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Agilla: A Mobile Agent Middleware for Sensor
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CHIEN-LIANG FOK, GRUIA-CATALIN ROMAN, CHENYANG LU
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Agilla is a mobile agent middleware for sensor networks. Mobile agents are special processes

that can migrate across sensors. They increase network flexibility by enabling active in-network
reprogramming. Neighbor lists and tuple spaces are used for agent coordination. Agilla was

originally implemented on Mica2 motes, but has been ported to other platforms. Its Mica2
implementation consumes 41.6KB of code and 3.59KB of data memory. Agents can move five

hops in less than 1.1s with over 92% success. Agilla was used to develop multiple applications

related to fire detection and tracking, cargo container monitoring, and robot navigation.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications

General Terms: Agent, Design, Reliability, Algorithms

Additional Key Words and Phrases: Mobile Agent, Wireless Sensor Network, Middleware

1. INTRODUCTION

Wireless sensor networks (WSNs) contain a multitude of devices that integrate
sensors, processors, memories, and network interfaces. Since they are embedded,
each device is typically small, run on batteries, and communicate over low-power
links. WSNs are often ad hoc; once deployed, they are expected to autonomously
form a network without infrastructure support. Depending on the application, the
network may form routing trees for delivering data to base stations, or a multi-
hop mesh for delivering data amongst themselves. There are many applications for
WSNs.

While many WSNs have been successfully deployed [Culler et al. 2004], their
utility is limited by inflexible software. Most WSN devices are programmed prior
to deployment and, once deployed, can only be marginally tweaked using pre-defined
parameters. Unfortunately, identifying the parameters prior to deployment is often
impossible, and providing parameters that drastically change network behavior may
be too expensive to implement. In addition, many applications are custom-tailored
to maximize efficiency. This limits code reuse and, more importantly, reduces the
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possibility that an application can perform tasks it was not originally intended to
do.

WSN software must be flexible because it must react to unexpected changes
within the environment. Developing software that addresses every scenario that
may occur is impossible. There are many situations where the application must be
replaced, especially as improvements in batteries and other power sources enable
longer deployment intervals. For example, suppose a WSN is initially deployed
for habitat monitoring when, during a drought, fire fighters want to reprogram
the network to detect fires. When a fire is detected, the fire fighters may want to
reprogram the network once more with a search and rescue application. Integrating
and installing all three applications at once is not flexible or scalable.

Several systems enable users to wirelessly reprogram WSNs [Hui and Culler 2004;
Levis and Culler 2002; Boulis et al. 2003; Liu and Martonosi 2003; Kang et al.
2004; Han et al. 2005; Dunkels et al. 2004]. These systems, however, either flash
the instruction memory, flood the entire network, or exploit simple forms of code
mobility. Re-flashing the instruction memory requires the entire image to be trans-
ferred. This is inefficient and has high latency. Flooding a network with new code is
undesirable because oftentimes a user is only interested in a portion of the area cov-
ered by a WSN. Installing software on devices in irrelevant locals wastes resources
and reduces a network’s utility by preventing relevant applications from running.
The ability to install new code in a WSN increases a network’s flexibility, but code
mobility without state mobility (e.g., the program counter, heap, and stack) may
decrease efficiency and complicate the development effort since the software will
have to restart upon arrival on each device.

To address the problems listed above, we have developed a new middleware called
Agilla. Instead of relying on traditional fixed-location programs, Agilla adopts a
mobile agent-based paradigm where programs are composed of mobile agents that
can migrate across nodes. Mobile agents are dynamic, localized, and intelligent.
Each agent is a virtual machine with dedicated instructions and data memory. An
agent can execute special instructions that allow it to interact with the environment
and move or clone from one node to another while maintaining its execution state.
Multiple agents can coexist on a node. The middleware maintains a neighbor
list on each device that agents use to discover neighboring devices that they may
migrate to. Localized tuple spaces [Gelernter 1985] facilitate context discovery and
inter-agent communication while ensuring each agent remains autonomous. Tuple
spaces offer a shared memory model where the datum is a tuple that is accessed
via pattern matching using templates. This allows one agent to insert a tuple
containing a sensor reading and another to later retrieve it without the two knowing
each other or being collocated, thus achieving a high level of decoupling.

Agilla provides many inherent benefits. In-network reprogramming is achieved
since new agents can be injected and old agents can die. Multiple applications
can coexist since agents belonging to different applications can coexist. An agent
world-view can ease application development by diverting the focus from parallel
distributed algorithms to the sequential behavior of an individual agent. For ex-
ample, instead of worrying about how nodes must coordinate to track an intruder,
a mobile agent programmer can think of an agent following the intruder by repeat-
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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edly migrating to the node that best detects it. Finally, by allowing in-network
reprogramming and multiple users, Agilla transforms WSNs into general-purpose
computing platforms that are usable by a larger community.

This paper makes four contributions. First, it explores the benefits of using
mobile agents, neighbor lists, and tuple spaces as a foundation for developing new
WSN applications. Second, it examines the technical challenges associated with
designing Agilla and tailoring it to fit the salient properties of WSNs. Third, it
demonstrates the feasibility of using mobile agents, neighbor lists, and tuple spaces
in existing WSNs through middleware implementation. Finally, it evaluates the
performance of Agilla in terms of easing application development and overhead.
These contributions provide valuable engineering lessons for future efforts related
to software development in WSNs.

The remainder of the paper is organized as follows. Section 2 presents Agilla’s
model and explains how it was tailored to the unique properties of WSNs. Section 3
discusses the various engineering tradeoffs necessary to cope with limited resources
and an unreliable network. Section 4 presents the experimental results on Agilla’s
performance in terms of both micro and macro-benchmarks. Section 5 contains
several case studies that illustrate how Agilla simplifies programming and increases
network flexibility. Section 6 presents recent extensions made to Agilla based on
lessons learned from these case studies. Section 7 discusses related work. The paper
ends with conclusions in Section 8.

2. MODEL

This section presents a motivating example followed by Agilla’s model.

2.1 Motivating Example

In the remote arid forests of central Arizona, lighting ignites a fire that spreads
with the prevailing winds. The remoteness of the region would allow the fire to
rage out of control. Fortunately, the USDA Forest Service recognized this area as
highly incendiary and pre-deployed a WSN for detecting fire. As the fire grows,
nearby sensors detect it and spawn tracking agents that swarm around the fire
collecting real-time information about the exact location of the flames. The tracking
agents form a dynamic perimeter jumping away as the fire approaches, and cloning
themselves onto neighbors to encompass the growing fire. Simultaneously, they
notify a base station that forwards the warning via the Internet to the nearest fire
fighters a hundred miles away. By the time they arrive, the entire region is engulfed
burning with such intensity that the heat can be felt from miles away.

Upon arrival, the fire fighters’ first priority is to evacuate the area. They inject
search-and-rescue agents that spread and coordinate with the tracking agents to
scour the region for lost hikers trapped by the flames. Some of these agents find a
group of children and coordinate with the other agents to form a path of greatest
safety that the rescuers, carrying PDAs to access the path information, use to reach
the children and bring them to safety. Once everyone is safe, the fire fighters query
the tracking agents for the precise location and dynamics of the fire. From this data,
they are able to predict the fire’s behavior and control its movements preventing
it from approaching populated areas where property can be damaged and people
injured.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 1. The Agilla model

Once the fire has died, the tracking agents also die leaving only small fire detec-
tion agents. As new nodes are deployed to replace those that were destroyed, the
detection agents migrate onto them filling any voids in the fire detection coverage.
The minuscule resource consumed by the detection agents allow other applications
to run, which biologists exploit by injecting habitat monitoring agents for learning
about coyotes.

2.2 The Agilla Model

The motivating example presented in Section 2.1 illustrates that WSNs must be
flexible because of changing user requirements and the need to adapt to a highly
dynamic environment. In the example, several applications must execute within
the same WSN. Most of them were not deployed until after the fire exists and the
user requirements are known. All applications must adapt to contextual changes
like the fire’s location. Achieving this level of flexibility is difficult. Agilla is shown
to simplify flexible application development by providing mobile agents as the basic
unit of execution. Its model is now presented.

Agilla’s model is shown in Figure 1. Each node supports multiple agents and
maintains a tuple space and neighbor list. The tuple space is local and shared
by the agents residing on the node. Special instructions allow agents to remotely
access another node’s tuple space. The neighbor list contains the address of all
one-hop nodes. Agents can migrate carrying their code and state, but do not carry
their own tuple spaces.

