, k) +X2(i, vj, j

′, k) otherwise

X3(i, vj, j
′, k) +X4(i, vj, j

′, k)

(6.11)

X1(i, vj, j
′, k) =


X3(i, vj, j

′, k) if Wj(j
′ − 1) + vj − i = 2k

X1(i, vj − 1, j′, k) if vj > 1

X1(i,Wj, j
′ − 1, k) if vj = 1

X2(i, vj, j
′, k) =

{
X(i+ 2, vj, j

′, k) if k = 1

X2(i+ 1, vj, j
′, k − 1) otherwise

X3(i, vj, j
′, k) =



X(i, vj − 1, j′, k) if k = 1 and vj > 1

X(i,Wj, j
′ − 1, k) if k = 1 and vj = 1

X3(i, vj − 1, j′, k − 1) if k > 1 and vj > 1

X3(i,Wj, j
′ − 1, k − 1) if k > 1 and vj = 1
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X4(i, vj, j
′, k) =

{
X2(i, vj, j

′, k) if Wj(j
′ − 1) + vj − i = 2k

X4(i+ 1, vj, j
′, k) otherwise

P (i, vj, j
′, k) =


Si if Wj(j

′ − 1) + vj − i = 1

P (i, vj − 1, j′, k) if k = 1 and vj > 1

P (i,Wj, j
′ − 1, k) if k = 1 and vj = 1

Q(i, vj, j
′, k) =

{
Sj if Wj(j

′ − 1) + vj − i = 1

Q(i+ 1, vj, j
′, k) if k = 1.

We chose to place PEs in a 2-D arrangement using the following array mapping

π(i, vj, j
′, k) = [j′, k].

τ(i, vj, j
′, k) = 2Wjj

′ − k + 2vj −Wji.
(6.12)

The schedule conforms to the format described in Equation 6.2, with a1 = 2Wj, a2 =

−1, a3 = 2, and a4 = −1. The schedule satisfies all the dependence constraints of the

recurrence and is conflict-free if the greatest common divisor of Wj and 2 is 1, i.e., Wj

must be odd. Similarly, the greatest common divisor of a1 and d N
Wj
e should be 1. The

latency of execution for an RNA of length N is τ(1,Wj,
N
Wj
, 1)−τ(N−1,Wj,

N
Wj
, 1) =

Wj(N − 2) clocks.

6.3 Evaluation

In this section we compare the various arrays suggested in this dissertation to accel-

erate the Nussinov algorithm. We have coded, synthesized and executed the three

resource-constrained arrays derived in this chapter on our FPGA system. We have

verified correctness by folding thousands of RNAs in hardware and comparing the re-

sult to the software baseline. We have used the same software and hardware systems

described in Section 4.4 for our performance comparison.

Table 6.1 summarizes the six main arrays, which are parametrized by the maxi-

mum RNA size that can be folded on each one. The partitioned arrays are further

parametrized by the tile widths Wj and Wk, which control the number of process-

ing elements instantiated. The table is sorted by the number of processing elements
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Table 6.1: Summary of three full-size and resource-constrained arrays for the Nussinov
DP recurrence. The table lists the number of processing elements instantiated by each
array to fold an RNA of length N , the amount of memory words required in each PE,
and the pipelining period. A lower pipelining period equates to a faster array. The
parameters Wj and Wk are tile widths as described in the previous sections.

Design # PEs Memory / PE Pipelining Period

FS-A N2−3N+2
2

Θ(1) N−1
2

FS-B N2−N
4

Θ(1) 2N − 5

FS-C N2−N
4

Θ(1) N − 2

Partitioned 2-D
N2+NWj−2N

4Wj
Θ(Wj) NWj − 2Wj

Unpartitioned 1-D N−1
2

Θ(N) N2 +N − 2

Partitioned 1-D N−1
2Wk

Θ(NWk +W 2
k ) N2Wk − 1

required by each array, illustrating that the fewest PEs are required by the resource-

constrained arrays. While these arrays use the least logic for computation in PEs, the

number of memory words required per PE is high. Memory storage, however, can be

efficiently implemented on modern FPGAs; in our work we have used on-chip block

RAM memories and distributed memories in lookup tables (LUTs). Unsurprisingly,

the full-size arrays have the lowest pipelining periods and exhibit the best speedups

because they exploit the most parallelism. With partitioned arrays, we have the

freedom to trade area for increased parallelism by varying the tile width.

Next, we studied the performance of the three resource-constrained arrays by syn-

thesizing various instantiations on our target FPGA device. We report speedup over

our dual core software baseline, as well as FPGA slice and block RAM usage. The

speedup numbers are summarized in Figure 6.4, and the FPGA resource usage is

graphed in Figures 6.5 and 6.6. For reference, we also list the same data values in

Tables 6.2-6.4.
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Figure 6.4: Speedup of three resource-constrained Nussinov arrays. The y-axis is in
log scale. The three array families have distinct order of magnitude speedups.

Partitioned 2-D array. The performance of the one 2-D resource-constrained ar-

ray we have suggested in this chapter is shown in Table 6.2. We wrote a script that

uses heuristics to determine the fastest instantiation of this array post place-and-route

for a large number of sequence lengths. For each sequence length, the script deter-

mines the lowest feasible tile width (hence, exploiting the most parallelism) and the

highest possible frequency. We measured the speedup of five of these instantiations to

determine array performance. In addition to the tile widths selected, we have listed

the FPGA resources consumed, clock frequency of the designs, and the single core

and dual core speedups compared to our baseline system. Performance was computed

based on the time taken to fold 1 million randomly generated RNA sequences.

Recall that with our full-size arrays we were able to fold RNAs of length up to 83 bases.

Using our partitioned 2-D array we can fold RNAs 3.6× longer, while still achieving

order-of-magnitude speedups over the dual core baseline. For this implementation

we did not use the on-chip block RAM memories; instead, storage in each PE was

implemented using distributed memories in slices. These distributed memories limit

the maximum length of RNAs that can be folded on this array to 305 bases.
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Unpartitioned 1-D array. Table 6.3 lists various instantiations of the unparti-

tioned linear array we built and tested on our FPGA platform. Performance was

computed by folding 100, 000 randomly generated RNAs. In this implementation we

have used on-chip block RAMs for storage in each PE. This unpartitioned 1-D array

is able to fold RNAs still larger than the previous arrays, up to 545 bases, using over

90% of the FPGA’s LUT and block RAM resources. In this case we have sacrificed

parallelism in order to be able to fold large RNA sequences on the target device.

While the previous arrays fold an RNA in Θ(N) clocks, the linear array takes Θ(N2)

time, which reduces dual core speedup to 13×.

Table 6.3 also illustrates the tradeoff a user is able to make using our resource-

constrained array. Given an FPGA device with fewer logic resources, the unparti-

tioned 1-D array may be used instead of the partitioned 2-D array in exchange for

exploiting less parallelism. For example, the former array can fold RNAs of length

between 105 and 305 bases using 22-51% of the logic resources as the latter array.

The dual core speedups are, however, reduced to between 3-9×.

Partitioned 1-D array. Our final array is the most resource-constrained array we

consider in this dissertation. As shown in Table 6.4, we can fold RNAs of length up to

595 bases, which is sufficient for most biologists’ needs, with a tile width of 3. Note

that we are limited by on-chip storage rather than computational logic resources,

having saturated the block RAM and distributed memories available on our FPGA

device. The dual core speedup folding 595 base RNAs is a modest 4×.

We have also shown the partitioned 1-D array synthesized for sequence lengths be-

tween 105-545 to compare against the two prior arrays. The partitioned 1-D array

uses the fewest logic and memory resources and can be used in situations where per-

formance close to a dual core CPU is required. Such a situation may arise when, for

example, an entire sequence analysis pipeline, of which RNA folding is one stage, is

to be implemented in hardware.

Resource and parallelism tradeoff. To get a better understanding of the tradeoff

between area and parallelism, we synthesized the partitioned 2-D array using various

tile widths to fold sequences of length 105 bases. Recall from Section 6.2.2 that we
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Table 6.5: Speedups of the Nussinov partitioned 2-D array showing the tradeoff be-
tween area and parallelism controlled by tile width Wj. All arrays were synthesized
at a clock frequency of 180 MHz.

N Wj # PEs Total slices
Slice Single core Dual core

memories speedup speedup
105 5 567 37,718 (76%) 6,534 (26%) 92.29× 46.18×
105 7 413 28,184 (57%) 4,191 (17%) 67.87× 33.96×
105 15 207 16,568 (33%) 2,477 (10%) 32.60× 16.31×
105 21 155 13,765 (28%) 3,039 (12%) 23.45× 11.73×
105 35 104 11,420 (23%) 3,603 (14%) 14.18× 7.09×

may select any value for the tile width Wj such that Wj is odd, and the greatest

common divisor of 2Wj and d N
Wj
e is 1.

Table 6.5 charts the results for tile widths between 5 and 35. We see a clear reduc-

tion in FPGA LUT resources for increased serialization of computation for large tile

widths. Although serialization increases the amount of memory storage required per

PE, our results show that they can be very efficiently implemented on modern FPGA

fabrics.

6.4 Conclusions

While the primary goal of our dissertation is to exploit the maximum available paral-

lelism in dynamic programming algorithms, providing the ability to limit parallelism

exploited in exchange for resource savings has important consequences. The flexiblity

allows a designer to accelerate resource-heavy algorithms, process large inputs, make

use of low-cost, less capable FPGA devices, or implement dynamic programming ac-

celerators as part of a larger hardware pipeline of accelerators. The designer may

select the least resource-heavy array that matches the performance required.

We have used an existing technique to build partitioned and unpartitioned 1-D and

2-D arrays and demonstrated the resource versus parallelism tradeoff on an FPGA

system. Our resource-constrained arrays allow us to fold RNAs of up to 595 bases,
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satisfying the majority of biologists’ requirements. A designer may select array in-

stantiations that consume between 16-90% of FPGA resources for speedups of up to

56× over a dual core implementation.
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Chapter 7

Optimal Runtime Reconfiguration

Strategies for Systolic Arrays

The philosophy of classic systolic array design is to build a single array that accelerates

a system of recurrence equations [96]. The standard approach is to build a single

latency-space optimal array. If resources are a constraint, a partitioned 1-D or 2-D

array of fixed size is generated instead. In this dissertation, we have also suggested a

novel technique to trade off resources and exploit increased parallelism. Nevertheless,

just as in related work, we have also thus far only generated a single array accelerator

for every recurrence.

Using a single array mapping can minimize total computation time when the input is a

continuous stream of data, as in many signal-processing applications. Oftentimes, one

may instead seek to process a large collection of discrete inputs. In such a case, array

design can explicitly minimize total execution time by maximizing computational

throughput, processing inputs in a pipelined fashion. Streams of discrete inputs arise

naturally in the domain of bioinformatics, speech recognition, and media processing,

where the input may consist of many short inputs such as high-throughput sequencing

reads or of probabilistic sequence models such as hidden Markov models. In this

chapter, we seek to deal efficiently with such streams of discrete inputs.

Apart from the choice of the appropriate design family—whether latency- or throughput-

optimized, or resource-constrained—once an array design has been selected, it must

be instantiated on the target device with a fixed array size and hence a fixed input

size. If all inputs to the array are the same size, there is a naturally most efficient

array size; otherwise, for any fixed array size, smaller inputs must be padded out
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to the array’s input size, while larger ones (if supported at all) must be split and

processed in multiple passes. Existing work has focused largely on selecting a single

array design that yields good performance over a range of input sizes [96]. This ap-

proach is natural for VLSI synthesis, in which the design cannot change to respond

to variations in input size.

Other target platforms such as FPGAs, however, have the flexibility to handle a

range of input sizes without sacrificing efficiency. Because these platforms can be

reconfigured quickly (less than a second) with a new array design, one can efficiently

alter the accelerator to accommodate runs of larger and smaller inputs. For smaller

inputs, a smaller array instantiation eliminates the need for input padding and the

associated useless computation. Moreover, because higher-throughput arrays often

require substantially more computational resources, it may be possible to exploit

pipelining at smaller sizes while reverting to more resource-efficient but slower arrays

at larger sizes.

In this work, we present an algorithmic framework for deciding which of a large

set of possible systolic array designs to use so as to minimize total computation

time on a known distribution of input sizes. Our algorithms select a set of designs

(either bounded or unbounded) and indicate when to switch among them, assuming

that the inputs are sorted monotonically by size. We demonstrate the utility of our

approach for the bioinformatics domain by accelerating an FPGA implementation of

the Nussinov RNA folding algorithm. We apply our algorithm to select arrays from

these families for both real and synthetic size distributions and estimate the resulting

speedups.

