
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2006-1b 

2006-01-01 

Fair Efficiency, or Low Average Delay without Starvation Fair Efficiency, or Low Average Delay without Starvation 

Christoph Jechlitschek and Sergey Gorinksky 

Elastic applications are primarily interested in minimal delay achievable for their messages 

under current network load. In this paper, we investigate how to transmit such messages over a 

bottleneck link efficiently and fairly. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Jechlitschek, Christoph and Gorinksky, Sergey, "Fair Efficiency, or Low Average Delay without Starvation" 
Report Number: WUCSE-2006-1b (2006). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/169 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/169?utm_source=openscholarship.wustl.edu%2Fcse_research%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


Department of Computer Science & Engineering

2006-1

90day_evaluation

Authors: Someone1 and someone

Corresponding Author: jpw4@cec.wustl.edu

Abstract: contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456, contents for abstract for the page
SELECT *
FROM tblFileInfo i INNER JOIN tblFiles f on i.FileID = f.FileID
WHERE FileInfoID = 456

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Fair Efficiency, or
Low Average Delay without Starvation

Christoph Jechlitschek and Sergey Gorinsky

Technical Report WUCSE-2007-16
Department of Computer Science and Engineering, Washington University in St. Louis

One Brookings Drive, St. Louis, MO 63130-4899, USA
{chrisj,gorinsky}@arl.wustl.edu

February 28, 2007

Abstract— Elastic applications are primarily interested in min-
imal delay achievable for their messages under current network
load. In this paper, we investigate how to transmit such messages
over a bottleneck link efficiently and fairly. While SRPT (Shortest
Remaining Processing Time) is an optimally efficient algorithm
that minimizes average delay of messages, large messages might
starve under SRPT in heavy load conditions. PS (Processor
Sharing) and ViFi (Virtual Finish Time First) are fair but yield
higher average delays than under SRPT. We explore the class
of fair algorithms further and prove that no online algorithm in
this class is optimally efficient. Then, we derive a fair algorithm
SFS (Shortest Fair Sojourn) and report extensive experimental
evidence that SFS is consistently more efficient than PS and ViFi
during either temporal overload or steady-state operation, with
the largest benefits when average load is around the bottleneck
link capacity. Furthermore, average delay under the fair SFS
remains close to the minimum attained under the unfair SRPT.

I. INTRODUCTION

Cross-layer optimization encompasses a variety of recent
efforts to overcome inefficiencies that isolation between layers
imposes on the traditional network design [1], [2]. In this pa-
per, we explore whether and by how much explicit accounting
for application needs improves efficiency of network capacity
allocation. While applications in general might require highly
diverse network services, our study focuses on elastic appli-
cations, which are often seen as the most harmonious fit for
the Internet layered architecture.

Elastic applications are interested in minimal delay achiev-
able for their messages under current network load. If one
reduces the problem of network capacity allocation to schedul-
ing a single bottleneck link, Shortest Remaining Processing
Time (SRPT) – which schedules messages preemptively in the
order of their remaining transmission delays – is an optimally
efficient algorithm because SRPT minimizes average delay of
messages [3]. However, the optimal efficiency of SRPT comes
at the expense of potential unfairness: in some settings with
heavy load, SRPT starves large messages by delaying them
without bound [4].

Processor Sharing (PS) is an alternative algorithm that
instantaneously allocates equal shares of the bottleneck ca-
pacity to all pending messages [5]. Consequently, expected
delay of a message under PS is proportional to the message

size. Also, since PS does not rely on knowledge of message
sizes, PS lends itself nicely to implementation in layered
network designs. Due to the above reasons, PS has become
a traditional ideal in network capacity allocation. Although
packet-switching networks do not support instantaneous shar-
ing of a link, a lot of research has been conducted on packet
transmission algorithms that approximate the PS ideal. Devel-
oped packet-grained approximations comprise fair queuing at
routers – such as Weighted Fair Queuing (WFQ) [6] or Deficit
Round Robin (DRR) [7] – and fair end-to-end congestion con-
trol exemplified by Transmission Control Protocol (TCP) [8].

