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Abstract 
      In the analysis of flutter of fixed-wing aircraft, it is common to use the "p-k" method in which 

one iterates on the reduced frequency of the Theordorsen aerodynamic theory based on the 

Imaginary part of the eigenvalue.  However, this process only is correct when the real part of the 

eigenvalue is zero (i.e., at the stability boundary) because Theodorsen assumes simple harmonic 

motion.  In this paper, we investigate the accuracy of this method for eigenvalues away from the 

stability bound by replacing the Theodorsen function C(k) with its aerodynamic counterpart for 

growing or decaying motion.  We then study the accuracy of the p-k method as compared to an 

exact representation. 

 

Nomenclature 
𝑎            slope of the lift curve 

𝑏	 	 	 	 	 	 	 	 	 	 	blade	semi-chord,	m	

𝑒	 	 	 	 	 	 	 	 	 												eigenvalue	of	matrix	E	

𝑘	 	 	 	 	 	 	 	 																																reduced	frequency	

𝑠	 	 	 	 	 																										Laplace	transform	variable	in	reduced	time	

𝐶(𝑘)	 	           Theodorsen function 

𝐶!(𝑡)       coefficients of aerodynamic force corresponding to pitch moment 

𝐶"(𝑡)                     coefficients of aerodynamic force corresponding to pitch lift 

𝐷(𝑠)	 	              complex lift deficiency function 

𝐼                  identity matrix 

𝐼𝑚[𝑒]	 	                imaginary part of eigenvalue 

𝐽#                                Bessel function of the first kind – order zero 

𝐽$                                 Bessel function of the first kind – order one 

𝐾#(𝑠)                Modified Bessel function of the first kind – order zero 

𝐾$(𝑠)                 Modified Bessel function of the first kind – order one	
𝑅𝑒[𝑒]	 	                         real part of eigenvalue 

𝑉                      velocity  

𝑉∗              normalized velocity 

𝑌#                           Bessel function of the second kind – order zero 



 4 

𝑌$                            Bessel function of the second kind – order one 

𝛼&'                                                                                          quasi-steady angle of attack 

𝑟( 	 	 	 	 	 	 	 	 	 																				radius	of	gyration	

𝑥( 	 	 	 	 	 	 	 	 								distance	to	the	center	of	gravity	

𝜔( 	 	 	 	 	 	 	 	 	 						 										pitch	frequency	

𝜔9( 	 	 	 	 	 	 	 	 				non-dimensional	pitch	frequency	

𝜔)	 	 	 	 	 	 	 	 						 	 							plunge	frequency	

𝜔9)	 	 	 	 	 	 	 	 non-dimensional	plunge	frequency	

𝜅	 	 	 	 	 	 	 	 																					aerodynamic	parameter	

	

Introduction 

Flutter is the dynamic aeroelasticity phenomenon whereby the inertia forces can modify 

the behavior of a flexible system so that energy is extracted from the incoming flow [1]. The 

classical flutter of a typical airfoil section is given in Eq. 1. 
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𝛼&', 𝐶!(𝑡), 𝐶"(𝑡) in the classical flutter equation are defined in Eq. 2, 3 and 4. 
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This analysis assumes that the dynamic lift and pitching moment on the blade are given in terms 

of Theodorsen Theory and the Theodorsen Function 𝐶(𝑘),	which is defined in Eq. 5 [3]. 𝐽 and 𝑌 

represent the Bessel Function of the first kind and the second kind, respectively.  

𝐶(𝑘) = 	 4#	6	78#
4#	6	78#	9	7(4$	6	78$)

                 (5) 

However, Theodorsen Theory assumes that the motion of the airfoil is simple harmonic, while the 

eigenvalue problem for the dynamics of the typical section is not necessarily simple harmonic, but 

it is written in terms of the Laplace variable s which has both real and imaginary parts. Thus, the 

solution of this classical problem is only valid for a root that is exactly at the stability boundary so 

that the Re(s) = 0. A complex version of the Theodorsen Function exists, which is shown in Eq. 2 

[3]. 𝐾(𝑠) represents the Modified Bessel Function of the second kind.   

