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Profile Hidden Markov models are highly expressive representations of functional
units, or motifs, conserved across protein sequences. Profile-HMM search is a powerful
computational technique that is used to annotate new sequences by identifying occur-
rences of known motifs in them. With the exponential growth of protein databases,
there is an increasing demand for acceleration of such techniques. We describe an
accelerator for the Viterbi algorithm using a two-stage pipelined design in which the
first stage is implemented in parallel reconfigurable hardware for greater speedup. To
this end, we identify algorithmic modifications that expose a high level of parallelism
and characterize their impact on the accuracy and performance relative to a standard
software implementation. We develop a performance model to evaluate any accelera-
tor design and propose two alternative architectures that recover the accuracy lost by
a basic architecture. We compare the performance of the two architectures to show
that speedups of up to 3 orders of magnitude may be achieved. We also investigate
the use of the Forward algorithm in the first pipeline stage of the accelerator using
floating-point arithmetic and report its accuracy and performance.
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Chapter 1

Background and Significance

This work is concerned with the application of high performance computing to the

study of biological sequences. We examine algorithms employed in profile-HMM

search – a technique used to detect features in protein sequence in order to infer their

biological function. We identify approaches to exploiting parallelism for the accelera-

tion of one profile-HMM search algorithm with the aid of reconfigurable hardware in

order to meet the demand for high-throughput computational tools for this task. To

this end, we describe in detail two alternative accelerator architectures and compare

their performance on large input using a performance model we developed. Finally, we

also investigate the acceleration of another profile-HMM search algorithm in parallel

reconfigurable hardware using the same performance model.

In this chapter we introduce the field of biological sequence analysis and remark

on its increasing dependence on computational tools. In particular, we compare

techniques that are applied in protein motif finding, such as alignment and profile-

HMM search, and address the growing need to accelerate them. We describe the

general approach taken by previous work in the acceleration of alignment algorithms

and identify challenges specific to the acceleration of profile-HMM search.
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1.1 Biological Sequence Analysis

Biological sequences are symbolic linear representations of the chemical structures of

biological molecules. Hence they offer the potential to be analyzed with the help of

computational tools in order to infer biological properties of the molecules they repre-

sent, rather than the molecules themselves being treated and studied in a laboratory.

This approach is especially helpful because biological functions are conserved through

evolution across different DNA sequences or proteins.

The goal of biological sequence analysis is to identify sequence elements whose recur-

rence in multiple sequences signifies similar biological function, and to characterize

new sequences based on knowledge about the biological functions of sequence elements

found to be conserved in them.

The growing interest of biologists in DNA and protein sequences has seen the atten-

dant proliferation of engineering solutions to aid in their sequencing as well as the

study of their physico-chemical properties. However, the greater the information gen-

erated by sophisticated equipment such as sequencers and spectrometers, the greater

the need for computational tools to consolidate and analyze it.

The development of high-throughput software applications to carry out biosequence

analysis tasks that were previously carried out manually, such as sequence assembly,

has led to an explosive growth in the size of sequence databases such as GenBank

[14] for DNA sequences and Swiss-Prot/TrEMBL [3] for protein sequences. Fig-

ure 1.1 shows the growth of the number of entries in the computer-annotated protein

database, TrEMBL, between 1996 and 2006, reproduced from [7]. Growth since 2000

has been nearly exponential, doubling approximately every two years. Figure 1.2
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Figure 1.1: Growth of the computer-annotated TrEMBL protein database between
1996 and 2006.

shows the growth of the GenBank DNA sequence database between 1982 and 2004.

The growth rate after the sudden surge around 1999 has been sustained ever since.

It is clear, therefore, that biologists are increasingly dependent on computational

techniques for the analysis and annotation of sequences in these databases.

1.2 Classical Sequence Alignment Algorithms

The majority of computational techniques that have been developed for biosequence

analysis attempt to infer biological function or structure of a newly discovered or

previously unstudied sequence, called the query, by performing a similarity search

against databases of well-known, extensively classified and annotated sequences. Such

a similarity search produces an alignment, i.e. seeks to align similar (and therefore,

likely biologically conserved) substrings of the sequences being compared. Figure 1.3

illustrates the result of a similarity search between two short protein sequences by
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Figure 1.2: Growth of the GenBank DNA sequence database between 1982 and 2004.

Query: RAQEEMVENACNSDKLA
Database: TASESQEDMVCNS

Alignment
. . . . RAQEEMAENACNSDKLA
TASES . QEDMV . . . CNS . . . .

1

Figure 1.3: A pairwise alignment of two short protein sequences showing conserved
regions in bold face. Substitutions in these regions are shown in italics. Dots indicate
gaps caused by insertions or deletions.

performing insertions and deletions over dissimilar regions in order to align the similar

regions shown in bold face. Note that apart from identical symbols, the similar regions

also contain substitutions (shown in italics in the query). Certain substitutions are

more likely than others - an evolutionary fact reflected in the scoring system used to

choose among alternative alignments.

The various biological functions of a protein reside in motifs that correspond to specific

regions in its sequence. For instance, Figure 1.4 shows the sequence of the protein
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A
Protein Sequence GATA1 CHICK Position

ME F VA L GGPDAG S P T P FPD E AGA F LG LGGGE R TEAGG L L A 40
S Y P P S GR V S LVPWA D TGTL G T PQWVP PATQME PPHY L E L L 80
Q P P RG S P P HP S S G P L L P L S S GPP P CE ARECVNCGATAT P L 120
WR R DGTGHYLCN A C G L YHR L NGQN RP L I RPKKRL L V SKRA 160
GTVCSNCQTSTTT LWRRSPMGDPVCNACGLYYKLHQVNRP 200
LTMRKDG I QTRNRKV S SKGK KRR P PGGGNP S ATAGGGA PM 240
GGG GD P S MPPP P P P P AAAP P Q S DA L YALGPVV L S GH F L P F 280
GN S GG F F GGGAG G Y T APPG L S PQ I 304

1

B C1gat
β γ β β β A β A H1 H2 β

KRAGTVC S NCQT S T T T LWRR S PMGD P VCNACGLYYKLHQVNR P L TMRKDG I QT RNRKV S S

5 10 15 20 25 30 35 40 45 50 55 60 

Residue interactions:- with DNA       with metal     

Figure 1.4: (A) The full sequence of the protein GATA1 CHICK [22] with the location
of the DNA binding GATA zinc finger domain shown in bold face. (B) The secondary
structure exhibited by the 60 residues of the GATA zinc finger in GATA1 CHICK
(reproduced from [19]). Residue interactions with DNA and metal are also shown.
(C) Molecular structure of the zinc finger domain determined by Multidimensional
NMR spectroscopy (reproduced from [4]).

GATA1 CHICK and the location, function, and domain structure of the instance of

the DNA binding GATA zinc finger motif contained within it. However, the sequence

of amino acids that makes up each motif is not an exact signature of its intended

biological function but undergoes evolutionary changes. Figure 1.5 shows the same

motif occurring in five different proteins. Although it is largely conserved across them,

the exact sequence is not identical. Hence, the occurrence of a slightly mutated but

otherwise highly similar sequence of amino acids in two proteins suggests that the two

sequences are evolutionarily related and so may share a common biological function

through the motif occupying that region. Sequence alignment, therefore, is widely

used in protein motif finding.
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Sequence alignment algorithms such as Needleman-Wunsch [15], Smith-Waterman

[20], and the BLAST family of programs [1] have long been used for protein motif-

finding by performing pairwise alignment of each query against every sequence in

the database, thus identifying those sequences in the database that are most closely

related to various regions of the query. This information can then be used to create

a full structural and functional annotation of the motifs present in the query. These

algorithms use dynamic programming with a simple scoring system based on fixed

substitution matrices and gap penalties.

The scores of a substitution matrix express the similarity scores associated with sub-

stitution of a pair of symbols. When a symbol appears unchanged in both the query

and the database, the substitution score is highest. When it is replaced by a dif-

ferent symbol, the substitution score is lower – and its value is directly related to

the likelihood of the particular substitution. When a symbol appears at a particulr

position in one sequence but not in the other, there is said to be a gap, and this

contributes negatively to the similarity score. The gap penalty is said to be linear if

it is independent of whether the gap is newly created or an extension of an existing

gap, and affine if it assigns a different penalty to the opening of a gap than to the

extension of an already open one.

The following is a simplified form of the dynamic programming recurrence for these

algorithms with a linear gap penalty. Each cell V (i, j) contains the score of the best

alignment of the first i symbols of the query, q, to the first j symbols of the database

sequence, d. S(qi, dj) is the score for substitution of symbol y in the database with x

in the query. pg is the gap penalty. A detailed discussion can be found in [5].
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Protein Motif Sequence

RA25 SCHPO RENSVYLAKLAEQAERYEEMVENMKKVACSND . . KLSVE
BMH1 YEAST REDSVYLAKLAEQAERYEEMVENMKTVAS SGQ . . ELSVE
1434 LYCES REENVYLAKLAEQAERYEEM I EFMEKVAKTADVEELTVE

143T HUMAN KTEL I QKAKLAEQAERYDDMATCMKAVTEQGA . . ELSNE
1433 XENLA . . . . . . . AKLSEQAERYDDMAASMKAVTELGA . . ELSNE

1

Figure 1.5: A multiple alignment of a family of 5 related proteins which can be used
as the basis for building a profile representing the family. The residues in bold face
are conserved in all sequences and are therefore likely to appear in every instance of
the motif. Dots indicate gaps – at these positions, a related motif is likely to contain
randomly inserted residues or no residues at all.