While SRPT is unfair, PS achieves fairness by sacrificing
efficiency: average delay of messages under PS is significantly
higher. Recent studies reveal remarkable existence of algo-
rithms that have it both ways and combine fairness with SRPT-
like efficiency. Virtual Finish Time First (ViFi) is a specific
efficient representative of the fair algorithmic class where no
message is delayed longer than under PS [9]. ViFi schedules
messages preemptively in the order of their finish times under
PS and is independently proposed as Fair Sojourn Protocol
(FSP) in the context of web servers [10]. Significant reductions
in average delay under ViFi versus PS are substantiated both
experimentally and analytically [9]–[11].

This paper sheds more light on the class of fair algorithms
for network capacity allocation. First, we show that the fair
class does not contain an optimally efficient online algorithm.
Then, we develop Shortest Fair Sojourn (SFS), a fair algorithm
with even lower average delay than under ViFi in most set-
tings. Our extensive simulations over a wide range of network
load illustrate efficiency and fairness properties of SFS, ViFi,
PS, and SRPT. In particular, we demonstrate that average delay
under SFS versus ViFi is consistently lower over the whole
range of the experiments.

The rest of the paper is structured as follows. Section II
clarifies our model, metrics, and terminology. Section III rules
out existence of an optimally efficient algorithm in the fair
class. This section also presents SFS and proves its fairness.
Section IV reports the experimental comparison of SFS, ViFi,
PS, and SRPT. Finally, Section V sums up and discusses our
findings.
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II. MODEL, TERMINOLOGY, AND METRICS

We define a message as an atomic data unit meaningful for
an application. Messages are supplied for network transfer in
their entirety, e.g., as supported by the DOT (Data-Oriented
Transfer) service interface [12]. Delay of a message is time
passed from the message arrival until the whole message
reaches its destination. Related studies refer to delay under
other names such as transfer time, response time, flow time,
or sojourn time. Transmission delay of a message represents its
communication needs and equals S

C
, where S is the message

size, and C is the capacity of the network bottleneck link
shared with all the other messages. Transmission delay is also
known as processing time, e.g., as reflected in the name of
SRPT. We assume that the communications utilize the whole
bottleneck capacity and have negligible propagation and node
processing delays. These assumptions are reasonable for bulk-
data transfers that are of primary interest for us (in more
general settings, the extra delays could have been modeled
more precisely as constants, and such model adjustment would
not affect the qualitative conclusions of our analysis). Then,
besides transmission delay, the only other component of mes-
sage delay is due to waiting for the bottleneck link to become
available.

Network load is characterized by arrival times and transmis-
sion delays of messages. Network service is represented by an
algorithm that allocates the bottleneck link capacity to pending
messages. In particular, we are interested in online algorithms
that have no access to information about future messages.
Capacity allocation enjoys ideal flexibility that allows both
instantaneous link sharing and instantaneous transmission pre-
emption.

Since PS has become synonymous with fairness in network
resource allocation, we rely on delays of individual messages
under PS as a basis for defining the fair algorithmic class:

Definition 1: The fairness constraint dictates that no mes-
sage should finish later than under PS. Starvation refers to a
scenario where the fairness constraint is violated. An algorithm
for capacity allocation is fair if and only if no starvation occurs
under the algorithm for any network load.

To quantify fairness of an algorithm to a particular message,
we introduce a metric of starvation stretch:

Definition 2: Starvation stretch sX(m) of message m under
algorithm X is the ratio of message delay dX(m) under
algorithm X to message delay dPS(m) under PS:

sX(m) =
dX(m)

dPS(m)
. (1)

Note that algorithm X is deemed unfair if there exists
network load where sX(m) > 1 for at least one message m.

Also note an implicit assumption that network capacity is
allocated among messages. We strongly believe that fairness
of capacity allocation should be defined with respect to real-
world entities, rather than messages or packet flows as in
traditional networking. However, since the important “among
what” aspect is orthogonal to our main contributions and

Message Arrival time Transmission delay

1 through 9 0 10 each

10 0 14

11 90 10

12 90 20

Fig. 1. Network load from the proof of Theorem 1.

requires a separate thorough treatment, we do not explore it
further in this paper.

