
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

January 2010 

NMR Search for Mobile, Aluminum-bearing Species during NMR Search for Mobile, Aluminum-bearing Species during 

Reactions of Sodium Alanate Reactions of Sodium Alanate 

Timothy Ivancic 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Ivancic, Timothy, "NMR Search for Mobile, Aluminum-bearing Species during Reactions of Sodium 
Alanate" (2010). All Theses and Dissertations (ETDs). 165. 
https://openscholarship.wustl.edu/etd/165 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/165?utm_source=openscholarship.wustl.edu%2Fetd%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 
 
 
 

WASHINGTON UNIVERSITY IN ST. LOUIS 
 

Department of Physics 
 
 

Dissertation Examination Committee: 
Mark Conradi, Chair 

William Buhro 
Sophia Hayes 
Martin Israel 

Daniel Leopold 
James Miller 

 
 

NMR SEARCH FOR MOBILE, ALUMINUM-BEARING SPECIES DURING 

REACTIONS OF SODIUM ALANATE 

by 

Timothy Mark Ivancic 
 
 
 
 
 

A dissertation presented to the 
Graduate School of Arts and Sciences 

of Washington University in 
partial fulfillment of the 

requirements for the degree 
of Doctor of Philosophy 

 
 
 

August 2010 
 

Saint Louis, Missouri 

 



 

 

 

 

 

 

 

 

 

Copyright by 

Timothy Mark Ivancic 

2010 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements: 

I would like to thank Mark for the success of my degree.  His advice and 

instruction was fundamental to my learning and understanding of NMR.  His teaching 

always goes beyond the text books and into the lab and workbench.  This thesis could not 

have been written without him. 

 I also would like to thank Son-Jong Hwang from Caltech for providing MAS 

spectra and analysis which greatly supplemented this work.  Additionally, I would like to 

thank Bob Bowman from RCB Hydrides, who was a key collaboration and whose long-

time experience and expertise in hydrides I could not have done without.  In addition, I 

would like to thank Craig Jensen and Derek Birkmire from the University of Hawaii for 

their work in synthesizing and doping the majority of the material used in this study.  I 

would also like to thank Terry Udovic from NIST for providing XRD data.  Furthermore, 

the help and advice of Todd Hardt, Denny Huelsman, and Tony Biondo in the machine 

shop was greatly appreciated, and I was always able to walk away having learned 

something new.  I am also appreciative of the financial support of the DOE for this work 

(grant DE-FG02-ER46256). 

 I thank Allison, next to whom I did some of my best thinking and writing.  Her 

patience during the last few months was greatly appreciated, and her support was always 

uplifting. 

Finally, I would like to thank my parents, Mark and Kathy Ivancic.  My 

appreciation of their dedication to my education from the earliest possible time and 

financial sacrifice to keep me in school cannot properly be expressed, so I dedicate this 

thesis to them. 

ii 
 



TABLE OF CONTENTS: 
 
Acknowledgements……………………………………………………………..………..ii 
List of Tables……………….…………………………………………………………….v 
List of Figures…………….……………………………………………...………………vi 
List of Abbreviations…….…………………………………………………………….viii 
Chapter 1:  Introduction……………………………………..………….………………1 

1.1 H2 Fuel Economy……………………………………………………………..1 
1.2 The NaAlH4 System…………………………………………………………..4 
1.3 Study Motivation and Summary………………………………………...........8 

Chapter 2:  Experimental Apparatus and Materials………..………...……………...10 
2.1 High-Pressure Probe………………………………………………………...10 

2.1.1 Sample Tubes……………………………………….....................12 
2.1.2 H2 Supply Assembly……………………………………………..12 
2.1.3 Main Body………………………………………….....................15 
2.1.4 Electrical Read-outs……………………………………………...21 

2.2 High-Pressure H2/Ar Sources………………………………….....................22 
2.3 Cold Probe…………………………………………………………..………25 
2.4 Box Probe………………………………………...………………………….27 
2.5 LN2 Boil-off Dewar…………………………………………..……………..27 
2.6 Temperature Controller…………………………………………………...…29 
2.7 Sample Handling…………………………………………………………….29 

2.7.1 Glove Bag………………………………………………………..30 
2.7.2 Loading Procedures……………………………………………...31 

2.8 Magnets……………………………………………………………………...33 
2.8.1 Superconducting Magnet………………………………………...33 
2.8.2 Electromagnet…………………………………………………....34 

2.9 Spectrometer……………………………………………..................……….34 
2.10  Sample Materials………………………………………………..................34 

2.10.1 Doped NaAlH4………………………………………...................35 
2.10.2 Undoped NaAlH4…………………………………..................….36 
2.10.3 Other Sample Materials………………………….................……36 

Chapter 3:  NMR Techniques and Basics……………………….…...................……..38 
3.1 NMR Basics……………………………………………………....................38 

3.1.1 Introduction…………………………………………....................38 
3.1.2 T1……………………………………………………....................39 
3.1.3 T2……………………………………………………....................40 

3.2 Data Acquisition and Analysis Techniques……………………....................43 
3.2.1 Left-shift……………………………………………....................43 
3.2.2 Fast Recycle Delays…………………………………...................46 
3.2.3 Central Transition Excitation……………………….....................47 
3.2.4 Magic Angle Spinning and Cross-Polarization……......................51 

3.3 Relaxation Measurements………………………………………...................54 
3.3.1 Saturation Recovery…………………………………...................54 
3.3.2 Inversion Recovery…………………………………....................55 
3.3.3 90o-90o Echo………………………………………......................56 

iii 
 



Chapter 4:  In Situ Reactions……………………………………….....................…….59 
4.1 Preliminary De-/Re-hydriding Findings……………………….....................59 
4.2 S105 Discoveries………………………………………………....................65 
4.3 S105 Summary…………………………………………………....................68 

Chapter 5:  High-Pressure Studies…………………………….…………....................70 
5.1 Initial High-Pressure Results……………………………………..................70 

5.1.1 Generation of S105 in Doped Samples……………......................70 
5.1.2 Generation of S105 in Undoped Samples……………..................76 
5.1.3 Hexahydride Formation……………………………….................80 
5.1.4 H2 Evolution in High-Pressure Cases………………....................81 
5.1.5 27Al “Before” and “After” Comparisons……………....................83 

5.2 Further High-Pressure Studies of S105…………………………...................85 
5.2.1 Longevity……………………………………………...................84 
5.2.2 Spin Counting and Lorentzian Fit Convolutions……...................87 
5.2.3 FWHM vs. Temperature and Pressure………………...................89 
5.2.4 T1 and T2 vs. Temperature……………...……………..................91 
5.2.5 Motional Narrowing Confirmed in 27Al……………....................94 
5.2.6 Motional Narrowing Confirmed in 1H………………...................97 
5.2.7 CPMAS Confirms S105 is Hydrogenated…………...................101 

5.3 Complementary Findings to the High-Pressure Study…………..................103 
5.3.1 MAS Detection of AlH3 and an Impurity……………................103 
5.3.2 23Na NMR……………………………………………................105 
5.3.3 45Sc NMR…………………………………………….................108 
5.3.4 X-Ray Diffraction……………………………………................110 

Chapter 6:  Conclusions………………………………………..…………..................113 
6.1 Study Review……………………………………………………................113 
6.2 Discussion.………………………………………………………................119 
6.3 Looking to the Future……………………………………………................121 

References…………………………………………………………………...................123 

iv 
 



LIST OF TABLES: 
 
Table 3.1…………………………………………………………………………………51 

Spin, 1/A for the central transition, and location of the large cusps in the satellite 
transitions (given with respect to the Larmor frequency, νL, in kHz) for 27Al, 23Na, 
and 45Sc for NaAlH4. 

Table 4.1…………………………………………………………………………………63 
A list of the approximate peak locations of various Al species for 27Al NMR with 
respect to Al(NO3)3 (aq.). 

Table 5.1…………………………………………………………………………………96 
Temperatures where S105 disappears into other broad peaks for variously doped 
samples. 

Table 5.2………………………………………………………………………………..105 
23Na peak locations with respect to NaCl (aq.). 

Table 5.3……………………………………………………………………………..…110 
45Sc peak locations with respect to Sc(NO3)3 (aq.). 

v 
 



LIST OF FIGURES: 
 
Figure 1.1...…………………………………………………………………………….....2 

Conceptual diagram of H2 fuel infrastructure. 
Figure 1.2...…………………………………………………………………………….....7 

Pressure and temperature equilibrium graph of the sodium alanate hydriding 
reactions[7]

Figure 2.1..……………………………………………………………………………....12 
High pressure in situ probe schematic. 

Figure 2.2...……………………………………………………………………………...13 
Close-up picture of sample tube and nozzle with sealing O-ring (smaller diameter) 
and O-ring seat (larger diameter) labeled. 

Figure 2.3...……………………………………………………………………………...14 
H2 supply assembly schematic. 

Figure 2.4...……………………………………………………………………………...18 
Close up of Ar chamber-to-flange plug-seal. 

Figure 2.5...……………………………………………………………………………...20 
Photograph of the aluminum scaffold which supports tank circuit components, the 
BNC connection, and plastic rod for tuning the resonance frequency of the probe. 

Figure 2.6...……………………………………………………………………………...23 
Schematic layout of gas hook-ups and water-cooling coils from the High-Pressure 
probe to the H2/vacuum supply and Ar/vacuum supply. 

Figure 2.7...……………………………………………………………………………...24 
Scored, copper plug in hydrogen tank CGA fitting. 

Figure 2.8...……………………………………………………………………………...26 
Schematic of cold probe. 

Figure 2.9...……………………………………………………………………………...30 
Glove bags used for sample manipulation and storage. 

Figure 3.1...……………………………………………………………………………...45 
1H FIDs and spectra from a sample that contains three different chemical 
components.  This demonstrates the effects of left-shifting FIDs to filter for 
highly mobile species in multi-component systems. 

Figure 4.1...……………………………………………………………………………...60 
First three blocks of de-hydriding spectra taken on a previously unreacted sample.  
Sample was NaAlH4 + 3.18 mol% ScCl3. 

Figure 4.2...……………………………………………………………………………...61 
Pressure and temperature vs. time for the data shown in Figure 4.1. 

Figure 4.3...……………………………………………………………………………...68 
27Al spectrum of NaAlH4 + 4 mol TiCl3, after re-hydriding.  S105 still exists as a 
small shoulder on the NaAlH4 after re-hydriding. 

Figure 5.1...……………………………………………………………………………...72 
Series of 27Al spectra taken during a PT-cycle that generates S105.  In this case, 
the sample was a ScCl3 doped sample. 

Figure 5.2...……………………………………………………………………………...75 
Series of 27Al spectra taken during a PT-cycle that generates S105.  In this case, 
the sample was a 2 mol% ScF3 doped sample. 

vi 
 



Figure 5.3...……………………………………………………………………………...77 
Generation of S105 in undoped NaAlH4 by melting under high-pressure H2. 

Figure 5.4...……………………………………………………………………………...79 
Generation of S105 in undoped NaAlH4 in a vacuum H2.  Al metal is evident in 
(4) and a total of 45 psia of H2 is given off. 

Figure 5.5...……………………………………………………………………………...85 
Comparison of various 27Al spectra of the NaAlH4 system “Before” and “After” 
the +105 ppm S105 is created. 

Figure 5.6...……………………………………………………………………………...86 
Two spectra of a 4.04 mol% ScCl3 doped sample: compared after 77 days. 

Figure 5.7...……………………………………………………………………………...89 
Triple Lorentzian fit to a spectrum of undoped alanate where no Al metal shows 
after S105 is created by melting under H2 pressure. 

Figure 5.8...……………………………………………………………………………...90 
FWHM vs temperature. 

Figure 5.9...……………………………………………………………………………...92 
T1 and T2 of a 4.04 mol% ScCl3 doped sample in 8.3T field. 

Figure 5.10.……………………………………………………………………………...94 
Example from inversion recovery data (τ = 35 ms) of a spectrum at 141oC used 
for relaxation measurements.  Green bars show the limits of integration. 

Figure 5.11.……………………………………………………………………………...95 
27Al cold spectra of an undoped sample that has been PT-cycled and shows the 
S105 signal. 

Figure 5.12.……………………………………………………………………………...98 
1H spectra of the NaAlH4 system “Before” and “After” S105 is created. 

Figure 5.13.…………………………………………………………………………….100 
1H spectra at colder temperatures for the “After” Sample. 

Figure 5.14.…………………………………………………………………………….102 
CPMAS (red) and MAS (blue) for undoped NaAlH4 melted under H2 pressure.  
Spectra taken by Sonjong Hwang at Caltech. 

Figure 5.15.…………………………………………………………………………….103 
VT-CPMAS for a 4 mol% ScCl3 doped sample after PT-cycling to create S105.  
Spectra taken by Sonjong Hwang at Caltech. 

Figure 5.16.…………………………………………………………………………….107 
23Na spectrum of undoped NaAlH4 “Before” and “After” S105 generated. 

Figure 5.17.…………………………………………………………………………….109 
45Sc spectrum (86.035 MHz) of 4.04 mol% ScCl3 doped sample after being PT-
cycled to generate S105. 

Figure 5.18.…………………………………………………………………………….112 
XRD patterns of four undoped samples.  Red check marks indicate NaAlH4 peaks. 

vii 
 



LIST OF ABBREVIATIONS: 
 
CP – Cross-Polarization 
CPMAS – Cross-Polarization Magic Angle Spinning 
CSA – Chemical Shift Anisotropy 
DVM – Digital Voltmeter 
DOE – Department Of Energy 
EFG – Electric Field Gradient 
ID – Inner Diameter 
INS – Inelastic Neutron Scattering 
LN2 – Liquid Nitrogen 
FID – Free-Induction Decay 
FWHM – Full Width at Half Maximum 
MAS – Magic Angle Spinning 
mol% - Mole Percent 
NMR – Nuclear Magnetic Resonance 
OD – Outer Diameter 
PEM – “Polymer Electrolyte Membrane” or “Proton Exchange Membrane” 
PID – Proportional-Integral-Derivative 
PRT – Platinum Resistance Thermometer 
r.f. – Radio Frequency 
R.T. – Room Temperature 
SAH – Sodium Aluminum Hydride 
S/N – Signal-to-Noise ratio 
SS – Stainless Steel 
T1 – Longitudinal relaxation time (spin-lattice relaxation time) 
T2 – Transverse relaxation time (spin-spin relaxation time) 
VT-MAS – Variable Temperature Magic Angle Spinning 
wt% - Weight Percent 
XRD – X-ray Diffraction 
 

viii 
 



CHAPTER 1: 

INTRODUCTION 

 

1.1    H2 Fuel Economy 

 

 The Department of Energy has envisioned a hydrogen fuel economy and has 

joined an international effort to encourage and support research into making the 

appropriate technologies.  References [1]-[5] contain nice reviews of hydrogen storage 

and the hydrogen fuel economy, and the material in this section can be found in more 

detail in these publications.  H2 would act as an energy carrier for use in mobile 

applications.  The attractions to H2 as a fuel are clean combustion (H2O being the only 

by-product), higher efficiency vehicles (by using fuel cells in combination with electric 

motors), and decreased national dependence on foreign energy sources.  A conceptual 

flow chart of a hydrogen fuel infrastructure is depicted in Figure 1.1. 
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Figure 1.1: Conceptual diagram of H2 fuel infrastructure. 

 
Electricity would be produced by (clean) energy sources like nuclear power, wind 

power, solar power, etc. (1).  The electricity could then be used to electrolyze water and 

generate H2 gas (2).  The H2 could then be piped or trucked to fuel stations where cars, 

which are powered by fuel cells, could be re-fueled, (3) and (4).  Or the electricity could 

be sent directly to the fuel station and electrolysis performed at the fuel station.  Another 

option is production of H2 gas at the power plant by high-temperature processes such as 

thermolysis (direct splitting of H2O, 2230 oC) or thermochemical cycles (metal oxide 

redox reactions, 850oC to 2100oC)[6], which would utilize heat from nuclear reactors or 

direct solar heating.  Then the H2 would be sent from the power plant to the refueling 

stations. 

For “on board” fuel storage, the cars contain storage tanks that remain on the car 

and are refueled in place.  For “off-board” fuel storage, the empty hydrogen storage tank 

would be removed from the car and exchanged for a regenerated hydrogen storage tank.  

These storage tanks could be regenerated at a specialized facility. 

2 
 



 The means of storing the hydrogen gas on-board is a difficult problem.  The 

storage medium must be able to satisfy a number of requirements such as affordability, 

safety, reliability, and fast release/charge kinetics. 

There are a few basic options for use as a hydrogen storage medium.  The first 

and obvious option is storage in high pressure gas cylinders.  These are available now, 

but weight is a concern because high pressure gas cylinders are typically made of steel.  

The pressure cylinders could be made of light weight materials (carbon fiber and 

composite products), but then cost becomes a problem.  Safety is also a concern 

considering pressures of 5000 to 10000 psi would be required to give the vehicle a 

reasonable range between refueling. 

 The second option would be liquid hydrogen storage.  However this would 

require the storage medium to operate at temperatures around 20 K, and continuous loss 

of fuel due to boil-off would be a problem.  Additionally, there is a large energy cost (30-

40%) in liquefaction of the hydrogen. 

 A third option is adsorption onto carbon surfaces.  The substrate could be 

charcoal, graphite, or nanotubes.  These usually have very low storage densities at 

temperatures near 273 K, and the temperatures must be much lower (77 K) to get 

reasonable storage densities (3 wt%).  This again requires some means of keeping the 

storage tank cool on board the car at some energy cost.  Here liquid nitrogen, which is 

inexpensive, could be used, but this adds weight and volume to the fuel system. 

The final option is storage in solid-state hydrides.  Adesirable hydride would  

absorb and release hydrogen gas reversibly.  This is a diverse field and there are many 

different types of hydrides with varied characteristics, from very fast kinetics but terrible 
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gravimetric storage densities (LaNi5H6: 1.37 wt%, 2 bar, 298 K), to excellent gravimetric 

storage densities but high operational temperatures (LiBH4: 13.8 wt%, 1 bar, 623 K).  

The multiplicity of options and the possibility of tailoring a material for specific 

characteristics have made hydrides one of the most promising storage mediums.  Still, 

there is no solid-state storage system today that satisfies all the DOE requirements. 

One type of hydride that has received a lot of attention because of its relatively 

high storage capabilities (5 wt% to 15 wt%) and relatively low operational temperatures 

(350 K to 500 K) is the “complex hydride”.  This brings us to NaAlH4. 

 

1.2    The NaAlH4 System 

 

Sodium alanate (also called “sodium aluminum hydride” or “SAH”) is a complex 

hydride that decomposes in the well-known step-wise reaction as shown below[7]: 

1)  NaAlH4  1/3 Na3AlH6 + 2/3Al + H2  (3.7 wt %)          1.1 

2)  Na3AlH6  3NaH + Al + 3/2H2  (1.9 wt %)           1.2 

3)  NaH  Na + 1/2H2              1.3 

The third step is largely ignored because it is not accessible until temperatures in the 

range of 425oC[8]—which is outside the practical temperature range if we are to think 

about using this material as a feasible “on board” hydrogen storage material.  Thus, the 

rest of this study is concentrated on the first two steps. 

 NaAlH4 possesses a tetragonal (I41/a) structure with lattice parameters a = 5.02 Å 

and b = 11.3 Å, while Na3AlH6 is monoclinic (P21/n) with a = 5.4 Å, b = 5.5 Å, c = 7.7 

Å, and β ≈ 90o (89.8o[9], 90.1o[10], [11]).  Reaction enthalpies for the first and second steps 
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are 37 kJ/mol H2 and 47 kJ/mol H2 respectively[8], [10], [12], [13].  In both NaAlH4 and 

Na3AlH6 the hydrogen is covalently bonded to the aluminum.  In turn, the Al-H units 

(either AlH4
-1 or AlH6

-3) are ionically bonded to the Na+.  This is why the system is called 

a “complex” hydride; it includes both ionic and covalent bonding. 

 Steps 1 and 2 were found to be reversible with the addition of a few mol% Ti-

dopant[14].  This is especially important for re-hydriding.  Shortly thereafter it was found 

that many transition metals—such as, but not limited to, Fe, V, Cr, Sc, and Hf—could 

catalyze this reaction[7], [8], [10], [12], [15].  The metal catalysts have been introduced into the 

alanate in many different ways such as in Ti nano-clusters[16], [17], TiH2
[18], alloys like 

TiAl3
[18], [19], Ti[OBu]4

[14] and Ti[OEt]2
[7] (where Bu = C4H9 and Et = C2H5), and as 

dopant-halide salts like TiF3, TiCl3 or TiCl4
[18]-[17], [20].  The dopants can be introduced in 

these forms either by ball milling or by solution chemistry. 

The catalyst must be introduced at the few mole-percent (2 to 4 mol%) to be 

effective—as opposed to the ppm level more common in catalysis.  The catalyst works to 

lower the activation energy of the hydriding reactions and make the reaction reversible at 

temperatures below the melting temperature (see below).  After a number of de-/re-

hydriding cycles, the material’s reversibility decreases—not up-taking nor giving-off as 

much hydrogen gas[7], [21], [22].  It is thought that the changes upon cycling could be 

improved. 