V (i, j) = max



V (i− 1, j − 1) + S(qi, dj), substitution

V (i− 1, j)− pg, gap in database – insertion

V (i, j − 1)− pg, gap in query – deletion

(1.1)

1.3 Profile-HMM Search

While pairwise techniques directly compare one sequence to another one symbol at a

time, another paradigm compares a query to a probabilistic representation of several

proteins of the same family. Since all the members of a family are mostly similar to

each other, it is possible to construct a common profile on which they may each be

considered variations. Such a profile of the family will then be general enough that

any related motif occurring in a new sequence will also be detectable as a variation

on it. Figure 1.5 shows a multiple sequence alignment of the first few residues of a

family of 5 related proteins. A multiple sequence alignment can be used to build a

profile that describes each position of the motif.
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A common kind of profile representation is the consensus sequence, which simply

reflects the most commonly occurring residue at each position. However, several more

expressive profile representations can capture more detailed statistics of each position

of the motif. One such representation is called the profile-HMM and represents a

motif as a hidden Markov model. Mathematically, a profile-HMM is represented as a

state diagram where a directed edge from state qi to qj has an associated transition

score, a(qi, qj). Further, state qi may be emitting, meaning that a transition into

it outputs a symbol x with an associated emission score, b(qi, x). Figure 1.6 shows

the Plan7 HMM structure used by the profile-HMM search program HMMer [6] to

represent a motif of length m = 4 residues. There are always as many M states as

the motif length, m; I states are numbered from 1 to (m − 1), and D states from 2

to (m− 1).

Profile-HMM search is used to solve the protein motif finding problem. Computa-

tionally, it is the process of scoring a query sequence for its similarity to the motif

represented by a profile-HMM and locating the various high-scoring instances of the

motif in the sequence. Throughout the remainder of this work, we refer to the over-

all profile-HMM search computation as simply a search, where a unique individual

search is identified by its input query sequence and profile-HMM pair. For instance,

a high-scoring search is one in which the similarity score of the motif and the query

sequence is determined to be high.

Profile-HMM search employs algorithms previously used in fields such as signal pro-

cessing, speech recognition [18] and natural language processing. In proteins, the pro-

cess involves determining the likelihood score of emitting the query sequence through
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represent the feedback path between multiple copies of a motif.
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a state path (or several state paths) over each profile-HMM (representing a particu-

lar family of proteins) in the database. This proceeds by considering all state paths,

beginning at the Begin state of the profile-HMM and ending at its End state, that

emit precisely the sequence of symbols corresponding to the query. The overall score

of each path is the sum of the scores for each state transition on the path, plus the

emission scores for each symbol emitted by an emitting state. Figure 1.7 illustrates

one out of several possible state paths over a profile-HMM that emit the query se-

quence. The score computation and motif location reported by profile-HMM search

are also indicated.

The Viterbi algorithm [18] is used to determine the single best scoring path over

the profile-HMM that emits the query sequence. The Forward algorithm [18] is used

to determine the total score of all paths over the profile-HMM that emit the query

sequence. While the recurrences of these algorithms are quite similar, they provide

two fundamentally different measures of similarity between the query sequence and

the database. For a major portion of this work, we shall concern ourselves with the

Viterbi algorithm, dealing separately with the Forward algorithm in Chapter 4.

Although the dynamic programming recurrence for profile-HMM search bears out-

wardly resemblance to Equation 1.1 in that it considers matches (or substitutions),

insertions and deletions, it has a more complicated internal structure due to the in-

admissibility of certain state transitions and the distinction between emitting and

non-emitting states. The shapes of the individual states as well as transition edges

between them in Figure 1.6 reflect this structure – the circular B, E, and various D

states are non-emitting. The triangular N , C, J and various I states emit non-motif

symbols whereas the various square M states emit motif symbols. Further, passing
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Figure 1.7: An example of a profile-HMM search showing a state path over a profile-
HMM of size m = 4 that emits the given query sequence. A hyphen in the emit-
ted sequence, Y , indicates a non-emitting state at that position in the state path,
Q. Emitting states at position i in the state path contribute a transition term,
a(Q[i − 1], Q[i]), as well as emission term, b(Q[i], Y [i]) (together shown simply as
+a+ b), to the overall score. Non-emitting states contribute only the transition term,
a(Q[i − 1], Q[i]), shown simply as +a. Each region of the sequence emitted between
successive B and E states is interpreted as an instance of the motif. Note that the
characters emitted by Match states are not necessarily identical to the character at
the corresponding positions of the consensus sequence of the motif family. Also note
that transitions into the Insert states do not advance the subscript whereas those into
the Match and Delete states do.
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through the Mk and Dk states advances from the kth to the (k + 1)th position of the

motif’s profile representation, while passing through the Ik state does not. This is

seen from the fact that a transition into an I state does not advance the subscript

whereas transitions into M and D states do. The state path of Figure 1.7 further

clarifies this point.

Let Qi be the set of states {q′|q′ → qi is a valid transition}. Then, the Viterbi score

of the dynamic programming cell, V (i, j), is the score of the best path that emits the

first j symbols of the query sequence, s, and ends up in state qi of the profile-HMM.

Note that if, for instance, qi = Mk or Ik or Dk, then this means the profile-HMM

search has already gone over k symbols from the profile representation of the HMM

and needs to go over (m − k) more symbols to find a whole motif. The Viterbi

recurrence is given by:

V (qi, j) = max


maxq′∈Qi

V (q′, j − 1) + a(q′, qi) + b(qi, sj), if qi is an emitting state

maxq′∈Qi
V (q′, j) + a(q′, qi), otherwise

(1.2)

The Viterbi score for the entire query sequence s, of length l, against the profile-HMM

is simply given by V (End , l).

Profile-HMM search is favored by biologists for a variety of reasons. The probabilities

that are computed for the various symbol emissions and state transitions depend on

the protein sequences which were used in building the profile-HMM. Given more

proteins of the same family, a more sensitive profile-HMM can be built, which can

in turn more accurately identify unseen instances of the same motif. This is in
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contrast with a scoring system using a fixed substitution matrix and gap penalty

based on global protein sequence statistics. Also, profile-HMMs, on account of using

probabilistic scoring, are better tuned to detecting weakly conserved yet biologically

significant motif sequences than simple pairwise alignment.

1.4 Motivation and Related Work

Profile-HMM search based software tools such as HMMer and SAM [11] have gained

popularity among biologists, but the rate of growth in their input sizes (i.e. biose-

quence and profile databases) outpaces the rate of improvement of processor speeds

according to Moore’s law. As of 2004, performing a complete comparison of the

Swiss-Prot protein database (containing 1.6 ×105 sequences) against all 7.7 ×103

profile-HMMs built from the Pfam-A [2] seeded alignments could take nearly 50 days

on a modern CPU running HMMer. This running time can increase by two orders of

magnitude if the much larger, computer-curated, TrEMBL and Pfam-B databases are

searched instead – making the task enormous even for large supercomputing clusters.

Specialized hardware architectures have been used to exploit coarse-grained paral-

lelism in profile-HMM search accelerators such as JackHMMer [25], using network

processors; and ClawHMMer [10], a streaming implementation for graphics proces-

sors. However, these achieve speedups of only up to an order of magnitude relative

to a software implementation of HMMer.

Another approach to acceleration exploits fine-grained parallelism by decomposing the

entire algorithm into stages and implementing the most time consuming (yet simpler
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and/or inherently parallelizable) parts of these algorithms in parallel hardware, while

non-parallelizable components are executed in software running on a general-purpose

processor. This approach leads to a simple design whose speedup is easily measurable

by Amdahl’s law.

Previous work demonstrates the success of such an approach in the acceleration of

Smith-Waterman [9, 16, 17, 23, 24] and BLAST [13] using FPGA hardware in achiev-

ing speedups of up to two orders of magnitude relative to software-only implemen-

tations running on general-purpose processors, making such a solution much faster

and more cost-effective than a large supercomputing cluster or cluster of graphics or

network processors. The Viterbi algorithm also exhibits a high-level structure that

may be exploited by a similar acceleration strategy. It may be implemented using a

two-stage pipeline – the first stage, implemented in parallel hardware, filtering out

all low-scoring searches based on a preliminary similarity score computation; and the

second, on a general purpose processor, performing a detailed similarity search on the

input it receives from the first.

However, owing to specific difficulties detailed in Section 2.1, acceleration of profile-

HMM search first requires simplifying the first stage in order to make it implementable

in parallel hardware. In doing so, trading off some accuracy for speed is usually

inevitable. The extent to which the first stage is simplified then affects performance

on two fronts: the accuracy of the overall accelerator; and the overall speedup achieved

by the accelerator relative to an unaccelerated software-only implementation.

In contrast, in the case of Smith-Waterman or BLAST all stages can be implemented

fully accurately in hardware, but since a pipeline runs only as fast as its slowest
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stage, the decision of whether or not to do so is concerned more with economics than

challenge and accuracy.

In this work, we compare two approaches to the acceleration of profile-HMM search –

the first a modification of a basic design based on HMMer [21]; the second a new design

we propose in order to recover the accuracy lost by the first approach. Our design

and comparative results are also based on experiments with HMMer. As this work

did not lead to the development of an actual hardware accelerator, our conclusions

are drawn from software simulations of an FPGA-based accelerator.

Although our accelerator designs are not tied to a specific platform for their deploy-

ment, we assume the use of FPGA hardware for primarily economic reasons. For the

given application, with its relatively small user base, the startup cost associated with

manufacturing ASICs is prohibitive, favoring the use of reconfigurable hardware such

as FPGAs instead. Further, the reconfigurability of FPGAs facilitiates easy upgrades

of the application.

The contributions of this work are as follows:

• The analysis of errors produced by a basic accelerator design using the Viterbi

algorithm and the development of a performance model to evaluate any accel-

erator design (Section 2.2).

• The proposal of a modification to the basic design to recover lost accuracy

(Section 3.1).

• The proposal of an entirely new design to more efficiently recover lost accuracy

(Section 3.2).
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• The development of a software simulator to measure the accuracy and running

time as well as program trace statistics of any accelerator design (Section 3.3).