Finally, we demonstrate a realization of runtime array reconfiguration on a Xilinx

Virtex-4 LX100-12 FPGA device and measure the performance impact of reconfigu-

ration on a database containing tens of millions of short RNA sequences to be folded.

We demonstrate that our runtime reconfiguration scheme confers substantial efficiency

benefits even when the input length distribution is biased toward low-throughput ar-

rays, when reconfiguration time is close to one second, and when only a small number

of distinct arrays may be used.
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7.1 Selecting an Optimal Set of Arrays

Suppose we are given a large collection of input items with lengths in the range

1 . . .M . We assume that the collection has been analyzed offline to determine the

number C(i) of inputs of each size i, and that it has been sorted in nondecreasing

order of input size. These assumptions are reasonable in, for example, bioinformatics

data sets, which are typically generated and formatted offline and then stored in a

database for analysis. In the case of an online search, sequences may be binned by

size and buffered upon receipt from clients.

Let A be a set of candidate systolic array designs. Each design a ∈ A is actually a

family of instantiations a(i) parametrized by input size i. The largest feasible input

size S(a) for a is determined by the resource limits of the target device. Array a(i) has

a block pipelining period βa(i), which is the required delay in cycles between successive

inputs; the reciprocal of βa(i) is the array’s throughput.

Let E(i) be the minimum time required to process all inputs of size 1 to i inclusive,

using some combination of designs from A. Our goal is to compute E(M). A dynamic

programming recurrence for E(i) is given by

E(i) = min
a∈A

min
1≤j<i

{ E(j − 1) + ρ+ δa(j, i) }

δa(j, i) =


La(i) +

∑
j≤k≤i

C(k)× βa(i) if i ≤ S(a)

∞ otherwise,

(7.1)

where ρ is the reconfiguration time needed to load a new array on the target device,

and δa(j, i) is the time to execute all inputs of length j . . . i on array a(i). δa(j, i)

is computed as the sum of the pipelining periods of the inputs and the latency of

execution, La(i), of the last input on the array. This latency, however, is negligible

compared to the rest of the sum and the reconfiguration time, so we ignore it hereafter.

All times are expressed in cycles but could be converted to seconds to combine designs

with different clock speeds.
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To compute the optimal execution time for inputs of length 1 . . . i, the recurrence con-

siders all possible reconfiguration locations 1 ≤ j < i. Sequences of length j . . . i are

executed on array a(i). This is followed by reconfiguration and the optimal execution

of the remaining inputs. We must consider all possible locations for reconfiguration

and every candidate family of arrays in A. Correctness follows from the optimal

substructure of the optimization problem.

The initialization condition is E(0) = −ρ, and the optimal execution time E(M) over

all inputs can be computed bottom-up in i. We can retrieve the optimal sequence of

array instantiations using a standard traceback procedure.

The full algorithm solves M subproblems, each requiring maximization over O(M |A|)
cases. One may precompute and store all required δ values in time O(M2|A|), making

each case constant-time and yielding total computation time of O(M2|A|). This

running time is practical provided that the size range M is restricted or that the

actual set of input sizes is sparse. If it is large, we could compute faster at some cost

to result quality by quantizing the set of sizes considered.

7.2 Application to RNA Folding

We have applied our reconfiguration algorithm to the Nussinov RNA folding problem.

In this section we first summarize the array families that will be considered.

We consider the two full-size arrays, FS-A and FS-C, described in Section 5.7. While

both arrays have the same latency of 2N − 5 clocks, their throughput differs. The

block pipelining period β (reciprocal of throughput) of the two arrays is respectively

4× and 2× lower than the latency. Unfortunately, increased throughput also results

in a larger array; the FS-A array uses twice as many processing elements as the FS-C

array for the same input size.

We have also included a clustered version of array FS-B that we call FS-B-clustered.

The processing elements of the FS-B array are only 50% efficient, i.e., they are active

in only one of every two clock cycles. We can increase the array’s efficiency [91] by

clustering two processing elements into one. The throughput of the clustered array
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Table 7.1: Full-size arrays for Nussinov recurrence.

Array Pipelining Period (β) # Processing Elements Maximum N

FS-A N−1
2

N(N+1)
2 49

FS-C N − 2 N( N
2 +1)

2 81

FS-B-clustered 2N − 5 N( N
2 +1)

4 97

is 2N − 5 clocks, the lowest among the three full-size arrays. However, clustering

improves space efficiency and so increases the size of the largest RNA molecule that

can be folded. Table 7.1 summarizes these results and shows the maximum size of

RNA sequences that can be folded on arrays synthesized on a Xilinx Virtex-4 LX100-

12 FPGA device.

Note that because we used an early version of our designs, which did not support the

retiming optimization, the arrays are clocked at a low frequency of 80 MHz. However,

this does not alter the performance boost achieved through reconfiguration, although,

it does affect the speedup compared to the software baseline.

Another source of parallelism for array design comes from the discrete nature of the

input stream. Because each input sequence can be processed independently, we can

instantiate multiple copies of a small array to increase throughput for small input

sizes. For example, the FS-C array can be instantiated on the target FPGA to fold

sequences of length up to 81 and has β = N − 2. Using the formula in Table ??, we

calculate that 1680 processing elements for the FS-C array can be synthesized on the

target FPGA. If we equally divide these processing elements among two FS-C arrays

of the same size, we can effectively reduce the block pipelining period to N−2
2

. We can

estimate the maximum size of k identical FS-C arrays running in parallel by finding

the positive solution to the equation N
2

(N
2

+ 1) = 1680
k

(in general this equation is

not quadratic). For k = 2, we can instantiate two copies of the FS-C array of size

N = 56. In our optimization, we consider parallel instantiations of each array type

as another family of arrays available for use.
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7.3 Results

To gauge the performance impact of reconfiguration, we first tested our algorithm on

synthetic data. We generated sequences whose length was distributed according to

geometric (p = 0.05), normal (µ = 48, σ = 25), and Pareto (order 0.6) distributions.

We generated 1 billion bases in each case, and all sequences were at most 97 bases in

length. The synthetic data represents ideal inputs with lengths biased toward higher-

throughput array sizes. We used the three arrays described previously. We permitted

a maximum of three parallel instantiations of each array running simultaneously on

the target FPGA. This was done to reduce array synthesis time. We may achieve

slightly better performance with four to five instantiations, but it is likely to provide

diminishing returns. We assumed a reconfiguration time of 20 ms, as reported in [23].

Figure 7.1: Optimal selection of Nussinov arrays to fold synthetic sequences with
normally distributed lengths. Top: histogram and cumulative frequency of sequence
lengths. Middle: design with reconfigurations produced by our algorithm. Bottom:
best single array supporting all input lengths (up to 97 bases). Size of each array
instantiation is given by length of longest sequence it processes.
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The set of optimal arrays selected by our dynamic programming algorithm for the

normally distributed sequences is shown in Figure 7.1 using three graphs. The top

graph shows both a histogram and the cumulative frequency of all sequences. The

traditional method selects a single array, in this case the slower FS-B-clustered array,

at a fixed size large enough to fold all input sequences, as shown in the bottom graph.

FS-B-clustered was selected because it was the only array type that fit on our FPGA

given the sequence length requirement of 97. The reconfigured solution is shown in

the middle graph. Our algorithm selects various instantiations of the FS-A, FS-C,

and FS-B-clustered arrays to process subsets of the sequences. The size of an array

instantiation is the length of the longest sequence it executes. The number of stacked

boxes indicate the number of parallel instantiations of the array synthesized on the

FPGA. The number of columns denote the number of array instantiations selected

by the algorithm, in this case eighteen. Our algorithm predicts a speedup of 4×
over the non-reconfigured solution. We obtained similarly encouraging results for the

geometric (20×) and Pareto (2×) distributions.

7.3.1 Folding Pyrosequencing Reads

In the past decade, short 20-30 base noncoding RNAs have been discovered to be

important regulators of eukaryotic genes [26]. One class of such RNAs is the microR-

NAs (miRNAs). An important biological problem is how to detect miRNA sequences

in the genomic DNA from which they are copied. Currently, new sequences are

scanned computationally to detect candidate miRNA precursor sequences, which are

then experimentally validated [17]. An important feature of miRNA precursors is

their distinctive secondary structure, which can be detected in part by looking for an

unusually high number of paired bases when a short piece of DNA is treated as RNA

and folded. We use the Nussinov algorithm to scan for high numbers of paired bases.

Large-scale genomic DNA sequencing today is done via pyrosequencing, a massively

parallel sequencing technique. Pyrosequencing of a DNA sample can obtain short

sequence fragments (100 bases or less) at a rate of tens of millions of bases per hour.

While some pyrosequencing datasets are assembled to produce one long genomic se-

quence, others, especially environmental sequencing [124], sequence DNA from many

organisms at once and so remain highly fragmented. We therefore investigated the
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impact of our methods on the rate at which the Nussinov algorithm could be applied

for miRNA detection within the fragmentary DNA produced by pyrosequencing.

We folded pyrosequencing reads from 130 environmental samples8. The dataset con-

tained 22.6 million reads totaling 2.7 billion bases, with an average read length of

121. We sorted the sequences in the dataset by length and split them into two equal

halves in an offline process. Two instances of the software was run independently on

both cores of our 3 GHz Intel Core 2 Duo CPU baseline. The time to fold all reads

in the dataset using the two cores was 8, 975 seconds.

We used the hardware system described in Section 4.4. For reconfiguration, our

current system must load the FPGA configuration file from the host CPU’s memory

rather than on-board flash, and so has a reconfiguration time of 400 ms—dramatically

longer than that reported in [23].

Sorting and formatting the dataset for use by the hardware takes significant execution

time (about 70 seconds) using a naive strategy; we may be able to accelerate this step

to achieve an efficient implementation, for example, by using in-memory sort. We

have not included this cost in the execution time of the software or hardware runs

and assume the database is preprocessed during data generation time.

To process all the collected reads, we split reads greater than 97 bases into smaller

chunks with an overlap of 25 bases. This increases the workload but enables us to

fold all sequences while still being long enough to predict important features of the

structure. Figure 7.2 shows the results of the experiment. Sequence lengths were

heavily biased toward the largest size supported by the hardware, which requires our

slowest array (FS-B-clustered); hence, we do not expect a large speedup. Moreover,

our algorithm selected fewer instantiations of the arrays due to our hardware’s com-

paratively longer reconfiguration time. As expected, the FS-B-clustered array was

used for the longest reads, followed by the FS-C array. Though the FS-A array can

be selected for reads smaller than 50 bases, the algorithm preferred multiple units

of FS-C, which has higher throughput. The FS-A array was used only for sequences

smaller than 34 bases. We predicted a speedup of 51% for the reconfigured over the

single-array solution.

8http://scums.sdsu.edu/meta_overview.php
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Figure 7.2: Optimal selection of Nussinov arrays to fold pyrosequencing reads. Esti-
mated speedup of the reconfigured solution over the single-array approach was 51%;
direct measurement yielded 48%.

Using the single-array solution, we achieved a runtime of 107 seconds and a dual

core speedup of 84× over the software. Runtime reconfiguration using our set of

five arrays resulted in an execution time of 72 seconds and an improved dual core

speedup of 125× over the software. Indeed, runtime reconfiguration resulted in 48%

faster execution than the single latency-space optimal array, closely matching our

prediction. We achieved significant speedups through runtime reconfiguration despite

the input’s bias toward long sequences requiring the low-throughput FS-B-clustered

array (accounting for 64 of the 72 seconds of execution). Finally, we note that input

bandwidth was not a limiting factor for performance.

For comparison, we computed the best possible speedup on a hypothetical FPGA

system that can load a new design without cost, i.e., for every sequence we always

use the best array, assuming zero cost for reconfiguration. Our algorithm predicts a

speedup of 59%. Clearly, improving FPGA reconfiguration time beyond the current

400 ms will result in diminishing returns in performance.
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Figure 7.3: Speedup of a reconfigured solution as a function of the maximum number
of instantiations allowed. We may choose to limit the number of instantiations to the
knee of the curve in order to reduce synthesis time. The y axis is shown in log scale.

7.3.2 Restricting the Number of Arrays

We continued our inquiry by investigating the performance of reconfiguration when

restricted to a limited number of arrays. The number of arrays may be limited for

two reasons. First, if optimization selects arrays that have not yet been synthesized,

the cost of processing a data stream is increased by the substantial costs of synthesis

for each new design used. Second, even if synthesis cost is discounted (say, because

a library of designs will be reused over many datasets), the target platform may

have limited storage to hold alternative array designs (e.g. bitfiles for FPGAs) and

so may not support rapid reconfiguration among many designs. For example, the

system described in [23] can reconfigure quickly from a set of configuration files kept

in on-board non-volatile storage, but this storage holds fewer than six designs.
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The algorithm of Equation 7.1 can easily be applied to a restricted set of pre-

synthesized array designs, but this does not address the problem of selecting too

many designs for the target’s storage. To restrict the number of designs actually

used in our reconfiguring solution, we modify Equation 7.1 to compute E(i, n), the

minimum time required to execute all inputs of length 1 to i using at most n array

instantiations. The revised recurrence adds a factor of n to the running time.