The initial attraction to NaAlH4 was the comparatively high theoretical hydrogen 

storage capacity (5.6 wt%) and lower reaction temperatures (100oC to 120oC), at which 

you can use the waste heat of a PEM (Polymer Electrolyte Membrane) fuel cell.  

However in reality, after repeated cycling, NaAlH4 typically only provides ~3 wt% of 
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reversible hydrogen[1].  The DOE had set two targets with an array of characteristics for 

finding/producing a hydrogen storage material that they estimated could be safely and 

efficiently used for a hydrogen automotive fuel economy.  These goals include 

gravimetric capacity, volumetric capacity, cost, cycle life, refueling time, and operational 

pressure and temperature.  The first target, which expires this year (2010), sets an 

experimentally reversible gravimetric capacity of 4.5 wt% H2 and a volumetric density of 

28 g H2/L and already surpasses the capabilities of the alanate system.  The second target 

expires in 2015 and sets the goal to 5.5 wt% H2 and 40 g H2/L[1].  Despite the difficulties, 

NaAlH4 remains the poster child for an entire family of complex hydrides and has drawn 

the attention of the hydride community for many years as a case study for understanding 

these types of hydriding reactions. 

Much work has been done in trying to find both the role of the catalyst and the 

best way to incorporate the catalyst into the alanate with the most effectiveness.  It is in 

large part understood that the Ti remains zero-valent (as in a metallic phase) and lies on 

the material’s surface or in the Al phase after a few cycles, regardless of how the Ti is 

initially incorporated into the NaAlH4
[8], [15], [23]-[25].  However, the focus of this study is 

not the role of the catalyst. 

To de-hydride the NaAlH4, one simply has to heat the powder in a vacuum.  

Typical temperatures for both de- and re-hydriding lie in the range from room 

temperature to ~180oC.  To reverse the reaction and re-hydride the material requires 

heating the reaction products in Equation 1.2 in the presence of a H2 overpressure.  Re-

hydriding the material in the same temperature range as de-hydriding requires the ability 

to achieve substantial H2 over-pressures of 1400 to 1500 psi (100 bar).  A few P-T phase 
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diagrams of the NaAlH4 reaction have been previously published[7], [8], [12] and a version 

of these is reconstructed below in Figure 1.2. 

 
Figure 1.2: Pressure and temperature equilibrium graph of the sodium alanate 

hydriding reactions[7]. 
 

All the samples under investigation were powder samples.  When the samples 

were doped, they were doped with either Ti- or Sc-halides.  A more detailed description 

of the sample material is given in a following chapter (Chapter 2.10). 

Consider the first two reaction steps (Equations 1.1 and 1.2), concentrating on the 

re-hydriding reaction direction.  In the presence of H2 overpressures, the recombination 

of NaH and bare Al metal forms the Na3AlH6 species (also denoted AlH6
-3 or simply 

called the “hexahydride”), and then the continued combination of Al metal and the AlH6
-3 

species forms NaAlH4 (also denoted AlH4
-1 or the “tetrahydride”).  That is, one goes from 

physically separated NaH and Al metal to an intimate (indeed, stoichiometric) compound 

(NaAlH4).  The process requires mobility of Na and/or Al, not just H.  This requires large 
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scale motion on the order of hundreds of nanometers[24].  Hydrogen-deuterium 

scrambling experiments (on both doped and undoped NaAlH4) have demonstrated that 

the reaction rate-limiting step is not the hydrogen mobility, but the mass transfer of Al or 

Na[26]-[28]. 

Noting the progression of the Na:Al ratio during the reaction illuminates the 

drastic changes undergone by the hydride system.  The Na:Al ratio evolves from 1:1 to 

3:1 to 1:0 as one goes NaAlH4 to Na3AlH6 to NaH.  This requires the existence of mobile 

Na- or Al-bearing species, which are likely to be crucial chemical intermediates.  While 

this species may provide key understanding of the chemistry, it has yet to be directly 

detected. 

 

1.3    Study Motivation and Summary 

 

It is the goal of this work to detect the mobile species by building and using a 

specialized probe to conduct in situ NMR measurements during hydriding reactions of 

sodium alanate.  To the author’s knowledge, in situ NMR of these reactions is original 

and has not been performed before.  

The in situ NMR probe (referred to as the “high-pressure probe”) can presently go 

to 350oC, 6000 psi Ar (415 bars) and 3000 psi H2—limited only by the expensive H2-

compatible pressure transducer.  The probe’s operation, design, and physical limitations 

are further described in Chapter 2.1.  NaAlH4 (pure or doped with a few mol% Sc or Ti) 

is reacted in the pressure vessel while doing (typically) 27Al NMR.  H2 pressure is 
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continuously measured to monitor the reaction progression.  At different points in the 

study 23Na, 45Sc, and 1H NMR was used to supplement the 27Al NMR discoveries. 

 There were two phases of the research.  In the first, in situ reactions were 

conducted.  This phase consisted of de-/re-hydriding reactions of the alanate in the 

normal reaction temperature range of room temperature to 180oC and applying H2 

pressures up to ~1500 psi (the upper pressure limit of the probe at the time of those 

studies).  In those studies a mobile, Al-bearing species was discovered that initially 

appeared during the sample evolution during de-hydriding.  These results and the 

additional finding that this mobile Al-species could be made to exist at ambient 

conditions spurred the research into the second phase. 

 The second phase of research involved high-pressure studies of the alanate 

system.  In this phase high hydrogen pressures—around 3000 psi (207 bar)—were 

applied within the normal hydriding reaction temperature range for doped samples, or in 

the case of undoped NaAlH4, up to 215oC to melt the sample.  The 3000 psi H2 over-

pressure prevents the NaAlH4 from de-hydriding.  The new Al species was successfully 

generated and caused to persist under ambient conditions and new information 

surrounding this mobile Al species was discovered.  During these studies more 

information about the mobile Al species was found—such as longevity, relaxation times, 

temperature effects, and conditions required for its creation.  The persistence of this new 

Al species under ambient conditions allowed for removal of sample material for shipping 

to our collaborators for magic-angle spinning (MAS) and x-ray diffraction (XRD) 

analysis.  However, a positive identification of the species has not yet been achieved. 
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CHAPTER 2: 

EXPERIMENTAL APPARATUS AND MATERIALS 

 

2.1    High-Pressure Probe 

 

With the main thrust of this project being the ability to take in situ spectra during 

de-/re-hydriding reactions of the alanate, the high-pressure probe is a critical piece of 

equipment in this work.  The typical reaction temperature range spans room temperature 

to the melting temperature of sodium alanate around 183oC[7].  Being able to go beyond 

the melting temperature is required in the case of undoped NaAlH4.  The probe is capable 

of reaching 350oC, well above the needed range (the hottest we used for the present work 

is 215oC). 

The pressure needed to be achieved, especially when thinking about driving the 

material in the re-hydriding reaction direction, requires a minimum of 140 bar for 

temperatures at or below 180oC[7], [12].  But for studies of the alanate where one wants to 

halt the decomposition reaction, even at temperatures above the melting temperature, the 

requisite hydrogen gas pressure must be higher than 140 bar (See Figure 1.2 in the 

previous chapter for P,T equilibrium diagram).  We operated in a pressure regime that is 

off the chart of the PT diagrams available in the literature, but by extrapolation, 200 bars 

(2900 psi) is sufficient to prevent de-hydriding of NaAlH4 up to ~280oC. 

A schematic of the probe is shown in Figure 2.1 below.  A lower pressure 

conceptual prototype of this probe is described elsewhere[29], but some key changes have 
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been made to accommodate the higher pressures involved in this study as well as for 

other practical concerns. 

The working idea behind the high-pressure probe is that high hydrogen gas 

pressures (up to 3000 psi) need to be applied to the alanate samples.  But these samples 

are held in glass containers and glass alone will burst long before 3000 psi could be 

reached internally.  If, however, the glass tube is exposed to an external pressure of argon 

gas at or above the hydrogen pressures inside the glass, then the sample tube will 

experience a net compressive force that the glass can easily handle without breaking.  

The higher exterior Ar pressures will also serve to help hold and seal the sample tube to 

the H2 supply assembly. 
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Figure 2.1: High pressure in situ probe schematic. 
 

 

2.1.1    Sample Tubes 

The powdered samples are loaded into 0.280” OD, 0.192” ID, 7” long glass 

sample tubes.  Glass was chosen because of its availability, cost effectiveness, and ease to 

work with.  During the course of this study a new sample container was constructed for 

every sample.  Net pressure differences as high as 1800 psia (in the compressive 

direction) were applied to these tubes without bursting or cracking. 

 

2.1.2    H2 Supply Assembly 
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The glass sample tube fits snugly onto a stepped nozzle with two O-rings.  A 

smaller O-ring hermetically seals the inside of the glass tube to the outside of the nozzle 

when it is compressed as the tube slips over the tip of the nozzle.  A second O-ring of a 

slightly larger diameter acts as a soft seat for the glass tube against the step in the 

nozzle’s diameter (see Figure 2.2).  This prevents the glass tube from cracking at the 

contact between glass and metal that would otherwise result from the large pressure 

difference, Pext - Pint.  Once affixed to the nozzle tip of the H2 supply assembly (see 

Figure 2.3), the glass tube is fed down the probe neck by a long 0.125” OD, 0.0625” ID, 

tube hard soldered to a 0.5” diameter, flange which mates with a face-sealing O-ring on 

the probe neck at the top of the probe. 

 

Figure 2.2: Close-up picture of sample tube and nozzle with sealing O-ring (smaller 
diameter) and O-ring seat (larger diameter) labeled. 
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The flange is bolted to the top of the probe neck by six ¾” hex-head 10-32 

screws.  To the flange is attached a stainless steel (SS) integral bonnet needle valve 

through a swage-T, which allows a pressure transducer to read the pressure over the 

sample even when the valve is closed.  A high-pressure H2 source and vacuum pump 

connect by VCO fittings to the valve. 

 The transducer is attached to the perpendicular arm of the T-connection between 

the flange and valve by copper gasket VCR.  The transducer is a MKS 870 Incoloy® 

high-accuracy transducer.  It has a 0-3000 psia range with a 0-10V full-scale read-out and 

a scaling accuracy band of 1% of the read-value, allowing the same transducer to be used 

for both near vacuum and H2 high-pressure measurements. 

 

Figure 2.3: H2 supply assembly schematic. 
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The entire H2 supply assembly is constructed of 316 SS for strength.  The purpose 

of this assembly is three-fold.  The first is to provide H2 to the sample.  The second is to 

assure the sample is in the center of the NMR r.f. coil.  The H2 supply assembly is 

partially fed down the neck of the probe, bringing the attached glass sample tube into the 

Ar pressure chamber and guiding it into the single loop, Helmholtz style NMR r.f. coil.  

The third is to provide a convenient way to load air sensitive samples into the probe 

without having to manipulate the entire probe and disturb the position of the probe in the 

magnet. 

 The internal volume of the H2 supply assembly when the valve is closed was 

measured to be 11.57 cc.  Measurement of the internal volume was done by attaching a 

pressure cylinder, which has a standardized volume, and pressure gauge to the H2 supply 

assembly.  Then the assembly was evacuated and the cylinder pressurized with hydrogen.  

By first measuring the cylinder’s pressure, then opening the valve and allowing the gas to 

fill the entire volume of the cylinder plus the H2 supply assembly the initial and final 

pressure were compared and the volume of the assembly was calculated.  This process 

was done several times to improve the accuracy of the measurement. 

 

2.1.3    Main Body 

 Shifting our attention to the main body of the probe, a 10,000 psi pressure gauge, 

SS integral bonnet needle valve, and VCO connection are swaged in series and pipe-

threaded into the mating flange for the 0.5” flange on the H2 supply assembly.  This is the 

Ar/vacuum connection and it allows the main probe body to be charged with Ar and 

valved off.  Again, the pressure gauge is located such that with the valve closed, the 
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pressure of the Ar chamber can still be read (See Figure 2.1 and 2.6).  All the components 

on the Ar inlet are constructed from 316 SS. 

 The mating flange to which the Ar inlet is attached is welded to a 0.5” OD, 0.375” 

ID, 316 SS tube.  This makes up the probe neck.  The probe neck runs through an upper 

aluminum plate that rests on the top of the superconducting magnet.  The upper 

aluminum plate will be discussed later.  After passing though the aluminum plate, the 

neck ends at a hard solder joint to the lower flange. The bottom flange is 2.625” in 

diameter and constructed of 316 SS.  Through it pass an r.f. and two heater wire high-

pressure electrical feed-throughs, along with two metal-sheathed thermocouples.  The 

high-pressure electrical feed-throughs are machined from Torlon® and are one-time use 

devices.  They are described in greater detail elsewhere[30], and so will not be discussed 

here. 

 To the bottom of the lower flange are fixed three threaded brass rods which 

support a thin walled brass tube about which is wound bifilar, resistive thermocouple 

wire to serve as the heat source inside the Ar chamber.  Buried under the heater winding 

is a type-E thermocouple used to regulate the temperature.  The brass tube and heater 

windings are 1” in diameter and are suspended so that they surround the r.f. NMR coil—

where the sample tube is guided into by the H2 supply assembly.   

A second type-E thermocouple is attached to the r.f. coil just exterior to the 

bottom of the glass sample tube at the level of the sample.  The purpose of this second 

thermocouple is to measure the temperature of the sample. 

 The Ar pressure chamber consists of a 2.25” OD, 1.75” ID enclosure that is 

closed on the bottom and the top has exterior 32 threads-per-inch threading.  The 
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threaded end threads into a matching nut that tightens onto the lower flange.  Both the nut 

and enclosure were machined from a single piece of Grade-5 titanium alloy (6Al-4V).  

This titanium alloy was chosen for its superior strength and magnetic properties when 

compared to various SS options. 

 The flange sealed to the inside of the Ar chamber by a plug-sealing O-ring, as 

shown in Figure 2.4.  The plug-seal style was chosen intentionally.  The more common 

face-seal failed repeatedly in high-pressure use.  This is because any distortion in the 

face-to-face meeting of the flange and Ti cylinder caused by the excessive pressure-force 

pushing them apart and stretching the Ti nut would allow the O-ring to extrude out—even 

through a gap of a thousandth of an inch or smaller.  It should be noted that the probe is 

designed to withstand pressures of 6000 psi Ar safely.  On a 1.75” diameter surface (the 

underside of the lower flange, which is exposed to the argon gas), this pressure is 

generating 14,400 lbs of force.  With a plug-seal style O-ring groove, the gap that is 

important is the gap between the inside of the Ar chamber and outer lip of the flange 

plug.  This way even when the face of the flange and Ti cylinder are separated slightly 

along the axis of the probe due to the stretching of the Ti nut, the precision machined gap 

(< 0.001”) the O-ring presses against is unchanged. 
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Figure 2.4: Close up of Ar chamber-to-flange plug-seal. 

 The O-ring type was carefully chosen as well.  The plug-seal works with a 90-

durometer Viton® O-ring.  Typical O-rings made of buna-N have durometers around 70.  

At the pressures used in this probe 70-durometer O-rings have zero tolerance of any gap, 

i.e., they will extrude unless there is absolutely no gap[31], as was experienced by the 

author on many occasions with the face seal design.  However, a 90-durometer O-ring at 

6000 psi can tolerate up to a 3 thousandths inch gap without extruding[31]. 

Viton® is a fluoroelastomer and was chosen over buna-N (nitrile) for its 

durability at higher temperatures.  Viton® has an upper limit of 200oC, while buna-N has 

an upper limit of only 120oC[32].  For testing purposes, a thermocouple was taped on the 

titanium nut and the probe was heated under normal conditions used during hydriding.  
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The temperature of the exterior of the nut was measured to reach 130oC (for the highest 

internal temp of ~180oC). 

Due to the 130oC nut temperature, the choice of Viton® as an O-ring material was 

augmented by the use of water-fed copper cooling coils wrapped around the nut in series 

with similar cooling coils wrapped around the exterior of the titanium Ar pressure 

chamber (See Figure 2.6).  In addition, a ceramic wool jacket was wrapped around the 

cooling coils on the Ar pressure chamber to help protect the magnet bore from the higher 

temperatures. 

 An aluminum scaffold sits a few inches above the lower flange and nut supported 

by brass threaded-rods (See photograph below of aluminum scaffold in Figure 2.5, as 

well as Figure 2.1 for a depiction of the placement of the scaffold on the probe).  The 

high-pressure r.f. feed-through connects the NMR r.f. coil inside the Ar pressure 

temperature to the rest of the tank circuit housed on the scaffolding.  Due to the heat 

inside the Ar pressure chamber, the tuning capacitors have to remain outside.  The 

scaffolding also acts as a brace, holding a BNC connector, and allowing a coax cable to 

connect to the tank circuit.  Furthermore, the scaffolding provides a sturdy support for a 

long plastic rod, which connects by means of a mechanical coupler to the tunable 

capacitor and allows the tank circuit to be tuned from outside the magnet. 

19 
 



 
Figure 2.5: Photograph of the aluminum scaffold which supports tank circuit 

components, the BNC connection, and plastic rod for tuning the resonance frequency of 
the probe. 

 
 The plastic rod, coax cable, temperature regulating thermocouple, sample 

temperature thermocouple, and heater wire power cables run up the length of the neck 

(but outside the gas filled tubes) and through the upper aluminum plate mentioned earlier.  

The upper aluminum plate is designed to bolt to the top of the superconducting magnet.  

The probe neck can be rotated and moved up and down with respect to the upper 

aluminum plate, allowing the probe to be adjusted so the sample sits in the “sweet spot” 

of the magnet where there is maximum field homogeneity. 

Noise was a particularly big problem with this probe since the resonant frequency 

of 27Al is 92.3 MHz in the 8.3 T superconducting magnet.  This is the frequency of a 
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local St. Louis country radio station (92.3 WIL).  Because the power wires and 

thermocouples are in close proximity to the NMR r.f. coil inside the Ar pressure 

chamber, they are prone to bringing a large amount of r.f. noise from outside the chamber 

in to the NMR coil.  To combat this, multiple ground lugs were screwed into the upper 

aluminum plate.  From the ground lugs to each thermocouple wire and power wire are 

attached two pairs of ~1000 pF capacitors.  From the upper aluminum plate the 

thermocouple wires were again connected to ground on the magnet’s exterior via a pair of 

~1000 pF capacitors before plugging into either a digital voltmeter (DVM) or the 

temperature controller.  At a frequency of 100 MHz, a 1000 pF capacitor should have a 

small reactance around 1.6 Ω. 

 

2.1.4    Electrical Read-outs 

Coming from the probe are five electrical elements.  Two are the power wires, 

which provide current to the resistive heater wires around the sample.  Two are type-E 

stainless-sheathed thermocouples: one for regulation of the heater windings and one for 

measuring the sample temperature.  The last is the voltage output of the pressure 

transducer used to measure the pressure over the sample. 

The sample temperature thermocouple runs to a DVM in parallel with a Kipp & 

Zonen BD-40 pen chart recorder.  The pressure transducer also runs to a second DVM in 

parallel with a second identical chart recorder.  The chart recorders track the temperature 

and pressure of the sample continuously and make reading the instantaneous voltages 

easy as well as giving the user the ability to quickly assess the trends and changes in 
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pressure and temperature over the course of the experiments.  Moreover, this set-up 

allows the user to line up or register pressure and temperature events precisely. 

The power wires and regulation thermocouple ran to a temperature controller, 

which is described in more detail later in this chapter (Chapter 2.6).  The power wires, 

before running into the temperature controller, ran through a full-wave bridge rectifier 

and filter. The current had to be rectified and filtered before running into the probe 

because the resistive heating wire located in the center of the magnet would otherwise 

oscillate at 60 Hz and saw themselves apart against the brass tube and rod, even when 

tied down. 

 

2.2    High-Pressure H2/Ar Sources 

 

As mentioned above, the probe was designed to safely hold 6000 psi.  A 

schematic layout of the gas connections leading to the probe are shown in Figure 2.6. 
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Figure 2.6: Schematic layout of gas hook-ups and water-cooling coils from the High-

Pressure probe to the H2/vacuum supply and Ar/vacuum supply.  “L” indicates a long run 
of small diameter tubing. 

 
High-pressure cylinders were used instead of compressors to pressurize the H2 

and Ar chambers.  Both the H2 and Ar were purchased from Cee-Kay in 6000 psi 

cylinders.  The probe was designed so that if some component failed between the 

cylinder and the probe, the probe could handle the full 6000 psi tank pressure safely. 

Each cylinder is directly connected to a 10,000 psi pressure gauge, and then runs 

into 1/16” OD, 0.030” ID, SS tubes, which were purchased from High-Pressure 

Equipment in Erie, PA.  Small diameter tubes were chosen for a few reasons.  The first is 

safety.  If a connection were to break, the tubes would be less likely to whip around, or if 

a tube were to burst, the volume is small.  The second reason is because the reduced 
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volume in the lines reduces the amount of gas used—since the probe is to be repeatedly 

charged and evacuated.  The third reason for using the small ID tube is to create a large 

impedance to the gas flow into the probe for better control.  With larger ID tubes, when 

the gas cylinder’s valve is cracked, the line would charge to 6000 psi immediately.  In the 

case of the argon gas, a sintered-metal filter was used in the CGA connection to 

additionally slow the influx of gas.  One can crack the valve and the pressure will rise to 

6000 psi in the line in about 5 seconds, giving the user plenty of control. 