• The investigation of the Forward algorithm for use in the hardware accelerated

stage of the accelerator (Sections 4.2 and 4.3).

The remainder of this work is organized as follows. Chapter 2 examines the profile-

HMM search acceleration problem in detail (specifically using the Viterbi algorithm

in Hit Detection) and develops a performance model to evaluate proposed designs.

Chapter 3 details the architectures, and compares experimental evaluations, of two

designs for implementations of the Viterbi algorithm. Chapter 4 examines specific

issues involved in accelerating the Forward algorithm for use in the Hit Detection

stage. Chapter 5 concludes and suggests the direction of future work.



17

Chapter 2

Accelerator Design

In this chapter we describe the Viterbi algorithm for profile-HMM search as a two-

stage computation – the first stage being implemented in parallel hardware. We

examine the algorithm in detail and identify data dependences in the dynamic pro-

gramming recurrence that hinder parallelism and suggest a strategy for simplification

of the algorithm to make it parallel at the cost of some accuracy. Finally, we develop a

detailed performance model for the evaluation of alternative accelerator architectures

based on the two-stage design.

2.1 Profile-HMM Search Acceleration Issues

In this section we describe a two-stage design for a profile-HMM search accelerator

and identify the key challenges involved in implementing the first stage in parallel

hardware. We then suggest a simple modification to the Plan7 HMM structure that

makes the algorithm parallelizable and quantify the loss of accuracy due to such a

modification.



18

2.1.1 A Two-Stage Design

The core of the Viterbi algorithm, namely the computation of the dynamic program-

ming matrix, may be replicated in two stages – Hit Detection, which computes the

matrix and determines whether the search yields a significant score with respect to a

threshold; and Path Generation, which also computes the matrix and, additionally,

recovers the best scoring state path and outputs an alignment. This acceleration

strategy for profile-HMM search makes use of the fact that most proteins do not

share features with most families of sequences in the database (and so the vast ma-

jority of searches of query sequences against HMMs in the database are expected to

be low-scoring). It places Hit Detection in parallel hardware, while performing Path

Generation in software on a general-purpose CPU only for those searches that are

deemed significant. Hence, the core computation is performed in very fast hardware

for all input searches and repeated in software only for a very small fraction. Such

an approach prevents the low-scoring majority from wasting valuable general-purpose

CPU cycles, thereby speeding up the overall computation.

The high level structure of the pipeline is shown in Figure 2.1. The input for each

individual search consists of a query sequence and a profile-HMM representing a

family of motifs. A user-supplied threshold determines whether or not the score of

the search is considered significant enough to report as a hit. For a hit, the output

contains the score and the location of each detected copy of the motif in the query.

As mentioned in Section 2.1, the first stage, Hit Detection, is isolated from the rest

of the computation in order to filter low-scoring searches out of the input to the

Path Generation stage. Further, since the Hit Detection stage may run a different
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Figure 2.1: The profile-HMM search pipeline with a Hit Detection stage targeted
for implementation in parallel hardware and a Path Generation stage running on a
general-purpose processor. Potentially distinct thresholds τH and τ are used by each
stage.

version of the Viterbi algorithm from the Path Generation stage, the pipeline could

potentially determine two different internal scores σH and σ each compared to a

different threshold, τH and τ .

In our experiments with the HMMer software package, we divided the standard imple-

mentation of the Viterbi algorithm into a Hit Detection stage and a Path Generation

stage. Traces through the modified program for a search of 1200 protein sequences

against the 7677 profile-HMMs of Pfam-A showed that more than 99% of CPU time

was spent in the Hit Detection stage, clearly establishing it as the bottleneck and

candidate for acceleration in parallel hardware.

2.1.2 Data Dependences in the Viterbi Algorithm

Figure 2.2 depicts the dynamic programming matrix computed by the Viterbi algo-

rithm. The vertical axis represents motif position, while the horizontal axis represents

amino acid position in the query sequence. Each cell of the matrix corresponds to a
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Figure 2.2: The dynamic programming matrix for the Viterbi algorithm for profile-
HMM search. The W (4, 4) block has been magnified to show the 3 cells internally
contained. Data dependences of the same block are shown with solid arrows. Dashed
arrows indicate dependence on cells along the Plan7 feedback path.

Viterbi score, V (q, j) (for a state path ending at state q and emitting the first j charac-

ters of the query sequence), computed using the recurrence in Equation 1.2. Further,

for motif position i and query position j, the values of the three cells, V (Mi, j), V (Ii, j)

and V (Di, j), are lumped together into the block W (i, j). Figure 2.2 shows the inter-

nal composition of the W (4, 4) block.

As shown in Equation 1.2, the score of each term V (qi, j) of the recurrence is a

maximization over state path extensions from all candidate predecessor states q′ ∈ Qi.

Similarly, computing the cell corresponding to V (qi, j) maximizes over the scores of

the predecessor cells corresponding to each V (q′, j − 1) plus transition and emission

scores (if qi is an emitting state) or V (q′, j) plus transition score (if qi is non-emitting).

It is also required that each cell in the matrix store a pointer to the maximizing

predecessor cell from which the state path was extended into it. Then, tracing back
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through the matrix from the final cell (i.e. V (End , l)) using these pointers yields the

best scoring state path.

The set of permissible predecessor states, Qi, for each state qi, is evident from Fig-

ure 1.6. These translate into data dependences for computation of each cell on the

values of predecessor cells. Figure 2.2 shows with solid arrows the dependence of the

W (4, 4) block on (the values of some cells within each of) the W (3, 3), W (3, 4) and

W (4, 3) blocks as well as the individual V (B, 3) cell. Specifically, these dependences

arise from the following permissible state transitions: M3, I3, D3 → M4; M4, I4 →

I4; M3, D3 → D4; B → M4.

2.1.3 Parallelizing Hit Detection

The dashed transitions of Figure 1.6 between the E and B states (possibly through

the J state) are responsible for what we call a feedback path in the Plan7 HMM

structure, because they make the E and J states valid predecessors of the B state.

Thus, the score upon passing through the B state to begin a new instance of the

motif is dependent on the scores after ending previous instances by passing through

the E and possibly J states.

The dashed arrows flowing into each of the V (B, j) cells in Figure 2.2 represent their

dependence on the values of V (E, j) and V (J, j−1) – predecessor cells on the feedback

path between multiple copies of a motif. For instance, W (4, 4) depends on V (B, 3)

which in turn depends on V (E, 3) and V (J, 3). But these two cells are themselves

dependent on V (B, 2) and the entire column of blocks below it. Similarly, V (B, 2)

is dependent on the entire column to the left of it and so on. Thus, W (4, 4) is
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implicitly dependent on the entire first, second and third columns of the matrix. This

forces a serial order for computing the cells of the Viterbi matrix thereby disallowing

computation of several cells in parallel.

The simplest approach to overcoming this obstacle is to eliminate the feedback path

altogether in the Hit Detection stage, in effect allowing only one copy of a motif

to be detected in the query. In such a structure, the various V (B, j) cells can be

precomputed since the dashed arrows flowing into them in Figure 2.2 are now absent,

implying that they have no dependences on other cells in the matrix. The implicit

dependence of every W (i, j) block on all columns of blocks to the left similarly vanishes

such that only those dependences shown with solid arrows remain. Figure 2.3 shows

how parallel hardware, such as a systolic array, can exploit this feedback-free structure

to compute the scores of multiple blocks along an anti-diagonal of the matrix at once.

For example, the first time step computes W (1, 1) given the precomputed V (B, 0);

the second time step W (1, 2) and W (2, 1) (which only depend on W (1, 1) and the

precomputed V (B, 0) and V (B, 1)); the third time step W (1, 3), W (2, 2) and W (3, 1)

and so on, till the jth time step computes the blocks W (i, j−i+1) for 1 ≤ i ≤ j. The

actual number of blocks that can be simultaneously computed is bounded by available

hardware resources and may or may not equal the length j of the anti-diagonal for

large j. The performance model of Section 2.2.5 considers this limitation in detail.

The natural disadvantage of an approach that eliminates the feedback path is that it

fails to detect multiple copies of a motif in the query sequence. The reason it remains

an effective Hit Detection strategy is that if a protein contains multiple copies of a

motif, chances are quite high that at least one of those copies will be high-scoring.

However, this is not always the case, and in query sequences where no single copy
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Figure 2.3: Computation of the feedback-free Viterbi matrix using a systolic array.
Each square represents a block of dynamic programming cells as in Figure 2.2. Dotted
anti-diagonal lines connect all the cells that are independent of each other and that
may be computed in parallel in each time step. Arrows depict data dependences
between blocks. In the 5th time step, black squares represent blocks being computed
by the systolic array whereas gray squares represent stored values of predecessor
blocks computed in the 3rd and 4th time steps.
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Table 2.1: Loss of accuracy resulting from elimination of the feedback path from the
Plan7 structure in Hit Detection.

E-value Hits detected Hits lost by Estimated hits lost
E when feedback eliminating over entire Swiss-Prot

path retained feedback path database
10 77645 2612 72324
1 17367 562 15544

0.1 9628 246 6808
0.01 8130 208 5757
0.001 7577 173 4788

is sufficiently high-scoring even while all of them together are, such a Hit Detection

stage will fail to correctly forward the search to the Path Generation stage.