An Agilla application consists of numerous autonomous agents, possibly of differ-
ent types, scattered throughout a network. For example, in the motivating example,
there are fire detection agents, tracking agents, and search-and-rescue agents. Given
all these agents, there must be some mechanism that allows them to communicate.
Agilla provides this through localized tuple spaces owned by nodes and shared by
the agents. Agilla tuple spaces offer a shared memory model where the datum is
a tuple. Tuples adhere to a strict format and are accessed by pattern matching
via templates. A tuple is an ordered set of fields where each field has a type and
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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value. Types may include integers, strings, locations, and sensor readings. Tuples
are accessed using templates that are also ordered sets of fields. Templates may
contain wild cards that match by type. To remove a tuple from a tuple space,
an agent must provide a template that matches the tuple. A template matches a
tuple if they have the same number of fields, and each field in the tuple matches
the corresponding field in the template. If there are multiple tuples that match a
template, one is chosen non-deterministically.

Tuple spaces provide a high level of decoupling that ensures agent autonomy.
They also provide a convenient way for agents to discover their context. For ex-
ample, since each node may have different sensors, Agilla inserts special tuples
indicating what type of sensors are available, e.g., if a node has a thermometer,
Agilla would insert a “temperature tuple” into its tuple space. Other context in-
formation stored in the tuple space includes the number of co-located agents and
their identities. Tradeoffs had to be made regarding what information to store in
the tuple space versus providing special accessor instructions. These tradeoffs are
discussed further in Section 3.

Agilla tuple spaces provide operations out, in, rd, inp (probing in), and rdp
(probing rd). They are atomic and operate over the local tuple space. out inserts a
tuple. in and rd are blocking operations that remove and copy a tuple, respectively.
If a match does not exist, the executing agent blocks until one does. inp and rdp
are the same as in and rd except that they do not block.

Like many other tuple space-based systems [Fok et al. 2004; Julien and Roman
2002; Murphy et al. 2001; Cabri et al. 1998], Agilla allows agents to register re-
actions. Reactions provide interrupt semantics and consist of a template and a
call-back function, which is a block of code that is executed when the reaction fires.
A reaction fires when a tuple matching the reaction’s template appears in the local
tuple space. When this occurs, a copy of the tuple is pushed onto the stack, and the
agent’s program counter is changed to point to the first instruction of the reaction’s
call-back function. Reactions allow an agent to tell Agilla that it is interested in
tuples that match a particular template. When a matching tuple is placed into the
tuple space, the agent is notified, allowing it to immediately respond. Without re-
actions, an agent would either have to block or poll waiting for the tuple to appear,
both of which are inefficient. An agent carries its reactions across migrations.

Agilla reactions are necessarily weak due to the limited resources within a WSN.
For example, the reactions are strictly local; an agent can only react to tuples in
the local tuple space. This differs from Lime [Murphy et al. 2001] and Limone [Fok
et al. 2004], which allow reactions to propagate and operate over multiple hosts. By
limiting the reaction to the local tuple space, the host engagement and disengaging
protocol is simplified, and the middleware does not require buffers for holding reac-
tions belonging to remote agents. In addition, Agilla’s reaction call-back functions
are not executed atomically as they are in Lime and Limone. They are treated
like regular instructions that may include blocking operations and be preempted
by another reaction. This eliminates pending reaction executions and the buffers
necessary to hold them. Finally, to reduce state, when a reaction is registered, it
will only react once to the pre-existing tuples in the tuple space; if there are several
matches only one will fire the reaction. It is up to the programmer to check whether

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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additional matches exist at the end of the reaction call-back function. However,
once the reaction is registered, it will react to every new matching tuple placed into
the tuple space. This reduces middleware complexity and overhead by eliminating
buffers for holding pending reaction executions, and makes stack overflows caused
by multiple rapid firings, each pushing a tuple onto the agent’s operand stack, less
probable.

Tuple spaces allow agents to communicate in a decoupled fashion. For example,
suppose there is a fire detection and habitat monitoring agent residing on the same
node when a fire is detected. The fire detection agent inserts a fire tuple to indicate
fire and activates a tracking agent before dying. Assuming this fire tuple remains
in the tuple space, the habitat monitoring agent will eventually react to it and
voluntarily die to free additional resources. Notice how the fire detection agent
need not know who received the fire tuple, the sending and reception can occur
at different times, and reception can occur even if the sender no longer exists.
This spatial and temporal decoupling ensures that each agent remains autonomous,
simplifying programming.

One alternative to using tuple spaces is message passing. Message passing does
not decouple agents since it requires that the sender know the receiver, and both
must be present for communication to occur. Furthermore, the receiver must either
block waiting for the message to arrive, continuously poll for it, or use an active-
messaging system like that of TinyOS [Hill et al. 2000]. The first two options are
inefficient. The third option tightly couples the sender and receiver since they have
to agree on active message numbers. Message passing is less flexible than tuple
spaces because it introduces dependencies among agents.

Agilla agents need to coordinate across nodes. For example, in the motivating
example, the tracking agents residing on different hosts need to coordinate to ensure
the perimeter is not breached. Agilla allows agents to remotely coordinate by
providing remote tuple space operations. They include rout (remote out), rinp
(remote probing in), rrdp (remote probing rd), routg (remote group out), and
rrdpg (remote group probing rd). The first three are analogous to out, inp, and
rdp except they take an additional location parameter that specifies on which node
to perform the operation. rrdpg searches all nodes within a one-hop range for
matching tuples, while routg inserts a tuple into every tuple space within a one-
hop range. Only non-blocking operations are provided to prevent an agent from
blocking forever due to message loss or network topology changes. In the example
above, the tracking agents would periodically perform rrdp or rrdpg to ensure
neighboring tracking agents remain alive.

Note that Agilla does not support federated tuple spaces that span multiple
nodes à la Lime [Murphy et al. 2001] because doing so requires employing transac-
tions to ensure tuple space consistency and operation atomicity. Transactions limit
scalability and rely on assumptions about network reliability that are unrealistic
for WSNs [Carbunar et al. 2004]. Instead, Agilla supports local tuple spaces where
each node maintains a distinct and separate tuple space. Most remote tuple space
instructions rely on unicast communication with the specific node hosting the tuple
space. Hence, a unicast remote tuple space operation entails the transmission of
only two messages, a request and a reply, and is scalable to networks of any size.
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Operations that involve multiple nodes use broadcast and restrict flooding to a
single hop. Since wireless is a broadcast medium, this does not impose additional
overhead and is, thus, also scalable.

Agilla assumes each node knows its physical location. This is reasonable since
sensor data without its originating location is often meaningless. Nodes may acquire
their location through GPS or any number of localization techniques [Hightower and
Borriello 2001]. Our prototype integrates Agilla with the Cricket indoor localization
system [Priyantha et al. 2000]. Location-awareness allows Agilla to use geographic
routing to support agent interactions that span multiple hops.

Since many WSN applications are localized [Qi et al. 2002; Intanagonwiwat et al.
2000], Agilla performs one-hop neighbor discovery using beacons. The one-hop
neighbor information is stored in a neighbor list that is updated by Agilla. Agents
can access this list using instructions numnbr and getnbr. numnbr returns the size
of the neighbor list, while getnbr fetches a specific neighbor’s address from the list.

An Agilla network is deployed without any application installed. Agents imple-
menting application behavior can later be injected, effectively reprogramming the
network. An agent’s life cycle begins when it is either injected into the network,
or cloned from another agent already in the network. An agent contains its own
instructions, data memory, program counter, operand stack, and heap. Agilla exe-
cutes each agent as an autonomous virtual machine and supports multiple agents
on a node. Each agent employs a stack-architecture. Along with all the usual in-
structions that enable general-purpose computing and inter-agent communication,
an agent can execute special instructions that move or clone it from one node to
another. They include smove, wmove, sclone, and wclone. The first letter specifies
whether the operation is weak or strong. In a weak operation, only the code is
transferred. The program counter, heap, stack, and reactions are reset and the
agent resumes running from the beginning. In a strong operation, everything is
transferred and the agent resumes execution where it left off. Naturally, strong
migrations simplify programming by reducing a distributed application into a lin-
ear program. However, they require more state to be transferred and thus impose
higher overhead. Through geographic routing, an agent can move or clone itself
to any node regardless of the number of hops away. Multi-hop migration is han-
dled by the underlying middleware and is transparent to the user. When an agent
completes its task it dies, allowing Agilla to reclaim its resources and use them for
other agents. An agent dies by executing halt.