E(i, n) = min

 E(i, n− 1)

min
1≤a≤|A|

min
1≤j<i

{ E(j − 1, n− 1) + ρ+ δa(j, i) } (7.2)

Figure 7.3 shows how the best estimated speedup for our real and synthetic datasets,

compared to the single-array baseline, varies with the number of designs allowed

for reconfiguration. The smallest number of designs that minimizes execution time

(computed using Equation 7.1) for the experiments is shown by the arrows. We can

achieve 90% of the full speedup available from reconfiguration using just two designs

for the pyrosequencing reads and 3-8 designs for the synthetic data.

7.3.3 Folding Long Reads

SRP002017. Next, we folded 454 pyrosequencing reads from a metagenomics sam-

ple of a mature Mediterranean deep chlorophyll maximum community9. The dataset

contains 1.2 million reads with a total of 772 million bases. For this experiment we

used the full-size arrays described in Table 7.1 as well as all of the partitioned 2-D

arrays shown in Table 6.2 of Chapter 6. With these arrays we can now fold sequences

up to 305 bases long. We pre-processed the SRP002017 dataset to split sequences

longer than 305 bases to smaller chunks with an overlap of 25 bases.

Since the sequences in this database are long, our algorithm always chooses various

instantiations of the partitioned 2-D array. Figure 7.4 shows the expected and mea-

sured speedups through reconfiguration using between one and six hardware designs.

Our algorithm predicts an optimal speedup of 92% using six designs. On our FPGA

platform we used the six suggested array designs to achieve an 88% speedup over the

9Sequence data is available under the SRA accession SRP002017 at http://trace.ncbi.nlm.
nih.gov/Traces/home/
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Figure 7.4: Reconfiguring the FPGA using up to six Nussinov array instantiations,
we are able to achieve a speedup between 56 and 88% over a single array when folding
the SRP002017 dataset.

single partitioned 2-D instantiation of size 305. Furthermore, as seen in the graph, we

are able to achieve a significant 79% speedup using just three partitioned 2-D arrays.

We folded the SRP002017 dataset using the software implementation on the dual core

baseline, which ran in 4, 203.00 seconds—our reconfigured solution is 45.42× faster.

SRP000960. For our final experiment we folded 485,079 reads totaling 143 million

bases from the Human Microbiome Project next generation technology pilot10. For

this experiment we used all of the Nussinov arrays we have built in this dissertation,

allowing us to fold the entire dataset without having to split reads.

10Sequence data is available under the SRA accession SRP000960 at http://trace.ncbi.nlm.
nih.gov/Traces/home/
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The largest read in the dataset is 507 bases long, which can be processed by the

unpartitioned 1-D array derived in Chapter 6. However, this array is also far slower

than the partitioned 2-D array, which we would like to use to fold a significant fraction

of smaller reads. Our algorithm predicts an optimal speedup of 6.72× using four

instantiations each of the partitioned 2-D and unpartitioned 1-D arrays.

Figure 7.5: On the SRP000960 dataset we are able to achieve close to optimal speedup
by reconfiguring between half the number of designs as the optimal solution. Our
algorithm suggests the use of three unpartitioned 1-D arrays, and a single partitioned
2-D array.

Again, we are able to achieve substantial speedup using fewer designs. We used our

program to specify the best solution when limited to selecting four designs. Figure 7.5

illustrates the distribution of read lengths and the four arrays used in our experiment.

Notably, three of the selected arrays are instantiations of the unpartitioned 1-D array,

which together process just 22% of the reads in the dataset. Our algorithm justifiably

focuses on the small number of long reads as this is the bottleneck in the entire

computation.
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Our program predicts a 6.37× speedup using the four designs. The single unpar-

titioned 1-D array of size 507 bases takes 653.60 seconds on our FPGA system to

fold all reads. Reconfiguring between the four designs suggested by our program, we

performed the same computation in 103.93 seconds, achieving a 6.29× speedup. The

same dataset could be folded in 1, 331.83 seconds on our dual core baseline. Our

reconfigured solution is 12.81× faster.

7.4 Related Work

As far as we are aware, past work on space-time analysis only finds a single optimal

array; our’s is the first to take advantage of runtime reconfiguration to select multiple

arrays optimal for different input subsets.

Runtime reconfiguration has been successfully used on FPGAs to improve the execu-

tion time of applications. Runtime customization [146] responds to input to produce

optimized designs, for example using constant propagation, precision variation [21],

and branch optimization [141]. In the case of constant propagation and precision

variation, the circuit can be simplified when the input data item is known, improv-

ing performance and possibly reducing area requirements. In the case of branch

optimization, a frequently executed branch case is optimized based on typical ex-

ecution profiles. Specific application accelerators that use these techniques include

SAT solvers [164], sequence alignment [121] and Viterbi decoding [143]. Our work is

intended to be generally applicable to any application specified as a recurrence. Run-

time customization techniques can be used to build systolic arrays for the candidate

list used by our dynamic programming algorithm.

Our array selection algorithm can be applied to improve the performance of exist-

ing accelerators through runtime reconfiguration. For example, a recently published

accelerator for the Viterbi recurrence used in motif finding [35] expressly notes that

runtime reconfiguration based on the input model length is required for acceptable

performance, though the authors do not give an algorithm. In addition, it may be

possible to select alternate, less resource-intensive designs for smaller input sequences

when it can be guaranteed that the sequence contains only a single copy of the input

model.
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7.5 Conclusion

Exploiting the power of reconfiguration can result in significant performance improve-

ments for systolic array implementation of recurrences. We have described systematic

algorithms to select array designs and reconfiguration points so as to realize maxi-

mum performance. We have validated our approach empirically and have obtained

significant speedups over non-reconfiguring hardware for application of the Nussinov

RNA folding algorithm to short nucleic acid sequences.

Two hurdles to realizing performance improvement using FPGA reconfiguration are

the overhead of sequence sorting, and the runtime to compute the optimal array

designs. As mentioned previously, sorting may be done during the data generation

stage. Dealing with a database of sequences of varying length is also a challenge in

a multi-core software implementation as the workload must be equally distributed

among the available compute nodes. One solution is to have a runtime master feed

compute nodes RNA sequences and equally distribute the workload. An alternative

solution is to sort the sequences by length and build smaller, equal sized sub-databases

that can be processed independently.

Our program to select the optimal array designs runs in 30-50 seconds on our software

baseline. We believe this runtime can be reduced significantly using a number of

enhancements. Currently, we use the python interpreter to calculate the runtime cost

of each array. This was done to increase flexibility and ease of use, but also results

in a significantly poorer performance than a C-only implementation. We will also be

able to reduce runtime by limiting the choice of available array instantiations.

One important direction for further study is whether one can systematically exploit

reconfiguration to improve performance based on criteria other than input size. For

example, DNA sequence comparison algorithms in bioinformatics exhibit performance

that is sensitive to the percentages of different DNA bases in each input [103]. A sec-

ond direction for improvement would couple our algorithms to a tool that automates

formal synthesis and exploration of the space of possible array designs, so that al-

ternative families like those we built for Nussinov can rapidly be generated for new

computational problems of interest.
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Chapter 8

Analysis and Acceleration of the

Zuker RNA Folding Recurrence

Given our success in applying polyhedral analysis to Nussinov, we now turn to the

Zuker RNA folding algorithm. The Zuker dynamic programming algorithm [166] com-

putes the minimum free-energy secondary structure of an RNA. Unlike the Nussinov

recurrence, which considers only base pairing, Zuker uses more accurate, experimen-

tally derived thermodynamic models for structural features such as loops and stacks.

The Zuker recurrence also makes use of experimentally derived energy parameters to

more accurately compute the contributions of special-case loop structures.

The Zuker algorithm is more challenging to accelerate than Nussinov because of its

large number of dependencies and their complexity in addition to its resource-intensive

parameters. Fortunately, our application of polyhedral analysis to Nussinov suggests

ways to tackle these challenges.

In Section 8.1, we commence our study by introducing the Zuker recurrence and

summarizing the difficulty in building an efficient special-purpose accelerator. We

then simplify the recurrence in Section 8.2 by applying polyhedral transformations

used on Nussinov. Once we have a form more conducive to efficient array synthesis,

we build and evaluate a special-purpose array in Section 8.3. Due to the resource-

intensive nature of this algorithm, we only build a 1-D array in this work. Finally, in

Section 8.4 we compare our approach to related work from literature and show the

superiority of polyhedral analysis.
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8.1 The Zuker Recurrence

To be relevant to biologists, we target the specific Zuker implementation in the popu-

lar RNAfold program of the Vienna RNA package [69]. The program implements the

recurrence first described by Zuker [166] but also includes a number of enhancements

such as the modeling of special-case loops and dangling ends. We have omitted these

details from our discussion for brevity11; however, all these computations have been

implemented in our accelerator, which yields results identical to the fill arrays

function of Vienna RNA version 1.8.4.

For the RNA sequence S of length N , the Zuker algorithm recursively computes three

data variables W , V , and VBI defined over the domain D = { i, j | 1 ≤ i < j ≤ N }.
Supporting energy functions computed via table lookup are shown in lower case.

Note that δ is a lookup table, as opposed to being a simple function for the Nussinov

algorithm.

W (i, j) = min


W (i+ 1, j) + b

W (i, j − 1) + b

V (i, j) + δ(Si, Sj)

min
i<k<j

{W (i, k) +W (k + 1, j)}

(8.1)

V (i, j) = min



∞ if (Si, Sj) is not a base pair

eh(i, j) otherwise

V (i+ 1, j − 1) + es(i, j)

VBI (i, j)

min
i<k<j−1

{W (i+ 1, k) +W (k + 1, j − 1)}+ c

(8.2)

VBI (i, j) = min
i<i′<j′<j

{ V (i′, j′) + ebi(i, j, i′, j′) }. (8.3)

V (i, j) is the energy of the optimal structure formed by subsequence Si...j, with bases

Si and Sj forming a base pair. This structure is formed by a decomposition into its

constituent loops. The recurrence exhaustively considers all loop structures closed

11We plan to publicly distribute the complete source code for our Zuker array in the near future.
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Figure 8.1: An example of an RNA folded into a secondary structure with free energy
-53.90 kcal/mol. Types of structural features modeled by the Zuker folding algorithm
include: dangling ends (1), internal loop (11), stack (23), multi-loop (47), bulge (68)
and hairpin loop (78).

by every complementary base pair. The two bases at i and j may close a hairpin

loop (eh), form part of a stack (es), close an internal loop or bulge (VBI ), or be part

of a multi-loop (W ). See Figure 8.1 for examples of these features. The most likely

scenario is selected using the minimization operation in Equation 8.2. If these two

bases are not complementary, the energy score is set to infinity to signify an impossible

structure. Note that Equation 8.1, used to compute the energy of multi-loops, has a

structure identical to that of the Nussinov recurrence of Equation 1.1.

Equation 8.3 calculates the scores of internal loops and bulges using the scoring table

ebi and is subject to the constraint i′ − i+ j − j′ > 2. This equation also determines

the time complexity of the algorithm, which is quartic in the length of the sequence.

However, large internal loops are uncommon in nature, so implementations of Zuker
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Figure 8.2: Long-range dependencies for the cell (i, j).

typically sacrifice accuracy for speed by limiting the size of internal loops to at most

30, reducing the overall time complexity to Θ(N3), albeit with a large constant factor.

The computation domain for the recurrences is a triangle, as shown in Figure 8.2.

Long-range dependencies of the enlarged cell (i, j) are depicted in dashed boxes.

Dependencies for VBI are enclosed in the triangle, whose base and height are each at

most 30 cells. Note that all cells (i, j) on a given anti-diagonal line j − i = constant

can be computed in parallel.

Finally, the minimum free energy F (j) of the folded RNA subsequence 1 . . . j is given

by

F (j) = min

 F (j − 1)

min
1≤i<j

{V (i, j) + F (i− 1)}. (8.4)
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F (N) is then the free-energy score of the entire molecule. As was the case for Nussi-

nov, we do not accelerate the computation of the optimal structure itself, only its

energy.