Although the pipeline of Figure 2.1 uses thresholds τH and τ , which bear a direct

relation to stringency, user-supplied thresholds are usually E-values, EH and E, which

bear an inverse relation to stringency, i.e. a lower E-value signifies a more stringent

threshold. These are internally converted into thresholds, τH and τ using Karlin-

Altschul statistical theory [12]. Table 2.1 shows for different E-value thresholds the

number of searches (out of a comparison of 5898 randomly sampled proteins from

Swiss-Prot against the 7677 HMMs built from Pfam-A) where a feedback-free Hit

Detection stage failed to detect weak multicopy motifs in a query. Also shown is

the projected number of missed motifs for a complete search of Swiss-Prot (1.6 ×105

sequences) against the same Pfam-A database. Although these searches constitute a

small fraction of the total, their absolute number represents a sizeable loss of accuracy

due to feedback-free Hit Detection. Chapter 3 discusses two approaches to recovering

the lost accuracy due to these searches.
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According to Figure 2.2, searching a query sequence of length l against a profile-

HMM representing a motif of length m requires O(ml) space. Since Hit Detection

only computes the values of the cells of the matrix and does not need to recover a

state path, it does not need to store the entire matrix. In fact, as revealed by the data

dependences in the feedback path-free Hit Detection stage above, each anti-diagonal

of blocks depends on at most only two previous anti-diagonals, meaning that no more

than three anti-diagonals of the matrix need to be stored at any time. Hit Detection

can, therefore, be performed in O(m) space, thereby placing fewer demands on the

hardware resources targeted for its deployment. The Path Generation stage, however,

being a full implementation of the Viterbi algorithm, requires O(ml) space as usual.

2.2 Performance Model

In order to evaluate the performance of a profile-HMM search accelerator design, it

must be compared to a software-only unaccelerated implementation on two fronts:

accuracy and execution time. Accuracy refers to the extent to which the two-stage

accelerator output resembles that of unaccelerated software, irrespective of how bio-

logically accurate the output of the unaccelerated software itself is. Execution time

of the two-stage accelerator is reported as a speedup relative to the execution time

of unaccelerated software running on a single general-purpose processor. Figure 2.4

depicts the relationship between the quantities in the performance model developed

below and the two-stage accelerator design of Figure 2.1.
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2.2.1 Input Size and Parameters

The input to both the accelerator and unaccelerated software is the same, i.e. a set

of query sequences and a database of profile-HMMs. We denote by NS the number

of query sequences, and by NM the number of profile-HMM motifs in the database.

The total number of searches, NTOT , performed, is therefore

NTOT = NS ·NM (2.1)

The parameters to the search include the values of the different thresholds. Our

results are reported for different E-value threshold combinations corresponding to the

τH and τ thresholds (if distinct) for the accelerator, and the threshold corresponding

to the same τ for unaccelerated search. Provided Hit Detection is implemented using

a simplified version of the Viterbi algorithm or of the Plan7 structure (such as one

eliminating the feedback path), each combination of thresholds results in different

accuracy and speedup for the overall accelerator.

2.2.2 Accuracy

Since unaccelerated software is the reference, it produces no errors relative to itself.

Also, since the Path Generation stage of the accelerator is identical to unaccelerated

software in that it uses the same version of the Viterbi algorithm and Plan7 structure

as well as the same threshold, it is not by itself responsible for any loss of accuracy

in the pipeline. However, the Hit Detection stage, depending on how it simplifies the
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algorithm and HMM structure, is prone to two kinds of errors: false negatives and

false positives.

A false negative is produced when the simplified Hit Detection stage determines that

the query sequence does not appear to contain any high-scoring copies of the motif

in it, whereas unaccelerated software determines that it does in fact contain some.

Since this search exits the accelerator through the edge marked a1 in Figure 2.4, it

does not make it to the Path Generation stage, which ordinarily could have detected

all the copies of the motif in the query in the same way as unaccelerated software.

We denote by Nf− the total number of searches that are false negatives.

A false positive is produced when the simplified Hit Detection stage determines that

the query sequence appears to contain high-scoring copies of the motif in it, but

unaccelerated software determines that it in fact contains none. Unlike false negatives,

false positives are recoverable errors as they do not exit the accelerator before the Path

Generation stage can correctly determine that they must exit the pipeline through

edge a2. Therefore, the accelerator as a whole does not produce any false positives,

although the Path Generation stage must waste CPU time in processing each false

positive produced by Hit Detection. We denote by Nf+ the total number of searches

that are false positives.

Additionally, Nt− denotes the number of true negatives, i.e. searches correctly deemed

low-scoring by Hit Detection; and Nt+ denotes the number of true positives, i.e.

searches correctly deemed high-scoring by Hit Detection and for which Path Gen-

eration produces detailed output via edge a3 in Figure 2.4. Similarly, N− and N+
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respectively denote the number of searches discarded via edge u1 and reported in the

detailed output via edge u2 by unaccelerated software.

Since the number of searches entering must equal the number exiting, we must have

NTOT = Nt− + Nt+ + Nf− + Nf+ = N− + N+ (2.2)

We can now define our primary accuracy measure, the sensitivity of the overall

pipeline, denoted by αSN , as follows

αSN =
Nt+

N+

(2.3)

2.2.3 Execution Time Speedup

Let the average time taken to perform a full search in unaccelerated software be tS

(Section 2.2.4 shows how this quantity may be obtained). Then the total execution

time, TS, of unaccelerated software equals

TS = NS ·NM · tS (2.4)

Let the average time taken to perform Hit Detection be tH (Section 2.2.5 shows

how this quantity may be obtained). Then the total execution time, TH , of the Hit

Detection stage is

TH =
NS ·NM · tH

nST

(2.5)
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where nST is the parallelism introduced by internal pipelining (if any) of Hit Detection.

The value of nST is not necessarily equal to the number of stages but depends on how

balanced the internal pipeline is. We separately specify nST for both the architectures

detailed in Chapter 3.

Further, define fHIT to be the fraction of total searches passed to Path Generation

by Hit Detection. It can be seen from Figure 2.4 that

fHIT =
Nt+ + Nf+

NTOT

(2.6)

Since an individual search takes the same amount of time in Path Generation as in

unaccelerated software, the total execution time, TP , of the Path Generation stage

must be

TP = NS ·NM · fHIT · tS (2.7)

Since the two stages are pipelined, the overall execution time of the accelerator, TA,

is the same as that of its slower stage

TA = max{TH , TP} (2.8)

Finally, the speedup, X, achieved by the accelerator is given by

X =
TS

TA

(2.9)
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2.2.4 Software Timing Estimates

The time complexity of the Viterbi algorithm for searching a particular query s of

length l and profile-HMM, µ with m Match states is O(ml). Therefore, the running

time can be approximated as a linear function t(s, µ) = γml + δ. We timed the

Viterbi algorithm as implemented in the HMMer software package for a search of

1200 randomly sampled query sequences from Swiss-Prot against the 7677 profile-

HMMs of Pfam-A on a Pentium 4 processor running Linux and found that such a

linear approximation closely models the observed running time.

Therefore, the average execution time for a search in unaccelerated software, tS, can

be obtained as the value of the linear function when m equals the mean motif size

over the database, and l equals the mean sequence length over the set of queries.

2.2.5 Hardware Timing Estimates

In a systolic array implementation, the available hardware resources are in the form of

independent computational units that we call cells. For the purposes of our work, each

computational cell of the systolic array computes the value of a dynamic programming

cell. Our hardware timing estimates are based on FPGA designs.

As seen earlier, the size of the dynamic programming matrix is O(ml). However, the

exact number of cells, C(s, µ), that will need to be computed in order to compare s

to µ depends on the simplified algorithm and HMM structure used for Hit Detection.

We later derive this value for each of the two designs presented in Chapter 3.
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The execution time, tH , for Hit Detection is then given by

tH =
C

R
(2.10)

where C is the number of cell updates required for searching an average length se-

quence (over the set of queries) against an average size motif (over the profile-HMM

database) and R is the cell update rate (measured in cell updates per unit time)

realizable by the systolic array.

We now derive R as follows. Consider a hardware stage of total area ATOT (area is a

measure of the available computational resources). Let the functional units and logic

required by each computational cell utilize a area units. Then the number of cells,

A, that can be simultaneously computed is

A =
η · ATOT

a
(2.11)

where η is the maximum fraction of the total area that may be utilized for computa-

tional cells alone to keep routing delays at a minimum. This value is typically in the

range of 0.7 – 0.9. Further, the memory requirements of each computational cell make

the value of A implicitly bounded by the available memory on board. Although we

do not factor this restriction into the performance model, it is an important validity

check for designs that appear to realize absurdly high parallelism.

Further, each cell requires a total of nCLK clock cycles to compute its value. If the

hardware is clocked at frequency fCLK , then the overall cell update R is given by

R =
A · fCLK

nCLK

(2.12)
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2.2.6 Banded Computation and Edge Effects

The anti-diagonal of Figure 2.3 is shown to span the entire width of the matrix. How-

ever, since the area A of the systolic array is often less than the length of the longest

possible anti-diagonal of the dynamic programming matrix (which is min{m, l}), the

overall matrix ends up being computed as several bands, each A blocks wide, as

shown in Figure 2.5A. The values of blocks on the boundary of each band must be

stored so computation of the next band may proceed. Further, the reduced depen-

dences of feedback-free Hit Detection allow the bands to be vertical or horizontal.

This means that each band may either be a sub-matrix formed by a chunk of the

motif A blocks wide against the entire length of the query (horizontal bands), or a

sub-matrix formed formed by a chunk of the query A blocks wide against the entire

motif (vertical bands).

In horizontal banding, the computation of each band requires loading a chunk of the

motif (A positions wide) once into memory and streaming in the entire length of the

sequence. Therefore, the entire motif is read once while the sequence is streamed

several times (once for each horizontal band). On the other hand, vertical banding

requires loading a chunk of the sequence (again, A positions wide) and streaming in

the entire length of the motif. Therefore, the entire sequence is read once whereas

the motif is streamed several times (once for each vertical band).