Another reason why nodes should be location-aware is because WSNs rely heavily
on spatial information. For example, a collection of temperature readings is not
useful if it is not known from where the readings were obtained. For this reason,
Agilla identifies nodes based on their location rather than their network address.
A node’s location is its address. Thus, instead of performing a rout on node 1, an
agent performs it on a node at (x, y). Agilla addresses all nodes by their location.
To account for slight errors in location, Agilla allows an error ε when specifying
the address. This error is defined at compile-time and is a function of the network
density. It is chosen such that when an agent migrates to a particular location,
there is at least one node within ε of it. By using location as addresses, Agilla
primitives can be easily generalized to enable operations on a region. For example,

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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1: BEGIN pushn fir

2: pusht LOCATION
3: pushc 2

4: pushc FIRE

5: regrxn // register fire alert reaction
6: wait // wait for reaction to fire

7: FIRE pop

8: sclone // strong clone to the node that detected the fire
9: ... // fire tracking code

Fig. 2. The FireTracker agent

a fire detection node may need to clone itself onto all nodes in a geographic area,
or it may wish clone itself to at least one node in a region.

To solidify Agilla’s model, Figure 2 shows a portion of the FireTracker agent
mentioned in the motivating example. Recall that FireTracker agents swarm
around the fire forming a dynamic perimeter, a complex resource-consuming process.
To minimize overhead, the application uses lightweight FireDetector agents
during idle periods, and spawns heavier-weight FireTracker agents only when
needed. Figure 2 demonstrates how a FireTracker agent is notified. When a
FireTracker agent is injected, it registers a reaction sensitive to tuples contain-
ing a location and the string “fir” and waits for the reaction to fire. This is done
by lines 1-6. When a FireDetector agent detects fire, it performs a rout using
a tuple containing the string “fir” and its location on the node hosting the Fire-
Tracker agent, which reacts to the tuple by executing the code beginning at line
7. Notice that on line 8, the agent clones itself onto the node that detected the fire.
Once there, it will continue to spread forming a dynamic perimeter around the fire.

3. ENGINEERING EFFORT

This section discusses the engineering effort behind Agilla. It starts with an
overview of the sensor network’s hardware and operating system. It then presents
the architecture of the middleware followed by that of the agent. It ends with a
discussion of the agent’s instruction set.

3.1 Implementation Platform

Agilla was initially implemented and tested on Mica2 motes [Crossbow Technology
2005a]. These motes have an 8-bit 7.38MHz Atmel ATmega128L 8-bit microproces-
sor connected to a Chipcon CC1000 radio transceiver. The radio communicates at
up to 38Kbps over a range of 100m, though the actual amounts vary substantially
based on the environment [Zhao and Govindan 2003]. They have 128KB of in-
struction memory and 4KB of data memory. Mica2 motes are representative of a
typical device used in WSNs. Agilla has since been ported to the MicaZ [Crossbow
Technology 2005b], Tyndall 25mm [Tyndall National Institute 2005], and Tmote
Sky [Polastre et al. 2005] motes. Developing applications for them is challeng-
ing primarily due to the limited amount of data memory and a highly unreliable
low-bandwidth radio.

The WSN communicates with a relatively powerful base station with access to
the Internet. Our platform uses a PC. It has a MIB510 interface board that forms
a bridge between the WSN and the Internet. The laptop runs a Java application
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 3. Agilla’s middleware architecture

that allows a user to interact with the WSN by injecting agents and performing
remote tuple space operations. It also starts an RMI server that allows anyone on
the Internet to remotely access the sensor network.

Mica2 motes run an operating system called TinyOS [Hill et al. 2000]. TinyOS
applications are divided into components arranged in a hierarchy. Dynamic memory
is not provided; all variables must be statically declared. While this simplifies
compile-time analysis, it also makes the meager 4KB of data memory more precious.
As pointed out in [Levis and Culler 2002], TinyOS has a high learning curve. This
is compounded by the limited resources and unreliable radio. In addition, the hard-
wiring of TinyOS components makes it difficult to develop flexible applications. To
change a program’s behavior, the new behavior must either be pre-coded, or the
instruction memory must be re-flashed with a new image. Having a middleware
that provides higher programming abstractions that hide these complexities allows
programmers to quickly implement, test, and deploy their applications.

3.2 Agilla Architecture

Agilla’s architecture, shown in Figure 3, is divided into three layers, the highest
containing the agents that are discussed further in Section 3.3. The middle layer
contains the core middleware components, while the bottom is TinyOS. The mid-
dleware consists of various managers including an agent manager, context manager,
code manager, tuple space manager, and reaction manager. These managers are
orchestrated by an Agilla engine. In principle, each manager may be thought of
as a separate process that communicates via message passing. In reality, they are
implemented as TinyOS components that use TinyOS’s event and task model.

Agent Manager. The agent manager maintains each agent’s context. It is
responsible for allocating memory for an agent when it arrives and de-allocating
it when it leaves or dies. An agent’s memory consists of its execution state and
its code. The execution state consists of a program counter, heap, stack, and
condition code. The code memory is divided into fixed sized blocks as described
below. The agent manager allocates the minimum number of blocks that will hold
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Type Size (Bytes) Description

Location 3 An (x,y) location

Agent ID 3 An Agent ID

String 3 A three character string

Reading 5 A sensor ID and its reading

Type 5 A data or sensor type

Value 3 A 16-bit signed value

Fig. 4. Agilla data types.

an agent’s instructions. If there are insufficient blocks, the migration is aborted and
the agent is resumed running at its original location with the condition code set
to indicate failure. During cloning operations, the agent manager is responsible for
determining whether an agent is the original or the clone, and setting the condition
codes appropriately. The agent manager is also responsible for determining when
an agent is ready to run, and notifies the Agilla engine when this occurs. By
default the agent manager can handle up to three agents. This is easily changed at
compile-time and is primarily limited by processor speed and memory availability.

Context Manager. The context manager determines the location of the host
and its neighbors. Allowing an agent to know its location and that of its neighbors
is vital. In the motivating example, FireDetector agents need to tell Fire-
Tracker agents where they are. FireTracker agents will then need to know
their neighbors’ locations to adjust the perimeter. The context manager uses bea-
cons to discover neighbors and stores the neighbor locations in an acquaintance list
that is accessible via instructions numnbrs (count number of neighbors), getnbr
(select a neighbor), and randnbr (select random neighbor). Dedicated instructions
are provided because they are frequently used. The alternative would be to store
the data in the tuple space and have the agent perform tuple space operations to
access it. However, given the frequency of use, this would significantly increases an
agent’s code size.

Code Manager. Since TinyOS does not provide dynamic memory allocation,
Agilla implements a dynamic memory allocator. When an agent initiates a migra-
tion, it specifies the amount of memory it requires, and the code manager allocates
the minimum number of 22 byte blocks necessary to store the code. 22 byte blocks
is a compromise between internal fragmentation and forward pointer overhead. It
ensures that a block can fit within a TinyOS message. When agents are running,
the code manager retrieves the next instruction to execute. When an agent mi-
grates, it packages the agent’s code into messages. By default, the code manager is
allocated 330 bytes (15 blocks). With a few exceptions, instructions are one byte
meaning an agent can have up to 330 instructions. The number of blocks and the
block size is easily configurable at compile-time. Their maximum values depend on
memory availability and TinyOS’s message size, respectively.

Tuple Space Manager. The tuple space manager implements the non-blocking
tuple space operations (e.g., out, inp and rdp) and manages the contents of the
local tuple space. Blocking operations are implemented within the agent and are
described in Section 3.4. The tuple space manager dynamically allocates memory
for each tuple. By default, the tuple space is allocated 100 bytes and a tuple may
contain up to 18 bytes worth of fields, whose types and sizes are shown in Figure 4.
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Type Size (Bytes) Content

State 16 agent id, program counter, code size, condition
code, stack pointer

Code 26 one instruction block

Heap 26 four variables and their addresses

Stack 26 four variables

Reaction 26 one reaction

Fig. 5. Messages used during migration

Currently, the tuple space is stored entirely in RAM. In the future, it may be
expanded into external flash RAM. If 100 bytes is insufficient, it can be increased
at compile-time, but the maximum number of agents per node may need to be
decreased to ensure Agilla fits within the 4KB of RAM. A tuple is limited to 18
bytes so it can fit within a TinyOS message.