In the case of the hydrogen gas cylinder the situation is a bit different.  Even with 

the 0.030” ID tube and sintered metal-filter, the hydrogen gas races to 6000 psi 

immediately.  Thus, the sintered-metal filter was replaced with a short copper rod 

precision machined to entirely plug the CGA fitting.  The copper plug rested against a 

ledge recessed in the mouth of the CGA fitting.  However, the copper plug was lightly 

scored lengthwise—one or two thousandths deep—before being hammered in place 

(Figure 2.7).  This effectively slowed the flow of hydrogen gas into the tubing. 

 
Figure 2.7: Scored, copper plug in hydrogen tank CGA fitting. 

 
The small diameter SS tubes then connect to the either the H2 supply assembly or 

Ar inlet via VCO fittings.  The pressure line is interrupted by a T-connector that leads to 
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a valve, a vacuum pump, and a vent (Figure 2.6).  Having multiple valved stages and a 

vacuum/vent connection mid-line between the gas tanks and the probe allows both gas 

pressures going into probe to be finely adjusted. 

 

2.3    Cold Probe 

 

Some of the work in this project included taking spectra at temperatures lower 

than room temperature.  To achieve this, a probe was constructed which, in combination 

with the LN2 boil-off dewar, could reach temperatures of -145oC.  Samples for this probe 

must be loaded in short, 5 mm OD NMR tubes.  Most of the time, the samples were 

flame sealed in Ar atmospheres at 0.8 to 0.9 atm.  A schematic of this separate cold probe 

is shown in Figure 2.8. 
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Figure 2.8: Schematic of cold probe. 

 The probe is of a simple design frequently used in this lab.  It consists of a 3/8” 

OD copper tube running along the axis of the probe.  At the top of the probe is an 

aluminum flange that rests on the top of the magnet and adjusts to holds the probe in the 

center of the field.  A tuning rod, coax, and type-T thermocouple run down through the 

aluminum flange to a smaller copper flange at the bottom of the copper tube, inside the 

magnet bore.  A hollow, 2” diameter, copper can attaches to the lower copper flange.  

Inside the can, fixed to the bottom of the lower copper flange are the thermocouple and 

tank circuit components with a horizontal, six-turn solenoid NMR coil.  The NMR coil is 

wound to accept standard 5 mm OD NMR tubes. 

 A second 3/8” OD copper tube is soldered to the bottom of the can leading out the 

bottom of the bore of the magnet.  Pipe insulation is wrapped about the exterior of the 
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entire length of the probe to protect the magnet bore from freezing.  When the probe is 

fully assembled, cold nitrogen gas—supplied by the LN2 boil-off dewar (Chapter 2.5), 

and regulated by the temperature controller (Chapter 2.6)—enters the bottom of the probe 

and vents at the top of the probe, maintaining a cold, dry environment around the sample. 

 

2.4    Box Probe 

 

The 1H NMR was performed in a third probe.  The probe is low-Q and capable of 

operating in a wide temperature range.  This study used the box probe for cold (-110oC) 

to room temperature measurements.  Built to fit between the poles of an iron-core 

electromagnet, the probe is constructed of a rectangular, aluminum frame containing the 

r.f. tuning components.  The NMR r.f. coil and a type-T thermocouple are located inside 

a glass-tube dewar which is open at both ends to allow gas to flow through.  In this 

configuration the r.f. components remain at room temperature while the sample 

temperature is varied by the cold nitrogen gas.  

 

2.5    LN2 Boil-off Dewar 

 

When it was desirable to take data at temperatures below room temperature, a 

LN2 boil-off dewar was utilized.  The boil-off dewar consists of a 25 L dewar with 

internal resistive heating elements (“boilers”) which were submersed in the liquid 

nitrogen.  An interface atop the dewar allowed the two 100 Ω resistors submerged in the 

LN2 to be wired in series, parallel, or singly with the additional option of using a diode to 
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select between full-cycle or half-cycle AC current.  By these means, the boil-off rate of 

the nitrogen could be controlled. 

 As the internal pressure builds, the gas passes through a copper tube heat 

exchanger that dips back down into the liquid.  Finally, the cold N2 exits the dewar 

through an insulated latex hose which is connected to a glass tube.  The glass tube houses 

a long resistive-wire solenoid along the inside and a platinum resistance thermometer 

(PRT) at the tip of the tube where the cold N2 finally passes into the NMR probe. 

The PRT provides feedback for the temperature controller, which regulates the 

current for the resistive-wire heater as the cold N2 passes through the glass tube.  This 

provides stable regulation of the gas temperature as it enters the probe. 

The boil-off rates needed for specific temperature ranges varied with the probe in 

use.  For the cold probe, the resistors and diode are wired so that only a single 100 Ω 

resistor is used with the full AC cycle.  This arrangement typically provided 4 hours of 

stable operation before the dewar needed to be refilled.  For the lowest temperature 

measurement in the cold probe, specifically -145oC, the dewar was set to it’s highest boil-

off with both 100 Ω resistors in parallel and utilizing full-cycle current.  When the LN2 

boil-off dewar is in use on the cold probe in the superconducting magnet, a small resistive 

heater is attached to the bottom flange of the magnet to protect the O-ring in the magnet 

from freezing. 

The box probe is much smaller and better insulated.  The dewar could operate 

stably for 8 hours without refill when the two 100 Ω resistors wired in series with full-

cycle current. 
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2.6    Temperature Controller 

 

The temperature controller was used for all the probes in this study for both the 

hot and cold experiments.  It is made by Omega and is a Micromega® CN77000 Series 

Controller.  It is equipped with Autotune Proportional-Integral-Derivative (PID) and is 

capable of reading any type of thermocouple and PRT for use in temperature feedback 

and monitoring.  The was controller operated in an “on-off” mode. 

The controller had a ±3oC swing range for the hottest temperatures (the most 

inaccurate) when used to regulate the resistive windings on the high-pressure probe by a 

type-E thermocouple wound into the heater.  The convection of the dense argon gas was 

responsible for this temperature instability in the high-pressure probe.  For regulation of 

the cold nitrogen gas stream by PRT, the temperature controller stabilized temperatures 

to ±1oC for the cold probe and less than ±1oC for the box probe. 

 

2.7    Sample Handling 

 

Sodium alanate is an air and moisture sensitive material.  NaAlH4 can oxidize and 

spoil the sample[33] by forming aluminum oxide and hydroxide layers on the outside of 

the alanate grains and preventing the reaction of the samples[10].  Moisture is also a 

problem.  The material reacts with water to form sodium hydroxide—a corrosive 

material—and hydrogen gas.  The heat of reaction may be sufficient to ignite the 

hydrogen gas released[33].  For certain samples, the water content in the air alone could be 

enough to cause the sample powder to burn, as witnessed before by the author in a 

29 
 



controlled environment.  These types of reactions are not unfamiliar in hydrides.  Sample 

handling was an important element to these studies. 

 In general, because some of the work conducted in this lab is hydride work, the 

glove-bag system below became a permanent fixture in the group and the techniques 

described became regular practice for the investigators in the lab. 

 

2.7.1    Glove Bag 

 The samples are stored and handled in a tape-seal, two-hand glove bag from 

Sigma-Aldrich.  A dry nitrogen gas environment is maintained inside these bags at all 

times by a constant stream of gas.  The gas is bled off from the headspace of a large, 

exterior LN2 storage dewar that supplies the entire physics department.   

 
Figure 2.9: Glove bags used for sample manipulation and storage. 
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As shown above in Figure 2.9, the glove bag system simply consists of two glove 

bags connected in series.  The first bag (”Loading bag”) is where sample loading and 

manipulation is performed.  The second, larger bag (“Storage Bag”) is where the samples 

and other air sensitive hydride samples were stored.  The system was easily maintained, 

replaceable, inexpensive, and could be adapted to fit into a smaller space when compared 

with larger glove box systems. 

Typically, the N2 stream is maintained at 2 to 3 SCFH.  This provided a positive 

pressure inside the bags so that if any leak or small holes did develop from use and wear, 

the N2 atmosphere would leak out, rather than outside air leak in.  Some vigilance was 

needed to constantly check the bags to see how inflated they were every week.  Over 

time, some of the seals and closures would loosen and need to be replaced.  In addition, 

samples in the storage bag are usually double sealed in jars and bags to prevent the 

possibility of contaminating all the samples in the case of lost pressure. 

 

2.7.2    Loading Procedures 

As well as storing the samples in a dry, oxygen free environment, it is crucial to 

load these samples into the probe without exposing them.  The H2 supply assembly is 

completely removable from the probe, making it easy to detach and bring to the glove-

bag.  The H2 supply assembly, after being removed from the probe, is purged with dry 

nitrogen gas, and the nozzle of the H2 supply assembly is inserted into the glove bag 

while nitrogen continues to flow through. 

The sample is placed in a sealable jar while inside the storage bag (See Figure 

2.9).  Then the jar is closed in the storage bag, preserving the N2 atmosphere around the 
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sample container.  Before bringing a sample out of the storage bag into the loading bag, 

the N2 flow is increased to about 10 SCFH.  The jar holding the sample container is next 

quickly transferred to the loading bag, along with the glass sample tube and any tool that 

might be needed to load the sample into the glass tube.  The bags are then purged and left 

for a couple minutes before opening the jar and sample container.  This also serves to 

purge the glass sample tube. 

The sample material is loaded into the glass tube and the sample mass can be 

measured on an electronic scale already in the loading bag.  A small piece of glass wool 

is stuffed into the top of the tube to protect the H2 supply assembly and vacuum pump 

from taking in powder from the sample when the tube is evacuated later.  The tube is 

fixed onto the nozzle of the H2 supply assembly (Figure 2.2), the valve to the H2 supply 

assembly shut to stop the N2 purge, and the H2 supply assembly, with the filled and 

attached sample tube, is taken out of the bag and fed into the probe.  The hydrogen gas 

system (See Figure 2.6, Chapter 2.2) is evacuated up to the valve on the H2 supply 

assembly, the valve opened slowly to evacuate the sample tube of the nitrogen gas, and 

the H2 supply assembly is loosely bolted into place on the main body of the probe. 

During the above process, the argon gas system is being evacuated up to the valve 

of the Ar inlet on the main body of the probe (Figure 2.6, Chapter 2.2).  Once the H2 

supply assembly is bolted loosely onto the neck of the probe (See Figure 2.1, Chapter 

2.1) the Ar inlet is opened, and the Ar pressure chamber begins to evacuate.  As a 

vacuum is formed in the Ar chamber, the O-ring on the neck of the probe is compressed 

and the screws on the H2 supply assembly are progressively tightened, ensuring a good 

seal.  The Ar chamber is left to evacuate for approximately 10 to 15 minutes as the H2 
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supply assembly is continuously evacuated.  Once the evacuation is complete, the Ar 

chamber is charged with argon gas and the probe is ready for use. 

By this procedure, the sample goes from storage container to probe, ready for 

study, while being exposed only to N2 or vacuum. 

 

2.8    Magnets 

 

2.8.1    Superconducting Magnet 

The work on 27Al, 23Na and 45Sc were all performed in an 8.3 T, KD 601 dewar, 

superconducting magnet from Cryomagnet System, Inc in Indianapolis, IN.  The magnet 

has a 3.5” inner-diameter aluminum vertical bore. The Larmor frequencies of the 

different NMR active nuclei depended very slightly on the probe in use.  The unwieldy 

high-pressure probe has a large SS lower flange (See Figure 2.1, Chapter 2.1), which 

modifies the local field around the sample and alters the resonant frequency slightly (~1-

2 kHz) and reduces the field homogeneity with respect to the cold probe. 

The carrier frequency was set to the frequency of Al(NO3)3 (aq.) (the standard Al 

reference) for 27Al NMR.  In the high-pressure probe this corresponded to 92.286 MHz, 

and in the cold probe the frequency was 92.285 MHz.  For 23Na NMR, NaCl (aq.) is the 

standard reference and this corresponds to 93.686 MHz in the high-pressure probe and 

93.684 MHz in the cold probe.  For the few 45Sc spectra taken, Sc(NO3)3 (aq.) is chosen 

as a reference.  This was performed only in the high-pressure probe and corresponded to 

86.035 MHz. 
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2.8.2    Electromagnet 

 All the 1H measurements were done at 85.025 MHz (2 T) in a Varian XL-100 

iron-core electromagnet with 19F field stabilization[34].  The reference sample used was 

water.  The shift difference of water from the standard 1H reference (TMS) is 

insignificant given that this is static NMR and the lineshapes are many kHz wide. 

 
2.9    Spectrometer 
 

The spectrometers used for both the electromagnet and the superconducting 

magnet are almost indistinguishable.  They are described in more detail elsewhere[35].  

Briefly, they are home-built, pulsed, superheterodyne spectrometers with four transmitter 

phases and quadrature phase detection.  The spectrometers could either be operated 

independently of the computer or by TTL hardware and Pulse Blaster card.  The software 

used to control the pulse generator was locally written[35]. 

 

2.10    Sample Materials 

 

This section discusses some of the specifics of the various sample materials used 

in this study.  All the material used in this study were powder samples.  We thank Craig 

Jensen and Derek Birkmire for their work in the synthesis and doping of the sample 

materials at the University of Hawaii, Department of Chemistry.  Information about 

sample preparation and doping was related to the author via personal communications. 

A couple much older samples that were used came from IFE (Institute for Energy 

Technology) in Norway, but none of these samples appear in this work. 
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2.10.1    Doped NaAlH4

The majority of doped samples investigated in this study were Sc-doped.  Sc-

doping was found to be equivalent to or better than Ti-doping in hydrogenation kinetics 

and reversibility[36], [37], while not being too heavy to significantly modify the theoretical 

hydrogen gas storage capability of the material from 5.6 wt% (depending on how much 

dopant was added). 

In the original proposal for this work, Sc was chosen over Ti as a dopant because 

Sc is more easily studied with NMR due to its naturally abundant NMR active nucleus 

(100% for 45Sc) and relative sensitivity, as compared to Ti (47Ti and 49Ti have natural 

abundances of 7.75% and 5.5% respectively, and low NMR frequencies). 

In all cases the dopant was of a metal-salt form, but the doping metal and halide 

varied.  The NaAlH4 was either made from a wet chemistry process or was purchased and 

then purified.  Many of these wet and dry methods of making and purifying NaAlH4 are 

outlined in a highly referenced publication[7]. 

Dopants were added by ball milling the dopant-metal salt into the pure NaAlH4 at 

the few mol% level.  Typically, doping was done at the 2 or 4 mol% level, but a couple 6 

mol% samples were available very early in the in situ work.  Aluminum metal can be 

present in the sample material before any hydriding reactions are performed on the 

material.  In some NaAlH4 studies, additional Al powder is added later in the process to 

improve reversibility[38], [39].  However, this was not done in the synthesis of the samples 

used in this work.  The aluminum that is present in some of the doped samples comes 

from the original NaAlH4—a type of reaction between the NaAlH4 and the catalyst that 
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can cause this is shown in Equation 5.2 later (Chapter 5.3.2).  Samples used were 

prepared with TiCl4, TiCl3, ScCl3, ScI3, ScF3 or ScBr3.  By far, the most frequently used 

sample type was NaAlH4 doped with 4 mol% ScCl3. 

These samples have a grey to black color (depending on the amount of dopant—

pure NaAlH4 is white) and are very fine and “sticky”.  The grain size should be on the 

order of ~60 nm after milling and larger upon cycling (~60-80 nm).  The purity of these 

samples was sometimes checked with XRD by our collaborator at NIST for some of the 

earlier synthesized samples.  These doped samples would sometimes slightly de-hydride 

while in storage, but this was never the case with the undoped material. 

 

2.10.2    Undoped NaAlH4

 Undoped alanate was acquired either from U. of Hawaii or was purchased from 

Sigma Aldrich.  The material received from U. of Hawaii was synthesized in the same 

manner as the doped material, only without adding dopant.  The material purchased from 

Aldrich was “technical grade” NaAlH4 powder (90%).  A particle size could not be found 

for this, but it seemed similar to or slightly larger than the samples received from U. of 

Hawaii.  In any event, the powder x-ray diffraction peaks were sharp. 

 

2.10.3    Other Sample Materials 

 Other types of samples were also acquired and used.  A sample of undoped 

Na3AlH6 and a sample of Na3AlH6 doped with 3.33 mol% ScCl3 were both received from 

U. of Hawaii.  The undoped and doped Na3AlH6 were synthesized and purified so that 
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only the hexahydride was present in the material.  No Al metal powder was added—this 

would have allowed the sample to form NaAlH4 under pressure and temperature. 

 Doped and undoped Al metal powder was additionally used.  99.97%, 325 mesh, 

uncoated aluminum powder was purchased from Alfa-Aesar and used “as bought” for 

high-pressure hydrogen temperature cycling.  The doped Al metal sample came from U. 

of Hawaii.  The doped aluminum powder was synthesized by first mechanically milling 

aluminum powder with 4 mol% ScCl3 under hydrogen pressure but not elevated 

temperature, avoiding the creation of AlH3 in the sample material. 

 Samples of aluminum halides were additionally used at one point.  All of these 

samples were powders and used “as bought”.  AlCl3 (99.99%), AlI3 (99.999%), and AlF3 

(≥99.9%) were purchased from Sigma-Aldrich.  AlBr3 (99.997%) was purchased from 

Alfa-Aesar. 
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CHAPTER 3: 

NMR TECHNIQUES AND BASICS 

 

This chapter contains a brief overview of a few concepts in nuclear magnetic 

resonance (NMR) and some of the acquisition and analysis techniques that are used in 

this thesis.  The static magnetic field, Ho, is always assumed to be along the z-axis. 

 

3.1    NMR Basics 

 

3.1.1    Introduction 

 Nuclei possess a property called nuclear spin.  The nuclear spin quantum number 

is denoted, I.  The total nuclear spin is the (vector) sum of the individual spins possessed 

by the nucleons that compose the nucleus.  Protons and neutrons are both spin-1/2 and so 

nuclear spins can possess integer or half-integer spins (I = 0, 1/2, 1, 3/2, etc.).  The 

magnetic moment of the nucleus is proportional to the nuclear angular momentum by a 

proportionality constant, γ, called the “gyromagnetic ratio”.  Each type of nucleus has a 

different γ.  In the presence of a magnetic field, Ho, the magnetic moment will precess 

about the field at a frequency, ωo.  The frequency of precession is called the “Larmor 

frequency” and is given by the relation, 

ωο = γHo         3.1 

where the Larmor frequency, ωο, is different for each type of nucleus (because γ is unique 

to each type of nucleus). 
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 The Hamiltonian for a nuclear spin I interacting with an external magnetic field H 

is (traditionally, the external magnetic field, Ho, is oriented along the z-axis.): 

H = -γħH•I = -γħHoIz         3.2 

where the Iz states can have the value I, I-1, …, -I. 

This is a resonance phenomenon.  If, for example, we placed hydrogen (1H), 

which has γ/2π = 42.58 MHz/T, into a 10 T field, from Equation 3.1 we get f = 425.8 

MHz.  Thus, NMR is typically performed in the radio frequency (r.f.) range of the 

electromagnetic spectrum. 

For a macroscopic sample in a magnetic field the spins are distributed among the 

Iz levels according to the Boltzmann factor, e-E/kT, and a net magnetization is established.  

If we look again at the example of hydrogen atoms, a spin-1/2 nucleus, the ratio of 

populations between the lower energy state, N↑ (where the ↑ represent “spin-up”), and 

upper energy state, N↓, would be: 

 
 

   3.3 
 
 
which differs only very slightly from one (having a value of about 0.99992) in a 11.7 T 

field at room temperature. 

    N↓

e-ΔE/kT = e-γħH/kT = —–
    N↑

 

3.1.2    T1

 Without the presence of a magnetic field, the spins in a sample are evenly 

distributed between the (2I+1)-degenerate levels.  When the sample is placed in the 

magnetic field, the nuclear spin energy levels are split (Zeeman splitting), and the evenly 
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distributed spins tend toward the new Boltzmann equilibrium.  Energy must be 

exchanged with the surroundings, or “lattice”, in order for the individual nuclear 

moments to relax to a lower energy level.  Depending on the system, energy exchange 

with the lattice can happen by many different pathways like molecular interactions, or 

dipolar and quadrupolar interactions, or interactions with electrons. 

The return to the Boltzmann distribution and the establishment of a net 

magnetization typically follows an exponential time dependence and is characterized by 

time T1—called the “spin-lattice” or “longitudinal” relaxation time—as shown below. 

Mz(t) = Mo(1 – e-t/T1)    3.4 

Mz(t) is the magnetization along the direction of the external magnetic field (z-axis) of 

the sample as a function of time, where Mo is the equilibrium magnetization. 

 

3.1.3    T2

As the sample relaxes to the Boltzmann equilibrium, a net magnetization is 

established.  If the magnetization is somehow tipped away from the z-axis it will precess 

according to the Larmor frequency about the external magnetic field. 