It must be noted that while each sequence position is simply a single character, the

size in memory of a notional motif position is much larger – each position i of the

motif consists of the three states Mi, Ii and Di. The Mi state is characterized by

its 4 integer transition scores to the Mi+1, Ii, Di+1 and E states and a distribution
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Figure 2.5: (A) Illustration of banded computation and a comparison of edge effects
in horizontal and vertical banding. Each band is A blocks wide. Each outlying
triangle represents wasted cell updates. The total number of wasted cell updates
is proportional to mA for horizontal banding and to lA for vertical. Usually, m <
l, so that horizontal banding wastes fewer cell updates. Additionally, horizontal
banding generally requires fewer total memory accesses. (B) Effect of reducing A to
proportionately reduce wasted cell updates due to edge effects. Here, reducing the
number of concurrent cell updates by half also reduces the total number of wasted
cell updates by half.



35

of emission scores for 20 amino-acids. Similarly, Figure 1.6 reveals that Ii contains

2 transition and 20 emission scores; and Di contains 2 transition and no emission

scores. Therefore, in total, the size in memory of a single motif position can be as

high as that of 48 integers – far larger than 1 character for a single sequence position.

Although HMMer uses 32 bit integers to represent all scores, our experiments reveal

that using 16 bit integers gives the same results. Therefore, for 16 bit wide integers

and 5 bit wide characters (sufficient to represent the protein alphabet) one position of

a motif occupies approximately 154 times as much space in memory as a position of

the sequence. This disparity is clearly in favor of horizontal banding (unless l > 154m

– an extremely rare case), as it requires reading in the motif only once into memory.

Figure 2.5A also illustrates the edge effects that significantly influence the actual cell

update rate realized during the dynamic programming computation. Near the edges

of the matrix, although the systolic array is capable of performing A cell updates

simultaneously, the anti-diagonal requires fewer cells to be actually computed and

so there are idle computational cells that cannot be utilized in any other way. The

wasted cell updates are shown as triangles extending out of the matrix for each band.

The total number of such wasted cell updates is proportional to A ·m if the bands are

horizontal or A · l if the bands are vertical. Since it is more common for m to be less

than l, the wasted cell updates are fewer for a computation using horizontal bands.

On account of this fact as well as the lower memory access cost, horizontal banding

is taken to be the default choice in the remainder of our work.

Figure 2.5B shows how the number of wasted cell updates may be reduced by half

through a reduction of the number of concurrent cell updates to A
2
. This suggests

that it is possible to minimize the edge effects without sacrificing original throughput



36

by realizing the possible concurrent cell updates A through nP different searches

running in parallel on the Hit Detection hardware1, each performing A
nP

concurrent

cell updates. However, each search might then place its own additional disk I/O

demands. A more quantitative analysis of the conflicting effects of wasted cell updates

and the choice of nP could help optimize hardware performance in the future.

The edge effects are easily accounted for in the performance model by adding the

number of cells in the outlying triangles to the total cell updates, C, now making it

a function of A and np as well. We estimate C for each of the designs detailed in

Chapter 3 in this way.

1This entails only a minor modification to the pipeline of Figure 2.1 where a suitably large buffer
needs to be placed before the Path Generation stage.
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Chapter 3

1-pass and 2-pass Architectures

In this chapter, we present two alternative profile-HMM accelerator architectures,

based on the two-stage design, which use different approaches to eliminate the feed-

back path of the Plan7 HMM structure in their respective Hit Detection stages. For

each architecture, we describe the strategy used by its Hit Detection stage as well

as its effect on the key metrics of our performance model. Finally, we compare ex-

perimental evaluations of software simulations of these two architectures using the

performance model and characterize cases where each is favorable over the other.

3.1 1-pass Architecture

In this section we introduce the notion of a 1-pass architecture based on the feedback-

free Hit Detection stage suggested in Section 2.1.3 and describe a slight modification

to the basic 1-pass architecture. We also derive the cell update count, C1, for this

architecture to be substituted for C in our performance model.
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3.1.1 Relaxation of Hit Detection Threshold

The simple approach to parallelizing Hit Detection introduced in Section 2.1.3 wherein

the feedback path of the Plan7 HMM structure is altogether eliminated may be re-

ferred to as a 1-pass architecture as it detects only single copies of a motif in a query,

i.e. makes one pass over the profile-HMM. We have seen such a Hit Detection stage

to produce false negatives relative to an unaccelerated software implementation.

The easiest way to recover some of the false negatives is to make the Hit Detection

threshold less stringent than that used by Path Generation (i.e. set τH < τ) in order

to let searches with weak multicopy motifs through the Hit Detection filter. The same

searches when run in the Path Generation stage with threshold τ will produce the

same output as unaccelerated software.

Notice that in Table 2.1, the false negatives produced by a 1-pass Architecture with-

out relaxation is a relatively small fraction of the total number of searches. Further,

since the vast majority of searches are correctly classified as true negatives, it fol-

lows that true negatives must far outnumber false negatives. Therefore, for every

false negative recovered through some relaxation of the Hit Detection threshold, it

is expected that many more true negatives are also wrongly forwarded to the Path

Generation stage, now making them false positives – a computational burden on Path

Generation, though they do not affect the overall accuracy of the accelerator relative

to unaccelerated software.

The 1-pass architecture with relaxation requires no modifications to the general accel-

erator pipeline of Figure 2.1 except the restriction that τH < τ . Figure 3.1A depicts
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the modified Plan7 HMM with the feedback path absent, as employed by its Hit De-

tection stage. The value of nST for a 1-pass architecture is 1 as it is not internally

pipelined. It is important to distinguish nST from nP – while nP is the number of

parallel Hit Detection pipelines into which the systolic array is divided in order to

reduce wasted cell updates due to edge effects, nST reflects the parallelism of each

pipeline. Here, each of the nP Hit Detection pipeline s can perform only one search

at once since the Hit Detection stage is undivided. Therefore, nST = 1.

3.1.2 Derivation of Cell Update Count

The bulk of the dynamic programming matrix of Figure 2.2 lies within the W -blocks.

Each block contains 3 cells and there are ml such blocks. Since each block depends

on a fixed number of blocks and cells, these updates take constant time. Their overall

contribution, therefore, is 3ml cell updates. Since 1-pass architectures do away with

the J state, the remaining cell updates involve the computation of the various B and

E cells. Of these, the B cells are precomputed serially and are discounted here as they

are not part of the parallel computation. As is evident from the direct transitions

from each Mi state to the E state in Figure 1.6, each V (E, j) cell (for 1 ≤ j ≤ l)

is dependent on m cells. Therefore, computing an E cell is not a constant time

operation and so these account for ml cell updates, bringing the total to 4ml actual

cell updates. Finally, in the more frequent case that m < l, edge effects account for

an additional 4 A
nP

m wasted cell updates (see Section 2.2.5). Therefore, we obtain C1,

the number of cell updates made by the Hit Detection stage in a 1-pass architecture,
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Figure 3.1: (A) The 1-pass HMM structure obtained by eliminating the feedback path
from the Plan7 structure. (B) The 2-pass HMM structure obtained by creating two
copies of the Plan7 motif separated by a linker state, L, to emit non-motif symbols
between them.

to plug into Equation 2.10 as follows.

C1 = 4
(
l +

A

nP

)
m (3.1)

3.2 2-pass Architecture

In this section we introduce the notion of a 2-pass architecture as a means to detect

the existence of multiple copies of a motif in a query sequence and describe how

the Hit Detection stage in this architecture may be internally pipelined. We also

derive the cell update count, C2, for this architecture to be substituted for C in our

performance model.
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3.2.1 Unrolling the Plan7 Feedback Path

We have seen that the number of false negatives produced by a 1-pass architecture

may be reduced by relaxing the Hit Detection threshold, τH . However, this strategy

is of low specificity in that it introduces false positives. The 2-pass architecture is a

more specific approach to identifying multi-copy motifs in a query without sacrificing

parallelism in the Hit Detection computation. This is achieved by comparing two

search scores – one where precisely one pass is made over the profile-HMM, and

another where precisely two passes are made. If the two-pass score is greater than

the one-pass score, it is likely that the query contains two or more copies of the motif,

and the search is forwarded to the Path Generation stage irrespective of the one-pass

score.

The HMM structure employed by a 2-pass architecture is shown in Figure 3.1B. It

is obtained by unrolling the feedback path of the Plan7 structure precisely once,

yielding two copies of the core states separated by a linker state, L, that emits non-

motif symbols between the two instances of the motif. The direct transition from

E1 to B2 allows the second copy of the motif to begin immediately after the first,

without passing through the L state. The goal of the Hit Detection stage here is to

compute 1-pass as well as 2-pass scores. Just as the value V (E, l) gives the 1-pass

score computed by the 1-pass architecture, the value V (E2, l) gives the 2-pass score

computed by the 2-pass architecture. Further, the value V (E1, l) computed by the 2-

pass architecture is identical to the value V (E, l) computed by the 1-pass architecture.

Therefore, the computation of the 1-pass score by the 2-pass architecture is contained

within that of the 2-pass score and need not be separately implemented.
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Another observation that follows from the 2-pass HMM structure is that the com-

putation of the vector of values V (E1, i) for 1 ≤ i ≤ l given the vector V (B1, j) for

0 ≤ j ≤ l − 1 is identical to the computation of the vector V (E2, i) given the vector

V (B2, j) for 1 ≤ i, j ≤ l. Therefore, the Hit Detection computation can be performed

in three phases. Phase 1 receives the precomputed vector V (B1, j) for 0 ≤ j ≤ l − 1

and computes the vector V (E1, i) for 1 ≤ i ≤ l. Phase 2 receives as input the vector

output by Phase 1 and computes the vector V (B2, i) for 1 ≤ i ≤ l. Finally, Phase 3

receives as input the vector output by Phase 2 and computes the vector V (E2, i) for

1 ≤ i ≤ l. As noted, Phases 1 and 3 are identical and may be implemented using two

copies of the same hardware computational resource.

Phase 2 performs the bridging computation between Phases 1 and 3 using the follow-

ing recurrence.