To quantify efficiency of network capacity allocation under
algorithm X , we measure average delay DX for all n messages
in imposed network load:

DX =

n∑

m=1

dX(m)

n
. (2)

Because SRPT is an optimally efficient algorithm if fairness
concerns are ignored, we use average delay under SRPT as a
baseline for assessing efficiency of fair algorithms:

Definition 3: Average letup LX under algorithm X is the
ratio of average delay DX under algorithm X to average delay
DSRPT under SRPT:

LX =
DX

DSRPT

. (3)

Although a fair algorithm is not always able to match the
ideal efficiency of the unfair SRPT, consistent closeness of
average letup LX to 1 is an indicator that fair algorithm X is
highly efficient.

III. IMPROVING ON VIFI

Both PS and ViFi are fair algorithms but ViFi provides
significantly lower average delay [9]. Is ViFi the most efficient
among fair algorithms? Or if it is not, does the fair class con-
tain another online algorithm that minimizes average delay?
The following theorem gives the negative answer to both above
questions.

Theorem 1 (No Optimal Online Algorithm): No online al-
gorithm minimizes average delay without starvation.

Proof: Consider a scenario with 12 messages that have
arrival times and transmission delays as specified in Figure 1.
Since SRPT does not violate the fairness constraint, it is
optimal to transmit the messages in an SRPT order: any per-
mutation of 1 through 9 followed by 11, 10, and 12. Figure 2b
depicts the optimal schedule, which provides average delay
618

12
. Note that average delay under ViFi, or any other algorithm

that transmits message 10 before messages 11 and 12, is higher
and equals 622

12
.

Suppose that message 13 with transmission delay 4 arrives
at time 105. By time 105 in the above optimal schedule,
messages 1 through 9 and 11 have finished, and message 10
is being transmitted since time 100. Suspending message 10
to transfer message 13 would violate the fairness constraint
because the resumed message 10 would complete at time 118
whereas Figure 2c shows that message 10 finishes under PS
at time 117. Hence, message 10 has to finish before messages

2
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(c) with message 13: PS schedule (d) with message 13: optimal (ViFi) schedule

Fig. 2. No optimally efficient online algorithm in the fair class: messages 11 and 13 are denoted with solid black and stripes respectively.

13 and 12 are transmitted. The resulting schedule provides
average delay 635

13
. However, smaller average delay 634

13
would

be achieved if the 13 messages were transmitted in a ViFi
order: any permutation of 1 through 9 followed by 10, 11
(suspended at time 105 to transfer message 13), 13, 11 (the
rest of it), and 12. Figure 2d depicts this optimal ViFi schedule.

Thus, optimality of transmitting message 11 (rather than
message 10) at time 90 depends on whether message 13
arrives at time 105. There is no optimal online algorithm that
minimizes average delay without starvation.

While Theorem 1 precludes existence of a fair online
algorithm that minimizes average delay, some algorithms
might outperform ViFi with respect to average delay in most
settings. To design such algorithms, we rely on two insights.
First, selecting a message with shorter remaining transmission
delay yields lower average delay. Second, while ViFi always
transmits messages in the order of their PS finish times,
deviation from the PS order to transmit a message with shorter
remaining transmission delay does not necessarily violate the
fairness constraint.

Shortest Fair Sojourn (SFS) is an algorithm based on the
above insights. Let M be a pending message with the shortest
remaining transmission delay. SFS checks whether transmit-
ting M first and then scheduling the other pending messages
in a ViFi order does not lead to starvation. If the schedule
does not violate the fairness constraint, SFS transmits M .
Otherwise, SFS transmits a message with the smallest PS
finish time. The following theorem establishes that SFS is fair.