When the magnetization is pictured in a frame rotating with the Larmor 

frequency, the magnetization initially appears along the z-axis.  If a small, rotating, r.f. 

field, H1, is applied on resonance with the Larmor frequency along an axis perpendicular 

to the static field (say, the x-axis), then in the rotating frame H1 appears as a constant 

field along the x′-axis.  Now the net magnetization precesses about H1 at ω1 = γH1, and 

the magnetization is tipped away from the static field toward the y-axis.  (The 

magnetization is said to nutate about the r.f. field H1.) 
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H1 is supplied by placing the sample in a coil inductor (the NMR coil) oriented 

perpendicularly to, or at least with a component perpendicular to, the static magnetic 

field, and driving a sinusoidal current through the coil at the Larmor frequency.  By 

controlling the duration of the r.f. H1 pulse, the angle through which the magnetization 

nutates with respect to the static field can be controlled.  A pulse of sufficient duration to 

rotate the net magnetization 90o with respect to the static field is appropriately called a 

“90o-pulse” or a “π/2-pulse”.  Or if the pulse is left on twice as long, the magnetization 

will rotate through 180o, completely inverting the Boltzmann equilibrium magnetization 

(called a “180o-pulse” or “π-pulse”).  The duration of a 90o-pulse depends on the power 

of the r.f. amplifier and configuration of the probe tank circuit (relating to H1), as well as 

the nucleus of interest (relating to γ); typically the 90o pulse time is on the order of 

microseconds. 

After the magnetization is rotated into the xy-plane and H1 is turned off, the 

magnetization continues to precess about the static field at the Larmor frequency, ωo.  

The net magnetization is freely precessing in the xy-plane, so it will induce a Larmor 

frequency r.f. voltage in the NMR coil, which is detected by the spectrometer.  This 

signal detected by the spectrometer is called a free-induction decay (FID) and is in many 

cases represented by an approximately exponential decay, 

G(t) ∝ e-t/T2       3.5 

which, under Fourier transform, transforms to a Lorentzian function, 

  1/T2

G(ω) ∝ —–—–—–
  (1/T2)2 + ω2

 

3.6 
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with full width at half maximum (FWHM) of 1/πT2 (in Hz).  Because the FIDs are often 

well approximated by exponential decays, the spectra typically take the form of 

Lorentzian lineshapes, but there are many exceptions. 

The characteristic dephasing time in the xy-plane, T2 (or “spin-spin” or 

“transverse” relaxation time), varies depending on the local environment of the spins.  

The local magnetic field, Hloc, across a sample is typically not uniform, and causes slight 

variations in the precession frequencies within the sample, leading to dephasing.  Some 

examples of Hloc modifications are by an inhomogeneous static magnetic field, or from 

inhomogeneous field due to magnetic susceptibilities in and around the sample, or from 

dipolar interactions of spins with other spins. 

In the case of slowly moving or stationary atoms, an atom spends essentially all 

its time in one local environment and “sees” only one value of Hloc and precesses at that 

ωloc.  The result of all the different spin magnetizations, each with its own ωloc, is faster 

dephasing in the xy-plane (a shorter T2), and thus a broader spectral peak.  Spins which 

undergo rapid motion will sample many different Hlocs and precess at an average ωloc, 

which is close to ωo.  Many spins in this case are precessing at the same average ωloc, so 

they have a longer coherence time in the xy-plane (longer T2), and produce a narrower 

spectral peak.  This effect is called “motional narrowing”.  Of course, the averaging 

effect is dependent on the motion being on a time scale that is faster than the NMR 

timescale, ~ 1/Δωloc.  If the motions are slower than the NMR time-scale, it is called the 

“rigid lattice regime”. 
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Another effect that modifies the local field at the nucleus comes from the orbital 

effects of nearby electrons.  Static magnetic field induces currents in the electron cloud.  

This produces a shielding effect on the nucleus that scales with the magnitude and 

direction of the static field with respect to the electron cloud.  This is called “chemical 

shift”.  The effect depends on the position of a nucleus within a molecule (so the 

chemical shift is different for the three kinds of H in ethanol, OH, CH2, CH3).  

Additionally, the shift of a spin resonance depends on the orientation of a molecule in the 

static field, known as chemical shift anisotropy or “CSA”.  Since the shifts scale (in 

frequency units) with the magnitude of the static field, the shifts are stated in ppm; i.e. the 

difference in frequency from a chosen standard reference chemical divided by the Larmor 

frequency of that reference.  When the shifts are stated this way, then they will remain the 

same value for all field strengths. 

 

3.2    Data Acquisition and Analysis Techniques 

 

3.2.1    Left-shift 

In the alanate system there are many different chemical species that can arise 

during the hydriding reaction (not all relating directly to the release or absorption of 

hydrogen), and it is important to be able to distinguish the different species.  Because the 

method used is static NMR, there are a couple of analysis techniques that are applied to 

separate out the differing reaction components and products. 

After the magnetization is tipped into the xy-plane—at which time the decaying 

FID signal in the NMR coil can be acquired—the multiple decaying components lead to a 
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superposition of the different components.  At the beginning of the multi-component FID, 

all components are present at their maximum amplitude.  As we look further and further 

out along the time axis, the components with shorter T2s decay to zero faster and only the 

components with longer T2s remain. 

One technique used in this thesis is left-shifting the FIDs to filter out broader 

components and search only for narrow components.  As discussed in the previous 

section, shorter T2s correspond to broader lineshapes.  By taking an FID and shifting the 

data to the left beyond where the faster T2 components have already decayed to zero, the 

resulting modified FID will contain only slower decaying T2 components, i.e. narrower 

(often from more mobile species) spectral peaks. 

An example from 1H NMR is shown below in Figure 3.1.  The FID after a 90o 

pulse is shown, (a), with its corresponding spectrum from Fourier transform, (b).  The 

FID shown in (a) is from a sample with three species present, two of which are NaAlH4 

and Na3AlH6.  For demonstration purposes an FID from a pure sample of NaAlH4 is 

shown in (c) and an FID from a sample of pure Na3AlH6 is shown in (d).  As can be seen, 

both NaAlH4 and Na3AlH6 have shorter T2s (and, correspondingly, each have broader 

spectral peaks).  The FIDs in frames (c) and (d) have decayed to zero by 70 μs (a red line 

is drawn on the FIDs to denote t = 70 μs, which will be t’ = 0 after the left-shift).  If the 

FID in (a) is left-shifted by 70 μs, as shown in (e), then the resulting spectrum, (f) will 

contain only the sharp peak. 
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Figure 3.1: 1H FIDs and spectra from a sample that contains three different chemical 

components.  This demonstrates the effects of left-shifting FIDs to filter for highly 
mobile species in multi-component systems.  (a) shows FID of sample that contains 3 

components: 1) highly mobile species (long T2), 2) Na3AlH6 (shorter T2), and 3) NaAlH4 
(shortest T2).  (b) shows resulting spectrum from FID in (a).  (c) FID of pure NaAlH4.  
(d) FID of pure Na3AlH6.  (e) The resulting FID after (a) is left-shifted 70 μs.  (f) The 

spectrum corresponding to (e), now only showing the narrow component. 
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An example of a spectrum resulting partially from the application of the left-shift 

technique to a 27Al FID will be shown later in Figure 5.10, Chapter 5.2.4. 

It needs be mentioned that this technique should be used with caution because 

there are negative consequences to using left-shifted FIDs to produce spectra.  FIDs are 

not all perfect exponential decays, and may have other forms.  In these cases the 

lineshape in frequency space might be distorted.  If, for example, an FID has a more 

Gaussian shape—which is flat at the beginning of the decay—a left-shift will cut out the 

flat portion.  When this modified FID is Fourier transformed, the spectral peak will be 

distorted from Gaussian, and the width of the spectral peak will not give the true width of 

the resonance.  And there is a phase shift proportional to frequency and delay-time: Δφ = 

tleftshiftωoffset, called the “linear phase correction”. 

 

3.2.2    Fast Recycle Delays  

 A second acquisition technique was sometimes applied to filter for highly mobile 

species during the alanate hydriding reactions.  Most of the data acquired for the spectra 

in this thesis are generated by single effective 90o-pulse FIDs (the meaning of “effective” 

90o-pulse will be explained further in the following section).  A pulse, acquire, wait, 

scheme was employed where the wait time between pulses, referred to as the “recycle 

delay”, was used in a way to minimize the signal from species which have longer T1s.  A 

species undergoing rapid motion is generally expected to have a faster T1, and being able 

to distinguish this from other species in situ is important to finding such a species that 

might be buried in a background of other signals.  The application of faster recycle delays 

was used much more frequently at the beginning of the study.  Once such a species was 
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found, it became more advantageous to allow the entire spectrum to relax (to get the true 

relative spectral intensities), and the technique was used less. 

 A 90o-pulse destroys any magnetization along the z-axis.  Let’s say a 90o-pulse is 

applied every t = τ.  This means that after each pulse, the magnetization along z is 

allowed to build back toward equilibrium for a duration of τ before the magnetization 

along z is destroyed again.  From Equation 3.4 we know how much the magnetization 

rebuilds along z: 

 M(τ)   
—— = (1 – e-τ/T1)
Mo   

3.7 

 

This is the recovery percentage as a function of the ratio τ/T1.  If we have a small τ/T1, 

M(τ)/Mo ≈ (1 - (1 + -τ/T1) = τ/T1.  For τ ~ 10-1 s, and for a given species T1 ~ 100 s or 101 

s (typical for this study), then M(τ)/Mo ≈ 1% to 10%.  The species is not fully recovered 

and only a small portion of the true (fully relaxed) signal is seen.  But for τ/T1 large, say τ 

equals several T1 or more, a given species will fully relax during τ, then M(τ)/Mo ≈ 1 and 

all the signal is seen.  In other words, when the recycle delay is much shorter than T1 for 

a given species, the signal from that species is suppressed; but for short T1 species there 

is no effect upon the signal. 

 

3.2.3    Central Transition Excitation 

 A nucleus with I > ½ has an electric quadrupole moment.  This comes from an 

asymmetry in the distribution of electric charge in the nucleus.  The quadrupole moment 

becomes important in the presence of an electric field gradient (EFG).  The nuclear 
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electric quadrupole moment of the nucleus will interact with the surrounding electric field 

potential and modify the Zeeman levels.  We note the EFG is zero in cubic symmetry.  

The quadrupolar interaction is treated as a perturbation to the Zeeman interaction.  From 

Abragam[40], below are given the results—to first-order and with a uniaxial EFG tensor—

of the energy levels where Em
(p) is the energy contribution to the m’th level to 

perturbation order p (so Em ≈ Em
(0) + Em

(1)): 

Em
(0) = -γħHm = -hνLm    3.8 

Em
(1) = ¼hνQ(3μ2 – 1)(m2 – a/3)   3.9 

For simplicity Abragam defines the following as, 

 

3.10 

 

  3CQ     γH 
νQ = ————, a = I (I + 1), μ = cosθ, νL = — 
  2I (2I – 1)     2π 

Em
(0) shows the Zeeman splitting.  For the case of 27Al (spin-5/2), there are energy 

levels for m = -5/2, -3/2, -1/2, +1/2, +3/2, and +5/2.  We recognize νL as the Larmor 

frequency in Hz (from Equation 3.1), and note that the 2I transitions of Δm = ±1 are 

degenerate in frequency to zero’th order. All transitions resonate at the Larmor frequency 

and contribute to a central peak at νL, 

  Em-1
(0) - Em

(0)

νL = —————
  h 

 

3.11 

 

The quadrupole interaction enters in the first order perturbation, Em
(1).  CQ is 

called the “quadrupole coupling constant” and is in units of Hz.  CQ depends on the 
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electric environment at the nucleus as well as the quadrupolar moment of the nucleus of 

interest, and is typically found experimentally.  θ is the angle between the unique 

principal axis of the EFG tensor and the static magnetic field.  The quadrupolar 

interaction splits the degeneracy of the 2I Δm = ±1 transitions, and we now have a 

different resonance frequency, νm = νL + νm
(1), for each pair of neighboring energy levels 

where, 

  Em-1
(1) - Em

(1)                     3μ2 - 1 
νm

(1) = ————— = νQ (½ – m) ——— 
  h                     2 

 

3.12 

 

We see that to first order the quadrupolar interaction shifts the Zeeman levels by 

m2 (Equation 3.9) so that the ±m energy levels shift the same amount and in the same 

direction, and that the m = ±1/2 central transition frequency (for half-integer spins) does 

not change (Equation 3.12). 

 For the case of what is called the “selective excitation”, which is to say νQ >> ν1, 

the quadrupole interaction also increases the nutation rate about the r.f. field—which 

depends on I and m—by a factor of A as compared to a nucleus where the quadrupolar 

interaction is zero or averaged away; where A is the shift operator matrix element which 

describes the operation of a rotating magnetic field, H1, on the populations and 

coherences of the m-levels[41]-[43], 

A = [I (I + 1) – m (m + 1)]½
   3.13 

(where m refers to the upper state, which is lower value of m).  E.g., for the central 

transition, m = -1/2 ↔ +1/2, of 27Al (so I = 5/2 and m = -1/2), A = 3.  This also leads to 

unequal peak intensities because the |Δm| = 1 satellite coherences are less efficient than 
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the central coherence at producing an NMR signal (the ratio of the intensities of the lines 

go as A2 and the biggest A is for m = -½).  Additionally the central transition will be a 

fraction of the intensity of the unsplit line such as one would observe in a solution, where 

the time average νQ = 0.  Again, for 27Al, the ratios of the intensities of the satellites and 

central transition is 5:8:9:8:5; so the central transition will have a relative intensity of 

9/35.  However, if only the central transition is excited, then the system can be treated 

like an effective spin-1/2[44], [45].  This is the case of νQ >> ν1, or selective excitation 

pulses.  If Τ90 is the pulse length of a 90o-pulse of a quadrupolar nucleus in an 

environment where the quadrupole interaction vanishes (as in a liquid), then by applying 

a pulse of Τ90
eff = Τ90/A to the nucleus in an environment where a large quadrupole 

splitting is present, one maximally excites the central transition only.  This is called an 

“effective” 90o-pulse (for the effective spin-1/2). 

 With the exception of 1H (I = ½), the nuclei looked at in this thesis are 

quadrupolar.  The 90o-pulse times were found on aqueous tune-up samples for each type 

of nucleus in each probe (Chapter 2.9).  Then the 90o-pulse times were divided by A for 

each type of nucleus to find the effective 90o-pulse time for use in the single-pulse 

excitation spectra as well as the pulse sequences used for relaxation time studies.  For 

reference the spin, 1/A, and—for NaAlH4—the location of the large cusps in the satellite 

transitions (given as Δν from the Zeeman Larmor frequency) are shown in Table 3.1 

below. 
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Nucleus Spin 1/A (for –
1/2↔+1/2) Δν (from νL) for NaAlH4

±5/2↔±3/2:  ± 460 kHz 
Refs. [46] & [47] 27Al 5/2 1/3 

±3/2↔±1/2:  ±230 kHz 
Refs. [46] & [47] 

23Na 3/2 1/2 ±3/2↔±1/2:  ±35 kHz 
Refs. [46] & [47] 

 
45Sc 

 
7/2 1/4 — 

Table 3.1: Spin, 1/A for the central transition, and location of the large cusps in the 
satellite transitions (given with respect to the Larmor frequency, νL, in kHz) for 27Al, 
23Na, and 45Sc for NaAlH4. 
 

3.2.4    Magic Angle Spinning and Cross-Polarization 

 Although the author does not do magic angle spinning (MAS) or cross-

polarization (CP) NMR, a brief explanation is included here because there this thesis 

includes work in MAS and CPMAS done by our collaborator, Son-Jong Hwang at 

Caltech. 

 Motion can average out interactions like dipolar coupling and chemical shift 

anisotropy—interactions which are dependent on orientation.  When these interactions 

are motionally averaged, the lineshape is narrowed.  Powders have a distribution of fixed 

orientations and typically have much broader lineshapes that make identification of 

closely spaced species difficult.  However, this problem can be overcome by using MAS 

NMR. 

 Between two dipole moments, the interaction term is of the form, 
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 3.14 

1  
— (3cos2θ – 1)
r3  

 

where r is the dipole-to-dipole separation and θ is the angle between the static field, Ho, 

and the vector between the two dipoles.  Notice that if θ = θM (the “magic” angle) so that 

3cos2θM – 1 = 0, then this term vanishes.  If we could somehow cause all the dipole inter-

nuclear vectors to be effectively oriented at θM (~54.7o) to the magnetic field, then the 

dipolar broadening would vanish in the powder sample.  This can be cleverly achieved by 

physically spinning a sample with the axis of rotation oriented at angle θM from Ho—

provided the rate of rotation is greater than the linewidth (so that only the time averages 

of the quantities matter).  In fact, any interaction that carries the angular dependence term 

3cos2θ – 1 will vanish under MAS.  This includes the first order quadrupolar interaction 

(Equations 3.9 and 3.12).  Under fast MAS, the following are averaged to zero: dipole-

dipole interactions, CSA, and 1st-order quadrupole (but actually this is often so large that 

it is hard to spin fast enough). 

 MAS can be used in conjunction with a technique called cross-polarization (CP).  

In cross-polarization the polarization of one type of nucleus is transferred to another type 

of nucleus by taking advantage of the dipolar coupling, which is a “through-space” 

coupling.  The local magnetic field experienced by one spin is modified by the dipolar 

field produced by a nearby second spin, and vice versa.  If the local field due to the 

dipolar field of the near-by second spin is modulated at the Larmor frequency of the first 

spin, it can cause transitions.  To conserve energy, one pathway this can happen is by 
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mutual spin flip.  I.e. the first spin undergoes Δm = +1 and the second spin undergoes Δm 

= -1. 

If we are talking about two different kinds of nuclei (γI and γS) then the separation 

of the energy levels of the two different types of nuclei are not equal, so flip-flops can not 

occur.  Somehow, the effective frequencies must be made equal.  By Equation 3.1, the 

two different nuclei precess at two different rates (ωI and ωS) for a given applied r.f. field.  

In a double-resonance probe two different r.f. fields (HI and HS) can be applied such that 

the nutation frequencies ωI and ωS are equal: ωI = ωS.  This is called the Hartmann-Hahn 

condition, and is expressed as: 

     γI  HS

γIHI = γSHS  or — = —
    γS  HI

3.15 

 

 In a sample, one type of nuclei, say 1H, is excited by a 90o r.f. pulse.  The r.f. 

transmitter is left on (such that MH is now parallel to its H1 field, called “spin-locking”) 

and the second r.f. transmitter for the second type of nuclei, say 27Al, is simultaneously 

turned on such that H1
H and H2

Al satisfy the Hartmann-Hahn condition.  This allows the 

system to couple, transferring spin magnetization parallel to the effective field in the 

rotating frame back and forth between 1H and 27Al.  The time the two transmitters are left 

on is called the “contact time”.  During the contact time mutual spin flips transfer 

polarization from 1H to 27Al.  This is denoted 27Al-{1H} CP.  After the transmitters are 

turned off the 27Al NMR can be observed as an FID. 

The dipolar interaction falls off as 1/r3 (Equation 3.14) and so only those spins 

that are in close proximity will readily undergo the mutual spin flip.  Species that are not 
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hydrogenated, like the 27Al spins in Al2O3, will not be able to transfer polarization from 

the 1H to the 27Al, unlike a species such as AlH4
-1 where the Al-H bond holds the two 

spins in close proximity.  By this way, observing the 27Al NMR after 27Al-{1H} CP can 

indicate whether or not an 27Al resonance peak is associated with hydrogen. 

 

3.3    Relaxation Measurements 

 

3.3.1    Saturation Recovery 

 Saturation recovery is a pulsing technique that is used to measure T1.  This is done 

by first destroying all the magnetization along the z-axis and waiting for some time, τ, 

and then inspecting the z-magnetization.  By plotting the recovering amplitude versus the 

wait time, τ, and by fitting to an exponential recovery (Equation 3.4) the characteristic 

time, T1, can be measured. 

As mentioned above in Chapter 3.2.2 (on the usage of fast recycle delays), a 

perfect 90o-pulse destroys the magnetization along the z-axis.  But if the 90o-pulse is not 

perfect, then some component is left.  A good measurement of T1 would require (or at 

least be easier to analyze) that the initial magnetization along z is zero.  To avoid any 

error in the initialization of Mz = 0 due to errors in setting the 90o-pulse time, a 

“saturation comb” is used.  This is a string of saturating pulses (90o pulses) separated by 

some time τsat, such that T2 < τsat < T1.  This gives time for the magnetization in the xy-

plane to dephase while not giving enough time for the z-magnetization to recover 

between 90o-pulses.  10 to 20 pulses (or more, as needed) can be used in this comb, 

depending on how close the saturating pulses are to a true 90o-pulse.  The magnetization 
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is completely destroyed after such a comb.  After the saturation comb the magnetization 

is allowed to recover for a wait time, τwait, followed by a single 90o inspection pulse, 

which tips whatever magnetization has recovered along z into the xy-plane where the FID 

can be acquired and the amplitude of the signal measured.  τwait is varied and the recovery 

is plotted and fitted (Equation 3.4) to find T1. 

 

3.3.2    Inversion Recovery 

 Inversion recovery is a second method for measuring T1 and works by first 

inverting the magnetization and then inspecting the recovery along the z-axis over time.  

There can be a couple advantages to this in certain situations.  First, for saturation 

recovery to be successful, T2 and T1 must be different enough to get the timing of τsat 

correct (T2 < τsat < T1).  This works for many solids, but if this condition cannot be 

satisfied because T2 ~ T1, then inversion recovery will still work.  In addition, the 

dynamic range of inversion recovery is ideally twice as big because the magnetization 

recovers from –Mo to + Mo; whereas in saturation recovery the magnetization recovers 

from 0 to + Mo. 