V (B2, j) = max


maxj′<j V (E1, j

′) + a(E1, L) +
∑j

k=j′ b(L, sk) + a(L, B2)

V (E1, j) + a(E1, B2)
(3.2)

The upper term maximizes over all state paths in which non-motif characters are

emitted by the linker state between the two copies of the motif. Each of these can-

didate paths passes through state E1 after emitting some j′ < j characters of the

query sequence, and then makes a transition to and remains in the L state to emit

characters at sequence positions (j′ +1) through j, before finally making a transition

into B2. The lower term, on the other hand, considers the one state path that does

not pass through the L state at all but instead directly makes a transition from E1

to B without emitting any characters from the sequence.
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Figure 3.2: The three pipelined phases that make up the Hit Detection stage in a
2-pass architecture. The 2-pass heuristic forwards all searches which see any improve-
ment from σH1 to σH2 to Path Generation, irrespective of whether σH1 exceeds Hit
Detection threshold, τH .

Since the computation of each phase only depends on the output of the phase preced-

ing it, these three phases can be pipelined, thereby achieving the same throughput

as a 1-pass Hit Detection stage. It must be noted that though there are 3 phases

in the Hit Detection pipeline, Phase 2 is much smaller than the other two, so that

the pipeline may effectively be considered as composed of two balanced stages – bal-

anced because Phases 1 and 3 are identical. Therefore, each of the nP Hit Detection

pipelines that the systolic array is divided into runs two different searches at any

given time. This leads to nST = 2 being substituted into Equation 2.5 for the 2-pass

architecture. Figure 3.2 depicts the three-phase design of the Hit Detection stage in

a 2-pass architecture. The one-pass and two-pass scores are referred to as σH1 and

σH2 respectively.

3.2.2 Derivation of Cell Update Count

The computations of Phases 1 and 3 of 2-pass Hit Detection are identical to that of

1-pass Hit Detection. Therefore, each contributes 4(l + A
nP

)m cell updates, including
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wasted cell updates due to edge effects. Since Phase 2 is not highly parallel, we ignore

edge effects, and consider only the 2l cell updates required to compute the V (L, i)

and V (B2, i) cells for l values of i. Therefore, we obtain C2, the total number of

cell updates made by the Hit Detection stage in a 2-pass Architecture, to plug into

Equation 2.10 as follows.

C2 = 8
(
l +

A

nP

)
m + 2l (3.3)

3.3 Experimental Results

In this section we describe the methodology used to evaluate and compare the two

accelerator architectures. We present results for accuracy and speedup relative to

unaccelerated software. We also compare the results of each architecture to identify

cases where each wins out over the other.

3.3.1 Methodology

We developed a software simulator based on the code of HMMer version 2.3.2 to

implement the 1-pass and 2-pass architectures as well as the unaccelerated software

implementation of the Viterbi algorithm. The simulator was compiled using the GNU

C Compiler version 3.4.4 and executed on a 2.8GHz Pentium 4 CPU with 1GB RAM

running Linux. The two accelerator architectures were then compared in terms of

their accuracy and running time speedup relative to unaccelerated software using the

performance model and timing estimates of Section 2.2. Cell update counts in Hit

Detection for the two architectures are as developed in Sections 3.1.2 and 3.2.2 above.
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Simulator data was gathered for a comparison of 5898 protein sequences randomly

sampled from Swiss-Prot against the 7677 profile-HMMs of Pfam-A for several combi-

nations of E-value thresholds, EH and E, and extrapolated over the entire Swiss-Prot

database (1.6 ×105 sequences) using the observed mean sequence length over Swiss-

Prot and mean motif size over Pfam-A. We cross-validated our results by running the

simulator on four different inputs, each containing an independent random sample of

proteins (of the same size – 5898 sequences) from Swiss-Prot, and extrapolating the

results for each input over the entire Swiss-Prot database.

Since we ran our evaluations on a software simulator rather than on a real accelerator

with an FPGA-based Hit Detection stage, our speedup results are obtained from

estimates of various values in the performance model based on published specifications

of the Xilinx Virtex-4 XC4VLX100 FPGA [26].

From the specifications, we get ATOT = 49152 slices and 4320KB Block RAM (240

blocks of 18KB each). We assume a conservative η = 0.7 for the fraction of area that

may actually be used for computation. Each cell of the systolic array computes one

block of the dynamic programming matrix which accounts for 4 cell updates (one

each for the M, I, D and E states). Each cell is built from 11 16-bit integer adders

(8 slices each), 6 16-bit integer comparators (16 slices each) and 25 16-bit registers

(0.5 slices each), of which 8 are used for prefetching motif data. This approximately

gives us a = 200 slices per cell of the systolic array or per 4 dynamic programming

cells. Therefore, we get A = 688 concurrent cell updates according to Equation 2.11.

For these unpipelined integer computations, nCLK = 1 and the systolic array can be

clocked at fCLK = 50MHz. Finally, therefore, our Hit detection stage achieves a cell

update rate of R = 34.4× 109 cell updates per second (CUPS) or 34.4 GCUPS.
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It must be noted that the above assumptions have no effect on the accuracy of the

accelerator – with respect to either sensitivity or false positive rate. Therefore, the

accuracy results presented in the following section are independent of the assumed

hardware area and speed.

3.3.2 Comparative Accuracy

We assume that the goal of an accelerator is to not only speed up profile-HMM

search but also to do so without any overall loss of accuracy with respect to unac-

celerated software. Therefore, for both accelerator architectures, and for each value

of threshold, E, the least stringent (i.e. highest valued) EH for which Hit Detection

produces no false negatives was noted. For this critical value of EH , the time spent

in Path Generation provides a measure of the number of false positives produced by

the accelerator.

Table 3.1 compares the critical values of EH for the two architectures, and shows the

effect of its lenience on false positive rate. It is clearly seen that at stricter (numerically

lower) values of E, the 2-pass architecture achieves perfect sensitivity without having

to relax the Hit Detection threshold as much as the 1-pass architecture. Although

their respective critical values of EH differ by up to three orders of magnitude (for

E = 0.001), the more meaningful comparison is between the projected times in Path

Generation, for this describes the amount of additional work performed by the Path

Generation stage. The 2-pass architecture is seen in this regard to produce an order of

magnitude fewer false positives, though the benefit is less pronounced at less stringent

values of E.
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Table 3.1: Comparison of critical values of threshold EH at which 1-pass and 2-pass
architectures achieve perfect sensitivity. The accompanying projected time spent in
Path Generation is a measure of the number of false positives produced by each
architecture.

E
One-pass Two-pass

EH for Time in Path EH for Time in Path
Sensitivity 1.0 Generation (hours) Sensitivity 1.0 Generation (hours)

0.001 5 2.208 0.003 0.626
0.01 20 5.498 0.02 0.684
0.1 20 5.498 2 1.508
1 30 7.524 9 3.250
10 40 9.479 40 9.490

The values in Table 3.1 were obtained by extrapolating the results of four different

inputs (of equal size) to the simulator over the entire Swiss-Prot database. The critical

values of EH were observed to be identical for all inputs. The Path Generation times

shown are averaged over the four sets of results. The observed variation in Path

Generation times across the four sets was < 5%.

It must be noted that the two architectures produce false positives of different kinds.

As is evident from Figure 2.1, the only false positives produced by the 1-pass archi-

tecture exit the Path Generation stage demux through the edge marked 0. These are

insignificant hits that pass through the Hit Detection filter due to the relaxation of

τH to allow the detection of weak multicopy motifs. However, Figure 3.2 reveals two

distinct kinds of false positives. One of these is the same as that produced by the

1-pass architecture, and will exit the Hit Detection demux through the edge marked

10 if τH > τ . The other kind of false positives is introduced by the two-pass heuristic

and includes searches with low one-pass scores but that see an absolute score im-

provement from σH1 to σH2 and are forwarded to Path Generation where they are

found not to contain any weak multicopy motifs. Such searches, if any, exit the Hit
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Detection demux through the edge marked 01. We found that the 2-pass architecture

shows greater susceptibility to the latter kind, especially at less stringent thresholds

– on average by a single order of magnitude. While the relative composition of 2-pass

false positives is only of academic interest in that it does not affect performance under

the model of Section 2.2 in any way, it may provide a basis for subsequent refinements

of the two-pass heuristic.

3.3.3 Comparative Speedup

The projected running time of the Path Generation stage in each accelerator architec-

ture is shown in Table 3.1. However, according to Equation 2.8, the overall running

time of the accelerator pipeline equals that of its slower stage, or bottleneck. When

the Hit Detection stage is the bottleneck, we say that the accelerator is hardware-

bound and, similarly, that it is software-bound when the Path Generation stage is its

bottleneck.

Figure 3.3 compares the speedup, X, achieved by the two architectures using the

hardware parameters estimated in Section 3.3.1. In addition we also present the

speedup realizable by use of a hypothetical superior hardware stage (assuming double

the clock rate fCLK and triple the total area ATOT ). The figure also quantifies the

amelioration of edge effects by running multiple parallel searches in Hit Detection. As

mentioned in Section 2.2.6, increasing nP places additional demands on the external

hard disk, from which the profile-HMMs and sequences must be read into memory,

to an extent not accounted for by our performance model. Since disk access is serial,
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we do not consider any higher values of nP than 8 as the associated overhead may no

longer be justifiably negligible.

Although Figure 3.3 shows threshold E increasing numerically from left to right, the

plot must be read from right to left to move from less stringent to more stringent

thresholds. It is easily seen that for nP = 1, the 1-pass and 2-pass architectures are

equivalent, both achieving a speedup of about 112 relative to unaccelerated software.

Moreover, the flat shape of the two curves indicates that the accelerators are hardware

bound in this regime – since TH is independent of E whereas TS generally is not, and a

constant speedup indicates a constant execution-time bottleneck. Increasing nP to 4

leads to a near twofold improvement in speedup for stricter values of E. The speedup

of the 2-pass architecture is larger than that of the 1-pass architecture for most of

this regime because the 1-pass architecture is software bound on account of its higher

false positive rate (see Table 3.1) whereas the 2-pass architecture is hardware bound.