Theorem 2 (Fairness of SFS): SFS is a fair algorithm.
Proof: Messages might starve only because arrival of a new

message N increases their SFS finish times past their PS finish
times. If N or another message is chosen for transmission
despite not having the smallest PS finish time (i.e., the chosen
message has the shortest remaining transmission delay), then
the updated schedule avoids starvation by SFS definition.
Otherwise, SFS schedules N and the other pending messages
in a ViFi order. The updated schedule is such that:

• Message N completes by its PS finish time due to fairness
of ViFi [9].
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Fig. 3. Dependence on message sizes at 95% load.

• Messages with smaller PS finish times than N ’s are
scheduled before N and hence complete even before their
prior PS finish times.

• Messages with the same or larger PS finish times than
N ’s have their PS finish times postponed by the trans-
mission delay of N and hence complete under SFS at or
before their extended PS finish times.

In all scenarios, no message starves. SFS is fair.

We also consider SFS+, a computationally more extensive
variant of SFS. SFS+ sorts pending messages in the increasing
order of their remaining transmission delays and selects the
first message F (up to a message with the smallest PS
finish time) such that transmitting F and scheduling the
other pending messages in a ViFi order does not violate the
fairness constraint. Our simulations show that SFS and SFS+
yield similar average delays. Moreover, SFS+ average delay
exhibits a surprising tendency of being slightly higher. Hence,
experiments reported in our next section compare ViFi, PS,
and SRPT with SFS only.

IV. PERFORMANCE EVALUATION

A. Experimental methodology

We simulate transmission of 3,000 messages over a link
of capacity C = 10 Tbps, with full link utilization and no
data loss. Our choices for the link capacity and traffic are
dictated by our desire to model broadband networks of the
future. Message sizes and arrival times are drawn from random
distributions. For each set of the traffic settings, we repeat the
experiment under SRPT, PS, ViFi, and SFS.

To characterize intensity of the traffic, we define a notion
of load l as

l =
m

C · t
(4)

where m denotes the average message size, and t is the average
message interarrival time. Note that since the number of
messages is finite, all message delays remain finite even with
l > 100%. This feature of our experimental setup enables us
to compare the evaluated algorithms under long-term overload
conditions, which is impossible with analytical techniques that
target only steady-state algorithmic behaviors.
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Fig. 4. Fairness of ViFi and SFS versus unfairness of SRPT: cumulative distributions of starvation stretches over 100 experiments at 95% load.

We experiment with both uniform and Pareto distributions
of message sizes. Unless explicitly stated otherwise, we re-
port results for message sizes that are uniformly distributed
between 100 GB and 100 TB. For Pareto-sized messages,
our experiments confirm the surprising finding by Bansal and
Harchol-Balter [13] that even under heavy loads, SRPT starves
only few messages and does not inflate starvation stretches
much beyond 1. In these settings, the provenly fair ViFi and
SFS still provide far superior efficiency in comparison to PS.
To illustrate the efficiency gain, we also plot average letups
under PS, ViFi, and SFS in scenarios where message sizes
are drawn from the Pareto distribution with index 1.5 and
minimum message size of 500 GB. In all our experiments,
messages arrive according to a Poisson process with such an
average rate that yields a desired value of load.

The code and running instructions for all the reported
simulations are available at our web site [14].

B. Dependence on message sizes

We start by examining starvation stretches of all 3,000
messages in a single experiment at 95% load. Figure 3a plots
the starvation stretches under SRPT and ViFi in the increasing
order of message sizes. Each message is depicted on the
plot with an individual point. Under both algorithms, a small
fraction of messages across the whole spectrum of message
sizes has starvation stretch 1. These messages finish at exactly
the same times as under PS because they conclude a traffic
burst by emptying the queue upon their completion (under both
SRPT or ViFi and PS). The graph also clearly illustrates the
unfairness of SRPT. Small and even midsize messages benefit
significantly from SRPT, which delivers them up to 50 times
faster than under PS. However, some large messages starve.
For example, delay for the least lucky message under SRPT
is about 50 times larger than under PS.