To prevent internal fragmentation and the need for forward pointers, the 100-
bytes are allocated linearly. When a tuple is removed, all tuples behind it are shifted
forward. While this results in more memory swapping, it is simple and enables a
powerful but lightweight implementation of an enhanced reaction manager that
is described in Section 6. A more in-depth investigation of efficient tuple space
implementations, possibly using hash functions and external flash memory, is left
as future work.

Reaction Manager. The reaction manager stores each agent’s reactions in a
registry. Whenever a reaction is registered, the reaction manager checks the tuple
space for a match. If a match is found, the reaction manager notifies the agent
manager, which pushes the tuple onto the agent’s operand stack, and updates the
agent’s program counter to execute the reaction’s code. Likewise, whenever a tuple
is inserted into the tuple space, the reaction manager checks all of the reactions in
the reaction registry and fires those whose templates match the tuple.

During a migration, the reaction manager packages the reactions registered by
the agent into messages so they can be transferred. When an agent arrives, the
reaction manager restores the agent’s reactions. By default the reaction registry is
allocated 130 bytes, allowing it to remember up to 5 reactions.

Agilla Engine. The Agilla engine serves as the virtual machine kernel that
controls the concurrent execution of all agents on a node. It implements a sim-
ple round-robin scheduling policy where each agent can execute a fixed number
of instructions before switching context. The default number of instructions is
8. Naturally, if an agent executes a long-running instruction like sleep, sense,
or wait, the engine immediately switches agent context. A large body of work
exists on scheduling policies that provide real-time guarantees or agent priority lev-
els [Stallings 2001]. These advanced scheduling policies may be incorporated into
the Agilla engine.

The Agilla engine also handles the arrival and departure of agents. This is par-
ticularly difficult due to the highly unreliable nature of Mica2’s radio. It is com-
pounded by the fact that an agent cannot be sent in a single message. When
an agent migrates, Agilla divides it into numerous types of messages as shown in
Figure 5. Minimally, a migration requires two messages: one state and one code.
Many agents require more since they have data in their stack and heap, and have
registered reactions, all of which must be transferred. If a single message is lost,
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Fig. 6. The mobile agent architecture

the migration operation will fail.
To help minimize this problem, agents are migrated one hop at a time, and

each message is acknowledged. We tried using end-to-end communication where
messages are not acknowledged till they reach the final destination, but found that
the high packet-loss probability over multiple links rendered this unreliable. If a one-
hop acknowledgement is not received within 290ms, the message is retransmitted.
This repeats up to four times. If the operation stalls for over 1s, the receiver aborts.
These values provide reasonable performance and reliability on the Mica2 platform,
as will be shown in Section 4, but they can be easily customized at compile-time to
match other platforms and environments. If the sender detects a failure, it resumes
the agent running on the local machine with the condition code set to zero. While
this may result in duplicate agents, the alternative is to simply kill the agent.
We decided that having duplicate agents is preferable. Consider the motivating
example; it is better to have duplicate warnings that there is a fire rather than
no warnings at all. If the migration succeeds, the agent’s condition code is set to
1. If the operation is a strong clone, the agents often need to distinguish between
the original and the clone, possibly to establish a parent-child relationship. To
facilitate this, Agilla sets the parent’s condition to 1, and the clone’s condition to
be 2. Finally, for all migration operations, it is possible that the destination node
does not have enough resources to accept an agent (e.g., it may not have enough free
code blocks). To distinguish between a failure due to message loss and insufficient
resources, the condition code is set to 0 in the former, and 3 in the latter.

Remote tuple space operations are also handled by the Agilla Engine. To perform
a remote tuple space operation, a request containing the instruction and template
is sent to the destination. When the destination receives it, it performs the oper-
ation on its local tuple space and sends back the result. Unlike agent migration
operations, end-to-end communication is used for remote tuple space operations
and acknowledgements are not used. This is because they are usually done on
nearby nodes, a request can fit in one message, and the operational semantics are
not violated if a message is lost. To reduce the effects of message loss, the initiator
timeouts after 2 seconds and re-transmits the request at most twice. Again, these
values are easily configured at compile-time.

3.3 Agent Architecture

The agent architecture is shown in Figure 6. It consists of a stack, heap, and various
registers. Mobile agents use a stack architecture because it allows instructions to
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Instruction Parameters Return Values Description

loc n/a [location] Pushes host’s location onto the
stack

wait n/a n/a Stops agent execution, allows it to
wait for a reaction

smove [location] n/a Strong move

wclone [location] n/a Weak clone

getnbr [value] [location] Get a neighbor’s address

out [tuple] n/a Insert a tuple into the local tuple
space

inp [template] [tuple]? Non-blocking find and
remove tuple from tuple space

rd [template] [tuple] Blocking find tuple in tuple space

rout [location], [tuple] n/a Insert a tuple into a remote
tuple space

rinp [location], [template] [tuple]? Non-blocking find and remove
tuple from remote tuple space

regrxn [template], [value] n/a Register a reaction on the local

tuple space

Fig. 7. Noteworthy Agilla instructions

be small. Most Agilla instructions are a single byte. A few consume 3 bytes for
pushing 16-bit variables onto the stack. Instructions within Agilla’s extended ISA
consume 2 bytes each, but these are specialized instructions that are infrequently
used as will be described in Section 6. The heap is a random-access storage area
that allows an agent to store 12 variables. It is accessed by instructions getvar
and setvar. The heap size is customizable at compile time.

The agent also contains three 16-bit registers: the agent’s unique ID, the program
counter (PC), and the condition code. The agent ID is unique to each agent and
is maintained across move operations. A cloned agent is assigned a new ID. An
agent ID is generated by concatenating the least significant byte of the host address
with a monotonically increasing counter on the host. The PC is the address of the
next instruction. It is modified by the jump instructions and is used by the code
manager to fetch the next instruction. When a reaction fires, the reaction manager
changes the PC to point to the first instruction of the reaction’s code. To allow an
agent to resume executing where it was when the reaction fired, the original PC is
stored on the stack below the tuple that caused the reaction to fire. Finally, the
condition code is a 16-bit register that records execution status. For example, the
instruction ceq sets the condition to be 1 if the top two variables in the stack are
equal.

3.4 Agent Instruction Set Architecture (ISA)

Agilla’s ISA is based on that of Maté [Levis and Culler 2002]. However, there are
many differences that are necessary for supporting agent mobility and tuple spaces.
Some instructions unique to Agilla are shown in Figure 7. A full listing is available
at [Fok 2005]. Agilla’s ISA can be divided into four categories: general purpose,
tuple space, and migration instructions.

General purpose instructions. Agilla’s general purpose instructions are nearly
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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identical to those of Maté. They include, among many others, add, halt, putled,
or, rand, sense, eq, pop, and pushc. New instructions used by Agilla are sleep,
rjump, rjumpc, aid, and pushcl. These enable an agent to achieve sophisticated
behaviors without using multiple components, which is necessary in Maté. For
example, an Agilla agent can perform some application-specific actions, sleep, and
jump back to repeat. Maté can only achieve this in its timer capsule.

Tuple space instructions. Tuple space operations allow an agent to inter-
act with the tuple space on each host. These operations require that a tuple (or
template) be placed onto the stack as a parameter. This is done by pushing each
field followed by the number of fields. For example, in Figure 2, lines 1-3 pushes a
template with two fields onto the stack.

Instructions out, in, rd, inp, and rdp are provided for accessing the local tuple
space. The blocking in and rd operations are implemented by having the agent
repeatedly try the inp or rdp operations. If the probe fails, the agent’s context
is stored in a wait queue. When a tuple is inserted, the agents in this queue are
notified and can re-check for a match. The remote tuple space operations rout
(remote out), rinp (remote probing in), rrdp (remote probing rd), routg (remote
group out), and rrdpg (remote probing group rd) are non-blocking to account for
message loss and disconnection. If the operation is successful, the resulting tuple is
placed onto the stack and the condition is set to 1. Note that since rrdpg may find
multiple matches, its tuples are not stored on the stack because it may cause a stack
overflow. Instead, the locations of the neighbors that possess a match are stored on
the heap. The tuple space instructions also include regrxn and deregrxn. They
allow an agent to register and deregister a reaction, respectively. Both instructions
require a template and value be pushed onto the stack, where the value is the
address of the first instruction of the reaction’s code.