At E = 0.001, however, they converge to a speedup of 218.

In the hypothetical case that we have available a superior hardware stage with thrice

as much area and capable of running at twice the clock rate, the benefits of the 2-

pass architecture are even more pronounced, with projected speedups as high as 1130

relative to unaccelerated software while the 1-pass architecture follows the current

curve before surging up to a speedup of 487 at E = 0.001.

3.3.4 An Alternative Route to Estimating Speedup

Since the speedups of Figure 3.3 are the output of a theoretical performance model

given input parameters obtained by guided assumptions about the state of FPGA
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Table 3.2: Published performance of systolic array Smith-Waterman implementations
(using both linear and affine gap penalties) on Xilinx FPGAs.

Group FPGA A fCLK R
(ATOT , in slices) (updates/clock) (MHz) (GCUPS)

VanCourt and Herbordt [23] XC2VP30 (13,696) 57 to 126 39 to 77 2.2 to 9.7
Oliver et al. [16, 17] XC2V6000 (33,792) 119 to 252 44 to 55 5.2 to 13.9

West et al. [24] XCV1000E (12,288) 152 25 3.8

technology, they must be treated as optimistic upper bounds. The actual speedups

realized by real FPGA implementations of our architectures may in fact turn out

significantly smaller due to routing and memory access issues. In the absence of pub-

lished speed and area numbers for FPGA implementations of the Viterbi algorithm,

we turned to the literature on systolic array implementations of the Smith-Waterman

algorithm (using both linear and affine gap penalties). As earlier noted, the external

structures of the Smith-Waterman and Viterbi recurrences (Equations 1.1 and 1.2)

are sufficiently similar that the numbers in Table 3.2 may be considered a starting

point for a more conservative estimate for Viterbi speedup using the 1-pass and 2-

pass architectures. Specifically, cell updates may be equivalently defined for both

algorithms so that the values of A presented for Smith-Waterman can easily derive

estimates of the same for Viterbi.

On the basis of the values in Table 3.2, and adjusting for evolution of FPGA tech-

nology, we made direct estimates of A (rather than detailed estimates of the area

a of each cell of the systolic array) and different values of nP , with a constant

fCLK = 100MHz. Figure 3.4 shows the speedups of the 1-pass and 2-pass architec-

tures for A = 25, nP = 1; A = 300, nP = 6; and A = 600, nP = 12 – a wide range of

relatively conservative estimates with respect to those in Figure 3.3. The shape of the

curves reveals the same qualitative relationship between 1-pass and 2-pass speedups,
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Figure 3.4: An alternative comparison of the speedup achievable by 1-pass and 2-
pass architectures using estimates for A made on the basis of the published Smith-
Waterman performance numbers of Table 3.2. A constant value fCLK = 100MHz is
assumed for all curves in this figure. The plot must be read from right to left in order
to consider increasing stringency of threshold E.

but shows numerically smaller speedups. Importantly, the figure expresses just as well

the specific behavior of the two architectures over different regimes in which they are

hardware bound and software bound, demonstrating that the performance model is a

very useful tool for analyzing any accelerator architecture, irrespective of the actual

state of FPGA technology.
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Chapter 4

Accelerating the Forward

Algorithm for Hit Detection

In this chapter we describe and evaluate an alternative approach to profile-HMM

search that combines the Viterbi and Forward algorithms. We address the motivation

for such an approach and outline the design issues specific to accelerating the Forward

algorithm. Finally, we evaluate a 1-pass architecture based on this approach using

the performance model developed in Section 2.2

4.1 Motivation

We introduced the Forward algorithm in Section 1.3 as a method to score the sum of

probabilities of all state paths over a profile-HMM that emit the given query sequence.

For this reason, it is sometimes argued that the Forward algorithm is more sensitive

to weak matches than the Viterbi algorithm. Specifically, if two or more state paths

over a profile-HMM are more or less equally likely to emit a query sequence, the
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Viterbi algorithm compares only one of their scores to its threshold. In the case that

the score of each individual state path falls below the threshold while their combined

sum crosses it, the Viterbi score causes the search to be deemed insignificant whereas

the Forward score causes it to be deemed significant.

The Forward algorithm, on account of summing over the probability of all state paths,

does not keep track of any one, and so cannot be used to retrieve a final alignment,

leaving that instead to the Viterbi algorithm. However, for simply answering the

question of whether or not a query sequence exhibits similarity to a profile-HMM,

the Forward algorithm may be applied just as well. This makes it a candidate for

deployment in the Hit Detection stage, even as the Path Generation stage runs the

Viterbi algorithm as before. We applied the 1-pass architecture of Section 3.1 to

a two-stage accelerator design where Hit Detection is performed using the Forward

algorithm over the HMM structure of Figure 3.1A. We then simulated this accelerator

as we did the Viterbi accelerator and evaluated it using the same performance model.

A key point to note is that since they are compared to intrinsically different scores,

the Viterbi and Forward thresholds are not meant to be the same. However, since

HMMer 2.3.2 applies the same threshold to both scores, our simulated accelerator

does the same. This is because for any given search the Forward score is numerically

higher than the Viterbi score. Therefore, using the Viterbi threshold guarantees that

no additional false negatives are produced, though it may introduce additional false

positives that are detected in Path Generation.
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4.2 Design Issues

In this section we explore the probabilistic roots of the Viterbi and Forward algo-

rithm and the use of logarithms for computational convenience. We describe specific

difficulties involved in computing logarithms of sums for the Forward algorithm and

approaches to overcoming them.

4.2.1 Recurrences in Probabilistic Form

The Viterbi recurrence of Equation 1.2 is a maximization over integer terms. However,

these integer terms are actually derived from the probabilistic form of the Viterbi

recurrence. In order to compute the probability, Pr(qi, j), that a state path is in state

qi after emitting the first j symbols of query sequence s, we consider the probabilities

associated with extending the state path from each valid predecessor state, q′ ∈ Qi

to qi. If qi is an emitting state, this is the product of the probability Pr(q′, j − 1) of

being in the predecessor state after emitting (j−1) symbols, the probability Pr(qi|q′)

of making a transition to qi, and the probability Pr(sj|qi) of emitting the jth symbol

from qi. Similarly, if qi is non-emitting, it is the product of Pr(q′, j) and Pr(qi|q′).

This leads to the probabilistic form of the Viterbi recurrence below.

Pr(qi, j) = max


maxq′∈Qi

Pr(q′, j − 1) · Pr(qi|q′) · Pr(sj|qi), if qi is an emitting state

maxq′∈Qi
Pr(q′, j) · Pr(qi|q′), otherwise

(4.1)
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Similarly, since the Forward algorithm sums the same probabilities rather than max-

imizing over them, we get the probabilistic form of the Forward algorithm. Note

that since there is no choice being made by the algorithm in a dynamic programming

sense, the Forward algorithm, unlike the Viterbi algorithm, is not a combinatorial

optimization algorithm.

Pr(qi, j) =


∑

q′∈Qi
Pr(q′, j − 1) · Pr(qi|q′) · Pr(sj|qi), if qi is an emitting state∑

q′∈Qi
Pr(q′, j) · Pr(qi|q′), otherwise

(4.2)

4.2.2 Computing with Logarithms of Probabilities

The various transition and emission probabilities are real numbers between 0 and

1. In the case of the Viterbi algorithm, several such probabilities are multiplied in

the course of obtaining the final score, leading to the danger of floating-point un-

derflow errors. This is commonly averted by storing and computing logarithms of

probabilities rather than raw probabilities themselves, thereby converting the various

multiplications in Equation 4.1 into sums of logarithms. Not only does this make

the computation invulnerable to underflows but also significantly faster – since loga-

rithms are implemented as fixed-point quantities, they are computationally equivalent

to integers, and therefore the core of the computation is equivalent to integer addi-

tion, which is much less expensive than floating-point multiplication. The Viterbi

algorithm, as a result, is frequently performed using log-odds ratios, which normalize
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logarithms of probabilities with respect to a background distribution, as doing so pro-

vides a better idea of how much more likely a particular state path is than a random

one (see [5] for a more detailed discussion). In fact, the integer Viterbi scores as well

as the transition and emission scores in Chapters 2 and 3 are log-odds ratios.

In the case of the Forward algorithm, however, using logarithms no longer provides

the same convenience as it does for the Viterbi algorithm. This is because while

multiplication translates to addition in the log domain, addition does not translate

to any simple operation. Mathematically, suppose c = log(x) and d = log(y). Then,

log(xy) = c + d

but

log(x + y) = log(ec + ed)

This necessitates the floating-point exponentiation operation for the Forward algo-

rithm. One common workaround, employed by HMMer, uses the result of the follow-

ing algebra.

log(x + y) = log(ec + ed)

= log(ec(1 + ed−c))

= log(ec) + log(1 + ed−c)

= c + log(1 + ed−c)

or equivalently,

log(x + y) = d + log(1 + ec−d)
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Therefore, the log of the sum is the addition of either c or d with another term

dependent only on the difference between them. In essence, HMMer precomputes

and stores a lookup table of log(1 + eh) indexed by h = |c − d| over a part of the

range of c and d1. The core of the Forward algorithm is then simply reduced to

table lookups and additions. While this is slower than the Viterbi computation in log

space, it is still an acceptable solution for computing the Forward score in log space

in software. However, performing the same algorithm in parallel hardware requires

a sufficiently high number copies of the lookup table in highly multiported on-board

memory so that all cells of the systolic array can look up their own copy of the table

with minimum delay caused by sharing. As noted in Section 2.2.5, the availability of

on-baord memory constrains the value of A. Our designs for the Viterbi accelerator

store the HMM transition and emission scores required by each cell of the systolic

array in memory. Clearly, additionally duplicating a table with 20000 integers in

memory forces A to be very low.