8.2 Parallelizing Zuker

Our first task is to simplify the Zuker recurrence to make it more amenable to paral-

lelization. Notice that the final terms in Equations 8.1 and 8.2 are similar. Let T (i, j)

denote the quantity computed by the final term of Equation 8.1, i.e.,

T (i, j) = min
i<k<j

{W (i, k) +W (k + 1, j)} . (8.5)

We can rewrite the final term in Equation 8.2 in terms of T :

min

{
W (i+ 1, i+ 1) +W (i+ 2, j − 1) + c

T (i+ 1, j − 1) + c .
(8.6)

W (i+ 1, i+ 1) is always∞, so we can ignore the first case, allowing us to replace the

reduction in Equation 8.2 with T (i+ 1, j − 1) + c.

8.2.1 Handling Free Energy Scores

The energy tables in the Zuker algorithm are critical for accurately modeling the

structural features of an RNA secondary structure. Unfortunately, they are also

challenging to implement on an accelerator. We will now summarize the components

of the energy tables eh, es , c, and ebi from recurrence 8.1-8.3; they are described in

detail elsewhere [167]12.

The free energy for hairpin loops eh(i, j) consists of contributions from three loop

features:

12A succinct guide to the energy functions is also available online at
http://www.bioinfo.rpi.edu/zukerm/seqanal/.
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• The first energy component is dependent on the size of the loop, j − i − 1.

Loops of size ≤ 30 have precomputed energies stored in a table. The energy of

larger loops is computed using a mathematical model. We use a single table of

precomputed energies of 256 entries, each with a precision of 10 bits.

• The effect of terminal mismatched pairs (a single energy value) closing a hairpin

loop is considered.

• Finally, some hairpin loops are treated as special cases. Free energies of some

hairpin loops of size 4 have been experimentally derived and are made available

in a lookup table. This is stored as a sparse table with 30 9-bit entries.

The free energy contribution es(i, j) is defined as a table stacking(Si, Sj, Si+1, Sj−1),

with 49 10-bit entries. Multi-loops are scored using a constant c. The energy term

ebi(i, j, i′, j′) is a function used to score both internal loops and bulges. We will

describe it in detail in the next section.

Simplifying the Internal Loop Computation

The internal loop and bulge structure computation in variable VBI presents two

challenges. First, every cell (i, j) depends on a large triangular section of cells. Second,

because the four indices (i, i′, j, j′) do not define a rectangular domain, an array

generated using the linear polyhedral framework will have a suboptimal schedule.

Fortunately there exists an algorithmic technique to reduce the complexity of com-

puting VBI without affecting its value. Lyngsø observed that the energy function ebi

is not arbitrary but depends on the size of a loop [104], enabling him to simplify the

internal loop computation to cubic time complexity. Lyngsø’s optimization did not

yield a speedup in software because standard implementations had already limited

the size of internal loops to 30; however, in this work, we use the transformation to

reduce the complexity of the recurrences to make them more amenable to hardware

acceleration.

We now give a brief overview of the bulge and internal loop energies. We define

two distinct energy functions: ebb for bulges and ebi for internal loops. Let k =
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i′ − i+ j − j′ − 2 be the size of a bulge or an internal loop. The energy function ebb

can be split into contributions from three features:

• The size k of the loop, which is stored in a table with 30 10-bit entries.

• Stacking energies of the interior (Si, Sj) and exterior (Si′ , Sj′) base pairs with

the nearest unpaired bases. These energies are stored in a table with 49 10-bit

entries. The stacking energy term is added only if the bulge loop is of size 1.

• If the loop size is greater than one, a constant penalty term is added if the

interior or exterior base pairs are {A,U} or {G,U}.

The bulge energy function is thus of the form:

ebb(i, j, i′, j′) = stacking(Si, Sj, Si′ , Sj′) + terminalAUGU (Si, Sj)+

terminalAUGU (Si′ , Sj′) + ebbsize(k) .
(8.7)

The energy function ebi can be similarly split with an additional contribution from

an asymmetry component of the loop.

ebi(i, j, i′, j′) = ebistacking(Si, Sj) + ebistacking(Si′ , Sj′)+

ebisize(k) + ebiasymmetry(|(i′ − i− 1)− (j − j′ − 1)|) .
(8.8)

Consider the internal loop closed by base pairs (Si′ , Sj′) and (Si+1, Sj−1) in Figure 8.3.

We say the loop is lopsided because the unpaired region on the left has two more

bases than the region on the right. The asymmetry energy component is a penalty

dependent on the loop’s lopsidedness. Because ebisize is constant for a fixed loop size,

we can reformulate the internal loop calculation to aggregate all dependencies V (i′, j′)

that have i′− i+ j− j′ = constant. We can build from smaller to larger subproblems

that have identical lopsidedness; i.e., whenever i is increased by one base, j is also

decreased by one. This idea is illustrated in Figure 8.3 and is the key to decreasing

the time complexity of the internal loop computation.
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Figure 8.3: Difference in internal loop energy as the exterior base pair changes from
(i+ 1, j − 1) to (i, j). Using Equation 8.8, we see that the energy for the second loop
is ebi(i+1, j−1, i′, j′)−ebistacking(Si+1, Sj−1)+ebistacking(Si, Sj)−ebisize(l−2)+
ebisize(l). Here l = i′ − i+ j − j′ − 4 is the loop size.

We break up the computation of V BI in recurrence 8.2 to use distinct terms for

bulges and internal loops, leading to the following modification.

V (i, j) = min



...

min
i<k<j−1

{ V (i+ 1, k) + ebb(i, j, i+ 1, k) }

min
i+1<k<j

{ V (k, j − 1) + ebb(i, j, k, j − 1) }

VBI (i, j, 5)
...

(8.9)

The first two min reduction terms in the new recurrence compute the score of the

best left and right bulges, while the final term computes the score of the best inter-

nal loop of size 5 or greater. Current implementations of the Zuker recurrence use

experimentally computed score tables for internal loops of size 4 or less; we use six

lookup tables provided by Vienna RNA to handle these special cases (not shown).

Let VBI (i, j, k) be the score of the best internal loop of size ≥ k that has an exterior

base pair (Si, Sj). We compute it using the helper VBI ′(i, j, k), which is the score

of the best internal loop of size k. Note that, strictly speaking, VBI ′(i, j, k) includes
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loops that are left (i + 1) and right (j − 1) bulges of size k. However, these bulges

become part of internal loops at larger values of k. We use the following recurrence

to compute internal loop energies of all loops of size ≥ 5.

VBI (i, j, k) = min



VBI (i, j, k + 1) if k ≥ 5

VBI ′(i+ 1, j − 1, k − 2)+

ebistacking(Si, Sj)−
ebistacking(Si+1, Sj−1)+

ebisize(k)− ebisize(k − 2)

VBI ′(i, j, k) = min



V (i+ 1, j − k − 1)+ if k = 1

ebi(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1)+

ebi(i, j, i+ k + 1, j − 1)

V (i+ 1, j − k − 1)+ if k = 2

ebi(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1)+

ebi(i, j, i+ k + 1, j − 1)

V (i+ 2, j − 2)+

ebi(i, j, i+ 2, j − 2)

VBI ′(i+ 1, j − 1, k − 2)+ if k ≥ 3

ebistacking(Si, Sj)−
ebistacking(Si+1, Sj−1)+

ebisize(k)− ebisize(k − 2)

V (i+ 1, j − k − 1)+

ebi(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1)+

ebi(i, j, i+ k + 1, j − 1).

Note how, when aggregating at VBI ′(i, j, k) from VBI ′(i+1, j−1, k−2), we subtract

the energy contribution of ebisize(k− 2) and add the contribution of ebisize(k). This

is possible because the energy components are the same for all interior pairs V (i′, j′)

such that k = i′ − i + j − j′ − 2, forming loops of the same size. Importantly, as we
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increase the loop size by two, we ensure that the lopsidedness remains unchanged,

since an extra base is added to both sides of the loop. We can further simplify this

recurrence by expanding ebi and gathering common terms.

VBI (i, j, k) = min



VBI (i, j, k + 1) + ebistacking(Si, Sj) if k = 5

VBI ′(i+ 1, j − 1, k − 2)+

ebistacking(Si, Sj) + ebisize(k)

VBI (i, j, k + 1) if k ≥ 6

VBI ′(i+ 1, j − 1, k − 2) + ebisize(k)

(8.10)

VBI ′(i, j, k) = min



V (i+ 1, j − k − 1)+ if k = 1

ebistacking(Si, Sj−k)+

ebiasymmetry(1)

V (i+ k + 1, j − 1)+

ebistacking(Si+k, Sj)+

ebiasymmetry(1)

V (i+ 1, j − k − 1)+ if k = 2

ebistacking(Si, Sj−k)+

ebiasymmetry(2)

V (i+ k + 1, j − 1)+

ebistacking(Si+k, Sj)+

ebiasymmetry(2)

V (i+ 2, j − 2)+

ebistacking(Si, Sj)+

ebiasymmetry(0)

VBI ′(i+ 1, j − 1, k − 2) if k ≥ 3

V (i+ 1, j − k − 1)+

ebistacking(Si, Sj−k)+

ebiasymmetry(k)

V (i+ k + 1, j − 1)+

ebistacking(Si+k, Sj)+

ebiasymmetry(k)

(8.11)
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The terms V (i + 1, j − k − 1) and V (i + k + 1, j − 1) are affine dependencies that

must be pipelined.

In order to facilitate the uniformization of affine dependencies, we perform middle

serialization as described in Section 4.2 for the Nussinov algorithm. We pipeline

long-range dependencies including the RNA sequence, the W terms in recurrence 8.5,

and the V terms in recurrence 8.11.

We must also handle the two bulge terms in recurrence 8.9. To serialize the two

terms, we define VBB(i, j, k) to be the score of the best bulge of size ≥ k. We can

rewrite the bulge computation as

VBB(i, j, k) = min



VBB(i, j, k + 1) if k ≤ j − i− 2

V (i+ 1, j − k − 1, 1)+

ebb(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1, 1)+

ebb(i, j, i+ k + 1, j − 1)

(8.12)

Now we can build pipelines for the terms V (i+1, j−k−1) and V (i+k+1, j−1). This

can be done by pipelining the first term along the basis vector
[

0
−1
−1

]
with a constant

initialization vector
[

1
−2
0

]
and the second term along

[
1
0
−1

]
with the initialization

vector
[

2
−1
0

]
.

The transformed Zuker recurrence equations are defined over the domainD = { i, j, k | 1 ≤
i ≤ N ; i ≤ j ≤ N ; 1 ≤ k ≤ max{ min{30, j − i − 2}, d j−i

2
e } }. The final uniform

system of recurrences for Zuker is given below.

W (i, j, k) = min


W (i+ 1, j, k) + b if k = 1

W (i, j − 1, k) + b

V (i, j, k) + δ(PA(i, j, k),PB(i, j, k))

T (i, j, k)

(8.13)
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V (i, j, k) = min



eh( if k = 1 and

j − i− 1, (PA(i, j, k),

PA(i, j, k),PB(i, j, k), PB(i, j, k))

PA(i+ 1, j, k),PB(i, j − 1, k), is a base pair

PA(i+ 1, j, k),PA(i+ 2, j, k),

PA(i+ 3, j, k),PA(i+ 4, j, k),

PA(i+ 5, j, k),PA(i+ 6, j, k)

)

V (i+ 1, j − 1, k)+

stacking(

PA(i, j, k),PB(i, j, k),

PA(i+ 1, j, k),PB(i, j − 1, k),

)

VBB(i, j, k)

VBI (i, j, k)

T (i+ 1, j − 1, k) + c

(8.14)

PA(i, j, k) =

{
Si if j − i = 1

PA(i, j − 1, k) if k = 1
(8.15)

PB(i, j, k) =

{
Sj if j − i = 1

PB(i+ 1, j, k) if k = 1
(8.16)

T (i, j, k) = min


T (i, j, k + 1) if 2k ≤ j − i
PW 1(i, j, k) + PW 2(i, j, k)

PW 3(i, j, k) + PW 4(i, j, k)

(8.17)

PW 1(i, j, k) =

{
PW 3(i, j, k) if 2k = j − i
PW 1(i, j − 1, k) if 2k < j − i

(8.18)

PW 2(i, j, k) =

{
W (i+ 2, j, k) if k = 1

PW 2(i+ 1, j, k − 1) if 2k ≤ j − i
(8.19)

PW 3(i, j, k) =

{
W (i, j − 1, k) if k = 1

PW 3(i, j − 1, k − 1) if 2k ≤ j − i
(8.20)