 The pulse sequence is initiated by the application of a 180o-pulse, which inverts 

the magnetization.  Like the saturation sequence, after a wait time, τwait, a 90o-pulse tips 

the magnetization along z into the xy-plane where the FID can be acquired and the 

amplitude measured.  The FID amplitude versus τwait is plotted and fit to the recovery 

relation: 

M(τwait) = Mo(1 – Be-τwait/T1)   3.16 
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where B is usually adjustable to account for inversion-pulse imperfection; B = 2 

corresponds to an ideal inversion-pulse. 

One potential problem with inversion recovery is that between each 180o-τ-90o 

sequence the magnetization must be allowed to fully recovery before the next 180o-τ-90o 

can be applied; as opposed to the saturation recovery sequence, which zeros the 

magnetization as soon as the FID is captured by the next saturation comb.  So there is no 

sense in allowing M to recover, since M will then be destroyed again, and the experiment 

can be conducted more quickly (by not waiting for recovery between recycles).  Another 

potential problem is incomplete inversion.  In the saturation sequence an imperfect 90o-

pulse can be compensated for by repetition of the 90o-pulse in the saturation comb, but 

this cannot be performed in the inversion recovery sequence.  Furthermore, the inversion 

pulse is twice as long as the saturation pulse, and so it excites a frequency width half as 

big.  It is best to keep the specific species under investigation exactly on resonance, and 

perform inversion recovery for each individual species in the spectrum, which 

additionally increases the experiment time. 

 

3.3.3    90o-90o Echo 

 To measure T2 (transverse relaxation) one must be able to measure the initial 

amplitude of the FID accurately.  In theory, T2 could be taken by observing the envelope 

of the FID.  However the initial decay of the FID is obscured in a couple different ways.  

The FID effectively begins near the middle of the excitation r.f. pulse and the beginning 

of the FID is obscured by the second half of the r.f. pulse.  In addition, after the r.f. pulse 

there is a period of time in which the energy in the tank circuit is dissipated, called the 
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“ring-down” time, during which the FID is further obscured.  The combination of these 

effects can mask the first 5 to 10 μs of an FID, depending on the pulse lengths and tank 

circuit components.  For solids, which have large dipolar interactions, T2 is short and the 

ring-down time may be a very significant fraction of the total FID decay time, making an 

accurate measurement impossible. 

 By applying an echo sequence, the peak of the echo (effectively the new zero of 

time, regarding the echo as back-to-back FIDs) may be shifted out away from the dead 

time.  One such sequence is performed by a pair of 90o-pulses separated by a wait time of 

τ.  An echo, which has an envelope shape the same as the FID, will form a time τ after 

the second 90o.  The first pulse tips the magnetization into the xy-plane, where it begins 

to dephase over time τ.  The second pulse, applied at time τ, acts to refocus the spin 

evolution in the xy-plane at a time 2τ after the first pulse.  When τ is varied, the 

amplitude of the echo decays by: 

M(2τ) = Moe-2τ/T2    3.17 

T2 can be measured by plotting the amplitude of the echo versus 2τ, and fitting to the 

above equation. 

Moreover, the dephasing time may be decreased by local field inhomogeneities 

from imperfect static field and distortions of the local magnetic field from susceptibility 

variations around or in the sample.  If the local field varies slowly over the sample, then 

spins in one area of the sample experience a slightly different Hloc than spins in a 

different area.  Groups of spins in these differing areas of the local field, called 

isochromats, precess at slightly different times.  But inside each isochromat dephasing 

from spin-spin couplings happen with the characteristic time, T2.  The superposition of 
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the different precession frequencies from the different isochromats causes the FID to 

decay faster than T2.  The echo refocuses the spin evolution of each isochromat, so that 

the true T2 can be measured.  Many static broadenings (that contribute to the decay of the 

FID) like inhomogeneous Ho, static susceptibility effects, chemical shift and some 

quadrupole effects will not cause decay of the echo envelope.  But interactions such as 

like-spin dipole or unlike-spin dipole if the other spin S is modulated by a fast T1 or S-S 

flip-flops will cause the echo to decay. 
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CHAPTER 4: 

IN SITU REACTIONS 

 

The first NMR measurements on NaAlH4 in this study were in situ reaction 

measurements using 27Al NMR.  In these studies a de-/re-hydriding reaction would be 

initiated and NMR taken continuously from before the reaction started until after the 

completion of the reaction.  The pressure over the sample—whether initially a vacuum or 

an externally supplied H2 atmosphere—was monitored at all times by a high accuracy 

pressure transducer.  Likewise, the temperature of the sample was continuously 

monitored by a thermocouple placed just outside the sample tube (see Chapter 2.1.3). 

The author will mainly refer to pressure in “psi”, but for ease of reference 1 bar = 

0.986 atm = 14.5 psi.  All pressures are absolute (relative to vacuum). 

 

4.1    Preliminary De-/Re-hydriding Findings 

 

Dehydriding reactions were the initial in situ measurements.  Typically, for 

dehydriding runs, the sample would initially be evacuated while at room temperature, to 

remove any N2, and then heated.  Upon heating, the evolving H2 gas would build up in 

the now valved-off sample headspace.  The hydrogen pressure would increase over time 

and finally plateau, indicating that the sample reaction had progressed as far as it would.  

This may correspond to completion of either or both reaction steps, but the reaction may 

also plateau earlier due to an inactive fraction of the starting material.  Figure 4.1 below 

shows one such dehydriding run performed at 180oC.  Data acquisition was initiated 
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before the heat was turned on and continued through the end of the reaction.  The data 

was collected into “blocks”.  Each block would represent some length of time in which 

all the incoming spectra were added, for better S/N. 

 
Figure 4.1: First three blocks of de-hydriding spectra taken on a previously unreacted 

sample.  27Al NMR at 92.276 MHz with Al(NO3)3 (aq.) reference.  Sample was NaAlH4 
+ 3.18 mol% ScCl3. 
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Figure 4.2: Pressure and temperature vs. time for the data shown in Figure 4.1.  The 

labeled brackets indicate the accumulation period in which the individual spectra were 
added. 

 
For the spectra shown in Figure 4.1, each block represents ~6 min of data 

accumulation of FIDs following 90o (effective nutation angle) pulses every 0.2 sec.  That 

is, Block 00 is the spectra added from 0 to 6 minutes, Block 01 is 7 to 12 minutes, and 

Block 02 is 13 to 18 minutes.  Figure 4.2 shows the released H2 gas pressure (from de-

hydriding) and temperature vs. time, where the red brackets indicate the periods over 

which the accumulated spectra were grouped and added.  The pause between block 00 

and 01 is when the temperature controller was switched on and the automatic data 

acquisition program initiated. 

Block 00 shows a single, broad peak corresponding to NaAlH4.  After taking the 

spectrum in Block 00, the heat is turned on and the automated data acquisition program 

on the computer initiated.  The sample rapidly heats to near 180oC and begins to release 

hydrogen gas during Block 01 (Figure 4.2).  Block 01 still shows the broad NaAlH4 peak, 

but there are two new peaks: one at -43 ppm (-3.7 kHz), and one at +105 ppm (~10 kHz).  

The -43 ppm peak corresponds to Na3AlH6 (as detected in separate experiments on 

authentic Na3AlH6 material) and is expected from the reaction formulae shown in 
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Equations 1.1 and 1.2.  We can see that this peak grows by Block 02, demonstrating that 

the sample began to decompose, giving off H2 gas and producing Na3AlH6 (-43 ppm) as 

well as Al metal (off scale at +150 kHz).  Additionally, as might be expected, Block 02 

shows a reduction in the NaAlH4 peak intensity as compared to that in Block 00. 

The narrowest peak that appears in Block 01 at +105 ppm nearly disappears by 

Block 02 (where it remains as a very small shoulder on the side of the NaAlH4 peak).  

The +105 ppm peak is coincident with the fastest evolution of H2 gas (Figure 4.2) and 

disappears when the reaction has completed.  Moreover, it is very narrow, an indication 

of fast motion (Chapter 3.1.3), and it is Al-bearing.  These initial observations fit the 

proposed theoretical profile of an intermediate chemical species that may mediate the 

long-range trafficking of Al atoms necessary for the hydriding reaction to take place, as 

discussed in Chapter 1.2.  It is this peak that is the focus of the present thesis work. 

The peak locations of the different species and possible products for sodium 

alanate are listed in Table 4.1 for future reference.  Not all of these species are a direct 

result of the theoretical hydriding process, but could possibly form given the 

experimental conditions. 
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27Al NMR Signal Locations  
Al Species Peak Location Literature Reference 
Al metal 150 kHz (1640 ppm) [38], [20] 

NaAlH4 8.6 kHz (95 ppm) [38], [20] 

Na3AlH6 -3.7 kHz (-43 ppm) [38], [20] 

Al3Sc 61 kHz (660 ppm) [48], [49] 

Al3Ti 31 kHz (335 ppm) (I) 

23 kHz (253 ppm (II)) 

[49] 

AlH3 

(three phases: α, β, and γ) 

550 Hz (6 ppm) [α] 

740 Hz (8 ppm) [β] 

1 kHz (11 ppm) [γ-(I)] 

3.3 kHz (36 ppm) [γ-(II)] 

[50] 

Al2O3 

(differing coordination) 

740 Hz (8 ppm) [6-fold] 

3.3 kHz (36 ppm) [5-fold] 

5.9 kHz (64 ppm) [4-fold] 

[20], [51] 

S105, new species 10 kHz (~105 ppm, static) (this work) 

Table 4.1: A list of the approximate peak locations of various Al species for 27Al NMR 
with respect to Al(NO3)3 (aq.). 

 
It is during the rapid H2 pressure increase that the new 27Al peak has the greatest 

intensity.  The author will refer to this new Al species as the “S105” or nominally as the 

“+105 ppm peak”, since it was initially found around +103 to +105 ppm.  The sample 

continued to evolve hydrogen for some time after Block 01, but very slowly, until finally 

reaching a plateau in pressure.  The samples typically never completely de-hydrided for 
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these experiments, and would leave behind un-reacted tetrahydride as well as 

hexahydride.  This was very typical for the reactions performed here. 

 This result was repeated multiple times successfully.  In fact, it was observed very 

early on that the higher the dehydriding temperature, the faster the H2 would evolve, and 

the more intense the S105 peak appeared.  Usually the samples contained two to three 

hundred milligrams of material, but never more than 350 mg of material.  The gas 

volume of the sample chamber is 11.57 cc (Chapter 2.1.2).  This means that if a reaction 

had completed the first step (Equation 1.1), and after the probe returned to room 

temperature, a pressure change of 110 to 170 psia would have been observed, depending 

on the actual mass of the sample.  The experimentally observed reactions would normally 

produce pressure changes of 40 to 90 psia.  So these reactions never saw more than 2 

wt% reversible H2, a far cry from the theoretical 5.6 wt%.  With temperatures near 170o-

180oC, these de-hydriding reactions would take place in minutes, with only one and 

rarely two of the six-minute blocks showing S105. 

After the success of the de-hydriding reactions, re-hydriding reactions were 

attempted.  Data was, again, acquired continuously throughout the reaction in the same 

manner as in the de-hydriding reactions.  Here a previously de-hydrided sample would be 

pressurized with hydrogen gas at or above the equilibrium reaction pressure (at the time, 

the probe had an upper limit of ~1500 psi H2) and then the heat turned on.  In these 

reactions the measured H2 pressure was observed to drop while the sample took-up 

hydrogen, re-forming NaAlH4.  The pressure would again plateau, indicating that the 

reaction had ceased.  The S105 sharp 27Al NMR signal was seen in these reactions as 

well, appearing strongest during the fastest H2 up-take, but never as strong as it did 
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during de-hydriding.  This is likely due to the longer reaction times required for re-

hydriding.  We note that, at this early stage, we had inadequate “over-pressure” driving 

the rehydriding reaction for the uppermost temperatures. 

These experiments and results were highly repeatable and the same samples could 

be cycled (de-hydrided then re-hydrided) multiple times, generating the S105 in both 

reaction directions. 

 

4.2    S105 Discoveries 

 

With the discovery of the new 27Al S105 peak, and having become familiar with 

the operation of the probe and reaction characteristics, the in situ operations could be 

refined and the techniques updated and improved.  By lowering the temperatures and thus 

slowing the reaction speed, in order to extend the lifetime of the S105 signal (up to a 

couple hours in some extreme cases, albeit the signal amplitude was reduced), and taking 

shorter (~2 min) data blocks, the experimental parameters could be varied in situ and the 

conditions for which the +105 ppm signal exists tested. 

 Some of the parameters tested in situ were:  

1) Vary temperatures in mid-reaction to anywhere in the range of room 

temperature to 180oC for both re- and de-hydriding reactions. 

2) Apply various H2 pressures on the sample at various temperatures (0 psia to 

1500 psia) during re-hydriding reactions. 
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3) Allowing the H2 liberated by the sample in de-hydriding to build-up versus 

continuously evacuating the sample chamber during the reaction for de-

hydriding reactions. 

4) Attempting to reverse the reaction direction in mid-reaction. (Begin a de-

hydriding experiment and when the sample begins to rapidly deliver H2 gas, 

add a large over-pressure of H2 to halt or reverse the reaction.) 

It was found that the +105 ppm signal exists with or without the presence of H2 in 

the reaction chamber during sample decomposition.  Also, independent of the 

temperature during de-hydriding, the +105 ppm signal appears when reaction begins and 

disappears when reaction ends—as measured by the evolution of hydrogen gas.  

Reactions reversed in the middle of de-hydriding would continue to show S105 through 

the reversal.  Furthermore, the faster the alanate takes-up/gives-off H2, the stronger the 

+105 ppm signal appears (generally, the higher the temperature used during the reaction, 

the faster the reaction would proceed).   

Undoped material was also subjected to de/re-hydriding attempts.  S105 was 

never found in these trials.  This is not a surprise because the undoped material did not 

de-hydride (and thus, did not re-hydride) at the temperatures used, which were below the 

melting point. 

Finally, and most importantly, it had been noticed that on just a few samples, but 

not all, at room temperature and after the application of higher hydrogen gas pressures 

(~1400 psia) there was a very slight signal at +105 ppm left after the reaction had been 

completed.  (Note: this result was the exception to the majority of samples that were 

reacted). 
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 Figure 4.3 below shows one such relatively rare example.  This spectrum comes 

from an experiment where de-hydriding was performed at 100oC on a sample of NaAlH4 

doped with 4 mol% TiCl3.  In mid-decomposition, as the hydrogen gas pressure began to 

rise, the valve on the H2 supply assembly was opened, suddenly allowing ~1300 psi of 

hydrogen gas into the sample chamber.  The sample then began to re-hydride.  Once the 

reaction had progressed as completely as it would, the heat was turned off and the sample 

left to cool to room temperature under H2 pressure.  The spectrum shown (Figure 2.2) 

was taken once the sample had cooled, but before evacuation of the hydrogen gas from 

the sample volume.  The Al metal, AlH4
-1, and AlH6

-3 signals can all be clearly 

distinguished, demonstrating that the sample had stopped evolving before completely re-

hydriding.  Furthermore, the signal at +105 ppm can be seen as a shoulder on the AlH4
-1 

peak, even at room temperature.  This evidence then offers the tantalizing prospect that a 

sample with S105 in it could be recovered at ambient temperature and pressure and sent-

out for other studies. 
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Figure 4.3: 27Al spectrum of NaAlH4 + 4 mol TiCl3, after re-hydriding.  The sample has 

returned to room temperature and 1300 psi H2 was left over the sample.  In these 
conditions, S105 still exists as a small shoulder on the NaAlH4. 

 

4.3    S105 Summary 

 

The exciting new discovery of S105 was worth taking a closer look at since S105 

shows a lot of the features expected for a mobile species intimately involved in the 

chemistry.  But, since S105 is transient, it is difficult to make measurements upon.  If the 

signal could be caused to persist for longer periods of time with greater intensity, more 

could be learned about it through NMR. 

The new Al species at +105 ppm in 27Al NMR (S105) is seen in both the de-

hydriding and re-hydriding directions as well as in both Ti and Sc doped samples but not 
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in undoped material under normal reaction conditions.  The presence of S105 appears to 

be linked with the evolution of hydrogen gas in these experiments, but can remain (albeit, 

greatly reduced in intensity) in rare cases once the sample stops taking up H2 during re-

hydriding (interpreted from watching the spectra and the H2 pressure on the sample).  It 

was possible, then, that greater re-hydriding pressures could intensify the small remnant 

signal in a few of these samples. 

This reasoning spurred the research forward into its second phase.  The in situ 

probe was upgraded to its present form (Chapter 2.1) and the high-pressure hydrogen 

experiments began with the intent of attempting to make the +105 ppm signal persist and 

enable other measurements to be made on S105 directly. 
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CHAPTER 5: 

HIGH-PRESSURE STUDIES 

 

With the goal now to coax the new +105 ppm peak into longer-lived existence, 

the initial concept was to first apply hydrogen gas pressures greatly exceeding the 1500 

psi required to re-hydride the sample at the higher temperatures used (See Figure 1.2).  

With high enough pressures the sample could be brought all the way up to its melting 

temperature (and beyond) and still the reaction would be driven in the NaAlH4 direction 

(see Equations 1.1 and 1.2 as well as Figure 1.2). 

It was indeed found that the S105 signal could be made to persist using high-

pressures.  After exposure to pressure and heat this signal will stay—even at room 

temperature and when H2 overpressure is removed.  Moreover, in a surprising result, this 

+105 ppm peak was eventually created in undoped samples by melting the sample. 

The techniques used to create a long-lived, recoverable S105 are described in the 

following chapter as well as a discussion of the changes that happen to the system after 

the S105 is created and of newly gained information about S105.  The findings are 

supported by analysis done by our collaborators consisting of MAS from Son-Jong 

Hwang at Caltech and XRD performed by Terry Udovic at NIST. 

 

5.1    Initial High-Pressure Results 

 

5.1.1    Generation of S105 in Doped Samples 
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 We begin with 27Al NMR and a description of how the peak is generated in doped 

samples.  In general, for doped material, after being loaded into the sample tube and 

probe in an inert environment, the sample sits in a vacuum at room temperature.  The 

sample is first pressurized with hydrogen gas up to or just below 3000 psi.  This was 

frequently done in 1000 psi stages, at least when the discovery was first made.  This was 

done to make sure that the formation of S105 is not a function of high-pressure hydrogen 

alone.  The pressurization stages are not necessary, and in a few later experiments the 

sample was charged straight to ~3000 psi from vacuum.  The pressurization is performed 

at room temperature.  The 3000 psi H2 over-pressure assures the reaction is always driven 

in the direction of NaAlH4 (Equations 1.1 and 1.2).  Then the temperature is increased 

incrementally; typically, 30oC increments were chosen.  As with the pressure, the 

temperature does not need to be increased incrementally, but this is done to observe the 

state of the system at the various temperatures as the new peak is formed.  Once the new 

+105 ppm peak is formed, the temperature can continue to be increased up to just below 

the melting temperature of 183oC, but this is not necessary.  With S105 now generated in 

the sample, the heat is turned off and the probe is allowed to cool back to room 

temperature, maintaining the high-pressure H2 atmosphere over the sample.  Finally the 

hydrogen gas is evacuated out of the sample chamber, and the process is complete.  An 

example of this is shown in Figure 5.1. 

 Figure 5.1 shows a series of 27Al spectra taken from a typical PT-cycle.  The chart 

shows this process and is read like a book, left-to-right, then top-to-bottom. 
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 Figure 5.1: Series of 27Al spectra taken during a PT-cycle that generates S105.  In this 

case, the sample was a ScCl3 doped sample.  Data taken with a 20 sec recycle delay. 
 

The alanate sample used in the above PT-cycle was doped with 4.04 mol% ScCl3.  

Each spectrum is made of 100 co-added data acquisitions.  The carrier frequency is 

92.286 MHz, the frequency of 1M Al(NO3)3 (aq.), which is the standard reference for 

27Al NMR.  A single effective 90o inspection pulse was used with a 20 second recycle 

delay. 

In the upper-left-hand corner, spectrum (1), we see the spectrum of the sample as 

it was received by Washington University after being prepared at the University of 

Hawaii.  The peak locations to be discussed in the following description are given in 

Table 4.1.  There are only two peaks present at the creation of the material (labeled in 

red): a peak located at +1640 ppm (~150 kHz) corresponding to the Knight-shifted Al 
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metal, and the broad NaAlH4 peak centered at +95 ppm (~9 kHz).  Due to how the metal 

catalyst is introduced into the samples in preparation, it is not uncommon for the samples 

we received to have Al metal present in the sample after it is made.  Similar to Equation 

5.2 (Chapter 5.3.2)—only with the formation of bare Al and bare Ti instead of an Al-Ti 

alloy—the ball-milling of the doping metal into the sodium alanate would cause the 

system to slightly de-hydride, releasing H2 and leaving behind some bare Al metal [15], [52].  

This spectrum, (1), is at room temperature and in a vacuum.   

As we continue to move to the right, the H2 pressure is incrementally increased in 

~1000 psi steps up to a total of ~3000 psi by spectrum (4).  Moving from spectrum (4) to 

(5), the temperature is increased while the sample remains under high-pressure hydrogen.  