4.2.3 Forward Algorithm with Floating-Point Probabilities

Since performing the Forward computation in log space is impractical in parallel

hardware, we investigated the option of using floating-point representations of the

probabilities (or odds ratios). In order to quantify the threat posed by underflow

we performed a floating-point Forward algorithm search of 1250 randomly sampled

proteins from the Swiss-Prot database against the 7677 profile-HMMs built from

Pfam-A, and counted the occurrence of negative infinity, infinity and NaN (not a

number) scores – the possible resulting scores when a floating point exception occurs

1For large |c− d| the larger term dominates the sum and a table lookup is unnecessary.
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during the Forward computation. We received floating-point exceptions in nearly

21% of the cases when single precision was used, while only in 0.24% of the cases

when double precision was used.

One way to deal with floating-point exceptions is to treat the search as a hit and

forward it to Path Generation, thereby potentially producing even more false positives

than before. Even though it then appears that using single precision may produce

more than 20 times as many false positives, the ultimate effect on overall speedup

depends only on whether the extra burden on the Path Generation stage causes it

to become the bottleneck. Another key point is that our underflow estimates are

based on searches made using the original Plan7 HMM structure, i.e. with feedback

path intact. Since the actual Hit Detection stage which performs these floating-point

computations uses a feedback-free HMM structure, there is usually a smaller scope for

underflow as a single pass over the motif means fewer multiplications than multiple

passes. In the rest of our analysis, we discount the floating point exceptions and their

contribution to the false positive rate, instead reintroducing them when considering

the speedups estimated by our simulator in Section 4.3 below.

Since the Forward-based Hit Detection stage is based on the 1-pass architecture of

Section 3.1 and also uses the same HMM structure, the dynamic programming matrix

is identical to that in Figure 2.2 and the cell update count is the same as that in

Equation 3.1. In fact, the only difference introduced is with respect to the hardware

timing parameters (such as those estimated in Section 3.3.1) that are substituted in

the performance model. As in Section 3.3.1, our estimates assume a Hit Detection

stage implemented in FPGA hardware. As before, we assume ATOT = 49152 slices,

4320KB Block RAM and η = 0.7. Our area and clock rate estimates of floating
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point adders and multipliers implemented in FPGA hardware are based on results

presented in [8].

Each cell of the systolic array once again computes a block of the dynamic program-

ming matrix that accounts for 4 cell updates (corresponding to the M, I, D, and E

states) per time step. Each cell is built from 1 pipelined floating point multiplier

and 1 pipelined floating point adder and 25 floating point registers. In the case of

single precision (32-bit), the multiplier has 4 stages and the adder has 6. Includ-

ing registers, the approximate area of each cell is then 550 slices, and it is clocked at

fCLK = 100MHz, with the number of clock cycles for the pieplined computation being

nCLK = 33. This leads to A = 250 concurrent cell updates and R = 0.76 GCUPS.

In the case of double precision (64-bit), the multiplier and adder both have 6 stages

each. Including registers, the approximate area of each cell is 1200 slices, and it is

clocked at 50MHz, with the number of clock cycles for the pipelined computation

being nCLK = 39. This leads to A = 115 concurrent cell updates and R = 0.147

GCUPS.

4.3 Experimental Results

In this section we present the accuracy and speedup realized by the 1-pass Forward

accelerator with current FPGA technology as well as based on projections for the

future. We also suggest changes to the way the Forward algorithm is currently im-

plemented that may provide scope for further improvement.
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As in the case of the Viterbi accelerator, we used a software simulator with a 1-pass

Forward-based Hit Detection stage to search 5898 randomly sampled proteins from

Swiss-Prot agaist the 7677 profile-HMMs built from Pfam-A and extrapolated our

results over the entire Swiss-Prot database (1.6 ×105 sequences) using the observed

mean sequence length over Swiss-Prot and mean motif size over Pfam-A.

Table 4.1 shows the critical values of EH for each value of threshold E at which the

accelerator achieves perfect sensitivity (in the absence of floating-point exceptions)

relative to unaccelerated software. As was similarly noted in Section 3.3.1, the hard-

ware timing estimates have no effect on the accuracy results of Table 4.1. Since these

critical values of EH are in most cases smaller relaxations of E than those for the

1-pass architecture in Table 3.1, it does appear that the Forward algorithm is more

sensitive for the purpose of Hit Detection when the same threshold is used. How-

ever, the accompanying Path Generation times are significantly higher than those in

Table 3.1, signifying the rather low specificity of the Forward algorithm when the

same threshold is applied. We suggest that future work on theoretically determining

an appropriate distinct threshold for the Forward score may alleviate the problem,

though it may simultaneously affect the critical value of EH .

Finally, Figure 4.1 shows the speedup achieved by single and double precision Forward-

based accelerators relative to unaccelerated software using hardware parameters esti-

mated for current FPGA technology as well as for some hypothetical superior hard-

ware stage as in Section 3.3.3 with thrice the total area and running at twice the

clock rate. As before, we consider nP = 1,nP = 4 and nP = 8.
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Table 4.1: Critical values of threshold EH at which the 1-pass architecture for a
Forward algorithm accelerator achieves perfect sensitivity (in the absence of floating-
point exceptions). The accompanying projected time spent in Path Generation is a
measure of the number of false positives produced.

E
EH for Time in Path

Sensitivity 1.0 Generation (hours)
0.001 2 3.571
0.01 2 3.571
0.1 2 3.571
1 5 6.578
10 30 30.969
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Figure 4.1: A comparison of the speedup achievable by single and double precision
Forward-based accelerators. The curves labeled Regular assume the hardware timing
parameters of Section 4.2.3. The curves labeled Superior assume a hypothetical six-
fold hardware speed increase. The plot must be read from right to left in order to
consider increasing stringency of threshold E.
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At this point, we reintroduced the effect of floating-point exceptions. Our simulator

results revealed that even after multiplying the single precision accelerator’s Path

Generation time by 22 and that of the double precision accelerator by 1.24 (to account

for the maximum possible additional false positives), they remain clearly hardware

bound and hence achieve the same speedup as before, justifying the omission of these

effects from our analysis.

The flat shape of all curves in Figure 4.1 reveals that an accelerator using a floating-

point Forward-based Hit Detection stage is hardware bound and likely to remain so

in the future. This especially argues against a 2-pass architecture for floating-point

Forward-based Hit Detection as its only possible contribution could be to reduce Path

Generation time, which is of little use as long as Hit Detection is the clear bottleneck

stage. The speedups achievable by both single and double precision are much smaller

than by the 1-pass and 2-pass Viterbi architectures. Only single precision can po-

tentially realize double-digit speedup given the same hypothetical superior hardware

stage (with thrice as much total area and capable of twice the clock rate), and so,

we suggest that future work in the direction of single precision optimizations specific

to the Forward computation may help altogether eliminate its tendency to underflow

(thereby removing the need to consider double precision) and achieve greater speedup.
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Chapter 5

Conclusion

Our work reveals the great potential offered by acceleration of profile-HMM search

in protein sequences with the aid of parallel hardware. Although existing accelerator

architectures can realize significant speedup, the simplicity of their designs sacrifices

accuracy for speed. Our 1-pass architecture, although introducing only the concep-

tually minor modification of Hit Detection threshold relaxation, achieves perfect sen-

sitivity relative to unaccelerated software while achieving high speedups. The 2-pass

architecture, an entirely new idea contributed by this work, achieves perfect sensitiv-

ity with greater efficiency than the 1-pass architecture and, therefore, allows greater

overall speedups. The advantage of this architecture may become more pronounced

should specialized hardware evolve so that Hit Detection stage is no longer the bot-

tleneck and the time spent in Path Generation becomes key to the performance of

the accelerator.

Through alternative hardware timing parameter estimates, we show that the two

architectures we described can achieve speedups of between 2 and 3 orders of mag-

nitude. Given the variety of considerations that go into estimating hardware timing

and the frequently large gap between design and implementation, our performance
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model may be used to obtain speedup estimates for a more diverse range of hardware

area and speed assumptions, thereby allowing end users to evaluate each accelerator

architecture according to parameters best suited to the resources available to them.

We also suggest that investigation into the current limitations of the performance

model and work towards overcoming them will provide more accurate estimates in

the future.

We suggest that future work towards modeling in greater detail the effects of mem-

ory access patterns and the availability of highly multiported memory on board the

hardware stage as well as routing and miscellaneous delays on the value of A may

help provide more accurate estimates of speedups using our performance model. We

also suggest a more thorough investigation of disk access issues governing the value of

nP . Eventually, as we have demonstrated clearly the benefits of the 2-pass architec-

ture, its translation into an actual implementation will produce a significantly faster

profile-HMM search accelerator (than currently available implementations similar to

our 1-pass architecture) and will be useful to the biosequence analysis community.

Our investigation of acceleration of the Forward algorithm is only preliminary in that

it establishes an advantage in terms of accuracy that when used in Hit Detection and

favors the use of floating-point arithmetic over table lookup-based integer arithmetic.

However, there needs to be a theoretically, or otherwise at least empirically, founded

method for conversion between Viterbi and Forward score thresholds. Further work

in the direction of eliminating single precision underflow can pave the way for more

Forward-based accelerator designs. Since no other protein motif finding algorithm

performs floating-point arithmetic, we were unable to provide an alternative set of



66

speedup estimates of the kind we provided for the Viterbi accelerator based on pub-

lished Smith-Waterman accelerator performance numbers.

Even though we targeted the Forward algorithm for acceleration in parallel hardware,

our findings suggest that it may be worthwhile for standard profile-HMM search soft-

ware packages to consider the Forward score as a filter. In also initiating the discussion

of its acceleration, we believe work on software and hardware implementations may

progress alongside one another rather than hardware catching up to software, thereby

benefiting both areas of research.
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