𝐷(𝑠) = 	 <#(')
<$(')	9	<#(')

                 (6) 

Therefore, it is possible to do a complete Laplace Transform solution for the typical section that is 

not limited to validity only at the stability boundary.  

Methodology 

 After combining equations from Ref. [4] and [5], we came up with three matrices, which 

are shown in Eq. 7. 

𝑀 =	 P𝑟(
* + 𝜅 C

1
8 + 𝑎

*D 𝑥= − 𝜅𝑎

𝑥= − 𝜅𝑎 1 + 𝜅
S 

𝐾 = T−2𝜅 C
1
2
+ 𝑎D𝐶(𝑘) + 𝜔9(*𝑟(* 0

2𝜅𝐶(𝑘) 𝜔9)*
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                              𝐶 = 	 T
E$
*
− 𝑎F𝜅 − 2𝜅 E$

>
− 𝑎*F 𝐶(𝑘) −2𝜅 E$

*
+ 𝑎F𝐶(𝑘)

2𝜅 E$
*
− 𝑎F𝐶(𝑘) + 𝜅 2𝜅𝐶(𝑘)

V                          (7) 
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Using three matrices from above, we created a new 4 × 4 matrix E, which is shown in Eq. 8. 

                                                          𝐸 = 	 I𝐼 0
0 𝑀6$J I

0 𝐼
−𝐾 −𝐶J                                                       (8) 

We use 𝑉∗and 𝜔9( to nondimensionalize the variables and simplify the calculation. 𝑉∗and 𝜔9( are 

defined in Eq. 9 and 10, respectively.  

                                              𝑉∗ =	 0
,?%

= $
?@%

                       (9) 

            𝜔9( =	
$
0∗

                                (10) 

We used three ?@!
?@%

 ratios for the iterations, and x?@!
?@%

 is defined in Eq. 11.  

                 ?@!
?@%
= ?!

?%
           (11) 

Part A. 𝑪(𝒌) iteration  

1. Use four different 𝑥( ∶ 0, 0.05, 0.1, 0.2 

2. For each 𝑥( 	value, use three different ?@!
?@%

 : 0.1, 0.5, 0.8 

3. Find the approximate 𝜔9( value. The best way to find this is approximating the 𝑉∗	value 

from Ref. [1] Fig. 3, and calculate 𝜔9( using Eq. 10.  

4. Let approximate 𝜔9( value =	 (𝜔9()=AABCD 

5. Create an array with 20 possible 𝜔9( values. This array ranges from (𝜔9()=AABCD − 0.001 

to (𝜔9()=AABCD + 0.0009. The array has an interval of 0.0001.  

6. Start with 𝑘 = 0.15 (or any k value, preferably k<1) and find four eigenvalues of matrix E. 

7. Choose two pairs with 𝐼𝑚[𝑒] > 0 

8. Pick eigenvalue with the real part closer to zero (in other words, smaller absolute value of 

the real part). 

9. Replace the old 𝑘 with 𝐼𝑚[𝑒]. Iterate again until 𝑘 is equal to 𝐼𝑚[𝑒]	, or until k value is 

constant.  

10. Store real part of this eigenvalue for each 𝜔9( value of the array 
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11. Plot 𝜔9(	against 𝑅𝑒𝑎𝑙[𝑒], which is shown in the Results section.  

Part B. 𝑫(𝒔) iteration  

 Steps 1 to 5 are the same as 𝐶(𝑘) iteration. 

6. Start with any s value with both real and imaginary parts. Any s value will yield the 

same result. We started the iteration with 𝑠 = 0.0003	 + 0.16𝑖. Find four eigenvalues 

of matrix E. 

7. Choose two pairs with 𝐼𝑚[𝑒] > 0. 

8. Pick eigenvalue with the real part closer to zero (in other words, smaller absolute value 

of the real part). 

9. Replace the old 𝑠 value with the chosen eigenvalue. Iterate again until 𝑠 is equal to 

eigenvalue, or until 𝑠 is constant. 