A small amount of H2 is intentionally let out of the sample head-space before heating—

hence the apparent drop from 3040 psi to 2750.  This is done so that the H2 pressure 

increase due to thermal gas expansion would not surpass the limit of the pressure 

transducer (Chapter 2.1.2).  As we continue to move right the temperature is increased in 

30oC stages. 

The AlH4
-1 resonance is seen to narrow as the temperature increases.  It is not 

shown, but if spectrum (7) is filtered by left-shifting the time-domain data, S105 can be 

seen to start forming around 115oC, in this case.  By the time we get to 175oC in spectrum 

(9), the spectrum is dominated by the large, new, sharp +105 ppm (~10 kHz) S105 peak.  

Note that the peak is off-scale, about twice the vertical size of the scale.  Interestingly, 

despite the applied H2 over-pressure, Na3AlH6 appears at -43 ppm (~ -4kHz) in 

conjunction with S105. 
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Now that S105 is created, the sample is allowed to cool back down to room 

temperature (spectrum (10)), where the +105 ppm peak remains, but decreases in height 

and comes into scale.  This is due to the temperature effect of broadening upon cooling.  

After cooling, the hydrogen gas is evacuated in spectrum (11).  Another small decrease in 

height of the S105 peak is observed (See Chapter 5.2.3 for changes in width vs. T and P 

for S105). 

Another very interesting event is observed during the generation of S105, which 

might have gone unnoticed at first with all the changes around zero-shift.  Up at the Al 

metal resonance (150 kHz or +1640 ppm), the excess bare metal was entirely consumed 

with the appearance of S105.  As S105 begins to be formed at around 115oC (spectrum 

(7)) and between spectra (7) and (8), there is a small decrease in the Al metal peak.  We 

note the complete disappearance of the Al metal peak in spectrum (9). 

As intriguing as the disappearance of the excess Al metal at the appearance of 

S105 is, it is not the whole story of S105’s link to Al metal.  Next we will look at another 

PT-cycle performed on a sample doped with ScF3. 
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Figure 5.2: Series of 27Al spectra taken during a PT-cycle that generates S105.  In this 

case, the sample was a 2 mol% ScF3 doped sample and data taken with a recycle delay of 
83 ms. 

 
The data in Figure 5.2 was taken under the same conditions as the data in Figure 

5.1 with the exception of 83 ms used as the recycle delay (so there will be some 

suppression of the AlH6
-3 signal).  Again, we start in the upper-left-hand corner with the 

sample as received from the University of Hawaii, spectrum (1).  Here, there is only one 

peak in the spectrum: NaAlH4.  There is, in this material, no excess Al metal at the start.  

The PT-cycle is also exactly the same—increasing pressure first in 1000 psi increments, 

and then heating the sample in 30oC increments.  We see S105 begin to appear at 145oC 

as a small bump on top of the broader AlH4
-1 peak (without left-shifting the data).  By 
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180oC S105 is fully-formed, and signatures of the AlH6
-3 resonance can be seen slightly, 

despite the fast recycle delay. 

In spectrum (8), a small waiver in the baseline at ~1640 ppm (150 kHz)  shows 

the initial appearance of the +105 ppm peak comes with some Al metal.  By spectrum (9), 

the metal can be seen distinctly in conjunction with the now-large S105 peak (off-scale 

by 2x).  We again see that S105 is linked to Al metal; however in this case, Al metal was 

created at the onset of S105. 

In fact, a general rule was observed in sample after sample concerning Al metal in 

the doped alanate systems.  When a sample with an initial presence of Al metal was PT-

cycled, the Al metal would be consumed—in part or full—simultaneous with S105’s 

generation; for a sample without an initial presence of Al metal, Al metal would be 

created together with S105. 

The next pertinent question is whether S105 forms from Al metal alone.  A 

sample of Al powder (325 mesh, 0.044 mm opening) was purchased from Alfa Aesar, 

and taken through the exact PT-course previously described.  The Al powder did not 

react or form S105.  A sample of Al powder doped with 4 mol% ScCl3 by ball milling 

(prepared at U. Hawaii) was also repeatedly PT-cycled without generating S105.  Thus, 

S105 does not arise from the Al metal alone or even from a doped Al metal system.  S105 

requires the NaAlH4 system to form and it seems that Al metal is involved in some 

intermediate, or at least sidetrack, reactant or product in the formation of S105. 

 

5.1.2    Generation of S105 in Undoped NaAlH4 
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 The production of S105 in undoped NaAlH4 was one of the more exciting and 

revealing finds of the study.  There are two ways of producing the +105 ppm peak in 

undoped material with differing effects.  The bare alanate samples must be melted to 

form S105.  If the material is melted in a high-pressure H2 atmosphere, then S105 is 

formed without any aluminum metal being produced.  However, if the material is melted 

in a vacuum, S105 still forms, but aluminum metal is also produced, and a small amount 

of hydrogen gas is given off.  No matter which method is chosen for generating S105, 

Na3AlH6 is always formed. 

 Let us first look at the case of S105 generation in a high-pressure H2 environment.  

Figure 5.3 shows this process with “technical grade” NaAlH4 purchased from Sigma-

Aldrich. 
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Figure 5.3: Generation of S105 in undoped NaAlH4 by melting under high-pressure H2.  
20 sec recycle delay used. 

 
Starting at spectrum (1), in a vacuum and at room temperature, there is only the 

single AlH4
-1 resonance centered at about +95 ppm (9 kHz) and 160 ppm (14.8 kHz) 

wide.  Moving to the right, ~2600 psi H2 was let into the sample chamber at room 

temperature in spectrum (2).  There is a large amount of noise in this particular spectrum, 

and it can be seen in all the following spectra with varying intensity.  The r.f. grounding 

capacitors (Chapter 2.1.4) had broken loose from the ground lugs on the probe and the 

data was taken before this was noticed.  This noise is the local radio station broadcasting 

in FM at 92.3 MHz. 

After the H2 was let in, the heat was increased incrementally starting in spectrum 

(3).  The AlH4
-1 resonance begins to undergo motional narrowing around 145oC 

(spectrum (6)).  The spectrum at 196oC (spectrum (8)) shows the liquid resonance (recall, 

the melting temperature for NaAlH4 is 183oC).  There are 4 dBs of extra receiver 

attenuation used in specifically this spectrum and a dwell time (data sampling rate) of 1 

μs was used here, rather than the usual 200 ns, to capture the entire (long) FID of the 

liquid alanate.  The liquid peak is centered at +100 ppm (9.2 kHz) and has a FWHM of 5 

ppm (460 Hz)—compared to the aqueous Al(NO3)3 width of 3.6 ppm (330 Hz) due to 

field inhomogeneity, this is a reasonable liquid linewidth.  A small peak from the AlH6
-3 

is also detected at -43 ppm. 

Upon cooling, the solid AlH4
-1 lineshape is regained (spectrum (9)) with the 

addition of S105 and a large AlH6
-3 peak.  When the samples are unloaded after this 

process, the sample is no longer a powder, but a solid chunk of material that has 

obviously melted and re-solidified.  To transfer the material to other sample containers 
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for use in the other probes or be shipped to collaborators, the material must be ground out 

of the sample tube and crushed back into a powder, all performed in the N2 glove bag. 

It was asked at this point if S105 would still form in undoped NaAlH4 even when 

it is melted without a H2 over-pressure keeping the material from de-hydriding.  New 

samples of undoped NaAlH4 were loaded and melted in a vacuum.  Figure 5.4 shows an 

abbreviated PT-cycle in an initial vacuum.  The sample was first evacuated and heated, 

but not melted ((1) and (2), below).  Then it was melted, (3), and cooled to 155oC, (4), 

and finally allowed to cool all the way back to room temperature, (5). 

 
Figure 5.4: Generation of S105 in undoped NaAlH4 in a vacuum.  Al metal is evident in 

(4) and a total of 45 psia of H2 is given off.  20 sec recycle delay used. 
 
 The sample was taken to 213oC and the material released 45 psia H2.  In the case 

of NaAlH4 initially under vacuum and melted, it is plainly obvious that the sample has 
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partially decomposed as evidenced by the release of 45 psia of gas.  The presence of 

aluminum metal also testifies to the partial decomposition of the system.  Based on these 

observations, it is tempting to argue that the sample evolves AlH6
-3 with S105 because 

the sample has partially de-hydrided following Equation 1.1.  This can be tested, as 

shown in the next section. 

 

5.1.3    Hexahydride Formation 

 Hexahydride is observed to always form in conjunction with S105 in both doped 

and undoped samples.  First let’s return to the above case of NaAlH4 being melted in an 

initial vacuum.  If the system is believed to partially undergo the first dehydriding step to 

evolve some hexahydride, then by Equation 1.1 we should be able to calculate the 

proportion of reaction products based on the sample’s mass and the amount of H2 

released. 

The sample shown in Figure 5.4 contained 0.312 g of material, which corresponds 

to 6 mmol of NaAlH4 formula units, so 6 mmol of Al atoms.  If all this material were to 

convert to Na3AlH6, then from Equation 1.1, 6 mmol of NaAlH4 will release 6 mmol H2 

molecules.  6 mmol of gas in an 11.57 cc volume corresponds to 12.5 atm (178 psia).  So 

a full conversion of tetrahydride to hexahydride would have produced 178 psia of 

hydrogen gas.  Only 45 psia of H2 was actually released, which is a conversion of about 

¼ of the material.  The corresponding reaction equation is: 

NaAlH4  3/4 NaAlH4 + 1/12 Na3AlH6 + 1/6 Al + 1/4 H2    5.1 

Thus, the ratios of products expected for a ¼ conversion is 9 : 1 : 2 : 3 for AlH4
-1 : AlH6

-3 

: Al : H2.  We can now check to see if the spectrum shows a 9 : 1 ratio of AlH4
-1 : AlH6

-3. 
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The final spectrum (5) at 17oC shown above in Figure 5.4 was fit to a triple Lorentzian 

(in the same manner described later, Chapter 5.2.2).  The 27Al spectral fit gave a 4.56 : 

1.09 : 1 ratio for AlH4
-1 : AlH6

-3 : S105.  This means a 4.17 : 1 ratio of AlH4
-1 : AlH6

-3.  

So there is a larger fraction of hexahydride present in the product of the PT-cycle than 

could have been converted just by sample decomposition (following Equation 5.1, 

above).  This means—at least in part—some other conversion route formed the 

hexahydride with S105. 

Moreover, for the creation of hexahydride in samples with a H2 over-pressure, 

Equation 1.1 and Figure 1.2 indicate that the reaction of NaAlH4 to yield hexahydride is 

blocked under excess H2 pressure (as used in Figure 5.3).  Indeed, in Figure 5.3, no Al 

metal is generated.  So the appearance of hexahydride is surprising, or at least outside the 

predictions of Equation 1.1. 

So can S105 can be generated in bare Na3AlH6?  The generation of S105 in bare 

Na3AlH6 was attempted.  A batch of 3.33 mol% ScCl3 doped hexahydride was also  

prepared at U. of Hawaii.  The material was taken through the same PT-cycle multiple 

times.  No S105 peak was ever formed in either sample.  The samples did not appear to 

react at all. 

The fact that they did not re-hydride is not a surprise (not by Equation 1.1, at 

least).  Although the hydrogen gas pressures greatly exceeded the equilibrium pressure, 

driving the reaction toward tetrahydride formation, there was no excess Al metal in the 

sample.  Thus, the material could not form NaAlH4. 

 

5.1.4    H2 Evolution in High-Pressure Cases 
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As discussed above, in the experiments where pure NaAlH4 is allowed to de-

hydride into an initial vacuum, H2 evolution is obvious.  But we need to ask, was any H2 

released or absorbed in the high-pressure PT-cycle?  This is difficult to answer because 

we must look for a small change in a large pressure.  The pressure transducer has an 

accuracy of 1% of the reading (not 1% of the full-scale), with some hysteresis and 

temperature dependences.  So it gives excellent vacuum readings, and at the high-

pressure limit of ~3000 psi (Chapter 2.1.2) we expect an error in the range of 30 psi—but 

it is difficult to say exactly what the error of the pressure readings are at high-pressure.  

To address this question, the entire history of data was sorted through, collecting starting 

and ending pressures and temperatures, where the data is available.  In each case, the total 

pressure difference was measured, ΔPtot.  This total pressure difference was adjusted in 

each case for the slight difference in recorded temperature, ΔTrec, of the sample before 

and after the PT-cycle (ΔPadj = ΔPtot – ΔPtherm, where ΔPtherm = nR ΔTrec/V).  The adjusted 

pressure difference, ΔPadj, should be the pressure released or absorbed from H2 evolution. 

In samples where S105 is created (both doped and undoped), the ΔPadj’s ranged 

from positive (apparent sample decomposition) to negative (apparent H2 absorption).  

The magnitudes were distributed between zero to ~50 psia.  This would appear to tell us 

that these samples were in fact either taking H2 up or releasing it, depending on 

conditions such as the presence or lack of excess Al metal. 

However, the same analysis was performed on samples where S105 was not 

formed and where the sample underwent no reaction of any sort.  Samples were used 

such as Al-halides (which where run very early on to see if S105 could be generated in 

compounds that might derive from the dopant-salts or the dopant salts themselves), Al 
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metal samples, Na3AlH6 samples, and one ScF3 doped sample—all of which failed to 

produce S105.  The ΔPadj’s demonstrated the same distribution in the range of about ±50 

psia—and thus established the typical error range of the pressure transducer at high-

pressure for this type of cycling.  Our best estimate then is that the pressure change (after 

adjustment of temperature) is ±30 psia.  For a typical ~300 mg sample, this corresponds 

to a fraction ±17% of the hydrogen that would be released in the first step reaction 

(Equation 1.1). 

More insight can be found in the specific case of generating S105 under high-

pressure hydrogen.  Here, although a direct measurement of pressure only establishes an 

upper bound on the up-take or evolution of H2, it is reasonable to believe that none has 

occurred, because there is no Al metal generated. 

 

5.1.5    27Al “Before” and “After” Comparisons 

 As we wrap up the section on the initial work in 27Al NMR, there are a few last 

comparisons to be made concerning the NaAlH4 system before and after the +105 ppm 

S105 is generated. 

There is a significant difference between creating S105 in the doped versus 

undoped material.  The difference is that in doped material the +105 ppm peak can be 

produced before the sample is melted, whereas the sample must be melted to produce this 

peak when it is undoped.  The catalyst allows the alanate system to undergo changes at 

lower temperatures, a result in line with the well-known action of the catalyst in lowering 

the de-hydriding temperatures and making the re-hydriding direction possible. 
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If we compare the formation temperatures observed for the +105 ppm peak in the 

doped system, S105 can be seen beginning to form at temperatures as low as 85oC in 

some doped samples.  By the time the sample has reached 175oC, the +105 ppm peak is 

always fully formed.  However, the peak does not consistently begin forming at the same 

temperature in every doped sample.  The final intensity of the S105 peak in the doped 

material also varies between samples.  Sometimes the S105 peak remains a small bump 

or shoulder on the side of the broad AlH4
-1 peak, and in other cases times it dominates the 

spectrum. 

In the case of undoped material, the +105 ppm peak never forms until the sample 

has melted.  The S105 peak is so close to that of molten NaAlH4 that the S105 peak is not 

evident until after solidification.  The size of S105 is consistently large in undoped 

samples.  Both the size and formation temperature in the undoped samples are 

independent of whether or not the sample was heated in a vacuum or high-pressure H2 

environment. 

Figure 5.5 shows a collection of spectra where the “after” spectrum (red) is 

overlaid on the “before” spectrum (black) for a quick comparison of the state of the 

NaAlH4 system.  This also allows the reader to see some of the effects from melting 

under pressure or vacuum, and effects like the increasing or decreasing presence of the Al 

metal signal, or the varying intensity of the S105 peak in doped samples.  Also note that 

one of the spectra was taken with an 83 ms recycle delay and the rest with a 20 sec 

recycle delay. 
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Figure 5.5: Comparison of various 27Al spectra of the NaAlH4 system “Before” and 

“After” the +105 ppm S105 is created. 
 

 As a reminder from Table 4.1, the shifts of each species are: 150 kHz (1640 ppm) 

for Al metal, 8.6 kHz (95 ppm) for NaAlH4, -3.7 kHz (-43 ppm) for Na3AlH6, and 10 kHz 

(105 ppm) for S105. 

 

5.2    Pressure Studies of S105 

 

5.2.1    Longevity 

 The issue of longevity of this new +105 ppm Al peak now becomes important for 

further studies.  This peak, after it is created, either in a high-pressure environment or 

initially in a vacuum, is very long lived.  One of the first samples in which S105 was 
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generated was removed and stored in a sealed container in the N2 glove bag at room 

temperature and atmospheric pressure.  After 77 days the sample was re-loaded and a 

27Al spectrum was taken.  The +105 ppm signal remained undiminished in the material.  

Figure 5.6 below shows a comparison of these two spectra. 

 
Figure 5.6: Two spectra of a 4.04 mol% ScCl3 doped sample: (a) shows the spectrum 

before going into the N2 glove bag and (b) shows the spectrum after 77 days in the glove 
bag.  The spectra were taken at room temperature in a vacuum.  The AlH6

-3 signal was 
being suppressed by the 83 ms recycle delay for data acquisition. 

 
 This meant that relaxation measurements and other measurements on the +105 

ppm signal could be made directly.  In addition, the ability to remove the sample material 

after S105 is generated and re-load it into other sample containers allowed for the use of 

the cold probe and box probe for studies of motional narowing.  The longevity of the 
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+105 ppm peak also meant that the samples could be sent to our collaborators for XRD 

and MAS-NMR analysis to be performed. 

 

5.2.2    Spin Counting and Lorentzian Fit Convolutions 

 The peak at +105 ppm is tall, and in order to get an idea of how much of the 27Al 

resides in the S105, the spectra from doped and undoped samples were integrated.  In 

NMR, the amplitude of the signal at each frequency in the spectrum is directly 

proportional to the number of spins in the sample resonating at that frequency.  By 

selectively integrating the spectrum (taking the area under the curve) one is able to 

determine the percentage of the sample present as each species. 

This is simple enough for spin-1/2 nuclei where the only transition is the ±1/2 

transition.  27Al is spin-5/2, and there are 5 transitions, as discussed in Chapter 3.2.3.  For 

all of the species except Al metal, the r.f. pulses excited the central transition only, 

although if this is not exactly satisfied, there may be some error.  The direct 

proportionality of the spins in the sample to the area in the spectrum breaks down for 

metals because of eddy current shielding of the r.f. field.  The Al metal has all transitions 

excited together.  Additionally, the Al metal is way off resonance.  For these reasons, 

samples showing substantial Al metal were not included for careful spectral integration.  

With these considerations in mind, the spectra of doped and undoped samples were 

collected and analyzed to see what could be learned about the size of the mystery 

resonance in general. 

 The undoped samples provided better spectra for this type of analysis.  First of all, 

S105 could be generated in the undoped systems without producing Al metal, allowing 

87 
 



for the accounting of all spins before and after S105 is created in the material.  Secondly, 

it was standard practice by the time the research had begun to focus on the undoped 

system to take all data at a slower repetition rate, allowing the entire spectrum to fully 

relax, and making more spectra available for this type of analysis. 

 With no Al metal being produced, the total spin count can be directly compared 

from before and after S105 is generated to assure ourselves that there is no signal 

missing.  There is effectively no difference in area between the two spectra (consistently 

measured to be less than 1% difference), telling us that all the 27Al is accounted for in 

these spectra.  This result was repeatedly confirmed in the undoped samples where no Al 

metal was present. 

Next the spectra were fit with a triple Lorentzian (See Figure 5.7).  The 

Lorentzian lineshape was chosen for the fitting procedure because that is the shape 

formed by exponential decay and is very typical in NMR.  More to the point, the 

Lorentzian did a good job fitting the NaAlH4, S105, and Na3AlH6 components. 

A sample of pure Na3AlH6 was first fit to a single Lorentzian, and the width and 

peak center optimized and recorded.  Then a spectrum of the alanate sample before 

heating—showing only NaAlH4—was fit to a single Lorentzian, and the width and peak 

center of this fit recorded as well.  Then the alanate sample was PT-cycled by melting 

under excess H2 pressure; the resulting spectrum at 7oC was fit with a triple Lorentzian 

by setting the centers and widths of the first two lines from the (already determined) 

individual Na3AlH6 and NaAlH4 fitting parameters, and the letting the parameters of the 

third line be varied as well as the areas of all three.  The fit was good (Figure 5.7), 

showing that the third peak (S105) was centered at +104 ppm with a FWHM = 13 ppm.  
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The fit was performed a second time and all the width and peak center parameters 

allowed to float, again producing an accurate fit.  This assures us that the total lineshape 

in static NMR after S105 is generated can be represented well by three peaks.  The fits 

gave a ratio of 8.34 : 1.38 : 1 for AlH4
-1 : AlH6

-3 : S105, meaning S105 is about 9% of the 

signal (Figure 5.7).  Two other undoped samples in which no Al metal was produced 

gave AlH4
-1 : AlH6

-3 : S105 ratios of 6.22 : 1.93 : 1 (11% S105) and 7.20 : 1.59 : 1 (10% 

S105). 

 
Figure 5.7: Triple Lorentzian fit to a spectrum of undoped alanate where no Al metal 

shows after S105 is created by melting under H2 pressure. Spectrum taken at 7oC, 0 psia 
H2, 20 sec recycle delay. 