Migration instructions. The migration instructions allow an agent to move or
clone from one node to another, possibly multiple hops away. Agilla provides four
migration instructions: smove, wmove, sclone, and wclone. They were discussed
in Section 2.2.

4. PERFORMANCE EVALUATION

This section evaluates Agilla. It first presents micro-benchmarks that determine the
latency, reliability, and overhead of Agilla operations, followed by macro-benchmarks
that evaluate Agilla using a fire detection and tracking application.

4.1 Micro-Benchmarks

The following micro-benchmarks evaluate the latency, reliability, and overhead of
individual Agilla instructions. They examine the remote tuple space and agent
migration operations, followed by the overhead of Agilla’s local instructions that
do not involve the network. The experiments are performed on a 25-mote Mica2
network arranged in a 5x5 grid as shown in Figure 8. Each node is assigned an
(x,y) coordinate based on its grid position, where the node in the lower-left corner
has a location of (0,0). To simulate multi-hop routing, TinyOS’s network stack
is modified to filter all messages except those from neighbors based on the grid
topology. For geographic routing, a simple best-effort greedy forwarding algorithm
is used. We tried integrating CLDP [Kim and Govindan 2005], a real geographic
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 8. A 5x5 Mica2 mote test bed

// The smove agent

1: pushloc 5 1
2 smove // strong move to mote at (5,1)

3: pushloc 0 0

4: smove // strong move to mote at (0,0)
5: halt

// The rout agent
1: pushc 1

2 pushc 1 // tuple <value:1> on stack

3: pushloc 5 1
4: rout // do rout on mote (5,1)

5: halt

Fig. 9. The agents that test smove (top) and rout (bottom)

routing implementation, but failed due to insufficient memory.
The wireless links in WSNs are notoriously unreliable. This is problematic since

agents migrate using multiple messages and the operation will fail if just one mes-
sage is lost. Agilla uses two techniques to increase network reliability. First, it uses
a simple protocol involving acknowledgements, timers, and retransmits. Second,
whenever the operation involves multiple messages, all of them are transmitted and
acknowledged one hop at a time to prevent having to re-send a message multiple
hops when it is lost. Implementing these techniques adds overhead and, since the
semantics of the remote tuple space operations are not violated if they fail, only
the migration operations employ them.

To test reliability and overhead, the agents shown in Figure 9 are injected into
node (1,1). The smove agent moves to a remote node and back while the rout
agent places a tuple in a remote node’s tuple space. Each agent is run 100 times
for 1-5 hops. The latency of each successful execution, and the number of failures
are recorded (smove latencies are halved to account for the double migration). The
results, shown in Figures 10 and 11, indicate that both operations perform well
across short distances. However, as the distance increases, the probability of a
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Fig. 13. The latency of local operations.

message being lost also increases, which is reflected in a decrease in reliability. The
results show that smove is more reliable than rout, but has higher latency. There
is clearly a tradeoff between latency and reliability.

To determine whether rout and smove are representative of the other remote
tuple space and agent migration instructions, we measured the one-hop execution
time of all these instructions by timing each 100 times and finding the average. The
results, shown in Figure 12, indicate that rout and smove are representative, and
that the reliable agent migration instructions have significantly higher overhead
than the unreliable remote tuple space operations. Note that migration operations
have higher variance. This makes sense since the reliable protocol employs retrans-
mit timers at each hop, which may result in higher latency. The results also suggest
that the quickest an agent can reliably migrate is once every 0.3s. Assuming the
radio range is around 50m, this means an agent can migrate across a network at
600km/h (373mph), which is sufficient for tracking many interesting events like fire.

We also benchmarked local operations unique to Agilla. Like Maté, Agilla exe-
cutes each instruction as a separate task. To determine the execution times of these
instructions, we disabled the radio and timed how long it took to execute each 1000
times, then repeated it 100 times. We calculated the average execution time of
each instruction and the results, shown in Figure 13, indicate that there are three
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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1

2

3

Fig. 14. An overview of the fire detection and tracking application. Initially, when a fire breaks
out, detection agents send a message to a base station (1), which injects a tracker agent into the

network (2). This agent migrates to the fire and repeatedly clones itself to form a perimeter (3).
The perimeter is continuously adjusted based on the fire’s behavior.

general classes of local operations. The first class has the least execution time and
includes the loc, aid, numnbrs, and various push instructions. These instructions
simply push a value onto the stack; they do not perform any calculation and take
about 75µs. The second class of instructions have higher latency because they ei-
ther perform additional memory accesses (e.g., pushn, pushcl, pushloc, regrxn,
and deregrxn), or perform simple computations (e.g., randnbr). These instruc-
tions take around 150µs to execute. The last group of instructions cost the most
and consist of tuple space operations. However, they still execute fairly quickly
averaging 292µs. Note that successful blocking tuple space operations take slightly
longer than the non-blocking ones. This makes sense since blocking operations ac-
tually consist of performing the non-blocking equivalent operation, a check to see
whether a result was found, and blocking if none was found. Also note that in takes
longer than rd, which makes sense since it requires modifying the tuple space.

Agilla can perform reliable one-hop remote tuple space operations in about 55ms,
and migration operations in 225ms. The execution time scales linearly with the
number of hops, and the additional overhead for reliable operations is justified by
their resilience to message loss across multiple hops. Local operations take between
60 and 440µs. This demonstrates the feasibility and efficiency of using mobile
agents and tuple spaces in a representative WSN. We did not directly compare
Agilla’s instructions with other sensor network middleware like Maté because many
of Agilla’s instructions are higher level and do not have a corresponding instruction
against which to be compared. However, the latency of simpler Agilla instructions
like loc and aid that execute within 100µs is comparable to corresponding Maté
operations.

4.2 Macro-benchmarks: Fire Detection and Tracking

While the previous section evaluated individual Agilla instructions, this section
evaluates Agilla’s overall model in terms of its ability to support dynamic appli-
cations such as the one shown in Figure 14, fire detection and tracking. The fire
detection and tracking application illustrates the need for a flexible middleware. A
WSN is deployed in a region susceptible to wild fires. When a wild fire breaks out,
its initial position and movements are unpredictable. Agilla allows the network to
continuously reprogram itself using mobile agents based on the fire’s behavior. In
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1: BEGIN pushc temperature

2: sense // take a temperature reading
3: pushcl 200

4: cgt

5: rjumpc FIRE // jump to FIRE if temperature > 200
6: SLEEP pushc 8

7: sleep // sleep for 1 second

8: rjump BEGIN // repeat
9: FIRE loc

10: pushn fir

11: pushc 2 // tuple <“fir”, location> is on the stack
12: pushloc 1 1 // assume base station is at (1,1)

13: rout // send tuple <“fir”, location> to base station

14: halt // die

Fig. 15. A fire detector agent

this case, light-weight fire detection agents sense the fire and notify the base sta-
tion. The base station in turn injects a fire tracker agent that moves to the engulfed
region and repeatedly clones itself to form a perimeter. The tracker agents continu-
ously adjust their numbers and location to maintain a perimeter as the fire changes
shape. This adaptive behavior is difficult to provide without mobile agent technol-
ogy. The remainder of this section discusses how Agilla can be used to implement
the detection and tracker agents, and the performance of the tracker agents.

After the WSN is deployed, enough fire detection agents are injected to achieve
sensing coverage. These agents determine when a fire breaks out, and notify the
base station when one does. Agilla does not provide a special instruction for de-
tecting fire. However, it does provide tuples that describe the available sensors, and
an instruction for accessing them. A basic detector agent that senses fire based on
temperature is shown in Figure 15. It takes a temperature reading every second
(lines 1-8), and inserts a tuple containing its location and the string “fir” into the
base station’s tuple space if the temperature reading is above 200 (lines 9-13). After
it notifies the base station, it dies freeing its resources (line 14).

In the experiments presented later in this section, fire is modeled by inserting the
string “fir” into the tuple spaces of the nodes that are on fire. The tracker agents
search for these tuples using remote tuple space operations (e.g., rrdp and rrdpg)
to detect fire. Two types of fire agents are used: static and dynamic. A static
fire agent does not move. Its code is shown in Figure 16. Lines 1-3 insert the fire
tuple, while lines 4-8 blink the red LED. By blinking the red LED, we can visually
determine the state of the network. The static fire agent is used to create fires of
different shapes. It serves as a baseline on how quickly the tracker agent can form
a perimeter around a fire.