10. Store real part of this eigenvalue for each 𝜔9( value of the array. 

11. Plot 𝜔9(	against 𝑅𝑒𝑎𝑙[𝑒], which is shown in the Results section.  
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Results 

Part A. Variations in vicinity of the boundary.  𝒙𝜶 = 𝟎, 𝝎#𝒉
𝝎#𝜶
= 𝟎. 𝟏, 𝟎. 𝟓, 𝟎. 𝟖 

Figure 1. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0, ?@!
?@%
= 0.1 



 9 

 

Figure 2. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0, ?@!
?@%
= 0.5 
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Figure 3. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0, ?@!
?@%
= 0.8 

The main focus of this iteration is to observe if the 𝐶(𝑘) and 𝐷(𝑠) iterations cross each 

other at the real part of eigen value equal to zero. As shown in Fig. 3, 4, and 5, 𝐶(𝑘) and 𝐷(𝑠) 

iterations for various ?@!
?@%

 all cross each other at 𝑟𝑒𝑎𝑙(𝑒) = 0. We can also observe that as ?@!
?@%

 

increases, the gap between C(𝑘) and 𝐷(𝑠) becomes narrower. The graph depicts both C(𝑘) and 

𝐷(𝑠) iterations as linear plots, but they look linear because the plot has such a narrow 𝜔( range. 

The same plot with a wider 𝜔( range is shown in Part E.   The main conclusion is that the effect 

of replacing C(k) with D(s) for small variations from the stability boundary is a linear effect with 

frequency rather than quadratic. 
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Part B.  Small variations with aero offset.  𝒙𝜶 = 𝟎. 𝟎𝟓, 𝝎#𝒉
𝝎#𝜶
= 𝟎. 𝟏, 𝟎. 𝟓, 𝟎. 𝟖 

 

Figure 4. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.05, ?@!
?@%
= 0.1 
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Figure 5. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.05, ?@!
?@%
= 0.5 
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Figure 6. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.05, ?@!
?@%
= 0.8 

These show the same trends as without aerodynamic offset. 

 

 

 

 

 

 



 14 

Part C.  Still larger aero offset.   𝒙𝜶 = 𝟎. 𝟏, 𝝎#𝒉
𝝎#𝜶
= 𝟎. 𝟏, 𝟎. 𝟓, 𝟎. 𝟖 

 

Figure 7. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.1, ?@!
?@%
= 0.1 
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Figure 8. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.1, ?@!
?@%
= 0.5 
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Figure 9. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.1, ?@!
?@%
= 0.8 

We thus see that the larger the offset, the less is the effect of D(s) on the eigenvalue in the 

vicinity of the stability boundary. 
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Part D.  Effect of ratio of bending frequency to torsion frequency. 

     𝒙𝜶 = 𝟎. 𝟎𝟓, 𝝎#𝒉
𝝎#𝜶
= 𝟎. 𝟏, 𝟎. 𝟓, 𝟎. 𝟖 

 

Figure 10. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.2, ?@!
?@%
= 0.1 
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Figure 11. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.2, ?@!
?@%
= 0.5 
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Figure 12. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0.2, ?@!
?@%
= 0.8 

Thus, the same results hold at other ratios of the bending frequency to the torsion frequency 

for the Real part of the eigenvalues. 
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Part E.   Larger variations away from stability boundary. 

 

Figure 13. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0, ?@!
?@%
= 0.1 with wider 𝜔( range 
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Figure 14. 𝐶(𝑘)	and 𝐷(𝑠)	Iteration at 𝑥( = 0, ?@!
?@%
= 0.1 with imaginary part and wider 𝜔( range 

With the larger variations in frequency, we can see the quadratic effects of D(s) as we move 

further away from the boundary.  This is true both for the damping (the real part) and for the 

frequency (the imaginary part). 
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Conclusion 

1. The effect of a complex version of aerodynamics being used is seen even for perturbations in 

parameters as a small but noticeable linear effect. 

2.  The effect increases with the distance from the stability boundary but remains small. 

3.  Thus, the presently-used p-k method is fairly accurate. 

4.  However, there is only a minimal extra effort involved in including the true D(s) so that there 

is no compelling reason not to include it with its greater accuracy at no additional computational 

cost. 
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