 
 

5.2.3    FWHM vs. Temperature and Pressure 
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 The FWHM of S105 was measured over the temperature range of 20oC to 180oC 

on a ScCl3 doped sample.  The H2 pressure on the sample is held near 2900 psia.  Figure 

5.8 below shows this plot.  The FWHM was measured in a similar manner as T1 and T2 

were (see below) with the exception of not left-shifting the FIDs 80 μs.  This means the 

+105 ppm peak is on top of the broad AlH4
-1 peak.  The data were not left-shifted because 

this technique can distort the lineshape of the peak.  Here the height of the peak is 

measured from a baseline established on the broad peak 

 
Figure 5.8: FWHM vs temperature.  The τ =35 ms data from inversion recovery were 

used with ~2900 psia H2 over the sample on resonance with S105. 
 

 As the sample heats-up, the +105 ppm peak narrows from about 12.5 ppm to 8.5 

ppm (a 30% change).  Integration of the peak reveals that the area remains basically 

unchanged, and accordingly the peak height is seen to rise as the sample temperature 
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increases.  It should be noted that the high-pressure probe, where this measurement was 

performed, produced a FWHM of 3.6 ppm for a Al(NO3)3 (aq.) tune-up sample.  So some 

of the linewidth in Figure 5.8 is from field inhomogeneity. 

 The response of the peak’s width to pressure is smaller than its response to 

temperature.  Over the entire range of vacuum to 3000 psia H2, the FWHM typically 

changes only 2-3 ppm at room temperature.  Nevertheless, when a change in width was 

observed in response to H2 pressure, the trend was always the same: the +105 ppm peak 

would become slightly narrower at higher pressures.  This effect was not observed 

consistently in every sample.  In extreme cases, some samples showed no change and 

some showed a change as much as 4 ppm.  The presence or lack of a dopant did not seem 

to be the determining issue. 

 

5.2.4    T1 and T2 vs. Temperature 

 27Al relaxation times for S105 were also measured in the normal reaction 

temperature range (room temperature to 180oC) to help characterize S105.  In general, the 

27Al T1s of AlH4
-1 and AlH6

-3 are on the order of 100 milliseconds and 1 second 

respectively.  The plot of T1 and T2 of S105 in 27Al NMR is shown below in Figure 5.9. 
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Figure 5.9: T1 and T2 of a 4.04 mol% ScCl3 doped sample in 8.3 T field.  The x-axis is 
plotted as 1000 times the inverse temperature in Kelvin.  T1 was measured by inversion 

recovery sequence and T2 by a 90o-90o echo sequence. 
 

 The spin-lattice relaxation time, T1, was acquired with an inversion recovery 

sequence (Chapters 3.3.2).  T1 rises from about 845 μs to 2.3 ms as the temperature rises 

from room temperature to 180oC.  T2, which was measured with a 90o-90o echo sequence 

(Chapters 3.3.3), rises from 370 μs to 765 μs over the same temperature range.  The T1 of 

S105 is extraordinarily short.  This is indicative of a very rapidly fluctuating EFG at the 

site of the nucleus, which confirms rapid motion of the spins.  Nutation measurements 

showed that S105 has a static quadrupole splitting (not time averaged to zero) larger than 

the applied r.f. field.  (The effective 90o pulse time was measured to be 10 μs for S105, 

while the 90o pulse time was measured to be 30 μs on aqueous Al(NO3)3; see discussion 
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in Chapter 3.2.3).  Another indicator of rapid motion is the narrowness of the peak.  T2 

accounts for 74% of the observed FWHM, as the following calculation demonstrates.  

The FWHMmeasured  = 12.5 ppm at room temperature.  Now we can take the measured 

room temperature T2 (370 μs) and use it to calculated a predicted linewidth:  

FWHMpredicted = 1/πT2
measured = 860 Hz = 9.3 ppm. 

 Both relaxation measurements were performed at high H2 pressures (~2900 psia 

for T1 and ~2700 psia for T2) on the same sample.  To isolate the S105 signal from the 

AlH4
-1 and AlH6

-3 peaks the recovery analysis was done in the frequency-domain, 

integrating over only the +105 ppm peak with a baseline established closely on either side 

of the peak corresponding to S105.  This way only the spins associated with S105 were 

counted.  To accentuate the difference between the S105 peak and the broad AlH4
-1 

resonance, the FID was left-shifted 80 μs in the time-domain before Fourier 

transforming.  Additionally, the data was acquired with a high repetition rate to minimize 

the AlH6
-3 signal (See Chapter 3.2.2).  As is seen in Figure 5.10, the S105 peak clearly 

stands out after the above techniques are applied and the recovery can be accurately 

measured. 
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Figure 5.10: Example from inversion recovery data (τ = 35 ms) of a spectrum at 141oC 
used for relaxation measurements.  Green bars show the limits of integration.  Data were 
acquired at 12 s-1 repetition rate and left-shifted 80 μs before Fourier transforming.  Note 

that the spectrometer was adjusted so that S105 is exactly on resonance. 
 

 

5.2.5    Motional Narrowing Confirmed in 27Al 

 As shown above, the T1, T2, and FWHM measurements on S105 suggest a 

motionally narrowed species.  To confirm this, 27Al spectra were taken at colder 

temperatures. 

For 27Al, four different samples were used to examine cold spectra: an undoped 

NaAlH4 sample, a 3.98 mol% TiCl3 doped sample, a 4.04 mol% ScCl3 doped sample, and 

a 4 mol% ScI3 doped sample.  Each sample was first loaded into the high-pressure probe 

and S105 generated in the material by the appropriate PT-cycle.  The PT-cycled material 
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was unloaded from the larger sample tubes, and reloaded into smaller glass sample tubes 

in the N2 glove-bag.  Finally the smaller sample tubes were flame sealed in an ~0.8 atm 

(absolute) Ar atmosphere and placed in the cold probe.  Figure 5.11 shows the spectra 

from the undoped NaAlH4 sample. 

 
Figure 5.11: 27Al cold spectra of an undoped sample that has been PT-cycled and shows 

the S105 signal.  In this case, AlH6
-3 freezes out around -40oC and the S105 around -

70oC.  Normally 4 dBs of attenuation is applied to the incoming signal, but this was 
increased to 8 dBs for the last two spectra.  20 sec recycle delay used. 

 
S105 and the AlH6

-3 peak can be seen to gradually broaden, finally disappearing 

into the broader AlH4
-1 peak (spectrum (5)).  The AlH4

-1 peak remains unchanged 

throughout the cold run because it is already at its rigid-lattice linewidth.  This is 

evidenced by the onset of line narrowing of the AlH4
-1 at temperatures around 145oC, as 

seen previously in spectra like those in Figures 5.1 and 5.2.  The AlH6
-3 disappears first, 
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somewhere between -22oC and -39oC.  In this case, the S105 peak continues to broaden 

and disappears into the broad surrounding signals between -71oC and -87oC (spectra (7) 

and (8)).  At lower temperatures, further decreases in temperature did not result in 

additional lineshape changes.  This can be confirmed by looking at the spectra after left-

shifting 80 μs (not shown), and watching for the signal of S105 to disappear.  Upon 

warming, the sample’s lineshape returns to normal. 

Above, in the spectra at -107oC and at -142oC (spectra (9) and (10)), an additional 

4 dBs of attenuation was applied to the incoming signal with respect to the other spectra.  

This had to be done to prevent clipping of the FID.  Presumably, this reflects the 1/T 

(Curie’s law) variation of spin magnetization.  The probe tuning was also altered due to 

the freezing of the tuning components.  Specifically water, which might have been 

trapped in the variable capacitor used for tuning the tank circuit, froze because the tuning 

components are located inside the can of the cold probe (Figure 2.8, Chapter 2.3). 

In the other three samples, similar results are observed, as shown in Table 5.1.  

The temperature of the samples, like in Figure 5.11, was decreased in stages, so the 

temperature at which the S105 signal disappeared can only be identified approximately.  

In general, this +105 ppm 27Al species normally undergoes rapid motion, but broadens 

into the surrounding resonances at a temperature of approximately -60oC. 

Sample 
Doping Undoped TiCl3 ScCl3 ScI3

Temperature 
of S105 

disappearance 

Between -71oC 
& -87oC 

Between -52oC 
& -58oC 

Between -33oC 
& -81oC 

Between -48oC 
& -71oC 

Table 5.1: Temperatures where S105 disappears into other broad peaks for variously 
doped samples. 
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5.2.6    Motional Narrowing Confirmed in 1H 

 1H spectra were also used to study S105 motional narrowing.  In general, the 

proton T1’s in the alanate system are longer—being measured previously by other groups 

to be on the order of 100’s of seconds to 1000’s of seconds for the tetrahydride and 

shorter T1’s for the hexahydride[47], [53].  The widths have also previously been measured 

to be 10’s of kHz wide for the NaAlH4, with the Na3AlH6 and NaH being 1/3 and 2/3 of 

that respectively[47], [54], [55].  The 1H chemical shift range is small and all the species 

involved in this system are near zero, so the best way to distinguish these species in static 

NMR is by relaxation time and width.  We were interested simply in identifying 

something new and fast moving in the 1H NMR. 

 Two samples were prepared and loaded into sealed NMR tubes for 1H NMR.  One 

was the Aldrich Technical Grade NaAlH4, which was loaded straight from the bottle, as 

bought, containing only the pure NaAlH4—this is the “Before” sample.  The second 

sample of the Aldrich material was placed in the high-pressure probe and melted in a 

vacuum.  In this second sample 27Al NMR showed the presence of Al metal, NaAlH4, 

Na3AlH6, and S105.  The melted sample was crushed back down to a powder and loaded 

into the box probe—this is the “After” sample.  A comparison of the two room 

temperature spectra is shown in Figure 5.12.  The melted sample shows a drastic change.  

Three different peaks are distinguishable by their width: a low broad peak, a narrow peak, 

and a sharp peak. 
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Figure 5.12: 1H spectra of the NaAlH4 system “Before” and “After” S105 is created 

(verified in 27Al NMR).  Material is technical grade NaAlH4 from Aldrich.  10000 sec 
recycle delay used. 

 
The broad peak in the “After” spectrum is likely the tetrahydride, but it is difficult 

to measure the width and the S/N is low.  The “Before” sample of pure NaAlH4 has a 

FWHM of 61.1 kHz.  T1 of the “Before” sample was measured by saturation recovery to 

be 340 seconds.  The “before” and “After” samples were two different samples, and so 

contained different amounts of sample material (since the samples had to be PT-cycled in 

the high-pressure probe, then re-loaded into the box probe for 1H NMR.).  This accounts 

for the apparent differences in the total area under the curve of the two spectra  

 The middle, narrower peak has a FWHM of 17 kHz.  The spectra of a pure 

hexahydride (made at U. Hawaii) had a width of 21.3 kHz.  The pure hexahydride was 
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measured to have a T1 = 580 ms, as measured by saturation recovery.  The presence of 

the hexahydride is expected based on the 27Al NMR of this sample and previous 

experience, so this middle peak is most likely Na3AlH6. 

 The third, sharp peak is our peak of interest.  It has a FWHM of only 740 Hz.  T1 

was measured to be 210 ms for the sharp peak.  This is the fastest recovery time of all 

three species, demonstrating more motion than the other two.  The peak’s sharpness is, 

again, another indication of rapid motion 

 1H spectra of the “After” sample were then taken at colder temperatures.  Figure 

5.13 shows the spectra throughout the cooling process.  The recycle delay for data 

acquisition was set to 10 seconds.  Complete relaxation of the entire spectrum was not 

necessary for this study because our interest is only the ability to “freeze out” the sharp 

peak.  The sharp peak is seen to steadily decrease down to a small bump on the broader 

peak at its base.  In spectrum (7), taken at -39oC, we see that the peak is still triangular, 

but in spectrum (8), at -48oC, the peak is rounded and no longer continues to change at 

lower temperatures.  Thus, the initially sharp feature disappears between -39oC and          

-48oC. 
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Figure 5.13: 1H spectra at colder temperatures for the “After” Sample.  A 10 sec recycle 
delay was used, so the spectra shown are not fully relaxed.  Thus, the broader peak at the 

base of the sharp peak is Na3AlH6. 
 

 There is some question as to whether or not the sharp peak is H2 trapped in voids 

inside the hydride—as has been identified before in some other hydrides[56]-[58].  

However, the freeze-out temperature is much too warm for the sharp peak to be 

associated with hydrogen gas (H2 solidifies at 14K).  For example, NMR of H2 trapped in 

solid AlH3 broadens and disappears as temperature is decreased through approximately 

10 K[59].  The 1H sharp peak disappears in Figure 5.13 at a temperature that is close to the 

temperature that the 27Al S105 freezes out (Figure 5.11).  Although this is not a definitive 

identification in and of itself, when viewed in the context of the narrow FWHM, the short 
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T1, and its appearance only in the melted sample that has been confirmed by 27Al NMR to 

possess S105, we are confident in associating the sharp hydrogen peak with S105 in 27Al. 

 

5.2.7    CPMAS Confirms S105 is Hydrogenated 

Some of the material was sent to our collaborator, Sonjong Hwang, at Caltech to 

have our samples analyzed by magic-angle spinning NMR.  For a quick overview of 

MAS-NMR and the techniques used below, see Chapter 3.2.4. 

27Al MAS confirms the existence of S105 (Figure 5.14).  It is seen in the PT-

cycled material, but not the starting material in both doped and undoped samples.  The 

doped sample also shows a drastically reduced Al metal peak as compared to its starting 

material, whereas the undoped sample (which was melted under H2 pressure) shows no 

metal resonance either before or after melting.  Both examples are in agreement with our 

previous findings regarding the Al metal in these reactions.  Both doped and undoped 

samples show a large amount of AlH6
-3 in the PT-cycled material. 

To test the idea that S105 is hydrogenated, we asked out collaborator to attempt 

27Al-{1H} CPMAS.  The results for an undoped NaAlH4 sample are shown below in 

Figure 5.14.  The blue spectrum was taken with MAS at a spinning speed of 15 kHz and 

the red spectrum was taken with 27Al-{1H} CPMAS.  S105 is identified at +100 ppm as a 

shoulder on the double peak at 95 ppm, which is NaAlH4.  The broad peak seen from 85 

to 60 ppm in the blue spectrum is an impurity.  The peak at 8 ppm is bulk AlH3.  Both the 

impurity and AlH3 will be discussed in this next section. 
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Figure 5.14: CPMAS (red) and MAS (blue) for undoped NaAlH4 melted under H2 
pressure.  Spectra taken by Sonjong Hwang at Caltech.  AlH3 appears on right-hand side 
at ~8 ppm.  Some oxide/hydroxide impurity is seen as a broad peak between 85 and 60 
ppm.  The small bump at ~72 ppm is a spinning sideband from AlH6

-3 (off scale at –43 
ppm).  NaAlH4 is the double peak at 95 ppm.  S105 is seen as a shoulder at 100 ppm.  A 

contact time of 0.2 ms was used here with a rotor speed of 15 kHz. 
 

S105 was not initially detected by 27Al-{1H} CP.  The contact times were varied 

from 0.075 ms to 2.0 ms with the same results.  This might at first appear to indicate that 

S105 is not hydrogenated.  However, this is not the case.  The 27Al-{1H} CP does not 

work at room temperature because of the very rapid motion undergone by S105.  Recall 

that in 27Al NMR the peak can be frozen out around –60oC (Figure 5.11); so at lower 

temperatures the motion may be slow enough to perform 27Al-{1H} cross-polarization.  

Figure 5.15 shows a series of spectra from variable temperature (VT) CPMAS performed 

on a doped sample. 
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Figure 5.15: VT-CPMAS for a 4 mol% ScCl3 doped sample after PT-cycling to create 
S105.  Spectra taken by Sonjong Hwang at Caltech.  S105 (+100 ppm) begins to appear 
from 27Al-{1H} CP around 213 K, and is obvious by 193 K.  A contact time of 200 μs 

was used. 
 
 The VT-CPMAS shows S105 beginning to appear from 27Al-{1H} CP around 213 

K (–60oC), or maybe a bit warmer.  This is in perfect agreement with the findings of the 

static 27Al NMR cold spectra of when S105 blended into the surrounding broad signals. 

 These results tell us that S105 indeed represents a hydrogenated Al species that 

undergoes extremely fast motions at room temperature, such that S105 does not cross-

polarize well at room temperature. 

 

5.3    Complementary Findings to the High-Pressure Study 

 

5.3.1    MAS Detection of AlH3 and an Impurity 

T=273K

Room T

T=193K

NaAlH4 + 4 wt % ScCl3
after P,T cycles

T=213K

T=253K

T=233K
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There are two peaks that appear in the 27Al MAS which could not be detected in 

static NMR.  The first is a broad peak at ~80 ppm, which appears in the doped and 

undoped samples both before and after PT-cycling.  Our collaborator identifies the ~80 

ppm peak with some form of AlHx(OH)4-x or AlO4 type species.  One other group[60] has 

reported finding a peak similar to this 27Al peak and has suggested an AlO4 species.  It is 

hard to imagine all our samples oxidized like this, given the care taken in the sample 

material’s treatment, but the only other option is that this possibly happened during 

shipment of the sample.  Information is still being put together on this impurity peak. 

A big question is the role, if any, of this other possible oxide/hydroxide in the 

creation of S105.  Further MAS of the undoped Aldrich NaAlH4 and undoped NaAlH4 

from U. of Hawaii, which had not been PT-cycled, was done.  The U of Hawaii material 

contained a large amount of oxide/hydroxide.  But the Aldrich sample showed little to no 

oxide/hydroxide.  Both the U. of Hawaii material and the Aldrich material always 

generated S105 when PT-cycled. 

The ~80 ppm peak appeared in various amounts in a few different samples (doped 

and undoped) and was very evident in 27Al-{1H} CPMAS (so, a hydrogen bearing 

species, such as aluminum hydroxide).  It was also present both before and after PT-

cycling.  S105 can be created in samples that do or don’t show the oxide/hydroxide, and 

so it is not likely that the oxide/hydroxide plays a role in generating S105. 

The second peak was identified as bulk AlH3 (See Figure 5.14 for AlH3).  Bulk 

AlH3 shifts are shown in Table 4.1.  AlH3 was detected by MAS in both doped and 

undoped samples.  In static NMR, the presence of a small amount of AlH3 would not be 

able to be detected because it would be hidden in the large, broad AlH4
-1 peak.  Thus, in 
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the analysis done by integration of the spectra (Chapter 5.2.2) any AlH3 signal would be 

counted as AlH4
-1 (the AlH6

-3 shift is too low to overlap, and S105 shift is too high to 

overlap.)  Thus, the measurement of ~10% of the 27Al spins as S105 is not affected. 

 

5.3.2    23Na NMR 

The vast majority of the work done in this project is 27Al, but because the mobile 

intermediate species could also involve Na, 23Na spectra were taken for comparison in 

both undoped (Figure 5.16) and doped (not shown) NaAlH4. 

 There are numerically more peaks to be observed in 23Na NMR than 27Al for the 

NaAlH4 reactions.  Unfortunately, all that could be seen was a single peak (See Figure 

5.16).  The chemical shifts in 23Na are smaller than 27Al shifts—and with more peaks in a 

smaller shift range the different species could not be resolved with static NMR.  Table 

5.2, below, shows peak positions of the 23Na reactants and products involved with de-/re-

hydriding, as well as a couple other possible products that may or may not arise given the 

experimental parameters and treatment of the sample. 

23Na NMR Signal Locations 
Na Species Peak Location Literature Reference 

NaCl 7 ppm (660 Hz) [20] 

NaAlH4 -9 ppm (-840 Hz) [38], [20] 

Na3AlH6 23 ppm (I) (2150 kHz) 

-10 ppm (II) (-940 Hz) 

[38], [20] 

NaH 18 ppm (1690 Hz) [38], [11] 

Na metal 1030 ppm (96.5 kHz) [60] 

Na2O 53 ppm (4970 Hz) [60] 
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 Table 5.2: 23Na peak locations with respect to NaCl (aq.). 

NaCl is included in the above table because it is commonly found in samples 

doped with metal-chlorides (TiCl4, TiCl3, ScCl3, etc.).  When the metal-chloride is either 

ball-milled or combined in solution together with the NaAlH4, NaCl is typically formed 

by a reaction like[20]: 

TiCl3 + 3NaAlH4 → TiAl3 + 3NaCl + 6H2       5.2 

There are other similar chemically favorable routes that can also be taken to form NaCl 

from the metal-chloride dopant. 

A fresh, uncycled sample of undoped alanate (from Aldrich) was loaded into the 

cold probe and 23Na spectrum taken.  This is the “Before” spectrum below in Figure 5.16.  

Then a sample from the same Aldrich material was melted in the high-pressure probe into 

a vacuum.  This was done while observing 27Al NMR to confirm the creation of the S105.  

After the S105 peak was created, the sample was loaded into the cold probe and a 23Na 

spectrum taken.  This is the “After” spectrum in Figure 5.16.  27Al NMR spectra were 

taken before and after taking the 23Na spectra to make sure S105 was still present in the 

“after” sample. 
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Figure 5.16:  23Na spectrum of undoped NaAlH4 (“Before”) compared to spectrum of the 

same starting sample material which has been melted and cooled initially in a vacuum 
(“After”) to generate S105.  93.684 MHz, 90o-90o echo, τ = 300 μs, 20 sec recycle delay. 