For the fair ViFi, Figure 3a shows that 800 smallest mes-
sages enjoy similarly low starvation stretches as under SRPT.
To explain the similarity, we observe that a small message

is likely to possess both the shortest remaining transmission
delay and earliest PS finish time among pending messages. For
larger messages, the ViFi profile becomes different. Starvation
stretches of midsize messages rise significantly closer to 1 than
under SRPT. On the other hand, the increase enables ViFi to
complete all large messages by their PS finish times.

As Figure 3b illustrates, SFS also schedules small messages
similarly to ViFi: respective plotted points often coincide. The
reason for the similarity is the same as for SRPT versus ViFi.
Again, SFS and ViFi differ in their treatment of midsize and
large message. A dense cluster of points around starvation
stretch 1 for large messages under SFS indicates that SFS
reduces delays for midsize messages by postponing large
messages almost as long as possible without causing starva-
tion. In addition to the across-the-spectrum line at starvation
stretch 1, Figure 3b also reveals sparser but still discernible
rows of points with starvation stretches 1

2
, 1

3
, and 1

4
. The rows

correspond to messages that arrive and finish while 1, 2, or
3 other messages remain pending (under both SFS or ViFi
and PS).

To expose the discussed trends more clearly, we repeat the
experiment 1,000 times and average the 1,000 obtained sets of
starvation stretches sorted in the increasing order of message
sizes. Figure 3c shows that SRPT substantially decreases
delays of small and midsize messages but the largest messages
typically starve. Under ViFi, not only small messages (the rich)
benefit from abandoning PS but also the largest messages (the
poor) have average starvation stretch about 0.7. Hence, ViFi
improves upon PS across the board by reducing delays for
all classes of messages: rich, middle, and poor! Figure 3d
illustrates strategic differences between SFS and ViFi. By
keeping starvation stretches of large messages closer to 1,
SFS helps the middle class of midsize messages to enjoy
significantly lower delays than under ViFi.
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Fig. 5. Efficiency of PS, ViFi, and SFS versus SRPT.

C. Cumulative distributions of starvation stretches

The average starvation stretches reported in Figures 3c
and 3d blur fates of individual messages. Hence, we also plot
cumulative distributions of all 300,000 starvation stretches in
100 instances of our experiment. Comparing ViFi with SRPT,
Figure 4a shows that while starvation stretches up to the
85-th percentile are higher under the fair ViFi, the top 5%
of starvation stretches under the unfair SRPT exceed 1, i.e.,
belong to starving messages. Figure 4b compares cumulative
distributions of starvation stretches under SFS versus ViFi.
The main divide lies around 73%. Up to the 73-rd percentile,
starvation stretches are lower under SFS. Under either SFS
or ViFi, the top 5% of starvation stretches equal 1. Between
the 73-rd and 95-th percentiles, ViFi yields smaller starvation
stretches. Similarly to Figures 3a and 3b, the lines in Figures
4a and 4b contain horizontal segments at starvation stretches
1, 1

2
, 1

3
, 1

4
, and 1

5
. These flat segments reflect messages that

arrive and finish (under both SRPT or ViFi or SFS and PS)
while 0, 1, 2, 3, or 4 other messages remain pending.

D. Results on efficiency

To evaluate efficiency of the algorithms, we conduct our
experiment for various values of load l. We repeat the exper-
iment 1,000 times for each examined load l ≤ 120%, i.e.,
including all examined instances of underload, but generally
less for overloads of l > 120%. Figures 5a and 5d illustrate
an intuitive expectation that average delays under SRPT, PS,
ViFi, and SFS grow as load increases. After load hits and
surpasses 100%, the delays remain finite and even decelerate
their growth because the number of messages in every exper-
iment is finite. For the extreme of “infinite” load when all

3,000 messages arrive simultaneously, the average delays are
analytically expressed by Gorinsky and Rao [9]. In particular,
PS yields the following average delay in a single experiment
with simultaneous message arrivals:

D
∞

PS =

n∑

k=1

(2(n − k) + 1)mk

nC
(5)

where mk is the size of the k-th smallest message, n = 3,000
is the number of messages, and C = 10 Tbps is the link
capacity. When the messages arrive simultaneously, SRPT,
SFS, and ViFi produce an identical transmission schedule for
the experiment and achieve the same average delay [9]:

D
∞

SRPT = D
∞

SFS = D
∞

ViFi =

n∑

k=1

(n − k + 1)mk

nC
. (6)

For the considered uniform distribution of message sizes,
we derive the expected average delay under PS as:

D
∞

PS =
(4n + 1)mmin + (2n − 1)mmax

6C
≈ 88,118 seconds

where mmin = 100 GB and mmax = 100 TB are respectively
minimum and maximum message sizes in the distribution. The
expected average delay under SRPT, SFS, and ViFi becomes:

D
∞

SRPT = D
∞

SFS = D
∞

ViFi =
(n + 1)(2mmin + mmax)

6C
≈ 44,081 sec.

Figures 5a and 5d confirm that experimental average delays
converge asymptotically to the above analytical predictions.

Figures 5b and 5e plot average letups under PS, ViFi, and
SFS. All three letups peak around l = 100%. At this load
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Fig. 6. Efficiency of PS, ViFi, and SFS with Pareto-sized messages.

where the arrival rate matches the link capacity, PS, ViFi, and
SFS have respectively 2.8 times, 22%, and 9% larger average
delays than under SRPT. Asymptotically, the average letup
under PS converges to:

L
∞

PS =
(4n + 1)mmin + (2n − 1)mmax

(n + 1)(2mmin + mmax)
≈ 2

while SFS and ViFi converge to the optimal efficiency:

L
∞

SFS = L
∞

ViFi = 1.

In general, SFS provides SRPT-like efficiency with consis-
tently lower average delays than even under ViFi.

While our results for l > 100% offer interesting insights into
behavior of the algorithms in long-term overload conditions,
Figures 5c and 5f focus on underload scenarios l < 100%
which are the most relevant for steady-state operation. Again,
SFS consistently outperforms ViFi. For example, when load
equals 80%, average delays under PS, ViFi, and SFS are re-
spectively 2 times, 7%, and only 3% worse then the minimum
attained under the unfair SRPT.

Finally, we explore efficiency of PS, ViFi, and SFS for the
Pareto distribution of message sizes. As Figures 6a, 6b, and 6c
illustrate, Pareto-sized messages reap even greater benefits
from abandoning PS in favor of the efficient representatives of
the fair class. Average delays under PS, ViFi, and SFS peak
around 7.3 times, 25%, and 11% above the minimum provided
by the unfair SRPT. Once again, SFS consistently supports the
highest efficiency among the examined fair algorithms.

V. CONCLUSION

In this paper, we studied a class of fair algorithms for
network capacity allocation where no message finishes later
than under PS. In addition to PS, the fair class includes ViFi
and newly proposed SFS (Shortest Fair Sojourn). We proved
that no online algorithm in the fair class is optimally efficient
with respect to average delay of messages. Nevertheless,
our extensive experiments demonstrated that SFS is consis-
tently more efficient than PS and ViFi during either temporal
overload or steady-state operation, with the largest benefits
when average load is around the bottleneck link capacity.
Furthermore, average delay under the fair SFS remains close to
the minimum attained under the unfair SRPT. Our simulations

revealed that SFS and ViFi gain their significant efficiency
improvements over PS across the whole spectrum of message
sizes, including large messages but primarily due to dramatic
delay reductions for small messages. To outperform ViFi,
SFS decreases delays for midsize messages by postponing
large messages almost as long as possible without causing
starvation.

We conducted our investigation within a simple model that
assumed a single bottleneck link and allowed both instanta-
neous link sharing and instantaneous transmission preemption.
In our future work, we will build upon the discovered in-
sights to design efficient and fair algorithms for transmitting
messages of elastic applications over networks with multiple
bottleneck links. To deal with multiple distributed bottlenecks,
computational complexity, and other envisioned challenges,
we will learn from previous research on message-grained
transmission over packet-switching networks [15], [16].
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