PW 4(i, j, k) =

{
PW 2(i, j, k) if 2k = j − i
PW 4(i+ 1, j, k) if 2k < j − i

(8.21)
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VBI (i, j, k) = min



VBI (i, j, k + 1)+ if k = 1

ebistacking(

PA(i, j, k),PB(i, j, k),

PA(i+ 1, j, k),PB(i, j − 1, k)

)

VBI (i, j, k + 1) if 2 ≤ k ≤ 4

VBI (i, j, k + 1) if k ≥ 5 and

VBI ′(i+ 1, j − 1, k − 2)+ k ≤ min{30,

ebisize(k) j − i− 2}

(8.22)

VBI ′(i, j, k) = min



PVI 1(i, j, k)+ if k = 1

ebiasymmetry(1)

PVI 2(i, j, k)+

ebiasymmetry(1)

PVI 1(i, j, k)+ if k = 2

ebiasymmetry(2)

PVI 2(i, j, k)+

ebiasymmetry(2)

V (i+ 2, j − 2, k − 1)+

ebistacking(

PA(i+ 2, j, k − 1),PB(i, j − 2, k − 1)

PA(i+ 1, j, k − 1),PB(i, j − 1, k − 1),

)+

ebiasymmetry(0)

VBI ′(i+ 1, j − 1, k − 2) if k ≥ 3 and

PVI 1(i, j, k)+ k ≤ min{30,

ebiasymmetry(k) j − i− 2}
PVI 2(i, j, k)+

ebiasymmetry(k)

(8.23)
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PVI 1(i, j, k) =



V (i+ 1, j − 2, k)+ if k = 1

ebistacking(

PA(i+ 1, j, k),PB(i, j − 2, k),

PB(i, j − 1, k),PA(i, j, k)

)

PVI 1(i, j − 1, k − 1) if k ≤ min{30, j − i− 2}

(8.24)

PVI 2(i, j, k) =



V (i+ 2, j − 1, k)+ if k = 1

ebistacking(

PA(i+ 2, j, k),PB(i, j − 1, k),

PB(i, j, k),PA(i+ 1, j, k)

)

PVI 2(i+ 1, j, k − 1) if k ≤ min{30, j − i− 2} .

(8.25)

VBB(i, j, k) = min



VBB(i, j, k + 1) + if k = 1

terminalAUGU (

PA(i, j, k),

PB(i, j, k)

)

V (i+ 1, j − 2, k) + ebbsize(k)+

stacking(

PA(i, j, k),PB(i, j, k),

PA(i+ 1, j, k),PB(i, j − 2, k),

)

V (i+ 2, j − 1, k) + ebbsize(k)+

stacking(

PA(i, j, k),PB(i, j, k),

PA(i+ 2, j, k),PB(i, j − 1, k),

)

VBB(i, j, k + 1) if k ≤ min{30, j − i− 2}
PVB1(i, j, k) + ebbsize(k)

PVB2(i, j, k) + ebbsize(k)

(8.26)
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PVB1(i, j, k) =



V (i+ 1, j − 2, k)+ if k = 1

terminalAUGU (

PA(i+ 1, j, k),

PB(i, j − 2, k)

)

PVB1(i, j − 1, k − 1) if k ≤ min{30, j − i− 2}

(8.27)

PVB2(i, j, k) =



V (i+ 2, j − 1, k)+ if k = 1

terminalAUGU (

PA(i+ 2, j, k),

PB(i, j − 1, k)

)

PVB2(i+ 1, j, k − 1) if k ≤ min{30, j − i− 2}

(8.28)

8.2.2 1-D Zuker Array

Due to the resource-intensive nature of the system of recurrences in the previous sec-

tion, we decided not to build full-size arrays for Zuker. Instead we use the procedure

from Chapter 6 to map our array on to a linear array of physical processing elements.

We allocate a 1-D set of processors along the recurrence’s k dimension—one at each

integral point on the k axis. The schedule and allocation of this array are given by

τ(i, j, k) = −k − 2i+Nj

π(i, j, k) = [k] .

The schedule satisfies all the dependence constraints of the recurrence. To be conflict-

free according to Equation 6.1, the greatest common divisor of N and 2 must be one;

i.e., we can only build arrays for sequences of odd length. Even-length sequences are

padded using a special character.

Each processor in the array executes a rectangular domain of points { i, j | 1 ≤ i ≤
N ; 1 ≤ j ≤ N }. Our array assigns ∞ to the variables when computing outside the

domain of the Zuker recurrence. An RNA of length N can be folded in τ(1, N, 1) −
τ(3, 3, 1) = N2 − 3N + 4 clocks, though useful work is done on only 50% of the clock

cycles.
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A high-level overview of our array is shown in Figure 8.4. It is instructive to study the

characteristics of the array using the system of recurrences in Equations 8.13-8.28.

First, all communication between PEs is limited to the three adjacent neighbors. The

PE placed at k = 1 is the most resource-intensive in the array, since it is the only

one to instantiate the compute-intensive variables V and W defined at k = 1. Note

that only this PE holds a copy of the memory-intensive hairpin (eh) and internal

loop energy (ebi) tables used to compute V and W . Similarly, the stacking energy

tables (stacking and ebistacking) are required only at PE 1. Because a PE k always

processes internal loops of a fixed size k, we can distribute one copy of the size (ebbsize

and ebisize) and asymmetry (ebiasymmetry) energy tables across the entire array. In

contrast, existing work (see Section 8.4) requires a copy of all energy functions at each

PE and must implement all computation in Equations 8.13-8.28 in every PE in the

array, greatly limiting the number of PEs that can be instantiated on modern FPGAs.

This limitation is a result of placing PEs along the j dimension of the recurrence.

Polyhedral analysis allowed us to identify this issue and place PEs on the k dimension

for a more resource-efficient implementation. This is also the reason we decided not

to build full-size arrays for the Zuker algorithm.

Since internal loops are limited in size to 30, data variables VBB , PVB1, PVB2,

VBI , VBI ′, PVI 1, and PVI 2 from Equations 8.22-8.28 need be calculated only on

PEs 1-30. All subsequent PEs in the array implement only the T and PW 1-PW 4

computations, the latter four being simple data pipelines. As a result, there are fewer

dependencies in these PEs, so local memory to store intermediate values is greatly

reduced.

We use a single processor (PE 0 in Figure 8.4) to execute Equation 8.4 sequentially

after every column j of V (i, j) has been buffered. This adds a latency of N clocks to

the folding computation.

Input sequence data is sent to PE 1 at regular intervals determined by the schedule.

The V table values, which are required for the minimum free-energy computation,

are always available at PE 1 (arrays instantiated along any other axis would have

multiple sources). The minimum free-energy score is available at PE 0.
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Finally, as N increases beyond 60, the size of the array tends to N
2

. We can fold an

RNA of length N with just half the processors needed by arrays placed along the i

or the j axes; moreover, only the cheapest PE needs to be replicated.

8.3 Evaluation

We have implemented our Zuker accelerator in VHDL and built them for the Xilinx

Virtex 4 LX100-12 FPGA. The architecture of an RNA folding engine contains a

sequence module that buffers input sequences and feeds the systolic array. Purpose-

built controllers feed the sequence and initialize the array at well-defined intervals

as determined by the schedule. The array and its controller are in an isolated clock

domain that runs faster than the sequence module and FPGA I/O blocks.

Although the transformations we have applied to the RNA folding algorithms are

provably correct, verifying the accuracy of an implementation is a challenging task.

We first wrote a C loop implementation of each transformed system of recurrences

and confirmed identical output to the RNAfold program. The VHDL implementation

of every energy function was first testbenched to ease debugging. All arrays were

simulated in ModelSim on hundreds of randomly generated RNAs and verified against

software output for an exact match. Finally, we validated correctness by computing

scores of tens of thousands of RNAs using our FPGA platform and checking for an

exact match to unmodified software.

8.3.1 Techniques for Synthesis After Polyhedral Analysis

We now give a few techniques that can be generally applied to synthesize optimized

arrays on FPGAs after polyhedral analysis. Any dependence in a recurrence has to

be sent from the source to the sink PE after a fixed delay that is computed using

the schedule. These delays are usually programmed as shift registers with a global

reset. Using a reset, however, can adversely impact the resource usage and speed

of the implementation on a Xilinx FPGA. If these registers are coded with a reset,

synthesis tools use an entire FPGA LUT and its associated flip flop to realize a

163



single-bit shift; without reset, a 16-bit shift register can be realized with these same

resources. We can always remove the reset signal on dependency delay registers so

long as necessary initialization conditions are programmed at the boundaries of the

computation domain. This optimization is extremely useful, allowing us to fold a

sequence 45 bases longer than is otherwise possible on the Zuker array.

Since our design uses very little on-chip memory for tables to support computation, a

large fraction of the block RAM memories are unused. We can use these memories as

FIFOs to implement the dependency delays. Our PE implementation is parametrized

first to use all the on-chip block RAMs and only then to use LUTs to implement

delays. With this optimization, we are able to increase by 75 bases the size of the

largest RNA folded on the Zuker array.

To achieve an acceptable clock frequency for our design, the computation in a PE

must be pipelined. Unfortunately, the techniques we have used assume that an entire

iteration is executed in a single clock cycle. The schedule we have selected, how-

ever, does instantiate a large number of delays on the majority of dependencies. In

Section 5.5 we suggested the use of retiming to automatically pipeline computation

in a PE. We demonstrated a significant performance boost using this technique for

the several Nussinov arrays we derived in Chapters 4 and 6. We therefore coded

our Zuker array to allow the synthesis tools to take advantage of retiming. For de-

pendency delays realized using block RAM memories, we always ensure that a small

fraction of the delay is realized using registers, to allow retiming. Without retiming,

our Zuker array synthesized to between 60-70 MHz; with retiming, the tools achieve

a clock frequency of 130-166 MHz. This clock rate compares well with the manually

optimized Zuker array mentioned in Section 8.4 that runs at 135 MHz on the same

FPGA family.

8.3.2 Results for the Zuker Array

To ensure matching results to the software baseline, we have implemented additional

data variables to calculate dangling energies as detailed in the Vienna RNA package.

We use ten block RAM memories for the empirical loop energy scores in PE 1; all

other energies are implemented in distributed memory. We have parametrized the
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Zuker 1-D array to either output V values for traceback in software or send just the

minimum free-energy score. The latency of our implementation is

9 + (N2 − 3N + 4) +N = N2 − 2N + 13 (8.29)

clock cycles. Using just 3 bits per base, the input data rate is very low, approximately

3N bits per N2 clocks.

We built our array for the Xilinx Virtex 4 LX100-12 FPGA using SmartXplorer to

explore different build strategies. The results in this section are all from experiments

run in real hardware on our FPGA system. To confirm accuracy of our implementa-

tion, we built arrays to fold sequences of length 121, 251, 261, and 273. We folded

10,000 randomly generated RNAs of each size and compared their minimum free-

energy scores to those of RNAfold. The two matched exactly. We also folded 1090

sequences of length 99 bases from the Rfam database on our array and confirmed

matching scores to those of RNAfold.

For our software baseline, we ran RNAfold on the dual core 3 GHz Intel Core 2

Duo processor with 4 MB cache. We used gcc 4.4.0 with compilation flags -O3

-march=nocona -fomit-frame-pointer and measured only the time spent in computing

the Zuker recurrence; traceback and I/O time were excluded. Section 4.4 describes

both the software and hardware systems used in this performance comparison in

detail.

We built an array with 136 PEs clocked at 130 MHz to fold RNAs of length 273 bases.

This is the largest RNA that can be folded by our array on the given FPGA device;

it subsumes most of the range of RNA sizes typically folded by biologists. Table 8.3.2

lists the resource usage of each PE type as reported by the synthesis tool. PE 1 is the

most expensive processor in the array. We implemented all of its delays using logic

(SRL16); block RAMs are used to implement the energy functions. The empirical

loop energy calculation in this PE is the critical path of the design; without it, the

array clocks at 170 MHz.

PEs 2 to 30 are less resource-intensive but still use 5 block RAMs to implement the

delay registers. We use two implementations for PEs 31 to N
2

. Version A implements

all delay registers using block RAMs. Once we have run out of these memories, version
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Table 8.1: Area report of processors in our array. The three rows represent number of
LUTs used as shift registers for delays, number of LUTs for arithmetic, and number
of block RAMs.

Controller PE0 PE1 PE2-30 PE31-N/2 Ver. A PE31-N/2 Ver. B
SRL16s 20 17 1842 0 0 544
LUTs 1127 273 2426 762 276 136
BRAMs 0 3 10 5 2 0

B, the processor that is used the most in our design, implements delay registers using

logic. This PE uses just 16% of the logic resources consumed by PE 1 and requires

no block RAMs. This strong contrast demonstrates why we are able to fit far more

processors on an FPGA device than Dou et al.; it is the main reason for our array’s

superior performance. After place and route, 99% of the block RAMs and 92% of the

slices are used.