 
The spectra above were taken with a 90o-90o echo (Chapter 3.3.3).  The effective 

90o pulse length in the cold probe (3 μs) was shorter than the high-pressure probe (10 

μs)—when compared at the same transmitter attenuation (18 dBs)—due to the smaller r.f. 

coil.  The transmitter attenuation was then adjusted to make the effective 90o-pulse time 

10 μs.  (Note: this procedure was replicated for the 45Sc NMR below.) 

The noticeable difference in the two 23Na spectra (Figure 5.16) is the sharp feature 

at the center of the “After” 23Na spectrum.  The “Before” spectrum shows a single, 

asymmetrical peak.  The “After” spectrum shows a peak that could be seen as composed 
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of a slightly broader, unsymmetrical, line and a slightly narrower peak with similar 

centers. 

As in the 27Al NMR, if there is a highly mobile Na species, it will most likely 

have a narrowed peak in static 23Na spectra.  It is difficult to tell whether or not the 

sharper element of the 23Na is associated only with the presence of Na3AlH6 (which is 

expected from 27Al spectra), or if there is an additional sharp element that may be 

associated in some way with the highly mobile 27Al S105 species. 

23Na MAS of an undoped sample showed AlH4
-1  starting material, and the PT-

cycled material showed only AlH4
-1 plus AlH6

-3.  For doped material, the presence of 

NaCl and AlH4
-1 was detected in the starting material, while NaCl, AlH4

-1, and AlH6
-3 

could be identified in the PT-cycled material.  The only difference between the doped and 

undoped material seen in 23Na NMR is the presence of NaCl, as might be expected by 

Equation 5.2 (above).  No bulk NaH is seen in either sample, so we are likely dealing 

with only the first reaction step, Equation 1.1.  No other Na species seem to be created in 

the PT-cycle, so S105 seen in 27Al NMR does not incorporate Na. 

For these reasons 23Na NMR was not pursued any further.  

 

5.3.3    45Sc NMR 

Just a few spectra were taken of 45Sc NMR in the high-pressure probe.  Because 

most of the samples used were doped with Sc (Chapter 2.10.1)—which is NMR active—

there was an opportunity to see if the dopant metal showed up in a mobile phase 

corresponding to the presence of the 27Al S105 peak. 
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Figure 5.17: 45Sc spectrum (86.035 MHz) of 4.04 mol% ScCl3 doped sample after being 

PT-cycled to generate the new 27Al species.  This spectrum was taken in a vacuum at 
room temperature with single 10 μs pulses at a recycle delay of 83 ms for 100,000 

acquisitions. 
 

 Figure 5.17 shows one of the spectra taken on a NaAlH4 sample doped with 4.04 

mol% ScCl3.  The 45Sc NMR signal is very weak and took an excessively long time to 

acquire—even at a data acquisition recycle delay of 83 ms.  In particular, the above 

spectrum was taken in vacuum at room temperature after the S105 had been generated in 

the sample.  Again, 27Al NMR was checked before and after the 45Sc NMR was 

performed to assure that S105 was still present. 

 Three broad peaks are seen centered at about +1100 ppm (94.6 kHz), +630 ppm 

(54.2 kHz), and +165 ppm (14.2 kHz).  A table of Sc compounds that have been observed 

before in this system and could possibly be formed is given below in Table 5.3.  The peak 
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at 1100 ppm is Al3Sc, which is in accordance with what was observed before in 27Al 

NMR (not shown).  The peak at ~630 ppm is most likely ScH2, while the peak at ~165 

ppm is harder to identify and could be either a chloride or oxide of Sc or both. 

45Sc NMR Signal Locations 
Sc Species Peak Location Literature Reference 

Al3Sc 1100 ppm (94.6 kHz)  [48], [49], [66] 

ScH2 ~600 ppm (~52 kHz) [67] 

ScCl3 225 ppm (19.4 kHz) [68] 

Sc2O3 108 ppm (I) (9.3 kHz) 

128 ppm (II) (11.0 kHz) 

[65] 

Table 5.3: 45Sc peak locations with respect to Sc(NO3)3 (aq.). 

 Even with the identification of the ~165 ppm peak being uncertain, all three peaks 

are broad, so the 165 ppm peak  is not likely to be associated with the sharp, highly 

mobile 27Al S105 species. 

Because a new sharp peak was not observed and because of the long acquisition 

times in 45Sc NMR, no further attempts at in situ studies were pursued nor were any 

further investigations beyond the simple spectra, such as shown above. 

 

5.3.4    X-Ray Diffraction 

 Samples were also sent to our collaborator, Terry Udovic, at NIST for x-ray 

diffraction (XRD) analysis.  Four samples were run at NIST: 1) a sample of undoped, 

technical grade NaAlH4 powder as purchased from Aldrich which was used to create the 

other samples sent, 2) a sample of undoped NaAlH4 that was melted under high-pressure 

H2, 3) a sample of undoped NaAlH4 that was melted into an initial vacuum, and 4) a 
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second sample of undoped NaAlH4 also melted into a vacuum.  Earlier, a sample of ScCl3 

doped NaAlH4 had been sent for XRD analysis, but our collaborator reported that the 

pattern was dominated by diffraction peaks associated with the catalyst and thus difficult 

to interpret. 

 The four XRD patterns are shown below (Figure 5.18) without in-depth 

interpretation.  Our collaborator has not yet been able to provide us with much 

information beyond these patterns.  It can be said that the sample undergoes significant 

changes, and much of the diffraction pattern simply disappears (note that the vertical 

scale changes).  This most likely indicates a large amount of amorphous or disordered 

material.  The peaks observed in the “As Bought” sample belong to NaAlH4.  The 

NaAlH4 peak at 30o is still evident after the PT-cycle, but reduced in strength.  The other 

NaAlH4 peaks are greatly reduced.  After melting, there is a peak that corresponds to 

Na3AlH6 (identified by comparison to authentic Na3AlH6)  The relative intensity of the 

Na3AlH6 peak seems to vary from sample to sample. 
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Figure 5.18: XRD patterns of four undoped samples.  Red check marks indicate NaAlH4 

peaks. 
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CHAPTER 6: 

CONCLUSIONS 

 

This final chapter is to collect and review what is known experimentally through 

both phases of work.  Much has been covered and a summary discussion of the results 

should help to remind the reader of what was discovered by the NMR methods that have 

been applied. 

Then a discussion is included that relates some findings concerning an 

increasingly popular hypothesis that the hydriding reactions are mediated by vacancies in 

the alanate (NaH vacancies or AlH3 vacancies).  The discussion is not conclusive, but 

seeks only to show how the experimental results of this thesis may or may not fit with 

some of the ideas that have been proposed about mobile defect complexes in the NaAlH4 

system. 

Finally the chapter ends with possible directions the research could be continued 

or ways in which the present findings could be augmented. 

 

6.1    Study Review 

 

Sodium alanate decomposes in a stepwise fashion that requires large-scale 

transfer of Al or Na atoms.  In this reaction, mass transfer of metal atoms through the 

material is the rate-limiting step, not H2 exchange.  To accomplish this, there must be 

some highly mobile, intermediate chemical species that contains Al and/or Na atoms.  

The intermediate species should be detectable by NMR. 
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We set out to find such a mobile Al- (or Na-) bearing species by utilizing in situ 

NMR in a built-to-purpose probe capable of controlling NaAlH4 hydriding reactions.  

One such Al species possessing the theoretical characteristics of a mobile, intermediate 

species was detected and further investigated. 

 This new Al species, named “S105”, was first detected during in situ de-hydriding 

of doped NaAlH4 as a narrow peak in static 27Al NMR, with a chemical shift around 

+105 ppm with respect to aqueous Al(NO3)3, just up frequency from NaAlH4 itself.  

Thus, the chemical shift of S105 suggests an AlH4
-1-like species (AlHx).  S105 appears 

during both re-hydriding and de-hydriding in both Sc- and Ti-doped samples, but does 

not appear in undoped samples (not below the melting temperature of the alanate, 

anyway).  We believe this observation is tied to the fact that the undoped samples do not 

de-/re-hydride below the melting temperature.  In both directions of the in situ reactions, 

the 27Al +105 ppm peak appears with the greatest intensity while the reaction is in 

progress.  The peak appears when the material begins taking up or releasing H2 and 

disappears—or minimizes in some re-hydriding cases—when the H2 stops reacting.  For 

re-hydriding, once the sample stops taking up H2 (interpreted from watching the spectra 

and the H2 pressure over the sample) the S105 signal is greatly reduced but can remain 

(in a few cases) at low intensity.  For de-hydriding, the +105 ppm signal exists with or 

without the presence of H2 in the reaction chamber during sample decomposition.  In 

both cases, the faster the reaction progresses, the stronger the +105 ppm peak appears.  

As the reaction slows, the intensity of the mystery signal decreases.  For the above 

reasons, it can be concluded that S105 is linked intimately to the hydriding reactions. 
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It was discovered thereafter that S105 could be caused to persist in doped samples 

at ambient temperatures and pressures by the application of H2 over-pressure (exceeding 

the equilibrium pressure of NaAlH4 at the highest temperature to be used), and then 

heating of the sample within the normal reaction temperature range.  Once S105 was 

formed, the sample was returned to ambient pressure and temperature, and S105 

remained.  The formation temperature of S105 in doped samples varies, as does the 

intensity of S105’s signal. 

S105 can also be formed in undoped samples if the sample is melted.  The 

formation becomes apparent as the sample cools from the molten state.  This is an 

important finding.  It appears that, the dopant allows for the formation of this new species 

in doped samples before the NaAlH4 melts, whereas formation in bare samples requires 

the NaAlH4 to reach the molten state. 

There are two different cases for the generation of S105 in undoped material.  For 

undoped NaAlH4 melted into (initially) a vacuum, aluminum metal appears in 

conjunction with the release of hydrogen gas.  However, in undoped samples melted in an 

excess high-pressure H2 atmosphere, no aluminum metal is created.  Also, it appears no 

additional H2 gas is evolved, though the error bars on this last statement are broader than 

we would like.  But we note that, in all of the reactions 1.1 and 1.2, the redox view of the 

reactions is that Al is reduced (from Al+3 to Al0) and H is oxidized from H- to H-neutral.  

Thus, if no Al metal appears, it is most unlikely that H2 is produced. 

The molten-state reaction is different from the solid-state reaction—probably 

because there is more mobility for every reactant as opposed to just the Al or Na bearing 

species in the solid-state reaction.  The size of the S105 peak in undoped samples is not 
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much dependent on H2 pressure or vacuum in the sample chamber and furthermore the 

intensity of the S105 peak remains more nearly constant across several undoped samples 

(including ones from the Univ. of Hawaii and Aldrich).  The formation of Al metal in the 

case of melting bare NaAlH4 in a vacuum is likely due in part to partial de-hydriding of 

the material, as evidenced by the release of some H2 and the appearance of some Al 

metal.  The de-hydriding takes place because there is no overpressure driving the reaction 

back toward NaAlH4. 

The formation of Na3AlH6 (from molten bare NaAlH4 or doped solid NaAlH4)is 

always coincident with the formation of S105, regardless of the presence of a dopant.  As 

mentioned above, during melting of undoped alanate in vacuum the system undergoes 

partial decomposition into Al metal and H2, which might be the source of some of the 

AlH6
-3.  However, not enough hydrogen is released to quantitatively explain the 

production of AlH6
-3 through the decomposition pathway in Equation 1.1 alone (Chapter 

1.2).  More AlH6
-3 is created than can be accounted for based on the amount of H2 

released.  Crucially, AlH6
-3 is also created when the equilibrium pressure is 

overwhelmingly in favor of AlH4
-1 for the case of doped material and for the case of 

molten undoped material under excess H2 pressure (where, again, no Al metal is evolved 

and it appears no H2 is evolved).  Thus, AlH6
-3 is created by some other reaction. 

There are other interesting formation phenomena associated with S105.  S105 

requires specifically NaAlH4 in order to form.  It does not form from Na3AlH6 or Al 

metal alone.  Moreover, S105 is involved chemically with aluminum metal.  In those 

doped samples, for which there is an excess of Al metal in the starting material, the Al 

metal signal diminishes (or completely disappears) when S105 forms.  But when there is 
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no initial excess Al metal in the doped sample, then when S105 forms, Al metal forms as 

well.  Aluminum metal appears to be an intermediate, or at least sidetrack, reactant or 

product in the formation of S105. 

In general, S105 represents a significant portion of the 27Al content of the sample, 

occupying around 10% of the 27Al signal in samples without initial or final Al metal.  

This large signal is long lived.  The longest rigorously observed existence at ambient 

pressures and temperatures was 77 days without the intensity diminishing.  But many 

other samples were stored, manipulated, and shipped at ambient temperatures and 

pressures for longer periods of time without the S105 signal disappearing. 

23Na static NMR shows that a somewhat narrower Na species does appear along 

with the creation of the 27Al +105 ppm peak.  But the static spectra cannot distinguish 

(because of broad lines and the small range of 23Na shifts) whether the sharper 23Na peak 

is just Na3AlH6 or Na3AlH6 plus a second 23Na species with a chemical shift very near to 

Na3AlH6.  With the help of 23Na MAS NMR we know that the samples appear to contain 

only Na3AlH6, NaCl, and NaAlH4.  So it can be concluded that the S105 observed in 27Al 

NMR does not incorporate Na.  Additionally, it should be noted that no bulk NaH was 

detected (so we are likely dealing with something like the first reaction step only, 

Equation 1.1).  45Sc NMR did not show the production of a new, narrow peak in PT-

cycled material where S105 was known to be generated.  Thus Sc, in all likelihood, is not 

associated with the sharp, highly mobile 27Al +105 ppm species. 

Static 1H NMR does show a narrow peak that is present only when the 27Al +105 

ppm peak is present.  Thus, the narrow peak in static 1H spectra is likely associated with 

the +105 ppm peak in 27Al.  The 1H shifts are small, so unobservable for these broad lines 

117 
 



in static 1H NMR (recall, fo
H = 85.025 MHz here and the 1H shift range is only about 10 

ppm wide).   27Al-{1H} CPMAS confirms that the S105 is hydrogenated.  It also 

identifies S105 as undergoing fast motion at room temperature because the cross-

polarization was not effective until colder temperatures (approximately -80oC), where the 

motions are slower. 

Measured 27Al relaxation times further indicate a high degree of motion.  T1 is 

very short, ~1 ms at room temperature.  We can deduce that tS105 has a large, 

motionally-modulated EFG.  The nutation measurements show that our effective 90o-

pulses excite the central transition only (m = +1/2 ↔ -1/2) of S105.  Thus S105 has in 

addition, a large static quadrupole interaction.  We note that rapid hopping between sites 

will not (in general) average away all EFGs in the non-cubic NaAlH4 lattice.  T2 is about 

half of T1.  The measured T2 (~0.375 ms) accounts for about 75% of the observed 12.5 

ppm linewidth (1/πT2
room-T = 860 Hz = 9.3 ppm) at room temperature.  All of this 

suggests a species with much motion. 

Motional narrowing of S105 was directly demonstrated in both 27Al and 1H 

spectra.  The peaks, narrow at room temperature, broaden upon cooling until they are no 

longer distinguishable from the other, broad signals (-60oC for 27Al and -40oC for 1H).  

This also completely removes any suspicion of the 1H narrow peak being trapped H2 gas, 

which does not solidify until 14 K, and remains motionally narrow down to 10 K in one 

case that was examined closely[59].  These results, and the 27Al-{1H} CPMAS, indicate 

S105 has Al and H, so it has the form AlxHy. 

 27Al MAS interestingly detected bulk, crystalline AlH3 (6 ppm to 36 ppm, 

depending on the alane phase) in the samples where S105 had been generated.  It is 
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interesting to note that the 4:1 H:Al ratio of the starting material must stay constant in the 

bare samples melted under H2 pressure, since these do not liberate Al metal nor 

appreciable H2 gas.  AlH6
-3 is hydrogen rich (H:Al > 4) compared to the starting NaAlH4, 

and AlH3 is hydrogen deficient (H:Al < 4).  The H:Al ratio of S105, which could provide 

key information about the make-up of S105, depends on the balance of the AlH3-to- 

AlH6
-3 ratio.  We would need a quantitative measurement of the integral of the AlH3 peak 

with respect to the AlH6
-3 peak and S105 peak for more certainty.  The products 

remaining (NaAlH4, some Na3AlH6, the bulk AlH3, and S105) must all be measured 

quantitatively to assess the H:Al ratio of species S105. 

Reckoning all these phenomena with each other is imposing.  We cannot identify 

the exact chemical make-up of the S105 species from the data in this thesis alone.  But 

certain characteristics are well established and others can be deduced from what others 

have published. 

 

6.2    Discussion 

 

The following discussion, as well as the chemical formulae, will proceed from 

three papers: H. Gunaydin et al.[61], V. Ozoliņš et al.[69], and some from A. Borgschulte et 

al.[26].  In these papers are found a proposed theory of vacancy mediated hydriding 

reactions for NaAlH4 that is backed by computational work. 

According to this theory, the de-/re-hydriding reactions are mediated by bulk 

diffusion of neutral vacancies (AlH3
v and NaHv, where the superscript “v” denotes 

“vacancy”).  The introduction of a vacancy causes reorganization of the Al-H complexes 
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in NaAlH4.  Such defects may have been detected with anelastic scattering[62], INS[63], 

and in situ XRD[64]. 

An AlH3
v is (formally) a Na+ on a Na+ site, and an H- on an AlH4

- site.  This 

distorts to form H- + AlH4
- = AlH5

-2 complexes.  Clearly, an AlH3
v means the H:Al ratio 

increases above 4.  Likewise, a NaHv is (formally) a vacancy on the Na+ site, and an AlH3 

neutral on an AlH4
- site.  Then one gets AlH3 + AlH4

- = Al2H7
- complexes.  A NaHv 

means the H:Al ratio decreases below 4.  AlH3-vacancy mediated reactions are believed 

to be more likely because the calculated formation and diffusion energies are lowest[61], 

[69]. 

Both of these options for neutral vacancies would result in vacancy mediated 

diffusion.  They provide some intriguing connections to what is experimentally observed 

in this thesis.  Immediately we notice that the above reactions do produce AlHx units with 

rapid exchange and mass transfer of Al or Na atoms, which should have AlH4
-1-like 

chemical shifts, in agreement with what is observed.  Additionally, both of these options 

would only form in the NaAlH4 system, and cannot work with only Al metal or pure 

Na3AlH6, as experimentally observed for S105.  Moreover, the hydrogen defect 

complexes would undergo rapid motion as they diffuse about the sample, which would 

freeze out at colder temperatures, as observed. 

But neither option seems to fit perfectly with what is experimentally observed.  If 

NaH vacancies dominate, then it seems likely that Na and H spins will diffuse, but not 

Al.  However, experimentally we see a mobile Al and H species, but not Na.  If AlH3 

vacancies are present, this means Al and H will diffuse, but not Na (in agreement with 

what is experimentally observed).  We note that, H. Gunaydin et al. and V. Ozoliņš et al. 
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require the release of H2 and Al metal to form either NaH or AlH3 vacancies, quite 

different from our conditions.  Generation of the vacancies, if these are present under 

“hydrogen-blocked” conditions, must be different here than the published scenario.  

Reconciling the difference in how aluminum metal is involved in the doped and undoped 

reactions remains difficult to do.  A major question is why these vacancies should remain 

after initially created under high-pressure H2; perhaps some species have diffused apart 

from each other. 

It is also unlikely that a sufficient number of defects could form to detect the 

AlH5
-2 or Al2H7

-1 complexes directly (recall, S105 is ~10% of the 27Al signal).  It is more 

likely that S105 comes from a region of NaAlH4 that has a lot of defects (say AlH3 

vacancies) so all the Al and H spins in the region are narrowed.  This picture 

automatically leads to a chemical shift that is very close to molten NaAlH4 in static 

NMR, as experimentally observed (molten NaAlH4 = 100 ppm and S105 = 103 to 105 

ppm). 

 

6.3    Looking to the Future 

 

 There are some avenues left in which the results of this thesis could be 

augmented.  Early on, the decision was made to forgo directly testing NaH + H2 

reactions.  This was based upon the lack of a new Na species found in MAS 

corresponding to S105 (Figure 5.16, Chapter 5.3.2).  In light of the above discussion, it 

might also be advantageous to go back and hunt more specifically for a mobile Na-
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bearing species that may not stick around after the high pressure is evacuated.  If none is 

found, it would rule out the notion of a mobile Na species. 

 A more detailed XRD analysis would also be useful.  The material shows large 

changes and many peaks in the pattern disappear, so this may not prove to be much more 

helpful, but more certain identification of the peaks that are present could be beneficial. 

It would also be beneficial to get the 27Al MAS spectra analyzed to find the 

proportions of AlH6
-3 : S105 : AlH3.  The spectra would need to be run under 

“quantitative” conditions, i.e., using a data acquisition recycle delay that is much greater 

than T1 of every species.  This could tell us more accurately the Al/H ratio for S105 and 

might be able to guide our thoughts about the content of the hydriding reaction.  

Additionally, sending more samples from other PT-cycled material might be able to 

answer if AlH3 is always created.  It is not likely that we happened to only send samples 

with AlH3 and kept the samples without AlH3, but MAS of multiple samples cases would 

solidify this point. 
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