The dynamic fire agent models a fire that epidemically spreads throughout the
network. It is implemented in a mere 47 bytes of instructions and is available on Ag-
illa’s website (http://mobilab.wustl.edu/projects/agilla/index.html). The
rate at which it spreads can be set by controlling how long it resides on a node
before attempting to clone itself onto other nodes.

The fire tracker agent forms a perimeter around the fire. It dies if its node catches
on fire. This is done by registering a reaction that kills the agent when a fire tuple
ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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1: BEGIN pushn fir

2: pushc 1
3: out // insert fire tuple

4: BLINK RED pushc 25

5: putled // toggle red LED
6: pushc 1

7: sleep // sleep for 1/8 second

8: rjump BLINK RED

Fig. 16. The static fire agent

1: REG RXN pushn fir

2: pushc 1
3: pushc RXN FIRED

4: regrxn // register the reaction
5: ... // tracking code omitted

6: RXN FIRED pushc 9

7: putled // turn off LEDs
8: pushn trk

9: pushc 1

10: inp // remove tracker tuple
11: halt // die

Fig. 17. The reaction registered by the fire tracker
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to random 
neighbor
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Die

None
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Rxn 
Fires

Rxn 
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Fig. 18. The life cycle of a fire tracker agent

is inserted into the local tuple space. The code that registers this reaction is shown
in Figure 17. Lines 1-2 push a template containing the string “fir” onto the stack.
Line 3 pushes the address of the reaction’s call-back function onto the stack, and
Line 4 registers the reaction. Lines 6-11 define the reaction’s call-back function,
which is executed when the reaction fires. When the reaction fires, the tracker
agent turns off all LEDs (lines 6-7), removes its tracker tuple (lines 8-10), and then
dies. The tracker agent inserts a tracker tuple which is used by other tracker agents
to determine the integrity of the perimeter. If the fire breaches the perimeter, the
tracker agents next to the breach will detect the lack of a neighbor, and re-form
the perimeter by cloning themselves onto other neighbors. A persistent breach of
the perimeter is considered a failure.

The life cycle of a fire tracker agent is shown in Figure 18. It works by repeatedly
checking whether any of its neighbors are on fire. If none are, it performs a weak
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Fig. 19. The static fire tests
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Fig. 20. The results of the static fire tests.

move to a random neighbor and repeats the process. If a neighbor is on fire, it
enters a tracking mode where it lights up its green LED and executes the following
loop: It first determines the locations of all neighbors that are on fire. Then for
each non-burning neighbor that is within a certain distance of the fire and does
not have a tracker agent, it performs a weak clone (wclone) to it. This process is
repeated indefinitely until the fire dies. The periodic checking of neighbors near
the fire allows the tracker agent to adjust the perimeter as the fire spreads. The
fire tracker agent was implemented in 101 bytes of code.

To evaluate our fire tracking agent, we tested its performance in a WSN consisting
of 26 Mica2 motes arranged in a 5 x 5 grid (one mote serves as a separate base
station). By arranging the motes in row-major order, the node’s (x, y) location
can be calculated from its address. To create a multi-hop network in our lab’s
limited space, we modified the TinyOS network stack to filter out all messages
except those from immediate horizontal, vertical, and diagonal neighbors based on
the grid topology. Since our network is physically single-hop, our results reflect
worse than normal scenarios due to an increased likelihood of wireless collisions.

For the static fire tests, the WSN is initialized by injecting static fire agents onto
certain nodes to form fires of various shapes and sizes. A fire tracker agent is then
injected onto a node next to the fire. Four different fires were used, as shown in
Figure 19. The node on which we initially injected the detector agent is marked
with a black star. The arrows indicate where the detector must clone itself to form
the perimeter. Note that in test b, node (5,1) also has a star. This is because our
tests revealed that the starting location of the tracker has a significant impact on
the efficiency, and will be described later in this section.

The results of the tests are shown in Figure 20. Notice that in most cases the
perimeter is formed within 3 seconds. Scene A took longer because it contains
areas that prevent multiple agents from spreading in parallel. For example, when
a detector is at node (2,2), it is the only agent that can clone to (2,3). To test this
theory, we re-ran scenario B with the fire detector initialized at node (5,1) which
presents many instances where only one agent can clone to advance the perimeter.
The results, shown on Figure 20, clearly show how the initial point of fire tracking
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Fig. 21. The dynamic fire tests
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Fig. 22. Results of the dynamic fire tests.

significantly impacts performance.
To evaluate the detector’s ability to maintain a perimeter around a spreading

fire, we inject four fire tracking agents into the network at the positions marked
with a black star in Figure 21, and then inject a dynamic fire agent into node (5,5).
We run two tests: one with a slow fire agent that clones every 7 seconds, another
with a fast one that clones every 5 seconds. The results of the tests are shown
in Figure 22. They show that the fire tracker does a reasonable job maintaining
a perimeter around the slow fire, but has difficulty with the fast fire. In the fast
experiment, the fire agent spreads so quickly that it cuts off a portion of the network
preventing the detector agent from forming a full perimeter. The reason why both
converge to 100% is because as the fire spreads, the network eventually becomes
saturated with an agent on every node.

The macro-benchmarks show that Agilla can be used to implement sophisticated
applications in a dynamic environment. In this case, Agilla agents are used to
model, detect, and track fire. Experience developing the mobile agents and experi-
ments evaluating their performance shows that Agilla’s model simplifies application
development and provides adequate performance for this application.

5. USABILITY CASE STUDIES

In addition to fire detection and tracking, Agilla has been used in several other
applications including cargo tracking and robot navigation. These projects were
collaborative in nature and are only outlined here. They are presented as case
studies that further demonstrate Agilla’s usage.

5.1 Monitoring Cargo Containers

In the post-9/11 world, the United States has been keenly aware of terrorists threats
and has made large investments in improving our nation’s security. One area that
remains vulnerable, however, is in the maritime shipping industry and our nation’s
361 ports. In 2005, over 10 million cargo containers entered the United States, 95%
of which were not inspection by the US Customs and Border Patrol (CBP). In the
near-term, the number of containers entering this country is forecasted to increase
by 11% per year. This presents an obvious and growing security threat since many
of the containers originate from regions with lax security and where terrorists are
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known to operate. Unfortunately, inspecting every container as it passes through a
US port is not possible due to cost.

The primary strategy of the Department of Homeland Security (DHS) is to in-
spect the containers at the foreign ports before they are loaded onto US-bound
ships. However, this requires ensuring that the containers are not tampered with
en-route. One way to accomplish this is through the use of container security
devices (CSDs).

Existing CSDs are relatively primitive; they consist of a physical cable or seal that
must be damaged to gain access through the door. They are easily circumvented and
do not detect non-door intrusions, e.g., torching a hole through a side wall. For this
reason, there is considerable interest in using an electronic CSD. In November 2004,
General Electric began field testing their CommerceGuardTM CSD that can detect
unauthorized entry but does not provide real-time event notification. Another
CSD, the SkyBitz Mobile Terminal, provides real-time data over a satellite link
to a Service Operation Center (SOC). The SOC, however, is a single point of
failure and limits scalability. Finally, MachineTalker, Inc., is developing a CSD that
forms a wireless ad hoc network among the containers. Their devices communicate
over a local gossip protocol where when one device detects a breach, it notifies
its neighbors, which in turn notify their neighbors. Eventually, the base station
hears about the breach and notifies the authorities. By using an ad hoc network,
this system is able to adapt to the dynamic cargo shipping environment where
containers are constantly moved.

A flexible wireless ad hoc network infrastructure is only half the solution. In
order to be useful, the ad hoc network must have equally flexible software. Many
different users are involved in container shipping, e.g., the exporter, importer, car-
rier, shipper, customer, DHS, and CBP. Each of them will want to execute their
own software on the network. The minimal computational resources within a CSD
prevents installing everyone’s program. In addition, a user’s demands will change.
For example, the CBP may need to run different programs based on the current
security threat level. Also, the CSDs are often installed on a container for years at a
time over which the requirements will likely change and new algorithms or policies
may be developed that require the devices to be reprogrammed. Agilla provides
the necessary flexibility that this application demands. Imagine a ship arriving at
a US port and US CBP (software) agents jumping onto the ship bouncing from
one container to another looking for anomalies. Other agents are then injected to
analyze the electronic manifest lists for suspect cargo. Those containers are flagged
for manual inspection, while the remaining containers are expedited through the
customs process, increasing efficiency.