To compare array performance to the software baseline, we generated 100,000 random

RNAs of length 273 and folded them both in hardware and in software. Our array,

running in hardware, took 57.14 seconds, which almost exactly equals the runtime

predicted by Equation 8.29. The baseline system performed the same computation

in 5, 894.44 seconds on a single core and 2, 950.07 seconds on two cores; our array is

103.2× faster than the single core and 51.6× faster than the dual core CPU.

Table 8.2: Performance of the Zuker design folding 1 million randomly generated
RNAs of length 267 on a multi-FPGA system. The hardware arrays were synthesized
at 130 MHz.

Design Runtime (secs) Dual core speedup
Dual core software 28, 246.00 1×
1 card 2 FPGA 283.35 99.69×
2 card 4 FPGA 142.11 198.76×
3 card 6 FPGA 94.88 297.70×
4 card 8 FPGA 72.10 391.76×
5 card 10 FPGA 57.24 493.47×
6 card 12 FPGA 47.85 590.30×

For our final demonstration we did a workstation-to-workstation performance compar-

ison. Our FPGA system is a general-purpose workstation with up to two PCI-X cards.

Each card holds two Xilinx Virtex 4 LX100-12 FPGAs. Thus far, we have compared

performance of a single FPGA against a dual core processor to do a sockets-to-sockets
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study. It is also instructive to measure performance of the Zuker accelerator on all

four FPGAs to get an idea of the performance of a single workstation accelerator.

We built our Zuker accelerator on both FPGAs of a single card with the necessary

interfacing logic provided by Exegy Inc. The dual FPGA solution is able to fold

RNAs up to 267 bases. The RNA database is streamed to both FPGAs on a card,

with the first FPGA folding odd numbered RNAs, and the latter FPGA folding even

numbered RNAs. The scores are merge in order on the first FPGA before returning

the results back to software.

For our two card setup, we split the database into two halves and ran independent

copies of the interfacing code. For the multi-workstation experiment we again split

the database and ran independent copies of the software over ssh using a shared file

system. The time to preprocess the database is not included in the runtimes.

As shown in Table 8.2, using both FPGAs on a single card results in a close to 100-

fold speedup over the dual core software baseline. A single workstation accelerator

with two cards shows a 198× speedup over our dual core workstation. Indeed, our

single workstation, which is a single rack server, is equivalent in performance to 198

workstations and represents a tremendous savings in floor space. On three work-

station accelerators we demonstrate a 590× speedup over a single general-purpose

workstation.

8.4 Related Work

Recently, significant effort has been spent in accelerating the Zuker algorithm on

multi-core processors, graphics accelerators, and FPGAs.

8.4.1 Multi-core Implementations

GTfold [107] is an OpenMP shared-memory implementation of Zuker on an IBM P5-

570 server with 16 dual core 1.9 GHz CPUs. GTfold is able to fold an RNA of length
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9781 bases 19× faster than a sequential implementation. The time to fold 11 RNAs,

each over 7000 bases, was reduced from about 3 months to under 9 minutes.

The weakness of this approach is that the sequences must be large enough so that

the communication time between cores is minimal compared to the computation time.

Modern RNA-folding algorithms have poor accuracy when the sequence is larger than

about 200 bases [38] and are considered unreliable for sequences thousands of bases

in length. For example, the referenced study shows a median accuracy of 80% for

sequences of average length 120, but accuracy falls to 41% for sequences of length

1000-3000. For short sequences of a few hundred bases, which encompass the majority

of biologists’ workload, there is too little work to distribute among the 32 cores.

 2
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GTfold 273 bases
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Figure 8.5: Speedup of GTfold and a split database approach on a twelve-core work-
station.

To illustrate this point, we ran GTfold on two six-core 2.4 GHz AMD Opteron CPUs

to fold databases of 120- and 273- base RNAs, each with 100,000 sequences. Fig-

ure 8.5 shows poor scaling for the OpenMP approach; on all 12 cores, speedup is

only 6× for 273- base RNAs, and falls to 3× for 120- base RNAs. In contrast to the

GTfold approach, one may accelerate the folding of a database of short sequences by

distributing the workload among independent threads. Our experiments show near
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perfect scaling as the database is split into equal chunks and distributed among up

to 12 cores (we did not consider the time required to split the database).

8.4.2 RNA Folding on GPUs

Rizk and Lavenier [126] used an NVIDIA GTX280 GPU to search for microRNAs

of length 120 bases, accelerating Zuker 17-fold versus one core of a Xeon 2.66 GHz

workstation. This GPU has 30 multiprocessors, each a SIMD unit of eight 32-bit

processors. The authors use multiple levels of parallelism: across several sequences,

across cells on a diagonal, and across independent threads for the computation of each

variable in the algorithm. Memory access is the bottleneck in their implementation—

there is too little low-latency memory for fast access to the data variables and energy

parameters.

Rizk and Lavenier used their GPU implementation to fold 40,000 randomly generated

RNAs of length 120 bases on an NVIDIA Tesla C870 and GTX280. The execution

times of the two GPUs were 32.8 and 18.9 seconds respectively. Accordingly, we built

a new bitfile to fold 121-base RNAs. We were able to fit two arrays on our FPGA

and clock the design at 110 MHz. To amortize I/O, we folded 80,000 randomly

generated sequences in hardware and halved the runtime to derive the execution time

for 40,000 sequences—2.72 seconds. Our design can fold 120-base RNAs 12.1× and

6.9× faster than the Tesla C870 and GTX280 respectively. Note that both GPUs

we have compared against are from a newer hardware generation compared to the

Virtex 4 family. Our hardware is also 119× faster than Rizk and Lavenier’s baseline,

a single core of a Xeon 2.66 GHz with 6 MB cache.

8.4.3 FPGA Implementations

The special-purpose FPGA accelerator sketched in Figure 8.6 was suggested by Dou

et al. [39]. It uses a linear array of processing elements (PEs) connected to SDRAM

memories through an on-chip cache. Every PE requires ten block RAM memories to

store a copy of the energy parameters, despite extensive optimizations done by the

authors. Due to this heavy memory usage, V and W elements that are computed in
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Figure 8.6: An FPGA array by Dou et al. [39] to accelerate Zuker.

the array must be stored in two SDRAM memories with a cache to support efficient

reuse. The first PE requires direct access to SDRAM, but all other processors in the

array need only left-to-right communication. Each PE is assigned one column of the

computation domain, and the entire array computes cells along the same anti-diagonal

simultaneously. Computation proceeds from bottom to top of a column, after which

there is a synchronization phase when the results are written back to memory; then,

the next block of columns is processed.

The authors’ implementation on a Xilinx XC4VLX200-11 FPGA is memory-limited

to 16 PEs clocking at 135 MHz. They achieve a 9.8× speedup for 145-base sequences

compared to a Pentium 4 2.6 GHz CPU. The implementation is able to process large

RNAs and achieves a speedup of 14.3× folding an RNA of length 2981 bases. We

expect these speedups to halve if a modern processor core were used as the baseline.

Dou et al. mention a number of challenges faced in accelerating Zuker, including the

number of dependence terms in computing the internal loop energy and the large

number of energy parameters required. In particular, storage requirements for em-

pirically computed energy tables of all possible hairpin and internal loops of certain

sizes present a challenge to any meaningful acceleration. Variable dependence dis-

tances make it difficult to find task assignments that are balanced among PEs, and
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long-range dependencies make it difficult to efficiently schedule the movement of V

and W variables to the required PEs. One solution to the latter problem is to store

these variables in a central cache until such time as they are required. However, this

strategy may affect scalability if there are a large number of PEs in the array. The

large number of small-granularity access operations also make it difficult to optimize

scheduling for efficient external memory access. Furthermore, the long latency for

off-chip memory access degrades performance.

Dou et al. implemented their array on the same FPGA family used in our experiments,

a Xilinx Virtex 4 LX200-11. Their array can fold an RNA of length N using p

processors in N3

6p
+ 125p+12

8p
N2 + p+183

12
N − 3

8
N2 clock cycles. They were able to fit

16 PEs on the device, clocking the array at 135 MHz. The estimated runtime on

the 100,000 RNAs of length 273 is 1, 007.4 seconds. Our array performs the same

computation 17.6× faster.

Our Zuker array is faster than that of Dou et al. because we are able to fit a larger

number of PEs on the FPGA. In fact, every PE in their array is roughly equivalent to

the most resource-intensive PE in our array (PE 1, which contains the energy tables).

Using polyhedral analysis we were able to identify the k axis for placement of PEs,

whereas Dou’s implementation places PEs along the j axis, necessitating duplication

of the expensive energy tables in every PE.

Another interesting approach to special-purpose acceleration is the use of application-

specific instruction-set processors. Moscola [113] uses this technique for a related

problem, stochastic context-free grammar (SCFG) alignment to RNA sequences,

which requires the computation of a dynamic programming matrix of cells, simi-

lar to RNA folding. While this recurrence is distinct from Zuker RNA folding, we

may compare our systolic array architecture to a hypothetical application-specific

instruction-set processor for the Zuker recurrence that is based on Moscola’s work.

The architecture described by Moscola uses an array of PEs, each executing instruc-

tions from local memory. The matrix of cells, or computation points, are represented

by nodes and dependencies as directed edges in a task graph. A single goal node, the

final result of the computation, is identified, and all other nodes are labeled by their

distance in number of edges to the goal. An execution time is assigned to each node

starting from the ones with the greatest distance, gradually including those whose
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predecessors have been scheduled. Mapping these instructions to processors is done

in a way that optimizes resource usage.

Explicitly enumerating the schedule for every cell in the DP matrix results in a very

large instruction stream. A 21-PE array running at 250 MHz requires an instruction

streaming rate of 95 GBps, or alternately, several megabytes of storage in each PE.

Rather than explicitly scheduling each cell, we turn to the polyhedral model. Here

a single affine function is an implicit schedule for every cell in the matrix. This is

possible because dependencies at every cell are identical, and known during compile

time. The polyhedral model allows us to synthesize an efficient synchronous architec-

ture that does not require an instruction stream; data flowing through the processor

array activates the computation of cells in the matrix.

Similar to RNA folding, the SCFG alignment algorithm has a large number of non-

local dependencies. Movement of these data dependencies in Moscola’s architecture

is done using a multi-port shared memory structure. To support efficient writes,

memory is divided into several banks, each associated with a distinct PE. Every

instruction executed in a PE may read up to 6 memory locations from any bank in

shared memory, so a switching fabric is used for efficient routing.

The disadvantage of using shared memory to implement non-local communication is

its poor scalability. Moscola reports that the logic for the switching fabric dwarfs

other components of the architecture, growing to 90% of the resources when using

only 21 processors. This limits the implementation to 20 processors on a Xilinx

Virtex-5 FPGA. As demonstrated by the study of the Dou and Moscola architec-

tures, communication via a shared memory structure leads to serious limitations in

exploiting parallelism. Our approach is to instead use an interconnection network

that pipelines data dependencies through neighboring PEs, leading to an efficient,

low-cost, and highly scalable design. Since data dependencies are known a priori, we

can use data pipelining techniques within the polyhedral framework to localize long

range dependencies.
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8.5 Conclusions

In this work, we have demonstrated the use of polyhedral analysis to build an array

for the Zuker RNA folding algorithm. Our use of the polyhedral framework allowed

systematic application of transformations and exploration of the design space, which

is not easily achieved with ad hoc methods. We plan to investigate techniques that

remove the limitation of a linear schedule, which in our case results in degraded

performance. If we used FIFOs instead of fixed-delay registers for each dependency,

we could double the speedup of our array by “skipping” iteration points outside the

triangular computation domain.

Our array may be modified to implement closely related algorithms from the Vienna

RNA package, including RNAalifold to fold a set of aligned RNAs and RNALfold to

compute locally stable RNA secondary structures in entire genomes. In particular,

an interesting exercise is to extend our Zuker accelerator to compute the partition

function of the RNA structure ensemble using McCaskills algorithm [109]. While the

dependencies of this algorithm are similar to the Zuker recurrence, computing the

partition function requires multiply instead of addition operations, and summation

instead of minimization of terms, which will increase resource requirements. It is

likely that a newer generation of FPGAs with increased resources will be required to

accelerate McCaskill’s algorithm. Furthermore, we will have to dynamically scale the

partition function values to avoid overflow/underflow.
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Chapter 9

Conclusions & Future Directions

In this dissertation, we have advanced the idea of domain-specific acceleration, tar-

geting the class of dynamic programming algorithms, where we identified a suitable

high-level abstraction to represent these kernels and used parallelization techniques

to build high-performance computing architectures.

We are motivated by the recent availability of low-cost, high-throughput next-generation

sequencers that are producing vast quantities of DNA sequence that threaten to over-

whelm traditional compute systems. In Chapter 1, we quantified this problem by

showing that the historical growth of DNA bases per dollar of sequencing machines

far outpaces performance per dollar of general-purpose workstations. While much

effort and resources are being expended on low-cost sequencing with the aim of af-

fordable human genome sequencing, considerably less attention is being paid to how

these riches may be analyzed. We believe that unless this problem is addressed, com-

pute performance, not low-cost sequencing, will become the bottleneck in advancing

genome science.

We have suggested the targeted acceleration of dynamic programming algorithms,

which find wide use in computational biology. We used the recurrence equation

abstraction to represent these kernels and compiler techniques within the so-called

polyhedral model to build systolic array accelerators. We showed how to parallelize

dynamic programming kernels to build latency-, throughput-, and resource-optimized

arrays depending on the user’s requirements. By capitalizing on recent advances

in FPGA systems, we were able to demonstrate significant speedups compared to

modern multicore processors.
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A major contribution in this work was our decision to optimize for throughput rather

than take the prevailing approach in literature, which is to build latency-optimal

arrays. We introduced a novel method to build throughput-optimized systolic arrays

from recurrence abstractions within the polyhedral framework. Our key observation

was that throughput is independent of the schedule of operations and depends solely

on the processor allocation. Using this insight, we designed techniques to efficiently

pipeline independent input instances on an array as well as multiple iterations in a

single processor. The relative unimportance of latency allows designers to manipulate

the schedule of operations to manage I/O into the array.

We parallelized the Nussinov RNA folding algorithm, designing and demonstrat-

ing two latency-optimal arrays and several throughput-optimized arrays on a Xil-

inx Virtex 4 FPGA platform. We experimentally verified a two-fold speedup of

our throughput-optimized array over the latency-optimal one despite using fewer

resources. Furthermore, similar throughput-optimized arrays for the string paren-

thesization problem improve on a decades-old latency-space optimal accelerator. We

have also demonstrated the use of an existing partitioning technique to build three

families of resource-constrained arrays for the Nussinov algorithm and have suggested

techniques for efficient FPGA implementation.

We advanced the idea that for inputs that vary according to some attribute, such as

sequence length, there may not be one optimal array for all inputs but rather multiple

arrays optimal for ranges of the input attribute. We suggested the use of FPGA

reconfiguration to switch between multiple arrays in response to varying input. We

introduced a novel algorithm to select an optimal ordering of arrays, selected from a

family of accelerators, that produces significant speedup over using a single array. We

showed interesting speedup despite a reconfiguration time of hundreds of milliseconds

and limiting the algorithm to use only a small number of arrays.

Finally, we analyzed and accelerated the challenging Zuker RNA folding algorithm,

demonstrating close to 200× speedup on a four-FPGA workstation over a dual core

system. The flexibility of polyhedral techniques and the capabilities of modern FPGA

devices allowed us build accelerators that outperform competing hardware accelera-

tors designed using ad-hoc approaches, as well as GPU solutions.
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9.1 Observations & Comments

We summarize a few key lessons learned during the course of this dissertation that

can be generally applied by researchers.

• Modern FPGA platforms are highly capable, high-performance com-

pute solutions. They are well suited for data parallel integer applications like

those addressed in this dissertation. FPGA accelerators can achieve speedups

on codes with some control dependency by replicating compute logic, and does

not degrade performance like current GPU accelerators. Although our FPGA

accelerators were clocked 15-20× slower than a general-purpose processor, we

were still able to achieve significant speedups. The key was to exploit paral-

lelism at all levels, including at the instruction- and loop-level, and to aggres-

sively pipeline computations. We expect this efficiency advantage to remain as

FPGAs grow in size and more cores are added to general-purpose processors.

The regularity and locality of systolic array architectures allow them to scale

on larger FPGA devices.

We have used the relatively older-generation Virtex 4 FPGA family in our study,

which has been superseded by three newer generations. The large amounts of

logic and distributed memory elements on these newer devices allow designers

to realize massively parallel accelerators, even for resource-hungry algorithms.

Modern FPGA platforms support high-bandwidth coupling with the host CPU

and disk subsystem allowing high-throughput data processing. Currently avail-

able systems, such as the one designed by Exegy Inc., which we used in this

dissertation, can incorporate four FPGAs in a single host and offer significant

performance improvement over GPU or CPU compute solutions.

• It is worthwhile investigating if FPGA reconfiguration can enhance

performance of other algorithm accelerators. We have successfully im-

proved performance through FPGA reconfiguration (even without partial recon-

figuration). Furthermore, substantial benefits can be had with reconfiguration

times as high as 500 ms. Our experiments suggest that further reducing this

programming time will likely result in diminishing returns; it is more important
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for FPGA vendors to support runtime reconfiguration across all FPGA families,

even if at comparatively slow speeds.

• The systolic array paradigm is well worth considering for use in ac-

celerating loop programs. The simplicity, regularity, and locality of inter-

connections between processors are an excellent match for FPGA fabrics. The

regularity and locality allow systolic array designs to route at relatively high

clock speeds.

Importantly, there is a well-understood systematic design procedure to convert

high-level loop programs (or recurrence equations) to systolic arrays. Poly-

hedral analysis allows the designer to optimize for multiple performance ob-

jectives, while accounting for resource-constrained targets. Synchronization of

control and data, which can be difficult for programmers to manage, is me-

chanically specified through the use of a scheduling function. While hardware

programming is challenging, the regularity of systolic arrays and their formal

specification by an array mapping, makes programming them, even in VHDL,

a far more manageable task. For example, each of the Nussinov arrays were

programmed and tested in hardware in about 1-2 weeks. The high-performance

Zuker array was implemented and verified in hardware in five weeks.

• A domain-specific approach to parallelization that simultaneously

considers the programming model, compilation techniques, and the

hardware architecture can yield significant dividends. We believe a

domain-specific approach can produce just as much, if not more, of an impact

as a general approach that aims to parallelize all sequential codes. The keys to

our success using the domain-specific strategy included:

– The domain of computational biology, which required acceleration of a

large set of problems that could be mapped well onto the fabric of our

accelerator.

– The simple to analyze and optimize systolic array hardware architecture.

– A high-level programming model that naturally describes a large class of

problems in the domain and a suitable parallelization method. Focusing on

a class of similar programs allowed us to apply specialized parallelization

techniques that exploit the specific characteristics of the problem domain.
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The parallelization techniques and the hardware architecture must be able

to compete against hand-optimized designs, however, improvements in pro-

grammer productivity is of paramount importance. The long-term goal

should be to work toward a parallelizing compiler that seamlessly ties the

three components together.

We see success in applying this domain-specific parallelization strategy to other

important algorithm classes.

9.2 Future Work

There are a number of short-term and longer-term challenges that remain to be

addressed.

9.2.1 Short-term goals

Code generation. The important problem of code generation for systolic arrays

remains a challenging problem. Specifically, generating efficient hardware code for

latency- and throughput-optimized arrays, as well as automatically synthesizing con-

trol pipelines for algorithms such as Nussinov RNA folding is challenging. In addi-

tion, we have not fully explored the problem of designing the control architecture for

throughput-optimized arrays. Additional work must be done to enable the automatic

generation of correct control pipelines in the face of input pipelining. Furthermore,

the problem of optimizing I/O into the systolic array, both reducing the number of

processors performing I/O and the amount of buffering required, by manipulating the

array schedule is unsolved.

Design space exploration of partitioned arrays. Although we have demon-

strated the application of partitioning to build several novel resource-constrained

arrays, we did not address the problem of design space exploration for partitioning.

This is a challenging problem because of the large design space and a costly eval-

uation process due to the absence of linear formulations for the resource cost and
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performance of a design—the only accurate way to measure array performance and

resource usage is to implement the design on an FPGA, which is a time-consuming

process. For this dissertation, we wrote a script to search the design space, per-

forming a binary search over the tile parameters and automatically implementing the

designs on an FPGA to determine resource cost. Additional investigation is required

to understand how to more efficiently search this space and provide guarantees on

optimality.

Efficient acceleration of non-rectangular domains. The partitioning tech-

nique we have used in this work assumes the input recurrence is always rectangular.

This is a simplifying assumption that greatly simplifies synthesis of accelerators. We

have had to modify the triangular RNA folding domains to use this parallelization

technique, in the process, achieving only 50% utilization of processors. It will be

worthwhile investigating hardware architectures that can overcome this limitation

using some of the ideas presented at the end of Chapter 8.

Fully exploiting FPGA reconfiguration. We have demonstrated the utility of

FPGA reconfiguration to switch between arrays to improve performance, responding

to changes in input size distribution. A future goal is to generalize this algorithm to

respond to other input properties. One avenue under investigation by members of

our research group is to switch arrays according to the distribution of bases {G,C}
in a DNA sequence. A further challenge is to attain some of the benefits of improved

performance through reconfiguration for online inputs, i.e., where the properties of

the input are not known a priori.

9.2.2 Long-term goals

Automatic parallelization of dynamic programming. Our work is a step to-

ward the longer-term goal of building a complete, automated system for accelerating

dynamic programming algorithms. The entire workflow for such a compiler is il-

lustrated in Figure 9.1. We envision a compiler that accepts domain-friendly input

descriptions (called biological models), such as the weighted finite-state automata
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Figure 9.1: (a) A finite-state automata representation of the Smith-Waterman dy-
namic programming recurrence may be entered through a visual programming envi-
ronment. (b) Future work describing a compiler for automated synthesis of dynamic
programming accelerators.

from the visual programming environment of Searls and Murphy [135], and automat-

ically generates optimized accelerator code. We have been exploring the use of an

existing open-source compiler, MMAlpha, which may be extended for this purpose.

There are three main areas that have not been completely automated. First, programs

written in domain-specific abstractions like those described in Chapter 2 must be au-

tomatically converted into recurrence equations. A basic translation procedure should

be straightforward, however, additional effort will be required to exploit significant

opportunities in optimizing time and space complexities of the input programs.

Second, non-uniform recurrences must be automatically transformed into uniform

ones. In this work we have spent significant manual effort performing such analy-

ses. Some recent results show promise in performing this transformation automati-

cally [52].

Finally, existing code generators in compilers such as MMAlpha must be improved.

In particular, they struggle with recurrence equations that use complex control pred-

icates and fail to produce control pipelines to implement these codes. We were un-

successful in generating VHDL code for our Nussinov accelerators using MMAlpha.
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Generation of heuristics. An interesting avenue for investigation is the auto-

mated generation of heuristics for dynamic programming through the novel use of

polyhedral analysis. In computational biology, heuristics are often used to manage

the large execution time of dynamic programming kernels. However, as far as we are

aware, they have always been designed in an ad-hoc manner. An excellent exam-

ple is NCBI BLAST for the Smith-Waterman recurrence, or HMMERHEAD for the

Viterbi recurrence. We may be able to use polyhedral analysis to identify heuristics

that reduce runtime, for example, by simplifying reductions in recurrences or remov-

ing low-probability dependencies (determined through limited experimentation) that

restrict parallelism.

Supporting heterogeneous processors. We believe that future high-performance

computing platforms will be a heterogeneous blend of multiple compute resources. An

interesting example is the tight coupling of reconfigurable logic with microprocessors.

Recently, Xilinx announced that they would embed 800 MHz dual core ARM CPUs

on an FPGA chip. Intel plans to ship the Stellarton processor in 2011, which lays

an Atom processor in an Altera FPGA. Our work may be profitably extended to

exploit such heterogeneous resources and expand the scope of algorithms that may

be accelerated to more control-dependent codes.
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Appendix A

A Survey of Dynamic

Programming in Computational

Biology

Alignment: The most common sequence analysis task is to compare two sequences

for similarity. The alignment algorithm due to Needleman and Wunsch [116], and a

later more efficient one by Gotoh [57], obtains the optimal global alignment between

two DNA or protein sequences. Smith and Waterman [137] gave a recurrence to find

the best local alignment— the best alignment between subsequences of two sequences.

These recurrences have a relatively low time and space complexity of O(n2) but are

still not practical for use with genome-size datasets.

Enhancement to these models is possible by modifying the basic recurrence; for exam-

ple, finding multiple copies of a repeated motif in a sequence, or overlapping matches

with overhanging ends. The fidelity of alignments produced are improved by changing

the scoring functions used in the recurrence. Scalar values are sufficient for match

and mismatch scores in DNA alignment but protein alignment requires a table of in-

teger scores. Gap scores that are linear functions are the most efficient to implement,

while affine functions lead to an increase in the space cost by a constant factor. Fully

arbitrary gap functions increase the time complexity of the recurrence to O(n3) which

is prohibitive in many cases.