Our group collaborated with corporate partners and deployed an 12-node Agilla
network on a mock cargo container test bed as shown in Figure 23. Each 40-foot
container is represented by a box and is augmented with a Mica2 Mote. The Mica2
mote contains a daughter board for sensing light, temperature, and vibration, and a
speaker for emitting an audible alert. After the network is deployed, mobile agents
are used to load the manifests, arm the containers, and query the manifests and
security events. To load the manifests, the base station creates a mobile agent
with the manifest and programs it to migrate to the destination where it inserts
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Fig. 23. The cargo container test bed. The arrows show a hybrid approach to visiting each

container: dotted is clone, solid is move

a tuple containing the manifest into the local tuple space. For this case study, a
light-weight security mechanism is used where each field in the tuple is encrypted
at the base station. The underlying communication link is assumed to be secured
using lower-layer technologies like TinySec [Karlof et al. 2004].

For the operations that require visiting every container (e.g., search), a balance
must be met between network utilization and latency. If a single agent is used
to sequentially visit every node, the latency will be high. However, if the agents
are programmed to repeatedly clone, the network may be congested, resulting in
unreliable results. Through experimentation, we discovered that cloning the agent
along one axis, and having the clones move in the same direction along another
axis, as shown in Figure 23, resulted in the most reliable results with the lowest
latency. Note that since the agents need to remember whether they are moving or
cloning, and in which direction they are traveling, strong migration operations are
used. Once an agent arrives at a container, it performs some local computations
and if it needs to report back to the base station, it does so using the remote out
(rout) tuple space operation.

A significant advantage that electronic CSDs have over RFIDs is their ability to
perform local computations. In this case study, special security agents are injected
into the network that “arm” a container by monitoring the sensors and recording
anomalies. These agents monitor the accelerometer to detect jarring, and the light
sensor to detect unauthorized intrusions (it is assumed that the CSD is located
inside the container and that light enters when the container is breached). When
excessive acceleration or light occurs, the security agent saves an alert tuple in the
local tuple space, sends one to the base station, and flashes the mote’s LEDs and
emits an audible alert. Since the alert tuple is saved in the local tuple space, it
remains even if the security agent dies. Later, a CBP agent may search for these
alert tuples, and report back which containers should undergo additional inspection.

The cargo shipping application has been implemented and demonstrated at Sen-
Sys 2005 [Hackmann et al. 2005]. It establishes the need for a flexible software
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Fig. 24. The robot navigation problem. A roadmap graph is overlayed on the WSN and mobile

agents are used to query the temperature along the edges.

infrastructure and illustrates how Agilla may be used to meet this need. The case
study uses a variety of mobile agents that serve different users. Their collective
functionality could theoretically be aggregated into a single static application, pro-
vided there is enough memory, but such a solution may not be updated as easily
when new algorithms are developed and unforseen needs may not be as easily ac-
commodated.

5.2 Robot Navigation

Imagine a robot traveling through an area partially engulfed in flames as shown in
Figure 24. The robot’s goal is to travel across the area while avoiding the fire. The
fire is dynamic and unpredictable, preventing the use of a pre-planned route. The
robot has on-board sensors that can sense the fire, but have limited range. To help
the robot learn more about the fire’s location, a WSN running Agilla is deployed
that the robot can use. This case study focuses on how the robot can exploit mobile
agents and WSNs to help it make better navigation decisions.

A key challenge with developing a robot navigation protocol is efficiency. At each
point along a robot’s route, the robot can theoretically move in any direction. How-
ever, considering every possibility quickly makes the problem intractable [Hwang
and Ahuja 1992]. To reduce the problem’s complexity, many motion-planning algo-
rithms use a roadmap [Bayazit et al. 2002], which is a pre-computed set of feasible
paths that the robot can take. It is shown as an overlay graph in Figure 24. By lim-
iting the problem space to the roadmap, the problem remains tractable; a solution
can be generated by running Dijkstra’s shortest path algorithm on the roadmap.
Unfortunately, certain edges on the roadmap may no longer be safe due to changes
in the wildfire’s position. Assuming fire can be detected by its temperature, the
maximum temperature along a roadmap’s edge is indicative of how safe it is to
traverse the edge. Since the robot’s on-board thermometers have limited range, the
robot can make better navigation decisions if it could query the WSN to determine
the maximum temperature along an edge in the roadmap.

The robot queries the maximum temperature of an edge using mobile agents.
It injects a network exploration agent that repeatedly clones itself onto nodes sur-
rounding the path. These agents form a tree that allows temperature readings to
be delivered back to the robot. Since the fire is dynamic, the network exploration
agents must not travel too far away. If they do, the temperature readings will have
changed by the time the robot arrives. Thus, the robot defines a query area that
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bounds the network exploration agents. To limit network overhead, the parent
nodes filter data coming from nodes further down the edge. For example, since
the robot is only interested in the maximum temperature along a path, each agent
can filter all temperature readings less than its current temperature. Also, since
the temperature readings of two sensors close to each other are approximately the
same, the exploration agents do not clone themselves onto immediate neighbors,
but spread themselves out along an edge. This process is repeated for each out-
going roadmap edge. Once the robot receives the maximum temperature along
these edges, it can weigh the edges based on their temperature and length, and run
Dijkstra’s shortest path to find a safe and efficient route.

The robot navigation case study was implemented and evaluated using a test
bed consisting of 17 Mica2 motes and an ActiveMedia Pioneer-3 DX robot [Bhat-
tacharya et al. 2005]. The evaluation showed that the use of mobile agents and
WSNs increases a robot’s success rate by up to 77% relative to traditional proto-
cols that relied only on sensors on-board the robot.

6. RECENT EXTENSIONS

The experience with developing applications using Agilla has led to extensions that
improve upon Agilla’s basic model. They include an extended instruction set and
lightweight asynchronous reactions.

Extended instruction set. While developing applications on top of Agilla,
it became clear that Agilla needed to accommodate new instructions for handling
complex tasks that would otherwise incur excessive overhead if implemented in
Agilla’s interpreted byte code. For example, the fire detection agent presented
in Section 4.2 used a relatively simple algorithm for detecting fire based only on
the temperature reading. Implementing a more sophisticated algorithm that uses
multiple sensors or complex signal processing algorithms in Agilla byte code will
be inefficient if not impossible. Application-specific instructions may significantly
increase an agent’s efficiency by changing the virtual-native code boundary [Levis
et al. 2005].

Recall that Agilla instructions are implemented as TinyOS tasks. An instruc-
tion’s byte code is mapped to the task that implements it using TinyOS’s parameter-
ized interface mechanism. Specifically, the Agilla Engine uses interface ByteCodeI
that is parameterized by an 8-bit value. This 8-bit value corresponds to the byte
code, and the component that is wired to the interface contains the implementing
task. Since the parameter is an 8-bit value, up to 256 instructions can be wired to
the Agilla Engine. While this is enough to hold the commonly used instructions, it
does not offer enough space for adding application-specific instructions. To address
this, the Agilla Engine was modified to provide 12 additional ByteCodeI interfaces
for adding up to 3072 application-specific instructions. The instructions wired to
these interfaces make up Agilla’s extended ISA. The Agilla assembler includes a
configuration file that specifies the extended ISA. Extended instructions are as-
sembled into two instructions: the first switches the Agilla Engine into one of 12
extended ISA modes, while the second is the actual instruction. After executing
the extended instruction, the Agilla Engine switches back into basic mode. While
extended instructions are double the size of most basic instructions, they are used
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less frequently, and perform application-specific functions more efficiently than a
long sequence of interpreted Agilla byte code could.

Lightweight asynchronous reactions. Recall that Agilla’s original reaction
mechanism evaluated in the macro-benchmarks was not atomic, and that when
a reaction was registered, it would only fire once on the existing tuples even if
there were multiple matches. The purpose of this was to simplify the middleware’s
implementation and minimize memory usage. However, it complicated the agent’s
code since it would have to search for additional matches at the end of each reaction
call-back function, and the lack of atomicity made it difficult to achieve reliable
behavior. This became especially troublesome in the cargo tracking and robot
navigation scenarios where numerous agents were trying to coordinate to cover a
region of the network. Furthermore, if enough matching tuples were inserted after
the reaction was registered, a stack overflow may occur as the reactions preempt
each other. To address these problems, a new reaction mechanism with lightweight
asynchronous semantics was introduced.