In multiple sequence alignment more than two sequences are aligned to find areas

of conservation in a family of related sequences. An optimal dynamic programming

algorithm to align m sequences of average length n takes time exponential in the
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input, O(nm). Due to the high computational cost, the algorithm is not widely used.

Most multiple sequence alignment algorithms use a progressive strategy where pair-

wise sequence alignment is repeatedly applied. The pairwise dynamic programming

algorithm is similar to the Smith-Waterman algorithm but operates on sequence pro-

files (see below) and requires traceback of the alignment. An example is ClustalW,

which has been shown to spend more than 90% of its execution time in the pairwise

alignment phase.

Probabilistic Modeling with Profile HMMs: Related sequences often exhibit

shared domains that display varying levels of conservation. An alignment of multiple

homologous sequences reveal collections of residues that are conserved and other

regions with many mismatches and gaps. Searching a database using the conserved

features of a family of sequences leads to higher quality matches than simple pairwise

alignment, and is useful for example, to find distantly related sequences.

A Profile Hidden Markov Model (HMM) is a probabilistic model used to represent

the salient features of a multiple alignment. The profile HMM is described by a

set of states that model the probability of a match, insert or delete event at each

position in the multiple alignment. HMM architectures have been devised to find

multiple copies of a domain, fragments of domains, and local alignments. The most

popular architecture is the Plan7 model used in the HMMER software [43] followed by

SAM [73]. META-MEME [58] uses motifs (contiguous set of match states) separated

by an insert state to build HMM architectures.

Given an HMM architecture, standard dynamic programming algorithms are available

to locate matches to database sequences. While these recurrences share the same

basic shape across different HMM architectures, they may have a varying number of

variables, dependencies, initialization conditions and scoring functions. The Viterbi

algorithm is used to find the most probable alignment of a sequence to an HMM. The

Forward algorithm computes the probability that an HMM generates a sequence.

Both recurrences have time complexity O(nl2) and space complexity O(nl) where

n is the length of the sequence and l, the length of the model. In practice, profile

HMMs have a constant number of state transitions at each position of the model

thus reducing time complexity to O(nl). The Viterbi and Forward algorithms are

important recurrences that have seen point accelerators.
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Prediction of protein features with HMMs: Bystroff and Krogh survey the use

of HMMs to detect various features in protein sequences [25] including signal peptides

and their cleavage sites, protein secondary structure and membrane helices.

An early approach to predicting transmembrane helices in membrane proteins uses

a non-probabilistic dynamic programming recurrence [81]. It finds the position and

length of helices in a sequence but is of cubic time complexity. HMMs are better

suited for this kind of prediction. It has been observed that there is an abundance

of positively charged hydrophobic amino acids in selected regions of these helices; a

fact easily incorporated into an HMM. TMHMM [88] uses an HMM architecture with

seven labels (variables in the DP recurrence) that can detect helices of length between

15 and 35. The most probable topology of the transmembrane protein is computed

using the Viterbi algorithm. A point to note, however, is that these HMM architec-

tures contain loops and long-range state transitions and thus require the Viterbi and

Forward algorithms that have time complexity O(nl2).

For applications that detect features in sequences, predicting the most probable la-

beling is more important that the most likely path. For example, when predicting

transmembrane helices, certain groups of states represent the helix core, others loops

or helix caps. The labeling of a sequence has a biological meaning not necessarily

present in a state path. The 1-best [87] and the posterior-viterbi decoding [47] algo-

rithms have been suggested for this purpose. They can be a more accurate predictor

of the topology than Viterbi if each label consists of multiple states, as is true in this

case.

HMM-HMM Alignment: Distantly related proteins with common structure and

function are harder to detect by simple alignment techniques because they share

very little primary sequence. Multiple sequences from a related family have more

information—such as the position and frequency of conserved regions—than a simple

sequence. Therefore it is beneficial to align families of multiple sequence alignments

to yield a more sensitive search.

Profile-sequence methods align a query to a profile; profile-profile methods align two

profiles. Both use algorithms similar to Smith-Waterman, but with non-trivial mod-

ifications to the similarity scoring scheme. HHsearch [138] performs a pairwise align-

ment of two HMMs, each of which summarizes a multiple sequence alignment. It
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uses a simple O(l2) dynamic programming algorithm with five variables, and a log-

odds metric to compare two columns of the HMMs. COACH [44] aligns a multiple

sequence alignment to an HMM (that summarizes another multiple sequence align-

ment). It uses a recurrence similar to Viterbi but with several more variables and

complex scoring functions.

Gene Prediction: Gene prediction programs predict the exon-intron structure of

genes in genome sequences. Ab initio methods use just the sequence without any

supporting evidence. GENSCAN [24] uses a probabilistic model called the General-

ized Hidden Markov Model (GHMM) for prediction. It differs from the simple HMM

in that each state in the model can emit more than one sequence residue. GHMMs

are preferred for gene prediction because they can model the biologically observed

length distributions of various gene components. Viterbi and Forward algorithms for

GHMMs have a worst case time complexity of O(n3l2), nevertheless they are standard

for modern gene prediction tools. Most of these tools limit the number of residues

that can be emitted in each state, but this is often ad-hoc and difficult to parallelize.

In speech recognition, the maximum length is limited to a constant D, making the

decoding algorithms linear in the input sequence.

Evidence based predictors such as GeneWise and GenomeWise [19] use experimental

evidence such as cDNA or homologous sequences to improve gene prediction. Con-

ceptually, two first-order pair-HMMs are used: one is a gene prediction model, and

the other a protein homology model. The gene prediction model converts a given

DNA sequence to a protein sequence, and the protein homology model compares

the predicted protein to a homologous sequence. GeneWise merges the two distinct

models to create a single pair-HMM that directly compares an input genome to the

homologous sequence, while considering all possible predictions of the protein. The

authors report the use of several gene prediction models that compromise either speed

or sensitivity. Each GeneWise pair-HMM can be solved using a distinct dynamic pro-

gramming algorithm that varies according to the underlying model— nevertheless, all

have a time complexity proportional to the product of the length of the two sequences.

Dynamite, a code generation tool for dynamic programming, was used extensively to

experiment with a large number of models.
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Pachter at al. [118] tackle the problem of simultaneous alignment and gene prediction.

The advantage of this method is that the alignment can be used to inform the predic-

tion of genes, and the exon-intron structure helps generate a better alignment. The

Generalized Pair HMM (GPHMM) is used with corresponding Forward and Viterbi

algorithms. They have time complexity O(mnl2d4), where m and n are the length

of the two input sequences respectively, l the number of states, and d the maximum

length of observations in each state. The space complexity is O(mnl).

Secondary Structure: Many RNA sequences fold into a base-paired secondary

structure that determines biological functions in the cell. It is therefore important

to predict the structure of a sequence. Nussinov [117] gave the first such algorithm,

which maximizes the number of base pairs in the optimal structure. It runs in time

O(n3) and space O(n2) on an RNA of length n. A more sophisticated algorithm due

to Zuker [166] attempts to find the structure with the lowest equilibrium free energy.

It uses experimentally observed energy parameters and detects multi-branch loops,

which increases its time complexity to O(n4). The time complexity can be reduced

to be cubic by restricting the size of the multi-branch loop, or with a simplifying

assumption on the energy function of multi-branch loops. The Zuker algorithm is

widely used for RNA secondary structure prediction. Rivas and Eddy [125] improve

these algorithms further by considering pseudoknots in their dynamic programming

formulation. They are, however, infrequently used because of a high time complexity

of O(n6) and space complexity of O(n4).

Rnall [158] finds local secondary structures by searching in a sliding window of a

genome length sequence. The sequence window is folded inside out with a dynamic

programming algorithm that forces the middle nucleotide to be in a hairpin loop. The

time complexity of Rnall is O(w3n) for a genome of size n and a window of length w.

Simultaneous Sequence and Structural Alignment: Biologists are interested

in locating both the sequence and structural alignment of related RNA sequences.

Simultaneous alignment and folding on RNA sequences is used to iteratively guide

each process, thus obtaining a better alignment. The Sankoff algorithm [130] inte-

grates the global alignment and folding of two RNA sequences of length n to derive an

algorithm that runs in time O(n6) and space O(n4). Sankoff also derives a dynamic

programming algorithm to optimally align k RNA sequences that is too expensive
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to run on modern workstations for realistic datasets. Therefore, similar to multiple

sequence alignment, pairwise progressive alignment methods are used.

The Sankoff algorithm on two RNA sequences has been simplified further to make

it more tractable. Gorodkin et al. [56] suggest an O(n4) running time simplification,

FOLDALIGN, which ignores branches in the folded structures. Dynalign is another

simplification that allow branches of only a fixed-size window, making the runtime

cubic in the length of the sequence.

Stochastic Context-Free Grammars: Many related RNA sequences have a con-

sensus secondary structure but share very little primary sequence. The information

encoded in this structure must be taken into account when searching a database of

RNAs if homologs are to be found. Simple formalisms like Hidden Markov Models,

in contrast to the more powerful stochastic context-free grammars, cannot efficiently

capture the base-paired secondary structure of RNAs. The consensus secondary struc-

ture of a multiple alignment of related RNAs along with sequence information can be

coded in a probabilistic framework known as covariance models (CMs).

Given a CM representation and an observed sequence, the Inside dynamic program-

ming algorithm computes the probability that the model generates the sequence. The

algorithm has time complexity O(l2n3) where the CM has l states and the observed

sequence is of length n. The CYK algorithm computes the maximum likelihood parse

of the sequence by the CM, and has the same space and time complexity. Variations

of these algorithms limit the search space to reduce the high time complexity, making

searching of a large database feasible. The length of the longest aligned subsequence

can be limited to a constant (rather than the length of the observed sequence), or DP

restricted to a fixed-size band [115], making the algorithm linear in the sequence.

The Inside and CYK algorithms are non-trivial to parallelize because certain depen-

dencies are dynamic, depending on the input model. Specifically, the dependence of

an input state on its children is both dynamic, and requires a graph-like data struc-

ture which is harder to model than sequential datastreams. A possible solution is to

assume a worst-case dependency structure and force an ordering on the CM states.

The Inside algorithm on pair-SCFGs performs simultaneous sequence alignment and

secondary structure prediction of two sequences.
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Conditional Random Fields: Hidden Markov Models have been successfully ap-

plied to a large number of problems in computational biology. Recent advances in

machine learning have introduced Conditional Random Fields (CRFs) [92], which

has been shown to perform better on many classification tasks. HMMs are genera-

tive models, in that they model the joint probability of a state and an observation

sequence. CRFs are discriminative, meaning they model a conditional distribution

of the state sequence on the observation sequence. The disadvantage of generative

models is that incorporating sophisticated dependencies in the observation sequence

can be intractable for inference. Since CRFs are conditional models, they do not need

to model dependencies on observations, making inference easier. This allows the in-

corporation of arbitrary “features”— indicator variables that may be dependent on

arbitrary positions in the observation sequence. CRFs are being used to advance the

state-of-the-art on many of the classification tasks in computational biology, including

the alignment of low similarity sequences, RNA folding and gene finding.

Like HMMs, CRFs use the Forward/Backward and Viterbi algorithms for inference.

On a CRF model with l states and an observation sequence of length n, they both

run in time O(nl2) and have a space complexity of O(nl). The potentially challenging

and novel aspect is the use of features. Efficient parallel arrays will have to be de-

signed based on the specific dependencies of the features of each application. Features

dependent on a small window of the observation sequence may be parallelizable with

additional local memory and score tables. On the other hand, it might be altogether

impossible to build efficient arrays for features with long dependencies (due to long

communication links on the array) or features that are dependent on the state se-

quence (due to lack of parallelism). We are not aware of FPGA accelerators for CRFs

and see it as an ideal example to demonstrate the use of our approach to ease the

development of a family of accelerators.

Haplotyping Problem: The genomes of any two humans are identical except for

single nucleotide variations called SNPs that occur approximately once every thou-

sand bases. The string of nucleotides that occur at SNP locations of an individual is

defined as its haplotype. The single individual haplotyping problem is to determine

an individual’s haplotype in the presence of incomplete and imperfect fragments of

sequencing data. This is an area that has used dynamic programming to perform

efficient combinatorial optimization. Rizzi et al. [127] give two algorithms to tackle
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restricted versions of this problem that run in time O(mn2) and O(m2n) time where

n is the number of SNP sites, and m, the number of fragments. An interesting aspect

of these algorithms are their use of a graph data structure.
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