The new Agilla reactions are atomic but are asynchronous in terms of when a
matching tuple is inserted, and when the reaction fires. Agilla’s reactions are similar
to TinyOS tasks in that they are executed sequentially, i.e., a reaction cannot
preempt another reaction. They exhibit “eventually” semantics in which a reaction
will react to all matching tuples so long as they remain in the tuple space. If there
are multiple tuples that match a reaction when it is registered, or if matching tuples
are inserted afterwards, the reaction may not fire immediately, but rather is only
guaranteed to fire if the tuples remain in the tuple space. Thus, it is possible for a
tuple to be inserted and removed so fast that an agent never reacts despite having
registered a reaction sensitive to it. However, reactions are guaranteed to react to
all matching tuples that do remain in the tuple space regardless of when they were
inserted, which simplifies agent code. By providing these semantics, Agilla need not
implement the heavyweight transaction mechanisms that are necessary to provide
stronger semantics.

The semantics of Agilla’s new reaction mechanism were carefully chosen to en-
sure a lightweight implementation. The implementation required a re-design of the
reaction manager to run when the Agilla engine is idle. To ensure that a reaction
reacts to all matches exactly once, the reaction manager must remember for each
reaction which tuples have been checked. Since the tuple space’s memory is allo-
cated linearly, this can be efficiently implemented using a single pointer for each
reaction that divides the tuple space into a region containing tuples that have been
considered, and those that have not. When a matching tuple is found, the agent’s
current program counter (PC) and condition code is saved onto the stack and the
PC is changed to point to the first instruction of the reaction’s function. The agent
enters a “reaction” mode in which it cannot execute a blocking operation or be
interrupted by another reaction. This ensures that reactions are atomic. Finally,
to leave the reaction mode, the agent executes instruction endrxn, which restores
the agent’s PC and condition code.
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7. RELATED WORK

Agilla is a general-purpose middleware that simplifies application development
while increasing a WSN’s flexibility. There are many projects related to Agilla,
both in terms of exploiting mobile agent technology, and providing a key requisite
for flexibility: in-network reprogramming.

Mobile agents have been used for many years on other networks and their ben-
efits are well established [Lange and Oshima 1999]. Some systems for the In-
ternet include Agent Tcl [Gray 1997], Ara [Peine and Stolpmann 1997], Java
Aglets [P.E.Clements et al. 1997], Mole [Baumann et al. 2002], Sumatra [Acharya
et al. 1997], TACOMA [Johansen et al. 1995], PeerWare [Cugola and Picco 2001],
and MARS [Cabri et al. 2000]. They have been successfully used in data min-
ing [Lange and Oshima 1999], e-commerce [Maes et al. 1999], and network man-
agement applications [Baldi and Picco 1998]. Mobile agents have also been used
in wireless ad hoc networks. Systems that enable this include Lime [Murphy et al.
2001], EgoSpaces [Julien and Roman 2002], and Limone [Fok et al. 2004]. All of
these systems differ in the communication and migration primitives provided, how-
ever they adhere to the general mobile agent principle of autonomous execution
units capable of migrating across physical nodes.

The mobile agent system closest to Agilla is concurrent work done by [Szumel
et al. 2005]. Like Agilla, their system is built atop TinyOS and Maté [Levis and
Culler 2002], runs on Mica2 motes, provides a neighbor list, and agents commu-
nicate using per-host shared memory spaces. However, there are several key dif-
ferences. First, unlike Agilla, their system provides both unreliable and reliable
migration. This allows the programmer to decide whether the added overhead of
reliable migration is worth it. Second, agents always resume from the beginning
after migrating, meaning strong migration is not provided. Finally, they do not
provide remote communication primitives at the middleware level, but expose the
underlying network interface. This is a lower level of abstraction than that provided
by tuple spaces. They have evaluated their system in event tracking, localized data
collection, and global data collection applications, and showed that it performs
linearly with the number of nodes.

Much work has been done regarding how mobile agents can be exploited in a
WSN. Most of these studies are theoretical and evaluated using simulations or on
resource-rich devices. For example, in [Wu et al. 2004], the authors developed
algorithms that calculate efficient routes for mobile agents that perform data fu-
sion and showed through simulations that these algorithms are better than existing
heuristics. [Qi et al. 2001] developed algorithms that allow agents to perform target
classification efficiently. [Qi et al. 2003] ran simulations to determine when mobile
agents perform better than traditional client/server solutions. [Tseng et al. 2004]
use mobile agents in a WSN to track mobile entities as they move through a sensor
field. Experiments on a WiFi network and simulation results show that their algo-
rithm works, but could be improved. [Tynan et al. 2005] developed a methodology
for debugging mobile agent applications for WSNs. Their methodology involves
three stages of debugging that attempts to fix as many bugs as possible while run-
ning on a central base station before it is deployed on a distributed WSN. Finally,
[Wooldridge and Jennings 1995] investigates how strong agents that are capable of
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deliberation through, for example, the Belief-Desire-Intention paradigm [Rao and
Georgeff 1995], can increase a WSN’s energy efficiency [O’Hare et al. 2005].

Many systems enable in-network reprogramming. They can be divided into those
that reprogram a node’s native code, and those that reprogram virtual code. Del-
uge [Hui and Culler 2004] and MOAP [Stathopoulos et al. 2003] are two systems
that work by re-flashing native code. They are designed to transfer large program
binaries and are inappropriate for frequent reprogramming. SOS [Han et al. 2005]
provides a micro-kernel that supports dynamically linked modules. This allows
networks to be partially reprogrammed. SOS modules, however, are not mobile
agents because they cannot control where they are installed, or carry execution
state as they are propagated. A middleware that supports reprogramming native
code, but does not transfer the entire program image, is Impala [Liu and Martonosi
2003]. Impala applications are divided into seven modules that can be indepen-
dently updated. However, the implementation was done on relatively powerful
PDA-class devices. Other native-code reprogramming systems limit overhead by
only sending the changes as determined by the diff [Reijers and Langendoen 2003]
and rsync [Jeong 2005] algorithms.

Systems that use virtual code to reprogram a network include Maté [Levis and
Culler 2002], SensorWare [Boulis et al. 2003], and Smart Messages [Kang et al.
2004]. In Maté, applications are divided into capsules that are flooded throughout
the network. Each node stores the most recent version of a capsule and runs the
application by interpreting the instructions within them. Maté does not allow a
user to control where an application is installed. This limits the network to run
one application at a time. SensorWare allows users to dynamically inject mobile
scripts into the network. This enables multiple applications to run concurrently,
but the scripts only support weak mobility and have fixed points of entry. Also, the
system was implemented for the relatively powerful iPAQ 3670 platform. Smart
Messages support strong migration, but unlike Agilla, it only supports a single
thread of execution per node and is implemented on iPAQs. Like Agilla, it enables
local communication through shared memory. However, it does not allow inter-node
communication, which is achieved through migration.

8. CONCLUSION

Agilla simplifies WSN application development while increasing the network’s flex-
ibility. It does this by offering a mobile agent paradigm and enabling users to
inject application-specific agents into the network. Once injected, these agents dis-
cover their context and coordinate using neighbor lists and localized tuple spaces,
and are capable of autonomous self-directed propagation through clone and move
primitives. Since mobile agents can be continuously injected, the network is flex-
ible. Micro-benchmarks performed on a Mica2 test bed show that Agilla oper-
ations exhibit performance comparable to those of other VM-based middleware.
Macro-benchmarks on a fire detection and tracking application demonstrate that
Agilla’s computational model enables complex application development. Usability
case studies further demonstrate Agilla’s usefulness, while also offering insights on
how Agilla may be improved. These improvements include adding an extended
instruction set for implementing application-specific instructions, and lightweight
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asynchronous reactions with stronger atomicity that further simplifies agent im-
plementations. Much work has been done on how mobile agents may be used in
WSNs. Agilla serves as a foundation on which to evaluate this work in a real WSN,
and rapidly build exciting new, more flexible, applications.
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